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We investigate efficient randomized methods for approximating the number of perfect
matchings in bipartite graphs and general undirected graphs. Our approach is based on
assigning probabilities to edges, randomly selecting an edge to be in a perfect matching,
and discarding edges that cannot be put in a perfect matching. The probabilities are
set according to the entries in the doubly stochastically scaled version of the adjacency
matrix of the given graph. The experimental analysis on random and real-life graphs
shows improvements in the approximation over previous and similar methods from the
literature.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We investigate efficient randomized methods for approximating the number of perfect matchings in bipartite graphs
and general undirected graphs. Our main tool is a sparse matrix scaling algorithm which we apply to the adjacency matrix
of the given graph (bipartite or general) to assign probabilities to the edges and base random choices to these probabilities.
Previously, we have shown that such scaling algorithms are useful in approximating the maximum cardinality of
matchings in bipartite graphs [7] and general undirected graphs [6].

A given bipartite graph with n vertices on both sides has an n× n unsymmetric adjacency matrix A, where aij = 1 if
he vertex i on the first part and the vertex j on the second part are connected, and aij = 0 otherwise. Counting perfect
atchings in a bipartite graph is equivalent to computing the permanent of its adjacency matrix, which is defined as
er(A) =

∑
σ

∏
i ai,σ (i), where the summation runs over all permutations σ of 1, . . . , n. A given graph with n vertices

as an n × n symmetric adjacency matrix, where aij = aji = 1 if there is an edge between vertices i and j. We use this
djacency matrix representation when dealing with graphs. While we focus on the case where A is a 0-1 matrix, our
echniques are applicable to the weighted case with some adaptations.

Approximating the permanent is a well-studied problem. Valiant [26] showed the problem to be #P-Complete. Jerrum
t al. [13] discuss an approach using Markov Chains which can provide an (1+ε)-approximation for the permanent in fully
olynomial time, with Õ(n10) complexity. Their Markov Chain Monte Carlo (MCMC) approach makes use of the underlying
raph being bipartite, and the techniques cannot be generalized easily to the general graph case. Štefankovic et al. [24] take
he MCMC approach and highlight the difficulties that arise. They also propose a Markov Chain for efficiently estimating
he number of perfect matchings in graphs from a special class. Gurvits and Samorodnitsky [11] and Linial et al. [19] have
sed matrix scaling and proposed deterministic approximations with exponential guarantees (2n and en respectively).
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Rasmussen [22] proposes a practically efficient way of estimating the permanent of a 0–1 matrix, or the number of
erfect matchings in bipartite graphs. This initial work is followed by a series of others [2,9,10]. Rasmussen’s iterative
lgorithm uniformly and randomly chooses a nonzero from the first row in the matrix at hand and discards the first row
nd the column of the chosen nonzero. This step is repeated until the whole matrix is consumed or there is an empty
ow remaining. In the former case, an estimate of a nonzero value is returned which is based on the number of nonzeros
f the first rows at each step; in the latter case zero is returned as an estimate.
We investigate an improvement of Rasmussen’s original approach in which edges are selected non-uniformly based

n a matrix scaling method, which scales a matrix to be doubly stochastic. We provide an analysis of the stated approach
y meticulously tracking the steps taken. The analysis upper bounds the number of repetitions we must run to have
uality guarantees on the estimated permanent. To the best of our knowledge, for scaling-based permanent estimation,
his work presents the most thorough analysis in the literature with computable bounds. These ideas are also extended to
ounting the number of perfect matchings in graphs. On the practical side, we present an extensive set of experiments on
variety of random, constructed, and real-life instances, some with known and others with unknown number of perfect
atchings. Our experiments show that the scaling-based selection mechanism exhibits a significantly better performance
n all instances compared to the known methods. Furthermore, the practical performance of our algorithm seems to be
ven superior to the expected performance derived from our theoretical analysis, which implies that there exist further
venues to explore.
The rest of the paper is organized as follows. Section 2 introduces the notation and the background on scaling and

he permanent, and Section 3 discusses related work in detail. Section 4 introduces the proposed approach and presents
he pseudocode of the main algorithm for bipartite graphs. The extension to the general, undirected case is presented in
ection 5. Section 6 presents the experimental results and a comparison with existing algorithms. Section 7 concludes the
aper.

. Notation and background

Matrices are shown in bold upper case letters, e.g., A. With Aij we denote the submatrix of matrix A obtained by
eleting the ith row and the jth column. The entries in the matrix are shown with lower-case letters and subscripts,
.g., ai,j denotes the entry of the matrix A at the ith row and jth column. The column ids of the nonzeros in the ith row
f A are represented as A(i, :). Vectors are shown with bold, lower-case roman letters, e.g., v. Components of a vector are
hown with the same letter and subscripts, e.g., vi. For a random variable X , we use E[X] to denote its expectation. The
base of the natural logarithm is shown with e.

Consider a certain quantity P that we want to measure. In our case, P is the permanent or the number of perfect
matchings. Assume that we access to an unbiased randomized procedure (or estimator as it is more formally referred to)
X such that E[X] = P . A technique for measuring P based on X is achieved by combining the output of N copies of X .
More specifically, assuming Xi denotes the outcome of the ith estimator, X ′ =

∑N
i=1

Xi
N is the combined estimate for P .

The mean estimate X ′ for a quantity P achieves (ε, δ)-approximation whenever Pr(|X ′ − P| ≤ εP) ≥ 1− δ. In general,

an (ε, δ)-approximation can be achieved by simulating O
(
E[X2
]

E[X]2
·
1
ε2 · log(

1
δ
)
)

trials. For this reason, the fraction E[X2
]

E[X]2 is

called the critical ratio, as it is the key factor in determining whether the approximation scheme runs in polynomial time
or not.

An n × n matrix A ̸= 0 is said to have support if there is a perfect matching in the associated bipartite graph.
Furthermore, if each nonzero can be put in at least one perfect matching, then the matrix is said to have total support.
Any nonnegative matrix A with total support can be scaled with two positive diagonal matrices R and C such that RAC
is doubly stochastic (that is, the sum of entries in any row and in any column is one). For this reason, matrices with
total support are also called scalable. The Sinkhorn–Knopp algorithm [23] is a well-known method for scaling matrices to
doubly stochastic form. This algorithm generates a sequence of matrices (whose limit is doubly stochastic) by normalizing
the columns and the rows of the sequence of matrices alternately. If A is symmetric and scalable, then S = RAR is doubly
stochastic. While the Sinkhorn–Knopp algorithm obtains this symmetric, doubly stochastic matrix in the limit, there are
other iterative algorithms that maintain symmetry all along the way [17,18].

