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Abstract

Complexity measures for sequences over finite fields, such as the linear
complexity and the k-error linear complexity, play an important role in
cryptology. Recent developments in stream ciphers point towards an interest
in word-based stream ciphers, which require the study of the complexity of
multisequences. We introduce various options for error linear complexity
measures for multisequences. For finite multisequences as well as for periodic
multisequences with prime period, we present formulas for the number of
multisequences with given error linear complexity for several cases, and we
present lower bounds for the expected error linear complexity.

Keywords: Multisequences; Joint linear complexity; Error linear complexity;
Stream ciphers.

1 Introduction

Complexity measures for keystream sequences over finite fields, such as the linear
complexity and the k-error linear complexity, play a crucial role in designing good
stream cipher systems. A lot of research has been done on the linear complexity
and related complexity measures for keystream sequences. For a recent survey the
reader is referred to [15]. Most of this research so far has been concentrated on

∗Corresponding author.
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studying single keystream sequences. Some recent works focused on word-based or
vectorized stream cipher systems [3, 8, 9, 10], which require the study of parallel
streams of finitely many sequences. In this direction the joint linear complexity of
multisequences has been investigated in [2, 5, 6, 7, 14, 15, 16, 18, 19, 21, 24, 25].
Let Fq be the finite field with q elements, where q is an arbitrary prime power.
We denote a multisequence (of finite or infinite length) consisting of m parallel
streams of sequences S1, . . . , Sm over Fq by S = (S1, . . . , Sm).

Definition 1.1 For an ultimately periodic multisequence S = (S1, . . . , Sm) over
Fq, we denote the terms of the jth sequence Sj by sj,1, sj,2, . . .. Then the joint
linear complexity L(S) = L(S1, . . . , Sm) of S is the least nonnegative integer L for
which there exist coefficients d1, d2, . . . , dL ∈ Fq such that

sj,i + d1sj,i−1 + · · ·+ dLsj,i−L = 0 for all 1 ≤ j ≤ m and i ≥ L + 1.

In other words, L(S) is the least order of a linear recurrence relation over Fq

that simultaneously generates each sequence Sj, 1 ≤ j ≤ m. For an arbitrary
multisequence S = (S1, . . . , Sm) and any integer n ≥ 1 not exceeding the length of
S, the (nth) joint linear complexity Ln(S) = Ln(S1, . . . , Sm) is the least order of
a linear recurrence relation over Fq that simultaneously generates the first n terms
of each sequence Sj, 1 ≤ j ≤ m.

We always have 0 ≤ Ln(S) ≤ n and Ln(S) ≤ Ln+1(S), and for an ultimately
periodic multisequence S with preperiod t and period N we will always have L(S) ≤
N + t. Note that in the latter case, L(S) is also the degree of the polynomial

J(x) = xL + d1x
L−1 + · · ·+ dL−1x + dL ∈ Fq[x].

The polynomial J(x) is called the joint minimal polynomial of the ultimately pe-
riodic multisequence S.

Since the Fq-linear spaces Fm
q and Fqm are isomorphic, the given m-fold multi-

sequence S over Fq can also be identified with a single sequence S = [S1, . . . , Sm]
having its terms in the extension field Fqm . The (nth) joint linear complexity
Ln(S) of S can also be interpreted as the (nth) Fq-linear complexity Lq

n(S) of S,
which is the least order of a linear recurrence relation over Fq that the (first n)
terms of S satisfy (see [5, pp. 83–85]). This viewpoint is often convenient in proofs
[15]. In [24] enumeration results on the (nth) joint linear complexity of multise-
quences were presented. Expected values for the joint linear complexity of periodic
multisequences were determined in [14].

The stability theory of stream ciphers suggests that good keystream sequences
must not only have a large linear complexity, but also a change of a few terms
must not cause a significant drop of the linear complexity. This requirement leads
to the theory of the k-error linear complexity of keystream sequences for integers
k ≥ 0. In [23] Stamp and Martin defined the k-error linear complexity LN,k(S) of
an N -periodic single sequence S with period (s1, . . . , sN) to be the smallest linear
complexity that can be obtained by altering k or fewer of the terms si, 1 ≤ i ≤ N ,
and then continuing the changes periodically with period N . The concept of the

2



k-error linear complexity was built on the earlier concept of the sphere complexity
SCk(S) introduced in [4] (see also the monograph [5]).

A lot of research on the k-error linear complexity of single keystream sequences
has been carried out (see again [15] for a survey). In this article we develop a
theory of the k-error linear complexity for multisequences.

In Section 2 we introduce various options for error linear complexity measures
for multisequences, analogous to the framework of the k-error linear complexity of
single sequences over finite fields. In Section 3 we establish formulas for counting
functions for the error linear complexity measures for finite multisequences, and in
Section 4 we provide bounds for the expected values for the error linear complexity
measures for finite multisequences. Sections 5 and 6 consider the case of periodic
multisequences with prime period. Section 7 concludes the paper.

2 Definition of Error Linear Complexity Measures for Mul-
tisequences

We shall first fix the notation. An m-fold multisequence S over Fq of length n
can also be interpreted as a matrix of size m × n over Fq, i.e., S ∈ Fm×n

q . For a
periodic multisequence S, it suffices to consider the terms within the given period
length N , and so it can also be interpreted as an m × N matrix over Fq; we will
write S ∈ (Fm×N

q )∞ to signify that the first period of S (which is identified with an
element of Fm×N

q ) is repeated infinitely often to get the full periodic multisequence
S. The following definitions of term, column, term distance, and column distance
also suit this interpretation. Let S = (S1, . . . , Sm) be an m-fold multisequence over
Fq. A term in S is defined to be a term of Sj for some j, 1 ≤ j ≤ m. A column in
S is meant to be the column vector in Fm

q formed by the ith terms of S1, . . . , Sm,
for some integer i ≥ 1.

Definition 2.1 Let S = (S1, . . . , Sm) and T = (T1, . . . , Tm) be two m-fold multi-
sequences over Fq of the same finite length. We define the term distance dT (S,T)
between S and T as the number of terms in S that are different from the corre-
sponding terms in T, and the column distance dC(S,T) as the number of columns
in S that are different from the corresponding columns in T. We define the individ-
ual distances vector by dV (S,T) = (dH(S1, T1), . . . , dH(Sm, Tm)), where dH(Sj, Tj)
is the Hamming distance between Sj and Tj for 1 ≤ j ≤ m.

Example 2.1 For m = 2, n = 5, and

S =

(
0 1 0 1 1
1 0 1 1 0

)
, T =

(
1 1 0 0 1
1 0 1 0 0

)
,

we have dT (S,T) = 3, dC(S,T) = 2, and dV (S,T) = (2, 1).

As mentioned in Section 1, an m-fold multisequence S = (S1, . . . , Sm) over
Fq can be identified with a single sequence S = [S1, . . . , Sm] having its terms in
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the extension field Fqm . Consequently, the columns of S = (S1, . . . , Sm) can also
be treated as the terms of S = [S1, . . . , Sm]. Then the column distance dC(S,T)
between S and T is the same as the Hamming distance dH(S, T ) between S and
T , the corresponding sequences with terms in Fqm .

We will distinguish three options of defining error linear complexity for a finite
multisequence S ∈ Fm×n

q and an N -periodic multisequence S ∈ (Fm×N
q )∞, respec-

tively. In the following, the definitions for the case of finite multisequences are
given.

Definition 2.2 Let S ∈ Fm×n
q be an m-fold multisequence of length n ≥ 1 and let

k be an integer with 0 ≤ k ≤ mn. Then the (nth) k-error joint linear complexity
Ln,k(S) of S is defined by

Ln,k(S) = min
T

Ln(T),

where the minimum is taken over all T ∈ Fm×n
q with term distance dT (S,T) ≤ k.

