
EFFICIENT HEVC AND VVC MOTION ESTIMATION HARDWARE

by

WAQAR AHMAD

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of Doctor of Philosophy

Sabanci University

July 2021

© WAQAR AHMAD 2021

All Rights Reserved

iv

ABSTRACT

EFFICIENT HEVC AND VVC MOTION ESTIMATION HARDWARE

WAQAR AHMAD

Electronics Engineering PhD Thesis, 2021

Thesis Supervisor: Assoc. Prof. İlker Hamzaoğlu

Keywords: HEVC, VVC, Inter Prediction, Motion Estimation, Approximate

Computing, Hardware Implementation, FPGA, Low Energy

The significant increase in digital video usage and spatial and temporal video resolutions,

has led to the development of new video coding standards, which can compress more

without causing quality loss. HEVC and VVC are the two latest video coding standards.

VVC is the most recent standard and it is more computationally complex than HEVC.

Motion estimation (ME) is used in these standards to remove temporal redundancies

between successive video frames. ME accounts for at least 50% and as much as 70% of

the total encoding time in both these standards. Approximate computing is an emerging

technique to design efficient hardware for error-tolerant applications such as video

coding.

In this thesis, an efficient HEVC ME hardware is proposed. An approximate adder,

suitable for absolute difference operation, is proposed and integrated to this HEVC ME

hardware. Detailed comparison of several approximate circuits including the proposed

approximate adder and traditional bit truncation technique for HEVC ME is presented.

The proposed approximate adder achieved up to 10% power reduction in ME hardware

while providing better quality than the other approximate circuits.

An efficient hardware for translational VVC ME is also proposed. It is the first VVC ME

hardware in the literature. The proposed hardware reduces the memory accesses

significantly by using an efficient data access and reuse method. It uses a novel adder tree

v

to minimize hardware area while meeting real-time video encoding requirements. It is

capable of processing up to 30 4K video frames per second.

An efficient approximate sum of absolute differences (SAD) hardware is proposed for

FPGAs. It utilizes the unused LUT inputs of an FPGA to reduce area and power

consumption while providing an almost accurate result. The proposed approximate SAD

hardware uses up to 20% less LUTs and consumes up to 38% less power than the smallest

and lowest power-consuming approximate SAD hardware in the literature, respectively.

The proposed SAD hardware can be used in HEVC and VVC ME hardware.

Finally, a methodology is proposed for designing low error efficient approximate adders

for FPGAs. Two approximate adders for FPGAs are designed using the proposed

methodology: low error and area efficient approximate adder (LEADx), and area and

power efficient approximate adder (APEx). LEADx has lower mean square error than the

approximate adders in the literature. APEx is the smallest and lowest power consuming

FPGA-based adder in the literature. These approximate adders are integrated to ME in

HEVC software encoder. LEADx provided better quality than the other approximate

adders for HEVC video coding.

vi

ÖZET

VERIMLI HEVC VE VVC HAREKET TAHMINI DONANIMLARI

WAQAR AHMAD

Elektronik Mühendisliği, Doktora Tezi, 2021

Tez Danışmanı: Doç. Dr. İlker Hamzaoğlu

Anahtar Kelimeler: HEVC, VVC, Çerçeveler Arası Öngörü, Hareket Tahmini,

Yaklaşık Hesaplama, Donanım Gerçekleme, FPGA, Düşük Enerji

Sayısal video kullanımındaki, uzamsal ve zamansal video çözünürlüklerindeki önemli

artışlar nedeniyle, kalite kaybına neden olmadan daha fazla sıkıştırma yapan video

kodlama standartları geliştirilmektedir. HEVC ve VVC en son geliştirilen video kodlama

standartlarıdır. En yeni standart olan VVC HEVC’den daha fazla hesaplama

karmaşıklığına sahiptir. Hareket Tahmini (HT) ardışık video çerçevelerindeki zamansal

artıklıkları azaltmak için kullanılır. HEVC ve VVC standartlarındaki toplam kodlama

süresinin en az %50’si ile en fazla %70’ini HT almaktadır. Yaklaşık hesaplama, video

kodlama gibi hatalara dayanıklı uygulamalar için verimli donanım tasarlamak için

kullanılan yeni bir tekniktir.

Bu tezde, verimli bir HEVC HT donanımı önerilmiştir. Mutlak fark işlemi için uygun bir

yaklaşık toplayıcı önerilmiş ve HEVC HT donanımına entegre edilmiştir. Geleneksel bit

kesme yöntemi ve önerilen yaklaşık toplayıcı da dahil olmak üzere, yaklaşık devrelerin

HEVC HT donanımında kullanımları detaylı karşılaştırmıştır. Önerilen yaklaşık toplayıcı

%10’a kadar güç azalması sağlamış ve diğer yaklaşık devrelerden daha kaliteli sonuçlar

vermiştir.

Bir verimli VVC öteleme HT donanımı önerilmiştir. Bu literatürdeki ilk VVC HT

donanımıdır. Önerilen donanım verimli veri erişimi ve yeniden kullanma yöntemi

kullanarak bellek erişimini önemli miktarda azaltmaktadır. Önerilen donanım özgün

vii

toplayıcı ağacı kullanarak donanım alanını azaltmasına rağmen gerçek zamanlı video

kodlamaktadır. Önerilen donanım saniyede 30 tane 4K video çerçevesi işleyebilmektedir.

FPGA’lar için verimli yaklaşık mutlak farklar toplamı (MFT) donanımı önerilmiştir.

Önerilen MFT donanımı, FPGA’daki LUT’ların kullanılmayan girdilerini kullanarak alan

ve güç tüketimini azaltmakta ve neredeyse tam doğru sonuç vermektedir. Önerilen

yaklaşık MFT donanımı, literatürdeki en küçük yaklaşık MFT donanımından %20 daha

az LUT kullanmakta ve literatürdeki en az güç tüketen yaklaşık MFT donanımından %38

daha az güç tüketmektedir. Önerilen MFT donanımı HEVC ve VVC HT donanımlarında

kullanılabilir.

Son olarak, FPGA’lar için düşük hatalı verimli yaklaşık toplayıcı tasarlama yöntemi

önerilmiştir. Önerilen yöntem kullanılarak FPGA’lar için iki yaklaşık toplayıcı

tasarlanmıştır: düşük hatalı ve alan verimliliği yüksek yaklaşık toplayıcı (LEADx), ve

alan ve güç verimliliği yüksek yaklaşık toplayıcı (APEx). LEADx literatürdeki yaklaşık

toplayıcılardan daha düşük ortalama kare hatasına sahiptir. APEx literatürdeki en küçük

ve en az güç tüketen FPGA tabanlı toplayıcıdır. Bu yaklaşık toplayıcılar HEVC kodlayıcı

yazılımındaki HT’ne entegre edilmiştir. LEADx HEVC video kodlamada diğer yaklaşık

toplayıcılardan daha kaliteli sonuçlar vermiştir.

viii

ACKNOWLEDGEMENTS

During my PhD, I had the opportunity to meet and work with some amazing people. Each

one of them brought forward a unique perspective that helped me grow personally and

professionally. While I truly cherish my relationship with all of them, I would like to take

this opportunity to name the people without whose contribution I could not have

completed this thesis.

First and foremost, I would like to extend my gratitude to my advisor, Dr. İlker

Hamzaoğlu, for his invaluable guidance, help, and supervision. His technical expertise

and knowledge have been instrumental in my professional development. He believed in

me all along and motivated me to do more when I had lost hope. He taught me how to

approach a challenging research problem and always provided constructive comments

about my work.

I want to present my utmost gratitude to my thesis progress committee members, Dr.

Ahmet Onat and Dr. Özgür Gürbüz. They not only provided insightful remarks to improve

the quality of this thesis but also supported me in difficult times. I am also thankful to Dr.

Mustafa Altun and Dr. Tuba Ayhan for accepting to be part of my thesis jury and for their

valuable feedback.

I want to thank Higher Education Commission, Pakistan for supporting this thesis in part.

I also want to thank Scientific and Technological Research Council of Turkey

(TUBITAK) for supporting this thesis in part, under contract number 118E134.

I would like to thank Berke Ayrancioğlu for the technical discussions and informal

conversations we had during my time at Sabanci University. I am also thankful to all the

members of Pakistani graduate students’ community at Sabanci University for creating a

brotherly environment. We celebrated many events together, played friendly yet

competitive sports, shared our food, and had thoughtful discussions. Their presence never

let me feel alone in a foreign land without family.

I am grateful to my family for their unconditional love and never-ending support. My

parents, Mian Abdul Basit and Naheed Farhat, always made sure that I get the best of

everything in my life. No words can be enough to thank them for the contributions and

sacrifices they made for my success. I am also thankful to my siblings for always

pampering me with love and care. My brother, Suhail Basit, deserves a special mention

as he always provided me the best guidance whenever needed and ensured that I have the

freedom to follow my dreams. My special thanks go to my wife, Aleena, for her never-

ending love and for taking care of our little bundle of joy, Maheen Basit. Last but not the

least, I am grateful to my parents-in-law for being supportive and caring all the time.

ix

TABLE OF CONTENTS

Abstract ... iv

Özet ... vi

Acknowledgements .. viii

List of Tables .. xi

List of Figures .. xii

List of Abbreviations .. xiv

1 Introduction .. 1

1.1 Video Coding Fundamentals .. 3

1.2 Video Coding Standards ... 4

1.2.1 High Efficiency Video Coding (HEVC) Standard 5

1.2.2 Versatile Video Coding (VVC) Standard .. 6

1.3 Motion Estimation .. 6

1.4 Thesis Contributions ... 7

1.5 Thesis Outline ... 9

2 Approximate Circuits for HEVC Motion Estimation 10

2.1 Assessment of Approximate Circuits in Absolute Difference Hardware . 12

2.2 Motion Estimation Hardware.. 17

2.3 Assessment of Approximate Circuits in Motion Estimation Hardware ... 18

3 An Efficient Versatile Video Coding Motion Estimation Hardware 22

3.1 VVC Motion Estimation ... 23

3.2 Proposed VVC Motion Estimation Hardware .. 25

3.2.1 Memory and Systolic PE Array ... 27

3.2.2 SAD Adder tree ... 30

x

3.2.3 Comparator .. 33

3.3 Implementation Results .. 33

3.3.1 Comparison With HEVC ME Hardware ... 35

4 An Efficient Approximate SAD Hardware for FPGAs.................................... 37

4.1 Background ... 38

4.1.1 SAD Hardware .. 38

4.1.2 Xilinx Virtex FPGA .. 39

4.2 Proposed Approximate SAD Hardware .. 41

4.3 Implementation Results .. 43

5 Low Error Efficient Approximate Adders for FPGAs 47

5.1 Background ... 49

5.1.1 Related Works ... 49

5.1.2 Length of carry .. 50

5.1.3 Xilinx Virtex FPGA .. 51

5.2 Proposed Design Methodology ... 52

5.2.1 Proposed low error and area efficient approximate adder 55

5.2.2 Proposed area and power efficient approximate adder for FPGAs ... 58

5.3 Experimental Results and Discussion ... 60

5.3.1 Error Metrics ... 61

5.3.2 Implementation Results ... 64

5.3.3 Comparison with Segmented and Speculative Approximate Adders 66

5.3.4 Case Study: Motion Estimation in Video Encoding.......................... 68

6 Conclusions .. 69

Bibliography .. 70

xi

LIST OF TABLES

Table 2.1 HEVC MSE Results ... 19

Table 3.1 Number of possible partitions and unique motion vectors in a 64x64 CU 26

Table 3.2 Performance of the proposed VVC ME hardware for different configurations

 .. 34

Table 3.3 Resource usage for 128x128 CTU size .. 35

Table 3.4 Resource usage for 64x64 CTU size .. 35

Table 3.5 Comparison with HEVC ME Hardware ... 36

Table 4.1 Quality comparison for 4×4 approximate SAD .. 43

Table 4.2 Reductions achieved by proposed approximate SAD hardware 44

Table 5.1 Probability of the length of a carry being equal to L bits 51

Table 5.2 Effects of Increasing the Number of Bits (k) for Carry Prediction in a 64-Bit

Approximate Adder with 12-Bits LSP.. 53

Table 5.3 Truth Table of Proposed 2-BIT Approximate Adder (AAd2) used for

Approximation in least-significant m–2 bits of LEADx .. 56

Table 5.4 Error Characterization of Constant Approximate Functions for 1-Bit Addition

 .. 58

Table 5.5 Error Metrics of 64-Bit Approximate Adders .. 63

Table 5.6 FPGA Implementation Results of 16-Bit Adders with 8-Bit Approximation 64

Table 5.7 Comparison of 16-Bit Proposed Approximate Adders with 16-Bit Segmented

and Speculative Approximate Adders .. 67

Table 5.8 Impact of Approximate Adders on HEVC Encoder Bitrate And PSNR 68

xii

LIST OF FIGURES

Figure 1.1 Global consumer internet traffic - trends and forecasts 2

Figure 1.2 Country-wise estimate of daily video consumption time by device type........ 2

Figure 1.3 Workflow of a video system ... 3

Figure 1.4 Development history of video coding standards ... 4

Figure 1.5 Overview of a typical block-based encoder .. 5

Figure 1.6 Partitioning of a CU into a PU in HEVC .. 6

Figure 1.7 The motion estimation process .. 7

Figure 2.1 Approximate Circuits Assessment Framework ... 12

Figure 2.2 (a) Proposed 1-bit Approximate FA (b) n-bit Approximate Subtractor 14

Figure 2.3 Approximate Adders (a) IMPACT-1 (b) IMPACT-2 14

Figure 2.4 m-bit LOA ... 14

Figure 2.5 (a) GeAr Adder (N=8, R=2, P=4) (b) NAAD 0 (c) NAAD 2 15

Figure 2.6 (a) Baseline 1 AD Hardware (b) Baseline 2 AD Hardware 15

Figure 2.7 Assessment Results (a) Percentage Accuracy (b) Average Error (c) Mean

Squared Error (d) Standard Deviation (e) Maximum Frequency (f) Energy Consumption

 .. 16

Figure 2.8 HEVC Motion Estimation Hardware .. 17

Figure 2.9 HEVC ME Processing Unit ... 17

Figure 2.10 (a) Power Reduction (%) (b) Slice Reduction (%) (c) LUT Reduction (%) 21

Figure 3.1 Allowed partitions in VVC. .. 24

Figure 3.2 An example of QTMT partitioning of 128x128 CTU and its decision tree. . 25

Figure 3.3 Examples of redundant partitions in VVC. ... 25

Figure 3.4 Proposed VVC ME hardware .. 27

Figure 3.5 Systolic processing element (PE) array and registers. 28

Figure 3.6 Processing Element (PE) ... 28

Figure 3.7 (a) Vertical snake scan order (b) Data re-use in downward, upward, and right

directions. .. 29

Figure 3.8 4x4 SAD calculation. .. 31

file:///D:/Waqar/Articles/Thesis/WAQAR_Thesis%20-%20vFINAL.docx%23_Toc83726610

xiii

Figure 3.9 SAD adder tree (a) SADs of BH, BV, Q partitions N = 4, 8, 16, 32 (b) SADs

of BH_BH, BV_TH, BH_TV, BV_BV, TH, TV partitions N = 8, 16 (c) SADs of TH_TH,

TH_BH, BH_TH, BV_TV, TV_BV, TV_TV partitions N = 16. 31

Figure 3.10 128x128 SAD calculation. .. 32

Figure 4.1 Generic SAD hardware ... 38

Figure 4.2 Accurate absolute difference hardware ... 39

Figure 4.3 Simplified architecture of a slice in Xilinx Virtex 5/6/7 FPGAs 40

Figure 4.4 Proposed adder/subtractor including complement operations....................... 41

Figure 4.5 Implementation of the proposed n-bit adder/subtractor including complement

operations .. 41

Figure 4.6 Proposed approximate 2×1 SAD hardware ... 42

Figure 4.7 Implementation results for 8-bit inputs ... 45

Figure 4.8 Implementation results for 16-bit inputs ... 46

Figure 5.1 Architecture of approximate full-adder based n-bit approximate adders 48

Figure 5.2 Proposed 2-bit approximate adder (AAd1) used in MSBs of LSP. 54

Figure 5.3 Architecture of proposed approximate adders for FPGAs. 54

Figure 5.4 Proposed n-bit low error and area efficient approximate adder (LEADx). ... 57

Figure 5.5 Example of 16-bit LEADx with 8-bit approximation. 57

Figure 5.6 Proposed n-bit area and power efficient approximate adder (APEx). 60

Figure 5.7 Example of 16-bit APEx with 8-bit approximation. 60

Figure 5.8 Error distribution and error metrics of 16-bit approximate adders with 8-bit

approximation. .. 62

Figure 5.9 Comparison of 32-bit approximate adders with 4-bit to 20-bit approximation

(left to right). (a) LUTs vs MSE. (b) Power vs MSE.. 65

Figure 5.10 Area, Power, and Delay reduction achieved with 16-bit approximation in 64-

bit approximate adders compared to 64-bit accurate adder. ... 66

file:///D:/Waqar/Articles/Thesis/WAQAR_Thesis%20-%20vFINAL.docx%23_Toc83726643
file:///D:/Waqar/Articles/Thesis/WAQAR_Thesis%20-%20vFINAL.docx%23_Toc83726643

xiv

LIST OF ABBREVIATIONS

BRAM Block RAM

CTU Coding Tree Unit

CU Coding Unit

DCT Discrete Cosine Transform

DST Discrete Sine Transform

FPGA Field Programmable Gate Array

HEVC High Efficiency Video Coding

HM HEVC Reference Software

LUT Look Up Table

ME Motion Estimation

MSE Mean Squared Error

MV Motion Vector

PSNR Peak Signal-to-Noise Ratio

PU Prediction Unit

QP Quantization Parameter

QTMT Quadtree plus Multi-type tree

SAIF Switching Activity Interchange Format

TU Transform Unit

VVC Versatile Video Coding

1

Chapter 1

1 INTRODUCTION

In the last decade, the production, distribution, and consumption of digital video has

grown at an extraordinary pace. The number of consumer electronics devices that can

capture, process, store and transmit digital video has significantly increased. The video

streaming services have become popular. The video calls have become part of daily life.

The ongoing COVID-19 pandemic has further increased the digital video consumption as

the demand for video conferencing and online education significantly increased.

In addition, the continuously increasing demand for higher temporal and spatial

resolutions, high dynamic range (HDR) video, and immersive video further increased the

amount of digital video that needs to be stored and transmitted. According to CISCO

Visual Networking Index, the video content will have more than 82% share in the total

internet traffic by 2022, as shown in Figure 1.1 [1].

Efficient video compression, therefore, is a critical need to enable all these

applications under limited bandwidth and storage capacity. The two latest video coding

standards, High Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC),

are developed to fulfill this need [2].

These video coding standards have very high computational complexity. Most of the

video content is consumed on battery-powered devices as shown in Figure 1.2 [3].

Software implementations of these video coding standards either do not satisfy real-time

performance (frames per second) or power consumption requirements for power-

constrained devices. Hardware implementations, on the other hand, satisfy these

requirements.

2

Figure 1.1 Global consumer internet traffic - trends and forecasts

Figure 1.2 Country-wise estimate of daily video consumption time by device type.

Approximate computing is a new design technique that trades off accuracy for

performance, area and/or power consumption for error-tolerant applications such as video

coding. The video compression is error-tolerant in nature since the only requirement is to

produce output that has sufficient quality to provide good user experience. Therefore,

approximate computing has a huge potential to improve the performance, area and/or

power consumption of hardware implementations of video coding standards.

3

1.1 Video Coding Fundamentals

A video is a sequence of images captured at high enough rate to create the visual

perception of smooth motion. These images (or frames) have four types of redundancies:

perceptual, spatial, temporal, and statistical. A video encoder compresses a video by

removing these redundancies.

Figure 1.3 Workflow of a video system

The typical flow of a video system involves an encoder at the transmitting end and a

decoder on the receiving end as shown in Figure 1.3. The video encoder produces a bit

stream representing the video and the video decoder decodes that bitstream to reproduce

the video. The encoder and decoder must agree on the syntax of the bitstream. A video

coding standard defines the syntax of the encoded bitstream. The video encoder tries to

find the best possible way to compress the video, whereas the video decoder decodes the

encoded video by following the syntax of the bitstream. Therefore, video encoder has

significantly higher computational complexity than video decoder.

The peak-signal-to-noise-ratio (PSNR) metric is often used to measure the quality of

an encoded video. The PSNR provides a measure of relative error between original and

decoded video. The average amount of bits required to encode one second of video is

usually referred to as the bitrate. The efficiency of a video encoder is usually measured in

terms of rate distortion (RD) performance. The RD performance is visualized by plotting

the PSNR against the corresponding bitrate over a range of operating points. This

graphical representation is called RD curve.

