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A B S T R A C T

This study proposes an approach for solving density‐based multi‐material topology optimization of cracked
structures using Peridynamics. The alternating active‐phase algorithm is utilized to transform the multi‐
material problem into a series of binary phase topology optimization sub‐problems. Instead of the conventional
mesh‐based methods, the Peridynamics theory (PD) is used as a tool to model the behaviour of the materials
and solve for the displacement field. The most significant advantage of PD is its ability to model discontinuities
in a relatively straightforward manner. Thus, in the present work, the effect of cracks as a discontinuity is inves-
tigated on the optimal multi‐material topologies. The Solid Isotropic Material with Penalty (SIMP) method is
utilized to define the material properties as a function of the design variables. Also, the optimization problem is
solved through the Optimality Criteria (OC) approach. The proposed method is compared to the results
reported in the literature by executing three numerical examples that investigate the effect of the direction
of an interior crack on the optimal topologies. Moreover, the efficiency of the proposed approach is verified
by solving several examples where we aim at minimizing the compliance of the structure with and without ini-
tial cracks.
1. Introduction

The well‐known topology optimization problem (TO) has attracted
attention, particularly from aerospace and automotive industries, since
it was first introduced by [1]. The structural topology optimization
problem deals with finding the mass/material distribution over a pre-
defined spatial design domain by optimizing an objective function sub-
jected to relevant constraints. Since the structures designed from an
engineering perspective are usually conservative for safety reasons,
they contain excessive material. To remove such excessive material,
TO techniques can be readily employed. However, TO problem is
inherently ill‐posed, which leads to numerical instabilities, such as
checkerboard patterns and mesh dependency issues. This ill‐posed
problem was initially solved by the introduction of the homogeniza-
tion method [1], which discretizes the design domain into small ele-
ments and defines their relative densities as design variables.

Later, SIMP was introduced by [2,3]. This method originates from
the homogenization approach and the design variables are the artifi-
cial relative densities of the elements. In addition, the material proper-
ties of the elements (e.g., elastic modulus) are expressed through an
interpolation power function along with a penalization factor. One sig-
nificant advantage of the SIMP is that it can readily be extended to
include multiple materials. The SIMP method has recently become
popular for topology optimization problems as a result of its concep-
tual simplicity, easy‐to‐implement nature and computational effi-
ciency. For instance, [4] used a gradually formed continuous peak
function for material interpolation and the optimality criteria (OC)
to synthesize multi‐material compliant structures. Their numerical
examples include two/three/four‐phase materials. Moreover, [5] pro-
posed the ordered multi‐material SIMP interpolation to express the
material properties of the elements. Also, a combination of mass and
cost constraint is considered in their work to solve the compliance
minimization problem using a heuristic updating scheme of the design
variables.

In 1993, Xie and Steven introduced a bio‐inspired method referred
to as evolutionary structural optimization (ESO) to the existing state‐
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of‐the‐art for TO [6]. The inspiration for the ESO method stems from
the evolution of naturally occurring structures such as bones and
trees.During optimization, the ESO algorithm removes the excessive
material iteratively until a set of predefined volume constraints are sat-
isfied. Later,bi‐directional ESO (BESO) was proposed by [7] to search
for all possible directions, including not only material removal but the
addition of material to elements with high‐stress levels. Many works
have been dedicated to the BESO method over the last two decades
and solved various complex topology optimization problems.

Another common approach in topology optimization is the Level‐
set method [8,9], which monitors the geometry changes of the bound-
aries by the motion of level sets. One notable drawback of this
approach is its slow convergence rate. Also, its final solution signifi-
cantly depends on the initial design, thereby posing another shortcom-
ing. Up to date, the level‐set method has been utilized for various
single material topology optimizations. For example, optimal geome-
try of functionally graded structures were determined using this
approach [10]. Another application of the level‐set method involves
multi‐material topology optimization problems. Specifically, [11] gen-
eralized the level‐set based approach using a multi‐phase model pro-
posed in [12] to solve the stress‐related multi‐material topology
optimization. Later, [13] proposed a new Multi‐Material Level Set
(MM‐LS) topology description for shape optimization of multi‐
material structures.

Recently, the alternating active‐phase algorithm is introduced by
[14] to extend the topology optimization solvers from the traditional
binary phase to multi‐phase. In this approach, a multi‐phase TO prob-
lem is sequentially split into a series of binary phase sub‐problems. The
benefits of the alternating active‐phase algorithm are its simplicity,
generality, and ease of implementation. However, it has some short-
comings such as its limited application due to the fact that it is a mono-
tonic optimization solver and thus it cannot be used for non‐monotonic
problems. Later, [15] used this algorithm to design three‐phase com-
pliant mechanisms, including a gripper, an inventor, and a cruncher.
To validate the results, the maximum displacement of the compliant
mechanisms is compared with the results obtained from a finite ele-
ment based software.

