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This study develops a modelling framework for
simulating the spread of infectious diseases within
real cities. Digital copies of Birmingham (UK) and
Bogotá (Colombia) are generated, reproducing their
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The digital inhabitants have the same statistical
features of the real population. Their motion is a
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school, etc.) and random walks (shopping, leisure,
etc.). Millions of individuals, their encounters and
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high-performance computing and massively parallel
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of 1 minute. Simulations accurately reproduce the COVID-19 data for Birmingham and
Bogotá both before and during the lockdown. The model has only one adjustable parameter
calculable in the early stages of the pandemic. Policymakers can use our digital cities as virtual
laboratories for testing, predicting and comparing the effects of policies aimed at containing
epidemics.

1. Introduction
The epidemiological models used to predict the spread of infectious diseases are similar to the
mathematical models used in chemistry. It is not a coincidence. They both describe the dynamics
of populations evolving under the law of mass action (LMA). The underlying principle is that
of ‘encounters between members’ producing an effect on the population. This effect can be a
chemical reaction in a population of molecules or contagion in a population of humans. When
population models are coupled with physical concepts like flux and conservation, they become
the compartmental model. Classical epidemiological models are compartmental models with the
flux being computed from the LMA.

The appeal of compartmental models lies in their simplicity. The complex dynamics of large
numbers of molecules or individuals is condensed into a few ordinary differential equations.
However, this simplicity comes at a cost. Standard epidemiological models do not account for
space, behavioural aspects of the population or other external variables. These are introduced
as case-specific adjustable coefficients that must be derived from data, making the model reliant
on the timely availability of data. Moreover, every time the populations’ behaviour changes as
a result of lockdown or other policies, these coefficients must be refitted to new data that will
become available only after the policy is implemented.

To overcome the limitations of compartmental models, chemistry has moved beyond the LMA.
Utilizing supercomputers, computational chemists today routinely simulate the trajectory and
the collision of millions of atoms. This technique is called molecular dynamics (MD) and it is an
irreplaceable tool in modern chemistry. Computational epidemiology, however, has not found its
MD equivalent yet.

This study proposes a granular approach for modelling the spread of infectious diseases in
real cities. Millions of individuals, their encounters and contagion are simulated at the individual
level. We named this approach discrete epidemiology (DE) for its mathematical similarity to MD,
discrete multiphysics [1] and, in general, particle methods.

Methodologically, DE results in a technique that combines, within an efficient computational
framework, several approaches used in epidemiology. As compartmental models, DE divides the
population into compartments, and, like stochastic models, it represents contagion as a Monte
Carlo process. Similarly to census-calibrated models [2,3], it generates a digital population that,
as in agent-based models (ABMs) [4,5], moves in a virtual city based on individual mobility plans
(more details on the comparison between ABMs and DE is given in the next section). Also, as in
human mobility models [6], it accounts for the unpredictability of human behaviour overlaying
a time-dependent Wiener (or Lévy) walk on top of the mobility plan. DE is computationally very
efficient because it takes advantage of algorithms, such as Verlet lists and massive parallelization,
developed in over 70 years of MD. Today, MD can simulate billions [7] and even trillions [8]
of atoms. This implies that, given the right amount of time and resources, DE can potentially
simulate the mobility of the entire human population.

The paper is organized as follows: initially, we present several ‘toy models’. These introduce
the DE theory step by step and, at the same time, validate the method against traditional
epidemiological models. Each section introduces a new feature and is self-contained, meaning
that it has its own independent ‘Methods’, ‘Results’ and ‘Discussion’. Finally, all toy models
are combined to simulate real cities with millions of inhabitants. We recreate digital versions of
Birmingham in the UK (1 million people) and Bogotá in Colombia (10 million people), replicating
their geography and infrastructure (city limits, countryside, trains, bus lines, stations, etc.). Their
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virtual inhabitants have features coming from the statistics of the real population that are relevant
to their mobility and susceptibility to the disease (age, residence, household size, employment,
workplace, commuting, distance of contagion, infection probability, etc.). Once the digital city and
its virtual population are generated, DE utilizes advanced hardware (high-performance and high-
throughput computing) and software (massively parallel processing) to simulate the behaviour
of all inhabitants in the city for several months. The position of every individual is updated every
60 s and when an infected individual encounters a susceptible one the probability of infection is
handled stochastically. These computer-generated cities are then used as virtual laboratories to
understand the unique features of the city, to determine the evolution of the disease within its
boundaries and to test the effect of policies aimed at containing its spread.

(a) Comparison between DE and ABMs
In its most general definition, agent-based modelling refers to the dynamics of a collection of
agents following a set of predefined rules. If we consider the concept of ‘agent’ and ‘rule’ in
their broadest sense, any discrete system, from MD to cellular automata and artificial neural
networks, can be considered—somehow—an instance of an ABM. From this point of view, DE
is no exception: it will always be possible to formulate a set of rules casting DE into an ABM.

Therefore, to frame the comparison between DE and ABMs in a meaningful way, we focus on
how ABMs are commonly implemented in epidemiology. In particular, we frame the comparison
in the context of the work carried out by Ajelli et al. [9], which, in turn, also compares different
techniques.

Let us consider two extreme scenarios. In the first case, individuals move with random
motion. The dynamics is unpredictable and determined, at each time step, by the generation of
random numbers. An example is Brownian motion, which has been used to describe outbreaks
in animal populations [10] and, in its simplest form, refers to our model in §2a. In the second
case, we consider an ABM where individuals move according to mobility plans that are updated
stochastically. After a link between two locations is established, the individual ‘jumps’ between
these two locations.

In the first case, we describe the motion as a (random) trajectory since contagion can occur at
each step of the individual trajectory. In the second, we describe the motion as ‘jumps’ since
contagion can occur at the locations where individuals jump. DE combines both motions in
different ways.

(i) Individuals follow mobility plans as in the ABM, but they do not jump from location A to
location B. They follow a given path, which is also part of their mobility plan. However,
the path is not the trajectory. In DE, individuals are pushed towards their path by the
action of deterministic forces (see §2h), but the real trajectory is the result of these forces
plus Brownian noise. Contagion can occur at any step of the trajectory. Two individuals
can infect each other not only at home or at the workplace, but also if their trajectories
coincidentally cross (i.e. the individuals are within the same contagion radius).
Therefore, in DE, random contacts in the general population are calculated by ‘first
principles’ (e.g. crossing trajectories). In ABMs, this is often regulated by probabilistic
functions (e.g. eqn (3) in Ajelli et al. [9]), which introduce several additional adjustable
parameters.

