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Analysis of (n, n)-functions obtained from the
Maiorana-McFarland class

Nurdagül Anbar, Tekgül Kalaycı, and Wilfried Meidl

Abstract—Pott et al. (2018) showed that F(x) = x2
r

Trnm(x),
n = 2m, r ≥ 1, is a nontrivial example of a vectorial
function with the maximal possible number 2n − 2m of bent
components. Mesnager et al. (2019) generalized this result by
showing conditions on Λ(x) = x+

∑σ
j=1 αjx

2
tj , αj ∈ F2m , under

which F(x) = x2
r

Trnm(Λ(x)) has the maximal possible number
of bent components. We simplify these conditions and further
analyse this class of functions. For all related vectorial bent
functions F (x) = Trnm(γF(x)), γ ∈ F2n \ F2m , which as we will
point out belong to the Maiorana-McFarland class, we describe
the collection of the solution spaces for the linear equations
DaF (x) = F (x) + F (x + a) + F (a) = 0, which forms a spread
of F2n . Analysing these spreads, we can infer neat conditions
for functions H(x) = (F (x), G(x)) from F2n to F2m × F2m to
exhibit small differential uniformity (for instance for Λ(x) = x
and r = 0 this fact is used in the construction of Carlet’s, Pott-
Zhou’s, Taniguchi’s APN-function). For some classes of H(x) we
determine differential uniformity and with a method based on
Bezout’s theorem nonlineariy.

Index Terms—Almost perfect nonlinear (APN) function, differ-
entially 4-uniform, differential uniformity, maximal bent compo-
nents, nonlinearity, vectorial bent function.

I. INTRODUCTION

The Walsh transform of a Boolean function f from an n-
dimensional vector space Vn over F2 to F2 is the integer
valued function

f̂(u) :=
∑
x∈Vn

(−1)f(x)+〈x,u〉,

where 〈 , 〉 denotes any (nondegenerate) inner product in Vn.
The Walsh spectrum Wf := {f̂(u) : u ∈ Vn} is indepen-
dent from the inner product used in the Walsh transform.
A Boolean function f is called bent (see [16]) if for all
u ∈ Vn we have |f̂(u)| = 2n/2. If Wf = {0,±2(n+1)/2}
or Wf = {0,±2(n+2)/2}, then f is called semibent, and more
general, s-plateaued ifWf = {0,±2(n+s)/2} for some integer
s, see [8], [21]. Apparently n+s is always even. In particular,
bent functions only exist if n is even.

The nonlinearity NL(f) of a Boolean function f : Vn →
F2 is the distance of f to the set of all affine functions, i.e.,

NL(f) := min
a∈Vn,c∈F2

|{x ∈ Vn : f(x) 6= 〈a, x〉n + c}|.
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The nonlinearity of f can be expressed via the Walsh transform
as

NL(f) := 2n−1 − 1

2
max
u∈Vn

|f̂(u)|.

As is well known, when n is even, bent functions are the
functions with the largest nonlinearity.

For a vectorial function F : Vn → Vm, also called an
(n,m)-function, and a nonzero element a ∈ Vm the compo-
nent function Fa is the Boolean function Fa(x) = 〈a, F (x)〉
(〈 , 〉 is a fixed inner product in Vm). The nonlinearity is
then the minimal nonlinearity among all component functions
of F . Functions of which all components are bent, hence
attaining the largest possible nonlinearity, are called vectorial
bent functions. As is well known, for a vectorial bent function
we always have m ≤ n/2, see [13].

A function F : Vn → Vn is called differentially k-uniform
if for all nonzero a ∈ Vn and b ∈ Vn, the equation

DaF (x) := F (x+ a) + F (x) = b (1)

has at most k solutions. The smallest integer k for which F
is differentially k-uniform is called the differential uniformity
of F . Observing that with x0 also x0 + a is a solution of
Equation (1), the value for k is at least 2. Differentially 2-
uniform functions are called almost perfect nonlinear (APN).

