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ABSTRACT

ULTRA-FAST INFLUENCE MAXIMIZATION WITH FUSED
SAMPLING AND SKETCHES

GÖKHAN GÖKTÜRK

COMPUTER SCIENCE AND ENGINEERING, Ph.D. DISSERTATION,
JULY 2021

Dissertation Supervisor: Asst. Prof. Kamer Kaya

Keywords: Influence maximization, Fused sampling, Parallel graph algorithms,
High-performance computing

Influence Maximization (IM) is the problem of finding a subset of vertices in a social
network whose influence reaches the maximum reachability according to a diffusion
model. Due to the NP-Hardness of the problem, often, greedy approximation algo-
rithms are applied. However, irregular memory access patterns and the probabilistic
nature of the problem make it a challenging yet rewarding optimization target.

This thesis proposes three high-performance IM methods and explores their
performance considerations for implementation; first, we propose InFuseR-MG,
an IM algorithm that uses a hash-based, direction-oblivious pseudo-random number
generator and fused sampling to sample edges in undirected networks. Second, we
propose HyperFuseR for directed, generic networks; HyperFuseR uses modified
Flajolet-Martin sketches to estimate the cardinality of large reachability sets
efficiently. Finally, we propose SuperFuseR, a sketch-based IM algorithm that
is specifically designed for the multi-GPU setting. SuperFuseR uses a sampling-
aware sample-space split mechanism to distribute the graph to multiple devices.

Also in this work, we discuss performance considerations at each step of the pro-
posed algorithms and provide their high-performance implementations. For each
algorithm, we provide detailed experimental results, including performance, quality,
and scaling benchmarks.
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ÖZET

ÖRNEKLEM BİRLEŞTİRME VE VERİ ÖZETLERİ İLE YÜKSEK
PERFORMANSLI ETKİ ENİYİLEMESİ

GÖKHAN GÖKTÜRK

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ, DOKTORA TEZİ,
TEMMUZ 2021

Tez Danışmanı: Dr. Öğr. Üyesi Kamer Kaya

Anahtar Kelimeler: Etki eniyilemesi, Örneklem birleştirme, Paralel çizge
algoritmaları, Yüksek başarımlı hesaplama

Etki Eniyileme (EE), bir sosyal ağda etkisinin bir yayılma modeline göre maksimum
erişilebilirliğe ulaştığı bir düğüm alt kümesi bulma problemidir. Problemin NP-Zor
olması nedeniyle, bu problem için genellikle açgözlü yaklaşım algoritmaları uygu-
lanır. Düzensiz bellek erişim kalıpları ve sorunun olasılıksal doğası, onu zorlu ancak
ödüllendirici bir optimizasyon hedefi haline getirmektedir.

Bu tez, üç yüksek performanslı EE yöntemi önermekte ve gerçekleme için perfor-
mans değerlendirmelerini araştırmaktadır; ilk olarak, özüt tabanlı, yön bağımsız
rasgele sayı üreteci ve örneklem birleştirme kullanarak, yönlemdirilmemiş bağları
örnekleyen bir EE algoritması olan InFuseR-MG’yi öneriyoruz. İkinci olarak, yön-
lendirilmiş ağlar için, büyük erişilebilirlik kümelerinin boyutlarımı tahmin etmek
için değiştirilmiş Flajolet-Martin eskizleri kullanan bir EE yönetemi olan Hyper-
FuseR’ı anlatacağız. Son olarak, akıllı örneklem-uzay bölümlenmesi ile birden fazla
Grafik İşleme Ünitesi kullanmak için özel olarak tasarlanmış, eskiz tabanlı bir EE
algoritması olan SuperFuseR önerilmiştir.

Bu tezde algoritmaların her adımının performans değerlendirmeleri de tartışılmakta
ve önerilen algoritmaların yüksek performanslı gerçeklemeleri de verilmektedir. Her
algoritma için, literatürdeki en iyi yöntemler ile performans, kalite ve ölçekleme
karşılaştırmaları da dahil olmak üzere ayrıntılı deney sonuçları bulunmaktadır.
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1. INTRODUCTION

When we are implementing algorithms, we often focus on correctness first, but we
can hit a performance wall as the problem gets bigger. Sometimes we realize that
our software is too slow; the computation might be finished too late that results are
now irrelevant, or computation time/cost is too high to spend for the results. Even
though the constants are removed in asymptotic analysis, and all algorithms with
different constants are considered equivalent, it is hardly the case for real-life com-
putation. Luckily, by adapting the code to how computer hardware works, several
methods can speed it faster. Improving locality is one of those methods since we ob-
serve that most performance bottlenecks are caused by memory latency/bandwidth.
A simple logical operation waiting for memory access can take 100× more time due
to the naive implementation. Details of the locality and memory hierarchy will be
mentioned in Section 2.4.

The algorithms are often designed for simplicity, then special cases and heuristics
are added for performance. We are interested in improving the performance of graph
algorithms due to their irregular memory access patterns. And, we selected prob-
abilistic graph algorithms for their wasteful nature. In these algorithms, temporal
and spatial locality are often disregarded; the same edge is traversed multiple times,
irregularly, even for throwing away results.

In this work, we show that the memory accesses can be accumulated to improve the
performance by reducing the total amount of work and improving locality. Even
though Influence Maximization is selected as the case, the methods proposed in this
thesis should apply to many other probabilistic graph algorithms.

With their rapid growth, the study of efficient information/influence dissemination
in networks has become an important and fruitful research area. It has applica-
tions in many fields including viral marketing (Leskovec, Adamic, & Huberman,
2007; Trusov, Bucklin, & Pauwels, 2009), social media analysis (Zeng et al., 2010;
Moreno, Nekovee, & Pacheco, 2004), and recommendation systems (Lü et al., 2012).
Hence, novel approaches to find good vertex sets which can effectively spread the
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information are vital in practice. As the study of these networks is imperative
for educational, political, economic, and social purposes, a high-quality seed set to
initiate the diffusion may have vital importance.Furthermore, since the diffusion
analysis may be time-critical, or increasing the influence coverage may be too ex-
pensive, novel and efficient approaches to find good vertex sets that propagate the
information effectively are essential.

The Influence Maximization (IM) problem is introduced by Kempe, Kleinberg, and
Tardos (2003). Formally, it focuses on finding the most promising seed (vertex) set
with a given cardinality that increases the expected number of influenced vertices.
IM is proven to be NP-hard (Kempe, Kleinberg, & Tardos, 2003) and there exist
various simplifications and heuristics proposed in the literature (Chen, Wang, &
Yang, 2009; Narayanam & Narahari, 2010; Kimura, Saito, & Nakano, 2007; Chen,
Wang, & Wang, 2010; Chen, Yuan, & Zhang, 2010; Kim, Kim, & Yu, 2013a; Goyal,
Lu, & Lakshmanan, 2011b; Jung, Heo, & Chen, 2012; Cheng et al., 2014; Liu et al.,
2014; Galhotra, Arora, & Roy, 2016). It has also been shown that a greedy Monte-
Carlo approach provides a constant approximation for the optimal solution (Kempe,
Kleinberg, & Tardos, 2003).

For a graph with n vertices, the expected complexity of this greedy algorithm, esti-
mating an influence score σ, running R simulations, and selecting K seed vertices is
O(KRnσ). Hence, for real-life networks with hundreds of thousands of vertices, the
approach is expensive. However, these simulation-based, greedy algorithms provide
the best possible approximation guarantees. Therefore they are considered as the
gold standard for IM.

Performing the simulations of a greedy algorithm in parallel is an immediate and
straightforward remedy to reduce the execution time of IM kernels and make them
scalable for large-scale networks. However, restructuring the kernels to leverage
instruction-level parallelism has not been investigated before. Although modern
compilers can efficiently and automatically utilize instruction-level parallelism for
applications with regular memory access patterns, it is not a straightforward task
for graph processing kernels due to their irregular memory accesses. Furthermore,
vectorization attempts on such kernels usually fail to provide significant performance
improvements.

Simulating a greedy algorithm in parallel is a straightforward workaround to reduce
the execution time of IM kernels and make them scalable for large-scale networks.
However, for large networks, a parallel, greedy approach with a good approximation
guarantee does not come cheap on networks with billions of vertices and edges, even
if many processing units/cores are available. In this work;
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• We propose several ultra-fast high-quality Influence Maximization methods. Un-
like the traditional greedy approach, the proposed approach samples the edges as
traversed in multiple simulations. Hence, for a single simulation, sampling and
diffusion processes are fused. All methods mentioned are made public 1,

• By running concurrent simulations at once, we reduce the amount of connectivity
information read from memory. When the simulations traverse the same edge
within close time intervals, the edge is accessed only once as long as the simulation
timelines allow methods to do so. Thus, the proposed approaches reduce the
pressure on the memory sub-system. Furthermore, we utilize hardware parallelism
with high efficiency, i.e., we usually leverage the full SIMD register or GPU warp
and make use of all the arithmetic operations performed.

• In addition to instruction-level parallelism, we parallelize the methods on multi-
core architectures and GPUs.

• All the algorithms designed in this thesis have high-performance implementations;
our implementations are often orders of magnitude faster than their state-of-art
counterparts.

• To better position the performance of our methods in the IM literature, we com-
pare the performance, memory usage, and influence score with state-of-the-art
approximation algorithms for Influence Maximization.

The dissertation is organized as follows: In Chapter 2, we present the background
information and introduce the mathematical notation including Influence Maximiza-
tion, Fused Sampling, and Count-Distinct Sketches. In addition, we provide pre-
liminary information on Performance, Memory Hierarchies, and instruction sets and
accelerators such as AVX2, AVX512, and GPUs.

Chapter 3 describes hash-based fused sampling, a fundamental technique we apply
in our solutions, and its direction-oblivious variant.

Chapter 4 describes the connected-component-based Influence Maximization ap-
proach (Göktürk & Kaya, 2021), including details on the AVX2 implementation
and its multi-core parallelization. Also, we added experimental results to compare
them to the state-of-art methods (excluding sketches and heuristics).

In Chapter 5, we propose a new sketch-based Influence Maximization method (Gok-
turk & Kaya, 2021), HyperFuser. Similar to the previous chapter, details including
AVX2/AVX-512 implementation, multi-core parallelization, and experimental re-
sults against the state-of-art methods will be given.

1https://github.com/ggokturk/infuser
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In Chapter 6, a blazing-fast, multi-GPU Influence Maximization algorithm is pro-
posed. Furthermore, a better count-distinct sketch specifically designed for GPUs
and a fused-sampling aware sample-space split method are described. The experi-
mental results and their discussions are added to this chapter as well.

Finally, in Chapter 7, we discuss the contributions, present a final comparative
overview, and discuss the future work.
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2. NOTATION AND BACKGROUND

2.1 Notation

Let G = (V,E) be a graph where the n vertices in V represent the agents, and
m edges in E represent the relations among them. For directed graphs, an edge
(u,v) ∈ E is an incoming edge for v and an outgoing edge of u. The incoming
neighborhood of a vertex v ∈ V is denoted as Γ−G(v) = {u : (u,v) ∈ E}. Similarly,
the outgoing neighborhood of a vertex v ∈ V is denoted as Γ+

G(v) = {u : (v,u) ∈ E}.
When the graph is undirected, ΓG(v) = {u : {u,v} ∈ E} denotes the neighborhood
of v.

A graph G′ = (V ′,E′) is a sub-graph of G if V ′ ⊆ V and E′ ⊆ E. The diffusion
probability on the edge (u,v) ∈ G is noted as wu,v, where wu,v can be determined
either by the diffusion model or according to the strength of u and v’s relationship.
In practice, wu,v can be determined by the strength of u and v’s relationship (Kempe,
Kleinberg, & Tardos, 2003). For undirected graphs, wu,v = wv,u, and for simplicity,
self edges (interactions), i.e., (u,u) or {u,u}, are not allowed.

Two vertices u,v ∈ V are connected if there exists a simple u v path

{u= v0,v1},{v1,v2}, . . . ,{v`−1,v` = v}

of length ` in G, where all vis are unique. For directed graphs, the edges are oriented
and the u v path is

(u,v1),(v1,v2), . . . ,(v`−1,v).

An undirected graph G′= (V ′,E′) is a subgraph of G if V ′⊆ V and E′⊆E. If all the
vertices in G′ are connected G′ is called as a connected subgraph of G. If the subgraph

5



is a maximally connected subgraph of G it is called a connected component (CC)
of G. For directed graphs, if

−→
G′ is a subgraph of −→G and all the vertices in

−→
G′ are

connected it is called as a strongly connected subgraph of −→G . If the subgraph is
maximal and strongly connected, it is called a strongly connected component of −→G .

Table 2.1 Table of notations

Variable Definition
G= (V,E) Graph G with vertices V and edges E
ΓG(v) Neighborhood of vertex v in graph G
Γ+

G(v) outgoing neighborhood of a vertex (directed graphs)
Γ−G(v) incoming neighborhood of a vertex (directed graphs)
wu,v Probability of u directly influencing v
RG(v) Reachability set of vertex v on graph G
S Seed set to maximize influence
K Size of the seed set
R Number of Monte-Carlo simulations performed
σG(S) Influence score of S in G, i.e., expected number of vertices

reached from S in G
σG(S,v) Marginal influence gain by adding vertex v to seed set S
h(u,v) Hash function for edge {u,v}
hj(x) j’th hash function for number x
hmax Maximum value hash function h can return
B Batch size, number of simultaneous simulations ran.
[a, . . . ,a]B Vector of size B, contains all a
A(v) Out-going edges coming from vertex v
J Number of registers for sketches
clz(..) Count leading zeros function
H(..) Harmonic mean function
<<<B,T >>> CUDA kernel launch parameters;

B blocks, T threads per block

2.2 Influence Maximization

Influence maximization aims to find a seed set S ⊆ V among all possible size K
subsets of V that maximizes an influence spread function σG,M on G under a diffu-
sion model M when the diffusion process is initiated from S. Among the algorithms
proposed in this thesis, While InFuseR-MG focuses on graphs with undirected
edges, HyperFuseR and SuperFuseR focus on graphs with directed edges which
is the generic case for graph computations. The influence spread function σG,M (·)
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computes the expected number of agents (or nodes, vertices, etc.) influenced (acti-
vated) through a diffusion modelM . For the sake of simplicity, we dropM from the
notation; in the rest of the text, σG refers to σG,M . Some of the popular diffusion
models for IM in the literature are independent and weighted cascade (IC and WC),
and linear threshold (LT) (Kempe, Kleinberg, & Tardos, 2003).

(a) IC (b) WC

Figure 2.1 (a) The directed graph G = (V,E) for IC with independent diffusion probabil-
ities. (b) The directed graph for WC is obtained by setting the diffusion probabilities of
incoming edges to 1/|Γ−

G(v)| for each vertex v ∈ V .

• The Independent Cascade model works in rounds and activates a vertex v in
the current round if one of v’s incoming edges (u,v) is used during the diffusion
round, which happens with the activation probability wu,v, given that u has
already been influenced in the previous rounds. The activation probabilities
are independent (from each other and previous activations) in the independent
cascade model, which we focus on in this thesis. A toy graph with activation
probabilities on the edges is shown in Figure 2.1a. In theory, there can exist
parallel and independent {u,v} edges in E. In practice, they are merged to a
single {u,v} edge with compound probability via preprocessing. For example,
the probability of vertex u activating vertex v through two parallel edges with
w = 0.1 is wu,w = 1− (1−0.1)2 = 0.19.

• The Weighted Cascade model is a variant of IC and uses the structural prop-
erties of vertices to set the edge weights as shown in Figure 2.1b. The method,
as described in (Kempe, Kleinberg, & Tardos, 2003), sets wu,v = 1/dv where
dv is the number of incoming edges of v (which in the original graph is equal to
Γ−G(v)). Therefore, if v has ` neighbors activated in the last round, its probability
of activation in the new round is 1− (1−1/dv)`.

• Linear threshold generalizes the IC model and activates the vertex v once
the cumulative activation coming from its neighbors exceeds a given threshold
θv. All the (u,v) edges with active u vertices are taken into account in the
process. Vertex v is activated when the total activation probability through
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these edges exceeds θv (Kempe, Kleinberg, & Tardos, 2003). Each edge e =
(s,v) ∈ E has a weight ws,v. Each vertex v has incoming edge list Adj−1(v)
and ∑

s∈Adj−1(v)ws,v ≤ 1. Also, each vertex v has associated with a threshold
θv. Initially, θ is sampled uniformly, and seed set is set as activated. Then,
until convergence is reached simulation ran to transfer wij values from activated
vertices to their neighborhoods, activating each vertex v that reach θv value.
Weights can be uniform i.e 0.1, 0.01, or 0.001 for all edges, as we observed in
many work.

• Triggering proposed by Kempe, Kleinberg, and Tardos (2003) to generalize of
previous models mentioned above. In the triggering model, each neighbor has
a probability of influencing vertex v. The diffusion process chooses a random
subset of vertices called "triggering set" to activate vertices at each instance.

The IM problem is NP-hard under the cascade and linear threshold models. This
being said, the influence function is non-negative, monotone and sub-modular,
which means that adding a single vertex to the current seed set can only increase
the overall influence and decreases the marginal influence scores for the remaining
vertices that are not in the set. Due to these properties, the influence score of
a greedy solution, which always adds the most promising vertex with the highest
marginal gain to a seed set of final size K is at least 1− (1− 1/K)K ≥ 63% of the
optimal solution (Nemhauser, Wolsey, & Fisher, 1978).

There exist simulation-based (Kempe, Kleinberg, & Tardos, 2003; Chen, Wang, &
Yang, 2009), sketch-based (Cohen et al., 2014), and proxy-based (Chen, Wang, &
Yang, 2009; Jung, Heo, & Chen, 2012) approaches in the literature to find a seed
set S that maximizes the influence spread in a graph. Simulation-based approaches
run Monte-Carlo simulations, whereas sketch-based ones utilize approximate data
structures. On the other hand, proxy-based approaches simplify the IM problem
and utilize simpler heuristics.

For the simulation-based approaches, the complexity analysis stays consistent for
many diffusion models, including Independent Cascade, Weighted Cascade, and Lin-
ear Threshold. The time complexity of the greedy algorithm, estimating the σ

influence score, running R simulations, and selecting K seed vertices is O(KRnσ)
for a graph with n vertices. We concentrate on the IC model in this thesis, how-
ever, although their adaptation requires some work, the proposed methods are also
relevant to other models in the literature.

Kempe et al. (2003) proposed the greedy Monte-Carlo-based algorithm using the
approach as mentioned earlier and set the foundations. At each step, the greedy
algorithm finds the vertex that increases the influence the most. As Feige’s optimal
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inapproximability result shows (Feige, 1998), the guaranteed approximation ratio
is the gold standard for problems with a non-trivial size, both asymptotically and
practically. On the contrary, the other, sketch- and proxy-based approaches do
not guarantee this approximation ratio. This is why, in this thesis, we first target
the greedy, simulation-based algorithms that use the proposed techniques to boost
their performance. To the best of our knowledge, due to their complexity, these
algorithms have been experimented only on small-scale graphs in the literature.

