
PRIVACY PRESERVING IDENTIFICATION IN HOME

AUTOMATION SYSTEMS

by

ŞEVVAL ŞIMŞEK

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University

July 2021

PRIVACY PRESERVING IDENTIFICATION IN HOME

AUTOMATION SYSTEMS

Approved by:

Date of Approval: July 13, 2021

ŞEVVAL ŞİMŞEK 2021 ©

All Rights Reserved

ABSTRACT

PRIVACY PRESERVING IDENTIFICATION IN HOME AUTOMATION

SYSTEMS

ŞEVVAL ŞIMŞEK

Computer Science and Engineering M.S. Thesis, July 2021

Thesis Supervisor: Prof. Albert Levi

Keywords: IoT, Home Automation Systems, Privacy, Authentication, Identification

Home Automation System (HAS) is a set of interconnected devices in a household
that are accessible via the Internet. Homeowners can monitor and control the smart
home appliances using HAS, but if the system is not structured properly, intruders
can gain access to one or more of the devices in the system. In this thesis, we pro-
pose a privacy preserving identification model for HAS. In this model, first, a secure
key sharing and credential issuance protocol is presented. In this protocol Idemix’s
Verifiable Encryption scheme is implemented. Verifiable encryption schemes ensure
the authenticity of the Issuer and the User, while keeping the communication fully
secure. During this protocol, the master key for the mutual verification and au-
thentication protocol is shared and the credentials for the User are issued. Then,
we explain the mutual verification and authentication protocol, which also employs
the HAS Management System (HMS) as a trusted party to obfuscate the commu-
nication between the Vendors and Innovative Home Gateway (IHG)’s. We preserve
the privacy of the homeowners by masking the brands, types and id’s of the appli-
ances inside the household. HMS carries on two different conversations, one with
Vendor and the other with IHG, replacing the UUID’s in the topics. The topics and
messages published on these are unlinkable, thus masking the identity of the IoT
devices connected to the IHG. The performance tests are performed using 4 different
scenarios. Moreover, security analysis for both key sharing and credential issuance
protocol and for the mutual verification and authentication protocol are given, and
they are both proven to be secure according to OFMC and ATSE specifications. In
conclusion, the system is scalable for actual implementation, and provides security
and privacy as proposed.

iii

ÖZET

EV OTOMASYON SİSTEMLERİNDE GİZLİLİK KORUYUCU TANIMLAMA

ŞEVVAL ŞIMŞEK

Bilgisayar Mühendisliği Yüksek Lisans Tezi, Temmuz 2021

Tez Danışmanı: Prof. Dr. Albert Levi

Anahtar Kelimeler: Nesnelerin İnterneti, Ev Otomasyon Sistemleri, Mahremiyet,

Kimlik Doğrulama

Ev otomasyon sistemleri (HAS - Home Automation System), bir evde bulunan ve
İnternet üzerinden erişilebilen birbirine bağlı bir dizi cihazdan oluşan sistemlerdir.
Ev sahipleri, akıllı ev aletlerini HAS’i kullanarak izleyebilir ve kontrol edebilir, an-
cak sistem düzgün yapılandırılmamışsa, izinsiz giriş yapanlar sistemdeki bir veya
daha fazla cihaza erişim sağlayabilir. Bu tezde, HAS için gizliliği koruyan bir tanım-
lama modeli önerilmektedir. Bu modelde öncelikle güvenli bir anahtar paylaşımı ve
kimlik bilgisi verme protokolü sunulmaktadır. Bu protokolde Idemix’in Doğrulan-
abilir Şifreleme şeması uygulanmaktadır. Doğrulanabilir şifreleme şemaları, iletişimi
tamamen güvenli tutarken, kimlik atama otoritesinin ve kullanıcının kimliğinin
doğrulanmasını sağlar. Bu protokol sırasında, karşılıklı kimlik doğrulama pro-
tokolünün ana anahtarı paylaşılır ve kullanıcı için kimlik bilgileri verilir. Ardından,
Sağlayıcı Firmalar ve Yenilikçi Ev Ağ Geçidi (IHG - Innovative Home Gateway)’ler
arasındaki iletişimi gizlemek için güvenilir bir taraf olarak HAS Yönetim Sistemini
(HMS - HAS Management System)’i kullanan karşılıklı kimlik doğrulama protokolü
açıklanmaktadır. Ev içindeki aletlerin marka, tip ve kimliklerini maskeleyerek ev
sahiplerinin mahremiyeti korunur. HMS, konulardaki UUID’leri değiştirerek biri
Sağlayıcı Firma ve diğeri IHG ile olmak üzere iki farklı görüşme gerçekleştirir. Bun-
larda yayınlanan konular ve mesajlar birbiri ile bağlantılı değildir, bu şekilde IHG’ye
bağlı IoT cihazlarının kimlikleri gizlenir. Tezde ayrıca 4 farklı senaryo için yapılan
testlerin performans sonuçları sunulmaktadır. Tezin sonunda hem anahtar paylaşımı
hem de kimlik bilgisi düzenleme protokolü ile karşılıklı kimlik doğrulama protokolü
için güvenlik analizleri verilmiş ve her ikisinin de OFMC ve ATSE şartnamelerine
göre güvenli olduğu kanıtlanmıştır. Sonuç olarak, sistemin gerçek uygulamalar için

iv

ölçeklenebilir olduğu ve önerildiği gibi güvenlik ve gizlilik sağladığı biçimsel olarak
gösterilmiştir.

v

ACKNOWLEDGEMENTS

Throughout the writing of this thesis I have received a great amount of support and

assistance from many people.

I would like to first express my gratitude to my thesis supervisor, Prof. Albert Levi,

for his support through my Master’s thesis as well as my academic life. His valuable

feedbacks and guidance throughout my research improved my knowledge in many

ways.

Also, I would like to extend my sincere thanks to the thesis jury members Assoc.

Prof. Cemal Yılmaz and Asst. Prof. Kübra Kalkan Çakmakçı, for their time and

valuable feedbacks.

In addition, I would like to send many thanks to my friend and project partner

Simge Demir for her support. It was a blessing to work with someone so talented

and kind throughout my Master’s degree.

This work has been partially supported by TÜBITAK (Scientific and Technolog-

ical Research Council of Turkey) under grant 117E017 and I would like to thank

TÜBITAK members for their support to our project.

Last but not least, I am sending special thanks to my family, especially to my dear

husband M. Enes, for his continued support during my academic life for the last two

years, and for believing in me and my goals more than I ever did. This journey has

become much easier with you by my side.

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

1. INTRODUCTION . 1

2. SYSTEM BASICS . 5

2.1. Literature Review . 5

2.2. System Parts . 8

2.2.1. IoT Devices . 8

2.2.2. Innovative Home Gateway (IHG) . 8

2.2.3. HAS Management System (HMS). 9

2.2.4. Vendors and Homeowners . 9

2.3. Idemix . 10

2.4. MQTT . 15

2.5. Attacker Model . 15

3. SECURE KEY SHARING AND CREDENTIAL ISSUANCE 17

3.1. Zero Knowledge Proofs . 17

3.2. Verifiable Encryption Scheme . 18

3.3. Key Sharing and Credential Issuance . 19

4. PRIVACY PRESERVING MUTUAL AUTH. PROTOCOL. 21

4.1. Protocol Steps . 21

4.1.1. Update Protocol. 22

4.1.2. Error Report Protocol. 26

5. PERFORMANCE EVALUATION . 29

5.1. Setup and Implementation . 29

5.2. Performance Evaluation Results . 32

5.2.1. Successful Update Scenario . 32

vii

5.2.2. Failed Update Scenario. 34

5.2.3. Error Report Scenario . 37

5.3. Discussions . 39

6. SECURITY ANALYSIS . 43

6.1. Security Analysis of the Credential Issuance Protocol 44

6.2. Security Analysis of the Mutual Authentication Protocol 45

6.3. Discussion. 49

7. CONCLUSION . 50

BIBLIOGRAPHY. 51

viii

LIST OF TABLES

Table 2.1. Symbols used in protocol description . 6

Table 5.1. IoT device features of the testbed . 30

Table 5.2. IHG features of the testbed . 30

Table 5.3. HMS/MQTT server features of the testbed . 31

Table 5.4. Vendor features of the testbed . 31

Table 5.5. Average computational results for successful update 33

Table 5.6. Average latencies for successful update w.r.t different file sizes . 34

Table 5.7. Average computational results for failed update 35

Table 5.8. Avg. latencies for successful update w.r.t. different file sizes. . . . 36

Table 5.9. Average results for mixed successful and failed update. 37

Table 5.10. Average calculation results for error report . 38

ix

LIST OF FIGURES

Figure 2.1. Overview of the Home Automation System architecture [1]. . . . 10

Figure 2.2. Sample credential issued to an IoT device . 13

Figure 2.3. Sample ProofSpec of an IoT device . 14

Figure 3.1. Key Sharing and Credential Issuance protocol 20

Figure 4.1. Outline of the Mutual Authentication Process (Downstream) . 25

Figure 4.2. Outline of the Mutual Authentication Process (Upstream) 28

Figure 5.1. Successful update performance results . 33

Figure 5.2. Failed update performance results . 35

Figure 5.3. Average end to end latency of receiving error reports 38

Figure 5.4. Error Report test performance comparison . 40

Figure 5.5. Successful Update test performance comparison 41

Figure 5.6. Failed Update test performance comparison 41

Figure 5.7. Mixed Update test performance comparison 42

Figure 6.1. Initialization protocol simulation using SPAN tool. 43

Figure 6.2. Initialization protocol intruder simulation using SPAN tool . . . 44

Figure 6.3. SPAN simulation of the proposed protocol . 46

Figure 6.4. SPAN Intruder simulation for the proposed protocol 47

Figure 6.5. Key sharing protocol safety analysis . 48

Figure 6.6. Mutual verification and authentication protocol safety analysis 48

x

1. INTRODUCTION

Internet of Things (IoT) devices are small but capable devices that collect, store

and share data periodically. IoT devices are “things” or physical devices that are

equipped with sensors, software and hardware appropriate for their usage purposes.