(ii) There are some hidden compartments in ABMs. Let us consider a trip from building A
to building B. In ABMs, once individuals are inside the building, contagion is calculated
on the basis of a ‘mixing rule’. In Ajelli et al. [9], for instance, contact with infectious
members of the same household or workplace is based on homogeneous mixing. As a
matter of fact, this makes every household and workplace in the model a compartment.
In DE, individuals inside a building conserve their Brownian motion. This can be seen
in §2d, where a fraction of the population moves into a gathering spot for several hours
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Table 1. Nomenclature.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β (s−1) contact frequency
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ (s−1) recovery rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γf (s−1) friction coefficient in equation (2.1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξ (kg m s−2) random force in equation (2.1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A (kg m s−2) strength of the soft repulsive potential in equation (2.6)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dβ (m2 m−1) parameter in equation (2.2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (−) fraction of individuals with high mobility
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FREP (kg m s−2) repulsion force in equation (2.1) and equation (2.7)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FDRIFT (kg m s−2) drift force in equation (2.1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FEXT (kg m s−2) external force in equation (2.1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g (−) radial distribution function
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L (m) reference length corresponding to 1 km in our simulation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M (−) instantaneous mobility defined in equation (2.5)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈M〉 (−) time-averaged mobility
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NS (−) initial susceptible population
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NI (−) initial infected population
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NR (−) initial removed population
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p (s−1) probability of infection of an individual within r for the duration of�t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r (m) radius of infection
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rp (m) distance between particles in equation (2.6)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rc (m) cut-off distance in equation (2.6)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s (−) fraction of individuals with high mobility wearing a mask
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t (s) time
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T (s) reference time corresponding to 1 day in our simulation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ν (m s−1) instantaneous particle velocity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈ν〉 (m s−1) time-averaged particle velocity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

every day. Inside the gathering spot, we do not assume a homogeneous (or any other)
social mixing rule and the probability of contagion is calculated by ‘first principles’ (i.e.
presence in the same contagion radius).

(iii) Mobility plans work well for the people in employment or full-time study. Outside this
group, motion is less predictable. In DE, the mobility of this part of the population is
modelled as Brownian motion, as discussed in §2i.

From this point of view, DE inherits many concepts of ABMs but substitutes the concept of
‘jump’ with the concept of ‘path’ or ‘trajectory’. Consequently, DE can reuse many ideas from
ABMs. For instance, in [11], contact and transmission rates were set to differ across distinct social
contexts. The same concept can be implemented in DE. However, in DE, contact is based on
proximity, which is resolved at the trajectory level. Therefore, the model must be parametrized
only for transmission. This results in fewer adjustable parameters but comes at a price: �t of the
simulation must be small enough to approximate the trajectory (here we use �t = 1 min), which
makes the simulation computationally very intensive.
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(b) Nomenclature
Symbols used in this study are listed in table 1.

2. Methodology

(a) A first, simple, discrete model
Individuals are represented by particles divided into susceptible (S), infected (I) and recovered
(R). We use three groups, but the model can account for other categories commonly used
in traditional epidemiological models (e.g. exposed or immune). Particles move in a two-
dimensional domain D that represents the environment where the individuals live. In this first
example, boundaries are periodic, i.e. particles that exit the domain on one side re-enter it from
the opposite side. Random, human motion can be calculated with the Langevin equation [12]

m
dv
dt

= −mγf v + FREP + FDRIFT + FEXT + ξ (t), (2.1)

where m is the mass of the particle, v is the velocity and γf is a friction coefficient. FREP is
an interparticle repulsive force that prevents particles from overlapping. FDRIFT keeps particles
together when moving in a crowd. FEXT refers to external forces preventing individuals from
colliding with obstacles. ξ (t) is a fluctuating force accounting for the stochastic nature of human
motion and is calculated at each time step by a random number generator with properties

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t + δt)〉 = m2Dγf

�t2 . (2.2)

The parameter D is a measure of the fluctuation of the trajectory and is estimated for different
human activities (e.g. indoors motion, outdoor activities, mass gatherings) from high-resolution
GPS trajectories [13] or video recordings [14,15]. Equation (2.2) produces a Wiener process, i.e. a
random walk where the mean squared displacement (MSD) is proportional to t. Lévy processes,
where MSD is proportional to �tn with n > 1, have also been suggested for human mobility [6].
For simplicity, we initially consider a Wiener process with γf → ∞. In this case, equation (2.1)
reduces to a Brownian walk with FREP → 0, FDRIFT → 0 and FEXT → 0. At each time step, the
velocity of every individual is drawn from a normal distribution with mean μ = 0 and variance
σ 2 = 2D/�t, and its position updated accordingly.

Infected particles have a radius of influence r. Every time susceptible individuals move within
the radius of influence of an infected one, there is an ‘encounter’ and the susceptible individual
has a certain probability p of becoming infected (figure 1).

This probability is handled in a Monte Carlo fashion: if p is the probability that a contact lasting
�t produces an infection, infection occurs if

R1 = p�t, (2.3)

where R1 ∈ [0, 1] is a random number with uniform distribution. The rate of recovery of infected
particles is handled in a similar way. If γ is the recovery rate, an infected individual recovers if

R2 <
�t
γ

, (2.4)

where R2 ∈ [0, 1] is another random number with uniform distribution. For details on Monte Carlo
methods and the theoretical justification of equation (2.3) and equation (2.4), the reader can refer
to [16].

Traditional compartmental models do not account for spatial inhomogeneities: every newly
infected individual is automatically ‘spread’ over the entire domain. The DE model is not
‘perfectly mixed’ and individuals have positions that change over time. When their mobility is
high with respect to the size of the domain, the model replicates traditional SIR models (figure 2).
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r

Figure 1. Motion and contagion of individual particles. (Online version in colour.)
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Figure 2. Comparison between the discretemodel and the classical SIRmodel for two different cases: (a)M= 1.3, r = 4 m−1,
p= 1/1000 min−1, which corresponds to β = 0.29 day−1 in the SIR model (γ = 1/15 day−1 for both models); (b) M= 5,
r = 1 m−1, p= 1/30 min−1, which corresponds to β = 0.39 day−1 in the SIR model (γ = 1/5 day−1 for both models).
(Online version in colour.)