Similar to the definition of the Fq-linear complexity (see Section 1), we define
the k-error Fq-linear complexity by allowing k or fewer column changes.

Definition 2.3 Let S ∈ Fm×n
q be an m-fold multisequence of length n ≥ 1 and

let k be an integer with 0 ≤ k ≤ n. Then the (nth) k-error Fq-linear complexity
Lq

n,k(S) of S is defined by
Lq

n,k(S) = min
T

Ln(T),

where the minimum is taken over all T ∈ Fm×n
q with column distance dC(S,T) ≤ k.

Alternatively, if S is the corresponding sequence of length n with terms in Fqm, then
Lq

n,k(S) is the (nth) k-error Fq-linear complexity Lq
n,k(S) of S, defined by

Lq
n,k(S) = min

T
Lq

n(T ),

where the minimum is taken over all T ∈ Fn
qm with Hamming distance dH(S, T ) ≤

k.

For ~k = (k1, . . . , km) and ~k′ = (k′1, . . . , k
′
m) in Zm, we say that ~k ≤ ~k′ if kj ≤ k′j

for 1 ≤ j ≤ m, which induces a partial order on Zm.

Definition 2.4 Let S = (S1, . . . , Sm) ∈ Fm×n
q be an m-fold multisequence of length

n ≥ 1 and let ~k = (k1, . . . , km) ∈ Zm be such that 0 ≤ kj ≤ n for 1 ≤ j ≤ m. Then

the (nth) ~k-error joint linear complexity Ln,~k(S) of S is defined by

Ln,~k(S) = min
T

Ln(T),

where the minimum is taken over all m-fold multisequences T = (T1, . . . , Tm) over

Fq of length n with dV (S,T) ≤ ~k, i.e., with Hamming distances dH(Sj, Tj) ≤ kj

for 1 ≤ j ≤ m.

For N -periodic multisequences S ∈ (Fm×N
q )∞, we analogously define the k-

error joint linear complexity LN,k(S), the k-error Fq-linear complexity Lq
N,k(S),

and the ~k-error joint linear complexity LN,~k(S) via the term distance, the column
distance, and the individual distances vector, respectively, of the corresponding
m×N matrices over Fq (compare with Section 1 for the case m = 1).

4



3 Enumeration Results for the Error Linear Complexity
of Finite Multisequences

We start this section with the definition of some counting functions corresponding
to the three options for the error linear complexity.

Definition 3.1 Let m, n, k, and L be integers with m ≥ 1, n ≥ 1, 0 ≤ k ≤ mn,
and 0 ≤ L ≤ n. Then we define Nm

n,k(L), respectively Mm
n,k(L), to be the number

of m-fold multisequences S ∈ Fm×n
q with Ln,k(S) = L, respectively Ln,k(S) ≤ L.

Definition 3.2 For integers m, n, k, and L with m ≥ 1, n ≥ 1, 0 ≤ k ≤ n, and
0 ≤ L ≤ n, we define Nm,q

n,k (L), respectively Mm,q
n,k (L), to be the number of m-fold

multisequences S ∈ Fn
qm with Lq

n,k(S) = L, respectively Lq
n,k(S) ≤ L.

Definition 3.3 For integers n and L and an integer vector ~k = (k1, . . . , km) with
n ≥ 1, 0 ≤ L ≤ n, and 0 ≤ kj ≤ n for 1 ≤ j ≤ m, we define Nm

n,~k
(L), respectively

Mm
n,~k

(L), to be the number of m-fold multisequences S ∈ Fm×n
q with Ln,~k(S) = L,

respectively Ln,~k(S) ≤ L.

For any m ≥ 1 and 0 ≤ L ≤ n/2, the counting functionNm
n,0(L) was determined

in [15]. With Nm
n,0(L) = Nm,q

n,0 (L) = Nm
n,~0

(L) we obtain the following proposition

from [15].

Proposition 3.1 We have Nm
n,0(0) = Nm,q

n,0 (0) = Nm
n,~0

(0) = 1 and

Nm
n,0(L) = Nm,q

n,0 (L) = Nm
n,~0

(L) = (qm − 1)q(m+1)L−m for 1 ≤ L ≤ n

2
. (1)

It turned out that it is not easy to calculate Nm
n,0(L) for L > n/2. In [24] a

method to determine Nm
n,0(L) for any m ≥ 1 and n/2 < L ≤ n was introduced and

a convenient closed-form expression for Nm
n,0(L) was given when m = 2. A similar

expression for m = 3 can be found in [19]. For larger values of m it becomes more
cumbersome to get convenient closed-form expressions for Nm

n,0(L).
We now present formulas for Nm

n,k(L),Nm,q
n,k (L), and Nm

n,~k
(L) in specific cases.

Throughout this paper we use the function notation Wt(·) to denote the number
of nonzero entries in a vector or a matrix.

Theorem 3.1 The following formulas are valid for any m ≥ 1:
(i) For 1 ≤ k ≤ mn,

Nm
n,k(0) =

k∑
t=0

(
mn

t

)
(q − 1)t.

(ii) For 1 ≤ k < (n− 1)/4,

Nm
n,k(1) = (qm−1)

k∑
t=0

(
mn

t

)
(q−1)t+1+

m∑
j=1

(
m

j

) k∑
t=max(0,k−j+1)

(
m(n− 1)

t

)
(q−1)t+j.

(iii) Nm
n,k(n) = 0 for m ≤ k ≤ mn.
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Proof : (i) The result immediately follows from the size of the set of all multi-
sequences in the ball BdT

(Z, k) of radius k in the term distance metric around the
zero multisequence Z = (0)m×n ∈ Fm×n

q .
(ii) The multisequences with joint minimal polynomial x are of the form (sj,i)m×n

such that the first column s1 = (s1,1, . . . , sm,1)
T is nonzero and all other columns are

zero. For any such multisequence S over Fq, consider all multisequences T ∈ Fm×n
q

with the same first column vector s1 and k −Wt(s1) + 1 ≤ dT (S,T) ≤ k. These
multisequences T can be reduced to S but not to the zero multisequence by allow-
ing at most k term changes. The second term in the formula for Nm

n,k(1) counts all
these multisequences which can be reduced to a multisequence with joint minimal
polynomial x.

For fixed d ∈ F∗q, the qm− 1 multisequences over Fq with joint minimal polyno-
mial x+d have ith column vector si = (−d)i−1(s1,1, . . . , sm,1)

T for all i ≥ 1. Clearly,
two different multisequences with the same joint minimal polynomial x+d, d ∈ F∗q,
must have at least one pair of corresponding nonidentical rows and different terms
at corresponding positions in this row. Multisequences with different joint mini-
mal polynomials x + d1 and x + d2, where d1, d2 ∈ F∗q, differ in at least one pair
of corresponding rows in at least (n − 1)/2 positions. Consequently, the term
distance between two different multisequences in Fm×n

q with joint minimal poly-
nomial of the form x + d, d ∈ F∗q, is at least (n − 1)/2, and so the balls of radius
k, 1 ≤ k < (n − 1)/4, around these multisequences do not intersect. Further-
more, a multisequence with joint minimal polynomial x and a multisequence with
joint minimal polynomial of the form x + d, d ∈ F∗q, differ in at least one pair of
corresponding rows in at least n − 1 positions. Therefore, the balls of radius k,
1 ≤ k < (n− 1)/4, around these two multisequences are again disjoint. This leads
to the claimed formula for Nm

n,k(1).
(iii) We can manipulate the last column to be the sum of the first n−1 column

vectors by at most m term changes, and hence the result follows. 2

With similar arguments as above we obtain the following results for Nm,q
n,k (L).

Theorem 3.2 The following formulas are valid for any m ≥ 1:
(i) For 1 ≤ k ≤ n,

Nm,q
n,k (0) =

k∑
t=0

(
n

t

)
(qm − 1)t.