Most of the works mentioned above employed mesh‐dependent
methods. However, some issues limit the use of mesh‐based numerical
methods for topology optimization applications. For instance, when
dealing with large deformation or moving boundaries, re‐meshing
the finite element model is inevitable. Furthermore, introducing fail-
ure (e.g., cracks) to the structure is a mathematically complex proce-
dure. To overcome these difficulties, topology optimization based on
meshless methods has emerged. The most common meshless methods
in TO are as follows: smooth particle hydrodynamics (SPH) [16],
element‐free Galerkin (EFG) [17], meshless local Petrov–Galerkin
(MLPG) [18], and reproducing Kernel particle method (RKPM) [19].
Recently, meshless methods have achieved significant progress. For
example, [20] used the global weak form of the EFG method with com-
pactly supported radial basis functions (CSRBFs) as an interpolation
method to construct the shape functions. Also, [21] applied the EFG
method to analyze multi‐material structures. A combination of Shep-
ard interpolation and Moving Least Square (MLS) is chosen to build
the shape functions. Moreover, [22] coupled FEM and EFG method
to reduce the computational cost. This method can guarantee the con-
tinuity of the shape function in the coupling areas.

The presence of discontinuities, such as cracks, and hidden failures
is a prevalent issue for most of the engineering structures. When the
crack is not considered in the analysis, despite its existence, the opti-
mal design cannot be reliable. Therefore, using topology optimization
plays a vital role to achieve reinforced structures that can endure even
with embedded cracks. However, up to date, only a few works are ded-
icated to this matter. To give an instance, [23] used the EFG method
along with BESO to find the optimal design of a single‐material struc-
ture with initially embedded cracks. They studied the effect of crack
2

size and location on the final topology as well. Later, the idea of topol-
ogy optimization of cracked structures was extended to multi‐material
cases. In this regard, [24] introduced a novel mesh‐based numerical
approach using the alternative active‐phase algorithm. Moreover, they
investigated the dependence of the designs on the size, location, orien-
tation, and the number of initial cracks.

In addition to the particle‐based methods mentioned above, Peridy-
namics (PD) [25–27] is another meshless approach; a nonlocal theory,
that belongs to the class of continuummechanics formulations. In Clas-
sical ContinuumMechanics (CCM), the governing equation of a contin-
uum body is a partial differential equation containing spatial
derivatives. Although when discontinuities such as cracks exist in
the body, these well established equations face difficulties as a result
of singular spatial derivatives. To tackle this problem, some
approaches have been proposed, such as Linear Elastic Fracture
Mechanics (LEFM) and Cohesive Zone Model (CZM). In PD, a body
is subdivided into material points taking volume in space. Unlike
CCM formulation, PD uses integrodifferential equations instead of par-
tial differential equations which do not contain any spatial derivatives.
Consequently, PD is an attractive candidate for modelling problems
including discontinuities, and the material does not necessarily require
to remain continuous after deformation.

One of the most significant benefits of PD is its ability to predict
damage with no need for an external damage law for crack initiation
and propagation. Additionally, damage can naturally nucleate in an
unspecified location and cracks can grow through unguided paths
without any singularity. Furthermore, multiple damage sites and their
complex interactions can emerge in the same area. Therefore, the PD
method has been successfully used to simulate crack growth [27]
and failure on multi‐scale structures [28], as well as damage prediction
of different materials, such as composites [29,30] and layered hetero-
geneous materials [31]. PD also has proven to be a powerful tool to
capture different types of fractures. For instance, [32] used PD to study
dynamic fracture. Further studies were done to analyze the dynamic
fracture of various types of structures, including concrete structures
[33], anisotropic [34] and functionally graded materials [35,36].
Moreover, it is shown that Peridynamic theory can be utilized to study
fatigue. E.g., [37] proposed a fatigue model to predict damage in lam-
inates under cyclic loading.

Considering PD’s ability to permit and predict discontinuities, PD‐
based topology optimization can provide a powerful platform to
account for such imperfections so that structures can be improved at
the conceptual design phase. The first attempt to merge PD with TO
for cracked structures was made in [38], where the authors utilized
the direct solution approach to solve PD equations at each optimiza-
tion step. This innovative coupling was named as PD‐TO, which yields
in computationally efficient analysis for topology optimization of
structures with initially embedded cracks. The PD‐TO was first estab-
lished based on the BESO approach. Recently, it was successfully
extended to gradient‐based topology optimization algorithms and
extensively validated for complex engineering problems involving
cracks [39].

To the best of authors’ knowledge, none of the above‐mentioned
works used PD‐TO method to analyze multi‐material structures with
initially embedded cracks. The only study that investigated toplogy
optimization of cracked multi‐material structures is [24], which uses
the X‐FEM method. However, one of the drawbacks of X‐FEM is its
requirement for external criteria, such as virtual crack closure or max-
imum stress techniques to introduce cracks. Also, it needs other meth-
ods, e.g. level‐set, to track crack propagation. In case of complex crack
paths, where a crack is embedded in the element boundaries without
cutting the edges, or in case of the presence of more than one crack
in an element, the X‐FEM approach poses various challenges when fol-
lowing complex crack paths. On the other hand, the nature of PD the-
ory enables us to define cracks or defects within the structure in a
straightforward manner, and no complicated mathematical expression
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is required to predict crack initiation, growth pattern and fracture
modes. Moreover, PD theory can easily handle problems with moving
boundaries and large deformations since there is no need to maintain
mesh connectivity. As a result, using PD theory can be more beneficial
for topology optimization of cracked structures as compared to X‐FEM.
Hence, the main novelty of this study is to introduce multi‐material
topology optimization of cracked structures based on PD‐TO for the
first time in the literature. It should be noted that multi‐material
designs are a class of composite structures.

