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ABSTRACT 

 

EFFICIENT HEVC AND VVC MOTION ESTIMATION HARDWARE 
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Electronics Engineering PhD Thesis, 2021 

 

Thesis Supervisor: Assoc. Prof. İlker Hamzaoğlu 

 

Keywords: HEVC, VVC, Inter Prediction, Motion Estimation, Approximate 

Computing, Hardware Implementation, FPGA, Low Energy 

 

The significant increase in digital video usage and spatial and temporal video resolutions, 

has led to the development of new video coding standards, which can compress more 

without causing quality loss. HEVC and VVC are the two latest video coding standards. 

VVC is the most recent standard and it is more computationally complex than HEVC. 

Motion estimation (ME) is used in these standards to remove temporal redundancies 

between successive video frames. ME accounts for at least 50% and as much as 70% of 

the total encoding time in both these standards. Approximate computing is an emerging 

technique to design efficient hardware for error-tolerant applications such as video 

coding. 

In this thesis, an efficient HEVC ME hardware is proposed. An approximate adder, 

suitable for absolute difference operation, is proposed and integrated to this HEVC ME 

hardware. Detailed comparison of several approximate circuits including the proposed 

approximate adder and traditional bit truncation technique for HEVC ME is presented. 

The proposed approximate adder achieved up to 10% power reduction in ME hardware 

while providing better quality than the other approximate circuits. 

An efficient hardware for translational VVC ME is also proposed. It is the first VVC ME 

hardware in the literature. The proposed hardware reduces the memory accesses 

significantly by using an efficient data access and reuse method. It uses a novel adder tree 
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to minimize hardware area while meeting real-time video encoding requirements. It is 

capable of processing up to 30 4K video frames per second. 

An efficient approximate sum of absolute differences (SAD) hardware is proposed for 

FPGAs. It utilizes the unused LUT inputs of an FPGA to reduce area and power 

consumption while providing an almost accurate result. The proposed approximate SAD 

hardware uses up to 20% less LUTs and consumes up to 38% less power than the smallest 

and lowest power-consuming approximate SAD hardware in the literature, respectively. 

The proposed SAD hardware can be used in HEVC and VVC ME hardware. 

Finally, a methodology is proposed for designing low error efficient approximate adders 

for FPGAs. Two approximate adders for FPGAs are designed using the proposed 

methodology: low error and area efficient approximate adder (LEADx), and area and 

power efficient approximate adder (APEx). LEADx has lower mean square error than the 

approximate adders in the literature. APEx is the smallest and lowest power consuming 

FPGA-based adder in the literature. These approximate adders are integrated to ME in 

HEVC software encoder. LEADx provided better quality than the other approximate 

adders for HEVC video coding. 
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Sayısal video kullanımındaki, uzamsal ve zamansal video çözünürlüklerindeki önemli 

artışlar nedeniyle, kalite kaybına neden olmadan daha fazla sıkıştırma yapan video 

kodlama standartları geliştirilmektedir. HEVC ve VVC en son geliştirilen video kodlama 

standartlarıdır. En yeni standart olan VVC HEVC’den daha fazla hesaplama 

karmaşıklığına sahiptir. Hareket Tahmini (HT) ardışık video çerçevelerindeki zamansal 

artıklıkları azaltmak için kullanılır. HEVC ve VVC standartlarındaki toplam kodlama 

süresinin en az %50’si ile en fazla %70’ini HT almaktadır. Yaklaşık hesaplama, video 

kodlama gibi hatalara dayanıklı uygulamalar için verimli donanım tasarlamak için 

kullanılan yeni bir tekniktir. 

Bu tezde, verimli bir HEVC HT donanımı önerilmiştir. Mutlak fark işlemi için uygun bir 

yaklaşık toplayıcı önerilmiş ve HEVC HT donanımına entegre edilmiştir. Geleneksel bit 

kesme yöntemi ve önerilen yaklaşık toplayıcı da dahil olmak üzere, yaklaşık devrelerin 

HEVC HT donanımında kullanımları detaylı karşılaştırmıştır. Önerilen yaklaşık toplayıcı 

%10’a kadar güç azalması sağlamış ve diğer yaklaşık devrelerden daha kaliteli sonuçlar 

vermiştir. 

Bir verimli VVC öteleme HT donanımı önerilmiştir. Bu literatürdeki ilk VVC HT 

donanımıdır. Önerilen donanım verimli veri erişimi ve yeniden kullanma yöntemi 

kullanarak bellek erişimini önemli miktarda azaltmaktadır. Önerilen donanım özgün 
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toplayıcı ağacı kullanarak donanım alanını azaltmasına rağmen gerçek zamanlı video 

kodlamaktadır. Önerilen donanım saniyede 30 tane 4K video çerçevesi işleyebilmektedir. 

FPGA’lar için verimli yaklaşık mutlak farklar toplamı (MFT) donanımı önerilmiştir. 

Önerilen MFT donanımı, FPGA’daki LUT’ların kullanılmayan girdilerini kullanarak alan 

ve güç tüketimini azaltmakta ve neredeyse tam doğru sonuç vermektedir. Önerilen 

yaklaşık MFT donanımı, literatürdeki en küçük yaklaşık MFT donanımından %20 daha 

az LUT kullanmakta ve literatürdeki en az güç tüketen yaklaşık MFT donanımından %38 

daha az güç tüketmektedir. Önerilen MFT donanımı HEVC ve VVC HT donanımlarında 

kullanılabilir.  

Son olarak, FPGA’lar için düşük hatalı verimli yaklaşık toplayıcı tasarlama yöntemi 

önerilmiştir. Önerilen yöntem kullanılarak FPGA’lar için iki yaklaşık toplayıcı 

tasarlanmıştır: düşük hatalı ve alan verimliliği yüksek yaklaşık toplayıcı (LEADx), ve 

alan ve güç verimliliği yüksek yaklaşık toplayıcı (APEx). LEADx literatürdeki yaklaşık 

toplayıcılardan daha düşük ortalama kare hatasına sahiptir. APEx literatürdeki en küçük 

ve en az güç tüketen FPGA tabanlı toplayıcıdır. Bu yaklaşık toplayıcılar HEVC kodlayıcı 

yazılımındaki HT’ne entegre edilmiştir. LEADx HEVC video kodlamada diğer yaklaşık 

toplayıcılardan daha kaliteli sonuçlar vermiştir.   
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Chapter 1 

1 INTRODUCTION 

 

In the last decade, the production, distribution, and consumption of digital video has 

grown at an extraordinary pace. The number of consumer electronics devices that can 

capture, process, store and transmit digital video has significantly increased. The video 

streaming services have become popular. The video calls have become part of daily life. 

The ongoing COVID-19 pandemic has further increased the digital video consumption as 

the demand for video conferencing and online education significantly increased. 

 

In addition, the continuously increasing demand for higher temporal and spatial 

resolutions, high dynamic range (HDR) video, and immersive video further increased the 

amount of digital video that needs to be stored and transmitted. According to CISCO 

Visual Networking Index, the video content will have more than 82% share in the total 

internet traffic by 2022, as shown in Figure 1.1 [1].  

 

Efficient video compression, therefore, is a critical need to enable all these 

applications under limited bandwidth and storage capacity. The two latest video coding 

standards, High Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC), 

are developed to fulfill this need [2]. 

 

These video coding standards have very high computational complexity. Most of the 

video content is consumed on battery-powered devices as shown in Figure 1.2 [3]. 

Software implementations of these video coding standards either do not satisfy real-time 

performance (frames per second) or power consumption requirements for power-

constrained devices. Hardware implementations, on the other hand, satisfy these 

requirements. 
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Figure 1.1 Global consumer internet traffic - trends and forecasts 

 

  

Figure 1.2 Country-wise estimate of daily video consumption time by device type. 

 

 

Approximate computing is a new design technique that trades off accuracy for 

performance, area and/or power consumption for error-tolerant applications such as video 

coding. The video compression is error-tolerant in nature since the only requirement is to 

produce output that has sufficient quality to provide good user experience. Therefore, 

approximate computing has a huge potential to improve the performance, area and/or 

power consumption of hardware implementations of video coding standards. 
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1.1 Video Coding Fundamentals 

A video is a sequence of images captured at high enough rate to create the visual 

perception of smooth motion. These images (or frames) have four types of redundancies: 

perceptual, spatial, temporal, and statistical. A video encoder compresses a video by 

removing these redundancies. 

 

 

Figure 1.3 Workflow of a video system 

 

The typical flow of a video system involves an encoder at the transmitting end and a 

decoder on the receiving end as shown in Figure 1.3. The video encoder produces a bit 

stream representing the video and the video decoder decodes that bitstream to reproduce 

the video. The encoder and decoder must agree on the syntax of the bitstream. A video 

coding standard defines the syntax of the encoded bitstream. The video encoder tries to 

find the best possible way to compress the video, whereas the video decoder decodes the 

encoded video by following the syntax of the bitstream. Therefore, video encoder has 

significantly higher computational complexity than video decoder. 

 

The peak-signal-to-noise-ratio (PSNR) metric is often used to measure the quality of 

an encoded video. The PSNR provides a measure of relative error between original and 

decoded video. The average amount of bits required to encode one second of video is 

usually referred to as the bitrate. The efficiency of a video encoder is usually measured in 

terms of rate distortion (RD) performance. The RD performance is visualized by plotting 

the PSNR against the corresponding bitrate over a range of operating points. This 

graphical representation is called RD curve. 

Transmission 

Medium

Encode

Decode

Decode

Encode
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1.2 Video Coding Standards 

In the last three decades, several video coding standards are developed by ITU-T and 

ISO standardization organizations independently or with the combined effort of their Joint 

Collaborative Team on Video Coding (JCT-VC). The development history of these video 

coding standards is shown in Figure 1.4. Each new video coding standard provides higher 

coding efficiency than its predecessor. 

 

 

Figure 1.4 Development history of video coding standards 

 

 

These video coding standards use the same block-based hybrid coding model shown 

in Figure 1.5 [2]. In the video encoder, there is has a forward path to generate bitstream 

and a reconstruction path to ensure that identical reference frames are used in both video 

encoder and decoder. Each video frame is divided into small blocks. Each block is coded 

individually in raster scan order. Each block is predicted by intra prediction and inter 

prediction (motion estimation). Mode decision determines the best prediction. Predicted 

block is subtracted from the current block, and the resulting residual block is transformed, 

quantized and entropy coded. 

 

The latest video coding standards HEVC and VVC also use this block-based hybrid 

coding model. However, they use different algorithms for intra prediction, inter prediction 

and transform. 
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Figure 1.5 Overview of a typical block-based encoder 

1.2.1 High Efficiency Video Coding (HEVC) Standard 

HEVC standard was developed in 2013 [4]. HEVC provides 50% better coding 

efficiency than its predecessor H.264/AVC standard by using several new coding tools 

[5]. HEVC replaces the macroblock used in previous video coding standards with the 

coding tree unit (CTU). It uses a new block partitioning structure based on a quadtree. 

The largest CTU size in HEVC is 64x64 whereas the largest macroblock size in H.264 is 

16x16. The size of a CTU in HEVC can be 16x16, 32x32, or 64x64. The CTU can be 

partitioned into coding units (CUs) recursively using quadtree structure. The size of a CU 

can be 8x8, 16x16, 32x32, or 64x64. The mode decision between intra prediction and 

inter prediction is done at the CU level. A CU can be further partitioned into prediction 

units (PU). A PU can be square, rectangular, or asymmetric as shown in Figure 1.6. The 

size of a PU can vary from 8x4 or 4x8 to 64x64. The asymmetric and rectangular 

partitions can only be used for inter-prediction and only square partitions can be used for 

intra prediction. 

 

HEVC uses three types of intra prediction, DC, planar, and angular. The angular 

prediction supports up to 33 directions. The intra PU size can be as small as 4x4. HEVC 

inter prediction is computationally more complex than H.264 inter prediction because of 

the larger block size and larger number of block partitions. 
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Figure 1.6 Partitioning of a CU into a PU in HEVC 

 

1.2.2 Versatile Video Coding (VVC) Standard 

VVC is the latest video coding standard developed in 2020 by the Joint Video Experts 

Group (JVET) of ITU and ISO standardization organizations [6]. VVC offers 50% better 

coding efficiency than HEVC and 75% better coding efficiency than H.264 standard at 

the cost of significant increase in computational complexity [7]. VVC is designed to be 

versatile, i.e., it supports encoding diverse type of video content such as high dynamic 

range, 360º video, and virtual reality.  

 

The largest CTU size in VVC is 128x128. VVC uses a new quadtree plus multi-type 

tree (QTMT) structure which allows more flexible block partitions than HEVC. VVC 

uses translational motion estimation used in previous video coding standards. However, 

it also uses affine motion estimation and bi-directional optical flow to predict more 

complex motion. The intra prediction in VVC is also more complex than HEVC as it uses 

93-direction angular prediction. VVC uses multiple primary transforms (DCT, DST) and 

a low frequency non-separable secondary transform. 

 

1.3 Motion Estimation 

These video coding standards use block matching for motion estimation. In block 

matching, current video frame is divided into blocks. As shown in Figure 1.7, for each 

block in the current frame, the best matching block in a search window (SW) in the 

reference frame and the corresponding motion vector (MV) are determined. 

Inter prediction only

Asymmetric Motion Partitions
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Figure 1.7 The motion estimation process 

 

Sum of absolute differences (SAD) metric is typically used to determine the best 

matching block. The SAD between two blocks, A and B, of size W x H is calculated as 

shown in (1.1), where A(i,j) and B(i,j) are values of the pixels in 𝑖th row and 𝑗th column 

of A and B, respectively. 

𝑆𝐴𝐷 =  ∑ ∑|𝐴(𝑖, 𝑗) − 𝐵(𝑖, 𝑗)|

𝐻−1

𝑗=0

𝑊−1

𝑖=0

(1.1) 

 

ME is the most computationally complex and memory intensive module in all the 

video coding standards. Its complexity has increased in HEVC and VVC standards. In 

HEVC encoder, ME accounts for up to 83% and on average 70% of the total encoder 

complexity [8]. In VVC encoder, ME accounts for on average 65% of the total encoder 

complexity [9]. Therefore, efficient HEVC and VVC ME hardware implementations are 

necessary to perform real-time video coding. 

1.4 Thesis Contributions 

This thesis makes the following technical contributions: 

We propose an efficient HEVC ME hardware. An approximate adder, suitable for 

absolute difference operation, is proposed and integrated to this HEVC ME hardware. A 

framework is proposed to compare the performance of approximate circuits. Detailed 

Search Window

Best Match
Current Block

Reference Frame Current Frame
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comparison of several approximate circuits including the proposed approximate adder 

and traditional bit truncation technique for HEVC ME is presented. The proposed 

approximate adder achieved up to 10% power reduction in the ME hardware while 

providing better quality than the other approximate circuits. 

We propose an efficient translational VVC motion estimation hardware. It is the first 

VVC ME hardware in the literature. It supports maximum coding tree unit size of 

128x128 using a 64x64 systolic processing element array and a novel memory-based 

SAD adder tree. It reduces memory accesses significantly by using an efficient data access 

and reuse method. The proposed VVC ME hardware is implemented on a Xilinx Virtex 

7 FPGA. It can process up to 30 4K (3840x2160) video frames per second. 

We propose an efficient approximate SAD hardware with very small maximum and 

average error for FPGAs. The proposed approximate SAD hardware utilizes the unused 

LUT inputs to reduce area and power consumption while providing an almost accurate 

result. The proposed approximate SAD hardware has smaller maximum and average error 

than the approximate SAD hardware in the literature. It uses up to 20% less LUTs than 

the smallest approximate SAD hardware in the literature. It consumes up to 38% less 

power than the lowest power consuming approximate SAD hardware in the literature. 