Since IM is an expensive problem, studies in the literature focus on improving algo-
rithmic complexity. Instead of trying all the vertices at each step, the Cost-effective
Lazy Forward (CELF) algorithm of Leskovec et al. (Leskovec, Adamic, & Huber-
man, 2007) keeps the vertices in a priority queue w.r.t. their marginal influence
gains. Due to the submodularity property of the influence spread function, these
values set upper bounds for the current marginal gains. When a vertex is visited, its
current marginal gain is updated, i.e., its exact value is computed, and the vertex
is replaced further down in the queue. When a vertex is seen twice, the remaining
vertices are guaranteed to have smaller marginal gains. Hence, the greedy deci-
sion can be immediately taken. The bottleneck of CELF is in its initialization; the
(marginal) influence scores for all the vertices must be computed, which is the most
time-consuming part and makes the approach expensive for large-scale graphs. This
approach is improved by Goyal, Lu, and Lakshmanan (2011a) by further exploiting
the submodularity of the influence spread function.

Chen, Wang, and Yang (2009) improve CELF with MixGreedy. Instead of run-
ning Monte-Carlo simulations from each vertex to find the initial marginal gains,
MixGreedy uses one iteration of another IM algorithm NewGreedy whose pseu-
docode is given in Algorithm 1. In NewGreedy, the algorithm greedily chooses K
vertices to form the seed set S and uses R graph samples to choose each seed vertex.
For each inner-iteration (lines 6–12), the algorithm samples a subgraph G′ from G.
The pseudocode of the sampling algorithm, Sample, is given in Algorithm 2 where
each edge {u,v} is included with probability wu,v. Then the marginal gains of G′’s
vertices for this sample are computed by using the reachability sets. For undirected
graphs, computing |RG′(S∪v)| for each vertex v takes O(m+n) time since a number
of graph traversals which touch each edge only once is sufficient.

The pseudocode of MixGreedy is given in Algorithm 3. Note that MixGreedy
uses only a single iteration of NewGreedy with parameters (G,1,R). Even though
NewGreedy can be used to find each of theK vertices in S one by one, Chen et al.’s
experiments revealed thatNewGreedy is only faster in the initialization stage. The
experiments show that performing the CELF approach and adding a vertex to the
seed set in case of a revisit in the queue is faster for consequent vertices.
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Algorithm 1 NewGreedy(G,K,R)
Input: G= (V,E): the influence graph

K: number of seed vertices
R: number of MC simulations per seed vertex

Output: S: a seed set that maximizes influence on G
mg: marginal influence scores

1: S←∅
2: for k = 1 . . .K do
3: for v ∈ V do
4: mgv← 0
5: for r = 1 . . .R do
6: G′ = (V,E′)← Sample(G)
7: Compute RG′(S)
8: Compute |RG′({v})| for all v ∈ V
9: for v ∈ V \S do
10: if v /∈RG′(S) then
11: σG′(S,v)← |RG′(v)|
12: mgv←mgv +σG′(S,v)
13: mgv← mgv

R for all v ∈ V \S
14: S← S∪{argmaxv∈V {mgv}}
15: return S, mg

Algorithm 2 Sample(G)
Input: G= (V,E): the original graph
Output: G′ = (V,E′): a subgraph of G
1: E′←∅
2: for each {u,v} in E do
3: Randomly choose r ∈R [0,1] from a uniform dist.
4: if r ≤ wu,v then
5: E′← E′∪{u,v}
6: Construct G′ = (V,E′)
7: return G′

The subgraph G′ = (V ′,E′) in the algorithm is sampled from G by using Sample.
where ∀e ∈ E,P (e ∈ E′) = p. At first, all vertices in the seed set are marked to be
activated. Then at each step, out-going edges from the activated set are marked to
activated as well. The algorithm is terminated when there are no vertices that can
be activated. The number of activated vertices is σG(S), influence spread of seed
set S.

In this thesis, we will first focus on InFuseR-MG (Göktürk & Kaya, 2021), the
fused and restructured form of MixGreedy. The memory accesses and floating-
point operations performed by the existing algorithm are restructured to reduce the
memory pressure for the marginal gain computations. This enables fused sampling
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Algorithm 3 MixGreedy(G,K,R)
Input: G= (V,E): the influence graph

K: number of seed vertices
R: number of MC simulations per seed vertex

Output: S: a seed set that maximizes influence on G
1: S,mg← NewGreedy(G,1,R)
2: σG(S)←maxv∈V {mgv} . mgv = σG(∅,v)
3: Q← PriorityQueue()
4: for v ∈ V \S do
5: Q.enqueue(v, priority=mgv)
6: iterv← 0,∀v ∈ V
7: while |S|<K do
8: u←Q.top()
9: if iteru = |S| then
10: S← S∪{u}
11: Q.dequeue(u)
12: σG(S)← σG(S) +mgu

13: else
14: mgu← RandCas(G,S∪{u},R)−σG(S)
15: iteru← |S|
16: Q.updatePriority(u, priority=mgu)
17: return S

Algorithm 4 RandCas(G, S, R)
Input: G= (V,E): the influence graph

S: the seed set
Output: σG(S): influence score of seed set S on G
1: σS ← 0
2: for r = 1 . . .R do
3: G′ = (V,E′)← Sample(G)
4: Compute RG′(S)
5: σG(S)← σG(S) + |RG′(S)|

R
6: return σG(S)

and vectorization. Furthermore, memoization is applied to reduce the cost of the
CELF phase. The proposed techniques in this paper can be adopted by other proba-
bilistic graph algorithms and other IM kernels to boost their performance. Although
they are not focusing on probabilistic algorithms and fusing, SIMD-based alterations
of graph kernels to regularize memory accesses have been studied before, e.g., to per-
form BFS, compute centrality metrics, or connected components (Sariyüce et al.,
2014, 2015; Peng et al., 2018). We note that unlike our proposal, MixGreedy does
not produce the same R samples for all iterations. That is our approach uses the
same sample graph G′r for simulation r at each iteration. The experimental results
show that the differences in results in both cases are negligible.
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Our next proposal, HyperFuseR, borrows much from InFuseR-MG (Göktürk &
Kaya, 2021), including hash-based fused sampling. InFuseR-MG computes the
influence by memoizing connected components for all vertices and can work only
on undirected datasets. It also employs the CELF optimization to reduce the cost
of cardinality computations. On the other hand, HyperFuseR can process both
directed and undirected graphs and uses the Flajolet–Martin sketches in a novel way
to estimate cardinality and choose seed candidates. As the experiments in the thesis
show, its seed set quality is on par with that of InFuseR-MG. Our next algorithm,
SuperFuseR, is a multi-GPU based approach and inspires from HyperFuseR by
adopting its sample-space-split technique to boost the performance and distribute
the work in an efficient way to multiple GPUs.

2.3 Related Work

In addition to the work mentioned above, which form the base of this thesis, there
exist other Influence Maximization methods that can be considered as the state-of-
art or have a component similar to our work. Even though studies using sketches,
parallelism, or utilizing GPUs for IM exist in the literature, the proposed methods
in this thesis are distinct from them in most ways.

The Independent Path Algorithm (IPA) (Kim, Kim, & Yu, 2013b) runs a proxy
model and prunes paths with probabilities smaller than a given threshold in parallel.
The approach only keeps a dense but small part of the network and scalable to only
sparse networks. Liu et al. (2013) proposed IMGPU, an IM estimation method
by utilizing a bottom-up traversal algorithm. It performs a single Monte-Carlo
simulation on many GPU threads to find the reachability of the seed set. It is 5.1×
faster than MixGreedy on a CPU. The GPU implementation is up to 60× faster
with an average speedup of 24.8×. For comparison purposes, the techniques we
propose and parallelization make the same algorithm faster around three orders of
magnitude on multicore CPUs.

Although they can be inferior in terms of influence, modern IM algorithms are
shown to be quite fast compared to conventional simulation-based approaches such
as MixGreedy. Techniques such as using GPUs (Liu et al., 2013; Minutoli et al.,
2020), sketches for finding set intersections (Cohen et al., 2014; Kim, Kim, & Yu,
2013b), reverse sampling to estimate the influence (Borgs et al., 2014; Minutoli et
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al., 2019), and estimating the necessary number of simulations/samples required for
each step (Leskovec et al., 2009) greatly reduces the execution times.

Sketch-based IM methods are cheaper compared to simulation-based methods. They
usually pre-compute the sketches by processing the graph for evaluating the in-
fluence spread instead of running simulations repetitively. A popular method for
sketch-based IM is Skim by Cohen et al. (2014). Skim uses combined bottom-k
min-hash reachability sketches (Cohen & Kaplan, 2007; Cohen, 2015), built on `

sampled subgraphs, to estimate the influence scores of the seed sets. It is parallel in
the sense that it uses OpenMP parallelization during sketch utilization. However, the
sketch building step is single-threaded. Skim treats vertex/sample pairs as distinct
elements and reduces edge traversals via their smallest ranks in bottom-ksketches.
Skim builds its sketches on randomly assigned ranks to vertex/sample pairs. First,
each vertex/sample pairs, (u,i), are sorted by their random ranks for processing.
Then, vertex/sampled pairs, (u,i) are processed in the order. For every incoming
edge, (v,u), of u in sample graph Gi, sketch Xu is updated by appending (v, i)’s
rank to Xu, until any vertices’ sketch size reaches j. After, the vertex with max-
imum estimated cardinality according to its sketch is added to the seed set S and
reachability set on S is removed from all sketches and samples. The process is
repeated until K vertices are select, continuing from the last rank processed. Un-
like Skim, our sketch-based proposals, HyperFuseR and SuperFuseR, leverages
Flajolet-Martin sketches (Flajolet & Martin, 1985) for their simplicity, suitability
for vectorization and fused sampling, and hence, execution-time performance.

Borgs et al. (2014) proposed Reverse Influence Sampling (RIS) which samples a
fraction of all random reverse reachable sets. Then it computes a set of K seeds
that covers the maximum number of those. The number of samples is calculated
with respect to the number of visited vertices. The algorithm has an approxima-
tion guarantee of (1− 1/e− ε). Minutoli et al. (2019) improved RIS and proposed
IMM that works on multi-threaded and distributed architectures. Recently, the
authors extended the algorithm to work on GPUs (Minutoli et al., 2020). IMM
uses LeapFrog method to generate random numbers.

Ohsaka et al. (2014) proposed an approach that utilizes connected components and
memoization. The proposed method selects the vertex with the highest degree and
memoizes the connected components for all R Monte-Carlo samples. Then, the
marginal gains are estimated with the pruned-BFS method that prunes ancestor
and recently processed vertices.

The Two-phased Influence Maximization (Tim+) algorithm borrows ideas from RIS
but overcomes its limitations with a novel sampling strategy (Tang, Xiao, & Shi,
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2014). Its first phase computes a lower bound of the maximum expected influence
over all size-K node sets. It then uses this bound to derive a parameter θ. In
the second phase, it samples θ random RR sets from G, and then derives a size-K
node-set that covers a large number of RR sets.

Cohen (2015) presented the Historic Inverse Probability (HIP) estimators which,
when applied to All-Distance Sketches, outperforms the HyperLogLog sketches (Fla-
jolet et al., 2007) while estimating the number of distinct elements on data streams.
As mentioned before, for the proposed algorithms in this thesis, we preferred
Flajolet-Martin (Flajolet & Martin, 1985) instead of bottom-k min-hash sketches
for simplicity and execution-time performance. In the future work, other estimators
such as HIP can be used to improve the quality of our sketch-based solutions.

Kumar and Calders (2017) proposed the Time Constrained Information Cascade
Model and a kernel that works on the model using versioned HyperLogLog sketches.
The algorithm computes the influence for all vertices in G while performing a single
pass over the data. The sketches are used for each time window to estimate active
edges.

2.4 The Importance of Memory Hierarchy

In an ideal computing device, programmers would want more memory than the
problem size which is also expected to be immediately available regardless of how
data is stored. Unfortunately, both the solution complexity and the penalty due
to access latencies force a multi-level memory hierarchy which contains faster yet
smaller memory storage units. Hence, while architecture-agnostic implementations
can suffer, when they are modified/refactored to promote data locality, we can access
a large-amount of data in an effective and efficient manner. The principle of locality
stems from the fact that programs tend to reuse data and instructions they have
used recently. A conclusion we can draw from the locality principle is that it’s
possible to reorder the operations in a way which makes the local data fetched next
within a reasonable accuracy. The most prevalent types of the locality are temporal
and spatial locality. Temporal locality refers to accessing the same set of resources
multiple times in a short time interval. On the other hand, spatial locality refers to
the data access patterns that access in close proximity on memory.

Memory hierarchies are organized in several levels; each level below is slower yet
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larger and cheaper. Locality allows multi-level memory hierarchies to be exploited
while being transparent to programs, even if the hierarchies consist of memory blocks
with different speeds and sizes. A multi-level memory hierarchy, optimized for com-
mon memory access patterns, can be fast as its fastest level for most of the run-time
without the cost and latency limit of addressing large memory. Besides the cost,
addressing latency is another factor to take into account while designing the mem-
ory subsystem. Since binary addressing is used, every time memory size is doubled,
additional circuitry is required to fetch the relevant word, which increases access
latency. For most of the memory hierarchies (with exceptions), the smaller subset
is cached at a higher level to increase performance. Since most of the time, the pro-
grams access the data close to the previously accessed data, a data block containing
each access location is also fetched from the lower/slower levels. In this scheme,
a random access pattern would be heavily penalized since it causes each level to
fetch from lower levels. On the other hand, a sequential access pattern only causes
one block fetch from the lower-levels for all the accesses to the corresponding block.
Pre-fetching strategies can even reduce the latency by guessing the next access and
fetching it before while the processor is busy processing current data.

2.5 Amdahl’s Law

Amdahl’s law (Amdahl, 1967) refers to the theoretical speed-up that a computer
system can achieve by adding more computation resources to a fixed-size problem.
Since most of the programs has an inherently sequential part, we can only speed
up the part of the program that can be parallelized. For example, a program that
spends 90% of its execution time on a parallel task without any overhead can only be
at most 10× faster via parallelism; infinite computational resources can theoretically
reduce the execution time of the parallel part to 0, yet the remaining 10% will still
incur the same latency, even with infinite resources. We can state Amdahl’s law in
the following manner:

(2.1) S(N) = 1
(1−p) + (p/N)

where N is number of compute units for parallelization, p is fraction of time of the
program’s parallel sections, and S is the speed-up that can be theoretically achieved
using N compute units. The argument neglects a few architectural considerations,
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including memory bottlenecks, I/O, data-transfers, communication latencies, and
the increase in problem size, i.e., parallelization overhead, due to the extra paral-
lelization complexities.

Gustafson’s law (Gustafson, 1988) tackles the inadequacies of Amdahl’s law, which
assumes a fixed problem size (work) with respect to additional computation re-
sources. On the other hand, Gustafson’s law argues that programmers prefer to set
the workload size to fully use the available computing resources and adapt as the
resources become better. Hence, if the processors become better, the workload can
be higher while keeping the processing time the same. Gustafson’s law can be stated
in the following manner:

(2.2) S(N) = (1−p) +Np

where S is the theoretical speedup of the execution, N is the number of processors,
and p is the time fraction of the execution that can leverage parallelization.

2.6 Memory Wall

Even heavily optimized kernels often perform well below hardware’s peak perfor-
mance. The main reason for this sub-par performance is the performance difference
between memory accesses and arithmetic computations. In addition, the perfor-
mance disparity between memory and processor grows larger in time. The term
“Memory Wall”, coined by Wulf and McKee (1995), refers to the phenomenon that
even the low rate of misses (an access to a memory level without success) can domi-
nate the run-time due to the growing latencies between the processor and lower-level
memory. The increasing number of processing cores without the same rate of per-
formance jump in DRAM bandwidth (as the time of writing this work) makes the
memory wall more prevalent. For example, the memory hierarchy of a typical CPU
and the expected latencies for each level are given below;

• Registers: ALU directly works on registers, typically less than a cycle.

• Level 0 (L0): Micro operations cache, holds microinstructions for complex
instructions, less than a cycle.

• Level 1 (L1): Separate instruction and data caches. Very fast 1-2 cycles.

• Level 2 (L2): Shared instruction and data cache. 10-14 cycles.
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• Level 3 (L3): Shared data cache between the cores in the same module/socket.
Allows communication. 20+ cycles.

• Level 4 (L4): Shared data cache between the cores in the same package. Allows
communication. 50+ cycles.

• Main memory (RAM): Main random access data storage. 300+ cycles.

The average memory access time equation can be written as:

(2.3) tavg = p× tc + (1−p)× tm

where tc is the cache access latency, tm is main memory access latency, and p is
cache hit ratio. For simplicity, multiple levels of caches are not considered but can
be easily added by replacing tm with average latency for lower levels. Even if the term
(1−p) is small, which is a must for good performance, making it zero is impossible
for most of the problems. Hence, as the difference between tc and tm grows, the
performance will suffer more. Therefore, we will hit the memory wall regardless.
Furthermore, graph algorithms have to follow the network edges (or endpoints of
the edges) distributed into irregular and unpredictable memory locations, hence,
suffer significantly from the cache misses. Probabilistic graph algorithms especially
suffer since many edge traversal operations during sampling do not contribute to
the output, i.e., incur a useful arithmetic operation, although they incur more cache
misses.

2.7 Single Instruction-Multiple Data

Flynn’s taxonomy defines Single Instruction-Multiple Data (SIMD) as a class of
parallel computers that can operate on data vectors. SIMD architectures allow par-
allelism at the instruction level. Data vectors hold a fixed number of elements in
consecutive locations. SIMD instructions work by applying operators on respective
locations in alignment (with some exceptions, i.e., shuffle). A vector addition exam-
ple is given in Fig. 2.2. The part on the left, Fig. 2.2a, illustrates a simple addition
operation, the values (1,5), (2,6), (3,7), and (4,8) are loaded into registers, respec-
tively, then the results (6), (8), · · · are stored into the memory. Eight loads, four
addition operations, and four stores are required to complete which are performed as
4×(2 loads + 1 addition + 1 store). The figure on the right, Fig. 2.2b, illustrates the
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same operation in SIMD manner; items (1, 2, 3, 4) and (5, 6, 7, 8) gets loaded into
SIMD registers, then the results (6, 8, 10, 12) stored into the memory. Two SIMD
loads, one SIMD addition, one SIMD store are required to complete the operation.

(a) Single addition (b) SIMD Addition

Figure 2.2 Difference between serial addition(a) and SIMD addition(b)

A SIMD architecture allows a single instruction to process a large amount of work
in parallel. Even though multi-scalar processors (i.e., almost all modern processors)
can process multiple instructions, SIMD has the edge over it. Using vector instruc-
tions reduces multiple decode operations of the same instruction to a single decode.
Furthermore, it also reduces the number of instructions to be processed. When
accessing the memory, vector instructions can access aligned consecutive memory
faster, further reducing the overheads.

Even though early SIMD architectures were part of Supercomputers, modern SIMD
architectures stem from desktop multi-media accelerators. With the inception of
128-bit MMX vector extensions, many enhancements have been implemented in
modern processors. In this work, we utilized two SIMD architectures; Advanced
Vector Extensions 2 (AVX2) instruction set available in Intel and AMD CPUs,
Compute Unified Device Architecture(CUDA) available in Nvidia GPUs.

Advanced Vector Extensions 2 (AVX2) also known as Haswell New Instruc-
tions, are extensions to the standard x86 instruction set architecture for micro-
processors and proposed by Intel in March 2008. AVX2 provides new features,
new instructions, and a new coding scheme. AVX2 works on 256-bit registers in
many packed forms, including all possible addressing schemes; 1x256, 2x128, 4x64,
8x32, 16x16, and 32x8 bits storage arrangements are supported. The instruction
set scales up most integer commands to 256 bits and introduces fused multiply-
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accumulate (FMA) operations. In addition, AVX2 supports “Gather” instructions
that allow reducing 256-bit vectors to 32/64 bitmasks.