(ii) For 1 ≤ k < (n− 1)/4,

Nm,q
n,k (1) = (q − 1)

k∑
t=0

(
n

t

)
(qm − 1)t+1 +

(
n− 1

k

)
(qm − 1)k+1.

(iii) Nm,q
n,k (n) = 0 for 1 ≤ k ≤ n.

For the ~k-error joint linear complexity the formulas are as follows.
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Theorem 3.3 Let m ≥ 1, M = {1, 2, . . . ,m}, and ~k = (k1, . . . , km).
(i) If 0 ≤ kj ≤ n for 1 ≤ j ≤ m, then

Nm
n,~k

(0) =
m∏

j=1

( kj∑
t=0

(
n

t

)
(q − 1)t

)
.

(ii) If 1 ≤ kj < (n− 1)/4 for 1 ≤ j ≤ m, then

Nm
n,~k

(1) = (qm − 1)(q − 1)
m∏

j=1

( kj∑
t=0

(
n

t

)
(q − 1)t

)
+

m∑
j=1

(q − 1)j

∑
E⊆M,|E|=j

(∏
i∈E

(
n− 1

ki

)
(q − 1)ki

)
·
∏

i∈M\E

( ki∑
r=0

(
n

r

)
(q − 1)r

)
.

(iii) Nm
n,~k

(n) = 0 if Wt(~k) = m.

Proof : The formulas (i) and (iii) can easily be derived in analogy with the cor-
responding formulas in Theorem 3.1. We show (ii) by counting all multisequences
in Fm×n

q that can be reduced to an m-fold multisequence of length n with nth joint
linear complexity 1 but not to Z = (0)m×n ∈ Fm×n

q , by making at most kj changes
in the jth row for 1 ≤ j ≤ m.

The first term in the formula for Nm
n,~k

(1) counts all multisequences T ∈ Fm×n
q

that can be reduced to an m-fold multisequence of length n with a joint minimal
polynomial of the form x + d, d ∈ F∗q. Note that since we suppose that kj <

(n−1)/4, 1 ≤ j ≤ m, the balls of radius ~k around different m-fold multisequences
with length n and joint minimal polynomial of the form x + d, d ∈ F∗q, do not
intersect (compare with the proof of part (ii) of Theorem 3.1).

A multisequence T ∈ Fm×n
q can be reduced to an m-fold multisequence of

length n with joint minimal polynomial x if each row of T can be reduced to the
form (a, 0, . . . , 0) with some a ∈ Fq, but a nonempty subset of rows cannot be
reduced to the zero row by applying at most the term changes allowed per row.
Let E ⊆ {1, . . . ,m} = M be the nonempty set of row indices such that for i ∈ E
the ith row is nonzero after reduction and for i ∈ M \ E the ith row is zero after
reduction. To avoid multiple counting, we assume that, for each i ∈ E, exactly ki

terms of the last n− 1 terms of the ith row of T are nonzero. Let |E| = j. Then
(q−1)j

∏
i∈E

(
n−1
ki

)
(q−1)ki is the number of possible choices for the corresponding

rows such that each row with row index in E can be reduced to a row of the form
(a, 0, . . . , 0) with a ∈ F∗q. The term

∏
i∈M\E

(∑ki

r=0

(
n
r

)
(q− 1)r

)
counts all possible

choices for the remaining rows such that these can be reduced to the zero row with
the allowed number of term changes per row. Adding over all nonempty subsets
E ⊆ M yields the desired formula. 2

For the determination of Nm
n,k(L), Nm,q

n,k (L), and Nm
n,~k

(L) for more values of k

and ~k, we need the number of purely periodic multisequences with fixed joint linear
complexity L.

7



Theorem 3.4 For any m ≥ 1, the number P (m)(L) of purely periodic m-fold
multisequences over Fq with fixed joint linear complexity L is given by P (m)(0) = 1
and

P (m)(L) =
(qm − 1)(q − 1)

qm+1 − 1
(q(m+1)L − 1) for L ≥ 1.

Proof : The case L = 0 is trivial. For L ≥ 1 we proceed by induction on L. If
S is purely periodic with linear complexity 1, then the joint minimal polynomial
of S is of the form x + d, d ∈ F∗q. For each of these q − 1 different joint minimal
polynomials we can choose qm−1 different initial column vectors in Fm

q in order to
obtain different purely periodic m-fold multisequences with joint linear complexity
1. Thus, we have P (m)(1) = (qm− 1)(q− 1) and the formula of the theorem is true
for L = 1.

Let U (m)(L) be the number of ultimately but not purely periodic m-fold multi-
sequences S over Fq with fixed joint linear complexity L. Let t be the length of the
preperiod of the sequence S. Then the purely periodic part of S has joint linear
complexity L− t. Thus, there are P (m)(L− t) possibilities for the purely periodic
part of S. For the preperiod of S we have qm(t−1)(qm − 1) possibilities, since we
have to guarantee that the choice of the tth column of S does not decrease the
length of the preperiod. Taking into account that 1 ≤ t ≤ L, we get

U (m)(L) = (qm − 1)
L∑

t=1

qm(t−1)P (m)(L− t) = (qm − 1)
L−1∑
t=0

qm(L−t−1)P (m)(t).

The formula (1) yields

P (m)(L) = (qm − 1)q(m+1)L−m − (qm − 1)
L−1∑
t=0

qm(L−t−1)P (m)(t).

Using the induction hypothesis, we get the desired formula after simple algebraic
manipulations. 2

From Theorem 3.4 and the identity P (m)(L) + U (m)(L) = (qm − 1)q(m+1)L−m

for L ≥ 1 (see (1)) we obtain the following corollary.

Corollary 3.1 For any m ≥ 1, the number U (m)(L) of ultimately but not purely
periodic m-fold multisequences over Fq with fixed joint linear complexity L is given
by U (m)(0) = 0 and

U (m)(L) =
(qm − 1)(q − 1)

qm+1 − 1

(
qm − 1

q − 1
q(m+1)L−m + 1

)
for L ≥ 1.

Let Q(m)(L) and V (m)(L) denote the number of purely periodic m-fold multi-
sequences S over Fq with L(S) ≤ L and the number of ultimately but not purely
periodic m-fold multisequences S over Fq with L(S) ≤ L, respectively. Hence

Q(m)(L) =
∑L

t=0 P (m)(t) and V (m)(L) =
∑L

t=0 U (m)(t), and the following corollar-
ies can easily be deduced.
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Corollary 3.2 For any m ≥ 1, the number Q(m)(L) of purely periodic m-fold
multisequences S over Fq with L(S) ≤ L is given by

Q(m)(L) =
(qm − 1)(q − 1)

(qm+1 − 1)2

(
q(m+1)(L+1) − (qm+1 − 1)L− qm+1

)
+ 1 for L ≥ 0.

Corollary 3.3 For any m ≥ 1, the number V (m)(L) of ultimately but not purely
periodic m-fold multisequences S over Fq with L(S) ≤ L is given by

V (m)(L) =
(qm − 1)2

(qm+1 − 1)2

(
q(m+1)L+1 +

(qm+1 − 1)(q − 1)

qm − 1
L− q

)
for L ≥ 0.

We remark that the formulas in Theorem 3.4 and Corollaries 3.1–3.3 coincide
with the formulas for m = 1 in [17] for the binary case and in [12] for arbitrary q.