IoT devices are used in a variety of fields, from smart homes to medical care and

even military applications. These devices can communicate with other devices and

each other, over a network, which can be WiFi, Bluetooth or many other protocols of

communication. When these protocols are not carefully designed and implemented,

these smart devices can disclose information about the user, or completely give away

the control to an adversary [2]. IoT devices have low processing powers and network

bandwidth, which makes it difficult to implement complex security mechanisms,

hence IoT devices are more vulnerable to manipulation and attacks [3]. Since one

of the fields that IoT is most commonly used is smart homes and home automation

systems, the privacy of the homeowners becomes of the utmost importance.

A Home Automation System (HAS) is a set of connected devices in a household,

often used to control and monitor home features such as air conditioning, lighting

or security systems. The devices included in HAS continuously collect data that

can be vulnerable, or should be kept private such as the frequency of the usage,

updates that it receives and reports that it sends back to the provider. All of these

data are considered private, and they should be transferred in a secure and private

manner. Any information that leaks from a communication either between the user

and the IoT device, or between the provider and the IoT device, threatens the

confidentiality of the transmitted information. For example, a third party learning

that the homeowner has a specific type of device, can make the household a target

for a known vulnerability of that specific device.

In this thesis, we present a privacy preserving secure identification and authentica-

tion protocol for HAS. The proposed system originates from the HAS architecture of

Batalla and Gonciarz [4], which was developed for the FUSE (Full-Managed Secure

Home Automation Systems) project, developed in cooperation by the Turkish and

Polish teams. We used this scheme as the base of our approach, including the IHG

1

structure and HAS Management system (HMS) structure. In the privacy preserving

identification scheme we propose in this thesis, IHG is the gateway to manage the

communication between IoT devices in the home network and outside users, through

HMS. Every message incoming from the outside users must be relayed to the IHG

from HMS. This way we ensure that only authorized users reach the IHG, and even

then if they are not authenticated they cannot receive or send messages.

The preliminary versions of this study was presented in [1] and in [5]. The first

part of the project is presented in the thesis by S. Demir [5], where the privacy

aware system is introduced by implementing fakeProofs. This way, the actual up-

date communication becomes indistinguishable from the failed update case, in terms

of structure and length of the messages. However, this system does not include en-

cryption, secure key sharing or HMS as a topic switching middleware. The messages

are sent over the topic determined by the parties in plaintext, and the topic includes

private information such as device brand and type. Here in this thesis, we extend

the previous work in several aspects, and for a better understanding the entire work

is presented, but the new contributions are discussed in more detail. In the previous

model, the entities were the same as the current model, but the extent of their roles

changed and broadened. In the proposed privacy preserving model, we change the

following aspects:

1.1 All of the communications between all of the entities are now encrypted. Dur-

ing the issuance process, the conversation is no longer in plain text. We used

Idemix verifiable encryption scheme to ensure the parties are legitimate and

the credentials are completely secret.

1.2 During the privacy preserving mutual authentication process, and at the end

during update and error reports scenarios, all of the conversations between

entities are encrypted with a symmetric key that is shared along with the

credentials.

1.3 Secure key sharing is ensured, using the verifiable encryption scheme [6].

Trusted secure party (HMS, or Issuer) distributes the master keys to every

IoT device and Vendor.

1.4 Privacy preserving addition to the preliminary version is introduced. In the

preliminary works [1],[5], privacy awareness was provided by using fakeProof’s,

in order to ensure that the usual update scenario and rejected update scenario

are indistinguishable from each other for anyone listening to the channel. On

top of this privacy preserving mechanism, we add a middleware layer between

the Vendors and IoT devices, which is the HMS. HMS breaks the link of the

2

two communications (between IoT and HMS, and between Vendor and HMS)

and the two cannot be linked in any way, since the topics are changed and no

information is related between these two communications.

According to these enhancements, the roles of the entities are updated, too. HMS

acted as the Issuer and distributed the credentials to the IoT devices and Vendors.

HMS also had the role of the MQTT [7] broker, and managed the communication

between Vendors and IoT Devices, without changing anything in the messages. On

top of these roles, HMS now works as a trusted party that communicates with the

entities directly, where it decrypts the incoming message using the sender’s key,

modifies the topic, and encrypts the new message with the receiver’s key. The two

messages differ in two ways, first the topics are different since the UUID’s [8] are

replaced, and secondly the message body is encrypted with a different key. Hence,

there exists no connection between the message that HMS receives and the message

that HMS relays.

Performance of the proposed model is measured thoroughly for different scenarios.

As mentioned before, HMS manages a two way traffic, and both incoming and

outgoing messages are encrypted. Since IoT devices have low processing power and

small bandwidth, the protocol must be as lightweight as possible, in order not to

interfere with the regular duties of the IoT devices. Likewise, Vendors may have

more powerful systems on their end but they handle multiple communications at

once. When applied to real life smart homes, the number of communications handled

at once can be very big. Vendors can limit this number; however, if the end-to-

end latency is reduced as much as possible, they can work more efficiently. Even

though HMS does not operate the same as IoT devices and Vendors, it processes

vast amount of incoming messages, decrypts these with the sender’s key, matches

with the corresponding topic and relays the message encrypted with the receiver’s

key. We conducted a number of test cases, with different number of IoT devices,

and different data sizes to infer the scalability of the system to real life smart home

systems. The detailed results can be found in Chapter 5.

Lastly, we provide a security analysis of the proposed protocol, using the SPAN [9]

tool for Avispa [10] security analyzer. First, we test our key sharing and credential

issuance protocol, with the goal of authentication of Issuer and IoT devices, and

secrecy of the master key. Our key sharing and credential issuance protocol is

evaluated to be secure according to OFMC [11] and ATSE [12] specifications. We

also tested our privacy preserving mutual verification and authentication protocol,

with the goal of secrecy of the message between the Vendor and IoT device. This

protocol is also evaluated to be secure according to OFMC and ATSE specifications.

3

The detailed security analysis and intruder simulations can be found in Chapter 6.

Our results show that the HAS structure developed and enhanced in this thesis is

secure, privacy preserving and scalable for real life applications. Our test results with

11 devices in the testbed show that when the number of devices actively receiving

updates or sending error messages at the same time, the end-to-end latency increases.

This increase in the latency is feasible and acceptable. We also show that encrypting

the conversation, and enhancing privacy preservation by adding HMS to switch

topics does not increase the end-to-end latency dramatically, hence it is reasonable

to carry out the protocol in a fully encrypted manner.

4

2. SYSTEM BASICS

In this section, first we summarize the recent related works published focusing on

the privacy preservation of the HAS. Then, we present the architecture of the pro-

posed privacy-preserving scheme, along with the system parts that are adapted

from Idemix [13] to be used in the proposed model. Also, details of the MQTT

[7] protocol, which is the lightweight communication protocol that we integrate to

our system. Table 2.1 shows the definition of the symbols used in the protocol de-

scription. Lastly, a brief attacker model is presented to better explain the domain’s

borders, as well as the attacker’s capabilities in this setup.

In this thesis, we adapt our previous works [1],[5], and we add an efficient privacy

preserving protocol. The privacy protocol is developed assuming that HAS Manage-

ment System (HMS) works as a secure trusted party between the Innovative Home

Gateway (IHG) and the Vendor. The members of the communication are described

below, under the title System Parts.

2.1 Literature Review

Most of the studies concerning privacy in HAS are surveys or analyses, rather than

proposals of privacy preserving embedded systems or privacy preserving solutions

to already implemented systems. However, some of the studies in the last 10 years

focus on somewhat relevant topics to the focus of this thesis.

In the study by Gharakheili [17], a network level protection for smart home ap-

pliances is presented. In this approach, an external entity, called the Security as

a Service (SaaS) Provider manages the access control rules. Privacy awareness is

provided by blocking the outgoing daily logs, which may contain sensitive informa-

tion. However, this approach does not take into consideration the communication

5

Table 2.1 Symbols used in protocol description

Symbol Description

IoTD IoT device
V Vendor
ni Nonce [14] with identifier i
U Cryptographic attribute structure

S,Ri Part of Issuer’s public key
N Pseudonym of IoTD
A Ordered set of attributes

(mi)iǫA Attributes in A
g,h Public common group parameters
m1 Master secret
r,v′ Random integers
n RSA modulus for CL-signatures
Pi i-th proof generated

σCL CL-signature [15]

IoTDA,C
A List of devices in the HAS to get the update
C List of connected devices to IHG

typeIoT D,P S
IoTD Device type of the IoTD
PS Device type specified in ProofSpec

V EPKi i-th public key
V EPrKi i-th private key

IDPSIoT D Id of the agreed ProofSpec
CHi i-th challenge generated

MSG Encrypted message
gKHID Group key that belongs to specific Home ID

Ek Encryption by using k as key
UUIDi−P i-th Universally unique identifier [8] generated by P

CIoT D,V
IoTD Certificate of IoTD

V Certificate of V

PSIoT D,V
IoTD proofSpec of IoTD

V proofSpec of V

sIoT D,V
IoTD Shared secret of IoTD

V Shared secret of V

ProofIoT D,V
IoTD Generated Proof by IoTD

V Generated Proof by V

fakeProofIoT D,V
IoTD Generated fakeProof by IoTD

V Generated fakeProof by V
macIoT D Mac address of IoTD
Hash(.) Hash function

HMAC(.) Keyed-Hashing for Message Authentication [16]

HMACCHi,MSG
CHi Generated HMAC using CHi

MSG Generated HMAC using MSG

6

between the IoT device and the homeowner, and the identity of the IoT devices are

not masked.