In this work, we employed the AVX2 instruction set. We added the corresponding
vector instructions manually to the code since, even though compilers translate and
optimize most of the loops to vectorized forms, compare and move-mask operations
were detected not to be recognized by auto-vectorization in our preliminary experi-
ments. For completeness, the intrinsics explicitly used are described in Table 2.2.

Table 2.2 AVX2 intrinsics used in the implementation.

Intrinsic Definition
_mm256_set1_epi32 Initializes 256-bit vector with scalar integer val-

ues. Does not map to any AVX instructions.
_mm256_and_si256 Performs bitwise logical AND operation on 256-

bit integer vectors.
_mm256_xor_si256 Performs bitwise logical XOR operation on 256-

bit integer vectors.
_mm256_cmpgt_epi32 Compares packed 8x 32-bit integers of two input

vectors.
_mm256_movemask_ps Extracts the first bits of 8x 32-bit elements in a

compact 8-bit format
_mm256_blendv_epi8 Blends/selects byte elements of input vectors de-

pending on the bits in a given mask vector.

AVX512 expands AVX2 to 512-bit vector support and proposed by Intel in July
2013. Even though AVX2 was the main target for most of the optimization in this
thesis, we have also used AVX512 to test the scalability of our approach. The in-
struction set consists of multiple extensions that can be implemented independently.
This policy is a departure from the historical requirement of implementing the en-
tire instruction block. Only the core extension AVX-512F (AVX-512 Foundation) is
required by all AVX-512 implementations.

In addition to vector arithmetic/logical operations, AVX512 supports gather/scatter
operations. This way, non-vectorized operations can be done side by side with
vectorized operations, removes the need of complex shuffle/mask operations. In
our experiments, single-core AVX512 implementation was relatively fast due to the
hardware-supported gather instruction. Yet, the approach did not scale to multiple
cores due to “frequency scaling”. Unfortunately, at the time of this work, AVX512
implementations did suffer from heat and energy limits (Lemire, 2018; Krasnov,
2017), only by instruction weaving (using AVX2 instructions in between AVX512
instructions) can perform comparatively well. However, using too many AVX512
instructions can slow the whole core (Krasnov, 2017) to base clock speeds.
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2.8 Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture, often used as its abbreviation, CUDA, en-
tails running programs on Nvidia GPUs for acceleration. Even though GPUs are
used to be associated with computer graphics, currently, they have been extensively
used for numerical computations, optimization, machine learning, deep learning,
etc., due to their massive parallelism power with thousands of cores and low energy
cost per operation. At the time of this thesis, more than ten thousand cores in a
single GPU (device) are available. Because of this, they are well-suited to compu-
tations that benefit from parallel processing. These being said, CUDA devices and
their execution system are different than today’s x64 systems, and it is critical to
understand those distinctions. The efficient utilization of CUDA devices requires
a thorough understanding of the programmatical and architectural differences and
how they determine performance.

The most significant execution difference between CUDA and x64 programming is
the threading model. We see a smaller number of cores on a CPU (host) that ex-
ecute a small number of instructions simultaneously with higher instructions per
cycle. Whereas on CUDA systems, a single Streaming Multiprocessor can execute
2048 active threads concurrently, and there exist up to 82 SMs per device. Currently,
it is possible to have 10496 CUDA cores in a single device. Nevertheless, comparing
the number of threads between GPUs and CPUs can be misleading: CPU threads
are smarter with higher instruction counts per cycle. Compared to GPU threads,
they employ better branch/instruction prediction, with deeper cache hierarchy and
faster random access to the memory. However, CPU threads have very slow context
switches. On the other hand, threads on GPUs are extremely lightweight. Thou-
sands of threads (in groups of warps/wavefronts of 32 threads) are queued for work
in proper CUDA applications.

If the GPU would have to wait for one warp of threads to complete, it immediately
starts working on another. Since all threads use different registers, the GPU can
switch between contexts without saving the local state, i.e., with zero overhead. The
threads in a warp are executed together; if the warp threads take multiple branches,
GPU has to switch back and forth between branches, significantly reducing the per-
formance. For a better GPU utilization, one should cluster the branches if possible.
For example, a kernel keeps branching on the last bit of sorted integers, reordering
the list with respect to its last bit would improve performance significantly; in the
former, we can only expect half utilization since a warp should execute both paths.

20



On the other hand, in the latter, the warp will only execute single branch in most
cases.

Running programs on the GPUs efficiently requires considering if the problem needs
processing many values in a similar fashion and how much communication is required
(transferring data to devices can be costly). For example, few small 4x4 matrix
multiplications for a video game logic or inner product (i.e., the dot product) of two
vectors might be faster in CPUs since few vector instructions can do it in few cycles,
whereas transferring the data to GPU and back has a high overhead compared to
the former. This implies that, we should keep the data on the GPU memory for
the best performance as long as needed, and continuous GPU-CPU communication
must be restricted.

When the threads in a single warp, being executed together, working on adja-
cent/coalesced memory locations, the performance is higher. Memory coalescing
is important since warps are practically SIMD units executing the same instruction
on wider vectors. Hence, coalesced load/store operations are consuming fewer cycles
and lower overhead. In addition, for a slightly better performance, each item should
be aligned to multiples of the warp size (32). Especially in algorithms with random
access patterns, such as graph algorithms, the computation might need a careful
restructuring to achieve all these. In this work, the algorithms are designed so that
the sequential accesses follow random accesses to compensate the short-comings of
GPUs (to an extent, CPUs with AVX2 also benefits).

The GPU has its own physically distinct but restricted global memory, and data
should be transferred from the main memory to GPUs’ memory back and forth
on a regular basis. For small communications, it is possible for CPU and GPU
to access each other’s memory, but for maximum throughput, (possibly proactive)
data transfers are required. In addition, the GPUs have registers and local for
storage (given in order of increasing latency).

Table 2.3 GPU Memory Hierarchy

Memory Location Cached Scope
Registers On-chip - Thread
Shared On-chip - Block
Local Off-chip Yes Thread
Global Off-chip Yes Device

CUDA programs have a task hierarchy of grid, blocks, and threads. A kernel runs
in a 1D, 2D or 3D grid that consists of blocks. Similarly, each block can also be
1D, 2D, and 3D and contains a number of threads. For the best performance, one
should do the composition of the tasks with respect to the computation pattern and

21



communication structure of the algorithm.

A significant difference on programming CPUs and GPUs is the transparency of
the memory hierarchy. In CUDA, the scope of the data items is more prevalent.
Registers are only accessible from the thread they are used, so context switches
are not as expensive. However for the context-switches in a CPU, the registers are
required to be stored in the stack. The communication among the warp threads can
be done using ballot or shuffle instructions. In addition, the threads in a block can
communicate on predefined shared memory. The global memory, which is the largest
memory block, is accessible to all threads on the device, and there exist device-wise
atomic instructions for global synchronization.
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3. FUSED SAMPLING

Probabilistic graph algorithms often employ a sampling step which processes prob-
abilities and extracts a sample. The performance of sampling is important since
the transformation cost, i.e., the cost of extraction, creation, storage and process-
ing of the samples do not overwhelm the overall execution. This is why fusing the
sampling step with actual computation can improve performance drastically. Also,
deterministic sampling strategies which keep the simulation quality of the process
can further enhance performance.

3.1 Hash-Based Sampling

Generating random values fast and fair is a complex problem. In this work, we focus
on random numbers good enough but not truly random. The use of good enough
pseudo-random numbers allows us to compute them fast and devise random-number
generation (RNG) schemes that we can exploit for performance without hurting
statistical probabilities significantly. Most common random generation method, im-
plemented as rand() function by most C compilers, is Linear Congruential Genera-
tor (LNG) (Thomson, 1958). LNG method starts from a seed value X0, then gener-
ates a sequence of random numbers using the recurrence Xn+1 = aXn + b mod m

where a, b, m are fixed, large (possibly prime/co-prime) integers. Since the recur-
rence requires reading and updating the previously generated values, its simple par-
allel use creates race conditions, false sharing, and pressure on cache/memory. The
same weakness applies to some other recurrent random number generation schemes
as well, such as the Mersenne Twister (Matsumoto & Nishimura, 1998), which is
another RNG that is implemented by C++ standard.

For parallel/distributed systems, random tree and LeapFrog methods are preferable
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RNGs in most scenarios. Both methods are variants of the LNG method. The
random tree method uses a binary divergent recurrence Lk+1 = aLLk + bL mod m

and Rk+1 = aRRk + bR mod m where a, b are different for all divergent paths.
Left generator L generates many Ln values that are used as the base for right
generators Rn. Then, many R generators can be used to generate pseudo-random
numbers independently. For a fixed number of generators, the LeapFrog method can
be utilized to generate non-overlapping pseudo-random sequences. The method is
useful for scenarios requiring one generator for each task in a domain decomposition.
The random sequence is defined as follows; Lk+1 = aLk modm and Rk+1 = anRk

modm. Similarly to random tree, the actual random numbers are generated by the
R generators. Instead of many generators generating distinct sequences, LeapFrog
uses many generators to generate a common sequence from different places. Each
generator skips n elements, so the sequences generated by different generators are
non-overlapping. Even though the LeapFrog method has superior properties that
are orthogonal to parallel/distributed algorithms, it is not specialized to support
graph sampling.

For sampling on graphs, using the edge information, i.e., the endpoints’ IDs, for
generating random values allows us to specialize the random number generator for
graph sampling. Even though vertex ids are distinct, they are often correlated to
vertex ID on the other end of the edge. Also, bits of vertex IDs are highly biased,
assuming they are not given in random. These properties of the vertex IDs make
them a terrible input for pseudo-random number generation. However, since they are
distinct for each edge, using a good hash function provides uncorrelated, unbiased
numbers that are used for building blocks of our pseudo-random number generation
scheme.

In this thesis, we propose a hash-based method pseudo-random number generator
for graph sampling. The proposed method utilizes a hash function h(u,v) that takes
the source and target vertex IDs as inputs and returns the hash value generated for
the edge euv. Then, the hash is XOR’ed with another random value associated with
the specific sample to get random for the edge in that sample. Finally, the resulting
value is divided by the hash functions limit to generate the random value.

3.2 Fused Sampling
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It is possible to restructure the algorithms so that whether an edge or a vertex
will be processed is decided on the fly without computing samples beforehand. The
probabilities are realized while performing actual computations in the fused sampling
method. Lazy evaluation of chances opens possible performance exploits. The most
important one is that fused sampling removes the need for extra copying of the
sample/graph.

3.2.1 Hash-based Fused Sampling

Traditionally, the cascade model requires a new sample, i.e., a subgraph, from
G = (V,E) to simulate the diffusion process. The probabilistic nature of cascade
models requires sampling subgraphs from G = (V,E) to simulate the diffusion pro-
cess. If performed individually as a preprocessing step, as the literature traditionally
does, sampling can be an expensive stage, furthermore, a time-wise dominating one
for the overall IM kernel. We identify two main bottlenecks; first, sampling multiple
sub-graphs may demand multiple passes on the graph, which can be very large and
expensive to stream to the computational cores. Second, if samples are memoized,
the memory requirement can be a multiple of the graph size. We eliminate the ne-
cessity of the creation and storage of the sample subgraphs in memory. In Fig. 3.1,
we briefly illustrate fused-sampling; instead of processing the samples independently
as in Fig. 3.1a, fused-sampling processes each edge concurrently for multiple simu-
lations as shown in Fig. 3.1b. This allows us to process each edge only a few times
instead of once for every simulation.

When an edge of the original graph is being processed, it is processed for all possible
samples. Then, it is decided to be sampled or skipped depending on the outcome
of the hash-based random value for each sample. Given a graph G = (V,E), for an
edge (u,v) ∈ E, the hash function used is given below:

(3.1) h(u,v) = Murmur3(u||v) mod 231

where || is the concatenation operator. In our preliminary experiments, we have tried
a set of hash algorithms. After a careful analysis, we chose Murmur3 due to its
simplicity and good avalanche behavior with a maximum bias 0.5% (Appleby, 2017).
Although the approach mentioned above generates a unique hash value for each
edge, and hence a unique sampling probability, different simulations require different
probabilities. First, a set of uniformly randomly chosen numbers Xr ∈R [0,hmax]
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(a) (b)

Figure 3.1 (a) Two sampled subgraphs of a toy graph with 4 vertices and 6 edges.
(b) The simulations performed are fused with sampling. Each edge is labeled with the
corresponding sample/simulation IDs.

associated with each simulation r are generated to enable this for each edge. Then
the sampling probability of (u,v) for simulation r, P (u,v)r, is computed: To do this,
the hash value, h(u,v), is XOR’ed with Xr and the result is normalized by dividing
the value to the upper limit of the hash value hmax. Formally,

(3.2) P (u,v)r = Xr⊕h(u,v)
hmax

.

The edge (u,v) exists in the sample r if and only if P (u,v)r is smaller than the edge
threshold wu,v. One of this approach’s benefits is that an edge can be sampled using
a single XOR and compare-greater-than operation. Moreover, the corresponding
control flow branch overhead can be removed using conditional move instructions.

Using a strong hash function such as Murmur3 ensures that all bits indepen-
dently change if the input is changed. This property allows us to generate good
enough pseudo-random values for fair sampling. To evaluate the randomness and
fairness of the values generated with the hash-based approach, we generated a large
number of samples for various real-life networks and plotted the cumulative distri-
bution (Fig. 3.2) and the bias of the random values P (u,v)r used (Fig. 3.3). As
the former shows, the sampling distribution of the hash-based computation values
resembles a uniform random distribution. Furthermore, the latter shows that the
bias is insignificant for each network.

Being able to generate the samples on the fly allows us to avoid many memory ac-
cesses. The only downside of hash-based fused sampling is that we have to generate
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Figure 3.2 Cumulative probability function of hash-based sampling probabilities on vari-
ous real-life networks.
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Figure 3.3 Bias distribution of hash-based sampling probabilities on various real-life net-
works.

all these random values, P (u,v)r, for each edge traversal and each simulation r.
The edges’ hash values are pre-computed for all the edges in E to reduce computa-
tion cost and leverage fused sampling’s performance gains. Fortunately, the rest of
the operations, i.e., one XOR and one division, are very fast on modern computing
hardware. The trade-off between extra memory and computation here maybe not be
applicable for different computation architectures and faster/simpler hash functions.
In our experiments, we found that CRC32 (Koopman, 2002) is an another good
candidate for the hash function. CRC32 can be applied using specialized instruc-
tions in 3 cycles latency. Using CRC32 slightly slows down the execution(<10%)
yet reduces memory use by nearly half. Unfortunately, CRC32 does not have the
randomness properties mentioned about Murmur3.
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3.2.2 Direction oblivious hash-based sampling

Undirected diffusion models (Chen, Wang, & Yang, 2009) requires the same proba-
bility, and the same random number is generated for forwards and backward edges.
State-of-the-art implementations (Chen, Wang, & Yang, 2009) sample edges from
E and add them to a set along with reversely oriented edges to make the subgraph,
which is constructed from this sampled edge set, undirected. This approach re-
quires a complete traversal of G, followed by a relatively expensive integration of
the reversed edges. The algorithms proposed in this work do not explicitly sample.
Whenever an edge with a certain orientation is read from memory, it is sampled or
skipped depending on the outcome of direction-oblivious sampling that assigns the
same sampling probability for both directions, (u,v) and (v,u).

Unlike the directed variant, we utilize a hash function h(u,v) = h(v,u) to get the
same probability for forward and backward directions within the same simulation.
The hash function used is

(3.3) h(u,v) = Murmur3(min(u,v)||max(u,v))

where || is the concatenation operator. To avoid the cost of hashing during sim-
ulations, all possible hash values are pre-computed. Although there exist n×(n−1)

2
possible vertex pairs, we only need the vertex pairs having an edge in between, i.e.,
only m hash values are pre-computed. We have tried a few other hash algorithms
as well; Ideally, we chose Murmur3 (Appleby, 2017) due to its simplicity and good
avalanche behavior with maximum bias 0.5%(Appleby, 2017).

Although the approach, as mentioned earlier, generates a unique hash value for each
edge and hence a unique sampling probability, different simulations require different
probabilities. To achieve this, we use a random number Xr for each simulation
r. To compute the sampling probability of {u,v} during rth simulation, h(u,v) is
first XOR’ed with a uniformly randomly chosen Xr ∈R [0,hmax] and the outcome is
divided to the maximum possible hash value hmax. Let ρ(u,v)r denote this sampling
probability for {u,v} in simulation r. Formally,

(3.4) ρ(u,v)r = Xr⊕h(u,v)
hmax

.

The edge {u,v} is verified to be in the sample if ρ(u,v)r is smaller than or equal
to the threshold wu,v. With the proposed approach, sampling an edge reduces to
an XOR and compare-greater-than operation. The branching on the latter can be
removed to enable SIMD instructions as explained in Section 2.7.
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Murmur3 guarantees a change on the 50% of the bits when a single bit of the input
changes. Furthermore, all bits independently change when the input is changed.
These properties allow us to generate good pseudo-random values to simulate the
process. For practical considerations, we stored all the ρ(u,v)rs generated for various
real-life networks and plotted the Cumulative Distribution Function (CDF) of these
values. For a given graph G = (V,E), the CDF of a sampling probability x is
computed as Pr(x≤ ρ(u,v)r) for all {u,v} ∈E and 0≤ r < R. Figure 3.2 shows the
CDFs for 12 real-life networks. The sampling probability distribution with hash-
based computation is almost identical to the uniform distribution, which is required
to simulate the diffusion process.

In proposed methods, the diffusion is performed on a subgraph which is never con-
structed; in fact, each diffusion is simulated on G. Thus the overhead of generating
and storing a sample and reading it back from memory is avoided. However, for
each visit of {u,v}, since InFuseR-MG does not know if the edge is in the sample
or not, ρ(u,v)r is recomputed. Another immediate benefit of fusing is traversing
only the vertices that contribute to influence score and their neighbors. On the
other hand, a non-fused implementation would traverse all edges for all simulations.
Often, the total influence is a very small fraction of the total number of vertices and
hence, fusing is vital to have a scalable IM kernel.
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4. BOOSTING INFLUENCE-MAXIMIZATION KERNELS WITH

FUSED SAMPLING

Classical Monte-Carlo based IM algorithms first sample a sub-graph and then per-
form a single simulation. Such an approach is amenable to thread-level, coarse-grain
parallelization since the simulations are independent of each other. However, this
requires the graph to be read from the memory for every simulation. The state-of-
the-art implementations use this one-sample-per-simulation approach and build a
unique graph for every sample to find the marginal influence scores (Chen, Wang,
& Yang, 2009). With coarse-grain parallelization, this makes the IM kernels ineffi-
cient in terms of performance since the graphs are sparse (and samples are sparser),
memory accesses are irregular, and performing a single simulation per graph traver-
sal increases the already hindering pressure on the memory subsystem and makes
the IM process further memory bound. As mentioned before, to make the IM com-
putations faster, heuristics, sketches, and proxy models have been proposed in the
literature. Unlike these, InFuseR-MG exploits the properties of the greedy Monte-
Carlo algorithm. It is tuned for the undirected graphs and the Independent Cascade
model. However, the techniques such as fusing can be adopted by the other models
or Monte-Carlo graph algorithms using sampling. InFuseR-MG leverages three
techniques to achieve its goals.