It is worth mentioning that the focus of the current work is on
multi‐material topology optimization problems with volume con-
straints. However, there are some ongoing researches in multi‐
material topology optimization to impose the total mass constraint
instead of the total volume constraint [40,41,5,42]. This problem
would be an interesting topic for the future work in multi‐material
topology optimization utilizing the OC approach.

This paper is organized as follows. Section 2 briefly reviews the
Peridynamics theory and the direct method for solving the PD equa-
tions. Section 3 introduces the minimization of compliance problem
through the alternating active‐phase algorithm. Next, the optimality
criteria method is explained in Section 4, followed by the description
of filtering concept in Section 5. Investigation and examples for the
proposed multi‐material PD‐TO approach are discussed in Section 6.
Finally, conclusions are provided in Section 7.

2. Peridynamics

To obtain the response of a solid structure subjected to external
forces, the classical continuum mechanics assumes the structure as a
continuous body, by ignoring its atomic structure. In continuum
mechanics, the body consists of an infinite number of infinitesimal vol-
umes called material points. These material points interact only with
other ones located in their immediate vicinity. Conversely, in PD,
the behavior of a material point is governed by its interactions with
all material points within its range. The range of particle x is denoted
by δ > 0 , referred to as the horizon. Also, the material points within
the distance δ of x are called the family of x;H, as illustrated in Fig. 1.

There are two main groups of peridynamic formulation as bond‐
based and state‐based PD. The former formulation accounts for the
interaction of material point x and its family members x0 in a pairwise
manner. The resulting force vectors f and f 0 acting at material points x
and x0, respectively are in opposite directions with equal magnitude.
This force depends on the stretch between these material points. How-
ever, in state‐based PD, the interaction force vectors can have different
directions and magnitudes, since these forces rely on the deformation
state of all family members of x and x0. In this study, the bond‐based
PD is adopted due to its simplicity for coding implementation.

According to [25], the equation of motion applicable whether or
not there exists discontinuities in the body can be expressed as:
Fig. 1. family of the material point i [38].
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ρ xð Þ€u x; tð Þ ¼
Z
H
f x0 � x; u0 � u; tð ÞdH þ b x; tð Þ ð1Þ

In (1), the domain of integration, H, includes all the material points
that interact with material point x and can be defined as:

H ¼ x∈ β : jjx0 � xjj ⩽ δf g ð2Þ
Also, ρ xð Þ; b x; tð Þ, and €u x; tð Þ represent the mass density, body force,

and acceleration of the material point x, respectively. The pairwise
interaction force density between material points x and x0 is denoted
by f x0 � x; u0 � u; tð Þ. This force density is a function of the relative
position vector, x0 � x, and relative displacement vector, u0 � u. To sat-
isfy the angular momentum balance law, in bond‐based PD, it is
assumed that the interaction force is along the same direction as the
relative position of the two material points in the deformed configura-
tion, y0 � y ¼ x0 þ u0ð Þ � xþ uð Þ, and is linearly dependent on the
stretch between the two material points. The stretch of a PD bond is
defined as:

s ¼ jy0 � yj � jx0 � xj
jx0 � xj ð3Þ

Hence, for an elastic isotropic material, the PD force can be
expressed as:

f ¼ cs
y0 � y
jy0 � yj ð4Þ

The material parameter, c, also known as bond constant, can be
related to the engineering material constants through equating the
strain energy densities of the PD and CCM theories for a material point
due to simple loadings, including isotropic expansion and simple
shear. For a linear isotropic material in 2‐D analysis, the bond constant
reads:

c ¼ 9E
πhδ3

ð5Þ

where E is the elastic modulus, and h represents the thickness of a 2‐D
domain. Note that, in the case of bond‐based PD, the strain energy equi-
librium between CCM and PD results in the Poisson’s ratio, ν of 1=3.

The total strain energy of the body, U, can be calculated as:

U ¼
Z
β

W x; tð Þdβ ¼ 1
4

Z
β

Z
H
cs2jx0 � xjdHdβ ð6Þ

where W x; tð Þ is the strain energy density of a material point x.
The PD equation of motion in (1), is an integro‐differential equa-

tion. Therefore, the solution to this equation can be conducted through
numerical techniques for spatial and time integration. The spatial inte-
gration can be performed by utilizing a meshless method due to its
simplicity. Additionally, it serves as a useful discretization strategy
for modelling discontinuities such as cracks, voids, etc. Hence, the
domain can be divided into a finite number of subdomains (e.g.,
quadrilateral for 2‐D regions). After discretization, the material points
associated with specific volumes are placed in the subdomains. Conse-
quently, the volume integration in (1) can be approximated as:

ρ xið Þ€u xi; tð Þ ¼ ∑
Nf

j¼1
f xj � xi; u xj; t

� �� u xi; tð Þ� �
Vj þ b xi; tð Þ ð7Þ

where xi and xj are the position vectors located at the ith and jth mate-
rial points, respectively. Nf is the number of family members of particle
i; j is a material point inside the family of material point i and Vj repre-
sents the volume of material point j. Note that in (7), it is assumed that
the domain is discretized into square subdomains and in each subdo-
main, there is only one particle.