If an n× n nonnegative matrix A is scalable to a doubly stochastic matrix S = RAC with positive diagonal matrices R
and C then the function

gA(x, y) = xTAy−
n∑

i=1

ln xi −
n∑

j=1

ln yj (1)

ttains its minimum value for positive xi and yi at x = diag(R) and y = diag(C) [14, Proposition 2]. In particular, for an
× n 0–1 matrix A, we have n ≤ gA(x, y) ≤ n + n ln n, where the lower bound is met by a permutation matrix and the
pper bound is met by the matrix of ones; in both cases xTAy = n.
Idel [12] gives a comprehensive survey of known results for computing doubly stochastic scalings. Recently, a tighter

nalysis of the Sinkhorn–Knopp algorithm [3] has been carried out, and other efficient algorithms based on convex
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.07.016.

ptimization have been proposed [1,4].
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3. Related work

Rasmussen [22] proposes a practically efficient randomized approach for estimating the permanent of a 0–1 matrix, or
for counting perfect matchings in bipartite graphs. Rasmussen’s algorithm visits the first row of a matrix and among the
nonzeros, chooses one with uniform probability. The first row and the column of the selected nonzero are then removed
from the matrix and a smaller matrix is obtained. This process is repeated until either there exists an empty row, in
which case zero is returned; or all rows of the original matrix were able to choose a column, in which case a nonzero
estimator of the permanent XRa is returned. This estimator is the product of the number of nonzeros of the first rows for
which the random selections are done. While Rasmussen’s estimator returns zero in most of the cases, it is an unbiased
estimator, and its expected value is equal to the permanent. Rasmussen additionally shows that E[X2

Ra] ≤ Per(A)2n!, for
an n × n matrix A, although one can reduce Per(A)2 to Per(A). As stated in Section 2, the value of E[X2

Ra] is important,
since it expresses the number of samples required to ensure approximation guarantees. Our estimator XA works along
the same lines. It also generates a perfect matching step-by-step, but the uniform selection of columns is replaced with
a more effective weighted sampling mechanism. The weights used in sampling are obtained with a numerical algorithm
used for scaling matrices to a doubly stochastic form.

Beichl and Sullivan [2] also investigate the same mechanism as ours and perform some preliminary analysis. Their
bound for E[X2

A] uses a notation which denotes the average value of the selection probabilities of all perfect matchings.
Their analysis is valuable in that it shows that the scaling helps, but it does not yield computable bounds. We follow
up on their work by providing some new theoretical insights as well as a more detailed experimental analysis. More
specifically, we provide an analysis (with the main result in Theorem 2) which yields efficiently computable bounds on
E[X2

A] depending on the scaling factors R and C for A.
For estimating the number of perfect matchings in general undirected graphs Fürer and Kasiviswanathan [10] discuss

three randomized algorithms, called Simple, REP, and Greedy. The one called Simple is a direct adaptation of Rasmussen’s
for graphs, and selects neighbors with uniform probability. REP extends Simple such that at certain points during the
execution, it creates a number of copies where each copy selects its own neighbor, and the procedure continues in a
similar way in each copy. The results of each copy are later combined. They also discuss a similar algorithm for the
bipartite case [9]. Greedy attempts to assign probabilities in a better way by selecting each node with probability inversely
proportional to its degree minus one. F‘̀urer and Kasiviswanathan conclude that Simple is easy to analyze but has high
worst case bound; Greedy looks good on many graphs but difficult to analyze; and REP has the best theoretical guarantees
for its performance on random (Erd’́os–Renyi) graphs although its worst-case bounds on other graphs can be high. Our
approach can be seen as a more sophisticated variant of Greedy. If Greedy were to choose a random neighbor with
probability equal to the degree of the neighbor, then it would have been equivalent to applying a single step of Sinkhorn–
Knopp. However, the analysis of our variant is simpler and reveals more insights thanks to the global minimization
properties of the doubly stochastic scaling, see the function (1) associated with doubly stochastic scaling.

4. The proposed algorithm and its analysis

Before discussing our algorithm, we first motivate the use of scaling in estimating the value of the permanent. The
following lemma highlights the close connection of the scaling factors and the permanents of a matrix and its submatrices.

Lemma 1. Let A be an n× n 0–1 matrix with total support. Let R and C be the diagonal scaling matrices such that S = RAC
is a double stochastic matrix Then,

Per(S) = Per(A) ·
n∏

i=1

ri · ci.

In addition,

ri · cj =
Per(Aij)
Per(A)

·
Per(S)
Per(Sij)

.

roof. Since R and C are diagonal matrices, we have Per(S) = Per(A)
∏

ri
∏

cj. The equality Per(Sij) = Per(Aij)
∏

k̸=i rk
∏

ℓ̸=j
ℓ holds, as all diagonal products in Sij have the same value

∏
k̸=i rk

∏
ℓ̸=j cℓ. Dividing the two equalities side by side yields

he second result. □

.1. The algorithm

The proposed algorithm to estimate the permanent is shown in Algorithm 1. The algorithm takes an n× n, 0–1 matrix
with a nonzero permanent, produces a random variable denoted as XA and a perfect matching (this is for the analysis).

nitially XA is equal to one. The algorithm proceeds in n steps. At every step, the algorithm adds a nonzero entry to a
atching, thereby obtaining a perfect matching at the end. At step i, a nonzero entry in the ith row of A is chosen among

hose columns A which have not been matched yet. The nonzero entry chosen at row i defines the matched column. Since
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.07.016.
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he ith row is the first row at step i, we use σ
(i)
1 to denote the column chosen for i, and A(i) to denote the remaining matrix.

he nonzeros are selected according to the values of the entries in a doubly stochastically scaled version of the remaining
atrix. The random variable XA is multiplied by the reciprocal of the value of the chosen nonzero. For the algorithm

o work, we discard the nonzeros in A(i) that cannot be put into a perfect matching. This is achieved by applying the
ulmage–Mendelsohn [8,21] decomposition, and filtering out the entries that fall into the off-diagonal blocks in a fine
ecomposition [21].