• Instead of explicitly constructing a data structure for each subgraph, the proposed
approach uses direction-oblivious pseudo-random numbers throughout the edge-
based simulation to fuse the sampling with the computation of influence scores.

• To reduce the memory subsystem pressure, InFuseR-MG leverages batched
simulations and instruction-level parallelism and when possible, utilizes each edge
access for multiple simulations.

• To reduce the number of operations performed, the component IDs for each vertex
and sampled subgraph are memoized which can then be used while computing
the marginal gains during the CELF stage.
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On top of these, multi-core parallelism is applied to further increase the performance
by running multiple threads and assigning each batch to a different thread.

To handle parallel edges faster, as a preprocessing step, InFuseR-MG calculates
the joint probability of these edges with (4.1).

(4.1) {u,v} ∈Gr ⇐⇒ ρ(u,v)r < 1− (1−p)|E
G
u,v|

That is rather than trying each of these edges one by one, InFuseR-MG treats
them as a single but more powerful edge.

4.1 Vectorized Monte-Carlo graph traversal

In MixGreedy (Algorithm 3), both the NewGreedy step and marginal gain
computations utilize graph sampling. By leveraging vectorization, a single thread in
InFuseR-MG can process a batch of B samples/simulations at once. A high-level
visualization of how the samples are batched is given in Figure 4.1. In a perfect,
fused, and batched execution, the edges (of the original graph) flow from the mem-
ory to the cores and they are consumed by carefully structured SIMD kernels. Once
an edge is visited, all R simulations are taken into account by batches of B simula-
tions. Although fusing and vectorization can incur redundant computations, as the
experiments will show, the proposed approach significantly boosts the performance.

4.1.1 A vectorized NewGreedy step

For an undirected graph, the NewGreedy step of MixGreedy needs to identify
the reachability sets RG′(v) for all v ∈G′. Traditional IM implementations work on
a single subgraph and initiate many graph traversals until all vertices are visited.
The time complexity of this process is linear in terms of the number of vertices
and edges. However, its memory access pattern tends to be irregular; many random
memory accesses are required which results in low CPU utilization. Instead of graph
traversal, e.g., Breadth-First Search, the connected components within a sampled
subgraph can be found via connected-component labeling (Rosenfeld & Pfaltz, 1966),
which starts by assigning unique labels to each vertex. Then at each iteration, the
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(a) (b)

Figure 4.1 (a) Two sampled subgraphs of the toy graph from Figure 2.1a with 5
vertices and 3 and 5 edges, respectively. (b) The simulations are performed in
a way to be fused with sampling. Each edge is labeled with the corresponding
sample/simulation IDs.

edges are visited and the labels of both endpoints are set to the minimum of the two.
This process continues until convergence; i.e., no label is changed within a single
iteration. The total amount of work performed by this algorithm is superlinear
since each edge is touched at each iteration. To reduce the time complexity, one
can mark the (live) vertices whose labels are updated in the current step, and only
process their edges in the next step. Although this does not guarantee a linear-time
algorithm, it significantly reduces the number of edge accesses.

InFuseR-MG runs the above-mentioned, label-propagation-based approach in a
fused and batched manner. For all R samples, the propagation is simulated on
the original graph G by taking only the sampled edges into account. Taking the
SIMD register sizes into account, e.g., 8× 32bit for AVX2, the simulations are
processed on batches of B = 8 samples which are never constructed. To do that, the
existence of the edge in these samples is rechecked every time it is being processed.
All the live vertices within a single iteration are processed in parallel by multiple
threads. Further parallelization at this stage comes from running B simulations
at once in a SIMD fashion. An example run with R = B = 2 simulations is given
in Figure 4.2 continuing from Figure 4.1. Although the label-propagation-based
approach requires superlinear sequential work, even when live vertices are marked,
we prefer the propagation-based approach to the traversal-based approach since
propagation is more vectorization friendly, and running B fused simulations does
not require any explicit synchronization. On the other hand, doing so with the
traversal-based algorithm requires extra bookkeeping to go for the next component
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after a component is processed.

Figure 4.2 (a) The initial state on a toy graph for connected-component labeling; all
vertices are labeled with their ids. (b) First, the edges of A are processed; the edge
to C is in both samples. C’s labels are updated. (c) B’s edges are processed. The
edge to C exists in the second sample. C’s second label is smaller, hence no update
is performed. (d) C’s edges are being processed. It has edges to A, B, D, and E
in the samples. The labels <A,A> are propagated to D and E since the edges are
in both samples. B’s second label is updated because only sample 2 contains the
corresponding (C, B) edge. (e)(f) D and E edges in the samples. However, the are
no updates.

Algorithm 5 describes the fused and vectorized NewGreedyStep-Vec. The algo-
rithm takes two inputs G, the original graph, and R, the number of simulations. It
works along the same lines with the original NewGreedy with additional opera-
tions for connected-component labeling. The labels for each vertex are initially set
as the vertex IDs (lines 1– 2). The outer while loop checks if there exist any more
live vertices. Here, a vertex is said to be live if at least one of its R labels is changed
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Algorithm 5 NewGreedyStep-Vec(G,R)
Input: G= (V,E): the influence graph

R: number of MC simulations per seed vertex
Output: mg: marginal influence scores

l: connected component labels
1: for v ∈ V do
2: lv← [v, . . . ,v]R
3: L← V
4: while L is not empty do
5: L′←∅
6: for u ∈ L in parallel do
7: for v ∈ ΓG(u) do
8: r← 0
9: while r <R do
10: for r′ = r . . . r+ 7 do . B = 8
11: if ρ(u,v)r′ ≥ wu,v then
12: minlabel← min(lu[r′], lv[r′])
13: if minl 6= lv[r′] then
14: lv[r′]←minl

15: L′←L′∪{v}
16: r← r+ 8
17: L←L′
18: for v ∈ V in parallel do
19: mgv← 0
20: for r = 1 . . .R do
21: mgv←mgv + |{u : lu[r] = lv[r]}|
22: return mg, l
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Algorithm 6 VecLabel (r,u,v,Xr, lu, lv, r)
Input: r: ID of the first simulation in the current batch

u : source vertex
v : target vertex
Xr: random number for simulations r to r+ 7
lu: vector of component labels of u
lv: vector of component labels of v

Output: lv: labels of vertex v after traversing edge (u,v)
livev: a boolean which state if v is live

1: mask← _mm256_cmpgt_epi32(lu[r], lv[r])
2: labels← _mm256_blendv_epi8(lu[r], lv[r],mask)
3: hashes← _mm256_set1_epi32(hash(u,v))
4: probs← _mm256_xor_si256(hashes, Xr)
5: wvec← _mm256_set1_epi32(bwu,v×INT_MAXc)
6: select← _mm256_cmpgt_epi32(wvec, probs)
7: lv[r]← _mm256_blendv_epi8(lv[r], labels, select)
8: livev← _mm256_movemask_ps(

_mm256_and_si256(select,mask))
9: return lv, livev

during the previous iteration. The first inner for at line 6 loops over the live vertices
in a multi-threaded fashion. A single thread runs the next for loop at line 7 to visit
the edges of the live vertex being processed. The operations corresponding to each
of the R simulations are performed for a visited edge (u,v) in batches of 8.

For each 0 ≤ r <R, where r is a multiple of B = 8, the vectorized steps that per-
form the operations in simulations r to r+ 7 are given between lines 10–15. These
steps are performed as described in Algorithm 6, VecLabel. The algorithm first
compares the labels using element-wise compare intrinsic _mm256_cmpgt_epi32
which returns all 1’s (232 − 1) when the first value is larger, and 0 otherwise.
Then, pairwise minimum of the labels from the two vectors can be selected by
_mm256_blendv_epi8 that employs the mask entries generated by the previous
step. This intrinsic selects the bytes from the first vector if the corresponding mask
entry is not zero. Otherwise, it selects the bytes from the second vector. Hence for an
edge (u,v) ∈ E, the resulting vector, labels, contains the smaller of the endpoints’,
i.e., u’s and v’s labels, for each simulation. The edge (u,v) may not have been
sampled by all simulations. To find the simulations it is sampled, the algorithm
generates the sampling probabilities by XORing the corresponding hash, h(u,v),
and the random values, Xr. Being computed in the preprocessing step, the hash
is promoted to a vector, hashes, by the intrinsic _mm256_set1_epi32. The XOR
operations are performed in a SIMD fashion with the intrinsic _mm256_xor_si256.
We then promote wu,v to a vector wvec by first multiplying it with INT_MAX using
the _mm256_set1_epi32 intrinsic. Then, this vector is element-wise compared
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to the vector probs by using _mm256_cmpgt_epi32. The result of this opera-
tion is the select vector containing the selection masks for simulations. Blending
labels (from line 2) with v’s current labels based on the select entries produces
v’s final labels for the corresponding simulations r to r+ 7 by using the intrinsic
_mm256_blendv_epi8.

After the new labels are computed, we check if any of v’s labels are modified
to verify whether the process is converged or not. To do this, we first perform
bitwise-and operations for the elements in mask and select by using the intrinsic
_mm256_and_si256. Then, the first bits of the 32-bit elements are extracted in a
compact 8-bit format by using the _mm256_movemask_epi8 intrinsic. This intrin-
sic eliminates 8 comparison branches and produces a boolean variable livev. As
mentioned above, at each iteration, the algorithm only processes the vertices whose
labels are changed in the previous iteration. Initially, all the vertices are considered
live. Each thread uses these livev values to keep track of the set L of live vertices.
To do this, we use an array of size n in which the vth entry is marked if v is live.
After an iteration is finished, L is updated. This approach allows us only to process
live vertices.

4.2 Finding marginal gains with memoization

During the labeling stage in NewGreedyStep-Vec, InFuseR-MG computes and
stores all the component labels l (obtained by concatenating each lv for all v ∈ V )
that can be considered as a two-dimensional n×R array. The first seed vertex
is indeed the one having the largest expected (average) component size. Instead of
resampling, this information can be utilized during the CELF stage while computing
marginal gains and finding the remaining K−1 seed vertices. The marginal gain for
a vertex u, i.e.,mgu, can be found by computing the average number of vertices (over
all the R samples) that belong to u’s connected component but do not belong to the
components of the seed vertices. This is equal to the expected number of additional
vertices that will be influenced by inserting u to the seed set S.

While computing mgu, for all simulations, one can compare u’s label to all the com-
ponent labels of the seed vertices in respective simulation. In our implementation,
the data structure l is stored as a single large memory block where the R labels of
a single vertex are stored consecutively for a better spatial locality. The component
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sizes are also stored in similar two-dimensional n×R array where rows correspond
to component labels and columns correspond to simulations. Labels that do not
map to a component are wasted for fast access while keeping the asymptotic space
complexity the same (as l’s space complexity). This process is equivalent to using
RandCas over existing R samples for finding marginal gains, except, no graph
traversal or sampling is performed. Compared to the original approach, the mem-
ory accesses are more regular and the cache is better utilized. In our experiments,
on the largest network MixGreedy can process, we observed up to 30% cache-miss
rate for MixGreedy, whereas our implementations have only a 1.9% cache-miss
rate. Furthermore, this operation can be efficiently parallelized as shown in the
pseudo-code of InFuseR-MG, Algorithm 7 (lines 15–16).

Algorithm 7 InFuseR-MG(G,K,R)
Input: G: Graph

K: size of the seed set
R: number of MC simulations to perform

Output: S: a seed set that maximizes influence
1: mg,l← NewGreedyStep-Vec(G,R)
2: S←{∅}
3: q← PriorityQueue()
4: iterv← 0,∀v ∈ V
5: for v ∈ V do
6: q.enqueue(v, priority=mgv)
7: RG′(v)← 0,∀v ∈ V
8: while |S|<K do
9: u← q.dequeue()
10: if iteru = |S| then
11: RG′(S)←RG′(S∪{u}) . Append lu to RG′(S)
12: S← S∪{u} . Commit u into S
13: else
14: mgu← 0
15: for r = 1 to R in parallel reduce(mgu) do
16: mgu←mgu + |lu[r] ∈ {l \RG′r(S)}|
17: iteru← |S|
18: q.enqueue(u, priority=mgu)
19: return S

4.3 Implementation Details
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All the algorithms use the Compressed Sparse Row (CSR) graph data structure.
In CSR, an array, xadj, holds the starting indices of each vertices neighbors, other
vector, adj, holds neighbors of each vertex consecutively. So, to reach neighbors
of vertex i, first we visit xadj[i] and xadj[i+ 1] to find start and end positions in
data, then scan starting from adj[xadj[i]] until adj[xadj[i+ 1]] position. All sets
including the live vertex sets L and L′ are implemented as one-hot vectors. One-hot
vectors are chosen since our method performs O(m) insert-if-not-exist operations,
and iterates over a live set once per iteration.

4.4 Experimental Results

The experiments are performed on a server equipped with two AVX2-capable 8-core
Intel Xeon E5-2620v4 sockets running on 2.10GHz and 192GB memory. Hence,
there exist 16 cores in total. The OS running on the server is Ubuntu 16.04.2 LTS
with Linux 4.4.0-66 generic kernel. The algorithms are implemented in C++ and
compiled with GCC 8.2.0 with -Ofast as the optimization flag. To further test the
performance of the proposed approach with wider SIMD vector units, we employ
another architecture with AVX512-capable Intel Xeon Gold 6140 CPU running at
2.30GHz and 256 GB memory. On this architecture, GCC 9.2.0 is used to compile
the code. Multi-threaded CPU parallelization is obtained with OpenMP pragmas.
During a parallel execution, we employ dynamic scheduling with a batch size of
8192. We have manually utilized AVX instructions available on the CPUs by using
compiler intrinsics to implement the algorithms.

For better readability, in all the tables, the values showing a better performance are
given in bold.

4.4.1 Network datasets used in the experiments

The experiments are performed on twelve graphs (six undirected, six directed) that
have been frequently used for Influence Maximization. For directed datasets, the
reverse edges are added to obtain undirected variants. The datasets are Amazon co-
purchase network (Leskovec & Krevl, 2014), DBLP co-laboration network (Leskovec
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Table 4.1 Properties of networks used in the experiments

No. of No. of Avg. Avg.
Dataset Vertices Edges Weight Degree

U
nd

ire
ct
ed

Amazon 262,113 1,234,878 1.00 4.71
DBLP 317,081 1,049,867 1.00 3.31
NetHEP 15,235 58,892 1.83 3.87
NetPhy 37,151 231,508 1.28 6.23
Orkut 3,072,441 117,185,083 1.00 38.14
Youtube 1,134,891 2,987,625 1.00 2.63

D
ire

ct
ed

Epinions 75,880 508,838 1.00 6.71
LiveJournal 4,847,571 68,993,773 1.00 14.23
Pokec 1,632,803 30,622,564 1.00 18.75
Slashdot0811 77,360 905,468 1.00 11.70
Slashdot0902 82,168 948,464 1.00 11.54
Twitter 81,306 2,420,766 1.37 29.77

& Krevl, 2014), Epinions consumer review trust network, LiveJournal (Leskovec &
Krevl, 2014), NetHEP citation network (Chen, Wang, & Yang, 2009), NetPhy citation
network (Chen, Wang, & Yang, 2009), Orkut (Leskovec & Krevl, 2014), Pokec
Slovakian poker game site friend network (Leskovec & Krevl, 2014), Slashdot friend-
foe networks (08-11, 09-11) (Leskovec & Krevl, 2014), Twitter list co-occurence
network (Leskovec & Krevl, 2014), and Youtube friendship network (Leskovec &
Krevl, 2014). The properties of these datasets are given in Table 4.1.

For a thorough experimental evaluation, four influence settings are simulated; for
each network, we use

1. constant edge weights p = 0.01 (as in (Kempe, Kleinberg, & Tardos, 2003)
and (Chen, Wang, & Yang, 2009)),

2. constant edge weights p= 0.1 (as in (Kempe, Kleinberg, & Tardos, 2003)),

3. uniformly distributed weights from the interval [0, 0.1],

4. normally distributed weights with mean 0.05 and std. deviation 0.025 so that
95% of the weights lie in [0, 0.1].

The last two settings are used to evaluate the performance in case of non-uniform
edge weights.

4.4.2 Metrics used to evaluate the performance

Following the literature, we employ three metrics to evaluate an algorithm; (i) the
influence score, i.e., the expected number of vertices that are influenced (ii) the
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execution time, (iii) maximum memory size. There is an interplay among these
metrics; it is trivial to devise an ultra-fast IM algorithm with a bad influence score.
Similarly, using more memory can make an algorithm avoid computations. We
present these metrics for each algorithm on all graphs.

When the algorithms run on the same machine, the reported execution times and
memory usages of different algorithms are comparable. However, the reported in-
fluence scores can be misleading since the algorithms may be using different ap-
proaches to estimate the influence score. To find the expected number of vertices,
we requested and used the original implementation from Chen, Wang, and Yang
(2009) as an oracle with minor modifications; i.e., without logging and using heap
memory instead of stack memory to handle large-scale graphs. The random values
in the oracle are generated by C++’s Mersenne Twister 32-bit pseudo-random gen-
erator mt19937, with a state size of 19937 bits. For a precise evaluation, we have
used R= 20000 samples within this oracle.

4.4.3 Algorithms evaluated in the experiments

The algorithms that are evaluated can be classified into three groups. The first class
contains MixGreedy, obtained from Chen et al. (Chen, Wang, & Yang, 2009),
which is also used as the oracle to compute the influence scores. The second class
contains two variants from the current state-of-the-art, Minutoli et al.’s Imm (Minu-
toli et al., 2019). Imm is a fast algorithm robustly producing high-quality seed sets
which can influence a large number of vertices. In the original paper, the variant
with ε= 0.13, a user-defined hyper-parameter controlling the approximation bound-
aries, is suggested. We use this variant along with a much faster one with ε = 0.5,
which is also experimented in (Minutoli et al., 2019).

The third class of algorithms contains two InFuseR-MG variants. To show the
speedup breakdown, we consider each variant as a separate algorithm. The first
variant is FusedSampling which only integrates the sampling step by generating
probabilities on the fly without any algorithmic improvements or edge traversal
savings. This variant performs the simulations one-by-one as in MixGreedy. The
second variant is the proposed approach InFuseR-MG employing vectorization and
memoization. Both of these variants employ CELF and use the queue-based vertex
processing as the base algorithm MixGreedy.

In this section, we first compare the InFuseR-MG variants with MixGreedy to
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Table 4.2 Execution times (in secs), memory use (in GBs), and influence scores
(higher is better) of the algorithms on the networks with K = 50 seeds and constant
edge weights with p= 0.01.