Let S and S ′ be two purely periodic sequences with terms in Fqm and Fq-linear
complexity at most L. We remark that the conventional linear complexity of S
and S ′ is also at most L, and may be even smaller than the Fq-linear complexity.
If S and S ′ have the same minimal polynomial (over Fqm), then S and S ′ are
either identical or they differ at least once at any L consecutive terms. If they
have different minimal polynomials, then S and S ′ differ at least once at any 2L
consecutive terms. If S is an ultimately periodic sequence with Fq-linear complexity
at most L, then its preperiod is at most L. Hence from position L + 1 to position
(4k + 3)L, any two ultimately periodic sequences S and S ′ with terms in Fqm and
Fq-linear complexity at most L are either the same or differ at least at 2k + 1
positions. Similarly, two different purely periodic m-fold multisequences S and
S′ with column vectors in Fm

q and with joint linear complexity at most L differ
at least once at any L consecutive columns if they have the same joint minimal
polynomial, and at least once at any 2L consecutive columns if they have different
joint minimal polynomials. With the same argument as before, from position L+1
to position (4k + 3)L, two ultimately periodic sequences of column vectors in Fm

q

with joint linear complexity at most L are either the same or they differ at least
at 2k + 1 column positions. With these facts we can prove two generalizations of
[12, Theorem 3], where a formula for the number of single sequences with terms in
Fq, length n, and given k-error linear complexity L has been presented, under the
condition that n ≥ (4k + 3)L. The first generalization is a formula for Nm,q

n,k (L)
without proof. The proof is analogous to that of [12, Theorem 3].

Theorem 3.5 For any integers m ≥ 1, L ≥ 1, k ≥ 0, and n ≥ (4k+3)L, we have

Nm,q
n,k (L) = P (m)(L)

k∑
r=0

(
n

r

)
(qm−1)r +(qm−1)k+1

L∑
t=1

(
n− t

k

)
qm(t−1)P (m)(L− t),

where P (m) is the counting function in Theorem 3.4.

The following theorem generalizes [12, Theorem 3] to the case of the k-error
joint linear complexity of m-fold multisequences.
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Theorem 3.6 For any integers m ≥ 1, L ≥ 1, k ≥ 0, and n ≥ (4k+3)L, we have

Nm
n,k(L) = P (m)(L)

k∑
r=0

(
mn

r

)
(q − 1)r

+
m∑

j=1

(
m

j

)
(q − 1)j

k∑
r=max(0,k−j+1)

L∑
t=1

(
m(n− t)

r

)
qm(t−1)(q − 1)rP (m)(L− t),

where P (m) is the counting function in Theorem 3.4.

Proof : We suppose that all considered m-fold multisequences have fixed length
n ≥ (4k + 3)L. Then from the previous considerations we know that the ball
BdT

(S, k) around a finite m-fold multisequence S of length n which corresponds to
a purely periodic multisequence with joint linear complexity L does not intersect
the ball of radius k around any multisequence T 6= S of length n with Ln(T) ≤ L.
Thus Ln,k(R) = L for all R ∈ BdT

(S, k). Consequently, the contribution of the
balls of radius k around all finite m-fold multisequences of length n corresponding
to purely periodic multisequences with joint linear complexity L to the counting
function Nm

n,k(L) is given by

P (m)(L)
k∑

r=0

(
mn

r

)
(q − 1)r.

Let S be a finite m-fold multisequence of length n corresponding to an ulti-
mately periodic multisequence with preperiod t > 0 and joint linear complexity L.
We want to count all multisequences of length n which can be transformed into S
but not into a multisequence with joint linear complexity less than L by changing
at most k terms. The candidates are the multisequences of length n which equal
S at the first t columns and satisfy dT (S,T) ≤ k. Additionally it must not be
possible to shorten the preperiod by suitably changing the tth column. Suppose
that the tth column of S differs at j, 1 ≤ j ≤ m, positions from the unique col-
umn vector that would yield a reduction of the preperiod. Then we must have
k − j + 1 ≤ dT (S,T) ≤ k. Else we would be able to transform T into S and then
additionally to shorten the preperiod. Thus, the number of m-fold multisequences
of length n that by changing at most k terms can be transformed into a multise-
quence with preperiod t, 1 ≤ t ≤ L, and joint linear complexity L but not into a
multisequence with smaller joint linear complexity is given by

qm(t−1)

m∑
j=1

(
m

j

)
(q − 1)j

k∑
r=max(0,k−j+1)

(
m(n− t)

r

)
(q − 1)rP (m)(L− t).

Combining all possible choices for t yields the desired formula. 2

In the third case the formula is given as follows.
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Theorem 3.7 Let m ≥ 1 be an integer and let M = {1, 2, . . . ,m}, ~k = (k1, . . . , km),
and k = max(k1, . . . , km) with kj > 0 for 1 ≤ j ≤ m. Then for any integers L ≥ 1
and n ≥ (4k + 3)L, we have

Nm
n,~k

(L) = P (m)(L)
m∏

j=1

( kj∑
r=0

(
n

r

)
(q − 1)r

)
+

L∑
t=1

qm(t−1)P (m)(L− t)
m∑

j=1

(q − 1)j

∑
E⊆M,|E|=j

(∏
i∈E

(
n− t

ki

)
(q − 1)ki

)
·
∏

i∈M\E

( ki∑
r=0

(
n− t + 1

r

)
(q − 1)r

)
,

where P (m) is the counting function in Theorem 3.4. In particular, if kj = k for
1 ≤ j ≤ m, then we have

Nm
n,~k

(L) = P (m)(L)

(
k∑

r=0

(
n

r

)
(q − 1)r

)m

+
L∑

t=1

qm(t−1)P (m)(L− t)
m∑

j=1

(q − 1)j

∑
E⊆M,|E|=j

((n− t

k

)
(q − 1)k

)j · ( k∑
r=0

(
n− t + 1

r

)
(q − 1)r

)m−j
.

Proof : We have to count all multisequences in Fm×n
q that can be reduced to

an m-fold multisequence of length n with joint linear complexity L, but not to an
m-fold multisequence of length n with a lower joint linear complexity.

The first summand in the formula for Nm
n,~k

(L) counts all multisequences T ∈
Fm×n

q that can be reduced to an m-fold multisequence of length n and joint linear
complexity L which corresponds to a purely periodic m-fold multisequence. Note
that since we suppose that n ≥ (4k+3)L, the balls of radius ~k around different m-
fold multisequences with length n and joint linear complexity L which correspond
to purely periodic multisequences are disjoint and they do not intersect with the
ball of radius ~k around an m-fold multisequence with length n and smaller joint
linear complexity.

Now consider an ultimately periodic but not purely periodic m-fold multise-
quence S = (S1, . . . , Sm) of length n with joint linear complexity L and preperiod t
(1 ≤ t ≤ L). Then the joint linear complexity of the periodic part of S is L−t. We
associate each such multisequence S with a set of multisequences T = (T1, . . . , Tm)

(like the ball of radius ~k in the purely periodic case) having the first t− 1 column
vectors identical with the first t−1 column vectors of S and with the allowed num-
ber of term changes per row: (i) the periodic part of T can be transformed into
the periodic part of S; (ii) T cannot be transformed into an m-fold multisequence
of length n having joint linear complexity smaller than L. This means that the
periodic part of T must be in the ball of radius ~k around the periodic part of S.
We have n− t ≥ (4k+3)(L− t), and by the latter condition we get the disjointness
property of the balls as in the purely periodic case above, and we need only to
ensure that the preperiod of T cannot be shortened. This is possible only if the
Hamming distance between the periodic parts of Ti and Si is exactly ki and the tth
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term of Ti is different from the unique term which can reduce the preperiod of Si,
for at least a nonempty subset of rows. Let E ⊆ {1, . . . ,m} = M be a nonempty
set of row indices with |E| = j. Then (q − 1)j

∏
i∈E

(
n−t
ki

)
(q − 1)ki is the number

of possible choices for the corresponding rows such that the periodic part of each
row with row index in E can be reduced to the periodic part of the corresponding
row in S, but the preperiod cannot be shortened for this rows with the allowed
number of term changes per row. The term

∏
i∈M\E

(∑ki

r=0

(
n−t+1

r

)
(q−1)r

)
counts

all possible choices for the remaining rows such that the periodic part of these
rows can be reduced to the periodic part of the corresponding rows in S and ad-
ditionally the terms at position t can be chosen in such a way that they match
the linear recurrence for the periodic part of S. Adding over all nonempty subsets
E ⊆ M and over all possible lengths for the preperiod yields the desired formula. 2

The following two propositions give obvious upper bounds onNm
n,k(L),Mm

n,k(L),
Nm,q

n,k (L), Mm,q
n,k (L), Nm

n,~k
(L), and Mm

n,~k
(L).