Transmission

Medium

Encode

Decode

Decode

Encode

4

1.2 Video Coding Standards

In the last three decades, several video coding standards are developed by ITU-T and

ISO standardization organizations independently or with the combined effort of their Joint

Collaborative Team on Video Coding (JCT-VC). The development history of these video

coding standards is shown in Figure 1.4. Each new video coding standard provides higher

coding efficiency than its predecessor.

Figure 1.4 Development history of video coding standards

These video coding standards use the same block-based hybrid coding model shown

in Figure 1.5 [2]. In the video encoder, there is has a forward path to generate bitstream

and a reconstruction path to ensure that identical reference frames are used in both video

encoder and decoder. Each video frame is divided into small blocks. Each block is coded

individually in raster scan order. Each block is predicted by intra prediction and inter

prediction (motion estimation). Mode decision determines the best prediction. Predicted

block is subtracted from the current block, and the resulting residual block is transformed,

quantized and entropy coded.

The latest video coding standards HEVC and VVC also use this block-based hybrid

coding model. However, they use different algorithms for intra prediction, inter prediction

and transform.

ISO-MPEG

JCT- VC

ITU-T

MPEG-4

2003

H.264/

AVC

H.261

1990 1993

MPEG-1

1995

H.262/

MPEG-2

2013

H.265/

HEVC

2020

H.266/

VVC

1996

H.263

1999

5

Figure 1.5 Overview of a typical block-based encoder

1.2.1 High Efficiency Video Coding (HEVC) Standard

HEVC standard was developed in 2013 [4]. HEVC provides 50% better coding

efficiency than its predecessor H.264/AVC standard by using several new coding tools

[5]. HEVC replaces the macroblock used in previous video coding standards with the

coding tree unit (CTU). It uses a new block partitioning structure based on a quadtree.

The largest CTU size in HEVC is 64x64 whereas the largest macroblock size in H.264 is

16x16. The size of a CTU in HEVC can be 16x16, 32x32, or 64x64. The CTU can be

partitioned into coding units (CUs) recursively using quadtree structure. The size of a CU

can be 8x8, 16x16, 32x32, or 64x64. The mode decision between intra prediction and

inter prediction is done at the CU level. A CU can be further partitioned into prediction

units (PU). A PU can be square, rectangular, or asymmetric as shown in Figure 1.6. The

size of a PU can vary from 8x4 or 4x8 to 64x64. The asymmetric and rectangular

partitions can only be used for inter-prediction and only square partitions can be used for

intra prediction.

HEVC uses three types of intra prediction, DC, planar, and angular. The angular

prediction supports up to 33 directions. The intra PU size can be as small as 4x4. HEVC

inter prediction is computationally more complex than H.264 inter prediction because of

the larger block size and larger number of block partitions.

Rate
Control

QP

Transform Quantization
Entropy
Coding

Rate Distortion
Optimization

(Mode Decision)

Inverse
Quantization

Inverse
Transform

Deblocking
Filter

Motion
Estimation

Motion
Compensation

Intra
Prediction

Input Video
(Current Frame)

Reference
Frames

Reconstructed Frame Partial Decoder
(Reconstruction Path)

Output
Bitstream

+
+

+

–

6

Figure 1.6 Partitioning of a CU into a PU in HEVC

1.2.2 Versatile Video Coding (VVC) Standard

VVC is the latest video coding standard developed in 2020 by the Joint Video Experts

Group (JVET) of ITU and ISO standardization organizations [6]. VVC offers 50% better

coding efficiency than HEVC and 75% better coding efficiency than H.264 standard at

the cost of significant increase in computational complexity [7]. VVC is designed to be

versatile, i.e., it supports encoding diverse type of video content such as high dynamic

range, 360º video, and virtual reality.

The largest CTU size in VVC is 128x128. VVC uses a new quadtree plus multi-type

tree (QTMT) structure which allows more flexible block partitions than HEVC. VVC

uses translational motion estimation used in previous video coding standards. However,

it also uses affine motion estimation and bi-directional optical flow to predict more

complex motion. The intra prediction in VVC is also more complex than HEVC as it uses

93-direction angular prediction. VVC uses multiple primary transforms (DCT, DST) and

a low frequency non-separable secondary transform.

1.3 Motion Estimation

These video coding standards use block matching for motion estimation. In block

matching, current video frame is divided into blocks. As shown in Figure 1.7, for each

block in the current frame, the best matching block in a search window (SW) in the

reference frame and the corresponding motion vector (MV) are determined.

Inter prediction only

Asymmetric Motion Partitions

7

Figure 1.7 The motion estimation process

Sum of absolute differences (SAD) metric is typically used to determine the best

matching block. The SAD between two blocks, A and B, of size W x H is calculated as

shown in (1.1), where A(i,j) and B(i,j) are values of the pixels in 𝑖th row and 𝑗th column

of A and B, respectively.

𝑆𝐴𝐷 = ∑ ∑|𝐴(𝑖, 𝑗) − 𝐵(𝑖, 𝑗)|

𝐻−1

𝑗=0

𝑊−1

𝑖=0

(1.1)

ME is the most computationally complex and memory intensive module in all the

video coding standards. Its complexity has increased in HEVC and VVC standards. In

HEVC encoder, ME accounts for up to 83% and on average 70% of the total encoder

complexity [8]. In VVC encoder, ME accounts for on average 65% of the total encoder

complexity [9]. Therefore, efficient HEVC and VVC ME hardware implementations are

necessary to perform real-time video coding.

1.4 Thesis Contributions

This thesis makes the following technical contributions:

We propose an efficient HEVC ME hardware. An approximate adder, suitable for

absolute difference operation, is proposed and integrated to this HEVC ME hardware. A

framework is proposed to compare the performance of approximate circuits. Detailed

Search Window

Best Match
Current Block

Reference Frame Current Frame

8

comparison of several approximate circuits including the proposed approximate adder

and traditional bit truncation technique for HEVC ME is presented. The proposed

approximate adder achieved up to 10% power reduction in the ME hardware while

providing better quality than the other approximate circuits.

We propose an efficient translational VVC motion estimation hardware. It is the first

VVC ME hardware in the literature. It supports maximum coding tree unit size of

128x128 using a 64x64 systolic processing element array and a novel memory-based

SAD adder tree. It reduces memory accesses significantly by using an efficient data access

and reuse method. The proposed VVC ME hardware is implemented on a Xilinx Virtex

7 FPGA. It can process up to 30 4K (3840x2160) video frames per second.

We propose an efficient approximate SAD hardware with very small maximum and

average error for FPGAs. The proposed approximate SAD hardware utilizes the unused

LUT inputs to reduce area and power consumption while providing an almost accurate

result. The proposed approximate SAD hardware has smaller maximum and average error

than the approximate SAD hardware in the literature. It uses up to 20% less LUTs than

the smallest approximate SAD hardware in the literature. It consumes up to 38% less

power than the lowest power consuming approximate SAD hardware in the literature.

We propose a methodology for designing low error efficient approximate adders for

FPGAs. The proposed methodology utilizes FPGA resources efficiently to reduce the

error of approximate adders. We propose two approximate adders for FPGAs using our

methodology: low error and area efficient approximate adder (LEADx), and area and

power efficient approximate adder (APEx). Both approximate adders are composed of an

accurate and an approximate part. The approximate parts of these adders are designed in

a systematic way to minimize the mean square error (MSE). LEADx has lower MSE than

the approximate adders in the literature. The 32-bit LEADx with 16-bit approximation

has 20% lower MSE than the approximate adder with the lowest MSE in the literature.

The 16-bit APEx with 8-bit approximation has the same area, 60% lower MSE, and 4.5%

less power consumption in Xilinx Virtex 7 FPGA than the smallest and lowest power

consuming approximate adder in the literature. APEx has smaller area and lower power

consumption than the other approximate adders in the literature. As a case study, the

approximate adders are used in video encoding application. LEADx provided better

quality than the other approximate adders for video encoding.

9

1.5 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 presents a new approximate adder and an efficient HEVC ME hardware.

First, a framework to compare approximate circuits is presented and the performance of

approximate circuits is determined using the proposed framework. Then, HEVC ME

hardware is explained. Finally, the impact of using approximate circuits in ME hardware

is presented.

Chapter 3 presents an efficient VVC ME hardware. First, VVC motion estimation is

explained. Then, the proposed VVC ME hardware is explained. Finally, its

implementation results and comparison with HEVC ME hardware in the literature are

presented.

Chapter 4 presents an approximate SAD hardware for ME. First, accurate absolute

difference hardware implementations are explained, and an overview of the Xilinx Virtex

FPGAs is provided. Then, the proposed approximate SAD hardware is explained. Finally,

its implementation results and comparison are presented.

Chapter 5 presents low error efficient approximate adders for FPGAs. First, the

concept of length of carry is presented. Then, the methodology proposed for designing

low error efficient approximate adders for FPGAs is explained. Then, the proposed

approximate adders and the mathematical models to compute their error metrics are

explained. Then, their error analyses and implementation results are presented. Finally,

the results of using approximate adders in video encoding are presented.

Chapter 6 concludes this thesis and presents potential future work.

10

Chapter 2

2 APPROXIMATE CIRCUITS FOR HEVC MOTION ESTIMATION

Video coding is a very computationally complex process and the growing demand

for ultra-high-definition video has led to development of more computationally complex

video coding standards. The current state-of-the-art video coding standard, High

Efficiency Video Coding (HEVC), provides 50% better compression efficiency compared

to H.264 video coding standard, at the expense of more computational complexity [5].

Versatile Video Coding (VVC) standard is expected to provide better compression

efficiency than HEVC standard at the expense of even more computational complexity

[2].

Motion estimation (ME) is the most computationally complex and power consuming

module in video encoder hardware. Block matching ME is used in H.264, HEVC and

VVC standards to remove temporal redundancies in video sequences. For each block in

the current frame, block matching ME determines the best matching reference block in a

search window in the previous frame based on a distortion metric.

Sum of absolute differences (SAD) is the most commonly used distortion metric for

block matching ME. SAD value for a current block of H x W pixels is defined as

𝑆𝐴𝐷 = ∑ ∑|𝐶𝑢𝑟(𝑥, 𝑦) − 𝑅𝑒𝑓(𝑥, 𝑦)|

𝑊

𝑦=1

𝐻

𝑥=1

(2.1)

where Cur(x,y) is value of the pixel in (x,y) position of the current block and Ref(x,y) is

value of the pixel in (x,y) position of the reference block.

Number of search locations that should be searched for each block in the current

frame depends on ME algorithm and size of search window. For example, for full search

ME algorithm with 16x16 search window, 256 search locations should be searched. For

full search ME algorithm with 128x128 search window, 16384 search locations should

be searched. Number of arithmetic operations required for calculating SAD values for a

11

search location depends on size of the largest coding block, and number and sizes of its

sub-blocks.

In HEVC, the largest coding block size is 64x64 and it has 593 sub-blocks. 4096

absolute difference and 4517 addition operations are required to calculate 593 SAD values

of a 64x64 block in the current frame for one search location. 141 million arithmetic

operations are required to calculate SAD values for 16384 search locations.

Block matching is repeated for all blocks in the current frame. There are 8100 16x16

blocks in a full high definition (1920x1080) image. There are 2025 64x64 blocks in an

ultra-high definition (3840x2160) image. Block matching is then repeated for all frames

in the video sequence. Video sequences typically have at least 30 frames per second.

Therefore, block matching ME requires huge amount of arithmetic operations.

Approximate hardware can achieve better performance, area and power consumption

than accurate hardware while providing acceptable quality for error tolerant applications

[11]-[13]. Video coding can tolerate small errors [14]. Therefore, approximate computing

can be used for block matching ME.

Approximate adders proposed in literature can be broadly classified into two

categories. (1) Approximation of 1-bit full adder [15], [16]. These adders simplify 1-bit

full adder logic. They divide n-bit addition into two parts, approximate part for least

significant bits (LSBs) and accurate part for most significant bits (MSBs). They use the

approximate 1-bit full adder in the approximate part. (2) Segmented adders [17], [18].

These adders break the carry chain by dividing n-bit addition into several smaller fixed

size overlapping sub-adders working in parallel. They have higher speed than accurate

adders. However, they consume more area and power than accurate adders.

Bit truncation technique is used to increase speed and reduce area and power

consumption of ME hardware [19], [23] - [25]. Recently, several works analyzing impact

of using approximate circuits in ME hardware are published. Impact of using approximate

arithmetic in HEVC ME to reduce computational complexity is analyzed in [20]. An

approximate SAD hardware using lower-part-OR adder (LOA) [16] is proposed for

HEVC ME in [21]. Impact of using approximate adders in different parts of SAD tree is

analyzed in [22]. However, their ME hardware does not support the asymmetric partitions

defined in HEVC standard. In addition, quality of approximate adder is analyzed using

only error distance and power metrics, speed and area results are not reported.

In this chapter, an approximate adder is proposed. Detailed assessment of using the

proposed approximate adder, several generic approximate adders, the approximate

12

absolute difference hardware proposed in [26] and bit truncation in HEVC ME hardware

is presented.

The proposed approximate adder achieved up to 10% power reduction in ME

hardware while providing better quality than the other approximate circuits. Traditional

bit truncation achieved the largest area and power reductions in ME hardware at the

expense of more quality loss than the proposed approximate adder. Generic accuracy

reconfigurable adder (GeAr) segmented approximate adder [18] had the worst quality,

area and power consumption results.

2.1 Assessment of Approximate Circuits in Absolute Difference Hardware

We assessed impact of using several approximate circuits including the proposed

approximate adder and traditional bit truncation technique in absolute difference

hardware using the framework shown in Figure 2.1.

Figure 2.1 Approximate Circuits Assessment Framework

As shown in the figure, for each approximate circuit, the absolute difference

hardware using this approximate circuit is described in Verilog HDL. The Verilog RTL

code is synthesized and implemented on a Xilinx Virtex 7 FPGA. The FPGA

implementation is verified with post-implementation timing simulations. The absolute

difference hardware using this approximate circuit is also modeled in C language.

Functional simulation results of the C model and post-implementation timing simulation

results are compared to verify the C model and the FPGA implementation.

We used percentage accuracy, average error, mean squared error and standard

deviation quality metrics as defined in equations (2.2)-(2.7) to assess the quality of using

an approximate circuit in absolute difference hardware. In these equations, R is accurate

result, R^' is approximate result, X is total number of results, and Y is number of

Verilog RTL Synthesis
& Implementation

on a Xilinx Virtex 7 FPGA

Post-Implementation Simulation

Power and Energy Estimation

Verilog HDL Description

Functional Simulation

Result Verification

Determining Quality Metrics

Modeling in C Language

Absolute Difference Architecture

Hardware Software

13

inaccurate results. We determined these quality metrics for each approximate circuit using

its C model.

Absolute Error Value

𝐴𝐸𝑉 = |𝑅 − 𝑅′| (2.2)

Percentage Accuracy

𝑃𝐴 =
𝑋 − 𝑌

𝑋
∗ 100 (2.3)

Total Error

𝑇𝐸 = ∑ 𝐴𝐸𝑉𝑖

𝑋

𝑖=1

(2.4)

Average Error

𝐴𝐸 =
𝑇𝐸

𝑋
 (2.5)

Mean Squared Error

𝑀𝑆𝐸 =
1

𝑋
∑(𝐴𝐸𝑉𝑖)

2

𝑋

𝑖=1

(2.6)

Standard Deviation

𝜎 = √
∑ (𝐴𝐸𝑉𝑖 − 𝐴𝐸)2𝑋

𝑖=1

𝑋
(2.7)

The proposed 1-bit approximate full adder is shown in Figure 2.2 (a). It generates

carry-out (Cout) output without considering the effect of carry-in (Cin) input. Carry-out is

1 whenever one or both inputs A and B are 1. The sum logic is also modified to reduce

error magnitude. Error is generated in the following two cases; (A = 0, B = 1 , Cin = 0 →

S = 0, Cout = 1) and (A = 1, B = 0 , Cin = 0 → S = 0, Cout = 1). An important property of

the proposed approximate full adder is that it generates accurate outputs when carry-in

input is 1. Since carry-in for the subtraction in absolute difference operation is always 1,

this property is very useful for absolute difference operation. Maximum error magnitude

of the proposed approximate full adder is 1.

An approximate n-bit subtractor can be designed using the proposed 1-bit

approximate full adder as shown in Figure 2.2 (b). An approximate m bit adder is used in

the least significant m bits of the approximate subtractor. An exact n-m bit adder is used

in the most significant n-m bits of the approximate subtractor. In the approximate m-bit

14

adder, m 1-bit proposed approximate full adders are used. Since carry-out output of each

1-bit full adder is generated without considering the effect of its carry-in input, carry-out

outputs of all m 1-bit full adders are generated in parallel. Since the proposed approximate

1-bit full adder generates accurate outputs when carry-in input is 1, approximate n-bit

subtractor using the proposed full adder has 100% accuracy when m is 1.

Figure 2.2 (a) Proposed 1-bit Approximate FA (b) n-bit Approximate Subtractor

Many approximate arithmetic circuits are proposed in the literature. The approximate

circuits used in this chapter are selected based on the analysis results reported in literature.

In [20], two 1-bit approximate full adders from [15] are determined to give the best

performance for ME. In this chapter, these 1-bit full adders are referred to as IMPACT-1

and IMPACT-2. They are shown in Figure 2.3 (a) and Figure 2.3 (b), respectively. An

approximate n-bit subtractor can be designed using IMPACT-1 or IMPACT-2 as shown

in Figure 2.2 (b). In the approximate m-bit adder, m 1-bit IMPACT-1 or m 1-bit IMPACT-

2 full adders are used.

Figure 2.3 Approximate Adders (a) IMPACT-1 (b) IMPACT-2

In [21] and [22], it is shown that lower-part-OR adder (LOA) [16] performs better

than many segmented adders for ME. m-bit LOA is

shown in Figure 2.4. An approximate n-bit subtractor can

be designed using LOA as shown in Figure 2.2 (b). In this

approximate n-bit subtractor, m-bit LOA is used as the

m-bit approximate adder.

A

B

Cin
Sum

Cout

(a) (b)

A - B

Cin

Am-1..A0Bm-1..B0

Sm-1..S0Cout

Cin

An-1..AmBn-1..Bm

Sn-1..SmCout

m
m

n -m

n -m

mn -m

n + 1

Approximate
Adder

Accurate
Adder

AB n n

1

A

B

Cin
Sum

Cout A

B

Cin
Sum

Cout

(a) (b)

S0

Cout

S1

Sm-1

A0

A1

Am-1

B0

B1

Bm-1

Figure 2.4 m-bit LOA

15

Generic accuracy reconfigurable adder (GeAr) can be configured to reproduce

several other segmented adders [18]. For example, GeAr (N=8, R=1, P=3) is the same as

almost correct adder (ACA-I) (N=8, Q=4) [9] and GeAr (N=8, R=2, P=2) is the same as

accuracy configurable adder (ACA-II) (N=8, Q=4) [17]. Therefore, we selected GeAr

among segmented adders for our analysis. GeAr is shown in Figure 2.5 (a). The novel

approximate absolute difference (NAAD) hardware proposed in [26] is also included in

our analysis. Two configurations of 8-bit NAAD are shown in Figure 2.5 (b) and Figure

2.5 (c).

Figure 2.5 (a) GeAr Adder (N=8, R=2, P=4) (b) NAAD 0 (c) NAAD 2

We used the two accurate absolute difference (AD) hardware shown in Figure 2.6 (a)

and Figure 2.6 (b) to provide baseline results for our analysis. We assessed impact of

using the approximate subtractor shown in Figure 2.2 (b) based on the proposed,

IMPACT-1, IMPACT-2 and LOA adders for the subtraction operation in baseline 2 AD

hardware. We assessed impact of using 1-bit, 2-bit, 3-bit and 4-bit approximate adder in

this 8-bit approximate subtractor.

Figure 2.6 (a) Baseline 1 AD Hardware (b) Baseline 2 AD Hardware

We assessed impact of using the following four configurations of GeAr for the

subtraction operation in baseline 2 AD hardware (a) N=8, R=1, P=6 (b) N=8, R=2, P=4

(c) N=8, R=1, P=4 (d) N=8, R=2, P=2. These configurations correspond to 1-bit, 2-bit, 3-

bit and 4-bit approximations, respectively.