We propose a methodology for designing low error efficient approximate adders for 

FPGAs. The proposed methodology utilizes FPGA resources efficiently to reduce the 

error of approximate adders. We propose two approximate adders for FPGAs using our 

methodology: low error and area efficient approximate adder (LEADx), and area and 

power efficient approximate adder (APEx). Both approximate adders are composed of an 

accurate and an approximate part. The approximate parts of these adders are designed in 

a systematic way to minimize the mean square error (MSE). LEADx has lower MSE than 

the approximate adders in the literature. The 32-bit LEADx with 16-bit approximation 

has 20% lower MSE than the approximate adder with the lowest MSE in the literature. 

The 16-bit APEx with 8-bit approximation has the same area, 60% lower MSE, and 4.5% 

less power consumption in Xilinx Virtex 7 FPGA than the smallest and lowest power 

consuming approximate adder in the literature. APEx has smaller area and lower power 

consumption than the other approximate adders in the literature. As a case study, the 

approximate adders are used in video encoding application. LEADx provided better 

quality than the other approximate adders for video encoding. 
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1.5 Thesis Outline 

The rest of the thesis is organized as follows: 

Chapter 2 presents a new approximate adder and an efficient HEVC ME hardware. 

First, a framework to compare approximate circuits is presented and the performance of 

approximate circuits is determined using the proposed framework. Then, HEVC ME 

hardware is explained. Finally, the impact of using approximate circuits in ME hardware 

is presented. 

Chapter 3 presents an efficient VVC ME hardware. First, VVC motion estimation is 

explained. Then, the proposed VVC ME hardware is explained. Finally, its 

implementation results and comparison with HEVC ME hardware in the literature are 

presented. 

Chapter 4 presents an approximate SAD hardware for ME. First, accurate absolute 

difference hardware implementations are explained, and an overview of the Xilinx Virtex 

FPGAs is provided. Then, the proposed approximate SAD hardware is explained. Finally, 

its implementation results and comparison are presented. 

Chapter 5 presents low error efficient approximate adders for FPGAs. First, the 

concept of length of carry is presented. Then, the methodology proposed for designing 

low error efficient approximate adders for FPGAs is explained. Then, the proposed 

approximate adders and the mathematical models to compute their error metrics are 

explained. Then, their error analyses and implementation results are presented. Finally, 

the results of using approximate adders in video encoding are presented. 

Chapter 6 concludes this thesis and presents potential future work. 
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Chapter 2 

2 APPROXIMATE CIRCUITS FOR HEVC MOTION ESTIMATION 

Video coding is a very computationally complex process and the growing demand 

for ultra-high-definition video has led to development of more computationally complex 

video coding standards. The current state-of-the-art video coding standard, High 

Efficiency Video Coding (HEVC), provides 50% better compression efficiency compared 

to H.264 video coding standard, at the expense of more computational complexity [5]. 

Versatile Video Coding (VVC) standard is expected to provide better compression 

efficiency than HEVC standard at the expense of even more computational complexity 

[2]. 

Motion estimation (ME) is the most computationally complex and power consuming 

module in video encoder hardware. Block matching ME is used in H.264, HEVC and 

VVC standards to remove temporal redundancies in video sequences. For each block in 

the current frame, block matching ME determines the best matching reference block in a 

search window in the previous frame based on a distortion metric.  

Sum of absolute differences (SAD) is the most commonly used distortion metric for 

block matching ME. SAD value for a current block of H x W pixels is defined as   

𝑆𝐴𝐷 =  ∑ ∑|𝐶𝑢𝑟(𝑥, 𝑦) − 𝑅𝑒𝑓(𝑥, 𝑦)|

𝑊

𝑦=1

𝐻

𝑥=1

(2.1) 

where Cur(x,y) is value of the pixel in (x,y) position of the current block and Ref(x,y) is 

value of the pixel in (x,y) position of the reference block. 

Number of search locations that should be searched for each block in the current 

frame depends on ME algorithm and size of search window. For example, for full search 

ME algorithm with 16x16 search window, 256 search locations should be searched. For 

full search ME algorithm with 128x128 search window, 16384 search locations should 

be searched. Number of arithmetic operations required for calculating SAD values for a 
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search location depends on size of the largest coding block, and number and sizes of its 

sub-blocks.  

In HEVC, the largest coding block size is 64x64 and it has 593 sub-blocks. 4096 

absolute difference and 4517 addition operations are required to calculate 593 SAD values 

of a 64x64 block in the current frame for one search location. 141 million arithmetic 

operations are required to calculate SAD values for 16384 search locations. 

Block matching is repeated for all blocks in the current frame. There are 8100 16x16 

blocks in a full high definition (1920x1080) image. There are 2025 64x64 blocks in an 

ultra-high definition (3840x2160) image. Block matching is then repeated for all frames 

in the video sequence. Video sequences typically have at least 30 frames per second. 

Therefore, block matching ME requires huge amount of arithmetic operations. 

Approximate hardware can achieve better performance, area and power consumption 

than accurate hardware while providing acceptable quality for error tolerant applications 

[11]-[13]. Video coding can tolerate small errors [14]. Therefore, approximate computing 

can be used for block matching ME. 

Approximate adders proposed in literature can be broadly classified into two 

categories. (1) Approximation of 1-bit full adder [15], [16]. These adders simplify 1-bit 

full adder logic. They divide n-bit addition into two parts, approximate part for least 

significant bits (LSBs) and accurate part for most significant bits (MSBs). They use the 

approximate 1-bit full adder in the approximate part. (2) Segmented adders [17], [18]. 

These adders break the carry chain by dividing n-bit addition into several smaller fixed 

size overlapping sub-adders working in parallel. They have higher speed than accurate 

adders. However, they consume more area and power than accurate adders. 

Bit truncation technique is used to increase speed and reduce area and power 

consumption of ME hardware [19], [23] - [25]. Recently, several works analyzing impact 

of using approximate circuits in ME hardware are published. Impact of using approximate 

arithmetic in HEVC ME to reduce computational complexity is analyzed in [20]. An 

approximate SAD hardware using lower-part-OR adder (LOA) [16] is proposed for 

HEVC ME in [21]. Impact of using approximate adders in different parts of SAD tree is 

analyzed in [22]. However, their ME hardware does not support the asymmetric partitions 

defined in HEVC standard. In addition, quality of approximate adder is analyzed using 

only error distance and power metrics, speed and area results are not reported. 

In this chapter, an approximate adder is proposed. Detailed assessment of using the 

proposed approximate adder, several generic approximate adders, the approximate 
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absolute difference hardware proposed in [26] and bit truncation in HEVC ME hardware 

is presented.  

The proposed approximate adder achieved up to 10% power reduction in ME 

hardware while providing better quality than the other approximate circuits. Traditional 

bit truncation achieved the largest area and power reductions in ME hardware at the 

expense of more quality loss than the proposed approximate adder. Generic accuracy 

reconfigurable adder (GeAr) segmented approximate adder [18] had the worst quality, 

area and power consumption results. 

2.1 Assessment of Approximate Circuits in Absolute Difference Hardware 

We assessed impact of using several approximate circuits including the proposed 

approximate adder and traditional bit truncation technique in absolute difference 

hardware using the framework shown in Figure 2.1.  

 

Figure 2.1 Approximate Circuits Assessment Framework 

As shown in the figure, for each approximate circuit, the absolute difference 

hardware using this approximate circuit is described in Verilog HDL. The Verilog RTL 

code is synthesized and implemented on a Xilinx Virtex 7 FPGA. The FPGA 

implementation is verified with post-implementation timing simulations. The absolute 

difference hardware using this approximate circuit is also modeled in C language. 

Functional simulation results of the C model and post-implementation timing simulation 

results are compared to verify the C model and the FPGA implementation.   

We used percentage accuracy, average error, mean squared error and standard 

deviation quality metrics as defined in equations (2.2)-(2.7) to assess the quality of using 

an approximate circuit in absolute difference hardware. In these equations, R is accurate 

result, R^' is approximate result, X is total number of results, and Y is number of 

Verilog RTL Synthesis 
& Implementation 

on a Xilinx Virtex 7 FPGA 

Post-Implementation Simulation

Power and Energy Estimation

Verilog HDL Description

Functional Simulation

Result Verification

Determining Quality Metrics

Modeling in C Language

Absolute Difference Architecture

Hardware Software
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inaccurate results. We determined these quality metrics for each approximate circuit using 

its C model. 

Absolute Error Value     

𝐴𝐸𝑉 =  |𝑅 − 𝑅′| (2.2) 

Percentage Accuracy        

𝑃𝐴 =  
𝑋 − 𝑌

𝑋
∗ 100 (2.3) 

Total Error               

𝑇𝐸 =  ∑ 𝐴𝐸𝑉𝑖

𝑋

𝑖=1

(2.4) 

Average Error               

𝐴𝐸 =
𝑇𝐸

𝑋
 (2.5) 

Mean Squared Error      

𝑀𝑆𝐸 =  
1

𝑋
∑(𝐴𝐸𝑉𝑖)

2

𝑋

𝑖=1

(2.6) 

Standard Deviation 

𝜎 = √
∑ (𝐴𝐸𝑉𝑖 − 𝐴𝐸)2𝑋

𝑖=1

𝑋
(2.7) 

 

The proposed 1-bit approximate full adder is shown in Figure 2.2 (a). It generates 

carry-out (Cout) output without considering the effect of carry-in (Cin) input. Carry-out is 

1 whenever one or both inputs A and B are 1. The sum logic is also modified to reduce 

error magnitude. Error is generated in the following two cases; (A = 0, B = 1 , Cin = 0  → 

S = 0, Cout = 1) and (A = 1, B = 0 , Cin = 0 → S = 0, Cout = 1). An important property of 

the proposed approximate full adder is that it generates accurate outputs when carry-in 

input is 1. Since carry-in for the subtraction in absolute difference operation is always 1, 

this property is very useful for absolute difference operation. Maximum error magnitude 

of the proposed approximate full adder is 1. 

An approximate n-bit subtractor can be designed using the proposed 1-bit 

approximate full adder as shown in Figure 2.2 (b). An approximate m bit adder is used in 

the least significant m bits of the approximate subtractor. An exact n-m bit adder is used 

in the most significant n-m bits of the approximate subtractor. In the approximate m-bit 
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adder, m 1-bit proposed approximate full adders are used. Since carry-out output of each 

1-bit full adder is generated without considering the effect of its carry-in input, carry-out 

outputs of all m 1-bit full adders are generated in parallel. Since the proposed approximate 

1-bit full adder generates accurate outputs when carry-in input is 1, approximate n-bit 

subtractor using the proposed full adder has 100% accuracy when m is 1.  

 

Figure 2.2 (a) Proposed 1-bit Approximate FA (b) n-bit Approximate Subtractor 

Many approximate arithmetic circuits are proposed in the literature. The approximate 

circuits used in this chapter are selected based on the analysis results reported in literature. 

In [20], two 1-bit approximate full adders from [15] are determined to give the best 

performance for ME. In this chapter, these 1-bit full adders are referred to as IMPACT-1 

and IMPACT-2. They are shown in Figure 2.3 (a) and Figure 2.3 (b), respectively. An 

approximate n-bit subtractor can be designed using IMPACT-1 or IMPACT-2 as shown 

in Figure 2.2 (b). In the approximate m-bit adder, m 1-bit IMPACT-1 or m 1-bit IMPACT-

2 full adders are used. 

 

Figure 2.3 Approximate Adders (a) IMPACT-1 (b) IMPACT-2 

In [21] and [22], it is shown that lower-part-OR adder (LOA) [16] performs better 

than many segmented adders for ME. m-bit LOA is 

shown in Figure 2.4.  An approximate n-bit subtractor can 

be designed using LOA as shown in Figure 2.2 (b). In this 

approximate n-bit subtractor, m-bit LOA is used as the 

m-bit approximate adder. 
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Generic accuracy reconfigurable adder (GeAr) can be configured to reproduce 

several other segmented adders [18]. For example, GeAr (N=8, R=1, P=3) is the same as 

almost correct adder (ACA-I) (N=8, Q=4) [9] and GeAr (N=8, R=2, P=2) is the same as 

accuracy configurable adder (ACA-II) (N=8, Q=4) [17]. Therefore, we selected GeAr 

among segmented adders for our analysis. GeAr is shown in Figure 2.5 (a). The novel 

approximate absolute difference (NAAD) hardware proposed in [26] is also included in 

our analysis. Two configurations of 8-bit NAAD are shown in Figure 2.5 (b) and Figure 

2.5 (c). 

 

Figure 2.5 (a) GeAr Adder (N=8, R=2, P=4) (b) NAAD 0 (c) NAAD 2 

We used the two accurate absolute difference (AD) hardware shown in Figure 2.6 (a) 

and Figure 2.6 (b) to provide baseline results for our analysis. We assessed impact of 

using the approximate subtractor shown in Figure 2.2 (b) based on the proposed, 

IMPACT-1, IMPACT-2 and LOA adders for the subtraction operation in baseline 2 AD 

hardware. We assessed impact of using 1-bit, 2-bit, 3-bit and 4-bit approximate adder in 

this 8-bit approximate subtractor.  

 

Figure 2.6 (a) Baseline 1 AD Hardware (b) Baseline 2 AD Hardware 

We assessed impact of using the following four configurations of GeAr for the 

subtraction operation in baseline 2 AD hardware (a) N=8, R=1, P=6 (b) N=8, R=2, P=4 

(c) N=8, R=1, P=4 (d) N=8, R=2, P=2. These configurations correspond to 1-bit, 2-bit, 3-

bit and 4-bit approximations, respectively.  

We analyzed using four different configurations of NAAD with 8, 7, 6, 5 XOR gates 

for the absolute difference operation. These configurations are referred to as NAAD 0, 

NAAD 1, NAAD 2, NAAD 3, respectively. They correspond to 1-bit, 2-bit, 3-bit and 4-
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bit approximations, respectively. Finally, we analyzed applying traditional 1-bit, 2-bit, 3-

bit, 4-bit truncation to baseline 2 AD hardware. 

The assessment results are shown in Figure 2.7. In the figure, percentage accuracy 

(PA), average error (AE), mean-squared error (MSE), and standard deviation (SD) quality 

metric results are shown. In addition, maximum frequencies and energy consumptions of 

baseline and approximate AD hardware are shown. The results can be interpreted as 

follows. For PA and maximum frequency, the higher the better. For all other metrics, the 

lower the better.  

 

Figure 2.7 Assessment Results (a) Percentage Accuracy (b) Average Error (c) Mean 

Squared Error (d) Standard Deviation (e) Maximum Frequency (f) Energy Consumption 

Traditional bit truncation performs the worst in terms of all quality metrics. PA of 

the proposed adder is the best among all approximate circuits for 1-bit approximation, 

and second only to GeAr for 2-bit, 3-bit and 4-bit approximations. However, the proposed 

adder performs much better than GeAr in other quality metrics. The proposed adder 

performs the best in terms of AE and MSE quality metrics. It has comparable SD results 

with other approximate circuits. Traditional bit truncation and NAAD achieve the fastest 

frequency. Traditional bit truncation, as expected, achieves the lowest energy 
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consumption due to reduced hardware area. The proposed adder achieves lower energy 

consumption than the other approximate circuits. 

In summary, traditional bit truncation achieves better speed, area and energy 

consumption at the expense of more quality loss than the other approximate circuits. The 

proposed adder performs the best in terms of the quality metrics. It achieves the lowest 

energy consumption among the other approximate circuits. GeAr performs worse than 

the other approximate circuits in terms of all metrics except PA and speed. 

2.2 Motion Estimation Hardware 

We designed and implemented an HEVC variable block size full search ME 

hardware to assess impact of using approximate absolute difference hardware in an HEVC 

ME hardware. The proposed HEVC ME hardware supports both symmetric and 

asymmetric block partitions in HEVC standard. Block diagram of this ME hardware is 

shown in Figure 2.8. Its architecture is similar to the H.264 variable block size full search 

ME hardware proposed in [27].   

 

Figure 2.8 HEVC Motion Estimation Hardware 
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Current block pixels are stored in the current block registers. 128x128 search window 

pixels are stored in sixty-five 18K Block RAMs (BRAM) in FPGA. 256 processing units 

are used to calculate absolute differences and 4x4 SAD values for a 64x64 block in 

parallel. As shown in Figure 2.9, a processing unit uses 16 absolute difference hardware 

and 15 adders to generate one 4x4 SAD value. The 4x4 SAD values are then used to 

calculate SAD values of larger block sizes.  