Mobility is defined by the dimensionless number velocity

M = 〈ν〉T
L

, (2.5)

where 〈v〉 is the average velocity of the individuals, T is a reference time and L is a reference
length. Here, we use the size of the computational domain (1 km) for L and 1 day for T. Thus, M
can be thought of as the average distance in kilometres travelled by an individual in a day. Both
DE simulations in figure 2 are based on initial conditions NS = 4069, NI = 1 and NR = 0. The time
step used in the simulation is �t = 1 min.

Figure 2 shows the temporal evolution of a population with high mobility; in this case, the
DE model is equivalent to the ‘perfectly mixed’ SIR model. At low mobilities, individuals move
slowly with respect to the size of the computational domain. In this case, the system is far from the
perfect mixing assumption of the classical SIR model. The lattice-SIR model [17] accounts for this
scenario: individuals do not move and are represented by nodes of a lattice that can infect their
immediate neighbours. In DE, low values of M generate patterns typical of the lattice-SIR model
(figure 3). The disease spreads along a front of infection, rather than being evenly distributed
(electronic supplementary material, video 1).

Based on the particle mobility, this preliminary DE model replicates both the classic and the
lattice-SIR model. We use this feature for modelling policies that limit a population’s mobility.
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day 10 day 30

day 60 day 100

Figure 3. At lowmobilities, the discretemodel behaves like a lattice-SIRmodel:M= 0.05, r = 4 m−1, p= 1 min−1 andγ =
1/5 day−1; susceptible individuals are in green, infected individuals are in red, removed individuals are in blue. (Online version
in colour.)

Parameters like r (contagion distance), p (contagion probability of two individuals within r) and
γ (recovery rate) are (at least in theory) intrinsic to the diseases and do not depend on the mobility
of the population. Therefore, we consider scenarios where r, p and γ are constant and only
M variable.

In figure 4, it is possible to distinguish three different behaviours or regimes, according to the
magnitude of M. If M > 0.3 (i.e. individuals travel an average distance from home of more than
3 km day−1), the system is perfectly mixed: the disease spreads at its full capacity and most of
the population gets infected. If M < 0.1 (i.e. individuals travel an average distance from home of
less than 1 km day−1), the system is segregated: pockets of diseases form, but, because of the low
mobility, they do not easily spread to neighbour areas. Finally, if 0.1 < M < 0.3, an intermediate
situation occurs. Figure 4 shows that there is a critical range that dramatically reduces the number
of infections. As M goes from 0.3 to 0.1, the total percentage of the infected population decreases
from 90% to 10%.

(b) Second model: behavioural inhomogeneities in the population
In the previous model, the mobility reduction affects the whole population in the same way,
which is not realistic. A fraction of the population must conserve higher mobility to ensure the
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Figure 5. Effect of the fraction f of high-mobility individuals on a system with r = 1 m−1, p= 1/30 min−1, Mlow = 0.1,
Mhigh = 0.3 and γ = 1/5 day−1 on the time series of the recovered population (a) and the peak and total number of infected
(b). (Online version in colour.)

functioning of society, and the entire population will not observe the quarantine with the same
consistency. Standard epidemic models assume that all individuals behave in the same way, but
DE models do not have this limitation. This second DE model divides the population into two
groups: those who observe the lockdown and have low mobility, and those who do not observe
the lockdown and maintain higher mobility. We assume that the population with high mobility
has Mhigh = 0.3 and the population with low mobility Mlow = 0.1. In the simulations, we vary f ,
the fraction of individuals with high mobility over the total population, and calculate the effect
of f on the number of infected. The parameters that characterize the diseases are the same as the
previous section (r = 1 m−1, p = 1/30 min−1 and γ = 1/5 day−1) with 20 initial infected individuals
randomly distributed between the two populations.

Figure 5 shows that the total number of infections strongly depends on f . It is enough that 10%
of the population does not reduce its mobility to increase the number of total infected from 15%
to 50%.

(c) Third model: masks and social distancing
According to the literature, the efficiency of masks in reducing spreading is between 58% and
85% [18]. In the model, this is accounted for by a fraction of the populations with high mobility
wearing the mask. We start with the example from §2b with f = 0.2 and consider that a fraction
s of the Mhigh = 0.3 population wears a mask. Wearing a mask changes p. While in the previous
example all individuals have the same p, in this case p is smaller for individuals wearing the
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Figure 6. Effect of the fraction s of people with high mobility wearing a mask on a system with r = 1 m−1, p= 1/30 min−1,
Mlow = 0.1 ,Mhigh = 0.3 andγ = 1/5 day−1 on the time series of the recovered population (a) and the peak and total number
of infected (b). (Online version in colour.)

mask. Assuming 70% mask efficiency: if p is the probability of infection without a mask, 0.3p is
the probability of infection when wearing the mask.

Figure 6 shows that masks can be effective, but the fraction of people with high mobility (i.e.
interacting with other individuals on a regular basis) wearing them should be >50%. This is
another ‘toy model’, but, despite its simplicity, it highlights some advantages of DE. The mask
efficiency is retrieved from the literature and added to the model by ‘first principles’. We do not
need to recalculate or reassess any parameter from new data as in traditional epidemiological
models.

In the previous models, there is no limit on how close particles can approach each other. We
can model social distancing with a repulsive force FREP > 0 in equation (2.1). To achieve this goal,
we introduce a potential known in MD as the ‘soft repulsive potential’

U =
⎧⎨
⎩

A
[
1 + cos

(
πrp
rc

)]
rp < rc,

0 rp ≥ rc,
(2.6)

where rp is the distance between two particles, rc is the cut-off distance and A is the rigidity of the
potential. This potential produces a repulsive force

FREP = −∇U, (2.7)

which tends to keep particles at a distance rp > rc. We use rc = r, which means that individuals try
to keep a distance that is larger than the infection radius r. However, because the potential is soft,
there are times when this does not occur. The lower the value of A, the softer the potential and
the less likely it is for two particles to maintain the prescribed distance. In MD, atomic distances
are shown by the radial distribution g(rp), i.e. the probability of finding a particle at a distance rp

from a given reference particle. Figure 7a shows g(rp) for different values of A. If A = 0, there is
no repulsion, FREP = 0 and g(rp) is flat, which means that all distances between individuals are
equally probable. As A increases, it becomes less likely that two individuals will be found at a
distance lower than r, which decreases the probability of contagion (figure 7b).