We analyzed using four different configurations of NAAD with 8, 7, 6, 5 XOR gates

for the absolute difference operation. These configurations are referred to as NAAD 0,

NAAD 1, NAAD 2, NAAD 3, respectively. They correspond to 1-bit, 2-bit, 3-bit and 4-

A

B

Sum

Cout

Sub-Adder 2

Sub-Adder 1

8

8

A[7:2]

B[7:2]

A[5:0]

B[5:0] S[5:0]

S[7:2]

S[5:2]

S[7:6]

8

1

-
A B

C[8:0]

|A-B|

6

{6{C[8]}}

C[1:0]

2

8 8

8

C[7:2]

-

A B

C[8:0]

|A-B|
8

C[7:0]

8 8

{8{C[8]}}

(b)(a)

BA

|A-B|

A < B

0 1 0 1
1

8

8

8

8

8

- 1 0

C[7:0]
C[8]

C[8:0] -
BA 8

8

+

1

8 8

|A-B|

8

9

8

16

bit approximations, respectively. Finally, we analyzed applying traditional 1-bit, 2-bit, 3-

bit, 4-bit truncation to baseline 2 AD hardware.

The assessment results are shown in Figure 2.7. In the figure, percentage accuracy

(PA), average error (AE), mean-squared error (MSE), and standard deviation (SD) quality

metric results are shown. In addition, maximum frequencies and energy consumptions of

baseline and approximate AD hardware are shown. The results can be interpreted as

follows. For PA and maximum frequency, the higher the better. For all other metrics, the

lower the better.

Figure 2.7 Assessment Results (a) Percentage Accuracy (b) Average Error (c) Mean

Squared Error (d) Standard Deviation (e) Maximum Frequency (f) Energy Consumption

Traditional bit truncation performs the worst in terms of all quality metrics. PA of

the proposed adder is the best among all approximate circuits for 1-bit approximation,

and second only to GeAr for 2-bit, 3-bit and 4-bit approximations. However, the proposed

adder performs much better than GeAr in other quality metrics. The proposed adder

performs the best in terms of AE and MSE quality metrics. It has comparable SD results

with other approximate circuits. Traditional bit truncation and NAAD achieve the fastest

frequency. Traditional bit truncation, as expected, achieves the lowest energy

17

consumption due to reduced hardware area. The proposed adder achieves lower energy

consumption than the other approximate circuits.

In summary, traditional bit truncation achieves better speed, area and energy

consumption at the expense of more quality loss than the other approximate circuits. The

proposed adder performs the best in terms of the quality metrics. It achieves the lowest

energy consumption among the other approximate circuits. GeAr performs worse than

the other approximate circuits in terms of all metrics except PA and speed.

2.2 Motion Estimation Hardware

We designed and implemented an HEVC variable block size full search ME

hardware to assess impact of using approximate absolute difference hardware in an HEVC

ME hardware. The proposed HEVC ME hardware supports both symmetric and

asymmetric block partitions in HEVC standard. Block diagram of this ME hardware is

shown in Figure 2.8. Its architecture is similar to the H.264 variable block size full search

ME hardware proposed in [27].

Figure 2.8 HEVC Motion Estimation Hardware

Figure 2.9 HEVC ME Processing Unit

Search
Window
Memory

Current
Block

Registers

256
Processing

Units

4x8, 8x4,
8x8

SAD Tree

4x16, 12x16, 16x4,
16x12,

8x16, 16x8,
16x16

SAD Tree

8x32, 24x32, 32x8,
32x24,

16x32, 32x16,
32x32

SAD Tree

16x64, 48x64, 64x16,
64x48

32x64, 64x32,
64x64

SAD Tree

Comparator

4x8, 8x4,
8x8

Minimum SAD &
Best MV Registers

Comparator

Control
Module

Output (Minimum SAD & Best MV)

4x16, 12x16, 16x4, 16x12,
8x16, 16x8,

16x16
Minimum SAD & Best MV

Registers

Comparator

8x32, 24x32, 32x8, 32x24,
16x32, 32x16,

32x32
Minimum SAD & Best MV

Registers

Comparator

16x64, 48x64, 64x16, 64x48
32x64, 64x32,

64x64
Minimum SAD & Best MV

Registers

Enable

Abs
Diff 0

Abs
Diff 1

Abs
Diff 2

Abs
Diff 3

8 8

CP_0 RP_0

8 8

CP_1 RP_1

8 8

CP_2 RP_2

8 8

CP_3 RP_3

Abs
Diff 14

Abs
Diff 15

8 8

CP_14 RP_14

8 8

CP_15RP_15

+
8 8

+
8 8

+
8 8

+
9 99

+
9

10

+
10 10

+
10

11

+
11

4x4 SAD

12

18

Current block pixels are stored in the current block registers. 128x128 search window

pixels are stored in sixty-five 18K Block RAMs (BRAM) in FPGA. 256 processing units

are used to calculate absolute differences and 4x4 SAD values for a 64x64 block in

parallel. As shown in Figure 2.9, a processing unit uses 16 absolute difference hardware

and 15 adders to generate one 4x4 SAD value. The 4x4 SAD values are then used to

calculate SAD values of larger block sizes.

The proposed HEVC ME hardware implements snake scan order in vertical direction.

Control module keeps track of the scan direction and whenever a change in direction is

required, it reconfigures the processing units to receive reference pixels from either top,

right, or bottom. The proposed HEVC ME hardware has 9 clock cycles latency; 2 cycles

for synchronous read from BRAM, 1 cycle for data loading/shifting, 1 cycle for absolute

difference operation, 1 cycle for 4x4 SAD value generation, and 4 cycles to generate 593

SAD values for a search location. It takes 64 clock cycles to read the first 64x64 reference

block from search window BRAMs. After that, 593 SAD values for a search location are

generated every clock cycle.

SAD trees work in a hierarchical manner by using SAD values of smaller block sizes

to calculate SAD values of larger block sizes. For example, 4x4 SAD values are used to

calculate 8x4 and 4x8 SAD values, and then 4x8 SAD values are used to calculate 8x8

SAD values. This process continues until SAD value of 64x64 block is calculated. For

each sub-block in a 64x64 block, its minimum SAD and corresponding best motion vector

(MV) are stored in registers. In every clock cycle, comparators compare the minimum

SAD values of the corresponding sub-blocks with the new SAD values calculated in SAD

trees. If a new SAD value is smaller than the stored SAD value, comparator stores the

new SAD value and MV to the corresponding minimum SAD and best MV registers.

2.3 Assessment of Approximate Circuits in Motion Estimation Hardware

We assessed impact of using the approximate absolute difference hardware presented

in Section 2.1 in the HEVC ME hardware presented in Section 2.2. For each approximate

absolute difference hardware, we replaced the 4096 exact absolute difference hardware

in Verilog RTL code of the HEVC ME hardware with this approximate absolute

difference hardware. In addition, we used the baseline 2 accurate absolute difference

hardware shown in Figure 2.6 (b) to provide baseline results for our analysis.

19

All Verilog RTL codes are synthesized and implemented using Xilinx Vivado Design

Edition 2017.4 on Xilinx Virtex 7 XC7VX485TFFG1157 FPGA with speed grade 3. For

all ME hardware, Vivado Synthesis Defaults and Performance Explore synthesis and

implementation strategies are used, respectively.

We also developed behavioral models of the HEVC ME hardware in C language. All

Verilog RTL codes are verified with RTL simulations. All FPGA implementations are

verified with post-implementation timing simulations. Simulation results matched results

of the corresponding C model of the approximate HEVC ME hardware.

Switching activity interchange format (SAIF) files are generated for the HEVC ME

hardware with post-implementation timing simulations for Foreman video using Mentor

Graphics QuestaSim. Power consumptions of the HEVC ME hardware are estimated with

Xilinx Vivado using these SAIF files.

Table 2.1 presents average MSE results for all HEVC sub-block sizes for Foreman

video sequence. The proposed approximate adder achieves the smallest MSE results in

most cases. GeAr performs the worst. It has the largest MSE results in all cases.

Traditional bit truncation also performs worse than the proposed approximate adder in all

cases.

Table 2.1 HEVC MSE Results

Approximate Circuit and its

Configuration
HEVC MSE

Baseline 32.36

Proposed

1 32.36

2 32.33

3 32.40

4 32.64

NAAD

0 32.32

1 32.42

2 32.53

3 33.25

LOA

1 32.32

2 32.33

3 32.48

4 33.05

IMPACT-1

1 32.38

2 32.57

3 32.85

4 33.99

IMPACT-2

1 32.37

2 32.88

3 32.92

4 34.57

GeAr

R1_P6 94.78

R2_P4 69.45

R1_P4 134.47

R2_P2 71.31

Bit Truncation

1 32.38

2 32.48

3 33.33

4 35.70

20

The other approximate circuits perform better than the proposed approximate adder

in some cases. These MSE results are consistent with the quality results of approximate

absolute difference hardware shown in Figure 2.7.

In some cases, ME hardware using approximate absolute difference hardware has

smaller MSE value than ME hardware using accurate absolute difference hardware. This

is mainly because of the difference between SAD and MSE metrics. For example, for the

following two sets of absolute differences A={2,2,2,2} and B = {3,3,0,0}, SAD{A} = 8

and SAD {B} = 6, whereas MSE {A}= 4 and MSE {B} = 4.5. A ME hardware using

accurate absolute difference hardware will select SAD {B} as the minimum SAD.

However, a ME hardware using an approximate absolute difference hardware may

inaccurately select SAD {A} as the minimum SAD. Therefore, an approximate ME

hardware may have smaller MSE value than accurate ME hardware.

Area and power consumption results of HEVC ME hardware are shown in Figure

2.10. In the figure, percentage reductions achieved by approximate ME hardware

compared to the corresponding accurate ME hardware are shown. As expected, traditional

bit truncation achieves the largest area and power consumption reductions at the expense

of more quality loss than the proposed approximate adder. GeAr has the worst area and

power consumption results.

For 1-bit approximation, the proposed approximate adder achieves 5% and 3% power

reductions in HEVC ME hardware respectively, without affecting quality. For 4-bit

approximation, it has the smallest MSE value and the largest power reduction (10%) in

HEVC ME hardware compared to other approximate circuits.

21

Figure 2.10 (a) Power Reduction (%) (b) Slice Reduction (%) (c) LUT Reduction (%)

22

Chapter 3

3 AN EFFICIENT VERSATILE VIDEO CODING MOTION

ESTIMATION HARDWARE

As the amount of video data is increasing significantly, more efficient video

compression is needed to transmit and store this video data with limited available

bandwidth and storage space [1]. Therefore, Joint Video Experts Team (JVET) of ITU-T

and ISO standardization organizations developed Versatile Video Coding (VVC)

standard in 2020 [6]. VVC provides 50% higher compression efficiency than its

predecessor High Efficiency Video Coding (HEVC) standard developed in 2013 [7, 28].

VVC is designed to encode diverse video content such as high dynamic range, 360º video

and virtual reality [2].

VVC uses several new encoding tools to achieve better compression than HEVC such

as new block partitioning structure called quadtree plus multi-type tree (QTMT), affine

motion estimation and multiple transforms [29]. VVC divides a video frame into blocks

called coding tree units (CTUs) and encodes each CTU separately. Each CTU can be

further divided into coding units (CUs) using QTMT. QTMT allows more partitions than

simple quadtree (QT) partitioning used in HEVC. The maximum CTU size in VVC is

128x128. The maximum CTU size in HEVC is 64x64.

VVC achieves higher compression efficiency than HEVC at the cost of significant

increase in computational complexity. VVC encoder is 5 times and 31 times more

complex than HEVC encoder under Low-Delay and All-Intra configurations, respectively

[9]. The encoding time of VVC reference software encoder (VTM) is about 10 times more

than the encoding time of HEVC reference software encoder (HM) [30]. Therefore,

dedicated hardware implementations are needed for processing high resolution videos in

real-time [31].

Successive frames in a video sequence have temporal redundancy. Video coding

standards remove this temporal redundancy by performing motion estimation (ME). ME

23

is the most time consuming and memory intensive module in video encoding [32]. More

than 50% of the encoding time of VVC encoder is spent for ME [9]. Up to 60% of the

memory accesses of VVC encoder comes from ME module [33].

There are several HEVC ME hardware in the literature [34, 35, 36, 37, 38, 39, 40].

Several sum of absolute differences (SAD) hardware that can be used for ME are

proposed in the literature [41, 42]. There are several VVC intra prediction, fractional

interpolation and transform hardware in the literature [43, 44, 45, 46]. However, to the

best of our knowledge, there is no VVC ME hardware in the literature.

In this chapter, we propose the first VVC ME hardware in the literature. The

proposed hardware uses the full search ME algorithm to determine the best motion vector

for all the QTMT partitions in a CTU, from 8x4 (4x8) to 128x128. It uses SAD metric to

determine the best motion vector. The proposed hardware calculates SADs of 128x128

CTU using a 64x64 systolic processing element array and a novel memory-based SAD

adder tree to achieve real-time performance with small hardware area. It reduces memory

accesses significantly by using an efficient data access and reuse method.

The proposed VVC ME hardware is implemented using Verilog HDL. It works at

253 MHz on a Xilinx Virtex 7 FPGA, and it can process up to 30 4K (3840x2160) video

frames per second (fps).

3.1 VVC Motion Estimation

VVC uses block matching for translational motion estimation. In block matching,

current video frame is divided into blocks. As shown in Figure 1.7, for each block in the

current frame, the best matching block in a search window (SW) in the reference frame

and the corresponding motion vector (MV) are determined. SAD metric is typically used

to determine the best matching block. SAD between blocks A and B is calculated as

shown below, where WxH is the block size, A(i, j) and B(i, j) are pixels in 𝑖th row and

𝑗th column of A and B, respectively.

𝑆𝐴𝐷 = ∑ ∑|𝐴(𝑖, 𝑗) − 𝐵(𝑖, 𝑗)|

𝐻−1

𝑗=0

𝑊−1

𝑖=0

 (3.1)

Video coding standards perform variable block size block matching motion

estimation. Large block sizes achieve higher compression for smooth areas of video

frames, whereas small block sizes achieve higher compression for detailed areas of video

24

frames. Because large block sizes can find good matches for smooth areas, and they

require less MVs than small block sizes. However, large block sizes cannot find good

matches for detailed areas.

Both HEVC and VVC divide a video frame into blocks called CTU. In HEVC, the

maximum CTU size is 64x64. A CTU can be recursively partitioned into square-shaped

CUs using QT. The size of a CU can be from 8x8 to 64x64. A CU can be partitioned only

once into square, rectangular and asymmetric partitions called prediction unit (PU). The

PU size can be from 4x8 or 8x4 to the CU size for motion estimation.

In VVC, the maximum CTU size is 128x128. A CTU can be recursively partitioned

into CUs using QTMT [47]. QTMT achieves higher compression than QT used in HEVC

by allowing more partitions than QT.

QTMT is a tree in which a node can be split using QT, binary tree (BT) or ternary

tree (TT). A BT splits a node into two rectangular blocks. A TT splits a node into three

rectangular blocks, two of which have the same size. BT and TT splits can be applied in

horizontal or vertical direction. In Figure 3.1, five possible QTMT partitions are shown;

binary horizontal (BH), binary vertical (BV), ternary horizontal (TH), ternary vertical

(TV), quad (Q).

Figure 3.1 Allowed partitions in VVC.

There are some restrictions in QTMT partitioning [48]. If a node is split with QT, it

can be further split with any of the five QTMT partitions. However, if a node is split with

either BT or TT, it can no longer be further split with QT. An example of QTMT

partitioning of 128x128 CTU is shown in Figure 3.2.

As shown in Figure 3.3, the same partitions can be achieved with different splitting

patterns. If the central partition of a TT split is further split with BT in the same direction,

it achieves the same partitions with BT split followed by BT split in the same direction.

Similarly, QT split followed by QT split achieves the same partitions with BT split in one

direction followed by BT split in the other direction. VVC does not allow these redundant

partitions [48].

BH BV TH TV Q

25

Figure 3.2 An example of QTMT partitioning of 128x128 CTU and its decision tree.

Figure 3.3 Examples of redundant partitions in VVC.

In addition to translational ME, VVC uses affine motion estimation (AME) to predict

more complex motion such as rotation or scaling. Turning off AME in VVC video

encoding causes 3% loss in compression efficiency but provides 20% encoding time

reduction [49]. It is reported in [50] that translational motion estimation is used for more

than 90% cases in VVC video encoding. Therefore, in this chapter, we propose an

efficient ME hardware for VVC translational ME.

3.2 Proposed VVC Motion Estimation Hardware

VVC defines the following control parameters to adjust the computational

complexity of ME by restricting the number of partitions.

• MaxCUWidth and MaxCUHeight define the maximum allowed width and height

of a CU, respectively.

• MinQTSize defines the minimum node size that can be reached with QT split.

• MaxBtSize and MaxTtSize define the maximum node size to which BT and TT

split can be applied, respectively.

• MaxMttDepth defines the maximum allowed depth of multi-type tree splitting

after QT split.

Quad Tree

Binary Tree

Ternary Tree

26

In the proposed VVC ME hardware, MaxCUWidth and MaxCUHeight are set to 128.

Therefore, the largest CU size is 128x128. MinQTSize is set to 8. Therefore, an 8x8 CU

can only be further split with BT. MaxBtSize and MaxTtSize are set to 32. MaxMttDepth

is set to 2. Therefore, multi-type tree split is not applied to CU sizes larger than 32x32.

The maximum depth of multi-type tree split is 2, i.e., multi-type tree split can be applied

at most twice.

The number of possible partitions in a 64x64 CU with these parameter values are

shown in Table 3.1. Let X and Y represent one of the four possible multi-tree type

partitions shown in Figure 3.1, then the partition type X_Y in Table 3.1 represents the

case where first X type split then Y type split are applied after QT split. For example,

BH_BH partition type represents the case where first binary horizontal split is applied

after QT split, then binary horizontal split is applied to the 2 new partitions resulting in 4

partitions.

Table 3.1 Number of possible partitions and unique motion vectors in a 64x64 CU

Block

Size

Partition

Type

Total

Partitions
Unique MVs

Block

Size

Partition

Type

Total

Partitions
Unique MVs

64x64 No Partition 1 1 32x32 TH_TH 20 20

 Q 4 4 TV_BV 24 16

32x32 Q 16 16 TV_TV 20 20

 BH 8 8 16x16 Q 64 64

 BV 8 8 BH 32 32

 TH 12 4 BV 32 32

 TV 12 4 TH 48 16

 BH_BH 16 16 TV 48 16

 BH_TH 24 24 BH_BH 64 64

 BH_TV 24 8 BH_TV 96 32

 BV_BV 16 16 BV_BV 64 64

 BV_TH 24 8 BV_TH 96 32

 BV_TV 24 24 8x8 BH 128 128

 TH_BH 24 16 BV 128 128

Total 1077 821

The number of unique MVs is less than the number of partitions for some split types.

For example, the top and bottom partitions of TH split are the same as top and bottom

partitions of BH_BH split. Therefore, there is no need to calculate MVs for top and

bottom partitions of TH split.

Redundant partitions, which are not allowed in VVC, are not shown in Table 3.1. For

example, BH_BV split achieves the same partitions with QT split. Therefore, it is not

allowed in VVC. In addition, some partitions are not allowed since they result in a

partition size with height or width smaller than the minimum allowed CU size. These

partitions are also not shown in Table 3.1. For example, when a 16x16 block is split with

27

ternary tree, its further split with ternary tree will result in a partition size of 8x2 or

smaller. This is smaller than the minimum allowed CU size. Therefore, this is not allowed.

The proposed VVC ME hardware is shown in Figure 3.4. It consists of on-chip

memory to store search window pixels and next block of current frame, a systolic array

of processing elements (PEs) to store current and reference block pixels and calculate

their absolute differences, an SAD adder tree to calculate SADs for all the supported CU

sizes, a comparator unit to determine the minimum SAD and its corresponding MV for

each CU size, and a control unit to perform control operations.

Figure 3.4 Proposed VVC ME hardware

To achieve real-time performance with small hardware area, the proposed VVC ME

hardware divides 128x128 CTU into four 64x64 CUs. It uses a 64x64 systolic PE array

and 64x64 SAD adder tree to determine the best 821 unique MVs for each of these 64x64

CUs sequentially. First, the best 821 unique MVs for the first 64x64 CU are determined.

Then, the remaining three 64x64 CUs are processed one by one. The proposed hardware

uses a novel memory-based SAD adder tree to determine the best MV for 128x128 CU.

The best MV for 128x128 CU is determined together with the best MVs of last 64x64

CU.

3.2.1 Memory and Systolic PE Array

Xilinx FPGAs have fast dedicated on-chip memories called Block RAMs (BRAMs).