The proposed HEVC ME hardware implements snake scan order in vertical direction. 

Control module keeps track of the scan direction and whenever a change in direction is 

required, it reconfigures the processing units to receive reference pixels from either top, 

right, or bottom. The proposed HEVC ME hardware has 9 clock cycles latency; 2 cycles 

for synchronous read from BRAM, 1 cycle for data loading/shifting, 1 cycle for absolute 

difference operation, 1 cycle for 4x4 SAD value generation, and 4 cycles to generate 593 

SAD values for a search location. It takes 64 clock cycles to read the first 64x64 reference 

block from search window BRAMs. After that, 593 SAD values for a search location are 

generated every clock cycle.  

SAD trees work in a hierarchical manner by using SAD values of smaller block sizes 

to calculate SAD values of larger block sizes. For example, 4x4 SAD values are used to 

calculate 8x4 and 4x8 SAD values, and then 4x8 SAD values are used to calculate 8x8 

SAD values. This process continues until SAD value of 64x64 block is calculated. For 

each sub-block in a 64x64 block, its minimum SAD and corresponding best motion vector 

(MV) are stored in registers. In every clock cycle, comparators compare the minimum 

SAD values of the corresponding sub-blocks with the new SAD values calculated in SAD 

trees. If a new SAD value is smaller than the stored SAD value, comparator stores the 

new SAD value and MV to the corresponding minimum SAD and best MV registers. 

2.3 Assessment of Approximate Circuits in Motion Estimation Hardware 

We assessed impact of using the approximate absolute difference hardware presented 

in Section 2.1 in the HEVC ME hardware presented in Section 2.2. For each approximate 

absolute difference hardware, we replaced the 4096 exact absolute difference hardware 

in Verilog RTL code of the HEVC ME hardware with this approximate absolute 

difference hardware. In addition, we used the baseline 2 accurate absolute difference 

hardware shown in Figure 2.6 (b) to provide baseline results for our analysis. 
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All Verilog RTL codes are synthesized and implemented using Xilinx Vivado Design 

Edition 2017.4 on Xilinx Virtex 7 XC7VX485TFFG1157 FPGA with speed grade 3. For 

all ME hardware, Vivado Synthesis Defaults and Performance Explore synthesis and 

implementation strategies are used, respectively.  

We also developed behavioral models of the HEVC ME hardware in C language. All 

Verilog RTL codes are verified with RTL simulations. All FPGA implementations are 

verified with post-implementation timing simulations. Simulation results matched results 

of the corresponding C model of the approximate HEVC ME hardware.  

Switching activity interchange format (SAIF) files are generated for the HEVC ME 

hardware with post-implementation timing simulations for Foreman video using Mentor 

Graphics QuestaSim. Power consumptions of the HEVC ME hardware are estimated with 

Xilinx Vivado using these SAIF files. 

Table 2.1 presents average MSE results for all HEVC sub-block sizes for Foreman 

video sequence. The proposed approximate adder achieves the smallest MSE results in 

most cases. GeAr performs the worst. It has the largest MSE results in all cases. 

Traditional bit truncation also performs worse than the proposed approximate adder in all 

cases.  

Table 2.1 HEVC MSE Results 

Approximate Circuit and its 

Configuration 
HEVC MSE 

Baseline  32.36 

Proposed 

1 32.36 

2 32.33 

3 32.40 

4 32.64 

NAAD 

0 32.32 

1 32.42 

2 32.53 

3 33.25 

LOA 

1 32.32 

2 32.33 

3 32.48 

4 33.05 

IMPACT-1 

1 32.38 

2 32.57 

3 32.85 

4 33.99 

IMPACT-2 

1 32.37 

2 32.88 

3 32.92 

4 34.57 

GeAr 

R1_P6 94.78 

R2_P4 69.45 

R1_P4 134.47 

R2_P2 71.31 

Bit Truncation 

1 32.38 

2 32.48 

3 33.33 

4 35.70 
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The other approximate circuits perform better than the proposed approximate adder 

in some cases. These MSE results are consistent with the quality results of approximate 

absolute difference hardware shown in Figure 2.7. 

In some cases, ME hardware using approximate absolute difference hardware has 

smaller MSE value than ME hardware using accurate absolute difference hardware. This 

is mainly because of the difference between SAD and MSE metrics. For example, for the 

following two sets of absolute differences A={2,2,2,2} and B = {3,3,0,0}, SAD{A} = 8 

and SAD {B} = 6, whereas MSE {A}= 4 and MSE {B} = 4.5. A ME hardware using 

accurate absolute difference hardware will select SAD {B} as the minimum SAD. 

However, a ME hardware using an approximate absolute difference hardware may 

inaccurately select SAD {A} as the minimum SAD. Therefore, an approximate ME 

hardware may have smaller MSE value than accurate ME hardware.  

Area and power consumption results of HEVC ME hardware are shown in Figure 

2.10. In the figure, percentage reductions achieved by approximate ME hardware 

compared to the corresponding accurate ME hardware are shown. As expected, traditional 

bit truncation achieves the largest area and power consumption reductions at the expense 

of more quality loss than the proposed approximate adder. GeAr has the worst area and 

power consumption results. 

For 1-bit approximation, the proposed approximate adder achieves 5% and 3% power 

reductions in HEVC ME hardware respectively, without affecting quality. For 4-bit 

approximation, it has the smallest MSE value and the largest power reduction (10%) in 

HEVC ME hardware compared to other approximate circuits.  
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Figure 2.10 (a) Power Reduction (%) (b) Slice Reduction (%) (c) LUT Reduction (%) 
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Chapter 3 

3 AN EFFICIENT VERSATILE VIDEO CODING MOTION 

ESTIMATION HARDWARE 

As the amount of video data is increasing significantly, more efficient video 

compression is needed to transmit and store this video data with limited available 

bandwidth and storage space [1]. Therefore, Joint Video Experts Team (JVET) of ITU-T 

and ISO standardization organizations developed Versatile Video Coding (VVC) 

standard in 2020 [6]. VVC provides 50% higher compression efficiency than its 

predecessor High Efficiency Video Coding (HEVC) standard developed in 2013 [7, 28]. 

VVC is designed to encode diverse video content such as high dynamic range, 360º video 

and virtual reality [2].  

VVC uses several new encoding tools to achieve better compression than HEVC such 

as new block partitioning structure called quadtree plus multi-type tree (QTMT), affine 

motion estimation and multiple transforms [29]. VVC divides a video frame into blocks 

called coding tree units (CTUs) and encodes each CTU separately. Each CTU can be 

further divided into coding units (CUs) using QTMT. QTMT allows more partitions than 

simple quadtree (QT) partitioning used in HEVC. The maximum CTU size in VVC is 

128x128. The maximum CTU size in HEVC is 64x64. 

VVC achieves higher compression efficiency than HEVC at the cost of significant 

increase in computational complexity. VVC encoder is 5 times and 31 times more 

complex than HEVC encoder under Low-Delay and All-Intra configurations, respectively 

[9]. The encoding time of VVC reference software encoder (VTM) is about 10 times more 

than the encoding time of HEVC reference software encoder (HM) [30]. Therefore, 

dedicated hardware implementations are needed for processing high resolution videos in 

real-time [31]. 

Successive frames in a video sequence have temporal redundancy. Video coding 

standards remove this temporal redundancy by performing motion estimation (ME). ME 
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is the most time consuming and memory intensive module in video encoding [32]. More 

than 50% of the encoding time of VVC encoder is spent for ME [9]. Up to 60% of the 

memory accesses of VVC encoder comes from ME module [33].  

There are several HEVC ME hardware in the literature [34, 35, 36, 37, 38, 39, 40]. 

Several sum of absolute differences (SAD) hardware that can be used for ME are 

proposed in the literature [41, 42]. There are several VVC intra prediction, fractional 

interpolation and transform hardware in the literature [43, 44, 45, 46]. However, to the 

best of our knowledge, there is no VVC ME hardware in the literature.  

In this chapter, we propose the first VVC ME hardware in the literature. The 

proposed hardware uses the full search ME algorithm to determine the best motion vector 

for all the QTMT partitions in a CTU, from 8x4 (4x8) to 128x128. It uses SAD metric to 

determine the best motion vector. The proposed hardware calculates SADs of 128x128 

CTU using a 64x64 systolic processing element array and a novel memory-based SAD 

adder tree to achieve real-time performance with small hardware area. It reduces memory 

accesses significantly by using an efficient data access and reuse method. 

The proposed VVC ME hardware is implemented using Verilog HDL. It works at 

253 MHz on a Xilinx Virtex 7 FPGA, and it can process up to 30 4K (3840x2160) video 

frames per second (fps). 

3.1 VVC Motion Estimation 

VVC uses block matching for translational motion estimation. In block matching, 

current video frame is divided into blocks. As shown in Figure 1.7, for each block in the 

current frame, the best matching block in a search window (SW) in the reference frame 

and the corresponding motion vector (MV) are determined. SAD metric is typically used 

to determine the best matching block. SAD between blocks A and B is calculated as 

shown below, where WxH is the block size, A(i, j) and B(i, j) are pixels in 𝑖th row and 

𝑗th column of A and B, respectively.     

𝑆𝐴𝐷 = ∑ ∑|𝐴(𝑖, 𝑗) − 𝐵(𝑖, 𝑗)|

𝐻−1

𝑗=0

𝑊−1

𝑖=0

 (3.1) 

 

Video coding standards perform variable block size block matching motion 

estimation. Large block sizes achieve higher compression for smooth areas of video 

frames, whereas small block sizes achieve higher compression for detailed areas of video 
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frames. Because large block sizes can find good matches for smooth areas, and they 

require less MVs than small block sizes. However, large block sizes cannot find good 

matches for detailed areas.  

Both HEVC and VVC divide a video frame into blocks called CTU. In HEVC, the 

maximum CTU size is 64x64. A CTU can be recursively partitioned into square-shaped 

CUs using QT. The size of a CU can be from 8x8 to 64x64. A CU can be partitioned only 

once into square, rectangular and asymmetric partitions called prediction unit (PU). The 

PU size can be from 4x8 or 8x4 to the CU size for motion estimation. 

In VVC, the maximum CTU size is 128x128. A CTU can be recursively partitioned 

into CUs using QTMT [47]. QTMT achieves higher compression than QT used in HEVC 

by allowing more partitions than QT. 

QTMT is a tree in which a node can be split using QT, binary tree (BT) or ternary 

tree (TT). A BT splits a node into two rectangular blocks. A TT splits a node into three 

rectangular blocks, two of which have the same size. BT and TT splits can be applied in 

horizontal or vertical direction. In Figure 3.1, five possible QTMT partitions are shown; 

binary horizontal (BH), binary vertical (BV), ternary horizontal (TH), ternary vertical 

(TV), quad (Q). 

 

 

Figure 3.1 Allowed partitions in VVC. 

 

There are some restrictions in QTMT partitioning [48]. If a node is split with QT, it 

can be further split with any of the five QTMT partitions. However, if a node is split with 

either BT or TT, it can no longer be further split with QT. An example of QTMT 

partitioning of 128x128 CTU is shown in Figure 3.2. 

As shown in Figure 3.3, the same partitions can be achieved with different splitting 

patterns. If the central partition of a TT split is further split with BT in the same direction, 

it achieves the same partitions with BT split followed by BT split in the same direction. 

Similarly, QT split followed by QT split achieves the same partitions with BT split in one 

direction followed by BT split in the other direction. VVC does not allow these redundant 

partitions [48]. 

BH BV TH TV Q
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Figure 3.2 An example of QTMT partitioning of 128x128 CTU and its decision tree. 

 

 

Figure 3.3 Examples of redundant partitions in VVC. 

 

In addition to translational ME, VVC uses affine motion estimation (AME) to predict 

more complex motion such as rotation or scaling. Turning off AME in VVC video 

encoding causes 3% loss in compression efficiency but provides 20% encoding time 

reduction [49]. It is reported in [50] that translational motion estimation is used for more 

than 90% cases in VVC video encoding. Therefore, in this chapter, we propose an 

efficient ME hardware for VVC translational ME. 

3.2 Proposed VVC Motion Estimation Hardware 

VVC defines the following control parameters to adjust the computational 

complexity of ME by restricting the number of partitions. 

 

• MaxCUWidth and MaxCUHeight define the maximum allowed width and height 

of a CU, respectively. 

• MinQTSize defines the minimum node size that can be reached with QT split. 

• MaxBtSize and MaxTtSize define the maximum node size to which BT and TT 

split can be applied, respectively.  

• MaxMttDepth defines the maximum allowed depth of multi-type tree splitting 

after QT split. 

Quad Tree

Binary Tree

Ternary Tree
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In the proposed VVC ME hardware, MaxCUWidth and MaxCUHeight are set to 128. 

Therefore, the largest CU size is 128x128. MinQTSize is set to 8. Therefore, an 8x8 CU 

can only be further split with BT. MaxBtSize and MaxTtSize are set to 32. MaxMttDepth 

is set to 2. Therefore, multi-type tree split is not applied to CU sizes larger than 32x32. 

The maximum depth of multi-type tree split is 2, i.e., multi-type tree split can be applied 

at most twice.  

The number of possible partitions in a 64x64 CU with these parameter values are 

shown in Table 3.1. Let X and Y represent one of the four possible multi-tree type 

partitions shown in Figure 3.1, then the partition type X_Y in Table 3.1 represents the 

case where first X type split then Y type split are applied after QT split. For example, 

BH_BH partition type represents the case where first binary horizontal split is applied 

after QT split, then binary horizontal split is applied to the 2 new partitions resulting in 4 

partitions. 

 

Table 3.1 Number of possible partitions and unique motion vectors in a 64x64 CU 

Block 

Size 

Partition 

Type 

Total 

Partitions 
Unique MVs 

Block 

Size 

Partition 

Type 

Total 

Partitions 
Unique MVs 

64x64 No Partition 1 1 32x32 TH_TH 20 20 

 Q 4 4  TV_BV 24 16 

32x32 Q 16 16  TV_TV 20 20 

 BH 8 8 16x16 Q 64 64 

 BV 8 8  BH 32 32 

 TH 12 4  BV 32 32 

 TV 12 4  TH 48 16 

 BH_BH 16 16  TV 48 16 

 BH_TH 24 24  BH_BH 64 64 

 BH_TV 24 8  BH_TV 96 32 

 BV_BV 16 16  BV_BV 64 64 

 BV_TH 24 8  BV_TH 96 32 

 BV_TV 24 24 8x8 BH 128 128 

 TH_BH 24 16  BV 128 128 

Total      1077 821 

 

The number of unique MVs is less than the number of partitions for some split types. 

For example, the top and bottom partitions of TH split are the same as top and bottom 

partitions of BH_BH split. Therefore, there is no need to calculate MVs for top and 

bottom partitions of TH split. 

Redundant partitions, which are not allowed in VVC, are not shown in Table 3.1. For 

example, BH_BV split achieves the same partitions with QT split. Therefore, it is not 

allowed in VVC. In addition, some partitions are not allowed since they result in a 

partition size with height or width smaller than the minimum allowed CU size. These 

partitions are also not shown in Table 3.1. For example, when a 16x16 block is split with 
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ternary tree, its further split with ternary tree will result in a partition size of 8x2 or 

smaller. This is smaller than the minimum allowed CU size. Therefore, this is not allowed.  

The proposed VVC ME hardware is shown in Figure 3.4. It consists of on-chip 

memory to store search window pixels and next block of current frame, a systolic array 

of processing elements (PEs) to store current and reference block pixels and calculate 

their absolute differences, an SAD adder tree to calculate SADs for all the supported CU 

sizes, a comparator unit to determine the minimum SAD and its corresponding MV for 

each CU size, and a control unit to perform control operations. 

 

Figure 3.4 Proposed VVC ME hardware 

 

To achieve real-time performance with small hardware area, the proposed VVC ME 

hardware divides 128x128 CTU into four 64x64 CUs.  It uses a 64x64 systolic PE array 

and 64x64 SAD adder tree to determine the best 821 unique MVs for each of these 64x64 

CUs sequentially. First, the best 821 unique MVs for the first 64x64 CU are determined. 