(d) Fourth model: gathering spots (workplaces, schools, etc.)
In this section, we consider the presence of a gathering spot such as a workplace or a school in the
domain.

A periodic force FEXT in equation (2.1) is used to push the particles inside a region into the
centre of the domain (figure 8) and keep them there for 8 hours every day. After this time,
their normal mobility (M = 0.1) is reintroduced. In this toy model, we have a single gathering
spot, which is visited by 2% of the particles (blue particles in figure 8) randomly selected at the
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Figure 8. A fraction of particles is pushed towards a gathering spot in the centre of the domain for 8 h a day to model the
presence of a school or a workplace. (Online version in colour.)
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Figure 9. Effect of a gathering spot on a system with r = 1 m−1, p= 1/30 min−1, M= 0.3 and γ = 1/5 day−1 on the
infected (a) and recovered population (b). (Online version in colour.)

beginning of the simulation. The rest of the population has low mobility (M = 0.1) and does not
visit the gathering spot unless they randomly move to the central area of the domain. All other
simulation parameters are the same as in figure 4.

Figure 9 shows the effect of the gathering spot on the infected population. During the first
week, the effect looks beneficial. Part of the population gathers for 8 hours a day in the same spot.
As long as no infection occurs here, the probability of contagion from outside is lower. However,
after the first individual is infected, the rest of the population visiting the communal area follows
suit. This produces a peak of infections that spreads to the entire population.
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Figure 10. Evolution of a system with city/countryside density difference: r = 1 m−1, p= 1/30 min−1, M= 0.1 and
γ = 1/5 day−1; susceptible individuals are in green, infected individuals are in red, removed individuals are in blue. (Online
version in colour.)
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(e) Fifth model: spatial inhomogeneities (city and countryside)
All models considered so far assume that the population density is the same in the whole
domain. This is hardly the case as, for instance, cities have a higher population density than their
countryside. The next toy model assumes that the population density in one region of the domain
is higher than the rest.

In figure 10, the circle in the centre of the domain is the city; the rest is the countryside. The
total number of particles in the domain is the same as in the previous examples, but they are
distributed differently with the city having a population density double that of the countryside.
Particles can cross the city boundaries, but an ‘invisible wall’ reflects some of them to maintain
the population densities in the two regions at the prescribed values.

Figure 11 compares the result of this model with that of uniform density (the same as in
figure 4). The presence of a region at higher density increases the total infections from 15% to
50%.

(f) Sixth model: temporal inhomogeneities (day and night)
This model considers that individual mobility is lower at night. This is achieved by changing the
mobility of the particles during the 24 hours. The velocity of the particles is always drawn from
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Figure 12. Effect of day/night mobility variations on a system with r = 1 m−1, p= 1/30 min−1, 〈M〉 = 0.1 and
γ = 1/5 day−1 on the infected (a) and recovered population (b). (Online version in colour.)

a Gaussian distribution with mean μ = 0 and standard deviation σ = ν. However, while in all
previous models ν is constant, it now varies during the 24 hours according to

ν(t) = pi
2

〈ν〉
∣∣∣∣sin

(
π t
T

)∣∣∣∣ , (2.8)

where 〈ν〉 is the constant standard deviation used in all previous examples and the period T is
equal to 1 day. Equation (2.8) guarantees that the average mobility during the 24 hours is the
same as before. However, instead of being constant the whole time, it is maximal in the middle
of the day and drops at night. Figure 12 compares time-dependent mobility (average 〈M〉 = 0.1)
with the constant mobility (always M = 0.1).

Perhaps surprisingly, the simulation with day/night variation shows a lower infection.
However, the stochastic nature of the model plays a role here. If the simulation is repeated with a
different initial random distribution of infected particles, the results are somewhat different (grey
line in figure 12). Technically speaking, all results (especially those at low mobilities) should be
repeated several times with different random numbers to assess the probability of each outcome.
Since the toy models are only meant to introduce the main features of DE, this is not carried out.

(g) Seventh model: homes and families
So far, we have not considered people returning home at night. To account for this, we use an
additional FEXT in equation (2.1) that, between 20.00 and 04.00, keeps each particle at ‘home’ (the
initial particle position). Conceptually, the approach is similar to that in §2b, but now FEXT moves
particles back to their individual homes rather than towards a gathering point. Ambiguities on the
direction of ‘home’ may arise with periodic boundary conditions. Therefore, the box boundaries
are switched to ‘reflective’. Particles moving outside the box by a certain distance are put back
inside by the same distance with the sign of the corresponding velocity component flipped.
Figure 13 shows that ‘homes’ with single occupants tend to suppress the infection. By returning
to their initial position every night, particles visit a smaller portion of the domain. The model is
extended to consider ’families’, i.e. multiple occupants sharing the same home. Several particles
share the same initial position (just shifted a few metres to avoid overlapping) to reproduce a
target average household size. Here, we assume a household size of 2.56 (Birmingham’s value).
Families produce a different effect according to the mobility of the particles (figure 13). Low
mobilities (〈M〉 = 0.1) result in an initial spike of contagions because people sharing the same
house can easily infect each other. However, after that, the infection rate decreases sharply. In fact,
by lumping particles together, the average distance between individuals belonging to different
households increases, decreasing the probability of contact. However, high mobilities (〈M〉 =
0.3) compensate for the higher distance. In this case, the spike is not followed by a reduction
in infections as for low mobilities.
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Figure 14. Evolution of two separated systems with 200 commuters moving between two regions: r = 1 m−1,
p= 1/30 min−1, 〈M〉 = 0.1 and γ = 1/5 day−1; susceptible individuals are in green, infected individuals are in red,
removed individuals are in blue. For graphical reasons, the size of the dots representing infected individuals is eight times
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(h) Eighth model: public transport and streets
In this model, we consider two separate regions of 2000 particles separated by an empty zone.
For reference, we call the upper region the ‘northern village’ and the lower region the ‘southern
village’. Particles have variable day/night mobility as in §2f and return home at the end of the
day as in §2g. All particles infected at t = 0 are in the southern village (figure 14). If there is
no connection between the two regions, and since particles have low mobility (〈M〉 = 0.1), the
epidemic lasts 20 days and only a small fraction of the population of the southern village is
affected. Since the two villages are separated, the infection has no mean of spreading to the
northern village.