A recent study by Zavalyshyn et al.[18] introduces a privacy-aware smart hub for

home environments. Their approach on privacy of the users include restricting

apps’ usage of the sensitive data collected by smart home devices. They focus on

the privacy aspect when the data reaches the app, or the user, rather than what

happens on the network level. Their study presents a useful smart hub, however

this study does not provide a solution for network level privacy.

Another study by Puri et al. [19] focuses on the privacy of the data collected from

smart home appliances such as washer, fan etc. These devices log their activity in

terms of energy consumption and this information is sent to the cloud computing

layer. They add a fog computing layer to permute this data to anonymize it, as-

suming that no device activity means the homeowner is not at home. However, this

method does not consider the communication between the IoT layer and fog layer,

and the method is not implemented or tested to measure the system’s security and

performance.

Another study by Gope et al. [20] proposes a privacy-preserving two factor authen-

tication scheme for IoT devices to communicate anonymously with a server. To

provide two factor authentication, authors integrate physical unclonable functions

(PUFs) in addition to shared secret keys as another authentication factor. In order

to preserve devices’ privacy, they use one time aliases, which is sufficient for their

system. However, this approach will fail to mask IoT devices’ identities in a setup

like ours, where the Vendors communicate with specific brands and types of devices.

When the state of the art approaches, some of which are explained above are consid-

ered; there exists a serious lack of privacy preservation in the network layer. Some

of the studies only rely on encryption techniques to ensure the privacy of the data,

however, in a system like our proposed model, it is not sufficient to only rely on

encryption, or one time aliases. To further assure the privacy of HAS, we present

privacy preserving identification for HAS.

On top of our contributions to the preliminary versions of the system, our contri-

bution to the literature is that we propose a network layer privacy solution, rather

than only providing data privacy in terms of what is revealed to the receiver. By

using the Idemix anonymous credential system [13] we also provide data privacy.

But rather, in this thesis we focus on the information a third party can deduce by

listening to the network, and obfuscate this data in the HMS layer.

7

2.2 System Parts

HAS consists of five main entities, these are; 1) IoT Devices, 2) IHG, 3) HMS, 4)

Vendors, and 5) Homeowners. These entities and their roles are explained in detail

below.

2.2.1 IoT Devices

IoT Devices are the smart devices in the home network, such as smart light bulbs

and smart TV’s. These devices use the network for two purposes, either to report an

error, or to receive an update that is sent from the Vendor. These devices connect

to the internet only via IHG. IHG is the access point, and the gateway that the

IoT devices use to connect the outer network. All of these devices are able to

communicate with each other inside the home network, but they can only receive

the messages from outside if IHG relays the message to them.

2.2.2 Innovative Home Gateway (IHG)

IHG is a device, which is directly connected to the router via Ethernet connection.

We used a Raspberry Pi 4 [21] device to set up the access point for testing purposes,

but IHG can be installed to any set-top box. IHG starts working as soon as it is

powered on. The main role of the IHG is to listen, it listens to the incoming and

outgoing messages and makes sure that the messages are of correct format. If the

message format is not correct, it is ignored and not relayed to any of the IoT devices.

The IoT devices recognize and immediately connect to this access point when they

are turned on, and they cannot connect to any other devices. It is assumed that the

IoT devices have the credentials to connect to the IHG access point.

8

2.2.3 HAS Management System (HMS)

HMS is the server we use for private and secure communication. HMS acts as a

trusted third party that all of the Vendors and IHG’s recognise and trust. As the

trusted middleware, HMS has the following roles:

• HMS is responsible for the secure and private distribution of the master keys

that are used in the symmetric encryption scheme we use.

• HMS also acts as the Issuer, which is the responsible party for credential

distribution. Devices use these credentials to authenticate themselves to each

other and generate proofs during the zero knowledge [22] authentication phase.

• HMS also acts as the middleman between the Vendors and IHG’s during the

regular communication, where the Vendors send an update to the IoT devices

and where the IoT devices send error reports to the Vendors. The reason why

we needed HMS as a middleman will be explained in detail in Chapter 5.

2.2.4 Vendors and Homeowners

Vendors and Homeowners are the entities that communicate with the IoT Devices for

a particular reason in the system. For instance, Vendors can send periodic updates

to the IoT devices and receive error reports from the IoT devices and process these.

Homeowners can monitor and control an IoT device remotely such as turning on the

air conditioner, lamp, etc. The outline of the system is given in Figure 2.1.

9

Figure 2.1 Overview of the Home Automation System architecture [1]

2.3 Idemix

In the proposed model, we adopted the Idemix [13] credential system for identifi-

cation of the entities in the communication. Credential systems are widely used in

security applications. Credentials are typically used while requesting access to a

system, often during a secured authentication process, to establish a claimed role

or specify the attributes about itself. Before the authentication phase of the com-

munication, typically as soon as a new device is connected to the HAS, it requests

a credential from the Issuer, which is in our case the HMS server. Same process

is done for the Vendors, i.e. when a new Vendor connects to the system it has to

first obtain its credentials. This credential issuance process is explained in detail in

Chapter 3, which is a part of secure key sharing protocol.

Both of the parties (Vendors and IoT Devices) need credentials, which they use for

every communication. This can cause problems, especially in terms of linkability,

where one certificate is used many times for different communication. In order to

avoid this linkability problem, D. Chaum [23] came up with the anonymous cre-

10

dential system architecture. In this anonymous credential system, users are known

by their pseudonyms. The pseudonyms cannot be linked, but are formed in such a

way that a user can prove to another party a statement about his identity. Issuers

cannot link the pseudonyms that one user uses for different communications with

each other. This way, the user achieves to keep itself anonymous even to the Issuer.

Idemix [13] is the anonymous credential system developed by IBM, that we integrate

to our protocols. In this system, there are three entities, the User, the Issuer and

the Verifier. The user registers to the Issuer to retrieve the credential for the set

of attributes that it needs to prove. The Issuer has the authorization to issue

these credentials to the User. The Verifier verifies the credentials of the user, and

its specific attributes. After obtaining the credential from the Issuer, User needs

this credential to generate the zero-knowledge proof during verification. Using zero

knowledge protocol, the user convinces the Verifier that it has the credential issued

and signed by the Issuer that contains the corresponding set of attributes. User also

proves that it knows the master secret shared along with the credential. This way,

unlinkability of different uses of the credential is ensured.

Following are the definitions of the system parts utilized in our model, integrated

from Idemix:

Proof is a generated proof of statement, which is typically used in zero knowledge

proofs. Basic understanding of zero knowledge proofs is that one party proves that

it knows a secret information without revealing it. The proving party answers a

challenge, in a way that it would be impossible to answer the challenge correctly

without knowing the secret information. Challenge is a random number big enough

to not collide with previous random numbers generated, and each party generates a

challenge for the other party to use while generating the proofs.

Algorithm 1 demonstrates steps for Proof generation for an IoTD, adopted from

Idemix. First it checks whether the certificate of the IoT device CIoT D exists, and

loads the inputs of CIoT D. Then the second check is done to ensure that IoTD has

all the attributes specified in the ProofSpec of the IoT device, PSIoT D. To build

PSIoT D, buildProof() method from the Idemix library [24] is used. The method

11

employs the CL-signature scheme [15], while validating the certificates of the Prover.

Algorithm 1: Proof Generation Algorithm
Result: ProofIoT D or fakeProofIoT D

if CIoT D not exists then

Get CIoT D;

end

Load CIoT D inputs ;

if PSIoT D ⊆ CIoT D then

Generate ProofIoT D;

else

Build a dummy document as fakeProofIoT D;

end

Credential is the name of the document that the Issuer delivers to the User, which

contains the attributes of the user and proves that the user has the mentioned

attributes. An example of the attributes specified in the credential is given below in

Figure 2.2. As seen in the figure, credential consists of attributes and the signature

specific to that user. The attributes include actorType, brand, type, model and

homeID values for the device. Moreover, the issuer’s public key location is specified

in the credential, which is publicly accessible on a server. The signature assigned to

the IoT device is received in the credential and stored for later use.

12

Figure 2.2 Sample credential issued to an IoT device

ProofSpec (Proof Specification Document) is a file containing the attributes of the

Prover that it needs to prove to the Verifier. All of the attributes in the ProofSpec

must also appear in the credential of the Prover, but these attributes are just a subset

of the attributes of the credential. Prover only reveals the necessary attributes for

the specific communication, and the rest of the credential remains secret. Before

the verification phase, Prover and Verifier should agree on the specifications of the

13

ProofSpec. In Figure 2.3, a sample proof specification document is given. ProofSpec

consists of declaration and specification sections. Under the declaration section, the

attributes of the proof are defined. Under the specification section, the attributes

of the corresponding credential are initialized, and it can be seen that only three

of the attributes are revealed below (brand, type and actorType) whereas the other

two attributes (model and homeID) remain hidden.

Figure 2.3 Sample ProofSpec of an IoT device

14

2.4 MQTT

MQTT (MQ Telemetry Transport) [7] is a lightweight messaging protocol that min-

imizes the network bandwidth and device resource requirements. MQTT has a

publish-subscribe mechanism implemented especially for the systems with low pro-

cessing, such as IoT devices. In this publish-subscribe mechanism, all parties register

to the intermediary under a specific topic. When a new message is published to this

specific topic, all the parties that have subscribed to this topic receive the message

automatically. The intermediary is responsible from this distribution. In our model,

we determined a policy in terms of the structure of the topics one can subscribe to.