The equation of motion in (7) is dynamic because of the existence
of the inertia term. In this study, we are focusing on quasi‐static load-
ings, therefore, the inertia term can be neglected. By following [43],
the PD force is linearized. Afterwards, the direct solution method is
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utilized to solve the PD equation of motion [44]. According to [38],
the equilibrium equation for the quasi‐static case can be obtained as
a single matrix–vector equation in the total domain β, as:

Kd ¼ b ð8Þ
where K;d, and b are the global stiffness matrix, displacement vector,
and force vector of all material points, respectively.

Since peridynamics uses integro‐differential equations to define
the equations of motion, unlike the classical continuum mechanics
theory where partial differential equations are utilized, the applica-
tion of boundary conditions is performed differently. The tractions
or point forces cannot be applied as boundary conditions since
their volume integrations result in a zero volume [45]. Therefore,
the external loads can be applied as body force densities in a real
material layer along the boundary of a nonzero volume. The thick-
ness of this layer should be comparable to the size of the horizon
[46].

3. Optimization problem statement

A general constrained optimization problem can be expressed as:

min F αð Þ ð9aÞ

subject to :
Xm αð Þ ¼ 0 for m ¼ 1;2; � � � ; z
Yn αð Þ≤0 for n ¼ 1; 2; � � � ; r

�
ð9bÞ

where α is the unknown that we seek to find, F αð Þ is the objective func-
tion, Xm αð Þ are equality constraints and Yn αð Þ are inequality con-
straints. A multi‐material topology optimization problem can be
defined as finding the optimum distribution of p∈N p ⩾ 2ð Þ numbers
of distinct materials over a fixed nonempty design domain Ω such that
a set of constraint(s) are satisfied. In this work, the objective is to max-
imize the stiffness of the structure, which is equivalent to minimizing
compliance. However, it is worth mentioning that minimizing compli-
ance as a measure of flexibility of the structure in an average manner
does not necessarily imply that the maximum displacement at the crit-
ical point of the structure is minimized too.

The design variables are set to values in the range of 1 and 0 for
each of the materials. The material distribution is determined by the
local volume fraction fields, αi

k k ¼ 1;2; � � � ; p; i ¼ 1;2; � � � ;Nð Þ for
p� 1 solid materials, one void phase and N material points. The fol-
lowing upper and lower bounds can be defined for the local volume
fractions:

lk ⩽ αi
k ⩽ uk; k ¼ 1; 2; � � � ; p ð10Þ

where 0 ⩽ lk ⩽ uk ⩽ 1. Since no overlaps and gaps are allowed in the
structure, the summation of all of the local volume fractions for each
point x∈Ω should be equal to one. Therefore:

∑
p

k¼1
αi
k ¼ 1 ð11Þ

Moreover:Z
Ω
αi
kdΩ ¼ Λk; ∑

p

k¼1
Λk ¼ Λ0 ð12Þ

where Λk and Λ0 are the user‐defined volume of the kth phase and the
volume of the whole design domain, respectively. In other words,
Λk ¼ ωkΛ0; where ωk is the local volume constraint on each phase.

In TO problems, the local material properties are local functions of
volume fractions of the contributing phases. According to (6), the
objective function (the strain energy of the structure) is a function of
elastic modulus. Therefore, here, the elastic moduli of material points
are considered as the local material properties. In order to compute
these properties, the SIMP method is used, which utilizes the power‐
law interpolation scheme to define the elastic modulus of material
4

point j as a function of design variables (volume fractions). The SIMP
interpolation can be expressed as follows:

Ei ¼ ∑
p

k¼1
αi
k

� �qEs
k ð13Þ

where q is the penalization factor, and Es
k is the elastic modulus corre-

sponding to the kth phase.
The motivation for developing the alternating active phase algo-

rithm is to provide a general framework to convert binary phase topol-
ogy optimization into multi‐phase ones by minimal effort and
modification, plus, keeping the robustness and the efficiency of the
original algorithms [14]. In this method, the optimization calculations
are done through inner loops. In each inner loop, a two‐phase topology
sub‐problem is solved by fixing the topologies of p� 2 phases to the
last known values, so that those of the two remaining phases (active
phases) can vary. If active phases are denoted by ‘a’ and ‘b’, then their
volume fraction field, rab, which varies during every binary phase
topology optimization sub‐problem can be obtained from the follow-
ing equation:

riab ¼ 1� ∑
p

k ¼ 1
k– a; bf g

αi
k ð14Þ

It is only required to take the volume fraction of a as the design
variable of the sub‐problem because after solving each of them, the
volume fraction of phase b (background phase) can be calculated as:

αi
b ¼ riab � αi

a ð15Þ
In each inner loop, the temporary upper bound for phase a can be

modified as:

ui;temp
a ¼ min ua; riab

� � ð16Þ
Note that there is no need to modify the lower bound.
Therefore, the internal binary‐phase topology optimization solver

can be expressed as:

minC αi
ab

� � ð17aÞ

s:t:

Kd ¼ bR
Ω αi

adΩ ¼ Λa

Ei ¼ ∑
p

k¼1
αi
ab

� �qEs
k

lia ⩽ αi
a ⩽ ui;temp

a

8>>>>>><
>>>>>>:

ð17bÞ

where αi
ab ¼ αi

1; α
i
2; � � � ; αi

p

n o
is the design vector in which αi

a and αi
b

could be varied and αi
k is fixed for k – a; bf g. The volume constraint

of the background phase, b, is determined by (14) and (15). Parameter
C represents the overall compliance of the structure. Since the value of
the total compliance is numerically two times greater than the overall
strain energy, we can minimize the strain energy of the structure
expressed in (6), instead of compliance. Therefore, in (17a), parameter
C can be replaced by parameter U.