Algorithm 1: Permanent Estimation
Input: n× n, 0-1 matrix A
Output: Permanent estimate XA; σ a perfect matching, where the ith entry shows the column chosen for the ith row.
1: XA ← 1
2: A(1)

← A
3: for i = 1 to n do
4: Filter out those entries of A(i) that cannot be put into a perfect matching
5: [R(σ ,i), C(σ ,i)

] ← Scale(A(i))
6: Pick a random nonzero column j ∈ A(i)(1, :) by using the probability density function

pj =
s1,j

Σk∈A(i)(1,:)s1,k
for all nonzeros a(i)1,j

where st,k = r (σ ,i)
t · c(σ ,i)

k is the corresponding entry in the scaled matrix S = R(σ ,i)A(i)C(σ ,i)

7: XA ← XA/pj
8: A(i+1)

← A(i)
1j ▶ delete the first row and the jth column of A(i)

9: σ (i)← j ▶ assuming the original numbering

We first comment on the run time complexity of the algorithm. There are n steps, and each step requires computing
Dulmage–Mendelsohn decomposition of a matrix, and scaling a matrix. This can be achieved by O(

√
nm) time on an

× n matrix with m nonzeros [21]. There are different algorithms for scaling; see the survey by Idel [12], and more
ecent papers [1,3,4]. The most recent methods based on convex optimization techniques [1,4] have the smallest run
ime complexity Õ(mn + n7/3) and Õ(m3/2)—where the terms involving the deviation from the required row/column
ums and log n are discarded. The Sinkhorn–Knopp algorithm, which is the easiest to implement, has been shown to
ave O( n

2 ln n
ε2

) iterations, each iteration costing O(m) time where ε is the allowable deviation from one. Other easy to
mplement variants are given elsewhere [17,18]. To the best of our knowledge, these algorithms are not yet shown to be
f fully polynomial time—there are results using the second singular value of the final matrix; and there is no run time
nalysis with respect to ε. In our experience [6,7], Sinkhorn–Knopp kind of algorithms work well for scaling 0–1 matrices
or practical purposes; usually, a few iterations suffice to obtain practically well behaving algorithms. In summary, the
orst case time complexity of Algorithm 1 is Õ(n(

√
nm + mn2 ln n)) when the Sinkhorn–Knopp algorithm is used for

caling.
The algorithm identifies a perfect matching at the end. Since the scaling factors depend on the identified perfect

atching, we use R(σ ,i) and C(σ ,i) to denote the scaling matrices at the ith step of the algorithm, where the random
erfect matching σ is returned. Recall that σ

(i)
1 denotes the column chosen at the ith step. Note that the size of the scaling

atrices reduces by one at each step, and that the first entry r (σ ,i)
1 of R(σ ,i) is the scaling factor associated for the first row

f A(i). With this notation, we can write

XA =
1∏n

i=1 r
(σ ,i)
1 · c(σ ,i)

σ
(i)
1

. (2)

.2. The analysis

Here we give theoretical properties of the proposed algorithm. We start by showing that it obtains an unbiased
stimator.

heorem 1. Let XA be a random variable returned by Algorithm 1 for the estimate of the permanent of an n× n, 0–1 matrix
. Then E[XA] = Per(A).

roof. We prove the theorem using induction. For the base case where n = 1, the argument trivially holds. As the
nductive hypothesis, assume that the argument holds for (n− 1)× (n− 1) matrices. We then have the following:

E[XA] =
∑

j:a1,j ̸=0

pj ·
1
pj
· E[XA1j ]

=

∑
E[XA1j ]
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.07.016.
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∑
j:a1,j ̸=0

Per(XA1j ) by the inductive hypothesis

= Per(A) . □

Next, we focus our attention on the analysis of the E[X2
A] value. For this purpose, we state and prove the following

lemma.

Lemma 2. Let A be n×n matrix such that a1,j = 1, A1j be the (n−1)×(n−1) principal submatrix, and B be the (n−1)×(n−1)
ubmatrix obtained from A1j after discarding entries that cannot be put in a perfect matching. Let R, C, D, and F be the positive
iagonal matrices such that RAC and DBF are doubly stochastic. Then,

n∏
i=2

ri ·
n∏

i=1,i̸=j

ci ≤ er1·cj−1
n−1∏
i=1

di · fi.

Proof. Let r′ and c′ be the vectors r′ = [r2, . . . , rn]T and c′ = [c1, . . . , cj−1, cj+1, . . . , cn]T . Observe that for the function (1),

gB(d, f) ≤ gB(r′, c′)

should hold, since D and F scale B to a doubly stochastic form. Therefore,

dTBf−
n−1∑
i=1

ln di −
n−1∑
i=1

ln fi ≤ r′TBc′ −
n−1∑
i=1

ln r ′i −
n−1∑
i=1

ln c ′i ,

which we arrange as

dTBf− r′TBc′ ≤
n−1∑
i=1

ln di +
n−1∑
i=1

ln fi −
n−1∑
i=1

ln r ′i −
n−1∑
i=1

ln c ′i . (3)

The left hand side can be bounded below. Since D and F scale B to a doubly stochastic form,

dTBf = n− 1 . (4)

Since B is obtained by discarding some (positive) entries in A1j we have

r′TBc′ ≤ r′TA1jc′ = n− 2+ r1 · cj. (5)

Hence, dTBf− r′TBc′ ≥ 1− r1 · cj. Note that this last inequality will be tight, if we do not get rid of any entries from A1j,
in which case B = A1j. Furthermore, since 0 < r1 · cj ≤ 1, we see that

0 ≤ 1− r1 · cj ≤ dTBf− r′TBc′.

By combining this with (3) and exponentiation of all parts, we obtain

1 ≤ e1−r1·cj ≤ ed
T Bf−r′T Bc′

≤

∏n−1
i=1 di · fi∏n−1
i=1 r ′i · c

′

i

, (6)

and this concludes the proof. □

Theorem 2. Let A be n×n matrix with total support, and RAC be its doubly stochastic scaling. Then E[X2
A] ≤

1∏
i ri · ci

·Per(A).

roof. We prove the theorem by induction. The base case n = 1 holds trivially. Assume that the theorem holds for
n− 1)× (n− 1) matrices. We then have

E[X2
A] =

∑
a1,j ̸=0

r1 · cj ·

(
1

r21 · c
2
j
· E[X2

A1j
]

)

E[X2
A] =

∑
a1,j ̸=0

1
r1 · cj

· E[X2
A1j
]

E[X2
A] ≤

∑
a1,j ̸=0

1
r1 · cj

·
1∏

z dz · fz
· Per(A1j)

by the inductive hypothesis, where D and F scale A
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.07.016.
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E[X2
A] ≤

∑
a1,j ̸=0

1
r1 · cj

·
1∏n

z=2 rz ·
∏n

z=1,z ̸=j cz
· Per(A1j) by Lemma 2,

E[X2
A] ≤

1∏
i ri · ci

·

∑
a1,j ̸=0

Per(A1j)

E[X2
A] ≤

1∏
i ri · ci

· Per(A) . □

In the above proof, we made use of a weakened version for Lemma 2. In the original lemma,
∏

i di·fi∏
i̸=1 ri

∏
i̸=j ci
≤ er1·cj−1 ≤ 1

for the submatrix B = A1j with scaling coefficients d, f. Because each possible j has a different exponent term associated
with it, we had to replace all exponent terms by the common upper bound of one, so as to obtain a bound over all perfect
matchings. These exponential terms can often be significantly less than one, and this replacement can lead to a loose
upper bound for E[X2

A]. We proceed to state two theorems in which the exponent term is handled differently in order to
obtain more accurate bounds.