The structure of the topic should be in the following format:

ProcessName/UUID1/TypeofDevice/UUID2

An example topic that we use during the error report scenario is:

report/19348..57/Siemens/TV/7484592...34

UUID [8] is the universally unique identifier, which is a 128-bit label used for infor-

mation in computer systems. When generated properly, these UUID’s are unique,

and this is why we use them for identifying the topics. UUID1 is placed in the

topic by the sender, and UUID2 is placed in the topic by the receiver. This pro-

cess is also explained later in Chapter 5. ProcessName is either report or update,

which helps IHG and HMS understand the means of communication to take proper

actions. TypeofDevice is a string indicating the brand and type of device i.e.

“Samsung/TV”. TypeofDevice is used to determine which devices in the Home

Automation System network will receive the update message, or what kind of a

device is sending the error report to the Vendor.

2.5 Attacker Model

Although the intent of the attacker may vary, we explain the intent as obtaining

the message, or getting authenticated by either of the end users. The attacker may

want to simply learn the messages, alter them, or damage the system. The attacker’s

capabilities are as follows:

15

• They can remotely listen to the channel by subscribing to the related topics,

• They can measure the end-to-end latency of the communications between par-

ties and perform a side channel attack,

• They can alter the messages, either by flipping bits or by completely replacing

the message,

• They can imitate any of the parties, performing a man in the middle attack,

• They can overwhelm the entities by directing false traffic to them,

• If they have access to the HAS network, i.e. the access point name and pass-

word, they can gain access to IoT devices via SSH connection. This requires

either physical access to the router or the attacker being in the WiFi connec-

tion range.

16

3. SECURE KEY SHARING AND CREDENTIAL ISSUANCE

In this chapter, we present the secure key sharing and credential issuance proto-

col used in the proposed privacy preserving identification scheme. This protocol is

run as an initialization, which is a preparation for the actual communication. This

phase is implemented based on the Idemix [13] anonymous credential system. It

starts with credential issuance since both parties should obtain credentials to au-

thenticate themselves to the other party. Initialization protocol is carried out in

an encrypted manner, where the public/private key pairs are generated using the

Verifiable Encryption Scheme of Idemix [6].

3.1 Zero Knowledge Proofs

Zero knowledge [22] is a concept in cryptography where one party proves that it

possesses a certain secret information (key, credential etc.) without revealing the

information itself. They provide small pieces of unlinkable information that can

accumulate to show that the validity of an assertion is overwhelmingly probable.

Even though there is a small probability that the Prover does not know the secret

information, but is able to generate, or guess, the response to a challenge correctly,

this probability is neglected. An example of zero knowledge proof is interactive

two-party protocols [25]. In these protocols, the Verifier asks the Prover one or

more questions. If the Prover knows the secret information, it can answer all the

questions correctly. This question is in the form of a challenge number, and the

Prover is expected to generate a proof using this challenge number and the secret

information. This proof is sent to the Verifier over a secure channel, and the Verifier,

who either knows the secret information or knows the answer to the challenge,

accepts the proof if the proof is validated.

17

All of the zero-knowledge proofs in the Idemix library use the common three move

Zero Knowledge protocol, and is non-interactive [24]. The protocol is non-interactive

in the way that parties agree on some common string or group parameters to be

used during the process.

3.2 Verifiable Encryption Scheme

A verifiable encryption scheme is a protocol that allows the Prover to convince the

Verifier that a ciphertext c is an encryption of a plaintext p under the public key PK

and label L, where PK and L are known by both the Prover and the Verifier [26].

This verifiable encryption scheme provides a computational security and applies to

the special soundness and zero knowledge properties of Zero Knowledge Protocols

[27]. Originally in the Verifiable Encryption scheme [6], it is assumed that the

public/private key pairs are generated by a trusted party using the appropriate key

generation algorithms, and in our implementation of this scheme, we assume that

the public/private key pairs are generated by the manufacturer of the IoT devices,

and pre-embedded to the devices’ memories. Same conditions apply for the key pair

or the HMS server.

In the proposed protocol, the Verifiable Encryption Scheme [6] is used in the secure

key sharing and credential issuance protocol. We assume that the Issuer (HMS)

knows the public key of the IoT device that the credentials are addressed to, and

likewise, the IoT device knows the public key of the Issuer. In a regular RSA public

key encryption [28], a message is encrypted with the receiver’s public key and the

receiver can decrypt the message with its private key. But in this case, there’s no

insurance that the message is encrypted by the correct sender, namely anyone can

encrypt a message. For our protocol, both parties need to make sure that the other

party is legitimate, and for this reason they need to verify the identity of each other.

In Verifiable Encryption Protocol [6], the Encryptor is at the same time the Prover,

and likewise in the Verifiable Decryption Protocol, the Decryptor is at the same time

the Verifier. The details of this verifiable encryption scheme will not be explained

further as it is not vital in terms of the understanding of the proposed protocol.

18

3.3 Key Sharing and Credential Issuance

As an initialization, the IoT Devices and Vendors must obtain their master secret

and credentials that they will use for the rest of the regular communication during

error report and update scenarios. This key sharing and credential issuance protocol

is implemented based on the Idemix [13] anonymous credential system. The outline

of the key sharing and credential issuance process is given below in Figure 3.1.

Protocol starts with offline generation of the public/private key pair and sharing the

public keys with the other party. Initially, Issuer generates V EPK1 and V EPrK1

public and private keys, and the user generates V EPK2, V EPrK2 public-private

key pair. Then both parties share their public keys with each other i.e. when HMS

is going to issue credentials to an IoT device, HMS shares its public key with the

IoT device, and IoT Device shares its public key with HMS. Issuer and IoT device

use these keys to encrypt their messages during the protocol.

In detail, Issuer generates a nonce n1, encrypts the message using V EPK2 and

sends it to User. User gets the message, decrypts it using V EPrK2 and gets n1.

IoTD computes a structure U based on attributes A. Proof generated by IoTD is

to prove the knowledge of master secret m1 associated with the pseudonym, N , of

the User. Additionally, random t-values as gr are computed and a challenge CH1

is created by calculating the Hash(n1|N |t) of n1, N and t. A response in the form

of s := r + CH1m1is calculated based on this challenge. Proof P1 and nonce n2

are generated and sent to the Issuer encrypted with V EPK1. Also structure U is

sent in an encrypted way. When Issuer gets the messages, it decrypts them using

V EPrK1. The last round is generating a signature for the credential of User. First,

Issuer verifies P1 and if verification does not fail, it generates a CL-signature [15]

σCL attached to the attribute list (mi)iǫA. Issuer also generates P2 to send with σCL.

All P2, σCL and (mi)iǫA are encrypted with V EPK2. Together with the message,

a 32-byte integer is randomly generated as the shared secret sIoT D. At the end

of the protocol, issued credential σCL and randomly generated sIoT D are received

by the User. This way, shared secret sIoT D is distributed securely to be used as a

symmetric key in mutual verification and authentication protocol.

19

Figure 3.1 Key Sharing and Credential Issuance protocol

20

4. PRIVACY PRESERVING MUTUAL AUTHENTICATION

PROTOCOL

In this chapter, we present the privacy preserving mutual verification and authen-

tication protocol. We explain the update and error report scenarios in detail as

well as the privacy preserving properties of the protocol. The preliminary version of

the privacy preserving mechanism was already implemented in our previous works

[1],[5], which is the fakeProof generation. The rough outline of this mechanism can

be seen in Algorithm 1 in Chapter 2. In this thesis, we improve the privacy of the

preliminary HAS architecture by introducing the privacy-preserving identification

and authentication protocol, where HMS manages data flow between Vendor and

IHG by communicating with them over MQTT [7] server. The privacy preserving

mechanism that we present in this thesis uses HMS as the trusted server, and assures

the untraceability of the communications between the Vendors and IHG’s. HMS is

responsible for switching MQTT [7] topics between Vendor and IHG in order to

obfuscate communication.

4.1 Protocol Steps

The privacy preserving mutual verification and authentication protocol is imple-

mented for the upstream and for the downstream traffic scenarios. The upstream

traffic is where an outside user, which is in our case the Vendor, sends software

updates to the IoT devices subscribed to a specific topic. The downstream traffic is

where an IoT device sends error reports to its Vendor. The steps of the protocol are

explained below, for the upstream traffic, for the case where Vendor sends updates

to IoT devices.

In Algorithm 2, the proposed privacy preserving mechanism’s details are given. This

algorithm explains the role of HMS during the update protocol, which provides pri-

21

vacy while switching keys and topics between the incoming and outgoing messages.

HMS keeps the topic and key pairs in hash maps so that the pairs are found quickly,

to minimize the delay on HMS as much as possible.

Algorithm 2: Privacy Preserving Mechanism

if MSG is the first message from Vendor then

Decrypt MSG and typeIoT D on the topic;

Encrypt MSG and typeIoT D with gKHID;

Save previous UUID1 in the topic ;

Replace topic with random UUID2 and encrypted typeIoT D ;

end

if MSGis from IHG then

if MSG is the first message then

Extend topic by generating random UUID2;

Put topic pairs to hashMap ;

end

Decrypt MSG with sIoT D ;

Get topic pair from hashMap ;

Encrypt MSG with sV ;

Send encrypted MSG to Vendor;

end

if MSGis from Vendor then

Decrypt MSG with sV ;

Get topic pair from hashMap ;

Encrypt MSG with sIoT D;

Send encrypted MSG to IHG;

end

4.1.1 Update Protocol

The update protocol is used when a Vendor sends software updates to the devices

of a specific type. This protocol has two outcomes, where the IoT device is of the

addressed type; hence, it authenticates itself to the Vendor and receives the update,

or the IoT device is not of the addressed type and provides a fakeProof instead of

Proof and does not receive the update at the and of the process. The successful

update scenario is explained below under three steps.