Because of the nonlinear nature of the topology optimization prob-
lem, the internal optimization solver uses an iterative algorithm. As a
result, it needs a convergence criterion. Here, an infinity norm, jj:jj1,
of changes in the design vector during two consecutive iterations is
used as a criterion. That is, when the maximum of local variations in
the volume fractions is smaller than a threshold, the iterations are
stopped, and the last design vector is reported as an optimal solution.
Besides, an upper bound on the number of iterations can be imposed as
a stopping criterion.

It is worth mentioning that the active phase algorithm is based on
two assumptions. First, the iterations of the internal sub‐problem sol-
ver are strictly feasible with respect to all the constraints. Second, in
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each internal loop, the objective function decreases monotonically as
the iterations of the internal algorithm proceed.

According to all the work above, the multi‐material topology opti-
mization problem, using active phase algorithm and SIMP method, can
be formulated as:

minU ¼ ∑
N

i¼1
W xið ÞVi ð18aÞ

s:t:

Kd ¼ b

Ei ¼ ∑
p

k¼1
αi
k

� �qEs
k

∑p
k¼1ωkΛ0 ¼ Λ0

0 ⩽ ωk ⩽ 1
0 ⩽ αmin ⩽ αi

k ⩽ 1

8>>>>>>><
>>>>>>>:

ð18bÞ

where the value of αmin is set to be a very small but non‐zero number to
avoid the singularity of the structural stiffness matrix.

Also, the active phase algorithm can be summarized in the flow-
chart illustrated in Fig. 2.
Fig. 2. flowchart of an alternating active-phase algorithm.

5

3.1. Weighted bonds in PD for topology optimization purposes

During the topology optimization process, some binary‐phase
regions containing phases with very different material properties
(e.g., void and solid) can appear. On the other hand, the value of the
bond‐constant in (5) is a function of these material properties (here,
Young’s modulus) and it is obtained by assuming that the material
points i and j have the same Young’s modulus. Therefore, due to the
fact that the contribution of particles i and j is different, it is necessary
to consider the influence of their different material properties on the
bond connecting them. To do so, a weighting approach proposed in
[47] for functionally graded materials is utilized in this study. Young’s
modulus of the two material points can be defined proportional to the
effect of the bond as:

Eij ¼ μEi þ κEj ð19Þ
where

μ ¼ Ej

Ei þ Ej
; κ ¼ Ei

Ei þ Ej
ð20Þ

By redefining Young’s modulus used in (5), the bond‐constant
value is modified. For instance, if material point i is solid and material
point j is void such that Ej ≪ Ei, the value of Eij in (19) will converge to
Ej. Hence, the magnitude of the bond‐constant is negligible, resulting
into zero interaction and strain energy density. On the other hand, if
the two material points are the same, such that Ei ¼ Ej, the value of
Eij will converge to Ei which does not result in any alteration in the
magnitude of the bond‐constant between material points i and j.

4. Optimality criteria method

The optimization problem in (18) can be solved using several dif-
ferent methods such as Optimality Criteria (OC), Sequential Linear
Programming (SLP), and so forth. Due to its simplicity, the OC
approach [48] is used in this study. In this method, a heuristic scheme
is utilized to update the design variables as:

αnew
e ¼

max 0; αe �Mð Þ if αeBζ
e ⩽ max 0; αe �Mð Þ

αeBζ
e if max 0; αe �Mð Þ ⩽ αeBζ

e ⩽ min 1; αe þMð Þ
min 1; αe þMð Þ if αeBζ

e ⩾ min 1; αe þMð Þ

8><
>:

ð21Þ
whereM (move) is a positive move‐limit which can be chosen by exper-
iment, in order to obtain a suitable, rapid, and stable convergence of
the iterations. In (21), ζ ¼ 1=2ð Þ is a numerical damping coefficient,
and Be is obtained from the optimality condition for the eth iteration as:

Be ¼
� @U

@αe

λ @V
@αe

ð22Þ

where λ is the Lagrangian multiplier that must be chosen such that the
volume constraint is satisfied. Its appropriate value can be found
through a bisection algorithm.