Execution time in seconds. Memory use in Gigabytes. Influence scores.
Mix Fused INFuser INFuser Mix Fused INFuser Mix Fused INFuser

Greedy Sampling MG (K = 1) Greedy Sampling MG Greedy Sampling MG
Dataset (τ = 1) (τ = 1) (τ = 16) (τ = 16) (τ = 1) (τ = 1) (τ = 16) (τ = 1) (τ = 1) (τ = 16)
Amazon 141.31 48.84 2.09 2.09 0.76 0.18 4.05 158.28 158.63 158.63
DBLP - 305.38 7.02 7.00 - 0.25 6.56 - 245.43 245.43
Epinions - 157069.53 1.91 1.53 - 0.05 1.18 - 3051.39 3051.39
LiveJ. - - 265.84 218.28 - - 75.38 - - 260364.56
NetHEP 259.05 12.60 0.08 0.07 2.27 0.01 0.24 132.38 136.45 136.45
NetPhy 1725.15 247.21 0.36 0.34 8.56 0.03 0.58 312.56 332.52 332.52
Orkut - - 654.52 586.55 - - 50.45 - - 650237.06
Pokec - - 227.24 196.85 - - 26.02 - - 104196.34
Sdot0811 - 211783.43 2.69 2.00 - 0.07 1.21 - 5197.88 5197.88
Sdot0902 - 233822.30 3.11 2.17 - 0.08 1.29 - 5432.14 5432.14
Twitter - - 3.07 2.11 - - 1.32 - - 12441.56
Youtube - - 26.18 20.85 - - 17.83 - - 9139.01

present the speedups over the baseline with fusing and vectorization. We then com-
pare InFuseR-MG, using R= 2048 samples, with the state-of-the-art to better po-
sition the proposed approach in the literature. Last, we evaluate the multi-threading
performance of InFuseR-MG with τ ∈ {1,2,4,8,16} threads. In all experiments,
we use a time-limit of 302,400 seconds (3.5 days).

4.4.4 Comparing InFuseR-MG with MixGreedy

Table 4.2 shows the execution times (columns 2–5), memory usages (columns 6–8),
and influence scores (columns 9–11) of the baseline algorithm and InFuseR-MG
variants. MixGreedy runs with a single thread and finishes only in three graphs
Amazon, NetHEP, and NetPhy in 141.3, 259.1 and 1725.2 seconds, respectively. In
fact, with a 302,400 seconds (3.5 days) timeout, these are the only three (out of
12) real-life graphs (with 1.2M, 58.9K, and 231.5K edges) that can be processed
by MixGreedy. For the others, the original algorithm cannot find a seed set of
K = 50 vertices within the time limit. However, InFuseR-MG with τ = 16 threads
completes all the 12 graphs around 1200 seconds in total, where the maximum run-
time is 654.5 seconds for the Orkut network having 3.1M vertices and 117.2M edges.
The shortest execution time of InFuseR-MG on a graph that cannot be completed
by MixGreedy is 1.5 seconds. Only by looking at the sequential execution times
of FusedSampling on three graphs, we can conclude that 3×–21× of this speedup
comes from fusing.

The fifth column of Table 4.2 presents the execution times of InFuseR-MG to
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find the first seed vertex which is simply Algorithm 7 where the while loop is
executed only once, which is equivalent to the setting with K = 1. Comparing these
values with the ones in the previous column, we can argue that the benefits of the
memoization are more for large K values such as 500 or 1000, since most of the time
is spent on the NewGreedyStep-Vec. For instance, for large graphs, adding the
next 49 seeds only takes 10%–20% of the overall execution time. The actual value
depends on the number of the CELF stage; for Amazon, to add the remaining seed
vertices, InFuseR-MG needs only 79 vertex visits. This is why the cost of the
CELF stage is negligible.

Although it is extremely useful, memoization is also the reason of high memory us-
age. The values for NetHEP and NetPhy are relatively lower compared to the baseline.
However, these two graphs have only 15K and 37K vertices, much lower than the
other graphs. In fact, FusedSampling can be a more efficient implementation of
MixGreedy memory-wise. Comparing the memory use of FusedSampling with
that of InFuseR-MG reveals the overhead of memoization more clearly. How-
ever, even with this overhead, the proposed approach stays practical and extremely
efficient on a single server.

Overall, InFuseR-MG is a practical algorithm, and unlike MixGreedy, it can
be used on undirected graphs that have been considered too large in the literature.
On the comparable instances, it runs in 2.1, 0.1, 0.4 seconds where MixGreedy
takes 141.3, 259.1, and 1725.2 seconds, respectively. Furthermore, as the last three
columns of Table 4.2 show, the influence scores of the proposed approach are com-
parable with those of MixGreedy.

4.4.5 Comparing InFuseR-MG with State-of-the-Art

To better position InFuseR-MG within the literature, we compare the perfor-
mance, memory usage, and influence score with a fast, state-of-the-art approxima-
tion algorithm Imm (Minutoli et al., 2019) which can produce high-quality seed sets
that influences a large number of vertices for both directed and undirected graphs.
We also run Imm by setting the undirected graph parameter. The methods based
on Reverse Influence Sampling (such as Imm) control the approximation factor di-
rectly. Whereas greedy-based methods, the approximation factor is guided indirectly
through the number of Monte-Carlo simulationsR (Sadeh, Cohen, & Kaplan, 2020).
Due to this reason, we performed our experiments against two Imm settings; first
tuned for speed (ε= 0.5) and second tuned for quality (ε= 0.13).
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Table 4.4 Memory use (in GBs) of the algorithms on the networks with K = 50 seeds
in different simulation settings.

p= 0.01 p= 0.1 p ∈N(0.05,0.025) p ∈ [0,0.01]
Imm Imm InFuseR Imm Imm InFuseR Imm Imm InFuseR Imm Imm InFuseR

Dataset (ε= 0.13) (ε= 0.5) MG (ε= 0.13) (ε= 0.5) MG (ε= 0.13) (ε= 0.5) MG (ε= 0.13) (ε= 0.5) MG
Amazon 5.46 0.55 4.05 1.76 0.24 4.05 0.82 0.16 4.06 0.82 0.16 4.06
DBLP 5.12 0.51 6.56 10.34 1.04 6.56 2.14 0.28 6.57 2.32 0.28 6.57
Epinions 0.78 0.10 1.18 3.88 0.39 1.18 2.53 0.26 1.19 2.52 0.27 1.19
LiveJ. 71.14 9.27 75.38 - 67.97 75.38 - 47.35 75.38 - 47.22 75.38
NetHEP 0.26 0.03 0.24 0.36 0.04 0.24 0.16 0.02 0.24 0.15 0.02 0.24
NetPhy 0.30 0.05 0.58 1.18 0.13 0.58 0.61 0.07 0.58 0.61 0.07 0.58
Sdot0811 1.17 0.15 1.21 6.32 0.65 1.21 4.30 0.45 1.22 4.28 0.45 1.22
Sdot0902 1.22 0.16 1.29 6.67 0.69 1.29 4.53 0.47 1.30 4.50 0.47 1.30
Orkut 172.53 20.11 50.45 - 71.97 50.45 - 62.93 50.45 - 62.34 50.45
Pokec 26.61 3.55 26.02 - 27.13 26.02 185.55 21.27 26.22 185.54 21.02 26.22
Twitter 2.43 0.31 1.32 10.66 1.11 1.32 8.20 0.85 1.34 8.18 0.85 1.34
Youtube 2.68 0.48 17.83 41.29 4.17 17.83 21.07 2.24 17.85 20.88 2.24 17.85

Tables 4.3 and 4.4 show the execution times (in secs.) and memory use (in GBs),
respectively, of InFuseR-MG and two Imm variants, utilizing 16 threads, for 12
graphs and 4 simulation settings given in Section 4.4.1. The experiments show
that InFuseR-MG is 2.3×–173.8× faster than state-of-the-art while always being
(marginally) superior in terms of influence scores, and using a comparable amount
of memory. As expected, the memory usage of Imm is increasing with smaller ε
values. In addition, it also increases when the edge weights are larger, i.e., when
the samples are denser. For instance, with p = 0.01, Imm(ε = 0.5) uses 20GBs for
Orkut. However, when p= 0.1, the memory usage increases to 72GBs. Furthermore,
Imm(ε = 0.13) cannot run on LiveJournal, Orkut, and Pokec networks due to
insufficient memory. On the other hand, InFuseR-MG’s memory usage does not
change with different values since it never explicitly creates and stores the samples
thanks to fusing. Last, as shown in Table 4.5, the influence scores of the proposed
approach and Imm(ε = 0.13) are comparable. Figure 4.3 shows the speedup values
of InFuseR-MG with respect to Imm(ε= 0.13).
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Figure 4.3 Speedup obtained by InFuseR-MG(R = 2048, τ = 16) over Imm(ε =
0.13, τ = 16).
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4.4.6 Scalability with multi-threaded parallelism

p=[0,0.1] p=N(0.05,0.025)
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Figure 4.4 InFuseR-MG speedup with multiple threads.

Figure 4.4 shows the speedup values obtained via OpenMP parallelization. Since
most of the time is spent by NewGreedyStep-Vec, the parallelization efficiency
at line 6 of Algorithm 5 has a significant impact on the performance. In our imple-
mentation, the parallel processing of live (as source) vertices is necessary to reduce
the number of visited edges. However, since a (target) vertex can be a target for
multiple sources, the update operation at line 14 of this push-based approach is a
potential source of race conditions. For denser samples, e.g., for p = 0.1, this hap-
pens more frequently. Hence, larger influence probabilities may increase (1) the
false sharing probability and (2) the number of iterations due to vectorized updates.
We argue that these are the reasons for 3×–5× speedup with τ = 16 threads. We
observed significant increase in cache misses, up-to 2.7×, with τ = 16 threads. Even
on relatively small networks, like the Amazon network, we observed the cache-miss
rate to increase from 1.9% to 5.0%. In addition, we believe that the performance
can further be improved by adopting optimizations on storage (Shun & Blelloch,
2013; Lim, Kang, & Faloutsos, 2014), parallel processing (Shun & Blelloch, 2013),
and vertex reordering (Arai et al., 2016; Wei et al., 2016).

4.4.6.1 Performance with Wider AVX Registers
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Table 4.6 Execution times (in secs) on the AVX512-capable architecture, networks
with K = 50 seeds, using R = 2048 for InFuseR-MG and constant edge weights
with p ∈ {0.01,0.1}.

τ Dataset p NoAVX AVX2 AVX512 IMM(ε= 0.5)

LiveJournal 0.01 3,176.61 685.80 564.93 1,918.22
0.10 530.20 267.86 247.69 8,406.32

1 Orkut 0.01 12,188.35 1,808.84 1,427.10 5,898.02
0.10 1,234.59 473.87 387.04 11,661.69

Pokec 0.01 3,178.43 501.16 388.53 529.84
0.10 346.16 137.68 116.63 3,460.62

LiveJournal 0.01 519.80 195.76 175.91 1,398.29
0.10 169.67 139.62 131.90 2,819.03

8 Orkut 0.01 1,726.03 324.59 281.84 3,167.05
0.10 234.99 122.40 114.12 3,030.86

Pokec 0.01 477.02 116.24 113.19 330.65
0.10 91.83 51.42 61.01 1,022.52

LiveJournal 0.01 333.60 157.25 157.06 742.78
0.10 165.31 143.36 142.04 1,548.61

16 Orkut 0.01 878.21 211.75 192.23 2,008.35
0.10 166.70 105.08 106.80 1,811.96

Pokec 0.01 263.12 78.79 83.04 278.60
0.10 76.37 53.52 56.58 655.06

In Table 4.6, we show the performance of the proposed algorithm on an AVX512-
capable architecture and on large-scale graphs with more than 106 edges. Even
though frequency scaling is reducing the performance of AVX512 in higher thread
counts, the proposed method is shown to leverage wider SIMD registers. While
running with a single thread, the architecture has a 5% clock difference between
normal and the AVX mode. Utilizing AVX512 instructions with 16 threads drops
the clock frequency up-to 45%.
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5. FAST AND ERROR-ADAPTIVE INFLUENCE

MAXIMIZATION BASED ON COUNT-DISTINCT SKETCHES

Most IM algorithms have the same few steps to find the best seed vertex set; sam-
pling, building the influence oracle, verifying the impact of new candidates, and
removing the latent seed set’s residual reachability set. Following the idea proposed
in (Göktürk & Kaya, 2021), HyperFuseR fuses the sampling step with other steps
to avoid reading the graph multiple times.

HyperFuseR first performs a diffusion process; the process starts with per-vertex
sketches that are initialized with the hash value of the corresponding vertex (i.e.,
every vertex reaches to itself). Then, for all the (sampled) edges (u,v), i.e., the ones
that contribute to the diffusion for this simulation, the sketch of the source vertex u
is merged into that of the target vertex v until all sketch registers for all the vertices
converge. The merge operation utilized in this process is slightly different from the
conventional one and retrofitted to mimic the IC diffusion.

Throughout the process, each register is used only for a single sample/simulation.
For an edge (u,v) in simulation j where v is a live vertex, an update, i.e., a merge
operation, on u’s register is performed on the corresponding register Mu[j], i.e.,
Mu[j] =max(Mu[j],Mv[j]). That is, at each iteration, vertices (outgoing) neighbors’
reachability sets are added to their sketches. This recursive formulation of the
influence iteratively relays the reachability information among the vertices, allowing
us to estimate the marginal influence for all vertices very fast.

After estimating the reachability set cardinalities, HyperFuseR picks the vertex
v with the largest cardinality by evaluating the sketches. Then it finds the (actual)
reachability set of the latent seed set, which is the union of the reachability sets of v
and the vertices in the seed set, by performing Monte-Carlo simulations. The vertices
in this reachability set are removed from the live set L. Hence, in later iterations,
these vertices will not contribute to the marginal gain. Finally, the algorithm checks
if rebuilding is necessary for the sketches based on the difference between the sketch
estimate and Monte-Carlo estimate.
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5.1 Count-Distinct Sketches

The distinct element count problem focuses on finding the number of distinct ele-
ments in a stream where the elements are coming from a universal set U . Finding
the number of vertices to be influenced of a candidate seed vertex u, i.e., the car-
dinality of u’s reachability set, is a similar problem. For each sample subgraph, the
number of visited vertices is found while traversing the subgraphs starting from u.
Note that an exact computation of set cardinality requires memory proportional to
the cardinality, which is O(|U|).

The reachability set of a vertex is the union of all its connected vertices (via outgoing
edges). Many IM kernels exploit this property to some degree. The methods based
on reverse reachability (Borgs et al., 2014) utilize this property directly to merge the
reachability sets of connected vertices to estimate the number of vertices influenced.
MixGreedy (Chen, Wang, & Yang, 2009) goes one step further; it utilizes the fact
that for an undirected graph, all vertices in a connected component have the same
reachability set. Therefore, all the reachability sets within a single sample subgraph
can be found via a single graph traversal.

For directed graphs, storing reachability sets for all vertices and merging these sets
are infeasible for nontrivial graphs. If one-hot vectors are used to store the reach-
ability sets for constant insertion time, O(n2R) bits of memory is required where
each merge operation has O(n) time complexity. If disjoints sets are used for stor-
ing reachability sets; O(nσR) memory is required to store all reachability sets, and
each merge operation has O(Ack(σ)) complexity where Ack is the Ackermann func-
tion (Ackermann, 1928).

Count-Distinct Sketches can be leveraged to estimate reachability sets’ cardinality
efficiently; for instance, the Flajolet–Martin (FM) sketch (Flajolet & Martin, 1985)
can do this with a constant number, J , of registers. Furthermore, the union of two
sketches can be computed in constant time. The FM sketch stores that how rare the
elements are in a stream. The rarity of the elements is estimated by counting the
maximum number of leading zeros in the stream elements’ hash values. Initially,
each register is initialized with zero. The items are hashed one by one, and the
length of the longest all-zero prefix is stored in the register. With a single register,
the cardinality estimation can be done by computing the power 2` where ` is the
value in the register.

In practice, multiple registers and hash values, M [j] and hj , are commonly used to
reduce variance. For a sketch with multiple registers, the impact of adding an item
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x ∈ U is shown in (5.1):

(5.1) M [j] = max(M [j], clz(hj(x)), 1≤ j ≤ J

where clz(y) returns the number of leading zeros in y and J is the number of sketch
registers. With multiple registers, the average of the register values can be used to
estimate the cardinality, and the result is divided to a correction factor φ≈ 0.77351
to fix the error due to hash collisions. That is the estimated cardinality e is computed
as

(5.2) e= 2M̄/φ

where M̄ = avgj{M [j]} is the mean of the register values.

In this work, we utilize a variant of Flajolet–Martin sketch; since multiple Monte-
Carlo simulations are performed to calculate the estimated influence, we use one
register per simulation and take the average length of the longest leading zeros.
Two given FM sketches Mu and Mv can be merged, i.e., their union Muv can be
computed by taking the pairwise maximums of their registers. Formally;

(5.3) Muv[j] = max(Mu[j],Mv[j]), 1≤ j ≤ J .

In our implementation, the merge operations are performed if and only if there is a
sampled edge between the vertices.

5.2 Estimating Reachability Set Cardinality

A greedy solution to the influence maximization problem requires finding a vertex
that maximizes the marginal influence gain at each step until the seed set size reaches
K. For an exact computation, one must find all candidate vertices’ reachability sets
within all the samples. Such a task involves many graph traversals and is expensive
even with various algorithmic optimizations and a scalable parallelized implemen-
tation, e.g., see (Göktürk & Kaya, 2021). The influence estimation problem is quite
similar to the Count-Distinct problem applied to all sample subgraphs, as explained
above. Hence, in this work, we pursue the idea of using Count-Distinct sketches to
estimate marginal influence scores. In this work, we propose an efficient and effec-
tive IM kernel, HyperFuseR, that utilizes Flajolet–Martin sketches described in
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Section 5.1 to estimate the averages of distinct elements in the sampled subgraphs.
Algorithm 8 shows the steps taken by the kernel.

Algorithm 8 HyperFuseR(G,K,J )
Input: G= (V,E): the influence graph

K: number of seed vertices
J : number of Monte-Carlo simulations

Output: S: a seed set that maximizes the influence on G
1: S←∅
2: for v ∈ V do in parallel
3: for j ∈ {1, . . . ,J } do
4: Mv[j]← clz(hashj(v))
5: M ←Simulate(G,M,J ,∅)
6: MS′ ← zeros(J )
7: ς ← 0
8: for k = 1 . . .K do
9: s← argmax

v∈V
{Estimate(Merge(MS′ ,Mv))}

10: S← S∪{s}
11: e←Estimate(Merge(MS′ ,Ms))
12: RG(S)← reachability set of S (for all simulations)
13: σ← Monte-Carlo-based (actual) influence of S
14: δ = σ− ς
15: errl = |(e− δ)/δ|
16: errg = |(e− δ)/σ|
17: if errl < εl∨ errg < εg then
18: MS′ ← Merge(MS′ ,Ms)
19: else
20: for v ∈ V do in parallel
21: for j ∈ {1, . . . ,J } do
22: Mv[j]← clz(hashj(v))
23: M ←Simulate(G,M,J ,RG(S))
24: MS′ ← zeros(J )
25: ς ← σ

26: return S

Algorithm 8 first initializes the reachability sets of all vertices by adding the vertices
themselves. That is for all vertices u, its jth register is set to Mu[j] = clz(hj(u))
meaning RGj

(u) = {u} where Gj is the jth sampled graph. Then, we perform the
diffusion process on the sketch registers whose pseudocode is given in Algorithm 9.
The diffusion starts by adding all the vertices to the live vertex set L. Then at
each step, the incoming edges of the live vertices are processed. For a vertex u, its
sketch, Mu, is updated by merging the sketches Mv of all live outgoing neighbors
vertices v ∈ L∩ Γ+

G(u). For each such vertex v and simulation j, the operation
Mu[j] =max(Mu[j],Mv[j]) is performed. This approach can be seen as a bottom-up,
i.e., reversed, diffusion process where at each iteration, the cardinality information
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is pulled from vertices neighbors. If any of u’s sketch registers changes during this
operation, it is added to the live vertex set L′ of the next iteration. Once the
incoming edges of all live vertices are processed, the iteration ends. Figure 5.1
shows how HyperFuseR performs two simulations at the same time using sketch
registers.