22

Step 1 At the beginning of the protocol, Vendor, V , chooses the appropriate

proofSpec, PSIoT D, including all the attributes that IoT device, IoTD, should pro-

vide. First, appropriate type of IoTD specified in proofSpec, typeP S , is encrypted

with shared secret key of Vendor, sV , to be added to the topic. Then, id of the

proofSpec, IDPSIoT D, is also encrypted with sV and published over the specific

MQTT topic HMS/update/UUID1−V /EsV
(typeP S) where UUID1−V is randomly

generated universally unique identifier [8]. HMS receives encrypted IDPSIoT D,

EsV
(IDPSIoT D), and decrypts it by using the stored sV together with EsV

(typeP S)

in the topic to get the typeP S . Then, HMS encrypts typeP S and the IDPSIoT D with

the group key belonging to specific Home ID, gKHID, in order to send to the IHG.

Lastly, HMS generates random UUID1−HMS to swap with UUID1−V and sends

EgKHID
(IDPSIoT D) over the topic update/UUID1−HMS/EgKHID

(typeP S). After

getting the message EgKHID
(IDPSIoT D), for every IoT device in IoTDC which is

a list of connected devices, IHG checks if they are appropriate to receive the up-

date. If typeP S matches with the device type of IoTD, typeIoT D, then the device is

appended to the appropriate devices list IoTDA and IHG communicates only with

IoTD in IoTDA.

Having received and decrypted the IDPSIoT D message, IoTD informs IHG that the

verification is required by sending an encrypted V ERIFY command attached with

its mac address (macIoT D), which is a physical identifier of the device. For every

IoTD in IoTDA, IHG generates a nonce as a unique identifier UUID2−IHG to create

a special topic for the corresponding IoTD. Rest of the messages are published

on that selected special topic. Thus, IHG publishes EsIoT D
(V ERIFY) on topic

update/UUID1−HMS/EgKHID
(typeP S)/UUID2−IHG/macIoT D. As indicated, IHG

is the gateway in the system; from this point on its responsibility is to relay the

messages to the other party.

Step 2 After receiving EsIoT D
(V ERIFY) command from IHG, HMS decrypts the

message with the corresponding sIoT D and encrypts it with sV . The topic is also

modified at HMS’s side so that an intruder cannot track the topics and find out which

IoTD is the target. HMS removes macIoT D from the topic and gets the shared secret

sIoT D for the specific mac address from its database. Then, HMS generates random

UUID2−HMS and replaces it with the topic. Also, topic pairs are stored in a hash

map. The pair consists of one topic that is listening messages from IHG and the

other one that is listening messages from Vendor. Then, HMS sends EsV
(V ERIFY)

on topic update/UUID1−V /EsV
(typeP S)/UUID2−HMS . After this point, HMS’s

responsibility is getting the message, decrypting it and encrypting with the other

parties’ shared secret key. Lastly, it sends the message over the specific topic which

is stored in the hash map.

23

When V receives V ERIFY message, it generates a challenge, CH1. After en-

crypting CH1 with sIoT D, V sends it to HMS as EsV
(CH1) and CH1 is relayed

to IHG over the topic update/UUID1−HMS/EgKHID
(typeP S)/UUID2−IHG. This

way, EsIoT D
(CH1) is received by IoTD.

In order to create ProofIoT D to prove its identity, IoTD uses received CH1, PSIoTD

and the credential, CIoTD. If PSIoTD is not a subset of CIoT D, then fakeProofIoT D

is created. Also, IoTD creates CH2 to send it to V . In order to preserve integrity,

HMAC [12] of CH2, HMACCH2,P roofIoT D
, is calculated using ProofIoT D as key,

and sent together with CH2 and ProofIoT D. All the messages are concatenated

and encrypted as EsIoT D
(ProofIoT D||CH2||HMACCH2,P roofIoT D

). HMS receives

the message and relays to V as EsV
(ProofIoT D||CH2||HMACCH2,P roofIoT D

).

Step 3 V verifies the received HMACCH2,P roofIoT D
to check the validity of the

message and ProofIoT D to authenticate IoTD. After successful verification of

HMACCH2,P roofIoT D
, V tries to verify ProofIoT D to check whether ProofIoT D is a

fakeProofIoT D or not. If ProofIoT D can be verified, then V generates ProofV . In

other case, it generates fakeProofV in order to continue with the protocol. Also, for

integrity check V generates HMACMSG,P roofV
and sends it together with MSG and

created ProofV . HMS gets the message EsV
(ProofV ||MSG||HMACMSG,P roofV

),

decrypts it with sV and sends EsIoT D
(ProofV ||MSG||HMACMSG,P roofV

) on the

specific topic to IHG.

When IoTD receives the message, it checks HMACMSG,P roofV
. After it is verified,

it also verifies received ProofV . This way, mutual verification and authentication is

ensured.

The update scenario outline can be seen in Figure 4.1. Encrypted messages are

shown above the arrows and MQTT topics, on which the messages are published,

are shown under the arrows.

24

Figure 4.1 Outline of the Mutual Authentication Process (Downstream)

25

4.1.2 Error Report Protocol

The error report protocol is used then an IoT device sends error reports to its Ven-

dor. Since the addressed Vendor is known, this scenario always results in Vendor

successfully receiving the report message. Hence, fakeProofs are not used during

error report scenario. The error report scenario outline can be seen in Figure 4.2.

Encrypted messages are shown above the arrows and MQTT topics, on which the

messages are published, are shown under the arrows. The protocol steps are ex-

plained below in detail.

Before the protocol begins, Vendor subscribes to the topic report/ + /typeIoT D/+

on which the IoT devices of the type typeIoT D publish their error reports on. + in

the topic means all values and is replaced with a UUID later.

Step 1 At the beginning of the protocol, IoT Device, IoTD chooses the ap-

propriate proofSpec, PSV , including all the attributes that Vendor, V , should

provide. Then, id of the proofSpec, IDPSV , is encrypted with sIoT D, and

sent to IHG over a TCP connection, along with a random UUID that is gen-

erated by the sender IoTD. IHG, after receiving IDPSV , subscribes to the

topic HMS/report/UUID1−IoT D/EsIoT D
(typeIoT D)/+ where UUID1−IoT D is ran-

domly generated universally unique identifier. IHG publishes EsIoT D
(IDPSIoT D)

over the same topic. HMS receives EsIoT D
(IDPSIoT D) and decrypts it with

sIoT D which is stored along with the mac address of the IoT device and re-

encrypts it using sV . HMS also decrypts EsIoT D
(typeIoT D) and re-encrypts it

using sV . Lastly, HMS generates a new UUID, UUID1−HMS and replaces

UUID1−IoT D with this new UUID. HMS publishes EsV
(IDPSIoT D) over the topic

HMS/report/UUID1−HMS/EsV
(typeP S)/+.

Step 2 Vendor receives this EsV
(IDPSIoT D) message and de-

crypts it with its key, sV and verifies that it has the correspond-

ing ProofSpec, then sends back EsV
(V ERIFY) using the topic

HMS/report/UUID1−HMS/EsV
(typeP S)/V ENDOR. Vendor also subscribes

to topic HMS/report/UUID1−HMS/EsV
(typeP S)/IHG to receive the rest

of the messages. HMS receives EsV
(V ERIFY) coming from the Vendor,

and decrypts it using sV . Then, HMS encrypts the verify command with

sIoT D and sends EsIoT D
(V ERIFY) over the new topic. The new topic is

HMS/report/UUID1−IoT D/EsIoT D
(typeP S)/UUID2−HMS where the first UUID

is replaced with IoTD’s UUID and the second UUID is replaced with a new

randomly generated UUID. IHG receives this message, and relays it to the devices

with the matching brand and type, over a TCP connection socket. IoTD receives

26

this message, decrypts it using sIoT D, and if the incoming message is “VERIFY”,

it starts the challenge response protocol. IoTD generates a big integer, which

is called a challenge. This number is denoted with CH1. IoTD encrypts CH1

and sends EsIoT D
(CH1) to IHG, and IHG publishes this message on the topic

HMS/report/UUID1−IoT D/EsIoT D
(typeP S)/UUID2−HMS . Now HMS receives

this message, decrypts it with sIoT D and encrypts it with sV . HMS publishes

EsV
(CH1) over HMS/report/UUID1−HMS/EsV

(typeP S)/UUID2−V /IHG

topic. Vendor receives EsV
(CH1) and decrypts it using sV , and gen-

erates ProofV . Vendor also chooses a random challenge CH2 and

generates HMACCH2,P roofV
, which is the HMAC of the CH2 using

ProofV as the key. Vendor sends EsV
(ProofV ||CH2||HMACCH2,P roofV

)

over HMS/report/UUID1−HMS/EsV
(typeP S)/UUID2−V /V ENDOR

topic. HMS receives this message, decrypts and re-encrypts it

and publishes EsIoT D
(ProofV ||CH2||HMACCH2,P roofV

) over the topic

HMS/report/UUID1−IoT D/EsIoT D
(typeP S)/UUID2−HMS/IHG. IHG receives

and relays the message to corresponding IoTD.

Step 3 IoTD decrypts this message, gets ProofV ||CH2||HMACCH2,P roofV
,

and verifies the proof. Then it verifies the correctness of HMAC, by

generating it again. Lastly, IoTD generates ProofIoT D for CH2 and

it also generates HMACMSG,P roofIoT D
where MSG is the error report

message. IoTD sends EsIoT D
(ProofIoT D||MSG||HMACMSG,P roofIoT D

)

to IHG, who then publishes this message on the topic

HMS/report/UUID1−IoT D/EsIoT D
(typeP S)/UUID2−HMS/IHG.

HMS receives this message, decrypts and publishes

EsV
(ProofIoT D||MSG||HMACMSG,P roofIoT D) on the topic

HMS/report/UUID1−HMS/EsV
(typeP S)/UUID2−V /V ENDOR. Lastly,

Vendor receives this message, validates the ProofIoT D and checks the

HMACMSG,P roofIoT D
. If the proof is correct, then Vendor receives the error

report message MSG.