In the proposed hardware, the current 64x64 CU and its corresponding search window

are read from off-chip memories and stored in the on-chip BRAMs.

Off-chip Memory

Reference
Frame

Current Frame

FPGA

BRAM
(Search Window)

Systolic Array
(Registers and AD Computation)

SAD Adder Tree

Control Unit

Comparator

Minimum SAD
& Best MV

R
ef

.
B

lo
ck

BRAM

C
u
rr

en
t

B
lo

ck

28

The proposed hardware has a 64x64 systolic PE array as shown in Figure 3.5. The

systolic array also contains 64 registers to store an additional column of the search

window. As shown in Figure 3.6, a PE consists of two registers which store a current

block pixel and a reference block pixel, an absolute difference (AD) hardware, and an

output register. AD hardware subtracts the reference pixel from the current pixel. If the

subtraction result is negative, i.e., its sign bit is 1, it takes its 2’s compliment to calculate

the absolute difference.

Figure 3.5 Systolic processing element (PE) array and registers.

Figure 3.6 Processing Element (PE)

The systolic array receives a new row of 64 reference block pixels from BRAMs in

every clock cycle. It takes 64 clock cycles to fill the systolic array with the 64x64

reference block of the first search location. At the same time, the 64x64 current block

PE
63,0

PE

63,1

PE

62,0

PE

62,1

PE

0,0

PE

0,1

PE

62,63

PE

63,63

PE

0,63

64x64
PE Array

Reference Block Pixels Current Block Pixels Extra Column

PE Above PE Below PE RightCurrent Block

D
irection

Current Pixel
Register

Reference Pixel
Register

|C – R |

C – R

+

 8-b
it

1

8

8

8

Register

8
8

29

pixels are also received from BRAMs and stored in the systolic array row by row. After

that systolic array calculates 64x64 absolute differences in one clock cycle and sends them

to SAD adder tree which calculates the SADs for all the partitions of 64x64 CU.

The systolic array stores the same 64x64 current block until all the search locations

in the search window are searched for that current block. It can search a new search

location in the search window in every clock cycle, i.e., it can process 64x64 reference

block of each search location in one clock cycle.

The proposed hardware uses vertical snake scan order as shown in Figure 3.7 (a).

The search starts from the top-left corner of the search window and moves downward

until all the search locations in the first column are searched. Then, the search locations

in the second column are searched in the upward direction. Then, the search locations in

the third column are searched in the downward direction. This continues until all the

search locations in the search window are searched for the current block.

Figure 3.7 (a) Vertical snake scan order (b) Data re-use in downward, upward, and right

directions.

To achieve high data reuse, each PE can shift its reference pixel up, down, or left.

After a search location in a column, which is searched in the downward direction, is

searched, all the PEs shift their reference pixels up, and a new row of 64 reference block

pixels is read from search window memory and stored in the last row of systolic array as

shown in Figure 3.7 (b). This continues until all the search locations in that column are

searched.

In Figure 3.7 (b), green area represents the reused reference block pixels in the

systolic array, white area represents the new row of 64 reference block pixels, and grey

area represents the discarded row of 64 reference block pixels in the previous reference

block.

Search

CU

D U

R

R

D

(a) (b)

30

After a search location in a column, which is searched in the upward direction, is

searched, all the PEs shift their reference pixels down, and a new row of 64 reference

block pixels is read from search window memory and stored in the first row of systolic

array as shown in Figure 3.7 (b). This continues until all the search locations in that

column are searched.

After all the search locations in a column are searched, all the PEs shift their reference

pixels left, and a new column of 64 reference block pixels should be stored in the last

column of systolic array. Since row aligned BRAMs are used in the proposed hardware,

it would take 64 clock cycles to read a new column of 64 reference block pixels from

BRAMs.

Therefore, an extra column of 64 registers is used in the systolic array. In every clock

cycle, instead of 64, a new row of 65 reference block pixels is read from search window

memory and stored in the systolic array. Therefore, after all the search locations in a

column are searched, all the PEs shift their reference pixels left, and the PEs in the last

column of systolic array receive their new reference pixels from the extra column of 64

registers. This takes only one clock cycle.

In the proposed hardware, BRAMs are configured as true dual port memories. After

the current 64x64 CU is stored in the systolic array, the next 64x64 CU of the current

frame is read into the BRAMs from off-chip memory. Similarly, the search window

BRAMs are also updated dynamically with the search window of the next 64x64 CU of

the current frame from off-chip memory.

3.2.2 SAD Adder tree

In HEVC, the maximum CTU size is 64x64, and 593 unique MVs should be

calculated for a 64x64 CU [36]. In VVC, the maximum CTU size is 128x128, and 821

unique MVs should be calculated for a 64x64 CU. In addition, in VVC, there are more

complex asymmetric partitions which are not used in HEVC. Therefore, SAD adder tree

in VVC ME hardware is more complex than SAD adder tree in HEVC ME hardware.

In the proposed hardware, the SAD adder tree calculates the SADs of all the 821

unique partitions of a 64x64 CU by reusing the SADs of smaller partitions to calculate

the SADs of larger partitions.

After the SAD adder tree receives 64x64 ADs for the first search location from the

systolic array, it receives and processes 64x64 ADs of a new search location in every

31

clock cycle. For each 64x64 ADs, the corresponding 256 4x4 SADs are calculated in four

clock cycles. One 4x4 SAD calculation including the AD calculation in PEs is shown in

Figure 3.8. The red dotted lines in the figure indicate the pipeline registers.

Figure 3.8 4x4 SAD calculation.

Figure 3.9 SAD adder tree (a) SADs of BH, BV, Q partitions N = 4, 8, 16, 32 (b) SADs

of BH_BH, BV_TH, BH_TV, BV_BV, TH, TV partitions N = 8, 16 (c) SADs of

TH_TH, TH_BH, BH_TH, BV_TV, TV_BV, TV_TV partitions N = 16.

These 4x4 SADs are then used to calculate SADs of larger partitions in a hierarchical

manner. For example, 4x4 SADs are used to calculate SADs of binary partitions (BV,

AD
C0

R1

R0

+

AD

AD

+
AD

AD

+
AD

+

+

+

+

8

C1

C2

R3

R2

C3

C14

R15

R14

C15

9

9

9

Reg

+

Reg Reg RegReg

12

8

8

8

8

8

8

8

8

8

8

8

+ +

+

+

+

N

N
2N

2N

Reg Reg Reg

N

2N

N

+

+

++

+

+

+

+

+

+

++++

Reg Reg Reg

N

N

N/2

N/2

2N 2N

N

N/2

2N

N

N/2

N

N/2

N/2

+++ ++

+
+

+

++ +

Reg Reg Reg

N

N/4

2N

2N

N/2

N/4

N

N/4

2N

N/2 N/4

+
+

+
+

+(a)

(b) (c)

32

BH) of 8x8 CUs. Then, the SADs of BV partitions of 8x8 CUs are used to calculate 64

SADs of 8x8 CUs. SADs of binary and quad partitions of 16x16, 32x32, and 64x64 CUs

are calculated similarly as shown in Figure 3.9 (a).

Similarly, the SADs of BV and BH partitions of 8x8 CUs are used to calculate SADs

of BH_BH, BV_BV, BV_TH and BH_TV partitions of 16x16 CUs. Then, the SADs of

BH_BH and BV_BV partitions are used to calculate SADs of TH and TV partitions of

16x16 CUs. SADs of the same shaped partitions of 32x32 CUs are calculated similarly

using BV and BH partitions of 16x16 CUs as shown in Figure 3.9 (b).

SADs of TH_TH, TV_TV, TH_BH, TV_BV, BH_TH and BV_TV partitions of

32x32 CUs are calculated using BH_BH and BV_BV partitions of 16x16 CUs as shown

in Figure 3.9 (c).

The proposed hardware calculates the SADs of all the 821 unique partitions of a

64x64 CU for the first search location in the search window in 13 clock cycles and sends

them to the comparator. After that, 821 new SADs are calculated in every clock cycle and

sent to the comparator.

To achieve real-time performance with small hardware area, the proposed hardware

divides 128x128 CU into four 64x64 CUs, processes them one by one and calculates SAD

of 128x128 CU using the novel memory-based accumulator hardware shown in Figure

3.10.

Figure 3.10 128x128 SAD calculation.

The top left 64x64 CU is processed first. For every 𝑖th search location in the search

window, the SAD calculated for this 64x64 CU is sent to both the comparator and the

memory-based accumulator where it is added to the content of 𝑖th location of BRAM and

the result is written back to 𝑖th location of BRAM. The contents of the BRAM are initially

set to 0. Therefore, the SADs of the top left 64x64 CU are stored in the BRAM.

BRAM

Current

64x64 SADi

Intermediate

128x128 SADi

R
eg

Enable

128x128

SADi

+

Control
Signals

To Comparator

33

Then, the top right 64x64 CU is processed. Therefore, the 𝑖th SAD of the top right

64x64 CU is added to the 𝑖th SAD of the top left 64x64 CU, and the result is written back

to 𝑖th location of BRAM. Then, the bottom left 64x64 CU is processed similarly. Finally,

the bottom right 64x64 CU is processed similarly.

When the first SAD of the bottom right 64x64 CU is added to the content of the first

location of BRAM, the adder output is the first SAD of the 128x128 CU. Therefore, the

output register in Figure 3.10 is enabled, and the first SAD of the 128x128 CU is sent to

the comparator. After that, a new SAD of the 128x128 CU is calculated in every clock

cycle and sent to the comparator. When the last SAD of the bottom right 64x64 CU is

calculated, the last SAD of the 128x128 CU is also calculated after one clock cycle and

sent to the comparator.

3.2.3 Comparator

The comparator unit determines the minimum SAD and its corresponding best MV

for each CU size. It consists of one comparator for each of the 821 unique partitions of

64x64 CU and one additional comparator for the 128x128 CU. The sizes of these

comparators vary from 13-bits for the smallest CU to 22-bits for the 128x128 CU. The

latency of the comparator unit is one clock cycle. In every clock cycle, it compares all the

SADs it receives from the SAD adder tree with the previous minimum SADs of the

corresponding partitions and determines the minimum SAD and its corresponding best

MV for each partition.

3.3 Implementation Results

The proposed VVC ME hardware is implemented using Verilog HDL. The Verilog

RTL codes are implemented to a Xilinx Virtex 7 FPGA with speed grade 3 using Xilinx

Vivado 2017.4 with default synthesis and performance_explore implementation

strategies. The FPGA implementation is verified with post-implementation timing

simulations.

The proposed hardware has 14 stages pipeline from AD calculation to comparator

output. The latency for processing a 128x128 CTU can be calculated as (64 + 14 + Search

Locations) x 4. The systolic array is filled in 64 clock cycles. It takes 14 clock cycles to

calculate the SADs of all the CUs for the first search location in the search window and

34

compare them. After that, all the CUs for a new search location are processed in every

clock cycle. The multiplication by 4 is necessary since a 64x64 SAD adder tree is used

and a 128x128 CTU has four 64x64 CUs.

We implemented and verified the proposed VVC ME hardware in two different

configurations for three different search ranges. One configuration supports 128x128

largest CTU size using a 64x64 systolic array and 64x64 SAD adder tree. The other

configuration supports 64x64 largest CTU size using a 32x32 systolic array and 32x32

SAD adder tree. In each configuration, the size of the search range is set to the largest

CTU size, 75% of the largest CTU size, and half of the largest CTU size.

The search range is centered around the top left pixel of current CTU. A search range

of 128x128 means that the first pixel of first reference CTU is located at position (-64, -

64) left of the first pixel of current CTU in the search window. Similarly, the first pixel

of last reference CTU is located at position (+64, +64) right of the first pixel of current

CTU in the search window.

Performance of the proposed VVC ME hardware for different configurations are

shown in Table 3.2. The clock frequency (MHz), the number of clock cycles required to

process a current CTU, and the throughput in frames per second (fps) for three different

video resolutions (full HD, 2K, 4K) are shown in the table. The throughput in fps is

calculated as shown below.

𝑓𝑝𝑠 =
1

𝐶𝑇𝑈 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × 𝐶𝑇𝑈𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒 × 𝐶𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑
 (3.2)

Table 3.2 Performance of the proposed VVC ME hardware for different configurations

CTU Size 128x128 64x64

Search Locations 128x128 96x96 64x64 64x64 48x48 32x32

Frequency (MHz) 253 253 253 306 306 306
CTU Latency 65,848 37,176 16,696 16,560 9,392 4,272

FPS at 1080p 30 53 120 36 64 141

FPS at 2k 28 50 112 34 60 132
FPS at 4k 7 13 30 9 16 35

For 128x128 largest CTU size with 128x128 search range, 30 fps throughput is

achieved for full HD video resolution. If the search range is reduced to 64x64, 30 fps

throughput is achieved for 4K video resolution. For 64x64 largest CTU size with 32x32

search range, 35 fps throughput is achieved for 4K video resolution.

The FPGA resource usages of the proposed VVC ME hardware for 128x128 largest

CTU size configuration with 128x128 search range and for 64x64 largest CTU size

35

configuration with 64x64 search range are shown in Table 3.3 and Table 3.4, respectively.

The resource usage of 64x64 largest CTU size configuration is almost 4 times less than

the resource usage of 128x128 largest CTU size configuration.

The systolic array uses the most FPGA resources. It uses 54% of the total flip-flops

and 38% of the total LUTs used by the 128x128 largest CTU size configuration. The

current pixel registers, reference pixel registers, and output registers in the systolic array

justify the amount of flip-flop usage.

The SAD adder tree uses the second most FPGA resources. It uses 31% of the total

flip-flops and 28% of the total LUTs used by the 128x128 largest CTU size configuration.

Since the comparator unit uses registers to store the minimum SADs and corresponding

best MVs, its flip-flop usage is higher than its LUT usage.

Table 3.3 Resource usage for 128x128 CTU size

Module LUTs Flip-Flops BRAM

Systolic Array 56,321 98,816 –

SAD Adder Tree 40,970 57,312 4

Control Unit 36,582 2,806 –
Comparator 11,308 21,343 –

Memory 425 2,050 16

Total 145,606 182,327 20

Table 3.4 Resource usage for 64x64 CTU size

Module LUTs Flip-Flops BRAM

Systolic Array 16,390 24,832 –
SAD Adder Tree 11,022 14,474 1

Control Unit 9,954 1,348 –

Comparator 2,818 4,948 –
Memory 210 1,026 8

Total 40,394 46,628 9

3.3.1 Comparison With HEVC ME Hardware

The proposed VVC ME hardware is the first VVC ME hardware in the literature.

The proposed VVC ME hardware implementation is compared with the HEVC ME

hardware implementations in the literature in Table 3.5. Although VVC ME has larger

maximum CTU size and it is more computationally complex than HEVC ME, the

proposed VVC ME hardware has smaller area and higher throughput than some of these

HEVC ME hardware.

The HEVC ME hardware proposed in [34] and [35] use full search ME algorithm.

The hardware proposed in [34] does not support the asymmetric partitions in HEVC ME.

36

These HEVC ME hardware use more LUTs and have lower throughput than our VVC

ME hardware.

Table 3.5 Comparison with HEVC ME Hardware

ICIP’14

[34]

IET’17

[35]

AICSP’18

[38]

JRTIP’19

[39]

JRTIP’21

[40]

This Work

Encoding

Standard
HEVC HEVC HEVC HEVC HEVC VVC

FPGA Virtex 5 Virtex 5 Virtex 7 Virtex 7 Virtex 7 Virtex 7

CTU Size 64x64 64x64 64x64 64x64 32x32 128x128

Search Range 64x64 64x64 144x144 64x64 64x64 64x64
Working

Frequency (MHz)
125 84.96 198.73 247 162 253

Throughput 4K @ 13 fps 4K @ 9 fps FHD @ 30fps 4K @ 30 fps 8K @ 78 fps 4K @ 30 fps
LUTs 209,434 153,314 49,258 188,664 485,760 145,606

Flip-Flops 199,066 36,368 13,351 144,302 607,200 182,327

A sequential and a parallel HEVC ME hardware implementing diamond search

algorithm are proposed in [38]. Since the parallel hardware has higher performance than

the sequential hardware, we compare our VVC ME hardware with the parallel HEVC ME

hardware. The HEVC ME hardware has smaller area and lower throughput than our VVC

ME hardware.

The HEVC ME hardware proposed in [39] use full search ME algorithm. It uses more

LUTs and has the same throughput as our VVC ME hardware. The HEVC ME hardware

proposed in [40] use a fast hybrid pattern search algorithm. It has higher throughput and

much larger area than our VVC ME hardware.

37

Chapter 4

4 AN EFFICIENT APPROXIMATE SAD HARDWARE FOR FPGAS

Approximate computing is a promising approach for designing smaller area and

lower power consuming hardware than accurate hardware at the expense of quality loss

[26,51]. Therefore, it can be used for error-tolerant applications. Some video processing

and coding applications can tolerate inaccurate results due to limitations of human visual

perception.

Sum of absolute differences (SAD) operation is a widely used metric for block

matching in several error tolerant applications such as stereo vision and video coding [27,

36, 52]. SAD between two blocks, A and B, of size W x H is calculated as shown in

equation (4.1), where 𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) are values of the pixels in 𝑖th row and 𝑗th column

of A and B, respectively.

𝑆𝐴𝐷 = ∑ ∑|𝐴(𝑖, 𝑗) − 𝐵(𝑖, 𝑗)|

𝐻−1

𝑗=0

𝑊−1

𝑖=0

(4.1)

SAD is the most time and power consuming operation in several error tolerant

applications. For example, SAD operation is used for motion estimation in video coding,

and it can consume up to 80% of the total energy consumption of a video encoder

hardware [52]. Therefore, approximate computing can be used for designing efficient

SAD hardware.

Several ASIC or FPGA based accurate SAD hardware implementations are proposed

in the literature [27,41,53]. Several approximate SAD hardware implementations are also

proposed in the literature [26,36,52,55]. None of the approximate SAD hardware has

FPGA specific optimizations.

A novel approximate absolute difference hardware (NAAD) is proposed in [26]. The

incrementor used for 2’s complement operation in AD hardware is removed. A low-error

approximate adder (LEA) and an approximate AD hardware based on LEA are proposed

in [36]. An approximate SAD hardware using lower-part OR (LOA) approximate adder

38

is proposed in [52]. A power-efficient approximate SAD (aSAD) hardware approximating

most significant bits with a single bit is proposed in [55].

In this chapter, we propose an efficient approximate SAD hardware for FPGAs. The

proposed approximate SAD hardware utilizes the unused LUT inputs to reduce area and

power consumption while providing an almost accurate result. The proposed approximate

SAD hardware has smaller maximum and average error than the approximate SAD

hardware in the literature. It uses up to 20% less LUTs than the smallest approximate

SAD hardware in the literature. It consumes up to 38% less power than the lowest power

consuming approximate SAD hardware in the literature.

4.1 Background

4.1.1 SAD Hardware

Block diagram of a generic SAD hardware is shown in Figure 4.1. Generally, SAD

is calculated in two stages. In the first stage, absolute differences of inputs are calculated.

In the second stage, these absolute difference values are added using an adder tree.

Parallelism can be used in both stages.

Figure 4.1 Generic SAD hardware

Three conventional accurate AD hardware are shown in Figure 4.2. Accurate AD 1

hardware, shown in Figure 4.2 (a), first subtracts the two inputs. If 𝐴 < 𝐵, then 2’s

complement of the subtraction result should be calculated to obtain the AD result. Sign-

bit of the subtraction result is XOR’ed with each bit of the subtraction result to perform

selective inverse operation. Finally, the same sign-bit is added to the output of XOR gates

SAD

n
+

(d
e

p
th

-1
)

AD
A0,0

B0,1

B0,0

+
AD

AD

+
AD

AD

+
AD

+

+

+

+

+

Adder Tree

depth = ceil(log2(W*H))+1

n

n

n
n

n

n

n

n

n

n

n

n

n+1

n+1

n+1

n+2

n+2

A0,1

A0,2

B0,3

B0,2

A0,3

AW-1,H-2

BW-1,H-1

BW-1,H-2

AW-1,H-1

n

n

n

n

n

n

39

to obtain the AD result. The maximum delay of this AD hardware is 2𝑡𝑆𝑢𝑏 + 𝑡𝑋𝑂𝑅. It

uses 2𝑛 LUTs in a Xilinx FPGA, where 𝑛 is bit length of the inputs.