Algorithm 9 Simulate(G,M,J ,RS)
Input: G= (V,E): the influence graph

M : sketch vectors of vertices
J : number of MC simulations
RS : reachability set of the seed set

Output: M : updated Sketch vectors
1: L← V
2: L′←∅
3: while |L|/|V |> εc do
4: for u ∈ Γ(L) do in parallel
5: for eu,v ∈ A(u) do
6: for j ∈ (0,J ] do
7: if P (u,v)j < wu,v ∧u 6∈RS [j] then
8: Mu[j]←max(Mu[j],Mv[j])
9: if Mu changed then
10: L′← L′∪u
11: L← L′

12: L′←∅
13: return M

Figure 5.1 (a) The initial state on the toy graph for HyperFuseR; all vertices are set as
live (green), and their registers are initialized with the length of the zero prefix of their
hashes. (b) For the (1,4) edge which is live for both simulations, 1’s registers are set
to the maximum of both 1’s and 4’s registers. The (4,3) edge is live only in the second
simulation. Hence, the second register of 4 is updated to 5. For the second iteration,
vertices 1 and 4 are live (green) since their registers have changed. (c) For the live (1,4)
edge, 1’s second is updated and 1 is set as live again. (d) All the registers converged. As
no live vertices exist, the process stops.

The traditional Greedy algorithm (Kempe, Kleinberg, & Tardos, 2003) processes the
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simulations one-by-one and computes the vertices’ reachability sets. On the other
hand, HyperFuseR efficiently performs multiple simulations at once in a single-
step iteration. Since each iteration relays one level of cardinality information, this
step requires at most d iterations where d is the diameter of G. When processed
individually as the Greedy algorithm does, the jth simulation over the sampled
subgraph Gj would require only at most dj iterations, which is the diameter of
Gj , and probably much smaller than d. Although HyperFuseR seems to perform
much more iterations, d is a loose upper bound for HyperFuseR. A better one is
max{dj : 1≤ j≤J } where dj is the diameter of Gj . To further reduce the overhead of
concurrent simulations and avoid bottleneck simulations due to remaining perimeter
vertices, we employ an early-exit threshold εc over the remaining live vertices ratio,
which is expected to be very small when only one or two simulations remain. That is
if |L′| ≤ |V |×εc the diffusion process in Algorithm 9 stops. Otherwise, L is set to L′,
L′ is cleared, and the next iteration starts. We used εc = 0.02 to makeHyperFuseR
faster while keeping its quality almost the same.

After the diffusion process, the following steps are repeated until K vertices are
added to the seed set S. First, for each v ∈ V , the cardinality of the reachability
set, RG(S ∪ v), is estimated by merging MS′ and v’s sketch registers where MS′ is
the set of sketch registers for the seed set S used to estimate the number of already
influenced vertices by S.1 Before the kernel, these registers are initialized with zeros.
Second, a vertex s with the maximum cardinality estimation is selected and added
to S. Third, the actual simulations are performed to compute the reachability set
of S. Having an actual RG(S) allows us to calculate the estimation errors and find
the blocked vertices for all simulations, which is vital since these blocked vertices
can be skipped during the next diffusion steps. Besides, we leverage the actual
influence to have an error-adaptive kernel, i.e., to compute the actual sketch error
and rebuild the sketches when the accumulated error reaches a critical level which
can deteriorate the quality for the following seed vertex selections.

5.3 Error-adaptive sketch rebuilding

1In fact, the definition is exact only if sketch rebuilding is disabled. As it will be described in the follow-
ing subsection, when HyperFuseR’s error-adaptive mechanism is enabled, MS′ is periodically rebuilt to
estimate the cardinality of reachability sets over the remaining, unblocked vertices. This is why S′ is used
instead of S.
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Sketches are fast. However, each sketch operation, including update and merge,
can decrease their estimation quality below a desired threshold. Our preliminary
experiments revealed that sketches are highly competent at finding the first few seed
vertices for influence maximization. Unfortunately, after a few seed vertices, the
sketch registers MS′ , which are updated at line 18 of Algorithm 8 via merging with
new seed vertex s’s reachability set, become large. The saturation ofMS′ registers is
important since HyperFuseR uses them to select the best seed candidate at line 9.
When they lose their sensitivity for seed selection, a significant drop in the quality
is observed.

0 10 20 30 40 50
K

0

20

40

60

80

100

120

140

160

Sc
or

e

Greedy
HyperFuser with rebuilding
HyperFuser w/o rebuilding

Figure 5.2 Effect of register saturation on Amazon dataset(w = 0.01) using Hyper-
FuseR (J = 256) without rebuilding against Greedy(R = 20000) method(Kempe,
Kleinberg, & Tardos, 2003).

Figure 5.2 shows the effect of register saturation by comparing two HyperFuseR
variants; the first one rebuilds a new sketch to choose each seed vertex s, i.e., the
else part in lines 20–25 of Algorithm 8 is executed for every iteration of the for loop
at line 8. This sketch is built on the residual graph G\RG(S), which remains after
the current seed set’s reachability is removed. The second variant builds a sketch
only once at the beginning and employs it through the IM kernel, i.e., the else
part is never executed. The figure shows that the latter’s seed selection quality is
comparable to that of the former for the first few seed vertices. However, a significant
reduction in the quality is observed for the later vertices. Furthermore, the former
approach’s quality is on par with the expensive Greedy algorithm’s quality, which
computes actual reachability sets. This shows that sketch-based estimation can
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Figure 5.3 Effect of ε parameters onHyperFuseR (J = 256, εc = 0.02) performance,
using τ = 18 threads. Lighter shades are better.

perform as well as the accurate but expensive approach. Note that rebuilding also
allows HyperFuseR to work on a smaller problem for the following seed vertex
selection since we remove the already influenced vertices from sample subgraphs
and work on the remaining subgraphs.

Although its quality is on par with the traditional algorithm, the variant which re-
builds a sketch for all the seed vertex selections can be expensive. Here, we leverage
an error-adaptive approach by rebuilding them when a significant cardinality esti-
mation error is observed. The estimation error is calculated as follows; we store the
influence score after each sketch rebuild in ς (line 25 of Algorithm 8). Let σ be the
real influence for the seed set S including the selected vertex. We first compute the
marginal influence gain δ = σ− ς, which is the additional influence obtained since
the last sketch rebuilt. Note that e, computed at line 11 is the sketch estimate for
this value. HyperFuseR computes the local estimation error errl = |(e−δ)/δ| and
the global error threshold errg = |(e− δ)/σ|. The sketches are assumed to be fresh
if the local estimation error errl is smaller than a local threshold εl or the global
error threshold errg = |(e− δ)/σ| is smaller than a global threshold εg.

The use of two different, local and global, thresholds allows the algorithm to rebuild
the sketches after significant local errors and skip this expensive process if the es-
timation error is insignificant compared to the total influence. As explained above,
when the rebuilding is skipped, HyperFuseR only updatesMS′ by merging it with
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the candidate vertex’s sketch. Hence, the selected threshold values, εl and εg, have
a significant impact on the performance. Setting εl = εg = 0 means that the algo-
rithm always rebuilds. Conversely, setting εl = εg =∞ will make HyperFuseR fast
since sketches are built only once. However, the influence scores will suffer, which
is already shown by Fig. 5.2. To evaluate the interplay and find the thresholds that
yield a nice tradeoff, we conducted a grid search in which HyperFuseR’s execution
time and influence quality are measured for different parameters. The results of this
preliminary experiment are shown in Figure 5.3. We found that the parameters
εl = 0.3 and εg = 0.01 perform well on many datasets, both in terms of speed and
quality.

5.4 Implementation Details

To efficiently process real-life graphs, HyperFuseR uses the Compressed Sparse
Row (CSR) graph data structure. In CSR, an array, xadj, holds the starting indices
of the adjacency lists for each vertex, while another array, adj, holds the actual
adjacency lists (i.e., the outgoing neighbors) one after another. Hence, the adjacency
list of vertex i is located in adj at locations adj[index[i], . . . , index[i+ 1]−1].

The traditional two-step (sample-then-diffuse) computation model stores the (graph)
data in a loosely coupled fashion. While designingHyperFuseR, we fine-tuned it to
be vectorization friendly, including its data layout and computation patterns. These
design choices allow us to perform multiple operations, i.e., the same operations but
on different data, at once. For instance, we keep all the memory registers of a
single vertex from different simulations adjacent, and this allows the efficient use of
vectorized computation hardware while performing lines 6–8 of Algorithm 9. Also,
random number generation, fused sampling, and sketch merging are vectorizable
operations when the data are stored in a coupled way as in HyperFuseR.

5.5 Experimental Results

We performed the experiments on a server with an 18-core Intel Xeon Gold 6140,
running at 2.3Ghz, and 250GB memory. The Operating System on the server is

56



Ubuntu 16.04 LTS with 5.4.0-48 kernel. The algorithms are implemented using
C++20, and compiled with GCC 9.2.0 with "-Ofast" and "-march=native" op-
timization flags. Multi-thread parallelization was achieved with OpenMP pragmas.
AVX2 instructions are utilized by handcrafted code with vector intrinsics.

Table 5.1 Properties of networks used in the experiments

No. of No. of Avg. Avg.
Dataset Vertices Edges Weight Degree

U
nd

ire
ct
ed

Amazon 262,113 1,234,878 1.00 4.71
DBLP 317,081 1,049,867 1.00 3.31
NetHEP 15,235 58,892 1.83 3.87
NetPhy 37,151 231,508 1.28 6.23
Orkut 3,072,441 117,185,083 1.00 38.14
Youtube 1,134,891 2,987,625 1.00 2.63

D
ire

ct
ed

Epinions 75,880 508,838 1.00 6.71
LiveJournal 4,847,571 68,993,773 1.00 14.23
Pokec 1,632,803 30,622,564 1.00 18.75
Slashdot0811 77,360 905,468 1.00 11.70
Slashdot0902 82,168 948,464 1.00 11.54
Twitter 81,306 2,420,766 1.37 29.77

5.5.1 Experiment Settings

We performed the experiments on twelve graphs (six undirected, six directed). For
comparability, graphs that have been frequently used within the Influence Maximiza-
tion literature are selected. These graphs are Amazon co-purchase network (Leskovec
& Krevl, 2014), DBLP co-laboration network (Leskovec & Krevl, 2014), Epinions
consumer review trust network, LiveJournal (Leskovec & Krevl, 2014), NetHEP ci-
tation network (Chen, Wang, & Yang, 2009), NetPhy citation network (Chen, Wang,
& Yang, 2009), Orkut (Leskovec & Krevl, 2014), Pokec Slovakian poker game site
friend network (Leskovec & Krevl, 2014), Slashdot friend-foe networks (08-11, 09-
11) (Leskovec & Krevl, 2014), Twitter list co-occurence network (Leskovec & Krevl,
2014), and Youtube friendship network (Leskovec & Krevl, 2014). The properties
of these graphs are given in Table 5.1.

Three diffusion settings are simulated for a comprehensive experimental evaluation;
for each network, we use

1. constant edge weights w = 0.005,

2. constant edge weights w = 0.01 (as in (Kempe, Kleinberg, & Tardos, 2003)
and (Chen, Wang, & Yang, 2009)),
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3. constant edge weights w = 0.1 (as in (Kempe, Kleinberg, & Tardos, 2003)),

We selected w = 0.005 as a benchmark-setting to challenge HyperFuseR. Due to
its diffusion algorithm’s nature, HyperFuseR traverses vertices even if they are
blocked, which happens faster when the graph is sparser. Also, for each live vertex,
HyperFuseR processes the sample edges for all simulations. The other two settings
are selected to emulate the experiments of Kempe, Kleinberg, and Tardos (2003)
and Chen, Wang, and Yang (2009).

5.5.2 Performance Metrics

The algorithms are evaluated based on (1) execution time, (2) influence score, and
(2) maximum memory used. For Influence Maximization, there is a trade-off among
these performance metrics; in one extreme, it is trivial to select random vertices as
the seed set. In another, one can compute the reachability sets of every possible seed
set of size K and choose the best one. In all our experiments, the execution times
are the wall times reported by the programs. All the methods we benchmarked
exclude the time spent on reading files and preprocessing. We only left out the time
to spend on reading files for HyperFuseR. We allowed all methods to utilize all
the CPU cores in all benchmarks, except Tim+, a single-threaded algorithm. The
memory use reported in this paper is the maximum resident set sizes (RSS), which
are measured using GNU time command.

Since the algorithms may use different methods to measure the influence, the re-
ported influence scores may not be suitable for comparison purposes with high
precision. Due to this reason, we implemented an oracle with a straightforward,
sample-then-diffuse algorithm without any optimization mentioned. For sampling,
the random values are generated by the 32-bit Mersenne Twister pseudo-random
generator mt19937 from C++ standard library. The same independent oracle obtains
all influence scores in this paper.

5.5.3 Algorithms evaluated in the experiments

We evaluated our method against three other state-of-the-art influence maximization
algorithms, Tim+, Skim, and Imm. The first algorithm focuses on the influence
score, whereas the second is a sketch-based algorithm that takes the execution time
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into account. The third one is an approximation algorithm with a parameter to
control the influence quality.

• The Two-phased Influence Maximization (Tim+) runs in two phases: Parameter
Estimation which estimates the maximum expected influence and a parameter θ
and Node Selection which randomly samples θ reverse reachability sets from G and
then derives a size-K vertex-set S that covers a large number of these sets (Tang,
Xiao, & Shi, 2014). The algorithm has a parameter ε which allows a trade-off
between the seed set quality and execution time. In our experiments, we set ε= 0.3
to have a high-quality influence maximization baseline. We also experimented with
ε = 1.0 as suggested, which gives around 7× speedup on average but a reduction
on the influence score up to 6%.

• The Sketch-based Influence Maximization (Skim) uses a combined bottom-k min-
hash reachability sketch (Cohen & Kaplan, 2007) to estimate the influence scores
of the seed sets (Cohen et al., 2014). As suggested by the authors, in this work,
we employ Skim with k = 64 and `= 64 sampled subgraphs. The implementation
(from the authors) is partially parallelized and leverages multicore processors.

• Minutoli et al.’s Imm is a high-performance, parallel algorithm that efficiently
produces accurate seed sets (Minutoli et al., 2019). It is an approximation method
that improves the Reverse Influence Sampling (RIS) (Borgs et al., 2014) algorithm
by eliminating the need for the threshold to be used. We have used ε = 0.5 as
suggested in the original paper, where ε is a user-defined parameter to control the
approximation boundaries.

5.5.4 Comparing HyperFuseR with State-of-art

To compare the run time, memory use, and quality of HyperFuseR with those
of the state-of-the-art, we perform experiments using the following parameters
controlling the quality of the seed sets: Tim+ (ε = 0.3), Imm (ε = 0.5), Skim
(l = 64,k = 64). In fact, one of the drawbacks of HyperFuseR is that it does not
have a direct control over the approximation factor, whereas Tim+ and Imm have
one. Still, HyperFuseR can control the quality indirectly by tuning the number
of Monte-Carlo simulations J which also increases the number of sketches used
per vertex. In the experiments, we set J = 256. In addition, as explained in the
previous section, we use a global error threshold εg = 0.01, a local error threshold
as εl = 0.3, and the early-exit ratio as εc = 0.02.

59



Table 5.2 HyperFuseR execution times (in secs), influence scores, and memory
use (in GBs) on the networks with K = 50 seeds using τ = 18 threads and constant
edge weights w = 0.005. Influence scores are given relative to HyperFuseR. The
runs that did not finish due to high memory use shown as "-". The values in the last
4 rows are normalized w.r.t. to those of HyperFuser.

Time Influence Score Memory
Method Hyper Tim+ Imm Skim Hyper Tim+ Imm Skim Hyper Tim+ Imm Skim
Dataset Fuser Fuser Fuser

Amazon 1.30 124.38 5.58 63.73 96.9 1.041× 1.000× 0.562× 0.17 21.62 0.90 6.78
DBLP 1.61 177.99 5.71 28.24 106.6 1.068× 1.027× 1.036× 0.27 31.24 0.95 3.12
Epinions 1.11 12.16 0.50 8.29 635.3 1.026× 1.001× 0.939× 0.06 0.78 0.07 1.04
LiveJ 13.25 4172.69 118.82 19.35 37174.1 1.010× 0.995× 0.957× 3.97 27.43 2.78 2.00
NetHEP 0.31 2.22 0.31 1.96 80.2 1.065× 0.993× 0.871× 0.01 0.80 0.04 0.33
NetPhy 0.39 7.40 0.40 1.00 124.5 1.042× 0.999× 0.777× 0.03 2.01 0.08 0.16
Orkut 30.22 - 780.22 41.82 158842.6 - 0.997× 1.001× 5.19 - 7.81 1.77
Pokec 11.05 149.34 5.04 18.40 1095.1 1.032× 1.027× 0.925× 1.57 10.16 1.40 1.74
Sdot0811 1.18 6.93 0.40 1.00 576.4 1.015× 0.983× 0.942× 0.06 0.76 0.09 0.13
Sdot0902 1.14 6.96 0.40 1.17 610.5 1.022× 0.998× 0.953× 0.06 0.71 0.08 0.14
Twitter 1.10 171.17 5.40 1.60 3458.7 1.006× 0.990× 0.942× 0.09 2.02 0.12 0.15
Youtube 1.95 46.61 2.42 13.24 1820.8 1.025× 1.013× 1.000× 0.73 3.96 0.48 1.39
Arit. mean 69.39× 4.37× 8.13× 1.032× 1.002× 0.909× 42.60× 2.05× 9.76×
Geo. mean all 28.19× 1.69× 3.47× all 1.032× 1.002× 0.899× all 22.75× 1.65× 3.58×
Max. perf 1.00× 314.92× 25.82× 49.02× 1.000× 1.068× 1.027× 1.036× 1.00× 127.18× 5.29× 39.88×
Min. perf 5.88× 0.34× 0.85× 1.006× 0.983× 0.562× 5.43× 0.66× 0.34×

Table 5.3 HyperFuseR execution times (in secs), influence scores, and memory
use (in GBs) on the networks with K = 50 seeds using τ = 18 threads and constant
edge weights w = 0.01. Influence scores are given relative to HyperFuseR. The
runs that did not finish due to high memory use shown as "-". The values in the last
4 rows are normalized w.r.t. to those of HyperFuser.