Proposition 3.2 For any integers m ≥ 1, n ≥ 1, and 0 ≤ L ≤ n, we have

Nm
n,k(L) ≤ min

(
qmn,Nm

n,0(L)
k∑

t=0

(
mn

t

)
(q − 1)t

)
, 0 ≤ k ≤ mn,

Nm,q
n,k (L) ≤ min

(
qmn,Nm,q

n,0 (L)
k∑

t=0

(
n

t

)
(qm − 1)t

)
, 0 ≤ k ≤ n,

Nm
n,~k

(L) ≤ min

qmn,Nm
n,~0

(L)
m∏

j=1

( kj∑
t=0

(
n

t

)
(q − 1)t

) , 0 ≤ kj ≤ n, 1 ≤ j ≤ m.

Proposition 3.3 For any integers m ≥ 1, n ≥ 1, and 0 ≤ L ≤ n, we have

Mm
n,k(L) ≤ min

(
qmn,Mm

n,0(L)
k∑

t=0

(
mn

t

)
(q − 1)t

)
, 0 ≤ k ≤ mn,

Mm,q
n,k (L) ≤ min

(
qmn,Mm,q

n,0 (L)
k∑

t=0

(
n

t

)
(qm − 1)t

)
, 0 ≤ k ≤ n,

Mm
n,~k

(L) ≤ min

qmn,Mm
n,~0

(L)
m∏

j=1

( kj∑
t=0

(
n

t

)
(q − 1)t

) , 0 ≤ kj ≤ n, 1 ≤ j ≤ m.

Remark 3.1 The bounds of Proposition 3.3 can be written explicitly using for-
mulas for Mm

n,0(L) = Mm,q
n,0 (L) = Mm

n,~0
(L). For 0 ≤ L ≤ n/2 with formula (1)

and Mm
n,0(L) =

∑L
r=0Nm

n,0(r), we obtain the compact expression

Mm
n,0(L) = Mm,q

n,0 (L) = Mm
n,~0

(L) =
qm − 1

qm+1 − 1

(
q(m+1)L+1 +

q − 1

qm − 1

)
. (2)

12



Since any sequence of column vectors in Fm
q of length n and joint linear com-

plexity L > n/2 can be seen as the first n terms of a (not necessarily uniquely
determined) multisequence of length 2L and joint linear complexity L, the expres-
sion in (1) is also an upper bound on Nm

n,0(L), Nm,q
n,0 (L), and Nm

n,~0
(L) for arbitrary

L. Consequently, with (1) and (2) and the Propositions 3.2 and 3.3 we can al-
ways explicitly determine upper bounds on Nm

n,k(L), Mm
n,k(L), Nm,q

n,k (L), Mm,q
n,k (L),

Nm
n,~k

(L), and Mm
n,~k

(L).

4 Expected Values for the Error Linear Complexity of Fi-
nite Multisequences

For integers m ≥ 1 and n ≥ 1, let Em
n,0 be the expected value of the joint linear

complexity of finite m-fold multisequences over Fq of length n, where the underlying
probability distribution is the uniform distribution on Fm×n

q , i.e., each element of
Fm×n

q has probability q−mn. For m = 1 the exact formula for Em
n,0 is known for a

long time (see [20, 22]). In [24] an exact formula for E2
n,0 was presented (for the

case q = 2 see also [6]). Finally, in [18] it was shown that for any m ≥ 1 we have
Em

n,0 = mn/(m + 1) + o(n) as n →∞. Moreover, the lower bound

Em
n,0 ≥

⌊
mn

m + 1

⌋
− qmn − 1

qmn(qm+1 − 1)

was obtained in [19].
In this section we establish a lower bound on the expected k-error joint linear

complexity Em
n,k of finite m-fold multisequences over Fq of length n, a lower bound

on the expected k-error Fq-linear complexity Em,q
n,k of finite sequences over Fqm of

length n, and a lower bound on the expected ~k-error joint linear complexity Em
n,~k

of finite m-fold multisequences over Fq of length n. The following lemma is a
straightforward generalization of [17, Lemma 3].

Lemma 4.1 For any integers m ≥ 1 and n ≥ 1, we have

Em
n,k = n− 1

qmn

n−1∑
L=0

Mm
n,k(L), 0 ≤ k ≤ mn,

Em,q
n,k = n− 1

qmn

n−1∑
L=0

Mm,q
n,k (L), 0 ≤ k ≤ n,

Em
n,~k

= n− 1

qmn

n−1∑
L=0

Mm
n,~k

(L), ~k = (k1, . . . , km), 0 ≤ kj ≤ n, 1 ≤ j ≤ m.

For establishing a lower bound on Em
n,k, we will use the following lemma.

Lemma 4.2 With

α =

⌊
1

m + 1
logq

qmn−1(qm+1 − 1)

(qm − 1)
∑k

t=0

(
mn
t

)
(q − 1)t

⌋

13



we have the inequality

q − 1

qmn(qm+1 − 1)

(
k∑

t=0

(
mn

t

)
(q − 1)t

)
(α + 1) <

2

3
.

Proof : First we note that

β :=
q − 1

qmn(qm+1 − 1)

(
k∑

t=0

(
mn

t

)
(q − 1)t

)
≤ 1

qm + qm−1 + · · ·+ 1
. (3)

For the second factor α + 1 we obtain

α + 1 ≤ 1

m + 1
logq

qmn−1(qm+1 − 1)

(qm − 1)
∑k

t=0

(
mn
t

)
(q − 1)t

+ logq q

= logq

( qmn−1(qm+1 − 1)

(qm − 1)
∑k

t=0

(
mn
t

)
(q − 1)t

) 1
m+1

q


= logq

(
qmn(qm+1 − 1)

(q − 1)
∑k

t=0

(
mn
t

)
(q − 1)t

) 1
m+1

+ logq

((
q − 1

qm − 1

) 1
m+1

q
m

m+1

)

< logq

(
qmn(qm+1 − 1)

(q − 1)
∑k

t=0

(
mn
t

)
(q − 1)t

) 1
m+1

+ 1.

Consequently, with (3) we get

β(α + 1) ≤
β logq

1
β

m + 1
+ β <

2

3(m + 1)
+

1

qm + qm−1 + · · ·+ 1
≤ 2

3
,

where we used the fact that 0 < x logq
1
x

< 2
3

for 0 < x < 1 and q ≥ 2. 2

Theorem 4.1 For any integers m ≥ 1, n ≥ 1, and 0 ≤ k ≤ mn, we have

Em
n,k ≥ m

m + 1
n− 1

m + 1
logq

( k∑
t=0

(
mn

t

)
(q − 1)t

)
− (m + 2)qm+1 − 1

(m + 1)(qm+1 − 1)

+
1

m + 1
logq

(
qm+1 − 1

qm − 1

)
− 2

3
.