Figure 4.2 Accurate absolute difference hardware

Accurate AD 2 hardware, shown in Figure 4.2 (b), trades off area for speed by using

two subtractors in parallel. These two subtractors perform (𝐴 − 𝐵) and (𝐵 − 𝐴),

respectively. The MSB of one of these subtraction results is then used to select the correct

AD result. The maximum delay of this AD hardware is 𝑡𝑆𝑢𝑏 + 𝑡𝑀𝑢𝑥. It uses 3𝑛 LUTs in

a Xilinx FPGA.

Accurate AD 3 hardware, shown in Figure 4.2 (c), compares the two inputs for

selective subtraction [27]. If (𝐵 > 𝐴), then (𝐵 − 𝐴) is performed, otherwise (𝐴 − 𝐵) is

performed. The maximum delay of this AD hardware is 𝑡𝐶𝑜𝑚𝑝 + 𝑡𝑆𝑢𝑏. It uses 1.5𝑛 LUTs

in a Xilinx FPGA. Since 6-input LUTs are used in Xilinx FPGAs, selection and inversion

operations can be implemented in one LUT [54].

4.1.2 Xilinx Virtex FPGA

Configurable logic blocks (CLB) are the main logic resource in a Xilinx Virtex

FPGA. Each CLB has two slices. Each slice in Xilinx Virtex 5/6/7 FPGAs has four copies

of the hardware shown in Figure 4.3 with carry chain cascaded in series [56]. Therefore,

each slice contains four 6-input LUTs, a 4-bit carry chain, and 8 output registers along

with routing resources. A 6-input LUT can be used to implement one 6-input

combinational logic or two 5-input combinational logics.

The efficiency of an FPGA-based hardware depends on how effectively it utilizes the

logic resources available in the FPGA. This is very important for FPGA implementations

that may use carry chains in FPGA. SAD hardware uses subtraction and addition

operations. Therefore, it is important to understand how these arithmetic operations are

implemented in Xilinx FPGA and how the unused resources can be utilized to obtain an

efficient implementation.

(a) Accurate AD 1

BA

|A – B |

n n

A – B

+

 n
-bit

1

nn

n

(c) Accurate AD 3

A < B

BA

|A – B |

0 11

n n

n

n-bit Subtractor

0 1

nn

(b) Accurate AD 2

BA

|A – B |

n
n

n

A – BB – A

0 1
1

nn

40

Figure 4.3 Simplified architecture of a slice in Xilinx Virtex 5/6/7 FPGAs

Generally, 1-bit addition operation is performed as shown in equation (4.2) and

equation (4.3) where A and B are inputs, S is sum, and CIN and COUT are carry-in and

carry-out, respectively.

𝑆 = (𝐴 ^𝐵) ^ 𝐶𝐼𝑁 (4.2)

𝐶𝑂𝑈𝑇 = 𝐴𝐵 | (𝐴 ^ 𝐵)𝐶𝐼𝑁 (4.3)

However, Xilinx synthesis tools simplify equation (4.3) as equation (4.4) for a more

efficient FPGA implementation.

𝐶𝑂𝑈𝑇 = (𝐴 ^ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐵 | (𝐴 ^ 𝐵)𝐶𝐼𝑁 (4.4)

This simplification allows the reuse of 𝐴 ^ 𝐵 term, hence only one output of a LUT

is used. However, since only 4-bit carry chain is available in a slice, an n-bit adder uses n

LUTs such that 4 inputs and one output of each LUT are not used. Therefore, additional

logic can be implemented together with an adder using the same 6-input LUTs without

affecting critical-path delay of the adder.

The carry chain in Xilinx Virtex FPGAs is also flexible. The carry-in for the first bit

of carry chain can either be connected to carry-out of the previous slice or it can be

connected to one of the user-defined inputs.

0

1

LUT5

LUT5

I5

I4

I3

I2

I1

I0

O6

O5

LUT 6_2

01 MUXCY

D Q

D Q

CIN

COUT

OMUX

OQ

O

41

4.2 Proposed Approximate SAD Hardware

 We propose to utilize the unused LUT inputs and output to implement an

adder/subtractor including the complement operations shown in Figure 4. The proposed

hardware computes 1’s complement of both inputs without using additional resources and

without additional delay. It also computes 2’s complement of one of the inputs by

initializing the carry chain with the selective inverse signal. The proposed hardware

implements the following expression.

𝑆 = ((−1)𝑋𝑛𝑋) + ((−1)𝑌𝑛𝑌 − 𝑌𝑛) (4.5)

𝑋𝑛 and 𝑌𝑛 can either be 0 or 1. When 𝑋𝑛 is 1, 2’s complement of X is computed. When

𝑌𝑛 is 1, 1’s complement of Y is computed.

Figure 4.4 Proposed adder/subtractor including complement operations

Implementation of the proposed n-bit adder/subtractor including complement

operations in Xilinx Virtex 5/6/7 FPGAs is shown in Figure 4.5.

Figure 4.5 Implementation of the proposed n-bit adder/subtractor including

complement operations

To perform selective bitwise inversion of X and Y, their n-bits are XOR’ed with 𝑋𝑛

and 𝑌𝑛, respectively. This is done in the first two XOR gates. When 𝑋𝑛 is 1, X is inverted.

CYINIT

CI

0

1M
U

X
C

Y

LUT6_2

X0Y0

0

1M
U

X
C

Y

LUT6_2

X1Y1

0

1M
U

X
C

Y

LUT6_2

Xn-1Yn-1

Yn Xn

S0S1Sn-1Sn

Xn

Xilinx Virtex
Carry Chain

O5 O6O6O6O5 O5

I0I1I2I3I4I5

 0 1

I0I1I2I3I4I5

 0 1

I0I1I2I3I4I5

 0 1

X_1’s_complement = {n{X[n]}} ^ {X[n-1:0]}

Y_1’s_complement = {n{Y[n]}} ^ {Y[n-1:0]}

S = X_1’s_complement + Y_1’s_complement + X[n]

42

When 𝑌𝑛 is 1, Y is inverted. The third XOR gate computes first term of the sum expression

shown in equation (4.2) and its output is connected to the carry chain for carry propagation

and sum calculation. Finally, 𝑋𝑛 is also connected to CYINIT (initialize carry) input of

the carry chain to compute 2’s complement of X, i.e. when 𝑋𝑛 is 1, 1 is added to the result.

The proposed approximate 2×1 SAD hardware is shown in Figure 4.6. This hardware

is designed by merging the XOR gates and incrementor in the Accurate AD 1 hardware

shown in Figure 4.2 (a) to the first stage of adder tree, and by using the proposed

adder/subtractor shown in Figure 4.5 in the first stage of adder tree.

Figure 4.6 Proposed approximate 2×1 SAD hardware

In the first stage of the proposed SAD hardware only a subtractor is used. Hence, it

will be mapped to only n LUTs. The subtraction result and its sign bit are passed to the

next stage. In the second stage of the proposed SAD hardware the proposed

adder/subtractor is used. The sign bits are connected to 𝑋𝑛 and 𝑌𝑛 inputs of the proposed

adder/subtractor.

The proposed adder/subtractor computes the absolute values of the two subtraction

results and adds them. However, when 𝑌𝑛 is 1, the absolute value result of Y will be 1

less than the accurate absolute value of Y. Therefore, maximum error of the proposed

approximate 2×1 SAD hardware is 1.

Several approximate 2×1 SAD hardware can be used to build larger approximate

SAD hardware. In the proposed approximate SAD hardware, half of the AD hardware

may have an error of 1. Therefore, maximum error of the proposed approximate SAD

hardware with N AD hardware is N/2.

Proposed LUT based adder /subtracto r
including complement operations

A – B

B A
n n

n+1

(n+1)-bit Register

C – D

D C
n n

n+1

1n1

XY

Yn

(n+1)-bit Register

n+1 n+1

n

XnX(0...n-1)Y(0...n-1)

|A – B| + |C – D| – Yn

n+1

43

4.3 Implementation Results

Quality, speed, area, and power consumption of the proposed approximate SAD

hardware are compared with that of several approximate SAD hardware proposed in the

literature; NAAD [26], LEA based approximate SAD [36], LOA based approximate SAD

[52], aSAD [55]. They are also compared with that of approximate SAD hardware

designed by replacing the accurate adder in AD operation with the LUT-based fast

approximate adder unit (FAU) proposed in [57]. 4-bit approximation is used for NAAD

SAD hardware and for LEA, LOA and FAU based SAD hardware.

Quality comparison for 4×4 approximate SAD is shown in Table 4.1. The maximum

and average error values are determined for 8-bit inputs and by applying all possible input

values to an AD hardware such that the same input values are applied to all AD hardware.

The results show that the proposed approximate SAD hardware has smaller maximum

and average error than the other approximate SAD hardware.

Table 4.1 Quality comparison for 4×4 approximate SAD

Maximum

Error

Average

Error

Proposed 8 3.98

LEA 160 27.00

FAU 256 35.81

LOA 128 53.45

NAAD 256 63.50

aSAD 3584 1021.56

To compare speed, area, and power consumption of SAD hardware, three accurate

SAD hardware shown in Figure 4.2, the proposed approximate SAD hardware and five

approximate SAD hardware in the literature are implemented using Verilog HDL. A

common adder tree hardware, with approximations applied as and when required, is used

for all SAD hardware. All implementations are highly pipelined, i.e. a pipeline register is

used after each addition stage. Registers are also placed at all the inputs and outputs.

Experiments are performed for 4×4, 8×8, 16×16, 24×24, and 32×32 SAD block sizes

using 8-bit and 16-bit inputs.

All Verilog RTL codes are synthesized and implemented to Xilinx XC7VX485T-

3FFG1761 FPGA using Vivado 2020.1. Vivado Synthesis Defaults and Performance

44

Explore synthesis and implementation strategies are used, respectively. FPGA

implementations are verified with post-implementation timing simulations.

For power consumption estimation, switching activity interchange format (SAIF)

files are generated using post-implementation timing simulations at 100 MHz for all

FPGA implementations. Power consumption of each FPGA implementation is estimated

with Vivado 2020.1 using the corresponding SAIF file.

Area, power consumption, and maximum clock frequency results are shown in

Figure 4.7 and Figure 4.8 for 8-bit and 16-bit inputs, respectively. LUT reductions

achieved by the proposed approximate SAD hardware compared to the smallest

approximate SAD hardware in the literature for each block size are shown in Table 4.2.

Power reductions achieved by the proposed approximate SAD hardware compared to the

lowest power consuming approximate SAD hardware in the literature for each block size

are also shown in Table 4.2.

Table 4.2 Reductions achieved by proposed approximate SAD hardware

8-bit 16-bit

LUT

Reduction

(%)

Power

Reduction

(%)

LUT

Reduction

(%)

Power

Reduction

(%)
4×4 19.81 0.00 20.16 20.00

8×8 19.26 11.11 19.68 20.51

16×16 19.11 16.30 19.56 32.43

24×24 19.08 24.40 19.53 34.55

32×32 19.06 27.08 15.40 38.26

The proposed approximate SAD hardware uses the smallest number of LUTs among

all SAD hardware for all block sizes. It uses up to 20% less LUTs than the smallest

approximate SAD hardware in the literature. However, it uses up to 3% more flip-flops

for 8-bit inputs, and up to 1.5% more flip-flops for 16-bit inputs. As expected, Accurate

2 SAD hardware, which uses Accurate AD 2 hardware, has the largest area.

The proposed approximate SAD hardware also consumes the lowest power among

all SAD hardware for all block sizes. It consumes up to 38% less power than the lowest

power consuming approximate SAD hardware in the literature. The approximate SAD

hardware in the literature consume less power than Accurate 1 and Accurate 2 SAD

hardware. NAAD with 4-bit approximation is the most area and power-efficient among

all approximate SAD hardware in the literature.

For 8-bit inputs, FAU, LEA and LOA based approximate SAD hardware are slightly

faster than the proposed approximate SAD hardware. Average clock frequencies of the

45

proposed, FAU, LEA, and LOA based approximate SAD hardware are 525 MHz, 539

MHz, 538 MHz, and 528 MHz, respectively. However, for 16-bit inputs, the proposed

approximate SAD hardware is faster than all the other SAD hardware. The proposed

approximate SAD hardware achieves an average clock frequency of 487 MHz followed

by 484 MHz achieved by NAAD hardware.

Figure 4.7 Implementation results for 8-bit inputs

46

Figure 4.8 Implementation results for 16-bit inputs

47

Chapter 5

5 LOW ERROR EFFICIENT APPROXIMATE ADDERS FOR FPGAS

Approximate computing trades off accuracy to improve the area, power, and speed

of digital hardware. Many computationally intensive applications such as video encoding,

video processing, and artificial intelligence are error resilient by nature due to the

limitations of human visual perception or nonexistence of a golden answer for the given

problem. Therefore, approximate computing can be used to improve the area, power, and

speed of digital hardware implementations of these error tolerant applications.

A variety of approximate circuits, ranging from system level designs [28,42,58,59]

to basic arithmetic circuits [17], have been proposed in the literature. Adders are used in

most digital hardware, not only for binary addition but also for other binary arithmetic

operations such as subtraction, multiplication, and division [26,60,61]. Therefore, many

approximate adders have been proposed in the literature [16,36],[62]-[75]. All

approximate adders exploit the fact that critical path in an adder is seldom used.

 Approximate adders can be broadly classified into the following categories:

segmented adders [63], which divide 𝑛-bit adder into several 𝑟-bit adders operating in

parallel; speculative adders [62], which predict the carry using only the few previous bits;

and approximate full-adder based adders [16,36],[65]-[68], which approximate the

accurate full-adder at transistor or gate level. Segmented and speculative adders usually

have higher speeds and larger areas than accurate adders [17]. Approximate full-adder

based approximate 𝑛-bit adders use 𝑚-bit approximate adder in the least significant part

(LSP) and (𝑛 − 𝑚)-bit accurate adder in the most significant part (MSP), as shown in

Figure 5.1.

Most of the approximate adders in the literature have been designed for ASIC

implementations. These approximate adders use gate or transistor level optimizations.

Recent studies have shown that the approximate adders designed for ASIC

48

implementations either do not yield the same area, power, and speed improvements when

implemented on FPGAs or fail to utilize FPGA resources efficiently to improve the output

quality [71],[77].

Figure 5.1 Architecture of approximate full-adder based n-bit approximate adders

This is mainly due to the difference in the way logic functions are implemented in

ASICs and FPGAs. The basic element of an ASIC implementation is a logic gate, whereas

FPGAs use lookup tables (LUTs) to implement logic functions. Therefore, ASIC based

optimization techniques cannot be directly mapped to FPGAs.

FPGAs are widely used to implement error-tolerant applications using addition and

multiplication operations. The efficiency of FPGA-based implementations of these

applications can be improved through approximate computing. Only a few FPGA specific

approximate adders have been proposed in the literature [70]-[74]. These approximate

adders focus on improving either the efficiency or accuracy. Therefore, the design of low

error efficient approximate adders for FPGAs is an important research topic.

In this chapter, we propose a methodology to reduce the error of approximate adders

by efficiently utilizing FPGA resources, such as unused LUT inputs. We propose two

approximate adders for FPGAs using our methodology based on the architecture shown

in Figure 5.1.

We propose a low error and area efficient approximate adder (LEADx) for FPGAs.

It has lower mean square error (MSE) than the approximate adders in the literature. It

achieves better quality than the other approximate adders for video encoding application.

We also propose an area and power efficient approximate adder (APEx) for FPGAs.

Although its MSE is higher than that of LEADx, it is lower than that of the approximate

adders in the literature. It has the same area, lower MSE and less power consumption than

the smallest and lowest power consuming approximate adder in the literature. It has

A[n-1:m] + B[n-1:m] + CPred m-bit Approximation

LSPMSP

Bm–1:B0 Am–1:A0Bn–1 : Bm An–1 : Am

Sm–1 : S0
Sn–1 : SmCout

mm
n – mn – m

CPred

49

smaller area and lower power consumption than the other approximate adders in the

literature.

We provide mathematical models to estimate the error rate (ER), MSE, and mean

absolute error (MAE) of the proposed approximate adders. We compare the proposed

approximate adders with the approximate adders in the literature.

5.1 Background

5.1.1 Related Works

Bit truncation in least significant bit positions is a well-known approximation

technique. In truncate adder, the output of LSP is fixed to zero. Although, the truncate

adder provides significant improvements in speed, area, and power consumption, it has

high error rate and MSE [36],[65].

Lower-part-OR adder (LOA) is proposed in [16]. Its LSP consists of 2-input OR

gates, whereas the MSP is accurate. A carry is sent to the MSP if it is generated at most

significant bit position of the LSP. An approximate adder, OLOCA, is proposed in [66]

by optimizing the LOA architecture. OLOCA uses only two OR gates in the LSP to

compute the two most significant sum bits. Rest of the LSP is approximated to a fixed

value. An approximate adder with near-normal error distribution (HOAANED) is

proposed in [67]. HOAANED has similar architecture to OLOCA, however, it uses more

resources to compute the two most significant sum bits of LSP. Therefore, HOAANED

has better quality than OLOCA at the expense of slight increase in area.

Dutt et al. [68] proposed an approximate full adder based multibit adder (AFA). The

sum of each bit of LSP is computed accurately whereas its respective carry out is equated

to one of the inputs.

In recent years, a few approximate adders are proposed specifically for FPGAs. A

LUT-based approximate adder (LBA) is proposed in [70]. The LSP and MSP, both

perform accurate addition. A carry is passed to MSP only if it is generated at the most

significant bit (MSB) of the LSP. If any other carry, that needs to be propagated to the

MSP, is detected, then all bits of LSP are set to 1. LBA has high accuracy, but it does not

provide performance improvement compared to the accurate adder synthesized by FPGA

synthesis tool [71].

50

A methodology to design approximate adders (DeMAS) for FPGAs is presented in

[71]. The methodology is based on an optimized truth table of approximate full-adder.

Eight different variants of multibit approximate adder are presented using the optimized

truth table. All these variants use same number of LUTs but differ in their error metrics.

Quaternary addition based approximate adder using the fast carry chains of FPGAs

is presented in [72]. The accurate quaternary adder uses two carry inputs and generates

two carry outputs. However, the authors in [72] proposed to use only one carry in the

quaternary addition, hence generating an approximate result.

A single exact dual adder (SEDA) is proposed for FPGAs in [73]. The adder can

either perform accurate addition of single 𝑛-bit input or approximate addition of two 𝑛-

bit inputs. Carry of 2-bit addition is computed accurately, while the sum bits are equated

to inverse of carry out.

High speed segmented approximate adders (xUAV) for FPGAs are proposed in [74].

Segmentation is done in 2, 3, or 5-bit groups for efficient mapping to LUTs. However,

the proposed adders use more area and consume more power than accurate adder. These

adders also have very large MAE and MSE as the size of adder is increased.

5.1.2 Length of carry

The key principle of approximate addition is to shorten the critical path of an adder

by breaking the carry chain at one or multiple positions. This technique improves the

speed of an adder at the expense of accuracy loss. In this section, we briefly explain the

rationale for this technique.

The length of a carry signal in 𝑛-bit binary addition is defined as the number of bits

it propagates before being killed or regenerated. For example, if a carry signal is generated

at 𝑖th bit position and killed or regenerated at 𝑗th bit position (𝑗 > 𝑖), the length of that

carry signal is defined as 𝑗 − 𝑖 bits.

In 𝑛-bit binary addition, the outgoing carry signal at any bit position 𝑖 is determined

by the current and previous input bits. Bit position 𝑖 is said to generate a carry if both the

input bits at 𝑖th position are 1, propagate the incoming carry if both the input bits at 𝑖th

position are different, and kill the incoming carry if both the input bits at 𝑖th position are

0.

In the worst case, a carry signal is generated in the least significant bit (LSB) and

propagated to the most significant bit (MSB). In this case, the length of carry signal is

51

equal to the adder bit width. However, the worst case rarely happens, and the average

length of a carry signal is usually much shorter than the adder bit width [62].

We implemented and simulated 𝑛-bit accurate adder using 107 independent random

number pairs extracted from uniformly distributed sample space between 0 and 2𝑛– 1.

Based on these simulation results, probability of the length of a carry signal being equal

to L bits is given in Table 5.1. As can be seen from this table, the length of a carry signal

is rarely longer than 5 bits. The length of a carry signal is shorter than 5 bits with more

than 90% probability.

Table 5.1 Probability of the length of a carry being equal to L bits

Adder Bit

Width (𝑛)

Probability (%)

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

16 53.09 25.01 11.72 5.49 2.54 1.17

32 51.59 24.97 12.10 5.86 2.84 1.37

64 50.78 25.00 12.31 6.05 2.98 1.46

128 50.38 24.99 12.41 6.16 3.05 1.51

Since the worst case of carry propagation (length of carry = 𝑛-bits) rarely happens,

in most cases, the carry can be correctly predicted by considering only a few previous

input bits.