Time Score Memory
Method Hyper Tim+ Imm Skim Hyper Tim+ Imm Skim Hyper Tim+ Imm Skim
Dataset Fuser Fuser Fuser

Amazon 0.96 107.94 3.28 59.32 152.7 1.037× 1.024× 0.390× 0.17 18.11 0.55 6.40
DBLP 0.73 73.37 2.85 18.71 233.5 1.043× 1.005× 0.997× 0.27 11.92 0.52 2.05
Epinions 0.82 112.08 3.78 5.07 2480.1 1.006× 0.983× 0.984× 0.06 1.95 0.10 0.68
LiveJ 16.72 - 386.37 16.23 155375.8 - 0.996× 0.993× 3.97 - 6.64 1.45
NetHEP 0.26 1.84 0.23 1.89 129.1 1.036× 0.997× 0.826× 0.01 0.60 0.03 0.31
NetPhy 0.24 3.33 0.23 0.86 320.5 1.010× 0.985× 0.732× 0.03 0.67 0.05 0.12
Orkut 42.37 - 1870.35 114.82 650157.1 - 1.000× 1.000× 5.19 - 20.13 3.43
Pokec 11.65 4148.03 88.89 7.25 44685.8 1.004× 0.996× 0.988× 1.57 39.98 2.09 0.78
Sdot0811 0.84 102.96 3.70 0.87 2882.1 1.003× 0.984× 0.976× 0.06 2.01 0.10 0.08
Sdot0902 0.90 129.31 4.19 0.88 3061.5 1.008× 0.992× 0.980× 0.06 2.42 0.11 0.08
Twitter 0.90 390.36 10.96 1.22 9628.6 1.004× 0.992× 0.978× 0.09 4.91 0.23 0.09
Youtube 2.18 534.41 14.86 16.97 9042.7 1.009× 0.994× 1.006× 0.73 7.10 0.48 1.73
Arit. mean 167.17× 9.73× 9.99× 1.016× 0.996× 0.904× 42.91× 2.09× 8.26×
Geo. mean all 100.14× 5.45× 3.58× all 1.016× 0.996× 0.879× all 36.26× 1.91× 2.82×
Max. perf 1.00× 433.73× 44.14× 61.79× 1.000× 1.043× 1.024× 1.006× 1.00× 106.53× 3.88× 37.65×
Min. perf 7.08× 0.89× 0.62× 1.003× 0.983× 0.390× 9.73× 0.66× 0.37×
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Table 5.4 HyperFuseR execution times (in secs), influence scores, and memory
use (in GBs) on the networks with K = 50 seeds using τ = 18 threads and constant
edge weights w= 0.1. Influence scores are given relative to HyperFuseR. The runs
that did not finish due to high memory use shown as "-". The values in the last 4
rows are normalized w.r.t. to those of HyperFuser.

Time Score Memory
Method Hyper Tim+ Imm Skim Hyper Tim+ Imm Skim Hyper Tim+ Imm Skim
Dataset Fuser Fuser Fuser

Amazon 0.69 133.22 1.98 23.62 11797.0 1.006× 0.990× 0.815× 0.17 5.49 0.23 2.59
DBLP 0.54 1368.83 14.54 6.30 48549.9 1.001× 0.995× 1.001× 0.27 35.19 1.06 0.65
Epinions 0.26 439.33 5.46 9.42 18409.9 1.000× 0.998× 0.997× 0.06 12.17 0.39 1.18
LiveJ 10.10 - 1071.30 65.73 2134726.0 - 1.000× 1.000× 3.97 - 65.49 1.40
NetHEP 0.10 14.18 0.33 0.61 2461.7 1.002× 0.975× 0.899× 0.01 1.02 0.04 0.10
NetPhy 0.16 107.52 1.53 0.34 8339.5 1.007× 0.994× 0.975× 0.03 3.84 0.13 0.03
Orkut 16.55 - 1964.83 446.92 2692366.5 - 1.000× 1.000× 5.19 - 71.94 9.68
Pokec 4.90 - 514.79 31.80 1034859.8 - 1.000× 1.000× 1.57 - 26.46 0.98
Sdot0811 0.21 677.49 7.34 2.44 25871.8 1.000× 1.000× 0.999× 0.06 19.10 0.59 0.25
Sdot0902 0.23 695.12 7.99 2.35 27519.5 1.000× 1.000× 0.999× 0.06 18.45 0.66 0.24
Twitter 0.33 1897.50 16.09 1.62 55327.3 1.000× 0.998× 0.998× 0.09 34.56 1.04 0.05
Youtube 1.12 7158.56 60.59 30.57 171392.9 1.000× 0.999× 1.001× 0.73 139.12 4.19 2.88
Arit. mean 2624.61× 47.17× 15.37× 1.002× 0.996× 0.974× 199.54× 8.79× 5.32×
Geo. mean all 1449.41× 27.87× 11.06× all 1.002× 0.996× 0.972× all 163.77× 7.15× 2.63×
Max. perf 1.00× 6391.57× 118.72× 36.23× 1.000× 1.007× 1.000× 1.001× 1.00× 384.00× 16.85× 19.67×
Min. perf 141.80× 2.87× 2.13× 1.000× 0.975× 0.815× 32.29× 1.35× 0.35×

We present the results in Tables 5.2, 5.3 and 5.4 for edge weights w = 0.005, 0.01,
and 0.1, respectively. The top part of each table shows the results for the networks,
and the bottom four rows are the arithmetic mean, geometric mean, maximum
and minimum, respectively, of the scores after they are normalized w.r.t. those of
HyperFuseR’s scores. In all tables, for the execution time (2–5) and memory (10–
13) columns, lower values are better. For the influence scores, i.e., for columns 6–9,
higher values are better.

The tables show that for small and relatively sparser graphs such as NetHep, NetPhy,
DBLP and Amazon, Tim+, the high-quality baseline, has 0.1%–7% more influence
score compared to the proposed approach. Except DBLP, the other sketch-based
algorithm, Skim also performs bad on these graphs. For NetPhy, NetHEP, and
Amazon, its influence scores are 10%–44% worse that those of HyperFuseR. For the
rest of the graphs, Tim+ is only up to 3%, 0.9% and 0.1% better in terms of influence
for the edge weights w = 0.005, 0.01, and 0.1, respectively, while being 69×, 167×,
and 2624× slower on average over all the graphs. It is clear that HyperFuseR’s
influence performance is getting closer to that of Tim+ when w increases. Indeed,
when w is small, e.g., 0.005, it may have a hard time while catching potential
influence paths; the probability an edge being captured is 1− (1−0.005)256 = 0.72.
Using ε = 0.3, Tim+ does not suffer from sparsity, but as the tables show, Skim
can suffer more. With respect to the execution-time performance, HyperFuseR
is superior to other methods; for instance, when w = 0.01, it is 167×, 10×, and
10× faster on average compared to Tim+, Imm, and Skim, respectively. Although
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Imm and Skim look similar for w = 0.01 in terms of relative average execution
time performance, for large graphs, Skim is faster than Imm. When w = 0.01, the
maximum execution times for 4148, 1870, and 114 seconds for Tim+, Imm, and
Skim, respectively. For the proposed approach and with the same w, the maximum
time spent is only 42 seconds.

HyperFuseR’s memory consumption is less compared to those of others. Further-
more, it stays the same for all experimental settings with different w values. This is
partly due to fused sampling; the memory consumption is linearly dependent only on
the number of vertices in G. Both sketch-registers and visited information are stored
per vertex. Hence, HyperFuseR’s memory consumption stays constant for any
simulation parameters or any number of edges. That is given J , HyperFuseR’s
memory use is predictable for any graph. On the other hand, the other methods’
memory consumptions tend to increase with w, and their behaviours change with
different parameters and graphs.

Overall, the performance characteristics of the proposed algorithm are different from
its state-of-the-art competitors. HyperFuseR’s performance is highly affected by
G’s diameter. For instance, for Pokec with w = 0.01, the average diameter of the
samples is 43, which makes HyperFuseR to lose its edge against its fastest com-
petitor. On the other hand, with w = 0.1, the average diameter is only around 17,
and HyperFuseR is six times faster than its nearest competitor. Indeed, its exe-
cution time decreases as the samples and the influence graph G get denser. On the
other hand, the other methods tend to get slower under these changes.

Figure 5.4 shows the speedups of HyperFuseR over Imm for all the graphs and all
w values. As described above, the relatively sparser setting w = 0.005 is especially
challenging due to the high diameter of the influence graph and low vector unit uti-
lization. Even with this w value, HyperFuseR is only slower by a few seconds and
only when the influence is small. For larger graphs with larger influences Hyper-
FuseR is much faster than Imm. As explained before, for larger w, HyperFuseR’s
execution-time performance is usually better, and its influence quality is on par with
that of Imm.

Figure 5.5 comparesHyperFuseR’s execution-time performance with that of Skim.
As the figure shows, the proposed approach performs much better, both in terms
of quality and speed in almost all settings. For the notorious Pokec dataset, Hy-
perFuseR performs better than Skim, except for w = 0.01. The diameter of G
does not affect Skim’s performance as much as HyperFuseR. Skim is faster in
this setting, but it has worse influence quality. In some settings such as Amazon and
w = 0.01, Skim performs very poorly; only 39% of the influence is achieved with
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Figure 5.4 Speedups obtained by HyperFuseR (J = 256) over Imm (ε=0.5) using
τ = 18 threads.
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Figure 5.5 Speedups obtained by HyperFuseR (J = 256) over Skim (r=64, l=64)
using τ = 18 threads.

respect to HyperFuseR. In addition, under the same setting, Skim spends 59.3
seconds whereas HyperFuseR finishes in less than one second.

63



5.5.5 Scalability with multi-threaded parallelism
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Figure 5.6 Scaling of HyperFuseR with multiple threads on some of largest
datasets in the benchmarks.

In our implementation, we used a pull-based approach in which the vertices (pro-
cessed at line 4 of Algorithm 9) pull the influence, i.e., reachability set cardinality
estimations, from their outgoing neighbors. A classical push-based approach, in
which the vertices relay their influence to their outgoing neighbors could also be
leveraged. However, the push-based approach makes a (target) vertex register po-
tentially updated at the same time in different computation units. Specifically, the
update operation (corresponding to the one at line 8 of Algorithm 9) of the pull-
based approach will be the cause of race conditions. One can easily argue that since
we are already using sketches, and not computing exact cardinalities, such race con-
ditions are acceptable and they will not reduce the quality of influence estimations.
However, the performance may suffer due to false sharing. Figure 5.6 shows Hy-
perFuseR’s speedup values obtained via a simple OpenMP parallelization at line 4
of Algorithm 9. Even though the pull-based diffusion shows a nice parallel per-
formance, it is possible to implement HyperFuseR using other approaches such
as the queue-based approach which may improve performance by only processing
live vertices. The pull-based diffusion method is chosen due to its simplicity and
scalability to many threads.
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6. A MULTI-GPU APPROACH TO FUSED-SAMPLING AND

INFLUENCE MAXIMIZATION

Even though both InFuseR-MG and HyperFuseR are built for scalability, par-
allelism, and independent execution from the ground up, IM on GPUs brings many
additional optimization challenges and opportunities. The differences in between
the architectures can be exploited with the use floating-point values and how the
edges are sampled. The parameters for the CUDA kernel launches are denoted as
«blocks, threads» through the chapter. In the algorithms, block and thread IDs
are represented with “blockIdx.x” and “threadIdx.x”. The size of the (1D) grid
in terms of blocks is shown with “gridDim.x”. The maximum number of blocks
per kernel is predefined and shown as B. As mentioned before, the CUDA runtime
allows multiple dimensions for blocks and threads. Even though we have shown the
first dimension with “.x” to be compatible with CUDA API, only a single dimension
is used for all algorithms in this chapter.

6.1 Count-distinct Sketches for GPUs

The count-distinct sketch used in HyperFuseR is designed for simplicity and op-
timized for AVX2/AVX512 capable processors. Due to differences between AVX
accelerators and CUDA-capable devices, we explored a new sketch for GPUs. In
fact, using 8-bit storage for a single register is space efficient; 7 of the bits can be
used to store the number of leading zeros, and the remaining bit can hold the in-
formation on whether the vertex has been visited in the respective sample. On the
other hand, even though some GPUs (the server-grade ones) are good at processing
8-bit elements, their floating-point performance is unparalleled. A float can store
much more information, even when holding leading zeros. To exploit this, we have
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devised a method that holds multiple clz ◦h in a single float, instead of storing all
registers separately. We reduced a small number of consecutive registers to a single
register using harmonic mean. That is instead of 256 8-bit registers, we are using 64
floating-point registers, each is holding a harmonic mean of 4 registers of the former
scheme. Formally,

(6.1) M [j] =H(clz(h4j), clz(h4j+1), clz(h4j+2), clz(h4j+3)), 1≤ j ≤ J

where H is the harmonic mean function, clz is count leading zeros function, and hj

refers to jth hash function.

Aggregated floating-point sketches allow us to remove the extreme values before they
affect the rest without any post-processing done. A similar approach has been ap-
plied in HyperLogLog++ (Heule, Nunkesser, & Hall, 2013); HyperLogLog++
removes 30% of the largest values to improve the sketch accuracy.

In our experiments, we have observed that floating-point sketches proposed for Su-
perFuseR are on par with those of HyperFuseR in much smaller register counts
J . Instead of using J = 256 registers in integer sketches, J = 64 floating-point
sketches can be used to reduce the total number of operations while consuming the
same amount of storage. For CPU implementations, integer sketches are still prefer-
able since 32 8-bit vector operations can be performed together in SIMD fashion
with AVX2, and 64 of them with AVX512. Whereas on the GPU, 32 registers can
be concurrently processed by a single warp. Furthermore, as our preliminary ex-
periments show, the floating-point sketches use less number of registers to estimate
within the same accuracy. Especially on consumer-grade RTX cards, floating-point
operations are much faster, so floating-point sketches are strongly preferred. We
also encoded the visited information on the vertices inside the sketch registers. This
allows us to find the sample IDs for each vertex u such that u is active only on these
samples without requiring any other memory usage. The algorithm for initializing
sketches is given in Algorithm 10.

6.2 Influence Cascade on GPU

Given the current seed set, almost all of the IM algorithms must find the set of influ-
enced vertices for all samples. This allows the algorithm to first compute the current
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Algorithm 10 Fill-Sketches(G,M,J , s)
Input: G= (V,E): the influence graph

M : sketch vectors of vertices
J : number of registers per vertex
τ : partition id

Output: M : updated sketch vectors
1: i← blockIdx.x
2: j← threadIdx.x
3: stride← gridDim.x
4: while i < |V | do
5: if Mi[j] 6=−1 then
6: acc← 0
7: for l ∈ [τJ + 4j,τJ + 4j+ 4) do
8: acc← acc+ 1/clz(hashl(i))
9: if acc 6= 0 then
10: Mi[j]← 4/acc
11: i← i+ stride

influence score and be ready to efficiently compute the marginal gain for the next
seed candidate. This process, which simply requires multiple sample graph traver-
sals in our algorithms, will be called as Influence Cascade. Independently traversing
each sample graph using a queue for each worker is a trivial approach for performing
the influence cascade on GPU in parallel. However, this approach requires O(|V |)
storage per worker which makes it infeasible on GPUs which have a limited memory.
Even when a small number of workers are used, this approach incurs path diver-
gence within each warp. Divergent warp problem can be mitigated by processing
a vertex per warp while processing the edges associated with that vertex with the
warp threads (Shahrouz, Salehkaleybar, & Hashemi, 2021). However, this adds an
additional limit on the parallelism. Another solution to the divergence problem is
combining the frontiers, i.e., taking their union, for each sample, and processing the
vertices that appear in a frontier of at least one sample in parallel. One needs to
repeat this process while keeping track of any updates until the convergence, the
state with no update, is reaches which implies that all traversal levels have been
processed for all samples. Similar approaches have been applied for different graph
kernels such as centrality computation by Sariyüce et al. (2015). In HyperFuseR
and SuperFuseR, we have used the latter except that we integrate the fused sam-
pling to the influence cascade process for all samples and for each edge. Instead of
using multiple queues, i.e., one queue per sample, we used a single, unified queue to
store the distinct vertices to be traversed. For simplicity (in implementation), this
queue is split into two segments; the first segment stores the vertices that will be
processed in the current kernel launch, and the second accumulates the vertices to
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be processed in next iteration. At each iteration, we started a block for each vertex
in the first segment (within an upper limit on the number of concurrent blocks).
Then each thread in the block processes the same edge for all samples. Finally, the
vertices visited by the threads are accumulated and added to the latter segment of
the queue to be processed in the next iteration. After the kernel finishes, we swap
the first and latter segments and repeat until no more elements in the queue.

Algorithm 11 Simulate-Sketches(G,M,J )
Input: G= (V,E): the influence graph

M : sketch vectors of vertices
J : number of registers per vertex

Output: M : updated Sketch vectors
1: i← blockIdx.x
2: j← threadIdx.x
3: stride← gridDim.x
4: while i < |V | do
5: if Mi[j] =−1 then
6: continue
7: for ei,v ∈ A(i) do
8: if P (u,v)j < wu,v ∧u 6∈RS [j] then
9: Mu[j]←max(Mu[j],Mv[j])
10: i← i+ stride

Processing the same edge by all threads in a block allows the (shared or global) mem-
ory to broadcast the data item as well as the algorithm to exploit shared memory
for fast processing. Furthermore, divergent paths in the warps will be eliminated.
With this approach, a single block reads and updates consecutive memory locations.
The only performance disrupting memory access is the single atomic operation done
for adding a new vertex to the queue. To further reduce the memory pressure, as
mentioned above, we used the sketch registers to hold visited vertices. Since the
visited vertices (by the current seed set) in a sample cannot have an impact on the
influence, we set the sketch register of that sample to a hard-coded value, -1, to
both remove that register for cardinality estimation and label the vertex visited in
the associated sample. This kernel is described in Algorithm 12. With the proposed
approach, we were able to process thousands of vertices in parallel without mem-
ory bottlenecks. The run-time analysis shows > 80% utilization of the streaming
multiprocessors and the memory sub-system.

6.3 Fused-Sampling Aware Sample-Space Split

68



Algorithm 12 Cascade-Kernel(G,M,J ,Q,Qnext)
Input: G= (V,E): the influence graph

M : sketch vectors of vertices
J : number of registers per vertex
Q: current queue
Qnext: current queue Output: M : updated Sketch vectors

1: i← blockIdx.x
2: j← threadIdx.x
3: stride← gridDim.x
4: rnd← rands[j]
5: while i < size(Q) do
6: u←Q[i]
7: if Mv[j] 6= 1 then
8: continue
9: for eu,v ∈ A(u) do
10: flag← 0
11: if P (u,v)j < wu,v ∧u 6∈RS [j] then
12: Mu[j]←−1
13: flag← 1
14: if j == 0 and ballot(flag) == 1 then
15: Qnext←Qnext∪{v} . Atomic
16: i← i+ stride

return M

Deterministic generation of random values opens many opportunities for perfor-
mance. Since random values are generated using a random seed vector X, we can
manipulate, i.e., permute, the vector entries for a better performance without los-
ing randomness. Putting similar Xr together reduces the divergence in code path,
and hence, the number of “wasted” compute resources in SIMD lanes that do not
contribute to the final result. On AVX2/AVX512, while the fused-sampling step
processes edges, a batch of samples are processed regardless if some of the samples
do not include the edge. After this step, only the relevant results are updated using
the SIMD shuffle/mask instructions. On the GPU, similarly, a warp diverges on
relevant samples, and the rest of the threads wait for joining to the next batch.

As a simple yet effective approach, we opted to sort random seed values in the vector
X so that similar bit-flips are clustered with respect to their significance. For one
end of the sorted vector, we expect the lower bits of the edge hash is flipped to
generate random value, so the values for the same edge, but consecutive samples,
will be close to each other. On the other end, regardless of the remaining ones,
we expect the higher bits to be flipped. Still, for consecutive locations the higher
bit positions that are flipped are expected to be the same. This approach improves
the fill rate of our SIMD lanes (on GPU this corresponds to a warp) during fused
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Table 6.1 Average size and maximum achievable speed-up using fused-sample aware
split method. Selected datasets are split into two and four batches using sampling
probability p= 0.01.