The sensitivities of the objective function, U, and the material point
volume, V, with respect to the local volume fractions, can be obtained
as:

@U
@αe

¼ �q αeð Þq�1Us
e ð23Þ

@V
@αe

¼ 1 ð24Þ

In (23), Us
e is the strain energy of solid particles. According to this

equation, it can be stated that the sensitivity of void particles with a
negligible value for density is equal to zero when the penalization
coefficient, q goes to infinity. In (24), it is assumed that each particle
has unit volume.
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In each inner loop of binary‐phase topology optimization, the strain
energy of a particle can be stated based on the multiplication of penal-
ized design variable and the strain energy of the solid particle as:

Ui ¼ αeð ÞqUs
e ð25Þ

where Ui is the strain energy of each particle. To calculated its value at
each optimization iteration, first the solution to the displacement field
should be found as:

Ui ¼ W xið ÞVi ð26Þ
5. Filtering

Two types of filtering techniques can be used to eliminate the insta-
bilities and checkerboard patterns: application of a filter to either the
sensitivities or the densities. In this work, the former method is
adopted. For filtering purposes, a circular sub‐domain with the radius
of Rmin is defined at the centroid of the ith particle, which includes a set
of neighbor particles, n. These adjacent particles influence the sensitiv-
ity of the ith particle proportionately to the distance between these
two particles, Rin. Using the Shepard interpolation scheme, the modi-
fied sensitivities at each particle in the OC approach is as follows:

d@U
@αi

¼ 1

αi ∑
Ni

n¼1
ψ Rinð Þ

∑
Ni

n¼1
αnψ Rinð Þ @U

@αn
ð27Þ

where Rin ¼ jxn � xij is the distance between particles i and n;Ni is the
total number of particles in the sub‐domain of material point i, and
ψ Rinð Þ is a weighting function (convolution operator) defined as:

ψ Rinð Þ ¼ Rmin � Rin if Rin ⩽ Rmin

0 if Rin > Rmin

�
ð28Þ

Note that the weighting function decays linearly with the distance
from material point n. Therefore, instead of the original sensitivity in
(23), the modified sensitivity obtained in (27) is used in the Optimality
Criteria update in (22). The filter radius can be interpreted as a design
constraint; literature shows that the bigger Rmin is, the thicker the inner
links will become. Also, decreasing the minimum filter radius can rise
the number of the inner links [38].

6. Examples and discussion

To investigate the proposed approach, the results of three case
studies reported in [24] are compared against our results. These cases
investigate the effect of the direction of an interior crack on the opti-
mal topology of a bridge design domain loaded by a concentrated
force. Next, four examples are carried to evaluate the robustness of
the current method for multi‐material TO problems. The impact of
an initially embedded crack on the structure is studied in the cantilever
beam, L‐shape structure and the bridge with uniform pressure load exam-
ples. Furthermore, the problem of multi‐material topology optimiza-
tion is solved using three and four phases for a bridge structure.
Moreover, the total displacement and strain energy density distribu-
tions are provided for all the case‐studies in order to investigate the
influence of cracks. In order to have a better presentation of the strain
energy density distribution, its mean value is taken as the maximum
and any values higher than that are depicted as the maximum.

For all of the examples mentioned above, the value of the penaliza-
tion factor is assumed to be three. According to [49] when the penal-
ization factor is equal or greater than three, the SIMP model obeys
Hashin–Shtrikman bounds and the prevailing of some intermediate
densities does not exist. To represent different phases, four colours
are used: red, blue, green, and white. As the colours change from
red to white, the elastic modulus decreases consecutively with red as
6

the hardest and white the softest materials (i.e. void). It should be
noted that all the forces are applied to particles as a body force.

6.1. The effect of the direction of interior cracks

In this case study, the impact of the direction of an interior crack on
the optimal topology is investigated in three different orientations: an
inclined, a horizontal, and a vertical crack with the same length
(Fig. 3). The length of the crack and its distance from the right edge
are: lc ¼ 15:5; tc ¼ 9:25, respectively. The length of the structure is
L ¼ 40 and the height is H ¼ 20. Accordingly, the design domain is
discretized into 40� 20 particles. The left bottom corner is fixed
and the right bottom corner is simply supported. The magnitude of
the applied force at the middle of the upper edge is F ¼ 200. The total
volume constraint is chosen to be 40%. Moreover, the volume con-
straint for the hard material (E ¼ 400� 103) is 15% and for the soft
material (E ¼ 200� 103) is 25%. To alleviate singularities in the stiff-
ness matrix, the value of Young’s modulus of the void phase is consid-
ered to be 10. Also, the value of the minimum filter radius is 1:5.

Fig. 4 displays a comparison between the PD‐TO results (left col-
umn) with those from [24], where the alternating active‐phase algo-
rithm is used with X‐FEM (right column). As it can be seen from the
PD‐TO solutions, the direction of the interior crack can significantly
change the optimal topology. Besides, the stiff material (in red) is
mostly distributed over the regions with high strain energy for differ-
ent crack orientations. Comparing the optimal results of these two
methods indicates that the structures are generally very similar; how-
ever, there are some differences. The final topologies in [24] have mul-
tiple intermediate‐phase areas where the optimization has not
completely converged. This issue can be a result of the insufficient
number of elements/design variables. Conversely, in the current
method, we could achieve relatively better results in terms of conver-
gence and connectivity of materials by using the same number of
design variables. However, the topologies obtained from X‐FEM
method have slightly lower compliance relative to the PD‐TO solu-
tions. This is due to the fact that the compliance values of X‐FEM
and PD are evaluated based on two different theories. Specifically,
Peridynamics is a non‐local theory and calculates the strain energy
density using non‐local interactions of material points whereas X‐
FEM used in Ref. [24] is a local method and utilizes CCM for its strain
energy calculation. On the other hand, the surface correction factors
are not considered in PD‐TO to reduce the computational cost. Hence,
an accurate quantitative comparison of the compliance values of PD‐
TO and X‐FEM can only be considered if the final topologies obtained
from PD and X‐FEM are both modelled in one of the theories. Addition-
ally, the total displacement and strain energy density distributions
obtained from PD analysis are illustrated in Fig. 5.