The previous scenario is modified by assuming that the two villages are connected by rail.
‘Home’ and ‘workplace’ positions of each particle are selected randomly at the beginning of
the simulation. Two hundred particles from the southern village are allocated to the group
‘commuters’. Their home is in the southern village and their workplace in the northern village.
Every morning, commuters move to the northern village and go back home during the evening
by train. Mathematically, the collective movement of individuals using the train is modelled as
a force field (a space-dependent FEXT in equation (2.1)) that directs a fraction of the southern
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Figure 15. Effect of 200 commuters moving between two regions on a system with r = 1 m−1, p= 1/30 min−1, 〈M〉 = 0.1
and γ = 1/5 day−1 on the infected (a) and recovered population (b). (Online version in colour.)

population to the north in the morning and then back to the south in the evening. In the case
under investigation, this force field is expressed as

FEXT(x, y) = (−xFx, Fy), (2.9)

where fx and fy are determined to set the travelling time to the wanted value (1 hour in this
example). Equation (2.9) constrains particles to follow a given path (the train line), and it is
only applied for the duration of the outward journey. After the particles arrive in the northern
village, the force field is substituted by an FEXT that moves the particles to their workplaces,
as in §2d. Once particles reach their workplace, for the next 8 h, no additional force is applied,
and they move based on their background mobility (〈M〉 = 0.1). At the end of the working day,
equation (2.9) is applied in the opposite direction to simulate the return journey. Finally, an
additional force drives the particles home for the night, as in §2d. Electronic supplementary
material, video 2 shows the evolution of the infection in detail.

The presence of the train increases dramatically the spread of the disease for two reasons.
Firstly, passengers in the train are at close contact, increasing the chances of infection. Secondly,
they bring the infection to the other village. Figure 15 compares the scenarios with and without
train passengers.

A similar idea can be used to model the presence of buses in the city. Commuters that use a
specific bus line are subjected to time-dependent force fields (e.g. figure 16) that constrain them
to follow a given path. The force field is only used for commuters that use public transportation
and find themselves at close contact with other passengers. Buses are discussed in detail when
modelling Bogotá.

(i) Putting all together 1: simulating the city of Birmingham, UK
This section puts together all ideas developed so far to simulate Birmingham in the UK (∼1
million inhabitants). The first step is to digitally recreate the area of the city and its boundaries
framed in a computational box of side 30 km. The area between the city and the box is the
countryside. Boundary conditions at the box are ‘reflective’, as discussed in §2g. Particles are
free to move from the city to the countryside and vice versa.

After the geometry is set, the next step is to generate its virtual population. The population
density of the city is 3649 inhabitants per km2, while the surrounding countryside has 456
inhabitants per km2. For simplicity, density differences within the city are ignored. This generates
1 072 924 particles, each representing a digital inhabitant: 960 483 inside the city and 112 441 in the
countryside. Particles are arranged on a randomly perturbed lattice. The initial location of each
particle is labelled as ‘home’ and the average household size is 2.56 [19], as discussed in §2g. In
theory, we could use the exact locations of all households in Birmingham, but this is left for future
versions of the model.
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Figure 16. Example of a ‘force field’ used to constrain particleswithin a given path or street (red line). (Online version in colour.)

Table 2. Percentage of the employed population in the UK within age groups.

age group (years) 16–24 25–34 35–49 50–64

% of employed 74.5 84.3 85.4 72.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The third step consists in generating the individual properties of each particle affecting either
its mobility or susceptibility to the disease. An age is randomly attributed to every individual
according to the statistical age distribution in the UK [20]. On average, an individual in the UK
walks around 1 km day−1 [21]. This mobility is accounted for as a random walk, as in §2a. The
population is further divided into employed, pupils and unemployed. Individuals are randomly
allocated to these groups according to employment statistics based on age groups [22], as shown
in table 2. Individuals between 6 and 16 years of age are considered to be pupils; individuals
above 64 unemployed.

For each member of the employed and pupil group, a location on the map is assigned as,
respectively, a workplace or school. At this stage, these locations are random: the painstaking
task of specifying the exact locations of all workplaces and schools in Birmingham is left for future
versions of the model. During the day, the particle goes to this location (as discussed in §2d) and
returns home in the evening (as discussed in §2g). This additional mobility is applied only for the
time required to reach its destination and is added on top of the 1 km day−1 mentioned before.
Since 10% of the working population works from home [23], this mobility bonus is not given to
10% of the employed group selected randomly. According to statistics, the average distance of an
individual from work is 10 km [24] and of a pupil from school is 3 km [25]. Distances between
home and work and home and workplace are randomly assigned to each individual according to
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these statistics. The time of day when the commute from and to work occurs is different for each
individual and allocated randomly based on the distributions shown in figure 17c,d. We could not
find precise statistics for these times, which, therefore, are based on common sense.

The probability of interacting with other individuals is higher if the commute occurs by means
of public transportation. Several ‘nodes’ (e.g. bus, train stations) where commuters congregate
are created on the map. Two-thirds of the working population use these nodes [26]; the remaining
one-third drive to work and, therefore, do not transit through these nodes. Future versions of the
model could account for the exact places of all nodes (e.g. bus, train stations); in this study, for
simplicity, 300 nodes are created at random locations.

Based on the description above, at any given time, an individual can have either low
mobility, which represents an individual staying at home or walking near home (average distance
1 km day−1), or high mobility, which represents a particle commuting to work (average distance
10 km day−1) or school (average distance 3 km day−1). However, according to the statistics [27],
during the day, there are 400 000 vehicles on Birmingham’s streets. While employed individuals
are at work and pupils at school, the mobility of a fraction (chosen randomly) of the remaining
population is increased to 10 km day−1 to simulate people driving for reasons other than commute
(e.g. shopping, leisure). This additional mobility is added as a random walk (§2a) and considering
day/night differences (§2f).