Nonlinearity and differential uniformity are fundamental
features for vectorial functions in cryptographic applications,
we refer to [13], [14]. The analysis of aspects on nonlinearity
and differential uniformity and on their interplay is of sub-
stantial relevance and attracts a lot of attention.

Most known examples and infinite classes of APN-functions
and functions on Vn of small differential uniformity are
quadratic, or involve quadratic functions, i.e., functions of
which all component functions have algebraic degree (at
most) 2, and hence all component functions are plateaued,
see [4]. Differently from quadratic APN-functions in odd
dimension, of which all component functions are always
semibent, quadratic APN-functions in even dimension can
have various Walsh spectra. For details we refer to [2], [11],
[17]. However, all known infinite classes of quadratic APN-
functions in even dimension n have the classical spectrum,
i.e., solely bent components and semibent components. Only
sporadic counterexamples are known. Similarly, several con-
structions and classes of differentially 4-uniform functions in
even dimension are known, of which again all component
functions are bent or semibent, see [1], [6] for examples. It
appears that at least the simple constructions of functions with
small differential uniformity yield functions that also have a
large nonlinearity. However, there are only a few theoretical
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results on connections between small differential uniformity
and high nonlinearity, see [7, Section V.B.].

Having a large number of bent components, many quadratic
APN-functions and differentially 4-uniform functions on V2m

contain an m-dimensional subspace of bent components, i.e., a
vectorial bent function from V2m to Vm. For instance Carlet’s
function, the Zhou-Pott function and Taniguchi’s function on
F2m × F2m are constructed as H(x, y) = (F (x, y), G(x, y)),
taking for F the simplest vectorial Maiorana-McFarland bent
function F (x, y) = xy, see [5], [18], [22]. Another function
one often sees as a part of an APN-function is the Gold
function Trn

m(γx2i+1), n = 2m, which is vectorial bent if
n ≡ 2 mod 4, gcd(n, i) = 1, and γ is a noncube in F2n , see
[5, p.99], (Trnm(x) = x + x2m

is the relative trace from F2n

to the subfield F2m ).
In [15], it is shown that a function on Vn, n = 2m, can

have at most 2n−2m bent components. (Nontrivial) examples
are presented in the papers [12], [15], namely Fr,Λ(x) =
x2r

Trn
m(Λ(x)), of which it is shown that Trn1 (aFr,Λ(x)) is

bent for every a ∈ F2n \ F2m , where Trn1 (x) =
∑n−1
i=0 x

2i

is the absolute trace on F2n , if Λ is a linearized polynomial
which satisfies certain conditions, see Section II.

We then can associate to Fr,Λ(x) = x2r

Trn
m(Λ(x)) the

vectorial bent function Fr,Λ,γ(x) = Trn
m(γx2r

Trn
m(Λ(x))),

γ 6∈ F2m , from F2n to F2m , see [15, Proposition 3]. Note
that if r = 0 and Λ(x) = x, then Fr,Λ,γ = F0,x,γ is
equivalent to x2m+1, which, as pointed out in [6], can be
seen as the Maiorana-McFarland bent function xy in univariate
form. As we will see, bent functions of the form Fr,Λ,γ(x) =
Trn

m(γx2r

Trn
m(Λ(x))) share some interesting properties with

the function xy. In particular we can associate to Fr,Λ,γ(x)
a spread of F2n . Since xy, respectively its univariate version
x2m+1, turned out to be a suitable component for the con-
struction of APN-functions, the generalizations we consider in
this article may also be good candidates to form components
of quadratic functions with low differential uniformity. With
these generalizations, we also get some known results on
functions that are constructed with x2m+1 as a component.

Though the properties of Fr,Λ apparently depend on the
choice of r and Λ, to simplify notation, for fixed integer
r ≥ 0 and linearized polynomial Λ ∈ F2m [x], we will
write F(x) = x2r

Trn
m(Λ(x)) for Fr,Λ(x). Similarly, for

fixed r, Λ and γ ∈ F2n \ F2m we will use the notation
Fr,Λ,γ(x) = Trn

m(γx2r

Trn
m(Λ(x))) = F (x).