Then, the remaining three 64x64 CUs are processed one by one. The proposed hardware 

uses a novel memory-based SAD adder tree to determine the best MV for 128x128 CU. 

The best MV for 128x128 CU is determined together with the best MVs of last 64x64 

CU. 

3.2.1 Memory and Systolic PE Array 

Xilinx FPGAs have fast dedicated on-chip memories called Block RAMs (BRAMs). 

In the proposed hardware, the current 64x64 CU and its corresponding search window 

are read from off-chip memories and stored in the on-chip BRAMs. 
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The proposed hardware has a 64x64 systolic PE array as shown in Figure 3.5. The 

systolic array also contains 64 registers to store an additional column of the search 

window. As shown in Figure 3.6, a PE consists of two registers which store a current 

block pixel and a reference block pixel, an absolute difference (AD) hardware, and an 

output register. AD hardware subtracts the reference pixel from the current pixel. If the 

subtraction result is negative, i.e., its sign bit is 1, it takes its 2’s compliment to calculate 

the absolute difference. 

 

Figure 3.5 Systolic processing element (PE) array and registers. 

 

 

Figure 3.6 Processing Element (PE) 

 

The systolic array receives a new row of 64 reference block pixels from BRAMs in 

every clock cycle. It takes 64 clock cycles to fill the systolic array with the 64x64 

reference block of the first search location. At the same time, the 64x64 current block 
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pixels are also received from BRAMs and stored in the systolic array row by row. After 

that systolic array calculates 64x64 absolute differences in one clock cycle and sends them 

to SAD adder tree which calculates the SADs for all the partitions of 64x64 CU.  

The systolic array stores the same 64x64 current block until all the search locations 

in the search window are searched for that current block. It can search a new search 

location in the search window in every clock cycle, i.e., it can process 64x64 reference 

block of each search location in one clock cycle. 

The proposed hardware uses vertical snake scan order as shown in Figure 3.7 (a). 

The search starts from the top-left corner of the search window and moves downward 

until all the search locations in the first column are searched. Then, the search locations 

in the second column are searched in the upward direction. Then, the search locations in 

the third column are searched in the downward direction. This continues until all the 

search locations in the search window are searched for the current block.   

 

 

Figure 3.7 (a) Vertical snake scan order (b) Data re-use in downward, upward, and right 

directions. 

 

To achieve high data reuse, each PE can shift its reference pixel up, down, or left. 

After a search location in a column, which is searched in the downward direction, is 

searched, all the PEs shift their reference pixels up, and a new row of 64 reference block 

pixels is read from search window memory and stored in the last row of systolic array as 

shown in Figure 3.7 (b). This continues until all the search locations in that column are 

searched. 

In Figure 3.7 (b), green area represents the reused reference block pixels in the 

systolic array, white area represents the new row of 64 reference block pixels, and grey 

area represents the discarded row of 64 reference block pixels in the previous reference 

block. 

Search 
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D U
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After a search location in a column, which is searched in the upward direction, is 

searched, all the PEs shift their reference pixels down, and a new row of 64 reference 

block pixels is read from search window memory and stored in the first row of systolic 

array as shown in Figure 3.7 (b). This continues until all the search locations in that 

column are searched. 

After all the search locations in a column are searched, all the PEs shift their reference 

pixels left, and a new column of 64 reference block pixels should be stored in the last 

column of systolic array. Since row aligned BRAMs are used in the proposed hardware, 

it would take 64 clock cycles to read a new column of 64 reference block pixels from 

BRAMs. 

Therefore, an extra column of 64 registers is used in the systolic array. In every clock 

cycle, instead of 64, a new row of 65 reference block pixels is read from search window 

memory and stored in the systolic array. Therefore, after all the search locations in a 

column are searched, all the PEs shift their reference pixels left, and the PEs in the last 

column of systolic array receive their new reference pixels from the extra column of 64 

registers. This takes only one clock cycle. 

In the proposed hardware, BRAMs are configured as true dual port memories. After 

the current 64x64 CU is stored in the systolic array, the next 64x64 CU of the current 

frame is read into the BRAMs from off-chip memory. Similarly, the search window 

BRAMs are also updated dynamically with the search window of the next 64x64 CU of 

the current frame from off-chip memory. 

3.2.2 SAD Adder tree 

In HEVC, the maximum CTU size is 64x64, and 593 unique MVs should be 

calculated for a 64x64 CU [36]. In VVC, the maximum CTU size is 128x128, and 821 

unique MVs should be calculated for a 64x64 CU. In addition, in VVC, there are more 

complex asymmetric partitions which are not used in HEVC. Therefore, SAD adder tree 

in VVC ME hardware is more complex than SAD adder tree in HEVC ME hardware. 

In the proposed hardware, the SAD adder tree calculates the SADs of all the 821 

unique partitions of a 64x64 CU by reusing the SADs of smaller partitions to calculate 

the SADs of larger partitions. 

After the SAD adder tree receives 64x64 ADs for the first search location from the 

systolic array, it receives and processes 64x64 ADs of a new search location in every 
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clock cycle. For each 64x64 ADs, the corresponding 256 4x4 SADs are calculated in four 

clock cycles. One 4x4 SAD calculation including the AD calculation in PEs is shown in 

Figure 3.8. The red dotted lines in the figure indicate the pipeline registers. 

 

Figure 3.8 4x4 SAD calculation. 

 

 

Figure 3.9 SAD adder tree (a) SADs of BH, BV, Q partitions N = 4, 8, 16, 32 (b) SADs 

of BH_BH, BV_TH, BH_TV, BV_BV, TH, TV partitions N = 8, 16  (c) SADs of 

TH_TH, TH_BH, BH_TH, BV_TV, TV_BV, TV_TV partitions N = 16. 

 

These 4x4 SADs are then used to calculate SADs of larger partitions in a hierarchical 

manner. For example, 4x4 SADs are used to calculate SADs of binary partitions (BV, 
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BH) of 8x8 CUs. Then, the SADs of BV partitions of 8x8 CUs are used to calculate 64 

SADs of 8x8 CUs. SADs of binary and quad partitions of 16x16, 32x32, and 64x64 CUs 

are calculated similarly as shown in Figure 3.9 (a). 

Similarly, the SADs of BV and BH partitions of 8x8 CUs are used to calculate SADs 

of BH_BH, BV_BV, BV_TH and BH_TV partitions of 16x16 CUs. Then, the SADs of 

BH_BH and BV_BV partitions are used to calculate SADs of TH and TV partitions of 

16x16 CUs. SADs of the same shaped partitions of 32x32 CUs are calculated similarly 

using BV and BH partitions of 16x16 CUs as shown in Figure 3.9 (b).  

SADs of TH_TH, TV_TV, TH_BH, TV_BV, BH_TH and BV_TV partitions of 

32x32 CUs are calculated using BH_BH and BV_BV partitions of 16x16 CUs as shown 

in Figure 3.9 (c). 

The proposed hardware calculates the SADs of all the 821 unique partitions of a 

64x64 CU for the first search location in the search window in 13 clock cycles and sends 

them to the comparator. After that, 821 new SADs are calculated in every clock cycle and 

sent to the comparator. 

To achieve real-time performance with small hardware area, the proposed hardware 

divides 128x128 CU into four 64x64 CUs, processes them one by one and calculates SAD 

of 128x128 CU using the novel memory-based accumulator hardware shown in Figure 

3.10. 

 

Figure 3.10 128x128 SAD calculation. 

 

The top left 64x64 CU is processed first. For every 𝑖th search location in the search 

window, the SAD calculated for this 64x64 CU is sent to both the comparator and the 

memory-based accumulator where it is added to the content of 𝑖th location of BRAM and 

the result is written back to 𝑖th location of BRAM. The contents of the BRAM are initially 

set to 0. Therefore, the SADs of the top left 64x64 CU are stored in the BRAM.  
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Then, the top right 64x64 CU is processed. Therefore, the 𝑖th SAD of the top right 

64x64 CU is added to the 𝑖th SAD of the top left 64x64 CU, and the result is written back 

to 𝑖th location of BRAM. Then, the bottom left 64x64 CU is processed similarly. Finally, 

the bottom right 64x64 CU is processed similarly.  

When the first SAD of the bottom right 64x64 CU is added to the content of the first 

location of BRAM, the adder output is the first SAD of the 128x128 CU. Therefore, the 

output register in Figure 3.10 is enabled, and the first SAD of the 128x128 CU is sent to 

the comparator. After that, a new SAD of the 128x128 CU is calculated in every clock 

cycle and sent to the comparator. When the last SAD of the bottom right 64x64 CU is 

calculated, the last SAD of the 128x128 CU is also calculated after one clock cycle and 

sent to the comparator. 

3.2.3 Comparator 

The comparator unit determines the minimum SAD and its corresponding best MV 

for each CU size. It consists of one comparator for each of the 821 unique partitions of 

64x64 CU and one additional comparator for the 128x128 CU. The sizes of these 

comparators vary from 13-bits for the smallest CU to 22-bits for the 128x128 CU. The 

latency of the comparator unit is one clock cycle. In every clock cycle, it compares all the 

SADs it receives from the SAD adder tree with the previous minimum SADs of the 

corresponding partitions and determines the minimum SAD and its corresponding best 

MV for each partition. 

3.3 Implementation Results 

The proposed VVC ME hardware is implemented using Verilog HDL. The Verilog 

RTL codes are implemented to a Xilinx Virtex 7 FPGA with speed grade 3 using Xilinx 

Vivado 2017.4 with default synthesis and performance_explore implementation 

strategies. The FPGA implementation is verified with post-implementation timing 

simulations. 

The proposed hardware has 14 stages pipeline from AD calculation to comparator 

output. The latency for processing a 128x128 CTU can be calculated as (64 + 14 + Search 

Locations) x 4. The systolic array is filled in 64 clock cycles. It takes 14 clock cycles to 

calculate the SADs of all the CUs for the first search location in the search window and 
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compare them. After that, all the CUs for a new search location are processed in every 

clock cycle. The multiplication by 4 is necessary since a 64x64 SAD adder tree is used 

and a 128x128 CTU has four 64x64 CUs. 

We implemented and verified the proposed VVC ME hardware in two different 

configurations for three different search ranges. One configuration supports 128x128 

largest CTU size using a 64x64 systolic array and 64x64 SAD adder tree. The other 

configuration supports 64x64 largest CTU size using a 32x32 systolic array and 32x32 

SAD adder tree. In each configuration, the size of the search range is set to the largest 

CTU size, 75% of the largest CTU size, and half of the largest CTU size.  

The search range is centered around the top left pixel of current CTU. A search range 

of 128x128 means that the first pixel of first reference CTU is located at position (-64, -

64) left of the first pixel of current CTU in the search window. Similarly, the first pixel 

of last reference CTU is located at position (+64, +64) right of the first pixel of current 

CTU in the search window.  

Performance of the proposed VVC ME hardware for different configurations are 

shown in Table 3.2. The clock frequency (MHz), the number of clock cycles required to 

process a current CTU, and the throughput in frames per second (fps) for three different 

video resolutions (full HD, 2K, 4K) are shown in the table. The throughput in fps is 

calculated as shown below. 

𝑓𝑝𝑠 =  
1

𝐶𝑇𝑈 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × 𝐶𝑇𝑈𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒 × 𝐶𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 
  (3.2) 

  

Table 3.2 Performance of the proposed VVC ME hardware for different configurations 

CTU Size  128x128  64x64 

Search Locations 128x128 96x96 64x64 64x64 48x48 32x32 

Frequency (MHz) 253 253 253 306 306 306 
CTU Latency 65,848 37,176 16,696 16,560 9,392 4,272 

FPS at 1080p 30 53 120 36 64 141 

FPS at 2k 28 50 112 34 60 132 
FPS at 4k 7 13 30 9 16 35 

 

For 128x128 largest CTU size with 128x128 search range, 30 fps throughput is 

achieved for full HD video resolution. If the search range is reduced to 64x64, 30 fps 

throughput is achieved for 4K video resolution. For 64x64 largest CTU size with 32x32 

search range, 35 fps throughput is achieved for 4K video resolution. 

The FPGA resource usages of the proposed VVC ME hardware for 128x128 largest 

CTU size configuration with 128x128 search range and for 64x64 largest CTU size 
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configuration with 64x64 search range are shown in Table 3.3 and Table 3.4, respectively. 

The resource usage of 64x64 largest CTU size configuration is almost 4 times less than 

the resource usage of 128x128 largest CTU size configuration. 

The systolic array uses the most FPGA resources. It uses 54% of the total flip-flops 

and 38% of the total LUTs used by the 128x128 largest CTU size configuration. The 

current pixel registers, reference pixel registers, and output registers in the systolic array 

justify the amount of flip-flop usage. 

The SAD adder tree uses the second most FPGA resources. It uses 31% of the total 

flip-flops and 28% of the total LUTs used by the 128x128 largest CTU size configuration. 

Since the comparator unit uses registers to store the minimum SADs and corresponding 

best MVs, its flip-flop usage is higher than its LUT usage. 

 

Table 3.3 Resource usage for 128x128 CTU size 

Module LUTs Flip-Flops BRAM 

Systolic Array 56,321 98,816 – 

SAD Adder Tree 40,970 57,312 4 

Control Unit 36,582 2,806 – 
Comparator 11,308 21,343 – 

Memory 425 2,050 16 

Total 145,606 182,327 20 

 

Table 3.4 Resource usage for 64x64 CTU size 

Module LUTs Flip-Flops BRAM 

Systolic Array 16,390 24,832 – 
SAD Adder Tree 11,022 14,474 1 

Control Unit 9,954 1,348 – 

Comparator 2,818 4,948 – 
Memory 210 1,026 8 

Total 40,394 46,628 9 

 

3.3.1 Comparison With HEVC ME Hardware 

The proposed VVC ME hardware is the first VVC ME hardware in the literature. 

The proposed VVC ME hardware implementation is compared with the HEVC ME 

hardware implementations in the literature in Table 3.5. Although VVC ME has larger 

maximum CTU size and it is more computationally complex than HEVC ME, the 

proposed VVC ME hardware has smaller area and higher throughput than some of these 

HEVC ME hardware. 

The HEVC ME hardware proposed in [34] and [35] use full search ME algorithm. 

The hardware proposed in [34] does not support the asymmetric partitions in HEVC ME. 
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These HEVC ME hardware use more LUTs and have lower throughput than our VVC 

ME hardware.  

Table 3.5 Comparison with HEVC ME Hardware 

 
ICIP’14 

[34] 

IET’17 

[35] 

AICSP’18 

[38] 

JRTIP’19 

[39] 

JRTIP’21 

[40] 

This Work 

Encoding 

Standard 
HEVC HEVC HEVC HEVC HEVC VVC 

FPGA Virtex 5 Virtex 5 Virtex 7 Virtex 7 Virtex 7 Virtex 7 

CTU Size 64x64 64x64 64x64 64x64 32x32 128x128 

Search Range 64x64 64x64 144x144 64x64 64x64 64x64 
Working 

Frequency (MHz) 
125 84.96 198.73 247 162 253 

Throughput 4K @ 13 fps 4K @ 9 fps FHD @ 30fps 4K @ 30 fps 8K @ 78 fps 4K @ 30 fps 
LUTs 209,434 153,314 49,258 188,664 485,760 145,606 

Flip-Flops 199,066 36,368 13,351 144,302 607,200 182,327 

 

A sequential and a parallel HEVC ME hardware implementing diamond search 

algorithm are proposed in [38]. Since the parallel hardware has higher performance than 

the sequential hardware, we compare our VVC ME hardware with the parallel HEVC ME 

hardware. The HEVC ME hardware has smaller area and lower throughput than our VVC 

ME hardware.  