Besides the city and its population, we need to model the disease. Here, we use r = 2 m and
γ = 1/7 day−1, which have been suggested for coronavirus (COVID-19) [28,29]. The parameter p
is used to adjust the model’s response when no policy against the epidemics is implemented. It
accounts for features that are not directly considered in the model and must be ‘captured’ from
real data. This includes the probability that infected individuals are identified, and, therefore,
it also depends on the quantity and quality of testing carried out in the city. We adjust the
parameter p to fit the initial Birmingham data before the lockdown. The value p = 5 × 10−3 min−1

gives the best fitting, which corresponds to a reproduction number R0 = 2.4 as calculated for
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Birmingham during the initial phase of the infection [30]. Seasonal variation of the infection rate
is not considered at this stage.

The final step consists in running the simulations that cover 200 days with a time resolution
of 1 min. They are carried out with the software LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) [31], an MD program that can be repurposed for generic particle-
based simulations. In terms of hardware, we use BlueBEAR, the University of Birmingham’s
supercomputer for high-performance computing (HPC) and high-throughput computing. Each
simulation uses 120 dual IBM POWER9 CPUs. For 1 million particles, the duration of each
simulation is between 1 and 2 h.

Figures 18 and 19 show the spatial and temporal evolution of the disease in the virtual
Birmingham for the ‘business as usual scenario’. Electronic supplementary material, video 3
shows the particles’ mobility for 24 h: every second of the video represents 40 real minutes;
particles with high mobility have a lighter colour. The video also shows the trip from home
to work of a single particle in yellow. Electronic supplementary material, video 4 shows the
evolution of the infection: every second of the video represents 2 days. In both videos, for
graphical reasons, only 1% of the particles are shown. Figure 19a,b shows the overall evolution of
the infected and recovered population. Figure 19c shows that, at the end of the epidemic, the city
is hit harder than the countryside.

We can distinguish two factors that determine how the infection spreads within the city.
The first is the ‘targeted mobility’ that accounts for time-recurring trips to specific locations
(e.g. school, work, train stations), which, mathematically, is simulated with directional forces
(§2d) or force fields (§2h). The second is the ‘background mobility’ that accounts for trips that
do not occur every day and are not predictable a priori (e.g. shopping, leisure), which are
simulated by random walks (§2a). In the ‘business as usual’ scenario, individuals can be roughly
divided into four groups according to the level of their background and targeted mobilities
(figure 20). The model can be used to evaluate the relative importance of the two mobilities
on the spreading of the infection. This can be achieved by comparing the ‘business as usual’
scenario with two other ‘extreme’ scenarios (figure 20). In scenario 1, the individuals conserve
their background mobility from the ‘business as usual’ scenario, but the targeted mobility is
completely removed. In this scenario, there are no restrictions to the population movements, but
all workplaces, schools and public places are closed. Scenario 2 is the opposite: the background
mobility is reduced to a minimum (0.1 km day−1), but the targeted mobility is the same as the
‘business as usual’ scenario. In this case, workplaces and public places are regularly open, but,
except for travelling to these places, the population’s mobility is severely restricted. These are
extreme and somehow unrealistic scenarios but are useful for weighing the respective roles of the
background and targeted mobilities. Figure 19 compares the infected and recovered populations
of scenarios 1 and 2 with the ‘business as usual’ scenario. Both scenarios decrease the total number
of infections but reducing the background mobility is more effective. This can be explained
by the conceptual difference between targeted and background mobility. Targeted mobility is
predictable: it accounts for individuals going always to the same places (e.g. home and workplace)
and meeting always with the same people (e.g. family members and colleagues). Therefore,
the pool of potential interactions is limited. In contrast, background mobility has a potentially
unbounded stochastic component. In theory, a particle moving only with background motion can
approach and infect any other particle in the computational domain and, therefore, its spreading
potential is higher.

Figure 21 shows how the model performs against real data of the COVID-19 infection in
Birmingham by comparing the real data with the ‘business as usual’ scenario initialized with
five initial infected individuals randomly distributed in the population. Real data are shown as a
7 day moving average.

The ‘business as usual’ model correctly simulates the data until the day of lockdown. This
is not surprising because the parameter p was chosen to fit the real data. What makes the DE
model superior to traditional epidemiological models is the handling of the lockdown. During
the lockdown, both the targeted and the background mobility of the population are reduced.
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Figure 18. Infection dynamics in the virtual Birminghamand its surroundings. For graphical reasons, only 1% of the population
is represented and the size of the dots representing infected individual is 10 times larger than that of susceptible and recovered
individuals. An example of home–work commuting and a few ‘nodes’ are highlighted. (Online version in colour.)

Google made available ‘mobility reports’ that show movement trends (based on requests for
directions in Google Maps) over time by geography, across different categories of places such as
retail and recreation, groceries and pharmacies, parks, transit stations, workplaces and residential
[32]. We can use these data as an estimate of the reduction of mobility during the lockdown.
The Mobility Report for the West Midlands (Birmingham’s metropolitan county) indicates that
the drop in mobility during the lockdown for ‘retail and recreation’ and for ‘workplaces’ was,
respectively, 79% and 58%. We feed these data into the model by reducing the background
mobility and the targeted mobility by the same amount. This is achieved by reducing by 79% the
number of individuals with high background mobility (10 km day−1) and by 58% the numbers
of individuals going to work every day; additionally, schools are closed and all trips to and
from schools are cancelled. These modifications are applied after day 23; so that the simulation
follows the ‘business as usual’ model until the day of the lockdown and the ‘lockdown model’
after its implementation. Figure 21 shows that the simulation compares well with the real data.
This agreement is achieved with only one adjustable parameter, p, which can be considered as a
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property of the city and estimated at the beginning of the infection. Since p is decoupled from the
mobility, it does not change when the lockdown is implemented. Therefore, the model can predict
the effect of the lockdown only based on ‘first principles’. That is, features that are measurable (e.g.
with the Mobility Reports) and have a direct connection with the intended target of the lockdown
policy (e.g. the population drop in mobility).

To show how uncertainties in the input parameters affect the results, (i) we check the sensitivity
of the results to the model’s parameters that model contagion (i.e. NI, p, γ and r) and (ii) we
perform a statistical analysis of the model by running the same simulation with different seeds



20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200653

...........................................................

8070605040
days

in
fe

ct
ed

3020

lockdown
model (lockdown)

model (business as usual)

real data

100
1

10

102

103

104

Figure 21. Comparison between real data (7 day moving average) and model output. (Online version in colour.)