5.1.3 Xilinx Virtex FPGA

The main logic resource in a Xilinx Virtex FPGA is configurable logic blocks (CLBs)

[27]. Each CLB contains two slices. Simplified architecture of a slice in Xilinx Virtex 7

FPGA is shown in Figure 4.3. Each slice is composed of 4 such elements with carry-chain

cascaded in series. Therefore, each slice has four 6-input LUTs. Each LUT can be used

to implement two 5-input combinational logic functions or one 6-input combinational

logic function. Furthermore, each slice also contains a 4-bit carry-chain and eight flip-

flops.

An efficient FPGA-based implementation should be able to effectively utilize these

resources. This is particularly important for implementing arithmetic functions that can

utilize the fast carry-chains. Therefore, it is important to understand how the arithmetic

operations are implemented on FPGAs. Particularly, we consider the mapping of a full

adder to a Xilinx FPGA.

52

 Typically, a full adder is implemented as shown in equation (5.1) and equation (5.2),

where A and B represent the inputs, S is sum, and CIN and COUT are carry-in and carry-

out, respectively.

𝑆 = (𝐴  𝐵)  𝐶𝐼𝑁 (5.1)

𝐶𝑂𝑈𝑇 = (𝐴  𝐵)𝐶𝐼𝑁 + 𝐴𝐵 (5.2)

However, when implementing a full adder on a Xilinx FPGA, the synthesis tool

rewrites equation (5.2) as equation (5.3).

𝐶𝑂𝑈𝑇 = (𝐴  𝐵)𝐶𝐼𝑁 + (𝐴  𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐵 (5.3)

This simplification allows the reuse of A  B logic function for computing both S

and COUT [78]. This term is used as input to XOR gate for sum computation and as select

input of mux for selecting the appropriate signal for COUT. However, since only 4-bit carry

chain is available in a slice, an 𝑛-bit adder uses 𝑛 LUTs such that 4 inputs and one output

of each LUT are not used. These unused resources can be utilized to implement additional

logic with an adder without increasing area.

5.2 Proposed Design Methodology

The proposed design methodology uses the approximate full-adder based 𝑛-bit adder

architecture shown in Figure 5.1. 𝑛-bit addition is divided into 𝑚-bit approximate adder

in the LSP and (𝑛−𝑚)-bit accurate adder in the MSP. Breaking the carry chain at bit-

position 𝑚 generally introduces an error of 2𝑚 in the final sum. The error rate and error

magnitude can be reduced by predicting the carry-in to the MSP (𝐶𝑀𝑆𝑃) more accurately

and by modifying the logic function of LSP to compensate for the error.

The carry to the accurate part can be predicted using any 𝑘-bit input pairs from the

approximate part such that 𝑘 ≤ 𝑚. Most of the existing approximate adders use 𝑘 = 1.

As discussed in Section II, FPGA implementation of accurate adder uses only 2

inputs and 1 output of each 6-input LUT. We propose to utilize the remaining 4, available

but unused, inputs of the first LUT of the MSP to predict 𝐶𝑀𝑆𝑃. Therefore, we propose to

share the most significant 2 bits of both inputs of the LSP with the MSP for carry

prediction.

53

Sharing more bits of LSP with MSP will increase the probability of correctly

predicting 𝐶𝑀𝑆𝑃 which will in turn reduce error rate. However, this will also increase the

area and delay of the approximate adder.

To analyze the tradeoff between the accuracy and performance of an FPGA-based

approximate adder with different values of 𝑘, we performed synthesis and simulation

experiments on a Xilinx Virtex 7 FPGA.

The results for a 64-bit adder with 12-bits LSP using 𝑘 bits to predict 𝐶𝑀𝑆𝑃 are shown

in Table 5.2. For 𝑘 > 2, the error rate reduces slightly at the cost of increased area and

delay. On the other hand, for 𝑘 < 2, the delay improves marginally at the cost of

significant increase in the error rate.

Table 5.2 Effects of Increasing the Number of Bits (k) for Carry Prediction in a 64-Bit

Approximate Adder with 12-Bits LSP

𝑘 LUT Delay (ns) ER (%)

0 64 1.57 50.04

1 64 1.59 24.98

2 64 1.62 12.51

3 65 1.85 6.26

4 65 1.90 3.10

5 65 2.03 1.55

Therefore, we propose using 𝑘 = 2, as it provides good balance between accuracy

and performance of approximate adders for FPGAs. In the proposed approximate adders,

a carry is passed to the MSP if it is generated at bit position 𝑚 − 1, or generated at bit

position 𝑚 − 2 and propagated at bit position 𝑚 − 1. The 𝐶𝑀𝑆𝑃 can be described by

equation (5.4) where 𝐺𝑖 and 𝑃𝑖 are the generate and propagate signals of the 𝑖th bit

position, respectively.

𝐶𝑀𝑆𝑃 = 𝐺𝑚−1 + 𝑃𝑚−1𝐺𝑚−2 (5.4)

The error in higher bit positions has more impact on the error magnitude of an

approximate adder. As described in equation (5.4), the carry-in to MSP is predicted using

two most significant bits of LSP. These 2 bits effectively implement a 3-output function

{𝐶𝑀𝑆𝑃𝑆𝑚−1𝑆𝑚−2}. An error occurs in the 𝑛-bit addition if a carry (𝐶𝑚−2) is generated at

bit position 𝑖 < (𝑚 − 2) and that carry should be propagated to MSP. In this case, the

correct result should be {𝐶𝑀𝑆𝑃𝑆𝑚−1𝑆𝑚−2} = 100. However, without any error reduction

mechanism the approximate result will be {𝐶𝑀𝑆𝑃𝑆𝑚−1𝑆𝑚−2} = 000.

To reduce the error magnitude, we propose a 2-bit approximate adder (AAd1) for

computing 𝑆𝑚−1 and 𝑆𝑚−2. The functionality of AAd1 is described by equation (5.5) and

54

equation (5.6). AAd1 is implemented using a single LUT as shown in Figure 5.2. When

𝐶𝑚−2 = 1, 𝑃𝑚−2 = 1, and 𝑃𝑚−1 = 1, the approximate result will be {𝐶𝑀𝑆𝑃𝑆𝑚−1𝑆𝑚−2} =

011, only 1 less than the accurate result. For all other inputs, it will generate the accurate

result.

𝑆𝑚−2 = (𝑃𝑚−2 ⊕ 𝐶𝑖𝑛) + (𝑃𝑚−1𝐶𝑚−2) (5.5)

𝑆𝑚−1 = (𝑃𝑚−1 ⊕ 𝐺𝑚−2) + (𝑃𝑚−2𝐶𝑚−2) (5.6)

Figure 5.2 Proposed 2-bit approximate adder (AAd1) used in MSBs of LSP.

For uniformly distributed inputs, the carry-in has equal probability of being 1 or 0.

The probability of inputs at bit position 𝑖 propagating a carry is 𝑃𝑖 = 1/2. Therefore, in

the proposed 𝑛-bit approximate adders, the probability of 𝑆𝑚−2 and 𝑆𝑚−1 generating an

error is 0.125 as shown in equation (5.7). Throughout this chapter, 𝐸𝑥 represents the cases

when hardware 𝑥 generates an error.

𝑃𝑟[𝐸𝐴𝐴𝑑1] = 𝑃𝑟[𝐶𝑚−2 ∧ 𝑃𝑚−2 ∧ 𝑃𝑚−1]

=
1

2
 ×

1

2
×

1

2
= 0.125 (5.7)

Figure 5.3 Architecture of proposed approximate adders for FPGAs.

I0I1I2I3I4I5

Am–2Am–1 Bm–2Bm–1 Cm-21

L
U

T
6
_
2

O5O6

Sm-2Sm-1

A[n-1:m] + B[n-1:m] + C MSP

LSPMSP

Proposed

2-bit

AAd1

(m – 2)-bit

Approximation

Bm–3:B0 Am–3:A0Bn–1 : Bm An–1 : Am

Sm–3 : S0Sn–1 : Sm

Am–1 : Am-2

Sm–1 : Sm-2Cout

Bm–1 : Bm-2

22

C
m
–
 2

55

Architecture of the proposed approximate adders is shown in Figure 5.3. It uses 2

MSBs of LSP to predict the 𝐶𝑀𝑆𝑃, whereas their respective sum bits are computed using

AAd1. AAd1 is only suitable when the 𝐶𝑜𝑢𝑡 of 2-bit inputs is predicted accurately.

Accurate prediction of 𝐶𝑜𝑢𝑡 requires additional resources or unused LUT inputs.

Therefore, to design area efficient approximate adders for FPGAs, AAd1 is not used in

the least significant 𝑚 − 2 bits of the LSP. In this chapter, we propose two 𝑛-bit

approximate adders using the architecture in Figure 5.3. The two proposed 𝑛-bit

approximate adders use different approximate functions for the first 𝑚 − 2 bits of the

LSP.

5.2.1 Proposed low error and area efficient approximate adder

In this section, we propose a low error and area efficient approximate adder (LEADx)

for FPGAs. State-of-the-art FPGAs use 6-input LUTs. These LUTs can be used to

implement two 5-input functions. The complexity of the implemented logic function does

not affect performance of LUT based implementation. A 2-bit adder has 5 inputs and two

outputs. Therefore, a LUT can be used to implement a 2-bit approximate adder.

For an area efficient FPGA implementation, we propose to split the first 𝑚 − 2 bits

of LSP into ⌈(𝑚 − 2)/2⌉ groups of 2-bit inputs such that each group is mapped to a single

LUT. Each group adds two 2-bit inputs with carry-in using an approximate 2-bit adder

(AAd2).

To eliminate the carry chain in LSP, we propose to equate 𝐶𝑜𝑢𝑡 of 𝑖th group to one

of the inputs of that group (𝐴𝑖+1). This results in error in 8 out of 32 possible cases with

an absolute error magnitude of 4 in each erroneous case. To reduce the error magnitude,

we propose to compute the 𝑆𝑖 and 𝑆𝑖+1 output bits as follows:

• If the 𝐶𝑜𝑢𝑡 is predicted correctly, the sum outputs are also calculated accurately using

standard 2-bit addition.

• If the 𝐶𝑜𝑢𝑡 is predicted incorrectly and the predicted value of 𝐶𝑜𝑢𝑡 is 0, both sum

outputs are set to 1.

• If the 𝐶𝑜𝑢𝑡 is predicted incorrectly and the predicted value of 𝐶𝑜𝑢𝑡 is 1, both sum

outputs are set to 0.

This modification reduces the absolute error magnitude to 2 in two cases, and to 1 in

the other six cases. The resulting truth table of AAd2 is given in Table 5.3. The error cases

56

are shown in red. Since AAd2 produces an erroneous result in 8 out of 32 cases, the error

probability of AAd2 is 0.25 as shown in equation (5.8).

Table 5.3 Truth Table of Proposed 2-BIT Approximate Adder (AAd2) used for

Approximation in least-significant m–2 bits of LEADx

A i+1 A i B i+1 B i Cin C i+2 S i+1 S i

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 1

0 0 0 1 1 0 1 0
0 0 1 0 0 0 1 0

0 0 1 0 1 0 1 1

0 0 1 1 0 0 1 1
0 0 1 1 1 0 1 1

0 1 0 0 0 0 0 1

0 1 0 0 1 0 1 0
0 1 0 1 0 0 1 0

0 1 0 1 1 0 1 1

0 1 1 0 0 0 1 1
0 1 1 0 1 0 1 1

0 1 1 1 0 0 1 1

0 1 1 1 1 0 1 1
1 0 0 0 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 0 1 0 0
1 0 0 1 1 1 0 0

1 0 1 0 0 1 0 0

1 0 1 0 1 1 0 1
1 0 1 1 0 1 0 1

1 0 1 1 1 1 1 0

1 1 0 0 0 1 0 0
1 1 0 0 1 1 0 0

1 1 0 1 0 1 0 0

1 1 0 1 1 1 0 1
1 1 1 0 0 1 0 1

1 1 1 0 1 1 1 0

1 1 1 1 0 1 1 0
1 1 1 1 1 1 1 1

𝑃𝑟[𝐸𝐴𝐴𝑑2] = 0.25 (5.8)

The proposed LEADx approximate adder is shown in Figure 5.4. An 𝑛-bit LEADx

uses ⌈(𝑚 − 2)/2⌉ copies of AAd2 adder in the least significant 𝑚 − 2 bits of the

approximate adder architecture shown in Figure 5.4. In LEADx, 𝐶𝑚−2 = 𝐴𝑚−3. AAd2

implements a 5-to-2 logic function that is mapped to a single LUT. Similarly, AAd1 is

also mapped to a single LUT. Therefore, ⌈𝑚/2⌉ LUTs are used for the LSP. These LUTs

work in parallel. Therefore, the delay of LSP is equal to the delay of a single LUT (𝑡𝐿𝑈𝑇).

The critical path of LEADx is from the input 𝐴𝑚−2 to the output 𝑆𝑛−1.

Figure 5.5 shows an example of the functionality of 16-bit LEADx with 8-bit

approximation. The outputs of bits enclosed in dotted lines are computed using AAd1.

The outputs of the other bits of the approximate part (LSP) are computed using three

copies of AAd2. The carry-in to the accurate part (𝐶𝑀𝑆𝑃) is predicted from the two MSBs

of LSP as shown in equation (5.4).

57

Figure 5.4 Proposed n-bit low error and area efficient approximate adder (LEADx).

Figure 5.5 Example of 16-bit LEADx with 8-bit approximation.

The error probability of 𝑛-bit LEADx depends on the number of approximate 2-bit

adders used in the approximate part. Error in any of these 2-bit adders can contribute to

the error in the sum output. Therefore, the error probability of LEADx is given as the

union of error probabilities of the individual 2-bit approximate adders. Let there be N

copies of AAd2 in LEADx and 𝐸𝐴𝐴𝑑2−𝑖 represents the error in 𝑖th copy of AAd2, then the

error probability of LEADx can be calculated as shown in equation (5.9).

𝑃𝑟[𝐸𝐿𝐸𝐴𝐷𝑥] = 𝑃𝑟[𝐸𝐴𝐴𝑑1 ∨ 𝐸𝐴𝐴𝑑2−1 ∨ 𝐸𝐴𝐴𝑑2−2 … ∨ 𝐸𝐴𝐴𝑑2−𝑁] (5.9)

Since error in two or more of these 2-bit adders can occur concurrently, occurrence

of error in these adders are not mutually exclusive. Therefore, equation (5.9) can be

evaluated using inclusion-exclusion principle [79]. For example, the error probability of

LEADx with 4-bits LSP, for uniformly distributed inputs, can be calculated as shown in

equation (5.10).

𝑃𝑟[𝐸𝐿𝐸𝐴𝐷𝑥|𝑚=4] = 𝑃𝑟[𝐸𝐴𝐴𝑑1 ∨ 𝐸𝐴𝐴𝑑2]

= 𝑃𝑟[𝐸𝐴𝐴𝑑1] + 𝑃𝑟[𝐸𝐴𝐴𝑑2] − 𝑃𝑟[𝐸𝐴𝐴𝑑1 ∧ 𝐸𝐴𝐴𝑑2]

= 0.125 + 0.25 − (0.125 × 0.25)

= 0.34375 (5.10)

Proposed 2-bit

AAd2

A0A1

I0I1I2I3I4I5

B0B1

O5O6

S0S1

1 Cin

L
U

T
6
_

2

Proposed 2-bit

AAd2

A2A3

I0I1I2I3I4I5

B2B3

O5O6

S2S3

1

L
U

T
6
_

2

Proposed 2-bit

AAd2

Am-4Am-3

I0I1I2I3I4I5

Bm-4Bm-3

O5O6

Sm-4Sm-3

1

L
U

T
6

_
2

Proposed 2-bit

AAd1

Am-2Am-1

I0I1I2I3I4I5

Bm-2Bm-1

O5O6

Sm-2Sm-1

1

L
U

T
6
_

2

Cout

Dedic ated Car r y -cha in

Bm AmAm+1Bm+1An-1Bn-1

SmSm+1Sn-1

LUT6LUT6LUT6

m-bit Approximate Part(n – m)-bit Accurate Part

0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0
0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1

0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0

CMSP = 1

+

Approximate PartAccurate Part

58

Similarly, the error probability of LEADx with 6-bits LSP, for uniformly distributed

inputs, can be calculated as shown in equation (5.11).

𝑃𝑟[𝐸𝐿𝐸𝐴𝐷𝑥|𝑚=6] = 𝑃𝑟[𝐸𝐴𝐴𝑑1 ∨ 𝐸𝐴𝐴𝑑2 ∨ 𝐸𝐴𝐴𝑑2]

= 𝑃𝑟[𝐸𝐴𝐴𝑑1] + 𝑃𝑟[𝐸𝐴𝐴𝑑2] + 𝑃𝑟[𝐸𝐴𝐴𝑑2] − 𝑃𝑟[𝐸𝐴𝐴𝑑1 ∧ 𝐸𝐴𝐴𝑑2]

− 𝑃𝑟[𝐸𝐴𝐴𝑑1 ∧ 𝐸𝐴𝐴𝑑2] − 𝑃𝑟[𝐸𝐴𝐴𝑑2 ∧ 𝐸𝐴𝐴𝑑2] + 𝑃𝑟[𝐸𝐴𝐴𝑑1 ∧ 𝐸𝐴𝐴𝑑2 ∧ 𝐸𝐴𝐴𝑑2]

= 0.125 + 0.25 + 0.25 − (0.125 × 0.25) − (0.125 × 0.25) − (0.25 × 0.25)

+ (0.125 × 0.25 × 0.25)

= 0.50781 (5.11)

5.2.2 Proposed area and power efficient approximate adder for FPGAs

In this section, we propose an area and power efficient approximate adder (APEx)

for FPGAs. APEx is also based on the approximate adder architecture shown in Figure

5.3. For the least significant 𝑚 − 2 bits of the LSP, the aim is to find an approximate

function with no data dependency. Carry should neither be generated nor used for sum

computation. A 1-bit input pair at any bit position 𝑖 ≤ (𝑚 − 2) should produce a 1-bit

sum output only.

In general, any logic function with 1-bit output can be used as an approximate

function to compute the approximate sum of 1-bit inputs at 𝑖th bit position. A constant 0

or constant 1 at the output are also valid approximate functions. Fixing the output to 0 or

1 will reduce the area and power consumption of the approximate adder because no

hardware will be required for sum computation.

We evaluated error metrics of both constant functions for 1-bit addition, as shown in

Table 5.4. Fixing the output to 0 introduces error in 3 out of 4 cases with an average error

(AE) of −1 and MSE of 3∕2 for uniformly distributed inputs. Fixing the output to 1

introduces error in 2 out of 4 cases with 0 AE and MSE of ½ for uniformly distributed

inputs. Therefore, constant 1 provides a better approximation.

Table 5.4 Error Characterization of Constant Approximate Functions for 1-Bit Addition

A B
Accurate
Addition

Constant 1 Constant 0

Sum Error Sum Error

0 0 00 1 1 0 0

0 1 01 1 0 0 -1

1 0 01 1 0 0 -1

1 1 10 1 -1 0 -2

Error Cases 2 3

Average Error 0 -1

Mean Square Error ½ 3∕2

59

We further analyze the error metrics of 𝑛-bit approximate adder architecture shown

in Figure 5.3 when approximate constant functions are used in the least significant 𝑚 − 2

bits of its LSP. If the least significant 𝑚 − 2 bits are fixed to 0, the maximum error (ME)

occurs when the inputs 𝐴0 to 𝐴𝑚−3 and 𝐵0 to 𝐵𝑚−3 are all 1. With accurate addition, 𝑆1

to 𝑆𝑚−3 output bits are all 1 and a carry is propagated to 𝑚 − 2 bit position. Fixing 𝑆0 to

𝑆𝑚−3 to 0 and carry-in for 𝑚 − 2 bit position to 0 results in ME of 2𝑚−1 − 2.

If the least significant 𝑚 − 2 bits are fixed to 1, the ME occurs when the inputs 𝐴0

to 𝐴𝑚−3 and 𝐵0 to 𝐵𝑚−3 are all 0. With accurate addition, 𝑆0 to 𝑆𝑚−3 output bits are all

0 and carry is not propagated to 𝑚 − 2 bit position. Fixing 𝑆0 to 𝑆𝑚−3 to 1 and carry-in

for 𝑚 − 2 bit position to 0 results in ME of 2𝑚−2 − 1. The ME of constant 1 is less than

the ME of constant 0.