27

Figure 4.2 Outline of the Mutual Authentication Process (Upstream)

28

5. PERFORMANCE EVALUATION

In this chapter, we evaluate the performance of the proposed protocol for the up-

stream and downstream traffics. First, we explain the setup and implementation

details of our testbed, and give detailed features of all the devices and software that

are used in the HAS simulation. Then, we give detailed results of the performance

tests for the upstream and downstream traffic simulations. Lastly, we evaluate and

discuss the results of the performance tests.

5.1 Setup and Implementation

For the implementation and testing of our proposed system, we used Raspberry

Pi 3 and Raspberry Pi 4 boards [21] as IoT devices, and we chose to use these

devices for several reasons. Firstly, most of the research and development process

of IoT platforms are supported with single board computers, such as Raspberry Pi.

Secondly, they are small in size, and affordable. And lastly, they are very easy to

customize and powerful enough to run the software without significant delay. There

are a total of 11 IoT devices in our testbed, 5 of which are Raspberry 3 devices,

and the remaining 6 are Raspberry 4 devices. The features of all the devices are

given in Table 5.1. Furthermore, we used one Raspberry Pi device as a set-top box

for IHG. We mentioned in system parts that any device that can be customized as

an access point can be used as the IHG. IHG is both the gateway, and the access

point that IoT devices use to connect to the Internet. We set up the Raspberry Pi

4 device as an access point and uploaded the IHG software. Raspberry Pi connects

to the home/school IoT network via an Ethernet cable and uses this IoT network to

connect the IoT devices to the Internet. The features of the IHG are given in Table

5.2.

29

Table 5.1 IoT device features of the testbed

IoT Device Model Feature Name Device Feature

Raspberry Pi 3

Operating System Raspbian

RAM 1GB LPDDR2

GPU BroadCom VideoCore IV

CPU 4x ARM Cortex-A53, 1.2/1.4 GHz

Raspberry Pi 4

Operating System Raspbian

RAM 2GB LPDDR4-3200

GPU Broadcom BCM2711

CPU 4x ARM Cortex-A72, 1.5 GHz

Table 5.2 IHG features of the testbed

Feature Name Device Feature

Device Name Raspberry Pi 4

Operating System Raspbian

RAM 4GB LPDDR4-3200

GPU Broadcom 2711

CPU 4x ARM Cortex-A72, 1.5 GHz

Proof Specification documents are served from a publicly reachable server to make

it feasible for the parties to reach. Server’s IP address is known to every entity in

the system. In addition, HMS and the MQTT server run on a laptop computer with

Windows 10 operating system and Vendor runs on a laptop computer with MacOS

Mojave operating system. The detailed features of the Windows device is given in

Table 5.3 and the detailed features of the MacOS device is given in Table 5.4.

30

All of the software applications for IHG, HMS, IoT device and Vendor are developed

using Java Programming Language version 11. MQTT and Idemix libraries are

included in the software. All of the IoT devices are connected to the IHG via

WLAN to simulate the smart home environment.

Table 5.3 HMS/MQTT server features of the testbed

Feature Name Device Feature

Device Name Lenovo Thinkpad

Operating System Windows 10

Processor Intel Core i5

RAM 8 GB

CPU 1.6 GHz

Table 5.4 Vendor features of the testbed

Feature Name Device Feature

Device Name Macbook Pro

Operating System macOS Majove 10.14.6

Processor Intel Core i7

CPU 3.3 GHz

RAM 16 GB LPDDR3 2133 MHz

31

5.2 Performance Evaluation Results

For the experiments, the testbed is set up and all of the test cases have been run via

repeating the communication fifty times to calculate the average end-to-end latency.

Tests are performed for the two-way communication model, where IoT sends error

reports to the Vendor and where the Vendor sends updates to the IoT devices. For

all of the test cases, we set the payload data size to 10 KB for uniformity and com-

parability of the test results. However, we also tested the protocols with different

payload sizes with a fixed number of IoT devices to measure the effect of the payload

size to end to end latency. The end-to-end latencies are calculated starting from the

beginning of the request of update/report until the end of mutual verification and

authentication protocol. Since the key sharing and credential issuance protocol exe-

cutes only once for each device, the latency does not have effect on the performance

of the overall system, so we do not include this protocol to the test cases.

5.2.1 Successful Update Scenario

In this section, we present the performance evaluation results for downstream traffic

which is the delivery of successful updates to IoT devices. The breakdown of average

computational delay (in milliseconds) is given in Table 5.5.

As seen in the table, average computational delay is approximately 1543 millisec-

onds. Overall end to end latency for one device receiving a successful update is

calculated as 1637 milliseconds, meaning that 94 milliseconds are spent for data

communication over the network. We also conducted experiments at which multi-

ple IoT devices have undergone simultaneous update operations. Figure 5.1 shows

the end-to-end latency results of 1-to-11 IoT devices which successfully receive the

update at the same time. In the timings of this figure, both communication and

batch computational delays are included. As seen in Figure 5.1, average time to get

updates is in between 1.6 - 3.9 seconds. The increase in latency with respect to the

increase in number of IoT devices is with approx. 0.22 second per device slope, as

seen by the linear trend line, which indicates the scalability of the proposed protocol.

32

Table 5.5 Average computational results for successful update

Calculation Time (ms) Device

creating challenge 0.58 Vendor

creating proof 761.72 IoT Device

calculating HMAC 3.22 IoT Device

verifying HMAC 2.64 Vendor

verifying proof 2.68 Vendor

creating proof 16.16 Vendor

calculating HMAC 0.34 Vendor

verifying HMAC 2.78 IoT Device

verifying proof 419.82 IoT Device

total encryption/decryption 7.64 Vendor

total encryption/decryption 306.76 IoT Device

Total time (ms) 1543.34

Figure 5.1 Successful update performance results

33

In the protocol implementation, a 10KB file (payload) is sent as an update and

downloaded on IoT devices’ side. We also tested for different sizes of update files

to discuss the feasibility of the protocol. Table 5.6 gives the results of end to end

latency calculated when five IoT devices are receiving successful updates with dif-

ferent file sizes. As can be seen here, when file size increases from 1 KB to 100

KB, end to end latency increases from approximately 2.5 seconds to 4 seconds. The

difference between overall latency values only depends on the computational delay

of file encryption and decryption processes, and expectedly the increase is linear.

Table 5.6 Average latencies for successful update w.r.t different file sizes

File Size (KB) End to end latency (ms)

1 2486

10 2546

50 3233

100 3961

5.2.2 Failed Update Scenario

In this part, we present the experimental results for delivery of failed updates which

correspond to downstream traffic. Failed update case provides privacy-awareness in

the protocol. Even if the update is not addressed to the IoT device, the protocol is

still completed to hide the real identity of the device from outsiders. This way, third

parties cannot differentiate the actual target IoT devices of the update. Average

computational delay breakdown of failed update scenarios for one device is given in

Table 5.7. Table 5.7 shows that average computational delay is 694.42 milliseconds

and on top of that communication delay is measured as 104.50 milliseconds that

yields overall end-to-end delay of 799 milliseconds for one device receiving a failed

update.

34

Table 5.7 Average computational results for failed update

Calculation Time(ms) Device

creating challenge 0.58 Vendor

creating proof 25.32 IoT Device

calculating HMAC 2.86 IoT Device

verifying HMAC 2.84 Vendor

verifying proof 10.86 Vendor

creating proof 5.32 Vendor

calculating HMAC 0.68 Vendor

verifying HMAC 2.9 IoT Device

verifying proof 6.92 IoT Device

total encryption/decryption 12.32 Vendor

total encryption/decryption 29.83 IoT Device

Total time (ms) 694.42

Figure 5.2 Failed update performance results
35

Figure 5.2 shows the end to end latency of failed updates with multiple IoT devices.

As seen in Figure 5.2, it took to receive failed updates between 0.8 - 2.8 seconds with

linear increase. The slope of the increase is approximately 0.19 second per device,

as suggested by the linear trend line. Thus, we can conclude that also for failed

update scenarios, the protocol shows good scalability.

As in the successful update scenario, we tested the protocol with different file sizes.

Table 5.8 shows end to end latency results based on different file sizes. It is shown

in the table that when file size increases from 1KB to 100KB, end to end latency

increases from approximately 1.5 seconds to 3.3 seconds. As in the successful up-

date scenario, the difference between end to end latency values depends on the file

encryption and decryption processes and results in a linear increase.

Table 5.8 Avg. latencies for successful update w.r.t. different file sizes

File Size (KB) End to end latency (ms)

1 1493

10 1709

50 2457

100 3281

Moreover, experiments are conducted for different scenarios with mixed and simul-

taneous failed and successful update cases. In Table 5.9, the average results for

end-to-end latency in such mixed scenarios of eleven IoT Devices are shown. As

Table 5.7 demonstrates, failed updates in the case that also successful updates are

sent by the Vendor do not make a big difference in terms of end to end latency. It

is seen that getting one successful update and ten failed updates has higher overall

latency than the case where all the eleven IoT devices receive failed updates. This

is because, even one successful delivery of an update results in more computational

complexity. On the other hand, receiving eleven successful updates has higher over-

all latency than the case where ten successful and one failed updates are received

because of the increased computational complexity.

It can be concluded that since the mutual verification and authentication protocol is

completed in all cases, and there is at least one device receiving a successful update,

latencies are close to each other. Still, while the number of devices that receive

successful updates are increased, end to end latency is also increased due to higher

computational delay.