This article is organized as follows: In Section II, we
first give simplified conditions on Λ such that x2r

Trn
m(Λ(x))

achieves the upper bound on the number of bent component
functions. For the associated vectorial bent functions F (x) =
Trn

m(γx2r

Trn
m(Λ(x))), we then analyse the collection of the

solution spaces of

DaF (x) := F (x) + F (x+ a) + F (a) = 0,

i.e., the collection of the kernels of Da, a ∈ F∗2n . As we will
see, the collection of these subspaces of F2n always forms a
spread of F2n . We also show that on the other hand, the set
of the solution spaces of DaK = 0 has the quite opposite
behaviour for the vectorial bent function K(x) = Trn

m(γx3),
n ≡ 2 mod 4, γ noncube. In this case, all 2n − 1 solution

spaces are different. We then investigate properties of the
spreads of F2n obtained from bent functions of the form
F (x) = Trn

m(γx2r

Trn
m(Λ(x))). The interesting structural

properties of the solution spaces for this class of functions
allow us to derive neat conditions on G : F2n → F2m such that
H(x) = (F (x), G(x)) has a small differential uniformity. In
Section III we analyse differential uniformity and nonlineariy
of functions H that combine Maiorana-McFarland functions
with the Gold function. For some classes we show that they
have differential uniformity δ with δ ≤ 4. With a method based
on Bezout’s theorem, which we introduced in [1], we show
that these functions have only bent and semibent components
when m is odd (see Theorem 6), which does not always apply
when m is even. We finish the paper with some computational
results and some remarks in Section IV.

II. PROPERTIES OF x2r

Trn
m(Λ(x))

In [15] Pott et al. showed that a function on Vn, n = 2m,
can have at most 2n − 2m bent components. A vectorial bent
function from Vn to the subspace Vm, seen as a function
on Vn, trivially attains this bound. With the objective to find
nontrivial examples of functions on F2n with the maximal
possible number 2n − 2m of bent components, in [15] it is
shown that for the quadratic function F(x) = x2r

Trn
m(x) on

F2n , the component function Fγ(x) = Trn1 (γF(x)) is bent
if and only if γ ∈ F2n \ F2m . We remark that for r = 0
we have F (x) = Trn

m(γx2r

Trn
m(x)) = γ̃x2m+1 + Trn

m(γx2),
γ̃ = Trn

m(γ), i.e., as a vectorial bent function, F differs
from the norm function x2m+1 only by a linear term (and the
multiplication by a nonzero constant in F2m ). Since x2m+1 is
a vectorial bent function from F2n to F2m , seen as a function
on F2n it trivially has the maximal number of possible bent
components.

In [12], it is shown that the property of having the max-
imal number of bent components is invariant under CCZ-
equivalence, and that plateaued functions on Vn with 2n−2m

bent components cannot be APN. Furthermore, a more general
nontrivial example of a function on F2n having 2n− 2m bent
components is presented in [12, Theorem 6] as follows:
Let n = 2m, αj ∈ F2m and tj be nonnegative integers for
1 ≤ j ≤ σ. If both equations

A1(x) =
σ∑
j=1

α2m−tj

j x2m−tj−1 + 1 = 0,

A2(x) =
σ∑
j=1

α2m−r

j x2tj−1 + 1 = 0, (2)

do not have a solution in F2m , then the function Fγ : F2n →
F2 given as

Fγ(x) = Trn1

γx2r

Trnm(x) +
σ∑
j=1

αjTrnm(x2tj
)


is bent if and only if γ 6∈ F2m . Hence F : F2n → F2n ,
F(x) = x2r

(Trnm(x) +
∑σ
j=1 αjTrnm(x2tj

)) has the maximal
possible number of bent components. Note that the conditions
in (2) are trivially satisfied for the function x2r

Trn
m(x) of [15].
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A. Simplified Conditions on Λ

In this first subsection we show that the conditions in (2)
completely describe the functions of the form x2r

Trn
m(Λ(x)),

Λ is a linearized polynomial over F2m , with the maximal pos-
sible number of bent components. We replace the conditions
in (2) with a single simple necessary and sufficient condition.
For a similar characterization we may also refer to the recent
article [20].