Proof : The term

α =

⌊
1

m + 1
logq

qmn−1(qm+1 − 1)

(qm − 1)
∑k

t=0

(
mn
t

)
(q − 1)t

⌋
is chosen in such a way that, due to Proposition 3.3, Remark 3.1, and the subse-
quent considerations, we can use the bound

Mm
n,k(L) ≤ qm − 1

qm+1 − 1

(
q(m+1)L+1 +

q − 1

qm − 1

) k∑
t=0

(
mn

t

)
(q − 1)t
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for 0 ≤ L ≤ α and the trivial bound

Mm
n,k(L) ≤ qmn

for α < L ≤ n− 1. This yields

1

qmn

n−1∑
L=0

Mm
n,k(L) ≤ qm − 1

qmn(qm+1 − 1)

(
k∑

t=0

(
mn

t

)
(q − 1)t

)
·

α∑
L=0

(
q(m+1)L+1 +

q − 1

qm − 1

)
+ n− 1− α

=
qm − 1

qmn−1(qm+1 − 1)

(
k∑

t=0

(
mn

t

)
(q − 1)t

)
q(m+1)(α+1) − 1

qm+1 − 1

+
q − 1

qmn(qm+1 − 1)

(
k∑

t=0

(
mn

t

)
(q − 1)t

)
(α + 1)

+n− 1− α

≤ qm − 1

qmn−1(qm+1 − 1)

(
k∑

t=0

(
mn

t

)
(q − 1)t

)
q(m+1)(α+1)

qm+1 − 1

+
q − 1

qmn(qm+1 − 1)

(
k∑

t=0

(
mn

t

)
(q − 1)t

)
(α + 1)

+n− 1

m + 1

(
mn− 1 + logq

(
qm+1 − 1

qm − 1

)

− logq

(
k∑

t=0

(
mn

t

)
(q − 1)t

))

≤ qm+1

qm+1 − 1
+ n− mn

m + 1
+

1

m + 1
− 1

m + 1
logq

(
qm+1 − 1

qm − 1

)
+

1

m + 1
logq

(
k∑

t=0

(
mn

t

)
(q − 1)t

)
+

2

3
,

where in the last step we used Lemma 4.2. With Lemma 4.1 we obtain the desired
bound. 2

Let Hq denote the q-ary entropy function defined by (cf. [11, p. 55])

Hq(γ) = γ logq(q − 1)− γ logq γ − (1− γ) logq(1− γ), 0 < γ < 1.

Note that Hq(γ) → 0 as γ → 0+ and Hq(
q−1

q
) = 1. Furthermore, Hq is an

increasing function on the interval (0, (q − 1)/q].

Corollary 4.1 For any integers m ≥ 1, n ≥ 1, and 0 < k < mn(q−1)
q

, we have

Em
n,k >

mn

m + 1

(
1−Hq(

k

mn
)
)
− 2.
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Proof : By [1, p. 301] we have

k∑
t=0

(
mn

t

)
(q − 1)t ≤ qmnHq( k

mn
).

With the additional observations that

(m + 2)qm+1 − 1

(m + 1)(qm+1 − 1)
=

1

m + 1
+

qm+1

qm+1 − 1
≤ 1

m + 1
+

4

3

and that
1

m + 1
logq

(
qm+1 − 1

qm − 1

)
>

1

m + 1

we obtain the desired result. 2

With similar arguments we get the following lower bounds for Em,q
n,k and Em

n,~k
.

Theorem 4.2 For any integers m ≥ 1, n ≥ 1, and 0 ≤ k ≤ n, we have

Em,q
n,k ≥ m

m + 1
n− 1

m + 1
logq

(
k∑

t=0

(
n

t

)
(qm − 1)t

)
− (m + 2)qm+1 − 1

(m + 1)(qm+1 − 1)

+
1

m + 1
logq

(
qm+1 − 1

qm − 1

)
− 2

3
.

For any integers m ≥ 1, n ≥ 1, and 0 < k < n(q − 1)/q, we have

Em,q
n,k >

mn

m + 1

(
1−Hqm(

k

n
)
)
− 2.

Theorem 4.3 For any integers m ≥ 1, n ≥ 1, and ~k = (k1, . . . , km), 0 ≤ kj ≤ n
for 1 ≤ j ≤ m, we have

Em
n,~k

≥ m

m + 1
n− 1

m + 1
logq

 m∏
j=1

( kj∑
t=0

(
n

t

)
(q − 1)t

)− (m + 2)qm+1 − 1

(m + 1)(qm+1 − 1)

+
1

m + 1
logq

(
qm+1 − 1

qm − 1

)
− 2

3
.

For any integers m ≥ 1, n ≥ 1, and 0 < kj < n(q − 1)/q, 1 ≤ j ≤ m, we have

Em
n,~k

>
n

m + 1

(
m−

m∑
j=1

Hq(
kj

n
)
)
− 2.
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5 Multisequences with Prime Period

An important class of periodic multisequences is the class of multisequences with
prime period. In this section we present several results for this class of periodic
multisequences, such as counting functions and lower bounds on the expected er-
ror linear complexity. We denote the number of m-fold N -periodic multisequences
over Fq with k-error joint linear complexity L, with k-error Fq-linear complexity L,

and with ~k-error joint linear complexity L by Pm
N,k(L), Pm,q

N,k (L), and Pm
N,~k

(L), re-

spectively. In the following propositions we present formulas for Pm
N,k(L),Pm,q

N,k (L),
and Pm

N,~k
(L) for m-fold multisequences with prime period N for specific values of

L. These results can be seen as generalizations of [13, Theorem 4.1].

Proposition 5.1 Let m ≥ 1 and let N be a prime with gcd(N, q) = 1. Then the
following formulas for Pm

N,k(L) are valid:
(i) For 1 ≤ k ≤ mN ,

Pm
N,k(0) =

k∑
t=0

(
mN

t

)
(q − 1)t.

(ii) If N does not divide q − 1, then for 1 ≤ k ≤ (N − 1)/2,

Pm
N,k(1) = (qm − 1)

k∑
t=0

(
mN

t

)
(q − 1)t.

(iii) Pm
N,k(N) = 0 for m ≤ k ≤ mN .

Proof : (i) The result immediately follows from the fact that Pm
N,k(0) = |BdT

(Z, k)|,
where BdT

(Z, k) denotes the ball of radius k around the zero matrix Z = (0)m×N ∈
Fm×N

q with term distance metric.
(ii) If N does not divide q−1, then there are qm−1 m-fold N -periodic multise-

quences over Fq with joint linear complexity L = 1. They correspond to the m×N
matrices R over Fq with each row being a constant string and at least one of the
rows being nonzero. For the zero matrix Z ∈ Fm×N

q we have dT (Z,R) ≥ N . Ad-
ditionally, the term distance per period between any two different multisequences
(with joint linear complexity equal to 1) is at least N . Hence for 1 ≤ k ≤ N−1

2
,

the number Pm
N,k(1) is the cardinality of the union of balls BdT

(R, k) of radius k
around the center R, where R runs through all elements of Fm×N

q different from Z
with constant rows. This yields the desired result.

(iii) Consider a multisequence S ∈ Fm×N
q with columns si, 1 ≤ i ≤ N . If∑N

i=1 si = 0, then the joint linear complexity of S is less than N . Evidently, at
most m term changes are necessary in order to satisfy the above condition. 2

With similar arguments as above we obtain the corresponding formulas for the
other error linear complexity measures.

Proposition 5.2 Let m ≥ 1 and let N be a prime with gcd(N, q) = 1. Then the
following formulas for Pm,q

N,k (L) are valid:
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(i) For 1 ≤ k ≤ N ,

Pm,q
N,k (0) =

k∑
t=0

(
N

t

)
(qm − 1)t.

(ii) If N does not divide q − 1, then for 1 ≤ k ≤ (N − 1)/2,

Pm,q
N,k (1) = (qm − 1)

k∑
t=0

(
N

t

)
(qm − 1)t.

(iii) Pm,q
N,k (N) = 0 for 1 ≤ k ≤ N .

Proposition 5.3 Let m ≥ 1, let N be a prime with gcd(N, q) = 1, and let ~k =
(k1, . . . , km). Then the following formulas for Pm

N,~k
(L) are valid:

(i) If 0 ≤ kj ≤ N for 1 ≤ j ≤ m, then

Pm
N,~k

(0) =
m∏

j=1

( kj∑
t=0

(
N

t

)
(q − 1)t

)
.