Theorem 3. E[X2
A] ≤ Per(A) ·mean

(∑
σ e

∑
j r1

(σ ,j)c(σ ,j)

σ
(j)
1

)
·

e−n∏
i ri · ci

where the sum is over all perfect matchings σ .

roof. Consider any perfect matching σ of A. Let XAσ =
1∏n

i=1 r(σ ,i)
1 c(σ ,i)

σ
(i)
1

, which is equivalent to the value of the random

ariable XA should the matching σ be returned, as shown in (2).
We use a bottom-up induction to prove the following: Let 1 ≤ i ≤ n. Then

n∏
j=i

1

r (σ ,j)
1 c(σ ,j)

σ
(j)
1

≤
e

(∑n
j=i r1

(σ ,j)c(σ ,j)

σ
(j)
1

)
−n−1+i∏n

j=i r
(σ ,i)
j−i+1c

(σ ,i)

σ
(j)
1

. (7)

hat is we provide a relation for the scaling matrices R(σ ,i) and C(σ ,i) of the ith step and the multiplication of all r (σ ,j)
1 c(σ ,j)

σ
(j)
1

here j ≥ i. We use the index j− i+ 1 to refer to rows with index greater than i ≥ 1 because in the reshaped matrix of
he ith step, row i occupies the first position. The idea resembles the proof of Theorem 2 except that here a tighter upper
ound is provided by having the numerator less than one.
In the base case i = n, and the relation holds with equality. Assume it holds until i where i > 1. Then, for i− 1

n∏
j=i−1

1

r (σ ,j)
1 c(σ ,j)

σ
(j)
1

≤
e

(∑n
j=i r1

(σ ,j)c(σ ,j)

σ
(j)
1

)
−n−1+i∏n

j=i r
(σ ,i)
j−i+1c

(σ ,i)

σ
(j)
1

·
1

r (σ ,i−1)
1 c(σ ,i−1)

σ
(i−1)
1

y the induction hypothesis holding for value i.
Note that

∏n
j=i r

(σ ,i)
j−i+1c

(σ ,i)

σ
(j)
1

is the product of the scaling factors at the ith step, and that
∏n

j=i r
(σ ,i−1)
j−(i−1)+1c

(σ ,i−1)

σ
(j)
1

is the product

of the scaling factors at the (i− 1)st step excluding the row scaling entry r (σ ,i−1)
1 and the associated column scaling entry.

Therefore, we can replace

1∏n
j=i r

(σ ,i)
j−i+1c

(σ ,i)

σ
(j)
1

with
e

(
r1(σ ,i−1)c(σ ,i−1)

σ
(i−1)
1

)
−1∏n

j=i r
(σ ,i−1)
j−(i−1)+1c

(σ ,i−1)

σ
(j)
1

sing Lemma 2 to obtain an upper bound. That is

n∏
j=i−1

1

r (σ ,j)
1 c(σ ,j)

σ
(j)
1

≤
e

∑n
j=i r1

(σ ,j)c(σ ,j)

σ
(j)
1

−n−1+i
· e

r1(σ ,i−1)c(σ ,i−1)

σ
(i−1)
1

−1∏n
j=i r

(σ ,i−1)
j−i+2 c(σ ,i−1)

σ
(j)
1

·
1

r (σ ,i−1)
1 c(σ ,i−1)

σ
(i−1)
1

.

We see that in both terms of the fraction we can include r (σ ,i−1)
1 c(σ ,i−1)

σ
(i−1)
1

to its respective aggregator

n∏
j=i−1

1

r (σ ,j)
1 c(σ ,j)

(j)

≤
e

∑n
j=i−1 r1(σ ,j)c(σ ,j)

σ
(j)
1

−n−1+(i−1)∏n
j=i−1 r

(σ ,i−1)
j−i+2 c(σ ,i−1)

(j)
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which concludes the proof of (7), as for j = i− 1, we have j− i+ 2 = 1. Thus for i = 1 we get:

X2
Aσ
≤

e

∑
j r1

(σ ,j)c(σ ,j)

σ
(j)
1∏

i ri · ci
· e−n.

ince

E[X2
A] =

∑
σ

X2
Aσ
·

n∏
i=1

r (σ ,i)
1 c(σ ,i)

σ
(i)
1

, we get that

E[X2
A] =

∑
σ

XAσ

E[X2
A] ≤

∑
σ

e

∑
j r1

(σ ,j)c(σ ,j)

σ
(j)
1∏

i ri · ci
· e−n ,

as we have Per(A) permutations each with each own value. Replacing with the mean multiplied by Per(A) concludes the
theorem. □

heorem 4. Let A be n × n 0–1 matrix with total support, and RAC be its doubly stochastic scaling. There exists a positive

vector k such that E[X2
A] ≤

ev−n∏
i ri · ci

· Per(A), where v =
∑

i ki = ∥k∥1 ≤ n.

Proof. The proof follows that of Theorem 2 to build k by considering the maximum exponent value at each step and is
given in the Appendix. □

Note that Theorem 4 implies Theorem 2 if we set ki = 1. The theorem is constructive but does not yield a polynomial
algorithm. Algorithm 1 can be made to construct a k associated with a perfect matching σ obtained at the end, to show

how much 1∏n
i=1 r(σ ,i)

1 ·c(σ ,i)

σ
(i)
1

deviates from a potential bound that can be obtained by mean

(∑
σ e

∑
j r1

(σ ,j)c(σ ,j)

σ
(j)
1

)
·

e−n∏
i ri · ci

from the previous theorem. Note also that
∑

j r1
(σ ,j)c(σ ,j)

σ
(j)
1

is less than n, unless all terms are one, in which case A is the

×n identity matrix (and the permanent of value one is obtained exactly). Therefore, the obtained bound shows that the
pper bound stated in Theorem 2 is loose by exponents of e.