36

Table 5.9 Average results for mixed successful and failed update

Successful/Failed Update Time(ms)

1 Successful/ 10 Failed 2916

2 Successful/ 9 Failed 3103

3 Successful/ 8 Failed 3273

4 Successful/ 7 Failed 3369

5 Successful/ 6 Failed 3442

6 Successful/ 5 Failed 3594

7 Successful/ 4 Failed 3657

8 Successful/ 3 Failed 3718

9 Successful/ 2 Failed 3734

10 Successful/ 1 Failed 3795

5.2.3 Error Report Scenario

In this section, we present the experimental results for upstream traffic which is the

delivery of error reports from IoT devices to Vendor. In Table 5.10, the breakdown

of average computational delay for one device is given.

Table 5.10 shows that average computational cost for one error report delivery is

1359.48 milliseconds. The time calculated for communication delay is 197 millisec-

onds which yields an average end to end latency of 1557 milliseconds.

Additionally, Figure 5.3 indicates the results of end to end latency for 1-to-11 errors

reports sent simultaneously to the Vendor. As shown in the figure, latency values

increase linearly with a slope of approximately 0.08 second per device.

37

Table 5.10 Average calculation results for error report

Calculation Time(ms) Device

creating challenge 1.36 IoT Device

creating proof 0.04 Vendor

calculating HMAC 0.24 Vendor

verifying HMAC 20.92 IoT Device

verifying proof 431.62 IoT Device

creating proof 727.34 IoT Device

calculating HMAC 4.56 IoT Device

verifying HMAC 0.36 Vendor

verifying proof 21.44 Vendor

total encryption/decryption 12.98 Vendor

total encryption/decryption 138.62 IoT Device

Total time (ms) 1359.48

Figure 5.3 Average end to end latency of receiving error reports

38

5.3 Discussions

In this section, we discuss the experimental results in a comparative way. Average

end to end latency in successful update scenario is higher than the error report

scenario since in the successful update scenario, decryption of the final message

including the Proof and 10KB file is performed at IoT device’s side with low pro-

cessing power and that results in more computational complexity. Thus, the slope

of increase per device in the successful update scenarios is higher than the error

report scenario. The results indicate that when fake proof is generated, the update

scenario is much faster. The reason is, generating fake proof is almost twice as

fast as generating accurate proof. Furthermore, it reduces the calculation time for

proof verification. The slope of increase per device in both failed update and suc-

cessful update applications are the same confirming that similar applications deliver

consistent results.

Also, in Table 5.6 and Table 5.8, it can be seen that the payload data size affects the

end to end latency in both update and error report scenarios, however, this increase

is higher for the update scenario. This shows us that the low processing power of the

IoT devices combined with big payload data size increases the end to end latency

more significantly. On the other hand, big data sizes (such as 50KB and 100KB)

will be most likely used only in update scenarios where the Vendor sends software

update to IoT devices. We expect error reports to not exceed 10KB, therefore, the

increase will not be crucial in this case. In Figure 5.1, Figure 5.2 and Figure 5.3,

the increase in the graphs are linear as expected due to increased computational

complexity at Vendor’s side. Still, the slope of the increase is quite low showing

that the proposed model is scalable to provide privacy-preserving identification and

authentication for Home Automation Systems.

The breakdowns of the average computational delays for the update scenarios (Table

5.5 and Table 5.7) and for the error report scenario (Table 5.10) show that the

most time consuming operations are proof creation and total encryption/decryption

durations. It is also seen that the IoT device’s operations take longer time, due to

low processing power. This results in the increase of the overall latencies for both

scenarios. However, IoT device performs more encryption/decryption operations

during the successful update scenario, which results in a 200ms difference between

the two scenarios.

Lastly, the comparison of the test results presented in this thesis with the prelimi-

nary test results that were presented in [5] are given in the figures above. In Figure

39

5.4, it is seen that error report scenario did not get affected from the encryption

overhead much, and the two trend lines are parallel. This is a result of fast en-

cryption/decryption operation on Vendor’s side and very little work done in the

IoT device’s side. As mentioned before, the successful update and the failed update

results are affected from the encryption overhead, which can be seen in Figure 5.5

and Figure 5.6 respectively. This means when the number of IoT devices performing

encryption operation increase, the overall latency increases with a bigger slope, yet

still remaining on the linear trend line. This is similarly caused by the process-

ing power of IoT devices, since in update scenarios IoT devices process much more

messages and perform more decryption operations. However, for the mixed update

scenario, the total number of devices communicating with HMS stay the same. This

results in a trend line almost parallel to the preliminary results’ trend line, which

can be seen in Figure 5.7. The only difference between the two lines is caused by

the average encryption process overhead and small relaying duration.

Figure 5.4 Error Report test performance comparison

40

Figure 5.5 Successful Update test performance comparison

Figure 5.6 Failed Update test performance comparison

41

Figure 5.7 Mixed Update test performance comparison

42

6. SECURITY ANALYSIS

For the security validation and analysis of our protocols, we used SPAN [9], which

is a security protocol animator for Avispa [10]. SPAN translates the provided speci-

fication and interactively builds a message sequence chart of the protocol execution.

Then, it automatically builds attacks on the provided specification using the intruder

mode. Using SPAN tool, we analyzed and validated the security of the initialization

and the mutual verification and authentication phases of the proposed protocol. The

simulation of initialization protocol can be found below in Figure 6.1. The protocol

simulation is written in CAS+ [29] language, hence the appropriate syntax is used

to define the protocol. The details of this syntax, which is different from the syntax

that we used in our protocol descriptions throughout the thesis due to technical rea-

sons, can be found in the CAS+ manual [29]. Also, both of the CAS+ specifications

for the initialization and mutual verification and authentication protocols can be

found under our GitHub repository [30].

Figure 6.1 Initialization protocol simulation using SPAN tool

43

6.1 Security Analysis of the Credential Issuance Protocol

The intruder simulation of the initialization phase is tested for authentication of

the parties using Cred1 and Cred2 (credentials of the parties) and the validation

of the Proofs generated using these credentials. This intruder simulation can be

seen in Figure 6.2, where the intruder tries to pose as IoT and Vendor at the same

time, performing a man in the middle attack. In the simulation where the intruder

tries to be authenticated by the Issuer, the intruder cannot generate Proof(Cred1)

since they do not know the credentials of IoT. Also they cannot trick IoT into

thinking that they are the issuer since they do not know the credentials of the

Issuer; and thus cannot generate Proof(Cred2) either. This attack attempt fails as

the intruder does not gain any knowledge about the contents of the messages. Also

the intruder cannot alter any message during the communication, since they cannot

decrypt the messages. During the attack, both parties understand that they are not

communicating to each other so they fail the authentication process. The attack

analysis on OFMC [31] and ATSE [32] modes prove that this initialization phase is

safe.

Figure 6.2 Initialization protocol intruder simulation using SPAN tool

44

6.2 Security Analysis of the Mutual Authentication Protocol

The communication simulation of the mutual verification and authentication proto-

col is shown in Figure 6.3. This simulation only shows the normal communication

between the parties, where there are no adversaries involved. We also performed a

number of simulations where the intruder can try to pose as Vendor, HMS or IHG.

In either of these three cases the intruder cannot decrypt any of the messages, since

the symmetric keys (Kih, Kvh, GrpKy) are distributed securely using the initial-

ization protocol. The goal is to verify that the vendor and IoT are both legitimate

by verifying the proofs, and most importantly, secrecy of the message. All of the

messages except for the ones between IHG and IoT are communicated using the

usual Dolev-Yao channel [33], which is not read or write protected. Since the IoT

network inside of the house is secure and IoT devices can only communicate with

IHG, this channel is read and write protected, and intruders cannot pose as an IoT

device. One example of an intruder trying to pose as the Vendor during the mutual

verification and authentication protocol is given below in Figure 6.4.

As it can be seen in the simulation, the intruder receives all of the messages addressed

to the Vendor. After receiving the message, they can try to change bits of the

message and they relay this message to the Vendor. When the Vendor sends a

message to the HMS, the intruder receives this message and relays it to HMS.

In both ways of communication, intruders may receive these messages but they

cannot gain any knowledge about the contents of the message. The symmetric key

encryption ensures that the messages are only available to the key holders. As

mentioned before, intruders may try to change some bits of the messages, which are

represented by the word “nonce-xx” in Figure 6.4. This attempt also fails since after

every decryption operation, the users verify the proofs and/or other information in

the messages. As a result, no matter how the intruder tries to pose as one of the

parties of the communication, they cannot authenticate as any of the users, or they

cannot reach the messages.

Figures 6.5 and 6.6 show that both the initialization protocol and the mutual verifica-

tion and authentication protocol are safe according to the OFMC [31] specification.

The safety of protocols are also analyzed and verified according to the ATSE [32]

specification, which is not shown in the figure. Our results can be replicated easily

using the SPAN tool with the codes provided in the GitHub repository [30].

45

Figure 6.3 Mutual verification and authentication protocol simulation using SPAN
tool

46

Figure 6.4 Mutual verification and authentication protocol intruder simulation using
SPAN tool

47

Figure 6.5 Key sharing protocol safety analysis

Figure 6.6 Mutual verification and authentication protocol safety analysis

48

6.3 Discussion

In our model, the attacker cannot learn or alter the messages. This is explained in

the below sections further. Since we use a publish-subscribe mechanism via MQTT,

one needs to guess or posses the UUID’s used in the topic, as well as the encryption

keys that are used to encrypt the messages. The master keys used in the model

stay the same for all messages, but the IV always gets updated after each session.

This results in the topic changing after each session, including the encrypted device

brand and type. We are confident in that sense that first it is unfeasible for the

attacker to guess the topic and listen to the conversations.