The HEVC ME hardware proposed in [39] use full search ME algorithm. It uses more 

LUTs and has the same throughput as our VVC ME hardware. The HEVC ME hardware 

proposed in [40] use a fast hybrid pattern search algorithm. It has higher throughput and 

much larger area than our VVC ME hardware.  
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Chapter 4 

4 AN EFFICIENT APPROXIMATE SAD HARDWARE FOR FPGAS  

Approximate computing is a promising approach for designing smaller area and 

lower power consuming hardware than accurate hardware at the expense of quality loss  

[26,51]. Therefore, it can be used for error-tolerant applications. Some video processing 

and coding applications can tolerate inaccurate results due to limitations of human visual 

perception. 

Sum of absolute differences (SAD) operation is a widely used metric for block 

matching in several error tolerant applications such as stereo vision and video coding [27, 

36, 52]. SAD between two blocks, A and B, of size W x H is calculated as shown in 

equation (4.1), where 𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) are values of the pixels in 𝑖th row and 𝑗th column 

of A and B, respectively. 

𝑆𝐴𝐷 =  ∑ ∑|𝐴(𝑖, 𝑗) − 𝐵(𝑖, 𝑗)|

𝐻−1

𝑗=0

𝑊−1

𝑖=0

(4.1) 

SAD is the most time and power consuming operation in several error tolerant 

applications. For example, SAD operation is used for motion estimation in video coding, 

and it can consume up to 80% of the total energy consumption of a video encoder 

hardware [52]. Therefore, approximate computing can be used for designing efficient 

SAD hardware. 

Several ASIC or FPGA based accurate SAD hardware implementations are proposed 

in the literature [27,41,53]. Several approximate SAD hardware implementations are also 

proposed in the literature [26,36,52,55]. None of the approximate SAD hardware has 

FPGA specific optimizations. 

A novel approximate absolute difference hardware (NAAD) is proposed in [26]. The 

incrementor used for 2’s complement operation in AD hardware is removed. A low-error 

approximate adder (LEA) and an approximate AD hardware based on LEA are proposed 

in [36]. An approximate SAD hardware using lower-part OR (LOA) approximate adder 
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is proposed in [52]. A power-efficient approximate SAD (aSAD) hardware approximating 

most significant bits with a single bit is proposed in [55]. 

In this chapter, we propose an efficient approximate SAD hardware for FPGAs. The 

proposed approximate SAD hardware utilizes the unused LUT inputs to reduce area and 

power consumption while providing an almost accurate result. The proposed approximate 

SAD hardware has smaller maximum and average error than the approximate SAD 

hardware in the literature. It uses up to 20% less LUTs than the smallest approximate 

SAD hardware in the literature. It consumes up to 38% less power than the lowest power 

consuming approximate SAD hardware in the literature. 

4.1 Background 

4.1.1 SAD Hardware 

Block diagram of a generic SAD hardware is shown in Figure 4.1. Generally, SAD 

is calculated in two stages. In the first stage, absolute differences of inputs are calculated. 

In the second stage, these absolute difference values are added using an adder tree. 

Parallelism can be used in both stages. 

 

Figure 4.1 Generic SAD hardware 

 

Three conventional accurate AD hardware are shown in Figure 4.2. Accurate AD 1 

hardware, shown in Figure 4.2 (a), first subtracts the two inputs. If 𝐴 <  𝐵, then 2’s 

complement of the subtraction result should be calculated to obtain the AD result. Sign-

bit of the subtraction result is XOR’ed with each bit of the subtraction result to perform 

selective inverse operation. Finally, the same sign-bit is added to the output of XOR gates 
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to obtain the AD result. The maximum delay of this AD hardware is 2𝑡𝑆𝑢𝑏 +  𝑡𝑋𝑂𝑅. It 

uses 2𝑛 LUTs in a Xilinx FPGA, where 𝑛 is bit length of the inputs. 

 

Figure 4.2 Accurate absolute difference hardware 

 

Accurate AD 2 hardware, shown in Figure 4.2 (b), trades off area for speed by using 

two subtractors in parallel. These two subtractors perform (𝐴 − 𝐵) and (𝐵 − 𝐴), 

respectively. The MSB of one of these subtraction results is then used to select the correct 

AD result. The maximum delay of this AD hardware is 𝑡𝑆𝑢𝑏 +  𝑡𝑀𝑢𝑥. It uses 3𝑛 LUTs in 

a Xilinx FPGA. 

Accurate AD 3 hardware, shown in Figure 4.2 (c), compares the two inputs for 

selective subtraction [27]. If (𝐵 > 𝐴), then (𝐵 − 𝐴) is performed, otherwise (𝐴 − 𝐵) is 

performed. The maximum delay of this AD hardware is 𝑡𝐶𝑜𝑚𝑝 + 𝑡𝑆𝑢𝑏. It uses 1.5𝑛 LUTs 

in a Xilinx FPGA. Since 6-input LUTs are used in Xilinx FPGAs, selection and inversion 

operations can be implemented in one LUT [54].  

4.1.2 Xilinx Virtex FPGA 

Configurable logic blocks (CLB) are the main logic resource in a Xilinx Virtex 

FPGA. Each CLB has two slices. Each slice in Xilinx Virtex 5/6/7 FPGAs has four copies 

of the hardware shown in Figure 4.3 with carry chain cascaded in series [56]. Therefore, 

each slice contains four 6-input LUTs, a 4-bit carry chain, and 8 output registers along 

with routing resources. A 6-input LUT can be used to implement one 6-input 

combinational logic or two 5-input combinational logics.  

The efficiency of an FPGA-based hardware depends on how effectively it utilizes the 

logic resources available in the FPGA. This is very important for FPGA implementations 

that may use carry chains in FPGA. SAD hardware uses subtraction and addition 

operations. Therefore, it is important to understand how these arithmetic operations are 

implemented in Xilinx FPGA and how the unused resources can be utilized to obtain an 

efficient implementation. 
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Figure 4.3 Simplified architecture of a slice in Xilinx Virtex 5/6/7 FPGAs 

 

Generally, 1-bit addition operation is performed as shown in equation (4.2) and 

equation (4.3) where A and B are inputs, S is sum, and CIN and COUT are carry-in and 

carry-out, respectively. 

𝑆 = (𝐴 ^𝐵) ^ 𝐶𝐼𝑁 (4.2) 

𝐶𝑂𝑈𝑇  =  𝐴𝐵 | (𝐴 ^ 𝐵)𝐶𝐼𝑁 (4.3) 

However, Xilinx synthesis tools simplify equation (4.3) as equation (4.4) for a more 

efficient FPGA implementation. 

𝐶𝑂𝑈𝑇  =  (𝐴 ^ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐵 | (𝐴 ^ 𝐵)𝐶𝐼𝑁 (4.4) 

This simplification allows the reuse of 𝐴 ^ 𝐵 term, hence only one output of a LUT 

is used. However, since only 4-bit carry chain is available in a slice, an n-bit adder uses n 

LUTs such that 4 inputs and one output of each LUT are not used. Therefore, additional 

logic can be implemented together with an adder using the same 6-input LUTs without 

affecting critical-path delay of the adder.  

The carry chain in Xilinx Virtex FPGAs is also flexible. The carry-in for the first bit 

of carry chain can either be connected to carry-out of the previous slice or it can be 

connected to one of the user-defined inputs. 

0

1

LUT5

LUT5

I5

I4

I3

I2

I1

I0

O6

O5

LUT 6_2

01 MUXCY

D Q

D Q

CIN

COUT

OMUX

OQ

O



41 

4.2 Proposed Approximate SAD Hardware 

 We propose to utilize the unused LUT inputs and output to implement an 

adder/subtractor including the complement operations shown in Figure 4. The proposed 

hardware computes 1’s complement of both inputs without using additional resources and 

without additional delay. It also computes 2’s complement of one of the inputs by 

initializing the carry chain with the selective inverse signal. The proposed hardware 

implements the following expression. 

𝑆 = ((−1)𝑋𝑛𝑋) +  ((−1)𝑌𝑛𝑌 − 𝑌𝑛) (4.5) 

𝑋𝑛 and 𝑌𝑛 can either be 0 or 1. When 𝑋𝑛 is 1, 2’s complement of X is computed. When 

𝑌𝑛 is 1, 1’s complement of Y is computed.  

 

Figure 4.4 Proposed adder/subtractor including complement operations 

 

Implementation of the proposed n-bit adder/subtractor including complement 

operations in Xilinx Virtex 5/6/7 FPGAs is shown in Figure 4.5.  

 

Figure 4.5 Implementation of the proposed n-bit adder/subtractor including 

complement operations 

 

To perform selective bitwise inversion of X and Y, their n-bits are XOR’ed with 𝑋𝑛 

and 𝑌𝑛, respectively. This is done in the first two XOR gates. When 𝑋𝑛 is 1, X is inverted. 
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When 𝑌𝑛 is 1, Y is inverted. The third XOR gate computes first term of the sum expression 

shown in equation (4.2) and its output is connected to the carry chain for carry propagation 

and sum calculation. Finally, 𝑋𝑛 is also connected to CYINIT (initialize carry) input of 

the carry chain to compute 2’s complement of X, i.e. when 𝑋𝑛 is 1, 1 is added to the result. 

The proposed approximate 2×1 SAD hardware is shown in Figure 4.6. This hardware 

is designed by merging the XOR gates and incrementor in the Accurate AD 1 hardware 

shown in Figure 4.2 (a) to the first stage of adder tree, and by using the proposed 

adder/subtractor shown in Figure 4.5 in the first stage of adder tree.  

 

Figure 4.6 Proposed approximate 2×1 SAD hardware 

 

In the first stage of the proposed SAD hardware only a subtractor is used. Hence, it 

will be mapped to only n LUTs. The subtraction result and its sign bit are passed to the 

next stage. In the second stage of the proposed SAD hardware the proposed 

adder/subtractor is used. The sign bits are connected to 𝑋𝑛 and 𝑌𝑛 inputs of the proposed 

adder/subtractor.  

The proposed adder/subtractor computes the absolute values of the two subtraction 

results and adds them. However, when 𝑌𝑛 is 1, the absolute value result of Y will be 1 

less than the accurate absolute value of Y. Therefore, maximum error of the proposed 

approximate 2×1 SAD hardware is 1. 

Several approximate 2×1 SAD hardware can be used to build larger approximate 

SAD hardware. In the proposed approximate SAD hardware, half of the AD hardware 

may have an error of 1. Therefore, maximum error of the proposed approximate SAD 

hardware with N AD hardware is N/2. 
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4.3 Implementation Results 

Quality, speed, area, and power consumption of the proposed approximate SAD 

hardware are compared with that of several approximate SAD hardware proposed in the 

literature; NAAD [26], LEA based approximate SAD [36], LOA based approximate SAD 

[52], aSAD [55]. They are also compared with that of approximate SAD hardware 

designed by replacing the accurate adder in AD operation with the LUT-based fast 

approximate adder unit (FAU) proposed in [57]. 4-bit approximation is used for NAAD 

SAD hardware and for LEA, LOA and FAU based SAD hardware. 

Quality comparison for 4×4 approximate SAD is shown in Table 4.1. The maximum 

and average error values are determined for 8-bit inputs and by applying all possible input 

values to an AD hardware such that the same input values are applied to all AD hardware. 

The results show that the proposed approximate SAD hardware has smaller maximum 

and average error than the other approximate SAD hardware.   

 

Table 4.1 Quality comparison for 4×4 approximate SAD 

 
Maximum 

Error 

Average 

Error 

Proposed 8 3.98 

LEA 160 27.00 

FAU 256 35.81 

LOA 128 53.45 

NAAD 256 63.50 

aSAD 3584 1021.56 

 

To compare speed, area, and power consumption of SAD hardware, three accurate 

SAD hardware shown in Figure 4.2, the proposed approximate SAD hardware and five 

approximate SAD hardware in the literature are implemented using Verilog HDL. A 

common adder tree hardware, with approximations applied as and when required, is used 

for all SAD hardware. All implementations are highly pipelined, i.e. a pipeline register is 

used after each addition stage. Registers are also placed at all the inputs and outputs. 

Experiments are performed for 4×4, 8×8, 16×16, 24×24, and 32×32 SAD block sizes 

using 8-bit and 16-bit inputs. 

All Verilog RTL codes are synthesized and implemented to Xilinx XC7VX485T-

3FFG1761 FPGA using Vivado 2020.1. Vivado Synthesis Defaults and Performance 



44 

Explore synthesis and implementation strategies are used, respectively. FPGA 

implementations are verified with post-implementation timing simulations. 

For power consumption estimation, switching activity interchange format (SAIF) 

files are generated using post-implementation timing simulations at 100 MHz for all 

FPGA implementations. Power consumption of each FPGA implementation is estimated 

with Vivado 2020.1 using the corresponding SAIF file. 

Area, power consumption, and maximum clock frequency results are shown in 

Figure 4.7 and Figure 4.8 for 8-bit and 16-bit inputs, respectively. LUT reductions 

achieved by the proposed approximate SAD hardware compared to the smallest 

approximate SAD hardware in the literature for each block size are shown in Table 4.2. 

Power reductions achieved by the proposed approximate SAD hardware compared to the 

lowest power consuming approximate SAD hardware in the literature for each block size 

are also shown in Table 4.2. 

Table 4.2 Reductions achieved by proposed approximate SAD hardware 

 

8-bit 16-bit 

LUT 

Reduction 

(%) 

Power 

Reduction 

(%) 

LUT 

Reduction 

(%) 

Power 

Reduction 

(%) 
4×4 19.81 0.00 20.16 20.00 

8×8 19.26 11.11 19.68 20.51 

16×16 19.11 16.30 19.56 32.43 

24×24 19.08 24.40 19.53 34.55 

32×32 19.06 27.08 15.40 38.26 

The proposed approximate SAD hardware uses the smallest number of LUTs among 

all SAD hardware for all block sizes. It uses up to 20% less LUTs than the smallest 

approximate SAD hardware in the literature. However, it uses up to 3% more flip-flops 

for 8-bit inputs, and up to 1.5% more flip-flops for 16-bit inputs. As expected, Accurate 

2 SAD hardware, which uses Accurate AD 2 hardware, has the largest area. 

The proposed approximate SAD hardware also consumes the lowest power among 

all SAD hardware for all block sizes. It consumes up to 38% less power than the lowest 

power consuming approximate SAD hardware in the literature. The approximate SAD 

hardware in the literature consume less power than Accurate 1 and Accurate 2 SAD 

hardware. NAAD with 4-bit approximation is the most area and power-efficient among 

all approximate SAD hardware in the literature. 

For 8-bit inputs, FAU, LEA and LOA based approximate SAD hardware are slightly 

faster than the proposed approximate SAD hardware. Average clock frequencies of the 
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proposed, FAU, LEA, and LOA based approximate SAD hardware are 525 MHz, 539 

MHz, 538 MHz, and 528 MHz, respectively. However, for 16-bit inputs, the proposed 

approximate SAD hardware is faster than all the other SAD hardware. The proposed 

approximate SAD hardware achieves an average clock frequency of 487 MHz followed 

by 484 MHz achieved by NAAD hardware. 

 

 

Figure 4.7 Implementation results for 8-bit inputs                                                             
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Figure 4.8 Implementation results for 16-bit inputs                                                             
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Chapter 5 

5 LOW ERROR EFFICIENT APPROXIMATE ADDERS FOR FPGAS 

 

Approximate computing trades off accuracy to improve the area, power, and speed 

of digital hardware. Many computationally intensive applications such as video encoding, 

video processing, and artificial intelligence are error resilient by nature due to the 

limitations of human visual perception or nonexistence of a golden answer for the given 

problem. Therefore, approximate computing can be used to improve the area, power, and 

speed of digital hardware implementations of these error tolerant applications. 

A variety of approximate circuits, ranging from system level designs [28,42,58,59] 

to basic arithmetic circuits [17], have been proposed in the literature. Adders are used in 

most digital hardware, not only for binary addition but also for other binary arithmetic 

operations such as subtraction, multiplication, and division [26,60,61]. Therefore, many 

approximate adders have been proposed in the literature [16,36],[62]-[75]. All 

approximate adders exploit the fact that critical path in an adder is seldom used. 