. An estimator for undirected graphs

In this section, we investigate how to extend the proposed approach for undirected graphs. As we will see, this variant
hares similar properties with the algorithm for the bipartite case. In particular with XG showing the random variable and
M(G) showing the number of perfect matchings in G, it can be shown that

E[XG] = M(G)

nd

E[X2
G] ≤ M(G)

1∏
i ri

,

here ri is the ith diagonal entry of the scaling factor R of the adjacency matrix of G. Note that since the adjacency matrix
A is symmetric, its scaling is in the form S = RAR, i.e., we do not need separate scaling values for rows and columns.
lgorithm 2 shows the pseudocode of the proposed approach.
At the beginning of the iteration i, we have a graph G(i) having at least one perfect matching. We then get the adjacency

matrix A(i) of this graph, which is symmetric. We then check if all entries in A(i) can put into a nonzero diagonal; that is
we look at the Dulmage–Mendelsohn decomposition of the bipartite graph associated with A(i), and discard edges that
cannot be in a perfect matching. We discard those entries (symmetrically) and obtain a sparser matrix A(i) and scale the
resulting matrix. This also translates to an updated G(i). Then, for each edge incident on the first vertex of G(i), we test if
there is a perfect matching in G(i) containing that edge. Among all the edges that are inside at least one perfect matching,
we choose an edge from a probability distribution where the probabilities are proportional to the scaling entries of the
allowed edges. Notice that

pk =
s1,k

Σt∈T s1,t

where T = {j : a(i)1,j ̸= 0 and G(i)
− {v1, vj} has a perfect matching}, s1,t = r (i)1 · r

(i)
t , and 0 < Σt∈T s1,t ≤ 1. Therefore,

≥ r (i) · r (i) at Line 8 of Algorithm 2.
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.07.016.
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Algorithm 2: Estimating the number of perfect matchings in graphs
Input: G = (V , E) is an undirected graph with n = |V | vertices, having a perfect matching
utput: An estimate XG of the number of perfect matchings in G
1: XG ← 1
2: G(1)

← G
3: for i = 1 to n by increments of two do
4: Let A(i) be the adjacency matrix of G(i).
5: Filter out those entries of A(i) that cannot be put into a perfect matching in the bipartite graph corresponding to

A(i), and let G(i) correspond to the graph of A(i)

6: [R(i)
] ← scale(A(i))

7: Let T = {j : a(i)1,j ̸= 0 and G(i)
− {v1, vj} has a perfect matching}

8: Pick a random nonzero column j from T by using the probability density function

pk =
s1,k

Σt∈T s1,t
, for all nonzero a(i)1,k with k ∈ T

where st,k = r (i)t · r
(i)
k is the corresponding entry in the scaled matrix S = R(i)A(i)R(i)

9: XG ← XG/pj
10: G(i+1)

← G(i)
− {v1, vj} ▶ delete the vertices v1 and vj from G(i) to obtain G(i+1)

By using a proof similar to that of Theorem 1, we can show the following about the expected value of the estimator
eturned by Algorithm 2.

heorem 5. Let XG be a random variable returned by Algorithm 2. Then E[XG] = M(G), where M(G) represents the number
of perfect matchings in the graph G.

Proof. We prove the claim via induction. As the base-case, we consider n = 2 and the argument holds where the adjacency

matrix is A =
(
0 1
1 0

)
. Assume that the inductive hypothesis holds for n − 2. Let Gij be obtained by removing vertices

i and vj from G, which corresponds to deleting the rows and the columns i, j of the adjacency matrix of G to form the
(n− 2)× (n− 2) adjacency matrix Aij of Gij. We have the following:

E[XG] =
∑

j:a1,j ̸=0

pj ·
1
pj
· E[XGij ]

=

∑
j:a1,j ̸=0

E[XGij ]

=

∑
j:a1,j ̸=0

M(Gij) by the inductive hypothesis

= M(G) □

Next, we show a theorem bounding E[X2
G]. To achieve this we use the following Lemma.

emma 3. Let A be a symmetric n× n doubly stochastically scalable matrix with α1j = αj1 = 1 with all diagonal values zero.
et R be its scaling matrix. Assume we remove the rows and columns with indices 1 and j from A. We then discard the entries
hat are not in support to obtain B, which is a symmetric scalable matrix of size n− 2. Let D be B’s scaling matrix, i.e., DBD is
doubly stochastic. Then

n∏
k=1,k̸=1,j

rk ≤ er1rj−1
n−2∏
z=1

dz .

Proof. The proof is similar to the proof of Lemma 2 and is given in the Appendix. □

Theorem 6. Let G be an undirected graph, A be the n × n adjacency matrix of G with all supported nonzeros, and R be the
diagonal matrix which scales A into the doubly stochastic form, e.g., RAR is doubly stochastic. Then

E[X2
G] ≤ M(G) ·

1∏ .
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
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Proof. We prove the theorem by induction. The base case n = 2 holds trivially. Let the inductive hypothesis be that the
argument holds for graphs with n− 2 vertices.

E[X2
G] =

∑
ai,j ̸=0

pj ·

(
1
p2j
· E[X2

Gij ]

)

E[X2
G] =

∑
ai,j ̸=0

1
pj
· E[X2

Gij ]

E[X2
G] ≤

∑
ai,j ̸=0

1
ri · rj

· E[X2
Gij ]

because pj ≥ ri · rj by the definition pj at Line 8 of Algorithm 2,

E[X2
G] ≤

∑
ai,j ̸=0

1
ri · rj

·
1∏
z dz
·M(Gij)

by the inductive hypothesis, where DA(ij)D is doubly stochastic,
where A(ij) is the filtered adjacency matrix of Gij. Hence,

E[X2
G] ≤

∑
ai,j ̸=0

1
ri · rj

·
1∏n

z ̸=i,z ̸=j rz
·M(Gij) by Lemma 3,

E[X2
G] ≤

1∏
z rz
·

∑
ai,j ̸=0

M(Gij)

E[X2
G] ≤

1∏
z rz
·M(G) . □

5.1. Filtering out redundant edges

A complication in the undirected case is that to eliminate edges that do not belong to any perfect matching it is not
sufficient to only use the Dulmage–Mendelsohn decomposition of A. We demonstrate this with the following fact.

Fact 7. Let G be an undirected graph, and A be the n× n adjacency matrix of G. Then Per(A) is larger than or equal to M(G).

Proof. The fact holds trivially in the case that M(G) = 0. We hence assume in the following that M(G) > 0. Let G′ be the
bipartite graph with 2n vertices obtained from A. Then for each perfect matching in G = (V , E), there is a corresponding
perfect matching in G′ = (V ′, E ′). Let {(u1, u2), . . . , (un−1, un)} be a perfect matching in G where ui ∈ V for i ∈ {1, . . . , n}.
Let the vertices in the first and the second part of the bipartite graph G′ be denoted as vis and wis, respectively, where
vi ∈ V ′ and wi ∈ V ′ for i ∈ {1, . . . , n}.

Since the edge (ui, ui+1) is in the matching for i ∈ {1, . . . , n}, it is in G. Therefore ai,i+1 = ai+1,i = 1 are nonzeros
in A. Hence, in the bipartite graph G′, we have the edges (vi, wi+1) ∈ E ′ and (vi+1, wi) ∈ E ′. From these edges, a perfect
matching can be constructed in G′.