It is notworthy that the X‐FEM method does not provide an easy
way to study the emergence and evolution of cracks. Namely, it
requires some extra techniques to do so, in particular level‐set meth-
ods, virtual crack closure, etc. Whereas, PD needs no special tech-
niques to either predict damage initiation/growth in unspecified
locations or control multiple damage sites and their complex interac-
tions. Alternatively, it demands only one criterion for all of the
above‐mentioned processes, which is called the critical failure param-
eter and is based on energy release rate.

6.2. Example 1: Cantilever Beam

As shown in Fig. 6, a cantilever beam is considered with a concen-
trated load F ¼ 1 at the bottom of its free end. The design domain has
a length to height ratio of 3:1. The ratio of Young’s modulus for the
two solid phases is 2:1. Also, the value of elastic modulus for the void
phase is assumed to be 1� 10�6 to avoid singularities. The volume
constraints are 30% and 20% for the hard and soft materials, respec-



Fig. 3. Studying the effect of the direction of the interior crack.

Fig. 4. Comparison of optimal solutions (left column: PD-TO results, right column: X-FEM results).
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Fig. 5. Strain energy density (left column) and total displacement (right column) distribution of the horizontal, vertical, and inclined interior cracks.

Fig. 6. Design domain of the cantilever beam.

Fig. 7. Optimal design of the cantilever beam with no initial cracks.

Fig. 8. Optimal design of the cantilever beam with an initially embedded
crack.
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tively, and these solid phases can occupy only 50% of the whole struc-
ture. The minimum filter radius is set to be 3. The discretization of the
design domain is 90 particles along the length and 30 particles along
the height. Also, to study the effect of an embedded crack on the opti-
mal topology, an interior crack is modelled at the upper edge of the
beam with the length of lc ¼ 0:12H and at a distance of
tc ¼ 0:1166H from the fixed end.

Fig. 7 and Fig. 8 display the optimal topologies of the cantilever
beam, without and with initial crack, respectively. As can be seen from
these figures, adding an initial crack into the structure can signifi-
cantly affect the final topologies. Also, in the critical regions where
the value of the strain energy is typically at its highest value (e.g,
where the concentrated force is applied and the area close to the sup-
ports) we have the harder material (in red) to minimize the compli-
8

ance as much as possible. Fig. 9 illustrates the strain energy density
and total displacement distributions of the cantilever beam and the
effect of the initial crack on them.

6.3. Example 2: L-Shape Structure

Fig. 10 shows the design domain of the L‐shape structure and its
dimensions with L ¼ 1. The beam is fully clamped at the top edge,



Fig. 9. Strain energy density (left column) and total displacement (right column) distribution of the cantilever beam.

Fig. 10. Design domain of the L-Shape structure. Fig. 11. Optimal topology of the L-shape beam with no cracks.

Fig. 12. Optimal topology of the L-shape beam with an embedded crack at the
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and a downward concentrated force is applied to the structure with the
magnitude of F ¼ 30. The elastic modulus values are assumed to be the
same as in Example 1. The corresponding volume constraints are 35%
for the hard material, 20% for the soft material, and 45% for the void
phase. Also, the minimum filer radius is equal to 3. A square‐shape
domain (including the L‐shape design domain and the void area at
the top right) is discretized by 60� 60 material points. Moreover,
the impact of an interior crack is studied by considering a horizontal
crack of the length lc ¼ 0:1L at the knee.

First, this example is solved without considering the crack, and the
result is shown in Fig. 11. Similar to the previous case, the critical
areas close to the support and the location the concentrated force is
applied are filled with the hard material to increase the stiffness of
the structure. Next, the same example is solved, this time by taking
into account an initial crack at the knee. Fig. 12 illustrates that the dis-
tribution of the hard material (red color) has changed close to the
crack tips to prevent crack propagation. Furthermore, Fig. 13 portrays
the distribution of the strain energy density and total displacement of
the L‐Shape structure without and with initially embedded cracks.
knee.
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Fig. 13. Strain energy density (left column) and total displacement (right column) distribution of the L-Shape structure.
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6.4. Example 3: Bridge with Uniform Pressure Load

In this example, a bridge, fully fixed at left and right edges is loaded
by a uniform pressure P ¼ 1. The length of the structure is two times
greater than its width, and there are 80 and 40 particles along the
length and the width of the bridge, respectively (Fig. 14). The elastic
Fig. 14. Design domain of the bridge with uniform pressure load.

Fig. 15. Optimal topology of the bridge under uniform pressure without
initial crack.

Fig. 16. Optimal topology of the bridge under uniform pressure with an
initially embedded crack.
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Fig. 17. Strain energy density (left column) and total displacement (right column) distribution of the bridge under uniform pressure.