 Approximate adders can be broadly classified into the following categories: 

segmented adders [63], which divide 𝑛-bit adder into several 𝑟-bit adders operating in 

parallel; speculative adders [62], which predict the carry using only the few previous bits; 

and approximate full-adder based adders [16,36],[65]-[68], which approximate the 

accurate full-adder at transistor or gate level. Segmented and speculative adders usually 

have higher speeds and larger areas than accurate adders [17]. Approximate full-adder 

based approximate 𝑛-bit adders use 𝑚-bit approximate adder in the least significant part 

(LSP) and (𝑛 − 𝑚)-bit accurate adder in the most significant part (MSP), as shown in 

Figure 5.1. 

Most of the approximate adders in the literature have been designed for ASIC 

implementations. These approximate adders use gate or transistor level optimizations. 

Recent studies have shown that the approximate adders designed for ASIC 
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implementations either do not yield the same area, power, and speed improvements when 

implemented on FPGAs or fail to utilize FPGA resources efficiently to improve the output 

quality [71],[77]. 

 

Figure 5.1 Architecture of approximate full-adder based n-bit approximate adders 

 

This is mainly due to the difference in the way logic functions are implemented in 

ASICs and FPGAs. The basic element of an ASIC implementation is a logic gate, whereas 

FPGAs use lookup tables (LUTs) to implement logic functions. Therefore, ASIC based 

optimization techniques cannot be directly mapped to FPGAs. 

FPGAs are widely used to implement error-tolerant applications using addition and 

multiplication operations. The efficiency of FPGA-based implementations of these 

applications can be improved through approximate computing. Only a few FPGA specific 

approximate adders have been proposed in the literature [70]-[74]. These approximate 

adders focus on improving either the efficiency or accuracy. Therefore, the design of low 

error efficient approximate adders for FPGAs is an important research topic. 

In this chapter, we propose a methodology to reduce the error of approximate adders 

by efficiently utilizing FPGA resources, such as unused LUT inputs. We propose two 

approximate adders for FPGAs using our methodology based on the architecture shown 

in Figure 5.1.  

We propose a low error and area efficient approximate adder (LEADx) for FPGAs. 

It has lower mean square error (MSE) than the approximate adders in the literature. It 

achieves better quality than the other approximate adders for video encoding application. 

We also propose an area and power efficient approximate adder (APEx) for FPGAs. 

Although its MSE is higher than that of LEADx, it is lower than that of the approximate 

adders in the literature. It has the same area, lower MSE and less power consumption than 

the smallest and lowest power consuming approximate adder in the literature. It has 
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smaller area and lower power consumption than the other approximate adders in the 

literature. 

We provide mathematical models to estimate the error rate (ER), MSE, and mean 

absolute error (MAE) of the proposed approximate adders. We compare the proposed 

approximate adders with the approximate adders in the literature.   

5.1 Background 

5.1.1 Related Works 

Bit truncation in least significant bit positions is a well-known approximation 

technique. In truncate adder, the output of LSP is fixed to zero. Although, the truncate 

adder provides significant improvements in speed, area, and power consumption, it has 

high error rate and MSE [36],[65]. 

Lower-part-OR adder (LOA) is proposed in [16]. Its LSP consists of 2-input OR 

gates, whereas the MSP is accurate. A carry is sent to the MSP if it is generated at most 

significant bit position of the LSP. An approximate adder, OLOCA, is proposed in [66] 

by optimizing the LOA architecture.  OLOCA uses only two OR gates in the LSP to 

compute the two most significant sum bits. Rest of the LSP is approximated to a fixed 

value. An approximate adder with near-normal error distribution (HOAANED) is 

proposed in [67]. HOAANED has similar architecture to OLOCA, however, it uses more 

resources to compute the two most significant sum bits of LSP. Therefore, HOAANED 

has better quality than OLOCA at the expense of slight increase in area. 

Dutt et al. [68] proposed an approximate full adder based multibit adder (AFA). The 

sum of each bit of LSP is computed accurately whereas its respective carry out is equated 

to one of the inputs. 

In recent years, a few approximate adders are proposed specifically for FPGAs. A 

LUT-based approximate adder (LBA) is proposed in [70]. The LSP and MSP, both 

perform accurate addition. A carry is passed to MSP only if it is generated at the most 

significant bit (MSB) of the LSP. If any other carry, that needs to be propagated to the 

MSP, is detected, then all bits of LSP are set to 1. LBA has high accuracy, but it does not 

provide performance improvement compared to the accurate adder synthesized by FPGA 

synthesis tool [71]. 
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A methodology to design approximate adders (DeMAS) for FPGAs is presented in 

[71]. The methodology is based on an optimized truth table of approximate full-adder. 

Eight different variants of multibit approximate adder are presented using the optimized 

truth table. All these variants use same number of LUTs but differ in their error metrics.  

Quaternary addition based approximate adder using the fast carry chains of FPGAs 

is presented in [72]. The accurate quaternary adder uses two carry inputs and generates 

two carry outputs. However, the authors in [72] proposed to use only one carry in the 

quaternary addition, hence generating an approximate result.  

A single exact dual adder (SEDA) is proposed for FPGAs in [73]. The adder can 

either perform accurate addition of single 𝑛-bit input or approximate addition of two 𝑛-

bit inputs. Carry of 2-bit addition is computed accurately, while the sum bits are equated 

to inverse of carry out. 

High speed segmented approximate adders (xUAV) for FPGAs are proposed in [74]. 

Segmentation is done in 2, 3, or 5-bit groups for efficient mapping to LUTs. However, 

the proposed adders use more area and consume more power than accurate adder. These 

adders also have very large MAE and MSE as the size of adder is increased. 

5.1.2 Length of carry 

The key principle of approximate addition is to shorten the critical path of an adder 

by breaking the carry chain at one or multiple positions. This technique improves the 

speed of an adder at the expense of accuracy loss. In this section, we briefly explain the 

rationale for this technique.  

The length of a carry signal in 𝑛-bit binary addition is defined as the number of bits 

it propagates before being killed or regenerated. For example, if a carry signal is generated 

at 𝑖th bit position and killed or regenerated at 𝑗th bit position (𝑗 > 𝑖), the length of that 

carry signal is defined as 𝑗 − 𝑖 bits. 

In 𝑛-bit binary addition, the outgoing carry signal at any bit position 𝑖 is determined 

by the current and previous input bits. Bit position 𝑖 is said to generate a carry if both the 

input bits at 𝑖th position are 1, propagate the incoming carry if both the input bits at 𝑖th 

position are different, and kill the incoming carry if both the input bits at 𝑖th position are 

0. 

In the worst case, a carry signal is generated in the least significant bit (LSB) and 

propagated to the most significant bit (MSB). In this case, the length of carry signal is 
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equal to the adder bit width. However, the worst case rarely happens, and the average 

length of a carry signal is usually much shorter than the adder bit width [62]. 

We implemented and simulated 𝑛-bit accurate adder using 107 independent random 

number pairs extracted from uniformly distributed sample space between 0 and 2𝑛– 1. 

Based on these simulation results, probability of the length of a carry signal being equal 

to L bits is given in Table 5.1. As can be seen from this table, the length of a carry signal 

is rarely longer than 5 bits. The length of a carry signal is shorter than 5 bits with more 

than 90% probability. 

 

Table 5.1 Probability of the length of a carry being equal to L bits 

Adder Bit 

Width (𝑛) 

Probability (%) 

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 

16 53.09 25.01 11.72 5.49 2.54 1.17 

32 51.59 24.97 12.10 5.86 2.84 1.37 

64 50.78 25.00 12.31 6.05 2.98 1.46 

128 50.38 24.99 12.41 6.16 3.05 1.51 

 

Since the worst case of carry propagation (length of carry = 𝑛-bits) rarely happens, 

in most cases, the carry can be correctly predicted by considering only a few previous 

input bits.  

5.1.3 Xilinx Virtex FPGA 

The main logic resource in a Xilinx Virtex FPGA is configurable logic blocks (CLBs) 

[27]. Each CLB contains two slices. Simplified architecture of a slice in Xilinx Virtex 7 

FPGA is shown in Figure 4.3. Each slice is composed of 4 such elements with carry-chain 

cascaded in series. Therefore, each slice has four 6-input LUTs. Each LUT can be used 

to implement two 5-input combinational logic functions or one 6-input combinational 

logic function. Furthermore, each slice also contains a 4-bit carry-chain and eight flip-

flops. 

An efficient FPGA-based implementation should be able to effectively utilize these 

resources. This is particularly important for implementing arithmetic functions that can 

utilize the fast carry-chains. Therefore, it is important to understand how the arithmetic 

operations are implemented on FPGAs. Particularly, we consider the mapping of a full 

adder to a Xilinx FPGA. 
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 Typically, a full adder is implemented as shown in equation (5.1) and equation (5.2), 

where A and B represent the inputs, S is sum, and CIN and COUT are carry-in and carry-

out, respectively. 

𝑆 = (𝐴  𝐵)  𝐶𝐼𝑁 (5.1) 

𝐶𝑂𝑈𝑇  =  (𝐴  𝐵)𝐶𝐼𝑁 + 𝐴𝐵 (5.2) 

However, when implementing a full adder on a Xilinx FPGA, the synthesis tool 

rewrites equation (5.2) as equation (5.3). 

𝐶𝑂𝑈𝑇  =  (𝐴  𝐵)𝐶𝐼𝑁 + (𝐴  𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐵 (5.3) 

This simplification allows the reuse of A  B logic function for computing both S 

and COUT [78]. This term is used as input to XOR gate for sum computation and as select 

input of mux for selecting the appropriate signal for COUT. However, since only 4-bit carry 

chain is available in a slice, an 𝑛-bit adder uses 𝑛 LUTs such that 4 inputs and one output 

of each LUT are not used. These unused resources can be utilized to implement additional 

logic with an adder without increasing area. 

5.2 Proposed Design Methodology 

The proposed design methodology uses the approximate full-adder based 𝑛-bit adder 

architecture shown in Figure 5.1. 𝑛-bit addition is divided into 𝑚-bit approximate adder 

in the LSP and (𝑛−𝑚)-bit accurate adder in the MSP. Breaking the carry chain at bit-

position 𝑚 generally introduces an error of 2𝑚 in the final sum. The error rate and error 

magnitude can be reduced by predicting the carry-in to the MSP (𝐶𝑀𝑆𝑃) more accurately 

and by modifying the logic function of LSP to compensate for the error. 

The carry to the accurate part can be predicted using any 𝑘-bit input pairs from the 

approximate part such that 𝑘 ≤ 𝑚. Most of the existing approximate adders use 𝑘 = 1. 

As discussed in Section II, FPGA implementation of accurate adder uses only 2 

inputs and 1 output of each 6-input LUT. We propose to utilize the remaining 4, available 

but unused, inputs of the first LUT of the MSP to predict 𝐶𝑀𝑆𝑃. Therefore, we propose to 

share the most significant 2 bits of both inputs of the LSP with the MSP for carry 

prediction. 
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Sharing more bits of LSP with MSP will increase the probability of correctly 

predicting 𝐶𝑀𝑆𝑃 which will in turn reduce error rate. However, this will also increase the 

area and delay of the approximate adder.  

To analyze the tradeoff between the accuracy and performance of an FPGA-based 

approximate adder with different values of  𝑘, we performed synthesis and simulation 

experiments on a Xilinx Virtex 7 FPGA. 

The results for a 64-bit adder with 12-bits LSP using 𝑘 bits to predict 𝐶𝑀𝑆𝑃 are shown 

in Table 5.2. For 𝑘 >  2, the error rate reduces slightly at the cost of increased area and 

delay. On the other hand, for 𝑘 < 2, the delay improves marginally at the cost of 

significant increase in the error rate.  

Table 5.2 Effects of Increasing the Number of Bits (k) for Carry Prediction in a 64-Bit 

Approximate Adder with 12-Bits LSP 

𝑘 LUT Delay (ns) ER (%) 

0 64 1.57 50.04 

1 64 1.59 24.98 

2 64 1.62 12.51 

3 65 1.85 6.26 

4 65 1.90 3.10 

5 65 2.03 1.55 

 

Therefore, we propose using 𝑘 = 2, as it provides good balance between accuracy 

and performance of approximate adders for FPGAs. In the proposed approximate adders, 

a carry is passed to the MSP if it is generated at bit position 𝑚 − 1, or generated at bit 

position 𝑚 − 2 and propagated at bit position 𝑚 − 1. The 𝐶𝑀𝑆𝑃 can be described by 

equation (5.4) where 𝐺𝑖 and 𝑃𝑖 are the generate and propagate signals of the 𝑖th bit 

position, respectively. 

𝐶𝑀𝑆𝑃 = 𝐺𝑚−1 + 𝑃𝑚−1𝐺𝑚−2 (5.4) 

The error in higher bit positions has more impact on the error magnitude of an 

approximate adder. As described in equation (5.4), the carry-in to MSP is predicted using 

two most significant bits of LSP. These 2 bits effectively implement a 3-output function 

{𝐶𝑀𝑆𝑃𝑆𝑚−1𝑆𝑚−2}. An error occurs in the 𝑛-bit addition if a carry (𝐶𝑚−2) is generated at 

bit position 𝑖 < (𝑚 − 2) and that carry should be propagated to MSP. In this case, the 

correct result should be {𝐶𝑀𝑆𝑃𝑆𝑚−1𝑆𝑚−2} = 100. However, without any error reduction 

mechanism the approximate result will be {𝐶𝑀𝑆𝑃𝑆𝑚−1𝑆𝑚−2} = 000.  

To reduce the error magnitude, we propose a 2-bit approximate adder (AAd1) for 

computing 𝑆𝑚−1 and 𝑆𝑚−2. The functionality of AAd1 is described by equation (5.5) and 
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equation (5.6). AAd1 is implemented using a single LUT as shown in Figure 5.2. When 

𝐶𝑚−2 = 1, 𝑃𝑚−2 = 1, and 𝑃𝑚−1 = 1, the approximate result will be {𝐶𝑀𝑆𝑃𝑆𝑚−1𝑆𝑚−2} = 

011, only 1 less than the accurate result. For all other inputs, it will generate the accurate 

result.  

𝑆𝑚−2 = (𝑃𝑚−2  ⊕ 𝐶𝑖𝑛    ) + (𝑃𝑚−1𝐶𝑚−2) (5.5) 

𝑆𝑚−1 = (𝑃𝑚−1  ⊕ 𝐺𝑚−2) + (𝑃𝑚−2𝐶𝑚−2) (5.6) 

 

Figure 5.2 Proposed 2-bit approximate adder (AAd1) used in MSBs of LSP. 

 

For uniformly distributed inputs, the carry-in has equal probability of being 1 or 0. 

The probability of inputs at bit position 𝑖 propagating a carry is 𝑃𝑖 = 1/2. Therefore, in 

the proposed 𝑛-bit approximate adders, the probability of 𝑆𝑚−2 and 𝑆𝑚−1 generating an 

error is 0.125 as shown in equation (5.7). Throughout this chapter, 𝐸𝑥 represents the cases 

when hardware 𝑥 generates an error. 

𝑃𝑟[𝐸𝐴𝐴𝑑1] =  𝑃𝑟[𝐶𝑚−2 ∧ 𝑃𝑚−2 ∧ 𝑃𝑚−1] 

=
1

2
 ×

1

2
×

1

2
= 0.125 (5.7) 

 

Figure 5.3 Architecture of proposed approximate adders for FPGAs. 
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Architecture of the proposed approximate adders is shown in Figure 5.3. It uses 2 

MSBs of LSP to predict the 𝐶𝑀𝑆𝑃, whereas their respective sum bits are computed using 

AAd1. AAd1 is only suitable when the 𝐶𝑜𝑢𝑡 of 2-bit inputs is predicted accurately. 

Accurate prediction of 𝐶𝑜𝑢𝑡 requires additional resources or unused LUT inputs. 

Therefore, to design area efficient approximate adders for FPGAs, AAd1 is not used in 

the least significant 𝑚 − 2 bits of the LSP. In this chapter, we propose two 𝑛-bit 

approximate adders using the architecture in Figure 5.3. The two proposed 𝑛-bit 

approximate adders use different approximate functions for the first 𝑚 − 2 bits of the 

LSP. 