0

0 0

10
NI = 6 p  = 5 × 10–3 min–1

p  = 5 × 10–3 min–1; r  = 2 m

p  = 3.7 × 10–3 min–1; r  = 2.2 m
r  = 2 m

–10%

+10%

–10%

+10%

g  = 1/7 day–1

–10%

+10%

NI = 60

%

%

%

%

%

%

8

6

4

2

0

14

12

10

8

6

4

2

14

12

10

8

6

4

2

0

16

14

12

10

8

6

4

2

12

10

8

6

4

2

10

8

6

4

2

0

200150100
days days days

50 20015010050 20015010050

200150100
days days days

50 20015010050 20015010050

(a) (b) (c)

(d) (e) ( f )

Figure 22. Sensitivity and statistical analysis of the Birmingham model of the percentage of infected individuals with time.
Effect of the initial number of infected individuals NI (a); effect of a±10% change in p (b); effect of a±10% change in γ (c);
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of the random number generator. In this way, we can evaluate several stochastic outcomes of the
same simulation. Figure 22a shows the effect of the initial number of infected individuals on the
simulation. The profile is similar, and the main difference consists in a temporal shift between
the two profiles. We also evaluate the effect of a ±10% change in the infection probability p
(figure 22b), the recovery rate γ (figure 22c) and the radius of infection r (figure 22d).

To quantify the sensitivity of the results to these parameters, we define the relative error ε as

εx = �IMAX

�x
, (2.10)

where x indicates the parameter p, γ or r, �x is the percentage change of x and �IMAX is the
change in the percentage of infected individuals at the peak of infection resulting from �x. Table 3
shows two values of εx: ε+

x corresponding to �x = +10% and ε−
x corresponding to �x = −10%.

The third column shows 〈εx〉, which is the average between ε+
x and ε−

x .
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Table 3. Values of ε+
x , ε

−
x and 〈εx〉 for the parameters p, γ and r for the Birmingham model approximated to the second

decimal place.

ε+
x ε−

x 〈εx〉
εp (min) 0.24 0.29 0.27

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

εγ (day) 0.25 0.28 0.26
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

εr (m−1) 0.54 0.64 0.59
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The error 〈εx〉 tells us how much the percentage of infecteds at the peak of infection increases
(or decreases) by a 1% increase of x. For instance, 〈εp〉 = 0.27 min. means that, if we increase p by
+1%, the peak of infection rises by 0.27%. It is important to highlight the difference between p and
γ or r. The only free parameter of the model is p, while γ and r are taken from the literature. If the
literature reports an inaccurate value of γ or r, this can be counterbalanced (to a certain degree)
when we fit p to the real data. For example, if the reported value of r were 2.2 m instead of 2 m,
we would fit the data with p = 3.7 × 10−3 min−1 instead of p = 5 × 10−3 min−1, maintaining the
same accuracy of the simulation (figure 22e).

Finally, since the model is stochastic, we repeat the business-as-usual scenario seven times
using different seeds of the random number generator. This gives slightly different results
(figure 22f ). At each time step, we calculate the standard deviation. The maximal standard
deviation is 0.94%. Therefore, at any given time, the variation due to the stochastic nature of
the model is within 1%. Table 3 shows that the dependencies are mostly linear, indicating that the
model is robust at least in the range of applicability of the analysis (±10%).

(j) Putting all together 2: simulating the city of Bogotá, Colombia
Bogotá has 8.3 million inhabitants. The population is distributed very unevenly (figure 23a).
In the models, we divide the city into three zones (figure 23b): zone 1 with density 20 000
inhabitants per km2, zone 2 with density 5000 inhabitants per km2 and zone 3 with density 20 000
inhabitants per km2. This results in a virtual population of 8 292 632: 1 480 928 in zone 1; 1 115 416
in zone 2 and 5 710 748 in zone 3. The average household size is 3.9, which is handled as in §2g.
The background mobility (0.7 km day−1) is estimated from [35]. Data on age distribution and
percentage of the employed population within age groups are taken from [36,37] and managed as
in §2i. Modelling transmissible diseases in Bogotá also requires the socioeconomic structure of the
city to be considered. As figure 23c shows, the work-related activities in Bogotá are concentrated
in zone 2 [33], where there are more than 785 000 enterprises registered. The majority, 96.9%, are
micro-enterprises (10 employees or fewer), 2.3% are small enterprises (11–50 employees), 0.53%
are medium-sized enterprises (51–200 employees) and 0.24% are big enterprises (more than 200
employees). As a first approximation, we consider all employers to be concentrated in zone 2,
while zones 1 and 3 are modelled as residential districts. The occupation rate also differs in the
three zones (figure 23d); we assume 55% occupation rate in zone 1, 60% in zone 2 and 40% in
zone 3.

Because of the city’s socioeconomic structure, a large part of the population commutes every
day from zones 1 and 3 to zone 2. Around 40% of commuters use the bus network (figure 23e),
which accounts for around 2.47 million daily trips [38]. We use the technique described in §2h to
model the bus network. Since we are interested in the flow from zones 1 and 3 to zone 2, we only
account for routes A, B, C, D, F, G and H (figure 23e). The number of people using each route and
the time of the day when they use the bus is taken from statistics [38]. Figure 24 shows the bus
network in the model: the light dots represent the positions of individuals that use the bus at a
certain point of the day.

The model is applied to the COVID-19 infection in Bogotá. Simulations are carried out with
LAMMPS on Athena Midlands+ HPC. Each simulation uses 16 Xeon E5-2680v4 processors with
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Figure 23. Population distribution in Bogotá [33] (a), density distribution in the model (b), occupation distribution [34] (c),
employment distribution [33] (d) and Bogotá bus network (e). For graphical reasons, the bus network is orientedwith the north
pointing left. BRT, bus rapid transit; CBD, central business district. (Online version in colour.)