Thus for each matching in G, one can construct a perfect matching in G′ and the number of the perfect matchings in
G′ is equal to Per(A). Hence, Per(A) is at least as large as M(G). □

The above fact shows that any off-diagonal edge in the Dulmage–Mendelsohn decomposition of A cannot belong to a
perfect matching in G, but it does not help us to eliminate possible edges that do not belong to such symmetrical matchings
(vi, wj) and (wj, vi). These edges may be cleared by using an exact algorithm for computing maximum matchings to detect
whether selecting one of them leads to a perfect matching for the remaining vertices or not. A reader may ask if one could
use the Gallai–Edmonds [20, Sec. 3.2] decomposition, which partially extends the Dulmage–Mendelsohn decomposition
to undirected graphs. This decomposition can be used to find perfectly matchable sub-graphs and odd components if
there is no perfect matching in the graph. It does not give any useful information for our purposes in graphs with perfect
matchings, while the Dulmage–Mendelsohn decomposition for bipartite graphs states which edges cannot be put into a
perfect matching.

6. Experiments

The experiments are performed on a machine equipped with an Intel Core i7-7600 CPU and with 16 GB of available
ram. For the implementation, we used MATLAB 2017. In the next two subsections, we present the experimental results
on bipartite graphs and general, undirected graphs, respectively.
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.07.016.
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Fig. 1. Comparison of the approximation ratios of the proposed scaling-based method, Rasmussen’s and Greedy (a) on 54 random sparse graphs
with n = 40 and sparsity factor 4/n in increasing order of the approximation ratio of the proposed estimator; and (b) on square grids of even length
in increasing order of side length.

6.1. Experiments on bipartite graphs

To see how the proposed algorithm fares in practice on bipartite graphs, we compare it against the original estimator
of Rasmussen as well as Greedy. We used an improved version of Rasmussen’s randomized algorithm in which edges that
do not participate in perfect matchings are discarded. Additionally, all three algorithms process the rows in increasing
order of nonzeros, adjusted at each step, to select a random entry. For each test, we take 1000 samples and report their
mean.

6.1.1. Random and synthetic datasets
For the first set of bipartite graph experiments, we consider random matrices of size 40 and sparsity 4

n , in other words
there are about 160 nonzeros. We used an exact (exponential time) algorithm to compute the permanents. These matrices
can have large permanents (e.g., around 107) and are among the largest an exact non-parallel algorithm, which simply
enumerates all the perfect matchings, can handle. The results are summarized in Fig. 1(a). In this figure, we display the
ratio of the estimate to the exact value. As seen in the figure, our approach almost always has good performance. In
contrast, Rasmussen’s estimator often obtains results that are worse than the other two approaches (even if modified
to avoid returning zeros). The Greedy estimator exhibits a better performance than Rasmussen’s, while our approach is
better than Greedy (it has a smaller and less frequent deviation from the value of the permanent).

To provide results with larger n, we focus on the class of matrices which correspond to grids as the second set
experiments on bipartite graphs. For these matrices, an exact formula for the permanent is given independently by
Kasteleyn [15] and Temperley and Fisher [25]. The number of perfect matchings in an m× n grid is given by the formula

m∏
j=1

n∏
k=1

(
4 cos2

(
π j

m+ 1

)
+ 4 cos2

(
πk

n+ 1

))1/4

.

he results presented in Fig. 1(b) concur with the previous test. We observe that Scaling seems to provide better
erformance than the two alternatives. This is particularly notable in the last case of the 24 × 24 grid where only Scaling
anages to obtain an estimate in close range of the actual answer. This suggests that the assignment of probabilities via
doubly stochastic scaling method makes the overall procedure more reliable.
As the third set of experiments on bipartite graphs, we give the results for 1000 simulations of the three approaches

n the matrix of the 36 × 36 grid to examine in detail how the algorithms behave for larger graphs. The results are
resented in Fig. 2. To draw this figure, we used Matlab’s histfit command on the 1000 estimates of each algorithm,
o plot a histogram and fit a bell curve so as to understand the distribution. As the values are very large, we present the
esults on a log-scale. In this figure, we observe less variation between the independent runs of the proposed method.
urthermore, the approximation factor of the mean estimate of our approach, 1.11, is significantly better than those of
he other two approaches; Greedy’s approximation ratio is 0.42 while Rasmussen’s is worse than both obtaining a 0.0028
pproximation (the approximation ratios are obtained using the exact formula given above).

.1.2. Real-life bipartite graphs
To further evaluate the practical performance of the proposed approximation scheme, we used a set of matrices from

he SuiteSparse Matrix Collection (formerly the University of Florida Sparse Matrix Collection) [5]. The properties of the
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.07.016.

atrices can be seen in Table 1.
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Fig. 2. The performance of the estimators on the 36 × 36 grid. The logarithms of the 1000 estimator values are presented on the x-axes and the
y-axes demonstrate the distribution of the samples for the values in each approach. We note that the logarithm of the actual permanent is 159.49.

Table 1
Names, dimensions, and numbers of nonzeros of the real-life square matrices corresponding to bipartite graphs used to evaluate the performance
of the estimators. For the first set of six smaller matrices with n < 60, the exact permanent value and the approximation of the estimators with
1000 samples are also given.
Name n nnz Permanent Rasmussen Greedy Scaling

Grund/dss 53 144 2.93 · 105 1.080 0.949 1.033
DIMACS10/chesapeake 39 340 1.32 · 1013 0.302 0.918 0.993
HB/bcsstk01 48 400 2.01 · 1025 0.973 0.966 0.993
HB/impcolb 59 271 1.11 · 1008 1.027 0.824 0.985
HB/will57 57 281 1.07 · 1018 1.578 0.944 1.022
HB/dwt59 59 267 4.64 · 1018 1.367 0.877 0.952

AG-Monien/netz4504dual 615 2342
Bai/dw256A 512 2480
Bai/dw256B 512 2500
HB/662bus 662 2474 Permanent is too expensive to compute
HB/685bus 685 3249
JGDHomology/ch5-5-b3 600 2400
VDOL/dynamicSoaringProblem1 647 5367

On real-life matrices with known permanents. For the first set of experiments, we used six small real-life square
matrices with n < 60. For these matrices, it is possible to calculate the permanent exactly using a recent parallel
algorithm [16]. Table 1 additionally exhibits the approximation found by each of the three algorithms after performing
1000 runs and taking the mean. The results are similar to those with synthetic and random matrices. Scaling obtains
the best performance, followed by Greedy, and Rasmussen, which has the worst behavior overall. In more detail, Scaling
obtained a mean deviation of 2% from the permanent, whereas Greedy had an average deviation of 9%. For impcolb,
Scaling was 16.1% closer to the permanent than Greedy, which amounted to a difference of 1.7×107 between the two
approximations. For dwt59, the difference between the answers of Scaling and Greedy was 3.48 · 1017 in favor of Scaling.
Rasmussen’s average deviation from the permanent at 39% was much worse than the other methods.