Fig. 18. Design domain of the bridge with two interior cracks.

Fig. 19. Optimal result of the three-material bridge structure.

Fig. 20. Optimal result of the four-material bridge structure.
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modulus ratio of the hard to the soft material is 2:1. The value of
Young’s modulus of the void phase is the same as the previous cases.
The volume constraints of hard and soft materials are 30% and 10%,
respectively. The value of the minimum filter radius is assumed to
be 3. A fixed layer of 6 particles in the vertical direction is considered;
that is, the material points located in this area are fixed to have the
hard material’s Young’s modulus, and it does not change throughout
the optimization process. In addition, a crack of the length
lc ¼ 0:11H and at tc ¼ 0:5L is modeled at the upper edge that passes
through the fixed layer.
Table 1
Material properties of each material.

Number of materials

Material properties Three (red, blue, white)

Young’s modulus Er ¼ 2;Eb ¼ 1;Ew ¼ 1� 10�9

Volume fraction ωr ¼ 35%;ωb ¼ 25%;ωw ¼ 40

11
The optimal topologies of the bridge under uniform pressure are
illustrated in Fig. 15 for the structure without a crack and in Fig. 16
for the cracked structure. By comparing these two figures, it can be sta-
ted that when there is an embedded crack, the value of the strain
energy increases near the crack tips. Therefore, some extra amount
Four (red, blue, green, white)

Er ¼ 2;Eb ¼ 1; Eg ¼ 0:1; Ew ¼ 1� 10�9

% ωr ¼ 25%;ωb ¼ 20%;ωg ¼ 15%;ωw ¼ 40%



Fig. 21. Optimal result of the three-material cracked bridge structure.

Fig. 22. Optimal result of the four-material cracked bridge structure.

A. Habibian et al. Composite Structures 258 (2021) 113345
of hard material is added to that region to reduce the magnitude of the
strain energy (The small bump at the upper edge in Fig. 16). Moreover,
Fig. 17 shows the strain energy density and total displacement distri-
butions and the initial crack’s affect on them.

6.5. Example 4: Bridge

The effect of the number of phases on the optimal topology is stud-
ied in this example. Fig. 18 shows the design domain of a bridge. A
concentrated load F ¼ 1 is applied at the middle of the bottom edge.
The left bottom corner is fixed, and the right bottom corner is simply
supported. Moreover, two vertical cracks are placed at the bottom
edge of the bridge at a horizontal distance of tc ¼ 0:1L from the point
where the force is applied. The length of the cracks is lc ¼ 0:11H. The
ratio of the length to the height of the structure and the minimum filter
radius value are the same as Example 3. The values of the elastic mod-
uli and the volume constraints of the three‐phase and four‐phase cases
Fig. 23. Strain energy density (left column) and total displacem

12
are summarized in Table 1. To decrease the computational cost, the
symmetry of the structure and the applied loads is taken into account.
Therefore, the design domain is discretized into 96� 96 particles, dis-
tributed evenly over the domain and the target total volume constraint
is chosen to be 60%.

The optimal solutions to the bridge problem with no cracks are
shown in Fig. 19 and Fig. 20 for three and four material cases, respec-
tively. It can be seen that the topologies are different, which implies
the effect of the number of materials on the final topology. Further-
more, the cracked bridge case is solved to study the influence of
cracks. Fig. 21 illustrates the final topology of the cracked bridge using
two solid materials. The result shows that the lower link in Fig. 19 is
removed so that the cracks are located in the void area. Consequently,
the algorithm has prevented a rise in the strain energy of the structure.
The solution of the cracked bridge using three solid materials is dis-
played in Fig. 22. The same feature can be seen in this topology where
the lower link is deleted compared to Fig. 20. Moreover, Fig. 23 and
Fig. 24 demonstrate the distribution of the strain energy and total dis-
placement over the three and four material structures, respectively.
7. Conclusion

The alternating active‐phase algorithm is combined with the Peri-
dynamics theory to solve density‐based multi‐material topology opti-
mization problems. In this work, the direct solution method is used
to solve the PD equations. As such, the computational cost of the pro-
posed method is of the same order as mesh‐based TO approaches.

First, the validity of the proposed method is investigated by com-
paring the results of three different cases against a work done by
[24], where the same alternating active phase algorithm was used with
the X‐FEM approach. The results show good compatibility with their
topologies while achieving relatively higher convergence. Note that
mesh‐based methods cannot handle crack modelling in a straightfor-
ward manner, and require complex algorithms to do so. Conversely,
Peridynamics does not need any special treatments to solve problems
involving moving boundary problems, large deformations, and dam-
age presence since there is no necessity to maintain mesh connectivity.
Next, the robustness of this method was studied through four examples
by taking into account the impact of initial cracks on the optimal
topologies.
ent (right column) distribution of the three-material bridge.



Fig. 24. Strain energy density (left column) and total displacement (right column) distribution of the four-material bridge.
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The results show that initial cracks can notably influence the final
design of the multi‐material structures. In general, the PD‐based topol-
ogy optimization method adds/removes material points such that
damaged regions are preferentially populated with material points to
hinder crack propagation during/after optimization.
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