28 cores each and takes around 80 hours. The value p = 7.7 × 10−4 min−1 is derived from the pre-
lockdown (‘business as usual’) real data; r and γ are considered a feature of the diseases and
are the same for both Birmingham and Bogotá. Electronic supplementary material, video 5 shows
the evolution of the infection in Bogotá under the ‘business as usual’ scenario. Every frame of
the video represents 6 hours; for graphical reasons, only 1% of the particles is shown. Figure 25
compares the model with real data. The lockdown was implemented on 27 April 2020, the
estimated number of people circulating during the lockdown was 5 × 105 [39], which is consistent
with the data from the Google Mobility Report [32]. According to the Mobility Report, the drop
in mobility during the lockdown for retail and recreation was around 80% and around 70% for
workplaces. Based on these data, we reduce the background mobility and the targeted mobility by
the same amount. The bus network was closed and, therefore, not implemented in the lockdown
model. On 11 May 2020, the lockdown was partially lifted and the estimated number of people
circulating was 2.5 × 106 [39]. The Google Mobility Report gives a reduction (with respect to the
‘business as usual’ scenario) of 59% for retail and recreation and 54% for workplaces. According to
the bus operator [38], the bus service was working at 35% of its capacity. Therefore, in the ‘partial
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Figure 24. Instantaneous position of individuals taking the bus during the day (light particles) varyingwith time. For graphical
reasons, only 1% of the population is shown. (Online version in colour.)
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Figure 25. Comparison between real data (7 day moving average) and model output. (Online version in colour.)

opening’ model, we reduce the background mobility by 59%, the targeted mobility by 56% and
the number of people using the bus by 65%.

The model works well for the ‘business as usual’ scenario, and the lockdown, but tends to
overestimate contagion when simulating reopening after the lockdown. A possible explanation is
that, after lockdown is lifted, people tend to be more careful about social distancing. Interestingly,
the lockdown model works well also for the reopening, but it is just a fortuitous circumstance.
The percentage of infected population in Bogotá is lower than that in Birmingham. If we compare
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Figure 26. Time evolution of (a) infected and (b) recovered populations for Bogotá comparing the ‘business as usual’ and the
‘no bus’ scenarios. (Online version in colour.)
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in r (c). Six simulations are carried out with different seeds of the random number generator (d). (Online version in colour.)

the real data before the lockdown, we can see that the number of infections is around four times
higher in Birmingham. This may not be the real difference but could depend on the number
of tests carried out in the two cases. More tests imply a higher detection rate, and this factor
is automatically incorporated in the value of the free parameter p fitting the data. Therefore,
different scenarios should only be compared in relative terms and with respect to the same city.
Moreover, if the rate of testing in one city changes considerably, p should be recalculated.

The model can assess various features of the city that influence people’s mobility. Since the
public transport system is considered one of the main sources of contagion in Bogotá, we can
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Table 4. Values of ε5x and ε10x for the parameters p, γ and r for the Bogotá model approximated to the second decimal place.

ε5x ε10x

εp (min) 0.12 0.11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

εγ (day) 0.10 0.10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

εr (m−1) 0.23 0.27
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

compare the ‘business as usual’ scenario with a ‘no bus’ scenario, where commuters do not use
the bus to move from home to the workplace. Since in the model 40% of commuters use the bus, in
the ‘no bus’ scenario we need to set the background mobility of the individuals who normally take
the bus. If we confer a high mobility to these individuals, their potential for spreading the disease
becomes higher rather than lower. In this case in fact, instead of just commuting from home
to work, they spend the whole day wandering around and infecting other individuals. In the
simulation, we assume that this part of the population stays at home. This is somehow arbitrary,
but this is a hypothetical scenario and there are no Google Mobility Report data available to
accurately set this parameter in the model. Figure 26 shows that, at the peak of infection, the two
scenarios differ by 0.36%, which is around 30 000 people.

As for the Birmingham model, we conclude this section with the sensitivity and statistical
analysis of the model (figure 27).

Since Bogota’s population is 10 times larger, the calculations are considerably more expensive.
Simulations were carried out on the ARCHER UK National Supercomputer with 1200 cores and,
to save computational time, 22 hours wall time. In this way, the simulation stops around the peak
of infection (156 days), which is the point required for calculating εx (table 4). To avoid the peak
going above 156 days, instead of carrying out the simulation for ±10% increments, we looked at
variations of +5% (ε5

x ) and +10% (ε10
x ). Finally, we repeated the ‘business as usual’ scenario six

times using different seeds of the random number generator. This brings a distribution of profiles
(figure 27d) with maximal standard deviation 0.24%.

3. Conclusion
This study introduces DE: a modelling framework for simulating the spreading of infectious
diseases within cities or countries. We generate digital copies of Birmingham in the UK and
Bogotá in Colombia, replicating their geography, infrastructure and population. The daily
activities of the virtual inhabitants and the spread of the disease are simulated for several
months with a time resolution of 1 minute. Simulations accurately reproduce the COVID-19
data for Birmingham and Bogotá both before and during lockdown. By simulating the mobility,
interaction and potential for contagion of millions of digital individuals, our computer models are
less reliant on data and have higher forecasting power than traditional epidemiological models.
Except for one adjustable parameter calculable during the pandemic early stages, the model
is derived from ’hard data’, i.e. a city’s topography, population statistics and Google Mobility
Reports.

Despite this, we believe that DE has not achieved its full potential yet and can be improved in
several directions. (i) The current model only classifies the population into susceptible, infected
and recovered (SIR). More accurate classifications such as SEIRS (which accounts for ‘exposed’),
SIRC (which accounts for ‘carriers’) or SIRS (which accounts for ‘reinfected’) can be introduced to
improve the model. (ii) The spatial fidelity to real-world topologies can be refined to account for
the real location of every household, workplace, school, bus/train station and other landmarks
in the city. (iii) Several statistics and census data can be combined to derive more granular
commuting patterns, which sometimes implies resolving inconsistencies in the available data
[2]. (iv) Specific aspects not directly addressed at this stage (e.g. in-hospital transmission, care
home transmission, etc.) can be added to the model. Finally, the numerical algorithm can be
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implemented on graphics processing units (GPUs) to further increase its performance. DE’s
algorithm is derived from MD, where atoms are replaced by individuals. Today, GPU-accelerated
MD simulations can handle billions, and even trillions, of atoms. In principle, our model could be
scaled up to account for the entire human population. The proposed framework is not limited
to Birmingham or Bogotá but can be adapted to any other city or region in the world. This
would certainly require time and resources, but it could occur within a modular framework
where researchers around the world adapt DE to other cities and regions that are gradually
interconnected to cover the entire planet.
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