To demonstrate the effectiveness of Scaling in more detail, Fig. 3 presents a histogram of the estimators and fits a bell
curve. We additionally show the value of the permanent with a vertical line to display how the estimators are spread
around it. As it can be observed from all six subfigures, Scaling’s estimations are more closely concentrated around the
value of the permanent, and Scaling’s samples span the smallest interval.

On real-life matrices with unknown permanents. As the last set of bipartite graph experiments, we present the
performance of estimators with 1000 estimations on seven larger matrices with n > 500 from Table 1. For these matrices,
we do not know the exact permanent values, and we plot only the estimates in Fig. 4. As before, the figures were generated
with Matlab’s histfit command, and the results are given in log-scale. In all cases, we see that the values obtained by
Rasmussen’s approach span a larger interval than the other two, and Greedy has a larger span than Scaling. We also note
that the distributions are similar to those in Fig. 3, which is another indication that Scaling most probably obtains better
estimates than both Greedy and Rasmussen on these graphs as well. We also present the mean, standard deviation (std),
and the std/mean ratio (i.e., coefficient of variation) of the estimators in Table 2. We calculated the standard deviation

using the formula σ 2
=

∑N
i=1(Xi − X)2

N − 1
where N represents the number of samples and Xi corresponds to the ith sample

with X being their mean value.
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.07.016.
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Fig. 3. The performance of the estimators on the six matrices with n < 60 given in Table 1. The logarithms of the 1000 estimator values are
resented on the x-axes and the y-axes demonstrate the distribution of the samples for the values in each approach. The vertical line corresponds
o the actual value of the permanent.

A trend we notice in all matrices is that Rasmussen’s algorithm always obtains the smallest mean value, whereas the
roposed algorithm returns the largest. Furthermore, the std/mean ratio of Scaling is almost always the smallest of the
hree (except for the matrix dw256B). By combining these observations with the previous ones, we conclude that Scaling’s
stimations are more concentrated around the returned mean compared to the other two algorithms. In other words, the
roposed approach has lesser variation than the other two.
The run time of Scaling on these seven matrices are very close to those of the other two approaches. The average run

ime to execute an estimator using Scaling is 0.92 s, whereas Rasmussen and Greedy require 0.13 and 0.14 s, respectively.

.2. Experiments on general, undirected graphs

We examine the performance of the estimators on five undirected graphs obtained from matrices available in the
uiteSparse Matrix Collection. After downloading the matrices, we made them pattern-wise symmetric by adding all
issing symmetric entries. Furthermore, we discarded the values in the diagonal and set all remaining nonzero values to
ne so that the resulting matrix is the adjacency matrix of an undirected graph. The properties of the resulting graphs
re presented in Table 3.
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.07.016.



F. Dufossé, K. Kaya, I. Panagiotas et al. / Discrete Applied Mathematics xxx (xxxx) xxx 13
Fig. 4. The performance of the estimators on the seven matrices with n > 500 given in Table 1. The logarithms of the 1000 estimator values
are presented on the x-axes and the y-axes demonstrate the distribution of the samples for the values in each approach. For these matrices, the
permanent values are unknown.

As discussed in Section 5.1, getting rid of the entries that do not belong to any perfect matching is a more time
consuming procedure than its equivalent for bipartite graphs. As Fürer and Kasiviswanathan [10] discard all edges that
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.07.016.
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able 2
tatistics for the seven larger bipartite graphs. The original name of the matrix corresponding to the last one is dynamicSoaringProblem1 and is
hortened to fit into the column. The preceding family names of the matrices are not shown.
Matrix Rasmussen Greedy Scaling

mean std std
mean mean std std

mean mean std std
mean

netz4504dual 5.12 · 10140 1.60 · 10142 31.36 7.68 · 10142 1.68 · 10144 21.86 3.54 · 10143 3.01 · 10144 8.52
dw256A 3.59 · 10158 1.13 · 10160 31.54 2.77 · 10162 3.75 · 10163 13.56 2.11 · 10164 2.64 · 10165 12.53
dw256B 7.14 · 10158 2.05 · 10160 28.76 3.86 · 10162 4.49 · 10163 11.63 4.02 · 10164 5.29 · 10165 13.15
662bus 1.51 · 10142 4.69 · 10143 31.07 6.48 · 10150 1.45 · 10152 22.32 1.41 · 10151 2.83 · 10152 20.09
685bus 2.75 · 10187 7.56 · 10188 27.49 1.04 · 10203 2.86 · 10204 27.55 1.49 · 10202 2.59 · 10203 17.37
ch5-5-b3 1.80 · 10136 3.23 · 10137 17.99 3.92 · 10137 7.31 · 10138 18.62 5.19 · 10138 6.00 · 10139 11.57
dynamicSoar1 8.27 · 10254 2.46 · 10256 29.80 1.09 · 10259 2.91 · 10260 26.70 3.29 · 10267 4.38 · 10268 13.32

Table 3
The properties of undirected graphs corresponding to real-life matrices and the names of
those matrices.
Name |V | |E|

Bai/bwm200 100 298
Bai/dw256A 256 1004
HB/ash292 146 958
JGDTrefethen/Trefethen200 100 1345
Pothen/mesh2em1 153 856

cannot be put into a perfect matching from the graph in the original description of Greedy, we implemented this cleaning
for Greedy. For the extension of Rasmussen’s approach for undirected graphs, first, we select a row and then we remove
any of its entries that do not participate in any perfect matching, so that we always end up with a valid perfect matching.
For the proposed scaling-based algorithm we opted to test the following two alternatives:

1. The results labeled Scaling in the figures correspond to Algorithm 2. In this version, the Dulmage–Mendelsohn
decomposition is used to ensure that the matrix has total support. Then we cleaned only the entries from the
selected row.

2. The results labeled with Clear-Scaling are obtained by discarding all edges that are not part of some perfect
matching, using first the Dulmage–Mendelsohn decomposition, and then by exhaustively testing the remaining
edges (due to Fact 7, the resulting matrix has total support). Then we proceed to scale the matrix to obtain the
scaling matrix R and do the appropriate selections. This corresponds to the cleaning performed in Greedy.

We do not know the actual number of perfect matchings on these graphs. As in the previous subsection, we plot the
istribution (in logarithmic scale) of the results for 1000 trials. The results are presented in Fig. 5. We observe that the
wo scaling-based alternatives have similar curves, and there does not seem to be an advantage in applying the more
xpensive method of extensive cleaning. In addition, we observe that our approach seems to minimize the variance in
espect to the other alternatives by providing a closer range of reported values.

Finally, for this set of experiments, we provide the means as well as the standard deviations in Table 4 using the same
efinitions as in the previous subsection. The table shows that once again the proposed algorithm obtains usually the
mallest standard deviation to mean ratio. In addition, we can observe that the extensive cleaning of entries can help in
educing this ratio, though only slightly.