We will require the concept of the adjoint L∗ of a linear
transformation L of F2m (with respect to the inner product
〈x, y〉 = Trm1 (xy)): Given a linear transformation L on F2m ,
the adjoint of L is the uniquely determined linear map L∗
on F2m that satisfies Trm1 (x,L(y)) = Trm1 (L∗(x), y) for all
x, y ∈ F2m .

We first show the following lemma:

Lemma 1. Let A1(x) and A2(x) be defined as in Equation
(2). Then the following conditions are equivalent.

(i) A1(x) = 0 does not have a solution in F2m .
(ii) A2(x) = 0 does not have a solution in F2m .

(iii) Λ(x) = x+
∑σ
j=1 αjx

2tj is a permutation of F2m .

Proof: We start showing that (i) holds if and only if (iii)
holds. Note that A1(x) = 0 does not have a solution in F2m

if and only if L1(x) = xA1(x) is a linear permutation of F2m .
Observe that L1 then also permutes F2n (suppose that y is a
solution in F2n \F2m , then, using that αj ∈ F2m , the element
Trnm(y) ∈ F∗2m is a solution). Recall that the adjoint L∗1 of L1

and L1 have the same rank. Hence L1 permutes F2m if and
only if L∗1 permutes F2m . With standard calculations, using
that Trm1 (xy2m−t

) = Trm1 (x2t

y), we infer that

L∗1(x) = x+
σ∑
j=1

αjx
2tj

=: Λ(x).

This finishes the first part of the proof.
We conclude the proof by showing that (iii) holds if and

only if (ii) holds. Observe that Λ(x) = L∗1(x) permutes F2m

if and only if

(L∗1(x))2m−r

= x2m−r

+
σ∑
j=1

α2m−r

j x2m+tj−r

is a permutation of F2m . Substituting x2m−r

by x we see that
this is equivalent to xA2(x) being a (linear) permutation of
F2m , i.e., A2(x) = 0 does not have a solution in F2m . �

Theorem 1. Let r ≥ 0 be an integer, γ ∈ F2n \ F2m , and
let Λ be a linearized polynomial with coefficients in F2m . The
function F : F2n → F2m given as

F (x) = Trn
m(γx2r

Trn
m(Λ(x)))

is a vectorial bent function if and only if Λ is a permutation of
F2m . In particular, F : F2n → F2n , F(x) = x2r

Trn
m(Λ(x))

then has 2n − 2m bent components (the set {Fγ : γ ∈ F2n \
F2m} of component functions).

Proof: First note that with a linear transformation we can
transform a linearized polynomial Λ ∈ F2m [x] to a polynomial
of the form

Λ(x) = x+
σ∑
j=1

αjx
2tj ∈ F2m [x]. (3)

Such a coordinate transformation changes in F the term γx2r

into a term γ̄x2r̄

for some integer r̄ and an element γ̄ ∈ F2n ,
which is again not in F2m . Hence we may assume without loss
of generality that Λ is of the form (3). With [12, Theorem 6]
and Lemma 1 we then see the sufficiency of the condition
in the theorem. It remains to show the necessity. Recall that
F is a vectorial bent function if and only if all derivatives
are balanced, i.e., for every a ∈ F∗2n the solution space of
DaF = 0 has dimension m. With straightforward standard
calculations we get

DaF (x) = Trnm(γa2r

)Trnm(x+
σ∑
j=1

αjx
2tj

)

+ Trnm(a+
σ∑
j=1

αja
2tj

)Trnm(γx2r

)

= Trnm(γa2r

)Trnm(Λ(x)) + Trnm(γx2r

)Trnm(Λ(a)).