Furthermore, assume that a constant value V is used to approximate the function 𝐹 =

 𝐴 + 𝐵. The resulting absolute error is defined as |𝐹 − 𝑉|. The aim is to find a constant

value V such that MSE is minimized. This is a well-known problem with a well-defined

solution: using mean of distribution of F as V minimizes the MSE [80,81].

Let us consider that A and B have uniform input distribution with values between 0

and 2𝑛 − 1 , then F has a symmetric triangular distribution in the range [0, (2𝑛+1 − 2)].

In the case of symmetric distribution, the mean and median are the same and located at

the center of the sample space [82]. Therefore, mean and median of F are located at 2𝑛 −

1, which is the halfway point of [0, 2𝑛+1 − 2]. The binary representation of 2𝑛 − 1, in

𝑛 + 1 bit sample space, is 0111…1. Therefore, using constant 1 as the sum output and 0

as carry-out minimizes the MSE of the approximate output. If 𝑖 bits are fixed to 1, the

probability of error in the sum output is calculated as shown in equation (5.12).

𝑃𝑟[𝐸𝑐𝑜𝑛𝑠𝑡1] =
2𝑖 − 1

2𝑖
 (5.12)

In the proposed APEx, the 𝑆0 to 𝑆𝑚−3 outputs are fixed to 1 and the 𝐶𝑚−2 is 0. This

provides significant area and power consumption reduction at the expense of slight quality

loss. It is important to note that this is different from bit truncation technique which fixes

both the sum and carry outputs to 0. The ME of truncate adder is 2𝑚+1 − 2 which is much

higher than ME of APEx (2𝑚−2 − 1).

The proposed APEx approximate adder is shown in Figure 5.6. Same as LEADx, the

critical path of APEx is from the input 𝐴𝑚−2 to the output 𝑆𝑛−1. Similar to (9), the error

probability of APEx can be calculated as shown in equation (5. 13).

60

Figure 5.6 Proposed n-bit area and power efficient approximate adder (APEx).

When 𝐶𝑚−2 is 0, 𝐸𝐴𝐴𝑑1 reduces to 0 according to equation (5.7). Therefore, the error

probability of APEx depends only on the number of output bits fixed to 1.

𝑃𝑟[𝐸𝐴𝑃𝐸𝑥] = 𝑃𝑟[𝐸𝐴𝐴𝑑1 | 𝐶𝑚−2=0 ∨ 𝐸𝐶𝑜𝑛𝑠𝑡1|𝑖=𝑚−2]

=
2𝑚−2 − 1

2𝑚−2
 (5.13)

Figure 5.7 shows an example of the functionality of 16-bit APEx with 8-bit

approximation. The outputs of the bits enclosed by dotted lines are computed using AAd1.

The outputs of the other bits of the approximate part (LSP) are fixed to 1. The carry-in to

the accurate part (𝐶𝑀𝑆𝑃) is predicted from the two MSBs of LSP as shown in equation

(5.4).

Figure 5.7 Example of 16-bit APEx with 8-bit approximation.

5.3 Experimental Results and Discussion

In this section, we present experimental results of the proposed approximate adders,

LEADx and APEx. We compare LEADx and APEx with other FPGA-specific

m-bit Approximate Part

Cout Sm-3 S0S1

Proposed 2-bit AAd1

Am-1 Am-2

I0I1I2I3I4I5

Bm-2Bm-1

O5O6

Sm-2Sm-1

LUT6LUT6LUT6

Ded icat ed C ar ry-ch ain

Bm AmAm+1Bm+1An-1Bn-1

SmSm+1Sn-1

(n – m)-bit Accurate Part

1

111

0

L
U

T
6
_
2

0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0
0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1

0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1

CMSP = 1

+

Approximate PartAccurate Part

61

approximate adders in the literature: LBA [70], DeMAS [71], and SEDA [73]. DeMAS

can be built using different configurations. For a given number of approximate bits, each

of these configurations has the same area. Therefore, we chose the configuration with the

lowest average error for comparison.

We also compare LEADx and APEx with power and area efficient ASIC-based

approximate adders in the literature: AFA [68], HOAANED [67], and LOA [16]. Each

of these approximate adders is based on the approximate adder architecture shown in

Figure 5.1, where approximation is done only in the LSP and the MSP is kept accurate.

We also compare the proposed approximate adders with the segmented and speculative

approximate adders in the literature.

5.3.1 Error Metrics

The functional models of these approximate adders are implemented in C++. Error

metrics of these approximate adders are determined using their functional models for 16,

32, and 64-bit addition, with varying number of approximate bits, using 10^7 uniform

random numbers as inputs.

The error value for each input is calculated by subtracting the accurate result from

the approximate result. Error value may be positive, negative, or zero. The average error

(AE) is defined as the average of all the error values. MAE, also known as mean error

distance [33], is the average of the absolute values of all the error values. MAE is always

positive. MSE is the average of the squares of all the error values. RMSE is the square

root of MSE.

The MAE and MSE of LEADx can be calculated using equation (5.14) and equation

(5.15), respectively. Similarly, the MAE and MSE of APEx can be calculated using

equation (5.16) and equation (5.17), respectively. An empirical approach is used to

determine these mathematical models, i.e., these formulas are determined using

experimental results.

𝑀𝐴𝐸𝐿𝐸𝐴𝐷𝑥 = (
3

16
× 2𝑚−2) + 2𝑚−9 (14)

𝑀𝑆𝐸𝐿𝐸𝐴𝐷𝑥 ≈ 22𝑚−7 + 22𝑚−11 − 21.5𝑚−9.2 (15)

𝑀𝐴𝐸𝐴𝑃𝐸𝑥 =
2𝑚−2

3
 (16)

𝑀𝑆𝐸𝐴𝑃𝐸𝑥 ≈
5

24
 × 4𝑚−2 (17)

62

As can be observed in these equations, error metrics of the proposed approximate

adders depend only on the number of approximate bits (𝑚), and they are independent of

the bit width (𝑛) of the adder.

Error metrics and the error distribution of 16-bit approximate adders with 8-bit

approximation are shown in Figure 5.8. The error distribution is plotted as a function of

error value and its respective percentage occurrence. As can be seen in Figure 5.8, the

maximum errors of the proposed approximate adders are less than those of other

approximate adders.

Figure 5.8 Error distribution and error metrics of 16-bit approximate adders with 8-bit

approximation.

The error distribution of LEADx is skewed to the negative side. This indicates that,

in most of the cases, the result of LEADx is less than the accurate result, leading to a

negative AE. Whereas, plotting the error distribution of APEx results in a symmetrical

triangular shape centered at zero, indicating that APEx has equal probability of negative

and positive errors. Therefore, APEx has almost zero AE.

The error distribution of LBA indicates that its erroneous output is always less than

the accurate result. All other approximate adders in the literature have almost symmetrical

error distribution. However, their error values are spread over a wide range, resulting in

much larger MAE and MSE as compared to the proposed approximate adders.

The error metrics of 64-bit adders with 4 to 12-bits of approximation are reported in

Table 5.5. Our proposed approximate adders have the lowest MSE. The MSE of the

LEADx is at least 20% less than that of the approximate adders in the literature.

0

2

4

8

10

 200 100 0 100 200

O
cc
u
rr
en
ce
 (
%
)

Error Value

(a) LEADx

AE

MAE

RMSE

40

0

1

2

 200 100 0 100 200

O
cc
u
rr
en
ce
 (
%
)

Error Value

(b) APEx

AE

MAE

RMSE

0

1

2

3

4

5

7

8

9

10

11

 200 100 0 100 200

O
cc
u
rr
en
ce
 (
%
)

Error Value

(f) LOA

AE

MAE

RMSE

0

0.2

0.4

0.

0.8

1

 200 100 0 100 200

O
cc
u
rr
en
ce
 (
%
)

Error Value

(d) LBA

AE

MAE

RMSE

75

0

1

2

3

4

5

7

8

9

10

11

 200 100 0 100 200

O
cc
u
rr
en
ce
 (
%
)

Error Value

(e) DeMAS 2

AE

MAE

RMSE

0

1

2

3

4

 300 200 100 0 100 200 300

O
cc
u
rr
en
ce
 (
%
)

Error Value

(g) SEDA

AE

MAE

RMSE

0

1

2

 200 100 0 100 200

O
cc
u
rr
en
ce
 (
%
)

Error Value

(c) HOAA ED

AE

MAE

RMSE

0

1

2

3

4

5

7

8

9

10

11

 400 200 0 200 400

O
cc
u
rr
en
ce
 (
%
)

Error Value

(h) AFA

AE

MAE

RMSE

63

Table 5.5 Error Metrics of 64-Bit Approximate Adders

Adder

Approximate Bits
4 6 8 10 12

MSE
(x102)

LEADx 0.019 0.333 5.43 87.10 1392

APEx 0.025 0.425 6.83 109.09 1746

AFA [68] 0.639 10.240 163.62 2620.20 41894

DeMAS–2 [71] 0.160 2.560 40.91 655.05 10473

HOAANED [67] 0.065 1.066 17.10 273.14 4363

LBA [70] 0.026 0.428 6.84 110.07 1751

LOA [16] 0.159 2.560 41.00 656.66 10494

SEDA [73] 0.303 4.920 78.56 1257.80 20130

MAE

LEADx 0.69 3.08 12.56 50.41 201

APEx 1.25 5.31 21.33 85.27 341

AFA [68] 5.51 22.35 89.54 358.27 1432

DeMAS–2 [71] 2.75 11.17 44.77 179.14 716

HOAANED [67] 1.94 7.98 32.02 128.02 511

LBA [70] 0.66 2.67 10.68 42.91 171

LOA [16] 2.87 11.88 47.92 192.16 768

SEDA [73] 4.05 16.47 65.99 264.10 1056

ER

(%)

LEADx 34.44 50.83 63.10 72.31 79.26

APEx 74.99 93.75 98.44 99.61 99.91

AFA [68] 68.30 82.14 89.97 94.38 96.83

DeMAS–2 [71] 68.31 82.14 89.97 94.39 96.84

HOAANED [67] 81.26 95.34 98.82 99.71 99.93

LBA [70] 21.88 24.31 24.85 25.04 25.04

LOA [16] 68.35 82.21 90.01 94.37 96.82

SEDA [73] 80.85 91.61 96.33 98.40 99.29

LBA has the lowest MAE. However, it has the worst area and power consumption

results, as reported in the next section. The MAE of the proposed approximate adders is

second only to that of LBA. The ER of LEADx and APEx validate the analytical error

probability results given in Section II. All the approximate adders, except LBA and

LEADx, have high ER.

These adders follow the fail-small approach [76]. In the fail-small approach, even if

ER is high, error magnitudes are small. The rationale behind this approach is that small

errors are naturally masked by algorithms, and they have less impact on MSE. Therefore,

they slightly degrade the quality of applications.

The error magnitude of our proposed approximate adders is significantly reduced by

accurately predicting the carry to the MSP using unused LUT inputs. AAd1 and AAd2,

both fully utilize the LUT inputs to achieve low error. The LEADx is designed in a way

that not only the error values are reduced but also the number of error cases are reduced.

64

The experimental results show that LEADx has indeed higher accuracy and lower MSE

than the other approximate adders. Similarly, the logic function of the approximate part

of APEx is determined to reduce the MSE. The experimental results show that the MSE

of APEx is indeed less than that of the approximate adders in the literature.

5.3.2 Implementation Results

All the approximate adders are implemented using Verilog HDL. The accurate part

of all the adders is identical and implemented using addition operator. Verilog RTL codes

are synthesized and implemented on a Xilinx Virtex 7 FPGA with speed grade 3 using

Vivado 2020.1. AreaOptimized_high strategy is used for synthesis, and default strategy

is used for implementation.

The quality metrics are extracted from post-implementation timing simulations using

1 million uniform random numbers. The quality metrics are cross verified with C++

simulations. For power estimation, switching activity interchange format (SAIF) files are

also generated from these post-implementation timing simulations at 100 MHz for all

adders. The power consumption of each approximate adder FPGA implementation is

estimated with Vivado 2020.1 using the corresponding SAIF file.

The implementation results of 16-bit adders with 8-bit approximation are given in

Table 5.6. All the adders are implemented with input and output registers. SEDA and

LBA are slower than the accurate adder because of carry propagation in their LSPs. All

other 16-bit approximate adders have the same delay as the accurate adder. It is important

to note that their delay is limited by the maximum frequency of Virtex 7 FPGA. It does

not necessarily mean that the critical path of these adders is the same.

Table 5.6 FPGA Implementation Results of 16-Bit Adders with 8-Bit Approximation

Adder
LUTs Delay

(ns)

Power

(mW) MSP LSP

Accurate 8 8 1.35 6.16

LEADx 8 4 1.35 6.09

APEx 8 1 1.35 4.32

AFA [68] 8 5 1.35 6.17

DeMAS–2 [71] 8 5 1.35 6.12

HOAANED [67] 8 1 1.35 4.52

LBA [70] 8 11 1.56 6.10

LOA [16] 8 4 1.35 5.66

SEDA [73] 8 6 1.35 6.16

65

All the approximate 16-bit adders, except LBA, use fewer LUTs than the accurate

adder. Since an accurate adder is used in the MSP of all these adders, the reduction in

LUTs occurs only in the LSP. Since LEADx performs 2-bit addition in a single LUT, its

LSP uses 50% fewer LUTs than the accurate adder.

APEx and HOAANED use the lowest number of LUTs. For these two adders, a

significant reduction in number of LUTs occurs because of the use of constant functions

in their LSPs. For other approximate adders, the reduction in number of LUTs occurs

because of the approximation techniques used, which allow the synthesis tool to merge

two sum outputs to a single LUT.

LEADx consumes slightly less power than the accurate adder. APEx consumes the

lowest power among all the approximate adders. For the 16-bit adder with 8-bit

approximation, the power consumption of APEx is 29% less than that of the accurate

adder and 4.5% less than that of the second lowest power consuming adder, HOAANED.

The LUTs vs MSE and power vs MSE graphs of 32-bit approximate adders are given

in Figure 5.9. These results are plotted for 4-bit to 20-bit approximation in a 32-bit adder.

The 32-bit accurate adder uses 32 LUTs and consumes 10.75 mW power.

While the number of LUTs used by most of the approximate adders decreases linearly

with the increase in approximation, their respective power reductions do not follow the

same trend. However, APEx provides significant power reduction compared to the

accurate adder at the cost of a slight loss in accuracy.

(a) (b)

Figure 5.9 Comparison of 32-bit approximate adders with 4-bit to 20-bit approximation

(left to right). (a) LUTs vs MSE. (b) Power vs MSE.

66

LUTs, power consumption and delay reductions achieved by 64-bit approximate

adders with 16-bit approximation compared to 64-bit accurate adder are shown in Figure

5.10. LEADx reduced the LUTs by 12.5% compared to the accurate adder. APEx reduced

the LUTs by 23.4% and power consumption by 21% compared to the accurate adder.

Figure 5.10 Area, Power, and Delay reduction achieved with 16-bit approximation in

64-bit approximate adders compared to 64-bit accurate adder.

LBA performs worse than the accurate adder in all these metrics. Among other FPGA

specific adders, DeMAS provided no power reduction but reduced the LUTs by 11%

compared to the accurate adder. The performance of HOAANED is compatible with

APEx. However, as discussed earlier, it has lower quality than both LEADx and APEx.

These results show that our proposed LEADx has smaller area, lower power, and

better quality than the FPGA specific adders in the literature. The results show that

DeMAS is the most efficient FPGA specific approximate adder in the literature. With 8-

bits approximation, LEADx has 7% smaller area and 86% lower MSE than DeMAS. LOA

is one of the most efficient ASIC-based approximate adders in the literature [17]. LEADx

has better quality than LOA at the same cost when implemented on an FPGA. With 8-bits

approximation, LEADx has 87% lower MSE than LOA at the same cost. HOAANED is

suitable for FPGA implementation. However, APEx has less power and better quality

than HOAANED at the same cost, when implemented on an FPGA. APEx has more than

60% lower MSE than HOAANED at the same cost.

5.3.3 Comparison with Segmented and Speculative Approximate Adders

In this section, we compare the proposed approximate adders with segmented and

speculative adders in the literature; Almost Correct Adder (ACA-I) [62], Accuracy

 25

 20

 15

 10

 5

0

5

10

15

20

25

R
ed
u
ct
io
n
 (
%
)

LUTs Power Delay

67

Configurable Adder (ACA-II) [64], Block-based Carry Speculative Adder (BCSA) [75],

Error-tolerant adder II (ETA-II) [63], and xUAV [74].

The quality and implementation results of 16-bit adders with different approximation

amounts are given in Table 5.7. These adders have same delay (1.35 ns). These adders

are implemented with input and output registers. Therefore, although their critical paths

are different, their speed is limited by the maximum frequency supported by Virtex 7

FPGA.

Table 5.7 Comparison of 16-Bit Proposed Approximate Adders with 16-Bit Segmented

and Speculative Approximate Adders

Adder 𝑚* 𝑟* LUTs
Power

(mW)
ME RMSE

ER

(%)

LEADx
4 – 14 6.13 4 1.39 34.88

8 – 12 6.09 72 23.29 63.15

APEx
4 – 13 5.45 3 1.58 74.90

8 – 9 4.32 63 26.13 98.04

ACA-I [62]
4 1 29 6.25 34944 6702 34.13

8 1 72 6.78 32768 1689 1.59

ACA-II [64]
4 2 22 6.29 17472 5232 47.88

8 4 24 6.23 4096 703 5.90

BCSA [75]
4 4 24 6.42 4368 1029 6.20

8 8 16 6.12 256 63 17.04

ETA-II [63]
4 2 22 6.30 17472 5232 47.88

8 4 29 6.20 4096 703 5.90

xUAV [74]
3 1 16 6.24 37448 9615 61.84

5 1 26 6.42 33824 4754 16.72

*𝑚 is the size of approximate part (LSP) of LEADx and APEx. For other adders, 𝑚 is the segment size. For segmented and speculative

adders, 𝑟 is the number of resultant bits contributing to the final sum from each segment.

xUAV is an FPGA-specific segmented adder. Several configurations of xUAV are

proposed in [74]. We used two most efficient configurations; one with the lowest error

(m = 5, r = 1) and the other with low error and low area (m = 3, r = 1).

The segmented and speculative adders follow fail-rare approach [76]. They have low

ER. But their error magnitudes are usually large. Therefore, these adders have high MAE

and MSE. For example, ACA-I with 8-bit segmentation has only 1.5% ER. However, its

ME is 2^15. Most of the errors that occur in ACA-I have large magnitude, resulting in

significantly high MSE.

Among the segmented and speculative adders, BCSA with 8-bit segmentation has

the best quality. ETA-II and ACA-II have similar architecture. Therefore, their error

metrics are similar. However, for 8-bit segmentation, ACA-II is more area efficient than

ETA-II.

68

LEADx and APEx have better quality, smaller area, and lower power consumption

than the segmented and speculative adders. These results show that, for uniformly

distributed inputs, fail-small approach gives better quality than fail-rare approach.

5.3.4 Case Study: Motion Estimation in Video Encoding

We also assessed the impact of the proposed approximate adders and the other

approximate adders on video encoding quality. C++ implementations of 8-bit adders with

4-bit approximation are integrated into High Efficiency Video Coding (HEVC) reference

software HM 16.14 video encoder.

The approximate adders are used for sum of absolute difference (SAD) computations

for motion estimation (ME). ME accounts for approximately 70% of the computational

complexity of video encoding [13]. The search strategy is set to fast test zone search (TZ).

The quality results are obtained for four video sequences with different spatial resolutions.

For each approximate adder, PSNR result in dB and the percentage increase in bitrate

(ΔBR) with respect to using accurate adder are shown in Table 5.8. LEADx has the least

quality loss, i.e., lowest PSNR decrease and lowest bitrate increase, compared to the other

approximate adders.

Table 5.8 Impact of Approximate Adders on HEVC Encoder Bitrate And PSNR

Adder

Video Sequence

Traffic

(2560x1600)

BQ Terrace

(1920x1080)

Four People

(1280x720)

Party Scene

(832x480)

ΔBR

(%)

PSNR

(dB)

ΔBR

(%)

PSNR

(dB)

ΔBR

(%)

PSNR

(dB)

ΔBR

(%)

PSNR

(dB)

Accurate – 37.35 – 34.69 – 39.58 – 33.44

LEADx 3.93 37.05 1.49 34.51 2.07 39.38 1.86 33.29

APEx 4.33 37.03 1.98 34.50 2.08 39.38 1.98 33.28

AFA [68] 4.46 36.89 2.28 34.50 2.55 39.34 2.90 33.24

DeMAS–2 [71] 3.98 37.06 2.64 34.50 2.20 39.29 1.87 33.29

HOAANED [67] 10.70 36.76 3.54 34.44 4.68 39.28 4.37 33.18

LBA [70] 11.35 36.77 3.57 34.44 3.89 39.27 4.49 33.18

LOA [16] 11.78 36.76 3.77 34.45 3.63 39.30 3.89 33.19

SEDA [73] 11.61 36.75 3.66 34.44 2.87 39.27 4.26 33.15

69

Chapter 6

6 CONCLUSIONS

In this thesis, efficient ME hardware for HEVC and VVC standards are proposed.