(ii) If N does not divide q − 1, then for 0 ≤ kj ≤ N−1
2

, 1 ≤ j ≤ m, we have

Pm
N,~k

(1) = (qm − 1)
m∏

j=1

( kj∑
t=0

(
N

t

)
(q − 1)t

)
.

(iii) Pm
N,~k

(N) = 0 if 1 ≤ kj ≤ N for 1 ≤ j ≤ m.

Suppose that q is a primitive element modulo the prime N ≥ 3. Then the
joint linear complexity of any m-fold N -periodic multisequence over Fq is either
0, 1, N − 1, or N (see [14, Corollary 3]). By the above propositions, for suitable

values of k and ~k we obtain the following formulas for the number of m-fold
N -periodic multisequences over Fq with error linear complexity N − 1 (see [13,
Corollary 4.1] for the case m = 1).

Corollary 5.1 Let m ≥ 1, let N ≥ 3 be a prime with gcd(N, q) = 1, and let q be
a primitive element modulo N . Then we have:
(i) For m ≤ k ≤ (N − 1)/2,

Pm
N,k(N − 1) = qmN − qm

k∑
t=0

(
mN

t

)
(q − 1)t.

(ii) For 1 ≤ k ≤ (N − 1)/2,

Pm,q
N,k (N − 1) = qmN − qm

k∑
t=0

(
N

t

)
(qm − 1)t.

(iii) If 1 ≤ kj ≤ (N − 1)/2 for 1 ≤ j ≤ m,

Pm
N,~k

(N − 1) = qmN − qm

m∏
j=1

( kj∑
t=0

(
N

t

)
(q − 1)t

)
.
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Consequently, for the case where q is a primitive element modulo the prime
N ≥ 3, we know the formulas for the counting function for all possible values of the
error linear complexity with suitable k and ~k. Hence we can calculate Gm

N,k, Gm,q
N,k,

and Gm
N,~k

, i.e., the expected values of the k-error joint linear complexity, the k-error

Fq-linear complexity, and the ~k-error joint linear complexity of a random m-fold
N -periodic multisequence over Fq, respectively. The result is a generalization of
the formula for the case m = 1 presented in [13, Corollary 4.2].

Corollary 5.2 Let m ≥ 1, let N ≥ 3 be a prime with gcd(N, q) = 1, and let q
be a primitive element modulo N . Then the expected values for the error linear
complexities of m-fold N-periodic multisequences over Fq are given by:
(i) For m ≤ k ≤ (N − 1)/2,

Gm
N,k = N − 1− qm(N − 2) + 1

qmN

k∑
t=0

(
mN

t

)
(q − 1)t.

(ii) For 1 ≤ k ≤ (N − 1)/2,

Gm,q
N,k = N − 1− qm(N − 2) + 1

qmN

k∑
t=0

(
N

t

)
(qm − 1)t.

(iii) For ~k = (k1, . . . , km) with 1 ≤ kj ≤ (N − 1)/2 for 1 ≤ j ≤ m,

Gm
N,~k

= N − 1− qm(N − 2) + 1

qmN

m∏
j=1

( kj∑
t=0

(
N

t

)
(q − 1)t

)
.

6 Expected Values for the Error Linear Complexity of Pe-
riodic Multisequences

In this section we establish lower bounds on the expected values Gm
N,k, Gm,q

N,k, and
Gm

N,~k
for a more general class of multisequences with prime period. For exact

formulas for Gm
N,0 = Gm,q

N,0 = Gm
N,~0

for arbitrary periods we refer to [14, Theorem 1]

and [7, Remark 2].
Let Rm

N,k(L), Rm,q
N,k(L), and Rm

N,~k
(L) denote the number of m-fold N -periodic

multisequences S over Fq with LN,k(S) ≤ L, Lq
N,k(S) ≤ L, and LN,~k(S) ≤ L,

respectively, that is,

Rm
N,k(L) =

L∑
t=0

Pm
N,k(t), R

m,q
N,k(L) =

L∑
t=0

Pm,q
N,k (t), Rm

N,~k
(L) =

L∑
t=0

Pm
N,~k

(t).

If N is a prime with gcd(N, q) = 1 and l is the multiplicative order of q modulo
N , then any N -periodic multisequence with terms in Fq has linear complexity L
of the form L = rl or L = rl + 1 with 0 ≤ r ≤ (N − 1)/l (see [14, Corollary 3]).
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Thus, if l ≥ 2, then for L = rl + s with 0 ≤ r < (N − 1)/l and 1 < s < l we have
Pm

N,0(L) = 0 and Rm
N,0(L) = Rm

N,0(rl + 1). For this case, with [14, Corollary 3] we

obtain for 1 ≤ r ≤ N−1
l

that

Rm
N,0(rl)=Rm,q

N,0(rl)=Rm
N,~0

(rl)=qm

r−1∑
i=0

(
N−1

l

i

)
(qlm − 1)i +

(
N−1

l

r

)
(qlm − 1)r

and

Rm
N,0(rl + 1) = Rm,q

N,0(rl + 1) = Rm
N,~0

(rl + 1) = qm

r∑
i=0

(
N−1

l

i

)
(qlm − 1)i.

If N is a prime dividing q − 1 (that is, if l = 1), then

Rm
N,0(L) = Rm,q

N,0(L) = Rm
N,~0

(L) =
L∑

t=0

(
N

t

)
(qm − 1)t, 0 ≤ L ≤ N.

The fact thatRm
N,k(L) is the cardinality of the union of the balls of radius k with

term distance metric around all matrices S ∈ Fm×N
q for which the corresponding

multisequence has joint linear complexity at most L yields the following obvious
upper bound which is similar to that in Proposition 3.3. The other parts of the
following proposition use the same argument with the appropriate metric.

Proposition 6.1 For all integers m ≥ 1, N ≥ 1, and 0 ≤ L ≤ N , we have

Rm
N,k(L) ≤ min

(
qmN ,Rm

N,0(L)
k∑

t=0

(
mN

t

)
(q − 1)t

)
, 0 ≤ k ≤ mN,

Rm,q
N,k(L) ≤ min

(
qmN ,Rm,q

N,0(L)
k∑

t=0

(
N

t

)
(qm − 1)t

)
, 0 ≤ k ≤ N,

Rm
N,~k

(L) ≤ min

qmN ,Rm
N,~0

(L)
m∏

j=1

( kj∑
t=0

(
N

t

)
(q − 1)t

) , ~k = (k1, . . . , km)

with 0 ≤ kj ≤ N, 1 ≤ j ≤ m.

The next lemma, which is an analog of Lemma 4.1, enables us to express the
expected values by means of the respective counting functions.

Lemma 6.1 For all integers m ≥ 1 and N ≥ 1, the expected values Gm
N,k, Gm,q

N,k,
and Gm

N,~k
for the error linear complexity measures of a random m-fold N-periodic

multisequence over Fq are given by

Gm
N,k = N − 1

qmN

N−1∑
L=0

Rm
N,k(L), 0 ≤ k ≤ mN,

Gm,q
N,k = N − 1

qmN

N−1∑
L=0

Rm,q
N,k(L), 0 ≤ k ≤ N,

Gm
N,~k

= N − 1

qmN

N−1∑
L=0

Rm
N,~k

(L), ~k = (k1, . . . , km) with 0 ≤ kj ≤ N, 1 ≤ j ≤ m.
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Let us now return to the case where N is a prime with gcd(N, q) = 1. Using
the fact that Rm

N,k(L) = Rm
N,k(rl + 1) for L = rl + s and 1 < s < l, where l again

denotes the multiplicative order of q modulo N , we get the following corollary.