However, one vulnerability of our system is that the fake Proofs take less time to be

generated than the actual Proofs. This results in overall less end-to-end latency when

all of the devices are failing i.e. none of the devices in the household are actually

receiving an update. We assume that the attacker does not know how many devices

are present in a HAS, but if the attacker has that information, it would be possible

to eliminate the brand and type information. For example if the Samsung Vendor

is sending updates to TV’s, and none of the devices in the household is a Samsung

TV, then the overall latency will be significantly lower than the case where there’s

a Samsung TV receiving the update. By doing so in multiple sessions, attacker can

narrow down the devices’ information in the long term, causing a privacy leak.

49

7. CONCLUSION

In this thesis, we proposed a privacy preserving identification protocol for Home

Automation Systems (HAS). The proposed protocol employs Vendors, IoT Devices,

an Innovative Home Gateway (IHG) and a HAS Management System (HMS). IoT

devices only connect and converse with the IHG’s. IoT devices are protected from

outside users, and only users that have been authorized by IHG can send messages

to IoT devices. We use Idemix anonymous credential system [13] for authentication

of the entities in the system. We also use the Verifiable Encryption scheme [6] of

Idemix, to carry out the key sharing and credential issuance process. Issuer, which

is the trusted party in our system also known as the HMS, grants credentials to the

users so that they can authenticate themselves to other parties. At the end of this

issuance protocol, the master keys that are used for symmetric encryption are shared

with the User. HMS stores the master keys of each entity along with their identity

so that it can work as an obfuscation mechanism during the mutual verification and

authentication protocol.

Mutual verification and authentication protocol is carried out for two types of com-

munications: update and error report. During the update scenario, Vendor initiates

the protocol and during the error report scenario IoT device initiates the proto-

col. In both scenarios, both parties authenticate themselves and verify the other

party’s identity mutually. Also during both scenarios, both of the parties only com-

municate with HMS, and HMS handles the topic switching and message relaying.

HMS changes UUID’s [8], in the topic, and decrypts the incoming message with the

sender’s key and encrypts it again with the receiver’s key.

We conducted experiments for all of the scenarios, which are error report, update,

failed update, where fakeProof’s [1][5] are used and mixed cases for successful and

failed updates, in addition to other privacy preserving features of the protocol. All

of the results are promising and show scalable latency values. Moreover, we provide

a security analysis of the system including the credential issuance phase and mutual

authentication phase, using the SPAN [9] tool. Our system is proven to be secure

according to OFMC [31] and ATSE [32] specifications.

50

BIBLIOGRAPHY

[1] S. Gur, S. Demir, S. Simsek, and A. Levi, “Secure and privacy-aware gateway
for home automation systems,” in 13th International Conference on Security of
Information and Networks, pp. 1–10, 2020.

[2] T. Xu, J. B. Wendt, and M. Potkonjak, “Security of iot systems: Design chal-
lenges and opportunities,” in 2014 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 417–423, 2014.

[3] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella, “Iot: Inter-
net of threats? a survey of practical security vulnerabilities in real iot devices,”
IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8182–8201, 2019.

[4] J. M. Batalla and F. Gonciarz, “Deployment of smart home management system
at the edge: mechanisms and protocols,” Neural Computing and Applications,
vol. 31, no. 5, pp. 1301–1315, 2019.

[5] S. Demir, “Idemix based anonymization for home automation systems,” Mas-
ter’s thesis, Sabancı University, Istanbul, Turkey, 2021.

[6] J. Camenisch and V. Shoup, “Practical verifiable encryption and decryption of
discrete logarithms,” in Advances in Cryptology - CRYPTO 2003 (D. Boneh,
ed.), (Berlin, Heidelberg), pp. 126–144, Springer Berlin Heidelberg, 2003.

[7] R. A. Light, “Mosquitto: server and client implementation of the mqtt proto-
col,” Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017.

[8] P. J. Leach, R. Salz, and M. H. Mealling, “A universally unique identifier (uuid)
urn namespace.” RFC 4122, 2005.

[9] Y. Glouche, T. Genet, O. Heen, and O. Courtay, “A security protocol animator
tool for avispa,” in In ARTIST-2 workshop, 2006.

[10] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.
Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, et al., “The avispa tool
for the automated validation of internet security protocols and applications,” in
International conference on computer aided verification, pp. 281–285, Springer,
2005.

[11] S. Mödersheim and L. Vigano, “The open-source fixed-point model checker for
symbolic analysis of security protocols,” in Foundations of Security Analysis
and Design V, pp. 166–194, Springer, 2009.

[12] M. Turuani, “The cl-atse protocol analyser,” in International Conference on
Rewriting Techniques and Applications, pp. 277–286, Springer, 2006.

[13] J. Camenisch and E. Van Herreweghen, “Design and implementation of the
idemix anonymous credential system,” in Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security, pp. 21–30, 2002.

51

[14] P. Rogaway, “Nonce-based symmetric encryption,” in Fast Software Encryption
(B. Roy and W. Meier, eds.), (Berlin, Heidelberg), pp. 348–358, Springer Berlin
Heidelberg, 2004.

[15] J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient proto-
cols,” in Security in Communication Networks (S. Cimato, G. Persiano, and
C. Galdi, eds.), (Berlin, Heidelberg), pp. 268–289, Springer Berlin Heidelberg,
2003.

[16] H. Krawczyk, M. Bellare, and R. Canetti, “Rfc2104: Hmac: Keyed-hashing for
message authentication,” 1997.

[17] S. Notra, M. Siddiqi, H. Habibi Gharakheili, V. Sivaraman, and R. Boreli,
“An experimental study of security and privacy risks with emerging household
appliances,” 10 2014.

[18] I. Zavalyshyn, N. O. Duarte, and N. Santos, “Homepad: A privacy-aware smart
hub for home environments,” in 2018 IEEE/ACM Symposium on Edge Com-
puting (SEC), pp. 58–73, 2018.

[19] V. Puri, P. Kaur, and S. Sachdeva, “Data anonymization for privacy protection
in fog-enhanced smart homes,” in 2020 6th International Conference on Signal
Processing and Communication (ICSC), pp. 201–205, 2020.

[20] P. Gope and B. Sikdar, “Lightweight and privacy-preserving two-factor authen-
tication scheme for iot devices,” IEEE Internet of Things Journal, vol. 6, no. 1,
pp. 580–589, 2019.

[21] “Teach, learn, and make with raspberry pi.” Raspberry Pi, Retrieved July 5,
2021, from https://www.raspberrypi.org.

[22] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge and its
applications,” in Proceedings of the Twentieth Annual ACM Symposium on The-
ory of Computing, STOC ’88, (New York, NY, USA), p. 103–112, ACM, 1988.

[23] D. Chaum, “Showing credentials without identification transferring signatures
between unconditionally unlinkable pseudonyms,” in Advances in Cryptology
— AUSCRYPT ’90 (J. Seberry and J. Pieprzyk, eds.), (Berlin, Heidelberg),
pp. 245–264, Springer Berlin Heidelberg, 1990.

[24] S. Team and R. Switzerland, “Specification of the identity mixer cryptographic
library version 2.3.0,” IBM Research, Zurich, 2010.

[25] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interac-
tive proof-systems,” in Proceedings of the Seventeenth Annual ACM Symposium
on Theory of Computing, STOC ’85, (New York, NY, USA), p. 291–304, Asso-
ciation for Computing Machinery, 1985.

[26] K. Sako, “Verifiable encryption,” in Encyclopedia of Cryptography and Security
(H. C. A. van Tilborg and S. Jajodia, eds.), (Boston, MA), pp. 1356–1357,
Springer US, 2011.

52

https://www.raspberrypi.org

[27] O. Goldreich and Y. Oren, “Definitions and properties of zero-knowledge proof
systems,” Journal of Cryptology, vol. 7, no. 1, pp. 1–32, 1994.

[28] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, p. 120–126,
Feb. 1978.

[29] R. Saillard and T. Genet, “Cas+ manual,” 2011. Retrieved on 5 July 2021 from
http://people.irisa.fr/Thomas.Genet/span/CAS_manual.pdf.

[30] S. Simsek, “Fusespan, github repository,” 2021.
https://github.com/sevvalboylu/FuseSPAN.

[31] S. Mödersheim and L. Viganò, “The open-source fixed-point model checker for
symbolic analysis of security protocols,” in Foundations of Security Analysis and
Design V: FOSAD 2007/2008/2009 Tutorial Lectures, pp. 166–194, Springer
Berlin Heidelberg, 2009.

[32] M. Turuani, “The CL-Atse Protocol Analyser,” in 17th International Con-
ference on Term Rewriting and Applications - RTA 2006 (F. Pfenning, ed.),
vol. 4098 of Lecture Notes in Computer Science, (Seattle, WA/USA), pp. 277–
286, Springer, Aug. 2006.

[33] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Trans-
actions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

53

http://people.irisa.fr/Thomas.Genet/span/CAS_manual.pdf
https://github.com/sevvalboylu/FuseSPAN

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	SYSTEM BASICS
	Literature Review
	System Parts
	IoT Devices
	Innovative Home Gateway (IHG)
	HAS Management System (HMS)
	Vendors and Homeowners

	Idemix
	MQTT
	Attacker Model

	SECURE KEY SHARING AND CREDENTIAL ISSUANCE
	Zero Knowledge Proofs
	Verifiable Encryption Scheme
	Key Sharing and Credential Issuance

	PRIVACY PRESERVING MUTUAL AUTH. PROTOCOL
	Protocol Steps
	Update Protocol
	Error Report Protocol

	PERFORMANCE EVALUATION
	Setup and Implementation
	Performance Evaluation Results
	Successful Update Scenario
	Failed Update Scenario
	Error Report Scenario

	Discussions

	SECURITY ANALYSIS
	Security Analysis of the Credential Issuance Protocol
	Security Analysis of the Mutual Authentication Protocol
	Discussion

	CONCLUSION
	BIBLIOGRAPHY