2 Devices, Batch Size=128 4 Devices, Batch Size =64
Average Size Max Speed-up Average Size Max Speed-up

Dataset Naive Sorted Naive Sorted Naive Sorted Naive Sorted
Amazon 83% 50% 2.41 3.85 59% 26% 6.67 14.81
DBLP 75% 49% 2.63 3.92 49% 25% 8.00 14.81
Epinions 78% 49% 2.56 3.92 53% 25% 7.41 14.81
LiveJournal 81% 50% 2.44 3.85 57% 25% 6.90 14.81
NetHEP 83% 50% 2.41 3.85 61% 26% 6.35 14.29
NetPhy 79% 50% 2.50 3.85 56% 25% 7.02 14.81
Orkut 75% 49% 2.63 3.92 49% 25% 8.00 14.81
Pokec 79% 49% 2.53 3.92 54% 25% 7.27 14.81
Slashdot0811 82% 50% 2.44 3.85 58% 25% 6.78 14.81
Slashdot0902 81% 50% 2.44 3.85 57% 25% 6.78 14.81
Twitter 80% 50% 2.47 3.85 57% 25% 6.90 14.81
Youtube 75% 49% 2.63 3.92 49% 25% 8.00 14.81
Geo. Mean 79% 50% 2.50 3.88 55% 25% 7.15 14.77

sampling, and allows us to provide an early exit for empty masks. On average 30%
speed-up can be achieved using sorted random seeds without any significant changes
to the implementation. In fact, all the impacts in this paragraph are achieved with a
single line. On AVX512, the instructions that can gather 512-bit vectors to 32/64-bit
integers make the early-exit strategies more effective than AVX2 counter-parts.

Building on the idea in the previous paragraph, we propose a Fused-Sampling Aware
Sample-Space Split method. The proposed method, while distributing the samples
to multiple tasks, takes the advantage of the pseudo-random number generator to
reduce the total number of edges traversed. For large edge probabilities w, previously
proposed methods, InFuseR-MG and HyperFuseR, converges very quickly. For
small edge probabilities, since only a small fraction of the edges can be active in a
limited number of samples, the total number of edges to be processed is very small
compared to the whole graph. In addition, sorting random seeds allows us to cluster
sampled and not sampled edges to sample batches so that each batch has fewer edges
compared to the unsorted case. This method starts with a predefined number of
batches µ. First, the random values are split into µ batches of equal size. For each
batch, we sample the edges for all possible samples with the random X values in
that batch. If the edge is sampled with any of the random values, we copy that edge
to the task. Otherwise, the edge is skipped. Table 6.1 shows the effect of splitting
256 samples to two and four batches using both naive and the proposed approach.
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6.4 The SuperFuseR algorithm

Building on the mentioned methods, we propose SuperFuseR algorithm, a multi-
GPU approach to Fused-Sampling and Influence Maximization. SuperFuseR con-
sists of several distributed steps to efficiently compute the reachability sets and select
the seed vertices. First, all the devices start from their own random state which is
an equisized partition of X. Then, the edges are distributed to each device with
respect to the fused-sampling aware sample-space split method. Each partition cre-
ates its own sketches for all vertices using its own random X values and initializes
sketches with the vertices. Each device runs simulations on the sketches using the
edges assigned to the partition. After, each device takes the element-wise sum of
registers to find cardinality estimates of samples in its own partition. Then, a binary
partition reduction is performed to find the seed vertex. Then, each device performs
a random cascade to calculate influence, and label the visited vertices. Finally, the
first device reads scores from other devices and decides whether to rebuilt sketches
in the next iteration. Figure 6.1 describes how SuperFuseR distributes data and
schedules the communication among multiple GPUs.
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Figure 6.1 An example run of a seed selection in SuperFuseR; The example
scheme uses 8 GPUs and J = 256 registers. M[j] represents a sketch with j registers.
Timeline goes from top to bottom.

In the seed selection step, we employ a binary reduction scheme to improve the
performance. Especially when the number of devices is high, i.e., 4-8, most of
the time is spent on the communication among the GPUs rather than taking the
sketch-wise sum of registers and selecting vertex with the largest cardinality. Due
to this reason, SuperFuseR first performs partial sketch sums in local devices.
Then, the devices with IDs divisible by z = 2 reduce their sketch sums with the
device (ID+y) for y = 1 (the result is stored on the device with smaller ID). After,
we iterate the same process with IDs divisible by doubling z and y until all sketch-
sums are accumulated in the device with ID = 0. Then, device 0 selects the vertex
with the largest sketch sum as a seed vertex, and the vertex ID is broadcasted to
all devices. Figure 6.2 illustrates an example reduction scheme with 8 devices and
J = 256 registers per sketch, where each device is responsible for J = 32 sketches.
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Figure 6.2 The reduction scheme of SuperFuseR to find a seed vertex using sketch
registers. The scheme uses 8 GPUs and J = 256 registers. M[j] represents a sketch
with j registers. The symbol + represents the element-wise sum of registers. Yellow
boxes show active devices. The timeline goes from left to right.

Even though the algorithm is parallel in most of the execution, it needs to syn-
chronize all devices in several places. For instance, the seed selection requires all
devices to be synchronized before the reduction, as well as before the broadcasting
the seed vertex. Furthermore, after running a random influence cascade, a barrier
is required to estimate the scores correctly. In total, log2(#devices)+1 barriers are
required for seed selection. These being said, since the algorithm is probabilistic
and prone to small errors, we can relax some of these barriers if the error rate is
lower than the rebuilding threshold. That is for these points, the exact influence
score is not important. Algorithm 13 describes SuperFuseR in detail including its
synchronization points.
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Algorithm 13 SuperFuser(Ǧi,J ,K,i,µ)
Input: Ǧi = (V,E): ith partition of the graph

J : number of Sketch registers
K: Size of the seed set
id: Device id
µ: Number of devices

Output: S: Seed set
1: S←∅
2: score← 0, oldscore← 0
3: M ←zeros(|V ∈ Ǧi|,J )
4: M ←Fill-Sketches«B,J»(M,J , i)
5: M ←Simulate-GPU«B,J»(Ǧi,M,J )
6: while |S|<K do
7: BARRIER . Synchronize all devices
8: sums←Sketchwise-Sum(M)
9: sums←Reduce(sums,i,µ)
10: s← ArgMax(sums)
11: BROADCAST s TO ALL
12: BARRIER
13: if i=0 then
14: S← S∪{s}
15: Q←{s}, Qnext←∅
16: while Q 6= ∅ do
17: blocks←min(size(Q),B)
18: Cascade-Kernel«blocks,J»(Ǧi,M,J ,Q,Qnext)
19: Q←Qnext, Qnext←∅
20: localscore← Count(M,−1)
21: BARRIER
22: oldscore← score
23: score←GATHER(localscore,+)/µ
24: if |(score−oldscore))|/score > eglobal then
25: M ←Fill-Sketches«B,J»(M,J , i)
26: M ←Simulate-GPU«B,J»(Ǧi,M,J )
27: return S

6.5 Experimental Results

The experiments are performed on a server with two 64-core AMD EPYC 7742 pro-
cessors, 1TB memory, and eight Nvidia A100s. In total, 128-core/256-threads were
available for CPU computing, and 8×6912 = 55296 CUDA cores with 8×80 = 640GB
VRAM were available for GPU computing. On the software side, CentOS 9.2 with
GCC 9.2 and CUDA 11 is used to compile and run the experimented software. All
the software is compiled using authors’ build instructions. Our software uses opti-
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Table 6.2 Properties of networks used in the experiments

No. of No. of Avg.
Dataset Vertices Edges Degree

D
ir

ec
te

d LiveJournal 4,847,571 68,993,773 14.23
Pokec 1,632,803 30,622,564 18.75
Sinaweibo 58,655,849 261,321,071 4.46

U
nd

ir
ec

te
d Friendster 65,608,366 1,806,067,135 27.53

Orkut 3,072,441 117,185,083 38.14
Youtube 1,134,891 2,987,625 2.63

mization flags including; "-use-fast-math", "-march=native", and code generation is
set for Nvidia Ampere architecture.

In evaluation, we used three influence settings to be comprehensive. For all networks,
we evaluated our performance with

1. constant edge weights p= 0.005 (as in (Gokturk & Kaya, 2021))

2. constant edge weights p = 0.01 (as in (Kempe, Kleinberg, & Tardos, 2003)
and (Chen, Wang, & Yang, 2009)),

3. constant edge weights p= 0.1 (as in (Kempe, Kleinberg, & Tardos, 2003))

As before, the first setting we used, p = 0.005 is selected especially for challenging
our method. The setting causes very sparse influence networks. Although our
opponents’ runtimes increase with influence score (hence, they perform well with
sparse networks), SuperFuseR’s runtime increases with the depth of influence
graph (which is higher for sparse networks). This setting allows us to show our
performance in worst-case scenarios. The other two settings are selected as they
appear in the literature.

Experiments are performed on six large social networks; LiveJournal, Pokec, and
Sinaweibo are directed networks, whereas Friendster, Orkut, and Youtube net-
works are undirected. All networks mentioned are taken from SNAP network
database (Leskovec & Krevl, 2014). For all experiments, we set seed set size as
K = 50 as in (Chen, Wang, & Yang, 2009).

We evaluated the algorithms on their execution times and influence scores. In opti-
mization problems like IM, faster computation is not the sole objective. The methods
under test should also provide high-quality results for being practical. Even though
SuperFuseR can compute high-quality seed sets on largest datasets without re-
building, and be order of magnitude faster, we still employ the rebuilding strategies
so that the same parameters provide good results on all of the datasets while still
being faster than the competition. The memory use is another important factor, yet,
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for this set of experiments, we opt not to report the memory statistics of the meth-
ods. SuperFuseR has the same memory use characteristics as HyperFuseR, only
J items per vertex are stored for sketches, and only 9 bytes per vertex are used for
traversal tasks. On the other hand, our main baseline, gim consumes much larger
memory and, in some cases, limits its memory use with hard-coded limits. In such
a case, we believe it would not be fair to compare memory use.

SuperFuseR performs Monte-Carlo simulations to report its own estimated influ-
ence scores. On the other hand, gim refers to its own Reverse-Inverse-Reachability
sets and relies on another oracle for reliable influence estimations. Even though the
reliability of the hash-based, fused-sampling method is shown by the experiments on
InFuseR-MG &HyperFuseR, the number of Monte-Carlo simulations performed
are fairly few in our settings. On those experiments, to verify the validity of the re-
sults, we have used an independent oracle which do not have any optimizations and
use a large number of samples employing standard RNGs. However, the datasets
for SuperFuseR experiments are too big for this independently implemented the
oracle software. For that reason, in this chapter, we use a fused-sampling oracle
implemented with different random seeds and a higher sample count (R = 512) to
calculate the influence scores.

6.5.1 Algorithms evaluated in the experiments

Evaluations are done on two algorithms; gim (Shahrouz, Salehkaleybar, & Hashemi,
2021) and SuperFuseR. gim is selected for its best performance and ability to
process large datasets. gim is an efficient parallel implementation of IMM algorithm
on GPU. gim uses two sets as its queue to eliminate race-conditions. Optimizes
memory access using a local memory stack for its second queue. Unfortunately,
cuRipples (Minutoli et al., 2020) took too much time for the experiments; we were
not able to complete them in a feasible time.

SuperFuseR experiments are conducted in both single GPU and multi-GPU set-
tings. We run our experiments using J = 64 for fast computation, and J = 256
to show how SuperFuseR scales. Multi-GPU code is run on {1, 2, 4, 8} GPUs
for a comprehensive scaling analysis. For each GPU, we assigned multiples of 32
sketches/samples to utilize the warps efficiently. The single GPU implementation
is single-threaded and devoid of barriers and excess device synchronizations. On
the other hand, the multi-GPU implementation still uses barriers and synchroniza-
tion steps even if a single GPU is used. In addition, we run our experiments using

76



both HyperFuseR sketches (Gokturk & Kaya, 2021), and improved floating-point
sketch designed for GPUs in Algorithm 10. The former is shown with ‘Int‘ to indi-
cate it uses integers to represent sketches, and the latter is shown with ‘Float‘ since
it uses floating-point numbers.

Table 6.3 Single GPU SuperFuseR performance compared to state-or-art. The
values in the last three rows are normalized w.r.t. to those of SuperFuseR (J =
64,Float). The Friendster dataset is excluded due to missing table values (i.e.,
too large to handle via a single GPU).

Score Time
Method gim SuperFuseR gim SuperFuseR

p Dataset (ε= 0.3) (J = 256, Int) (J = 64, Float) (ε= 0.3) (J = 256, Int) (J = 64, Float)

0.005

LiveJournal 34520 36970 36022 8.35 3.59 1.65
Orkut 147272 155931 155469 3.40 10.67 2.74
Pokec 1121 1098 1099 9.45 12.37 3.99
Sinaweibo 759328 947125 946996 61.01 68.89 15.46
Youtube 1866 1773 1792 5.13 3.02 1.61

0.01

LiveJournal 112103 152571 152938 5.60 4.69 1.40
Orkut 514970 629224 649256 2.30 12.25 3.81
Pokec 44298 44522 44508 7.26 1.30 1.15
Sinaweibo 1778890 2213637 2213615 44.06 50.05 16.31
Youtube 8599 9083 9034 4.23 2.06 1.22

0.1

LiveJournal 1803360 1862170 2133416 2.19 3.86 1.53
Orkut 2395522 2650180 2559172 0.84 5.53 1.72
Pokec 1035354 1035410 1035428 0.87 1.40 0.53
Sinaweibo 11203638 14451355 14804055 18.43 77.24 12.21
Youtube 170919 171089 171052 1.05 0.38 0.21

Geo. Mean 0.90× 0.99× 1.00× 2.28× 2.73× 1.00×
Avg. Performance 0.91× 0.99× 1.00× 2.86× 2.96× 1.00×
Max. Performance 1.04× 1.04× 1.00× 6.31× 6.33× 1.00×

6.5.2 Comparing SuperFuseR with gim

In our experiments, we have observed that we can obtain high-quality results with
SuperFuseR using J = 64 floating-point registers which are comparable to using
J = 256 integers registers in terms of solution quality. Also, we have found that
using ε= 0.3 is a sweet-spot for IMM algorithm, which is also suggested in Minutoli
et al., 2019. gim being an IMM implementation, we use ε= 0.3 as well.

Table 6.3 shows the comparative performance of the algorithms. On the left side
of the table, we show the expected influence score. On the right side, we show the
execution time spend on finding the seed set. At the bottom of the table, we offer
a statistical comparison with SuperFuseR (J = 64, Float) which is both faster in
average and outputs higher quality results than the other methods. So, we report
the comparative statistics with respect to the SuperFuseR (J = 64, Float) setting.

Single GPU SuperFuseR (J = 64,Float) on average 2.86 times faster than gim
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method and 2.73 times faster than SuperFuseR (J = 256,Int). If we look at max-
imum speed-up, we see that SuperFuseR (J = 64,Float) can be up-to 6.31 times
faster than the competition. If we compare the quality of the results, we see that
SuperFuseR performs better than gim in almost all settings. On average, gim
can find seed sets that have influence 91% of the SuperFuseR methods. Super-
FuseR in both settings give very similar results; on the average, there exist only
1% difference in scores.

6.5.3 Comparing Multi-GPU SuperFuseR with gim

Table 6.4 shows how SuperFuseR scales to multiple devices. Unfortunately, gim
only utilizes a single GPU, while SuperFuseR supports multi-GPU execution. For
the best performance, SuperFuseR needs to assign at least J = 32 samples for
each GPU to utilize the warps efficiently. Using two GPUs, SuperFuseR is 5.68
times faster on average than gim, and up to 12.01 times speed-ups are observed.
Compared to single device execution, SuperFuseR (J = 64) is 2.06 times faster,
with a maximum of 5.17 speed-up. Using 8 GPUs, SuperFuseR (J = 256) achieves
5.88 times speed-up on average, with a maximum of 6.19 speed-up.
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Table 6.4 Multi-GPU SuperFuseR execution time compared to gim. The val-
ues in the last 3 rows are normalized w.r.t. to those of SuperFuseR (J =
64,Float, 2 GPUs). The missing values are shown with "-".

gim SuperFuseR SuperFuseR
Method (e=0.3) (J = 64, Float) (J = 256, Float)
Devices 1 1 2 1 2 4 8

p Dataset

0.005

Friendster - - 11.54 - 35.18 18.27 15.40
LiveJournal 8.35 1.65 0.82 2.93 1.61 1.30 1.83
Orkut 3.40 2.74 0.53 6.69 2.01 0.86 0.62
Pokec 9.45 3.99 1.60 9.12 3.27 1.77 1.52
Sinaweibo 61.01 15.46 5.08 51.05 15.36 8.09 6.66
Youtube 5.13 1.61 0.72 2.58 1.31 0.84 0.75

0.01

Friendster - - 14.84 - 79.35 32.33 17.02
LiveJournal 5.60 1.40 0.69 4.36 1.61 0.95 0.90
Orkut 2.30 3.81 0.89 12.10 3.62 1.36 0.83
Pokec 7.26 1.15 1.28 1.21 0.52 0.32 0.94
Sinaweibo 44.06 16.31 5.94 49.06 17.11 9.08 7.77
Youtube 4.23 1.22 0.66 2.72 1.49 0.74 0.73

0.1

Friendster - - 14.97 - 34.12 19.03 16.10
LiveJournal 2.19 1.53 0.82 3.54 1.68 0.92 0.73
Orkut 0.84 1.72 1.04 4.95 1.99 1.31 0.68
Pokec 0.87 0.53 0.36 1.51 0.72 0.40 0.31
Sinaweibo 18.43 12.21 7.70 106.44 28.90 12.08 7.69
Youtube 1.05 0.21 0.21 0.44 0.28 0.21 0.21

Geo. Mean 4.69× 2.06× 1.00× 5.25× 2.29× 1.24× 1.07×
Avg. Performance 5.68× 2.29× 1.00× 6.53× 2.57× 1.33× 1.11×
Max. Performance 12.01× 5.17× 1.00× 13.82× 5.35× 2.18× 2.23×
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7. CONCLUSION AND FUTURE WORK

In this thesis, we proposed memory access accumulation methods for probabilistic
graph algorithms. The proposed methods are applied to the Influence Maximization
problem and possible implementation with a variety of optimizations and experimen-
tal performance results are given.

We proposed fused-sampling, a technique to construct probabilistic graph algorithms
to run on multiple samples while accumulating memory accesses. Combining with
the hash-based random number generation, we have also opened many performance
optimization opportunities.

Using fused-sampling and hash-based RNG, we build InFuseR-MG, an Influence
Maximization algorithm for undirected graphs that is 2.3×–173.8× faster than state-
of-the-art while being superior in terms of influence scores, and using a comparable
amount of memory. Also, InFuseR-MG is more than 3000× faster than the greedy
approach, which is considered as one of the gold standard algorithms in the litera-
ture, in our experiments.

For directed (and hence all) graphs, we proposed a lightning-fast algorithm Hyper-
FuseR which utilizes count-distinct sketches, similar to the Flajolet-Martin algo-
rithm, to estimate large reachability sets in many samples. To further exploit our
performance gains, while computing the seed sets, we leveraged an error-adaptive
rebuilding strategy. The experiments showed us that HyperFuseR generate high-
quality seed sets while being up to 119× faster than a state-of-the-art RIS-based
algorithm and up to 62× faster than another sketch-based approach and while pro-
ducing 3%–12% better influence scores.

We then moved our approach to the multi-GPU setting; we proposed SuperFuseR,
which uses Fused-Sampling Aware Sample Space Split to partition edges to multiple
GPUs efficiently. We achieved 6.8× speed-up on average using 8 GPUs against a
single GPU, and we were able to process a few of the largest networks available. In
the future, we would like to investigate how the proposed methods can be applied
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to other probabilistic graph algorithms.
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