Corollary 6.1 Let m ≥ 1, let N be a prime with gcd(N, q) = 1, and let l be the
multiplicative order of q modulo N . Then we have

Gm
N,k = N − 1

qmN

 (l − 1)

N−1
l
−1∑

r=0

Rm
N,k(rl + 1) +

N−1
l∑

r=0

Rm
N,k(rl)

 , 0 ≤ k ≤ mN,

Gm,q
N,k = N − 1

qmN

 (l − 1)

N−1
l
−1∑

r=0

Rm,q
N,k(rl + 1) +

N−1
l∑

r=0

Rm,q
N,k(rl)

 , 0 ≤ k ≤ N,

Gm
N,~k

= N − 1

qmN

 (l − 1)

N−1
l
−1∑

r=0

Rm
N,~k

(rl + 1) +

N−1
l∑

r=0

Rm
N,~k

(rl)

 , ~k = (k1, . . . , km)

with 0 ≤ kj ≤ N, 1 ≤ j ≤ m.

Now we establish lower bounds on Gm
N,k, Gm,q

N,k, and Gm
N,~k

using the above corol-

lary.

Theorem 6.1 Let m ≥ 1, let N be a prime with gcd(N, q) = 1, and let l ≥ 2 be
the multiplicative order of q modulo N . For a given k with 0 ≤ k ≤ mN , let β be
the largest nonnegative integer such that

Rm
N,0(βl + 1)

k∑
t=0

(
mN

t

)
(q − 1)t ≤ qmN ,

where we put β = −1 if there is no such nonnegative integer. Then for the expected
value Gm

N,k of the k-error joint linear complexity of a random m-fold N-periodic
multisequence over Fq we have

Gm
N,k ≥ l(β + 1)− 1

qmN

(
k∑

t=0

(
mN

t

)
(q − 1)t

)

·
β∑

i=0

(
N−1

l

i

)
(qml(β − i + 1)− qm + 1)(qlm − 1)i.

Proof : We establish the lower bound on Gm
N,k by determining an upper bound

for

Ω := (l − 1)

N−1
l
−1∑

r=0

Rm
N,k(rl + 1) +

N−1
l∑

r=0

Rm
N,k(rl).
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Proposition 6.1 yields

Ω ≤ (l − 1)

N−1
l
−1∑

r=0

min

(
qmN ,Rm

N,0(rl + 1)
k∑

t=0

(
mN

t

)
(q − 1)t

)

+

N−1
l∑

r=0

min

(
qmN ,Rm

N,0(rl)
k∑

t=0

(
mN

t

)
(q − 1)t

)
.

From the inequality

Rm
N,0(βl + 1)

k∑
t=0

(
mN

t

)
(q − 1)t ≤ qmN ,

where we put β = −1 if there is no such nonnegative integer and with empty sums
being 0 as usual, we obtain

Ω ≤ (l − 1)
( β∑

r=0

Rm
N,0(rl + 1)

k∑
t=0

(
mN

t

)
(q − 1)t +

N−1
l
−1∑

r=β+1

qmN
)

+

β∑
r=0

Rm
N,0(rl)

k∑
t=0

(
mN

t

)
(q − 1)t +

N−1
l∑

r=β+1

qmN . (4)

Using the formulas for Rm
N,0(rl) and Rm

N,0(rl + 1) for l ≥ 2, we get

Ω ≤ (N − l(β + 1))qmN +

(
k∑

t=0

(
mN

t

)
(q − 1)t

)

·

{
(l − 1)qm

β∑
r=0

r∑
i=0

(
N−1

l

i

)
(qlm − 1)i

+

β∑
r=0

(
qm

r−1∑
i=0

(
N−1

l

i

)
(qlm − 1)i +

(
N−1

l

r

)
(qlm − 1)r

)}

= (N − l(β + 1))qmN +

(
k∑

t=0

(
mN

t

)
(q − 1)t

)

·

{
lqm

β∑
r=0

r∑
i=0

(
N−1

l

i

)
(qlm − 1)i − (qm − 1)

β∑
r=0

(
N−1

l

r

)
(qlm − 1)r

}

= (N − l(β + 1))qmN +

(
k∑

t=0

(
mN

t

)
(q − 1)t

)

·
β∑

i=0

(
N−1

l

i

)
(qml(β − i + 1)− qm + 1)(qlm − 1)i.
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With the formula in Corollary 6.1 we obtain the desired lower bound on Gm
N,k. 2

A similar calculation yields the following lower bounds on the expected value of
the k-error Fq-linear complexity and the expected value of the ~k-error joint linear
complexity of a random m-fold N -periodic multisequence, N prime.

Theorem 6.2 Let m ≥ 1, let N be a prime with gcd(N, q) = 1, and let l ≥ 2 be
the multiplicative order of q modulo N . For a given k with 0 ≤ k ≤ N , let β be
the largest nonnegative integer such that

Rm
N,0(βl + 1)

k∑
t=0

(
N

t

)
(qm − 1)t ≤ qmN ,

where we put β = −1 if there is no such nonnegative integer. Then for the expected
value Gm,q

N,k of the k-error Fq-linear complexity of a random m-fold N-periodic mul-
tisequence over Fq we have

Gm,q
N,k ≥ l(β + 1)− 1

qmN

(
k∑

t=0

(
N

t

)
(qm − 1)t

)

·
β∑

i=0

(
N−1

l

i

)
(qml(β − i + 1)− qm + 1)(qlm − 1)i.

Theorem 6.3 Let m ≥ 1, let N be a prime with gcd(N, q) = 1, and let l ≥ 2 be the

multiplicative order of q modulo N . For a given ~k = (k1, . . . , km) with 0 ≤ kj ≤ N
for 1 ≤ j ≤ m, let β be the largest nonnegative integer such that

Rm
N,~0

(βl + 1)
m∏

j=1

 kj∑
t=0

(
N

t

)
(q − 1)t

 ≤ qmN ,

where we put β = −1 if there is no such nonnegative integer. Then for the expected
value Gm

N,~k
of the ~k-error joint linear complexity of a random m-fold N-periodic

multisequence over Fq we have

Gm
N,~k

≥ l(β + 1)− 1

qmN

 m∏
j=1

( kj∑
t=0

(
N

t

)
(q − 1)t

)
·

β∑
i=0

(
N−1

l

i

)
(qml(β − i + 1)− qm + 1)(qlm − 1)i.

Remark 6.1 If β = −1, then the expression on the right-hand side of (4) reduces
to NqmN and the lower bound in Theorem 6.1 vanishes. For β ≥ 0 the expression
in (4) is less than NqmN . Hence the lower bound in Theorem 6.1 is nontrivial if
and only if β ≥ 0. The same argument is valid for the other two cases considered
in Theorem 6.2 and Theorem 6.3.
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Remark 6.2 If k = 0 and consequently β = (N − 1)/l, then we have equalities
in the proof of Theorem 6.1 and the bound reduces to the exact value (see [14,
Corollary 6])

Gm
N,0 = Gm,q

N,0 = Gm
N,~0

= (N − 1)(1− 1

qlm
) + 1− 1

qm
.

7 Conclusions

The goal of this paper has been the extension of the stability theory of stream
ciphers and the theory of error linear complexity measures from single sequences
to multisequences. The case of multisequences is relevant for the design and the
analysis of word-based stream ciphers. For multisequences there are various pos-
sibilities of defining analogs of the k-error linear complexity of single sequences.
We considered the k-error joint linear complexity, the k-error Fq-linear complexity,

and the ~k-error joint linear complexity for finite as well as for periodic multise-
quences. Various enumeration results and lower bounds on the expected values of
these error linear complexity measures were established.

This is only the beginning of the theory of error linear complexity measures for
multisequences and a lot remains to be done. The general aim should be to find
analogs of all major results on the k-error linear complexity of single sequences
(see the survey [15]) for the case of multisequences.
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