5.2.1 Proposed low error and area efficient approximate adder 

In this section, we propose a low error and area efficient approximate adder (LEADx) 

for FPGAs. State-of-the-art FPGAs use 6-input LUTs. These LUTs can be used to 

implement two 5-input functions. The complexity of the implemented logic function does 

not affect performance of LUT based implementation. A 2-bit adder has 5 inputs and two 

outputs. Therefore, a LUT can be used to implement a 2-bit approximate adder. 

For an area efficient FPGA implementation, we propose to split the first 𝑚 − 2 bits 

of LSP into ⌈(𝑚 − 2)/2⌉ groups of 2-bit inputs such that each group is mapped to a single 

LUT. Each group adds two 2-bit inputs with carry-in using an approximate 2-bit adder 

(AAd2). 

To eliminate the carry chain in LSP, we propose to equate 𝐶𝑜𝑢𝑡 of 𝑖th group to one 

of the inputs of that group (𝐴𝑖+1). This results in error in 8 out of 32 possible cases with 

an absolute error magnitude of 4 in each erroneous case. To reduce the error magnitude, 

we propose to compute the 𝑆𝑖 and 𝑆𝑖+1 output bits as follows: 

• If the 𝐶𝑜𝑢𝑡 is predicted correctly, the sum outputs are also calculated accurately using 

standard 2-bit addition. 

• If the 𝐶𝑜𝑢𝑡 is predicted incorrectly and the predicted value of  𝐶𝑜𝑢𝑡 is 0, both sum 

outputs are set to 1. 

• If the 𝐶𝑜𝑢𝑡 is predicted incorrectly and the predicted value of 𝐶𝑜𝑢𝑡 is 1, both sum 

outputs are set to 0. 

This modification reduces the absolute error magnitude to 2 in two cases, and to 1 in 

the other six cases. The resulting truth table of AAd2 is given in Table 5.3. The error cases 
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are shown in red. Since AAd2 produces an erroneous result in 8 out of 32 cases, the error 

probability of AAd2 is 0.25 as shown in equation (5.8).  

 

Table 5.3 Truth Table of Proposed 2-BIT Approximate Adder (AAd2) used for 

Approximation in least-significant m–2 bits of LEADx 

A i+1 A i B i+1 B i Cin C i+2 S i+1 S i 

0 0 0 0 0 0   0 0 
0 0 0 0 1 0 0 1 

0 0 0 1 0 0 0 1 

0 0 0 1 1 0 1 0 
0 0 1 0 0 0 1 0 

0 0 1 0 1 0 1 1 

0 0 1 1 0 0 1 1 
0 0 1 1 1 0  1 1 

0 1 0 0 0 0 0 1 

0 1 0 0 1 0 1 0 
0 1 0 1 0 0 1 0 

0 1 0 1 1 0 1 1 

0 1 1 0 0 0 1 1 
0 1 1 0 1 0 1 1 

0 1 1 1 0 0 1 1 

0 1 1 1 1 0 1 1 
1 0 0 0 0 1 0 0 

1 0 0 0 1 1 0 0 

1 0 0 1 0 1 0 0 
1 0 0 1 1 1 0 0 

1 0 1 0 0 1 0 0 

1 0 1 0 1 1 0 1 
1 0 1 1 0 1 0 1 

1 0 1 1 1 1 1 0 

1 1 0 0 0 1 0 0 
1 1 0 0 1 1 0 0 

1 1 0 1 0 1 0 0 

1 1 0 1 1 1 0 1 
1 1 1 0 0 1 0 1 

1 1 1 0 1 1 1 0 

1 1 1 1 0 1 1 0 
1 1 1 1 1 1 1 1 

𝑃𝑟[𝐸𝐴𝐴𝑑2] = 0.25 (5.8) 

The proposed LEADx approximate adder is shown in Figure 5.4. An 𝑛-bit LEADx 

uses ⌈(𝑚 − 2)/2⌉ copies of AAd2 adder in the least significant 𝑚 − 2 bits of the 

approximate adder architecture shown in Figure 5.4. In LEADx, 𝐶𝑚−2 = 𝐴𝑚−3. AAd2 

implements a 5-to-2 logic function that is mapped to a single LUT. Similarly, AAd1 is 

also mapped to a single LUT. Therefore, ⌈𝑚/2⌉ LUTs are used for the LSP. These LUTs 

work in parallel. Therefore, the delay of LSP is equal to the delay of a single LUT (𝑡𝐿𝑈𝑇). 

The critical path of LEADx is from the input 𝐴𝑚−2 to the output 𝑆𝑛−1. 

Figure 5.5 shows an example of the functionality of 16-bit LEADx with 8-bit 

approximation. The outputs of bits enclosed in dotted lines are computed using AAd1. 

The outputs of the other bits of the approximate part (LSP) are computed using three 

copies of AAd2. The carry-in to the accurate part (𝐶𝑀𝑆𝑃) is predicted from the two MSBs 

of LSP as shown in equation (5.4). 
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Figure 5.4 Proposed n-bit low error and area efficient approximate adder (LEADx). 

 

Figure 5.5 Example of 16-bit LEADx with 8-bit approximation. 

 

The error probability of 𝑛-bit LEADx depends on the number of approximate 2-bit 

adders used in the approximate part. Error in any of these 2-bit adders can contribute to 

the error in the sum output. Therefore, the error probability of LEADx is given as the 

union of error probabilities of the individual 2-bit approximate adders. Let there be N 

copies of AAd2 in LEADx and 𝐸𝐴𝐴𝑑2−𝑖 represents the error in 𝑖th copy of AAd2, then the 

error probability of LEADx can be calculated as shown in equation (5.9). 

𝑃𝑟[𝐸𝐿𝐸𝐴𝐷𝑥] = 𝑃𝑟[𝐸𝐴𝐴𝑑1  ∨ 𝐸𝐴𝐴𝑑2−1 ∨ 𝐸𝐴𝐴𝑑2−2 … ∨ 𝐸𝐴𝐴𝑑2−𝑁] (5.9) 

Since error in two or more of these 2-bit adders can occur concurrently, occurrence 

of error in these adders are not mutually exclusive. Therefore, equation (5.9) can be 

evaluated using inclusion-exclusion principle [79]. For example, the error probability of 

LEADx with 4-bits LSP, for uniformly distributed inputs, can be calculated as shown in 

equation (5.10). 

𝑃𝑟[𝐸𝐿𝐸𝐴𝐷𝑥|𝑚=4] = 𝑃𝑟[𝐸𝐴𝐴𝑑1  ∨  𝐸𝐴𝐴𝑑2] 

=  𝑃𝑟[𝐸𝐴𝐴𝑑1]  +  𝑃𝑟[𝐸𝐴𝐴𝑑2] −  𝑃𝑟[𝐸𝐴𝐴𝑑1  ∧  𝐸𝐴𝐴𝑑2] 

= 0.125 + 0.25 − (0.125 × 0.25) 

= 0.34375                           (5.10) 
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Similarly, the error probability of LEADx with 6-bits LSP, for uniformly distributed 

inputs, can be calculated as shown in equation (5.11). 

𝑃𝑟[𝐸𝐿𝐸𝐴𝐷𝑥|𝑚=6]  =  𝑃𝑟[𝐸𝐴𝐴𝑑1  ∨  𝐸𝐴𝐴𝑑2  ∨  𝐸𝐴𝐴𝑑2] 

= 𝑃𝑟[𝐸𝐴𝐴𝑑1] +  𝑃𝑟[𝐸𝐴𝐴𝑑2] +  𝑃𝑟[𝐸𝐴𝐴𝑑2]  −  𝑃𝑟[𝐸𝐴𝐴𝑑1  ∧  𝐸𝐴𝐴𝑑2]  

−  𝑃𝑟[𝐸𝐴𝐴𝑑1  ∧  𝐸𝐴𝐴𝑑2]  −  𝑃𝑟[𝐸𝐴𝐴𝑑2  ∧  𝐸𝐴𝐴𝑑2] +  𝑃𝑟[𝐸𝐴𝐴𝑑1  ∧  𝐸𝐴𝐴𝑑2  ∧  𝐸𝐴𝐴𝑑2] 

=  0.125 +  0.25 +  0.25 − (0.125 × 0.25) − (0.125 × 0.25) − (0.25 × 0.25)

+ (0.125 × 0.25 × 0.25) 

=  0.50781                                                                               (5.11) 

5.2.2 Proposed area and power efficient approximate adder for FPGAs 

In this section, we propose an area and power efficient approximate adder (APEx) 

for FPGAs. APEx is also based on the approximate adder architecture shown in Figure 

5.3. For the least significant 𝑚 − 2 bits of the LSP, the aim is to find an approximate 

function with no data dependency. Carry should neither be generated nor used for sum 

computation. A 1-bit input pair at any bit position 𝑖 ≤ (𝑚 − 2) should produce a 1-bit 

sum output only. 

In general, any logic function with 1-bit output can be used as an approximate 

function to compute the approximate sum of 1-bit inputs at 𝑖th bit position. A constant 0 

or constant 1 at the output are also valid approximate functions. Fixing the output to 0 or 

1 will reduce the area and power consumption of the approximate adder because no 

hardware will be required for sum computation. 

We evaluated error metrics of both constant functions for 1-bit addition, as shown in 

Table 5.4. Fixing the output to 0 introduces error in 3 out of 4 cases with an average error 

(AE) of −1 and MSE of 3∕2 for uniformly distributed inputs. Fixing the output to 1 

introduces error in 2 out of 4 cases with 0 AE and MSE of ½ for uniformly distributed 

inputs. Therefore, constant 1 provides a better approximation.  

 

Table 5.4 Error Characterization of Constant Approximate Functions for 1-Bit Addition 

 

 

 

 

 

A B 
Accurate 
Addition 

Constant 1 Constant 0 

Sum Error Sum Error 

0 0 00 1 1 0 0 

0 1 01 1 0 0 -1 

1 0 01 1 0 0 -1 

1 1 10 1 -1 0 -2 

Error Cases 2 3 

Average Error 0 -1 

Mean Square Error ½ 3∕2 



59 

We further analyze the error metrics of 𝑛-bit approximate adder architecture shown 

in Figure 5.3 when approximate constant functions are used in the least significant 𝑚 − 2 

bits of its LSP. If the least significant 𝑚 − 2 bits are fixed to 0, the maximum error (ME) 

occurs when the inputs 𝐴0 to 𝐴𝑚−3 and 𝐵0 to 𝐵𝑚−3 are all 1. With accurate addition, 𝑆1 

to 𝑆𝑚−3 output bits are all 1 and a carry is propagated to 𝑚 − 2 bit position. Fixing 𝑆0 to 

𝑆𝑚−3 to 0 and carry-in for 𝑚 − 2 bit position to 0 results in ME of 2𝑚−1 − 2.  

If the least significant 𝑚 − 2 bits are fixed to 1, the ME occurs when the inputs 𝐴0 

to 𝐴𝑚−3 and 𝐵0 to 𝐵𝑚−3 are all 0. With accurate addition, 𝑆0 to 𝑆𝑚−3 output bits are all 

0 and carry is not propagated to 𝑚 − 2 bit position. Fixing 𝑆0 to 𝑆𝑚−3 to 1 and carry-in 

for 𝑚 − 2 bit position to 0 results in ME of 2𝑚−2 − 1. The ME of constant 1 is less than 

the ME of constant 0. 

Furthermore, assume that a constant value V is used to approximate the function 𝐹 =

 𝐴 +  𝐵. The resulting absolute error is defined as |𝐹 −  𝑉|. The aim is to find a constant 

value V such that MSE is minimized. This is a well-known problem with a well-defined 

solution: using mean of distribution of F as V minimizes the MSE [80,81]. 

Let us consider that A and B have uniform input distribution with values between 0 

and 2𝑛 − 1 , then F has a symmetric triangular distribution in the range [0, (2𝑛+1 − 2)]. 

In the case of symmetric distribution, the mean and median are the same and located at 

the center of the sample space [82]. Therefore, mean and median of F are located at 2𝑛 −

1, which is the halfway point of [0, 2𝑛+1 − 2]. The binary representation of 2𝑛 − 1, in 

𝑛 + 1 bit sample space, is 0111…1. Therefore, using constant 1 as the sum output and 0 

as carry-out minimizes the MSE of the approximate output. If 𝑖 bits are fixed to 1, the 

probability of error in the sum output is calculated as shown in equation (5.12). 

𝑃𝑟[𝐸𝑐𝑜𝑛𝑠𝑡1] =  
2𝑖 − 1

2𝑖
 (5.12) 

In the proposed APEx, the 𝑆0 to 𝑆𝑚−3 outputs are fixed to 1 and the 𝐶𝑚−2 is 0. This 

provides significant area and power consumption reduction at the expense of slight quality 

loss. It is important to note that this is different from bit truncation technique which fixes 

both the sum and carry outputs to 0. The ME of truncate adder is 2𝑚+1 − 2 which is much 

higher than ME of APEx (2𝑚−2 − 1). 

The proposed APEx approximate adder is shown in Figure 5.6. Same as LEADx, the 

critical path of APEx is from the input 𝐴𝑚−2 to the output 𝑆𝑛−1. Similar to (9), the error 

probability of APEx can be calculated as shown in equation (5. 13).  
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Figure 5.6 Proposed n-bit area and power efficient approximate adder (APEx). 

 

When 𝐶𝑚−2 is 0, 𝐸𝐴𝐴𝑑1 reduces to 0 according to equation (5.7). Therefore, the error 

probability of APEx depends only on the number of output bits fixed to 1. 

𝑃𝑟[𝐸𝐴𝑃𝐸𝑥] = 𝑃𝑟[𝐸𝐴𝐴𝑑1 | 𝐶𝑚−2=0  ∨  𝐸𝐶𝑜𝑛𝑠𝑡1|𝑖=𝑚−2] 

=
2𝑚−2 − 1

2𝑚−2
                           (5.13) 

Figure 5.7 shows an example of the functionality of 16-bit APEx with 8-bit 

approximation. The outputs of the bits enclosed by dotted lines are computed using AAd1. 

The outputs of the other bits of the approximate part (LSP) are fixed to 1. The carry-in to 

the accurate part (𝐶𝑀𝑆𝑃) is predicted from the two MSBs of LSP as shown in equation 

(5.4). 

 

Figure 5.7 Example of 16-bit APEx with 8-bit approximation. 

 

5.3 Experimental Results and Discussion 

In this section, we present experimental results of the proposed approximate adders, 

LEADx and APEx. We compare LEADx and APEx with other FPGA-specific 
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approximate adders in the literature: LBA [70], DeMAS [71], and SEDA [73]. DeMAS 

can be built using different configurations. For a given number of approximate bits, each 

of these configurations has the same area. Therefore, we chose the configuration with the 

lowest average error for comparison. 

We also compare LEADx and APEx with power and area efficient ASIC-based 

approximate adders in the literature:  AFA [68], HOAANED [67], and LOA [16]. Each 

of these approximate adders is based on the approximate adder architecture shown in 

Figure 5.1, where approximation is done only in the LSP and the MSP is kept accurate. 

We also compare the proposed approximate adders with the segmented and speculative 

approximate adders in the literature. 

5.3.1 Error Metrics 

The functional models of these approximate adders are implemented in C++. Error 

metrics of these approximate adders are determined using their functional models for 16, 

32, and 64-bit addition, with varying number of approximate bits, using 10^7 uniform 

random numbers as inputs. 

The error value for each input is calculated by subtracting the accurate result from 

the approximate result. Error value may be positive, negative, or zero. The average error 

(AE) is defined as the average of all the error values. MAE, also known as mean error 

distance [33], is the average of the absolute values of all the error values. MAE is always 

positive. MSE is the average of the squares of all the error values. RMSE is the square 

root of MSE. 

The MAE and MSE of LEADx can be calculated using equation (5.14) and equation 

(5.15), respectively. Similarly, the MAE and MSE of APEx can be calculated using 

equation (5.16) and equation (5.17), respectively. An empirical approach is used to 

determine these mathematical models, i.e., these formulas are determined using 

experimental results. 