Focusing on the run time of the estimators, we have that again Scaling is fast. In these graphs, Rasmussen’s algorithm
equires 0.05 s to calculate an estimate for M(G), whereas an estimator based on Scaling requires 0.32 s. The other two
ethods Greedy and Clear-Scaling are both significantly slower. The increase in the run time is due to their excessive
leaning procedure which at east step eliminates all edges which do not participate in a perfect matching. Greedy requires
n average 8.68 s while Clear-Scaling requires 8.92 s. Since Scaling and Clear-Scaling obtain similar estimators while
caling being the faster of the two, we suggest avoiding costly cleaning step of Clear-Scaling.

. Conclusion

We have proposed a technique for approximating the permanent and counting perfect matchings in undirected graphs.
ur approach uses matrix scaling in order to sample randomly a perfect matching of the graph. At each step of the
lgorithm, we select a vertex and match it randomly with one of its neighbors. The probabilities upon which we base the
election are obtained by scaling the adjacency matrix of the graph into a doubly stochastic form and examining the entries
hat correspond to the neighbors of the given vertex. At the end of the algorithm an estimate X is returned based on the
alues of the chosen probabilities. This process is repeated a sufficient amount of times and a mean estimate X is returned

by taking the mean of all returned X values. We proved loose yet computable upper bounds for the expected value of
the square of X which affects the number of samples required. The experimental analysis demonstrated improvements
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.07.016.
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Fig. 5. The performance of the estimators on the five undirected graphs with n < 260 in Table 3. The logarithms of the 1000 estimator values are
presented on the x-axes and the y-axes demonstrate the distribution of the samples for the values in each approach. For these graphs, the number
of perfect matchings are unknown.

over previous similar methodologies. Future work involves bounding the estimates for special graph classes where one
can potentially analyze the upper bounds more tightly.

Appendix

This appendix contains the omitted proofs. For convenience, we also restate the results that are proved here.

Restatement of Lemma 3. Let A be a symmetric n × n doubly stochastically scalable matrix with α1j = αj1 = 1 with all
diagonal values zero. Let R be its scaling matrix. Assume we remove the rows and columns with indices 1 and j from A. We
then discard the entries that are not in support to obtain B, which is a symmetric scalable matrix of size n − 2. Let D be B’s
caling matrix, i.e., DBD is doubly stochastic. Then

n∏
k=1,k̸=1,j

rk ≤ er1rj−1
n−2∏
z=1

dz .
Please cite this article as: F. Dufossé, K. Kaya, I. Panagiotas et al., Scaling matrices and counting the perfect matchings in graphs, Discrete Applied
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tatistics for the five undirected graphs obtained from the matrices in Table 3.
Matrix Rasmussen Greedy

mean std std
mean mean std std

mean

Bai/bwm200 5.44 · 1020 2.71 · 1021 4.98 5.74 · 1020 5.84 · 1020 1.02
Bai/dw256A 1.71 · 1061 3.26 · 1062 19.10 2.58 · 1062 2.47 · 1063 9.59
HB/ash292 7.23 · 1055 8.73 · 1056 12.07 1.22 · 1056 2.26 · 1056 1.86
JGDTrefethen/Trefethen200 8.33 · 1070 4.14 · 1071 4.98 8.63 · 1070 7.81 · 1070 0.90
Pothen/mesh2e1 7.21 · 1049 1.03 · 1051 14.35 1.45 · 1050 3.80 · 1050 2.63

Scaling Clear-Scaling

mean std std
mean mean std std

mean

Bai/bwm200 5.81 · 1020 2.81 · 1020 0.48 5.65 · 1020 2.62 · 1020 0.46
Bai/dw256A 6.88 · 1062 4.87 · 1063 7.08 3.16 · 1062 2.05 · 1063 6.49
HB/ash292 1.43 · 1056 3.66 · 1056 2.56 1.32 · 1056 2.77 · 1056 2.10
JGDTrefethen//Trefethen200 8.63 · 1070 4.44 · 1070 0.51 8.32 · 1070 4.11 · 1070 0.49
Pothen/mesh2e1 1.38 · 1050 3.14 · 1050 2.27 1.85 · 1050 5.20 · 1050 2.81

Proof of Lemma 3. The result is obtained by applying the function gB(x, y) = xTBy−
∑n

i=1 ln xi−
∑n

j=1 ln yj shown in (1)
as in the proof of Lemma 2. Let r′ be [r2, . . . , rj−1, rj+1, . . . , rn]T .

gB(d, d) ≤ gB(r′, r′)

dTBd− 2 ·
n−2∑
z=1

ln dz ≤ r′TBr′ − 2 ·
n−2∑
z=1

ln r ′z

e have

dTBd = n− 2 .

nd

r′TBr′ ≤ n− 4+ 2 · r1 · rj.

n− 2− 2 ·
n−2∑
z=1

ln dz ≤ n− 2− 2+ 2 · (r1 · rj)− 2 ·
n−2∑
z=1

ln r ′z

−

n−2∑
z=1

ln dz ≤ −1+ r1 · rj −
n−2∑
z=1

ln r ′z

he result then follows by taking the exponent in both sides. □

estatement of Theorem 4. Let A be n× n matrix with total support, and RAC be its doubly stochastic scaling. There exists

positive vector k such that E[X2
A] ≤

ev−n∏
i ri · ci

· Per(A), where v =
∑

i ki = ∥k∥1 ≤ n.

roof. We will repeat the proof of Theorem 2 and precise how we can build k. The base case n = 1 holds trivially with
1 = 1. We then have

E[X2
A] =

∑
a1,j ̸=0

r1 · cj ·

(
1

r21 · c
2
j
· E[X2

A1j
]

)

E[X2
A] =

∑
a1,j ̸=0

1
r1 · cj

· E[X2
A1j
]

E[X2
A] ≤

∑
a1,j ̸=0

1
r1 · cj

·
ev(j)−(n−1)∏

z dz · ez
· Per(A1j)

by the inductive hypothesis, where D and E scale A1j,

k(j) is the vector associated with A1j, and v(j)
= ∥k(j)

∥. Hence,

E[X2
A] ≤

∑ 1
r1 · cj

er1cj−1 ·
ev(j)−(n−1)∏n

z=2 rz ·
∏n

z=1,z ̸=j cz
· Per(A1j) by Lemma 2.
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To define k, let k1 = max
j

r1cj and kℓ = max
j

k(j)
ℓ−1 for ℓ = 2, . . . , n,

and let v =
∑

i

ki . Then,

E[X2
A] ≤

ev−n∏
i ri · ci

·

∑
a1,j ̸=0

Per(A1j)

E[X2
A] ≤

ev−n∏
i ri · ci

· Per(A) .

Since each entry used in defining k is no larger than one, v =
∑

i ki = ∥k∥1 ≤ n holds, hence the proof. □
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