The proposed VVC ME hardware is the first VVC ME hardware in the literature. We

proposed an approximate adder suitable for SAD calculation in ME. We analyzed the

impact of approximate circuits on the performance and quality of HEVC ME. We

proposed a methodology to design approximate adders for FPGAs. Two approximate

adders for FPGAs, one targeting high quality and the other targeting low area and power,

are designed using the proposed methodology. We also proposed a novel low error

approximate SAD hardware for FPGAs. It has the lowest area and consumes the lowest

power among the approximate and accurate SAD hardware in the literature.

As future work, the impact of using approximate adders in the SAD adder tree of ME

hardware can be investigated. Run-time error detection and correction for the proposed

approximate SAD hardware can be explored. Fast VVC ME algorithms and their efficient

hardware implementations can be proposed.

70

BIBLIOGRAPHY

[1] Cisco Systems, "Cisco Visual Networking Index: Forecast and Trends, 2017-

2022," Cisco Systems White Paper, 2018.

[2] B. Bross, J. Chen, J.-R. Ohm, G. J. Sullivan and Y.-K. Wang, "Developments in

International Video Coding Standardization After AVC, With an Overview of Versatile

Video Coding (VVC)," Proceedings of the IEEE, vol. 109, no. 9, pp. 1463 - 1493, 2021.

[3] "AdReaction - Video Creative in a Digital World," Millward Brown, 2016.

[4] "High Efficiency Video Coding," Recommendation ITU-T H.265 and ISO/IEC

23008-2 (HEVC), 2013.

[5] G. J. Sullivan, J.-R. Ohm, W.-J. Han and T. Wiegand, "Overview of the High

Efficiency Video Coding (HEVC) Standard," IEEE Transactions on Circuits and Systems

for Video Technology , vol. 22, no. 12, pp. 1649 - 1668, 2012.

[6] "Versatile Video Coding," Recommendation ITU-T H.266 and ISO/IEC 23090-3

(VVC), 2020.

[7] B. Bross, Y. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan and J. Ohm, "Overview

of the Versatile Video Coding (VVC) Standard and its Applications," IEEE Transactions

on Circuits and Systems for Video Technology, early access.

[8] Z. Pan, J. Lei, Y. Zhang, X. Sun and S. Kwong, "Fast Motion Estimation Based

on Content Property for Low-Complexity H.265/HEVC Encoder," IEEE Transactions on

Broadcasting, vol. 62, no. 3, pp. 675 - 684, 2016.

[9] F. Pakdaman, M. A. Adelimanesh, M. Gabbouj and M. R. Hashemi, "Complexity

Analysis Of Next-Generation VVC Encoding And Decoding," in IEEE International

Conference on Image Processing (ICIP), Abu Dhabi, UAE, 2020.

[10] J. Chen, M. Karczewicz, Y.-W. Huang, K. Choi, J.-R. Ohm and G. J. Sullivan,

"The Joint Exploration Model (JEM) for Video Compression With Capability Beyond

HEVC," IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no.

5, pp. 1208 - 1225, May 2020.

[11] Q. Xu, T. Mytkowicz and N. S. Kim, "Approximate Computing: A Survey," IEEE

Design & Test, vol. 33, no. 1, pp. 8 - 22, 2015.

[12] S. Froehlich, D. Große and R. Drechsler, "Towards Reversed Approximate

Hardware Design," in Euromicro Conference on Digital System Design (DSD), Prague,

2018.

71

[13] T. Arifeen, A. S. Hassan, H. Moradian and J. A. Lee, "Probing Approximate TMR

in Error Resilient Applications for Better Design Tradeoffs," in Euromicro Conference

on Digital System Design (DSD), Limassol, 2016.

[14] E. Kalali and I. Hamzaoglu, "Approximate HEVC Fractional Interpolation Filters

and Their Hardware Implementations," IEEE Transactions on Consumer Electronics ,

vol. 64, no. 3, pp. 285 - 291, 2018.

[15] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan and K. Roy, "IMPACT:

IMPrecise adders for low-power approximate computing," in IEEE/ACM International

Symposium on Low Power Electronics and Design, Fukuoka, 2011.

[16] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie and C. Lucas, "Bio-Inspired

Imprecise Computational Blocks for Efficient VLSI Implementation of Soft-Computing

Applications," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no.

4, pp. 850-862, April, 2010.

[17] H. Jiang, C. Liu, L. Liu, F. Lombardi and J. Han, "A review, classification, and

comparative evaluation of approximate arithmetic circuits," ACM Journal on Emerging

Technologies in Computing Systems, vol. 13, no. 4, August 2017.

[18] M. Shafique, W. Ahmad, R. Hafiz and J. Henkel, "A low latency generic accuracy

configurable adder," in ACM/EDAC/IEEE Design Automation Conference (DAC), San

Francisco, 2015.

[19] Z.-L. He, C.-Y. Tsui, K.-K. Chan and M. Liou, "Low-power VLSI design for

motion estimation using adaptive pixel truncation," IEEE Transactions on Circuits and

Systems for Video Technology, vol. 10, no. 5, pp. 669 - 678, 2000.

[20] W. El-Harouni, S. Rehman, B. S. Prabakaran, A. Kumar, R. Hafiz and M.

Shafique, "Embracing approximate computing for energy-efficient motion estimation in

high efficiency video coding," in Design, Automation & Test in Europe Conference &

Exhibition (DATE), Lausanne, 2017.

[21] R. Porto, L. Agostini, B. Zatt, M. Porto, N. Roma and L. Sousa, "Energy-efficient

motion estimation with approximate arithmetic," in IEEE International Workshop on

Multimedia Signal Processing (MMSP), Luton, 2017.

[22] A. Paltrinieri, R. Peloso, G. Masera, M. Shafique and M. Martina, "Approximate-

Computing Architectures for Motion Estimation in HEVC," in New Generation of CAS

(NGCAS), Valletta, 2018.

72

[23] A. Akin, G. Sayilar and I. Hamzaoglu, "High performance hardware architectures

for one bit transform based single and multiple reference frame motion estimation," IEEE

Transactions on Consumer Electronics, vol. 56, no. 2, pp. 1144 - 1152, 2010.

[24] K. Singh and S. R. Ahamed, "Low Power Motion Estimation Algorithm and

Architecture of HEVC/H.265 for Consumer Applications," IEEE Transactions on

Consumer Electronics, vol. 64, no. 3, pp. 267 - 275, 2018.

[25] A. Akin, G. Sayilar and I. Hamzaoglu, "A reconfigurable hardware for one bit

transform based multiple reference frame Motion Estimation," in Design, Automation &

Test in Europe Conference & Exhibition (DATE), Dresden, 2010.

[26] A. C. Mert, H. Azgin, E. Kalali and I. Hamzaoglu, "Novel Approximate Absolute

Difference Hardware," in Euromicro Conference on Digital System Design (DSD),

Kallithea, 2019.

[27] C. Kalaycioglu, O. C. Ulusel and I. Hamzaoglu, "Low power techniques for

Motion Estimation hardware," in International Conference on Field Programmable Logic

and Applications, Prague, 2009.

[28] E. Kalali and I. Hamzaoglu, "An Approximate HEVC Intra Angular Prediction

Hardware," IEEE Access, vol. 8, pp. 2599 - 2607, 2020.

[29] S. Park and J. Kang, "Fast Affine Motion Estimation for Versatile Video Coding

(VVC) Encoding," IEEE Access, vol. 7, pp. 158075 - 158084, 2019.

[30] J. Brandenburg, A. Wieckowski, T. Hinz, A. Henkel, V. George, I. Zupancic, C.

Stoffers, B. Bross, H. Schwarz and D. Marpe, "Towards Fast and Efficient VVC

Encoding," in IEEE International Workshop on Multimedia Signal Processing (MMSP),

Tampere, Finland, 2020.

[31] M. Saldanha, M. C. Corrêa, D. Palomino, M. Porto, B. Zatt and L. Agostini, "An

Overview of Dedicated Hardware Designs for State-of-the-Art AV1 and H.266/VVC

Video Codecs," in IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS),

Glasgow, UK, 2020.

[32] W. Ahmad, B. Ayrancioglu and I. Hamzaoglu, "Low Error Efficient Approximate

Adders for FPGAs," IEEE Access, vol. 9, pp. 117232 - 117243, 2021.

[33] A. Cerveira, L. Agostini, B. Zatt and F. Sampaio, "Memory Profiling of H.266

Versatile Video Coding Standard," in IEEE Int. Conf. on Electronics, Circuits and

Systems (ICECS), Glasgow, UK, 2020.

73

[34] T. D'huys, S. Momcilovic, F. Pratas and L. Sousa, "Reconfigurable data flow

engine for HEVC motion estimation," in IEEE Int. Conf. on Image Processing (ICIP),

Paris, France, 2014.

[35] N. C. Vayalil and Y. Kong, "VLSI Architecture of Full-Search VariableBlock-

Size Motion Estimation for HEVC Video," IET Circuits, Devices & Systems, vol. 11, no.

6, pp. 543-548, 2017.

[36] W. Ahmad, B. Ayrancioglu and I. Hamzaoglu, "Comparison of Approximate

Circuits for H.264 and HEVC Motion Estimation," in Euromicro Conf. on Digital System

Design (DSD), Kranj, Slovenia, 2020.

[37] Y. Tseng and C.-A. Shen, "The Design and Implementation of a Highly Efficient

Motion Estimation Engine for HEVC Systems," in IEEE Int. Symp. on Circuits and

Systems (ISCAS), Sapporo, Japan, 2019.

[38] R. Khemiri, H. Kibeya, H. Loukil, F. E. Sayadi, M. Atri and N. Masmoudi, "Real-

time motion estimation diamond search algorithm for the new high efficiency video

coding on FPGA," Analog Integrated Circuits and Signal Processing, vol. 94, p. 259–276,

2018.

[39] E. Alcocer, R. Gutierrez, O. LopezGranado and M. P. Malumbres, "Design and

implementation of an efficient hardware integer motion estimator for an HEVC video

encoder," J. of Real-Time Image Processing, vol. 16, p. 547–557, 2019.

[40] S. Gogoi and R. Peesapati, "A hybrid hardware-oriented motion estimation

algorithm for HEVC/H.265," J. of Real-Time Image Processing, vol. 18, p. 953–966,

2021.

[41] B. Silveira, G. Paim, B. Abreu, M. Grellert, C. M. Diniz, E. A. C. d. Costa and S.

Bampi, "Power-Efficient Sum of Absolute Differences Hardware Architecture Using

Adder Compressors for Integer Motion Estimation Design," IEEE Trans. on Circuits and

Systems I: Regular Papers, vol. 64, no. 12, pp. 3126 - 3137, 2017.

[42] W. Ahmad and I. Hamzaoglu, "An Efficient Approximate Sum of Absolute

Differences Hardware for FPGAs," in IEEE Int. Conf. on Consumer Electronics (ICCE),

Las Vegas, 2021.

[43] H. Azgin, E. Kalali and I. Hamzaoglu, "An Efficient FPGA Implementation of

Versatile Video Coding Intra Prediction," in Euromicro Conf. on Digital System Design

(DSD), Kallithea, Greece, 2019.

74

[44] H. Azgin, A. C. Mert, E. Kalali and I. Hamzaoglu, "A Reconfigurable Fractional

Interpolation Hardware for VVC Motion Compensation," in Euromicro Conference on

Digital System Design (DSD), Prague, Czech Republic, 2018.

[45] M. J. Garrido, F. Pescador, M. Chavarrías, P. J. Lobo, C. Sanz and P. Paz, "An

FPGA-Based Architecture for the Versatile Video Coding Multiple Transform Selection

Core," IEEE Access, vol. 8, pp. 81887 - 81903, 2020.

[46] A. Kammoun, W. Hamidouche, F. Belghith, J.-F. Nezan and N. Masmoudi,

"Hardware Design and Implementation of Adaptive Multiple Transforms for the Versatile

Video Coding Standard," IEEE Trans. on Consumer Electronics, vol. 64, no. 4, pp. 424 -

432, 2018.

[47] Y. Fan, J. Chen, H. Sun, J. Katto and M. Jing, "A Fast QTMT Partition Decision

Strategy for VVC Intra Prediction," IEEE Access, vol. 8, pp. 107900 - 107911, 2020.

[48] Y. Huang, J. An, H. Huang, X. Li, S.-T. Hsiang, K. Zhang, H. Gao, J. Ma and O.

Chubach, "Block Partitioning Structure in the VVC Standard," IEEE Trans. on Circuits

and Systems for Video Technology, early access, doi: 10.1109/TCSVT.2021.3088134.

[49] W. J. Chien and e. al., "JVET AHG report: Tool reporting procedure (AHG13).,"

document JVET-S0013, Joint Video Experts Team (JVET), June 2020.

[50] S. Jung and D. Jun, "Context-Based Inter Mode Decision Method for Fast Affine

Prediction in Versatile Video Coding," Electronics, vol. 10, no. 11, p. 1243, 2021.

[51] H. Azgin, E. Kalali and I. Hamzaoglu, "An Approximate Versatile Video Coding

Fractional Interpolation Hardware," in IEEE International Conference on Consumer

Electronics, Las Vegas, 2020.

[52] R. Porto, L. Agostini, B. Zatt, N. Roma and M. Porto, "Power-Efficient

Approximate SAD Architecture with LOA Imprecise Adders," in IEEE 10th Latin

American Symposium on Circuits & Systems, Armenia, Colombia, 2019.

[53] M. Kumm, M. Kleinlein and P. Zipf, "Efficient sum of absolute difference

computation on FPGAs," in International Conference on Field Programmable Logic and

Applications, Lausanne, 2016.

[54] S. Perri, P. Zicari and P. Corsonello, "Efficient Absolute Difference Circuits in

Virtex-5 FPGAs," in IEEE Mediterranean Electrotechnical Conference, Valletta, 2010.

[55] L. D. T. Dang, N. T. M. Kieu, I. J. Chang and J. Kim, "Approximate-SAD Circuit

for Power-efficient H.264 Video Encoding under Maintaining Output Quality and

Compression Efficiency," Journal of Semiconductor Tech. and Science, vol. 16, no. 5, p.

605–614, 2016.

75

[56] Xilinx, "7 Series Configurable Logic Block," September 2016. [Online].

Available: https://www.xilinx.com/support/documentation/user_guides/

ug474_7Series_CLB.pdf.

[57] J. Echavarria, S. Wildermann, A. Becher, J. Teich and D. Ziener, "FAU: Fast and

error-optimized approximate adder units on LUT-Based FPGAs," in International

Conference on Field-Programmable Technology, Xian, 2017.

[58] G. A. Gillani, M. A. Hanif, B. Verstoep, S. H. Gerez, M. Shafique and A. B. J.

Kokkeler, "MACISH: Designing Approximate MAC Accelerators With Internal-Self-

Healing," IEEE Access, vol. 7, pp. 77142 - 77160, 2019.

[59] T. Ayhan and M. Altun, "Circuit Aware Approximate System Design With Case

Studies in Image Processing and Neural Networks," IEEE Access, vol. 7, pp. 4726 - 4734,

2018.

[60] N. V. Toan and J.-G. Lee, "FPGA-Based Multi-Level Approximate Multipliers

for High-Performance Error-Resilient Applications," IEEE Access, vol. 8, pp. 25481 -

25497, 2020.

[61] L. Chen, J. Han, W. Liu, P. Montuschi and F. Lombardi, "Design, Evaluation and

Application of Approximate High-Radix Dividers," IEEE Trans. on Multi-Scale

Computing Systems, vol. 4, no. 3, pp. 299 - 312, 2018.

[62] A. K. Verma, P. Brisk and P. Ienne, "Variable Latency Speculative Addition: A

New Paradigm for Arithmetic Circuit Design," in Design, Automation and Test in Europe

(DATE) Conf., Munich, 2008.

[63] N. Zhu, W. L. Goh, G. Wang and K. S. Yeo, "Enhanced low-power high-speed

adder for error-tolerant application," in Int. SoC Design Conf., Incheon, 2010..

[64] A. B. Kahng and S. Kang, "Accuracy-configurable adder for approximate

arithmetic designs," in Design Automation Conf. (DAC), New York, 2012.

[65] V. Gupta, D. Mohapatra, A. Raghunathan and K. Roy, "Low-Power Digital Signal

Processing Using Approximate Adders," IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, vol. 32, no. 1, pp. 124-137, 2012.

[66] A. Dalloo, A. Najafi and A. Garcia-Ortiz, "Systematic Design of an Approximate

Adder: The Optimized Lower Part Constant-OR Adder," IEEE Trans. on Very Large

Scale Integration (VLSI) Systems, vol. 26, no. 8, pp. 1595-1599, 2018.

[67] P. Balasubramanian, R. Nayar, D. L. Maskell and N. E. Mastorakis, "An

Approximate Adder With a Near-Normal Error Distribution: Design, Error Analysis and

Practical Application," IEEE Access, vol. 9, pp. 4518 - 4530, 2020.

76

[68] S. Dutt, S. Nandi and G. Trivedi, "Analysis and Design of Adders for

Approximate Computing," ACM Trans. on Embedded Computing Systems, vol. 17, no.

2, p. 40, 2017.

[69] C. Niemann, M. Rethfeldt and D. Timmermann, "Approximate Multipliers for

Optimal Utilization of FPGA Resources," in Int. Symp. on Design and Diagnostics of

Electronic Circuits & Systems (DDECS), Vienna, 2021.

[70] A. Becher, J. Echavarria, D. Ziener, S. Wildermann and J. Teich, "A LUT-Based

Approximate Adder," in Int. Symp. on Field-Program. Custom Computing Machines

(FCCM), Washington DC, 2016.

[71] B. S. Prabakaran, S. Rehman, M. A. Hanif, S. Ullah, G. Mazaheri, A. Kumar and

M. Shafique, "DeMAS: An efficient design methodology for building approximate adders

for FPGA-based systems," in Design, Automation & Test in Europe (DATE) Conf.,

Dresden, 2018.

[72] S. Boroumand, H. P. Afshar and P. Brisk, "Approximate quaternary addition with

the fast carry chains of FPGAs," in Design, Automation & Test in Europe (DATE) Conf.,

Dresden, 2018.

[73] C. K. Jha, K. Prasad, A. S. Tomar and J. Mekie, "SEDAAF: FPGA Based Single

Exact Dual Approximate Adders for Approximate Processors," in IEEE Int. Symp. on

Circuits and Systems (ISCAS), Seville, 2020.

[74] T. Nomani, M. Mohsin, Z. Pervaiz and M. Shafique, "xUAVs: Towards Efficient

Approximate Computing for UAVs—Low Power Approximate Adders With Single LUT

Delay for FPGA-Based Aerial Imaging Optimization," IEEE Access, vol. 8, pp. 102982

- 102996, 2020.

[75] F. Ebrahimi-Azandaryani, O. Akbari, M. Kamal, A. Afzali-Kusha and M. Pedram,

"Block-based carry speculative approximate adder for energy-efficient applications,"

IEEE Trans. on CAS II: Express Briefs, vol. 67, no. 1, pp. 137-141, 2020.

[76] V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, "Analysis and

characterization of inherent application resilience for approximate computing," in Design

Automation Conf. (DAC), Austin, TX, 2013.

[77] Y. Wu, C. Shen, Y. Jia and W. Qian, "Approximate logic synthesis for FPGA by

wire removal and local function change," in Asia and South Pacific Design Automation

Conf. (ASP-DAC), Chiba, 2017.

[78] A. Ehliar, "Optimizing Xilinx designs through primitive instantiation," in FPGA

World Conf., Copenhagen, 2010.

77

[79] A. Leon-Garcia, Probability, statistics, and random processes for electrical

engineering, NJ, USA: Prentice-Hall, 2008.

[80] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice, 2nd

edition, Melbourne, Australia: OTexts, 2018.

[81] E. T. Jaynes, Probability Theory: The Logic of Science, Cambridge, UK:

Cambridge University Press, 2003.

[82] D. P. Doane and L. E. Seward, "Measuring Skewness: A Forgotten Statistic?," J.

of Statistical Education, vol. 19, no. 2, pp. 1-18, 2011.