𝑀𝐴𝐸𝐿𝐸𝐴𝐷𝑥 = (
3

16
× 2𝑚−2) + 2𝑚−9 (14) 

𝑀𝑆𝐸𝐿𝐸𝐴𝐷𝑥 ≈ 22𝑚−7 +  22𝑚−11 − 21.5𝑚−9.2 (15) 

𝑀𝐴𝐸𝐴𝑃𝐸𝑥 =
2𝑚−2

3
 (16) 

𝑀𝑆𝐸𝐴𝑃𝐸𝑥 ≈
5

24
 × 4𝑚−2 (17) 
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As can be observed in these equations, error metrics of the proposed approximate 

adders depend only on the number of approximate bits (𝑚), and they are independent of 

the bit width (𝑛) of the adder. 

Error metrics and the error distribution of 16-bit approximate adders with 8-bit 

approximation are shown in Figure 5.8. The error distribution is plotted as a function of 

error value and its respective percentage occurrence. As can be seen in Figure 5.8, the 

maximum errors of the proposed approximate adders are less than those of other 

approximate adders.  

 

Figure 5.8 Error distribution and error metrics of 16-bit approximate adders with 8-bit 

approximation. 

The error distribution of LEADx is skewed to the negative side. This indicates that, 

in most of the cases, the result of LEADx is less than the accurate result, leading to a 

negative AE. Whereas, plotting the error distribution of APEx results in a symmetrical 

triangular shape centered at zero, indicating that APEx has equal probability of negative 

and positive errors. Therefore, APEx has almost zero AE. 

The error distribution of LBA indicates that its erroneous output is always less than 

the accurate result. All other approximate adders in the literature have almost symmetrical 

error distribution. However, their error values are spread over a wide range, resulting in 

much larger MAE and MSE as compared to the proposed approximate adders. 

The error metrics of 64-bit adders with 4 to 12-bits of approximation are reported in 

Table 5.5. Our proposed approximate adders have the lowest MSE. The MSE of the 

LEADx is at least 20% less than that of the approximate adders in the literature. 
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Table 5.5 Error Metrics of 64-Bit Approximate Adders 

 
Adder 

Approximate Bits 
4 6 8 10 12 

MSE 
(x102) 

LEADx 0.019 0.333 5.43 87.10 1392 

APEx 0.025 0.425 6.83 109.09 1746 

AFA [68] 0.639 10.240 163.62 2620.20 41894 

DeMAS–2 [71] 0.160 2.560 40.91 655.05 10473 

HOAANED [67] 0.065 1.066 17.10 273.14 4363 

LBA [70] 0.026 0.428 6.84 110.07 1751 

LOA [16] 0.159 2.560 41.00 656.66 10494 

SEDA [73] 0.303 4.920 78.56 1257.80 20130 

MAE 

LEADx 0.69 3.08 12.56 50.41 201 

APEx 1.25 5.31 21.33 85.27 341 

AFA [68] 5.51 22.35 89.54 358.27 1432 

DeMAS–2 [71] 2.75 11.17 44.77 179.14 716 

HOAANED [67] 1.94 7.98 32.02 128.02 511 

LBA [70] 0.66 2.67 10.68 42.91 171 

LOA [16] 2.87 11.88 47.92 192.16 768 

SEDA [73] 4.05 16.47 65.99 264.10 1056 

ER 

(%) 

LEADx 34.44 50.83 63.10 72.31 79.26 

APEx 74.99 93.75 98.44 99.61 99.91 

AFA [68] 68.30 82.14 89.97 94.38 96.83 

DeMAS–2 [71] 68.31 82.14 89.97 94.39 96.84 

HOAANED [67] 81.26 95.34 98.82 99.71 99.93 

LBA [70] 21.88 24.31 24.85 25.04 25.04 

LOA [16] 68.35 82.21 90.01 94.37 96.82 

SEDA [73] 80.85 91.61 96.33 98.40 99.29 

 

LBA has the lowest MAE. However, it has the worst area and power consumption 

results, as reported in the next section. The MAE of the proposed approximate adders is 

second only to that of LBA. The ER of LEADx and APEx validate the analytical error 

probability results given in Section II. All the approximate adders, except LBA and 

LEADx, have high ER. 

These adders follow the fail-small approach [76]. In the fail-small approach, even if 

ER is high, error magnitudes are small. The rationale behind this approach is that small 

errors are naturally masked by algorithms, and they have less impact on MSE. Therefore, 

they slightly degrade the quality of applications. 

The error magnitude of our proposed approximate adders is significantly reduced by 

accurately predicting the carry to the MSP using unused LUT inputs. AAd1 and AAd2, 

both fully utilize the LUT inputs to achieve low error. The LEADx is designed in a way 

that not only the error values are reduced but also the number of error cases are reduced. 
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The experimental results show that LEADx has indeed higher accuracy and lower MSE 

than the other approximate adders. Similarly, the logic function of the approximate part 

of APEx is determined to reduce the MSE. The experimental results show that the MSE 

of APEx is indeed less than that of the approximate adders in the literature. 

5.3.2 Implementation Results 

All the approximate adders are implemented using Verilog HDL. The accurate part 

of all the adders is identical and implemented using addition operator. Verilog RTL codes 

are synthesized and implemented on a Xilinx Virtex 7 FPGA with speed grade 3 using 

Vivado 2020.1. AreaOptimized_high strategy is used for synthesis, and default strategy 

is used for implementation.  

The quality metrics are extracted from post-implementation timing simulations using 

1 million uniform random numbers. The quality metrics are cross verified with C++ 

simulations. For power estimation, switching activity interchange format (SAIF) files are 

also generated from these post-implementation timing simulations at 100 MHz for all 

adders. The power consumption of each approximate adder FPGA implementation is 

estimated with Vivado 2020.1 using the corresponding SAIF file. 

The implementation results of 16-bit adders with 8-bit approximation are given in 

Table 5.6. All the adders are implemented with input and output registers. SEDA and 

LBA are slower than the accurate adder because of carry propagation in their LSPs. All 

other 16-bit approximate adders have the same delay as the accurate adder. It is important 

to note that their delay is limited by the maximum frequency of Virtex 7 FPGA. It does 

not necessarily mean that the critical path of these adders is the same.  

 

Table 5.6 FPGA Implementation Results of 16-Bit Adders with 8-Bit Approximation 

Adder 
LUTs Delay 

(ns) 

Power 

(mW) MSP LSP 

Accurate 8 8 1.35 6.16 

LEADx 8 4 1.35 6.09 

APEx 8 1 1.35 4.32 

AFA [68] 8 5 1.35 6.17 

DeMAS–2 [71] 8 5 1.35 6.12 

HOAANED [67] 8 1 1.35 4.52 

LBA [70] 8 11 1.56 6.10 

LOA [16] 8 4 1.35 5.66 

SEDA [73] 8 6 1.35 6.16 
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All the approximate 16-bit adders, except LBA, use fewer LUTs than the accurate 

adder. Since an accurate adder is used in the MSP of all these adders, the reduction in 

LUTs occurs only in the LSP. Since LEADx performs 2-bit addition in a single LUT, its 

LSP uses 50% fewer LUTs than the accurate adder.  

APEx and HOAANED use the lowest number of LUTs. For these two adders, a 

significant reduction in number of LUTs occurs because of the use of constant functions 

in their LSPs. For other approximate adders, the reduction in number of LUTs occurs 

because of the approximation techniques used, which allow the synthesis tool to merge 

two sum outputs to a single LUT. 

LEADx consumes slightly less power than the accurate adder. APEx consumes the 

lowest power among all the approximate adders. For the 16-bit adder with 8-bit 

approximation, the power consumption of APEx is 29% less than that of the accurate 

adder and 4.5% less than that of the second lowest power consuming adder, HOAANED.  

The LUTs vs MSE and power vs MSE graphs of 32-bit approximate adders are given 

in Figure 5.9. These results are plotted for 4-bit to 20-bit approximation in a 32-bit adder. 

The 32-bit accurate adder uses 32 LUTs and consumes 10.75 mW power. 

 

While the number of LUTs used by most of the approximate adders decreases linearly 

with the increase in approximation, their respective power reductions do not follow the 

same trend. However, APEx provides significant power reduction compared to the 

accurate adder at the cost of a slight loss in accuracy. 

(a) (b) 

Figure 5.9 Comparison of 32-bit approximate adders with 4-bit to 20-bit approximation 

(left to right). (a) LUTs vs MSE. (b) Power vs MSE. 
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LUTs, power consumption and delay reductions achieved by 64-bit approximate 

adders with 16-bit approximation compared to 64-bit accurate adder are shown in Figure 

5.10. LEADx reduced the LUTs by 12.5% compared to the accurate adder. APEx reduced 

the LUTs by 23.4% and power consumption by 21% compared to the accurate adder. 

 

Figure 5.10 Area, Power, and Delay reduction achieved with 16-bit approximation in 

64-bit approximate adders compared to 64-bit accurate adder. 

LBA performs worse than the accurate adder in all these metrics. Among other FPGA 

specific adders, DeMAS provided no power reduction but reduced the LUTs by 11% 

compared to the accurate adder. The performance of HOAANED is compatible with 

APEx. However, as discussed earlier, it has lower quality than both LEADx and APEx. 

These results show that our proposed LEADx has smaller area, lower power, and 

better quality than the FPGA specific adders in the literature. The results show that 

DeMAS is the most efficient FPGA specific approximate adder in the literature. With 8-

bits approximation, LEADx has 7% smaller area and 86% lower MSE than DeMAS. LOA 

is one of the most efficient ASIC-based approximate adders in the literature [17]. LEADx 

has better quality than LOA at the same cost when implemented on an FPGA. With 8-bits 

approximation, LEADx has 87% lower MSE than LOA at the same cost. HOAANED is 

suitable for FPGA implementation. However, APEx has less power and better quality 

than HOAANED at the same cost, when implemented on an FPGA. APEx has more than 

60% lower MSE than HOAANED at the same cost. 

5.3.3 Comparison with Segmented and Speculative Approximate Adders 

In this section, we compare the proposed approximate adders with segmented and 

speculative adders in the literature; Almost Correct Adder (ACA-I) [62], Accuracy 
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Configurable Adder (ACA-II) [64], Block-based Carry Speculative Adder (BCSA) [75], 

Error-tolerant adder II (ETA-II) [63], and xUAV [74].  

The quality and implementation results of 16-bit adders with different approximation 

amounts are given in Table 5.7. These adders have same delay (1.35 ns). These adders 

are implemented with input and output registers. Therefore, although their critical paths 

are different, their speed is limited by the maximum frequency supported by Virtex 7 

FPGA. 

Table 5.7 Comparison of 16-Bit Proposed Approximate Adders with 16-Bit Segmented 

and Speculative Approximate Adders 

Adder 𝑚* 𝑟* LUTs 
Power 

(mW) 
ME RMSE 

ER 

(%) 

LEADx 
4 – 14 6.13 4 1.39 34.88 

8 – 12 6.09 72 23.29 63.15 

APEx 
4 – 13 5.45 3 1.58 74.90 

8 – 9 4.32 63 26.13 98.04 

ACA-I [62] 
4 1 29 6.25 34944 6702 34.13 

8 1 72 6.78 32768 1689 1.59 

ACA-II [64] 
4 2 22 6.29 17472 5232 47.88 

8 4 24 6.23 4096 703 5.90 

BCSA [75] 
4 4 24 6.42 4368 1029 6.20 

8 8 16 6.12 256 63 17.04 

ETA-II [63] 
4 2 22 6.30 17472 5232 47.88 

8 4 29 6.20 4096 703 5.90 

xUAV [74] 
3 1 16 6.24 37448 9615 61.84 

5 1 26 6.42 33824 4754 16.72 

*𝑚 is the size of approximate part (LSP) of LEADx and APEx. For other adders, 𝑚 is the segment size. For segmented and speculative 

adders, 𝑟 is the number of resultant bits contributing to the final sum from each segment. 

 

xUAV is an FPGA-specific segmented adder. Several configurations of xUAV are 

proposed in [74]. We used two most efficient configurations; one with the lowest error 

(m = 5, r = 1) and the other with low error and low area (m = 3, r = 1). 

The segmented and speculative adders follow fail-rare approach [76]. They have low 

ER. But their error magnitudes are usually large. Therefore, these adders have high MAE 

and MSE. For example, ACA-I with 8-bit segmentation has only 1.5% ER. However, its 

ME is 2^15. Most of the errors that occur in ACA-I have large magnitude, resulting in 

significantly high MSE. 

Among the segmented and speculative adders, BCSA with 8-bit segmentation has 

the best quality. ETA-II and ACA-II have similar architecture. Therefore, their error 

metrics are similar. However, for 8-bit segmentation, ACA-II is more area efficient than 

ETA-II.  
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LEADx and APEx have better quality, smaller area, and lower power consumption 

than the segmented and speculative adders. These results show that, for uniformly 

distributed inputs, fail-small approach gives better quality than fail-rare approach.  

5.3.4 Case Study: Motion Estimation in Video Encoding  

We also assessed the impact of the proposed approximate adders and the other 

approximate adders on video encoding quality. C++ implementations of 8-bit adders with 

4-bit approximation are integrated into High Efficiency Video Coding (HEVC) reference 

software HM 16.14 video encoder. 

The approximate adders are used for sum of absolute difference (SAD) computations 

for motion estimation (ME). ME accounts for approximately 70% of the computational 

complexity of video encoding [13]. The search strategy is set to fast test zone search (TZ). 

The quality results are obtained for four video sequences with different spatial resolutions. 

For each approximate adder, PSNR result in dB and the percentage increase in bitrate 

(ΔBR) with respect to using accurate adder are shown in Table 5.8. LEADx has the least 

quality loss, i.e., lowest PSNR decrease and lowest bitrate increase, compared to the other 

approximate adders.  

 

Table 5.8 Impact of Approximate Adders on HEVC Encoder Bitrate And PSNR 

Adder 

Video Sequence 

Traffic 

(2560x1600) 

BQ Terrace 

(1920x1080) 

Four People 

(1280x720) 

Party Scene 

(832x480) 

ΔBR 

(%) 

PSNR 

(dB) 

ΔBR 

(%) 

PSNR 

(dB) 

ΔBR 

(%) 

PSNR 

(dB) 

ΔBR 

(%) 

PSNR 

(dB) 

Accurate – 37.35 – 34.69 – 39.58 – 33.44 

LEADx 3.93 37.05 1.49 34.51 2.07 39.38 1.86 33.29 

APEx 4.33 37.03 1.98 34.50 2.08 39.38 1.98 33.28 

AFA [68] 4.46 36.89 2.28 34.50 2.55 39.34 2.90 33.24 

DeMAS–2 [71] 3.98 37.06 2.64 34.50 2.20 39.29 1.87 33.29 

HOAANED [67] 10.70 36.76 3.54 34.44 4.68 39.28 4.37 33.18 

LBA [70] 11.35 36.77 3.57 34.44 3.89 39.27 4.49 33.18 

LOA [16] 11.78 36.76 3.77 34.45 3.63 39.30 3.89 33.19 

SEDA [73] 11.61 36.75 3.66 34.44 2.87 39.27 4.26 33.15 
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Chapter 6 

6 CONCLUSIONS  

In this thesis, efficient ME hardware for HEVC and VVC standards are proposed. 

The proposed VVC ME hardware is the first VVC ME hardware in the literature. We 

proposed an approximate adder suitable for SAD calculation in ME. We analyzed the 

impact of approximate circuits on the performance and quality of HEVC ME. We 

proposed a methodology to design approximate adders for FPGAs. Two approximate 

adders for FPGAs, one targeting high quality and the other targeting low area and power, 

are designed using the proposed methodology. We also proposed a novel low error 

approximate SAD hardware for FPGAs. It has the lowest area and consumes the lowest 

power among the approximate and accurate SAD hardware in the literature.  

As future work, the impact of using approximate adders in the SAD adder tree of ME 

hardware can be investigated. Run-time error detection and correction for the proposed 

approximate SAD hardware can be explored. Fast VVC ME algorithms and their efficient 

hardware implementations can be proposed. 
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