Let a ∈ F∗2m , then DaF (x) = 0 for all x ∈ F2m . Hence F2m

is in the solution space of DaF = 0. Suppose that Λ is not
a permutation, then for some y ∈ F∗2m we have Λ(y) = 0.
Let z ∈ F2n such that Trnm(z) = y (thus z 6∈ F2m ). With
Trnm(Λ(z)) = Λ(Trnm(z)) = Λ(y) = 0, we see that DaF (z) =
0, and hence the dimension of the solution space of DaF = 0
is larger than m. �

B. Trn
m(γx2r

Trn
m(Λ(x))) and Its Solution Spaces

We start this subsection pointing out that all vectorial
bent functions F (x) = Trn

m(γx2r

Trn
m(Λ(x))) belong to the

completed (quadratic) Maiorana-McFarland class of vectorial
bent functions. Recall that a vectorial bent function M from
F2m × F2m to F2m is called a vectorial Maiorana-McFarland
function if M(x, y) = xπ(y) +R(y) for some permutation π
of F2m and a function R on F2m .

We say that two functions F1, F2 : Vn → Vm are
extended affine equivalent (EA-equivalent), if there exist affine
permutations L1, L2 on Vn and Vm, respectively, and an affine
function a : Vn → Vm such that F2(x) = L2(F1(L1(x))) +
a(x). A function F belongs to the completed Maiorana-
McFarland class, if F is EA-equivalent to some function
from the Maiorana-McFarland class. With a straightforward
argument one can see that the standard criterion for a Boolean
bent function to belong to the completed (Boolean) Maiorana-
McFarland class, see [9], applies in the same way to vectorial
bent functions: A vectorial bent function F : Vn → Vm is in
the completed Maiorana-McFarland class if and only if there
exists an m-dimensional subspace V of Vn such that F is
affine on every coset of V .

Let now F be the vectorial bent function F (x) =
Trn

m(γx2r

Trn
m(Λ(x)) from F2n to F2m , let V = F2m , and
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d ∈ F2n . Evaluating F on the coset V + d, using that
Trn

m(z) = 0 for z ∈ F2m , we obtain

F (z + d) = Trn
m(γ(z + d)2r

Trn
m(Λ(z + d)))

= Trn
m(Λ(z) + Λ(d))Trn

m(γz2r

+ γd2r

)

= Trn
m(Λ(d))Trn

m(γz2r

) + Trn
m(Λ(d))Trn

m(γd2r

),

which shows that F belongs to the completed Maiorana-
McFarland class.

The objective in this subsection is to study the solution
spaces for

DaF (x) = Trnm(γa2r

)Trnm(Λ(x))+Trnm(γx2r

)Trnm(Λ(a)) = 0

for the quadratic vectorial bent functions F (x) =
Trn

m(γx2r

Trn
m(Λ(x))).

Let r ≥ 0 be an integer, γ ∈ F2n \ F2m , and let Λ be a
linear permutation of F2m . For every z ∈ F2m we define the
subspace Uz(r, γ,Λ) of F2n as

Uz(r, γ,Λ) := {x ∈ F2n : Trnm(γx2r

) + zTrnm(Λ(x)) = 0}.
(4)

To simplify the notation, for fixed r, γ and Λ, we will write
Uz for Uz(r, γ,Λ).

It is quite easily observed that Uz1 ∩Uz2 = {0} if z1 6= z2.
More precisely we have the following lemma:

Lemma 2. Let r ≥ 0 be an integer, γ ∈ F2n \ F2m and let Λ
be a linearized permutation of F2m . Then for every z ∈ F2m ,
the subspace Uz in (4) is an m-dimensional subspace of F2n .
The subspaces Uz , z ∈ F2m , together with F2m form a spread
of F2n .

Proof: As already observed, for F (x) =
Trn

m(γx2r

Trn
m(Λ(x))), the solution space for DaF = 0

is F2m if a is a nonzero element in F2m . Note that for
a 6∈ F2m , the solution space of DaF = 0 is Uz with
z = Trn

m(γa2r

)/Trn
m(Λ(a)). Hence every subspace Uz ,

which appears as the solution space of DaF = 0 for some
a ∈ F2n \F2m has dimension m. Since every a is a solution of
DaF (x) = 0, the union of all solution spaces for DaF = 0,
a ∈ F∗2n is F2n . Moreover, the fact that for a ∈ Uz the
solution space of DaF = 0 is Uz implies that every Uz
appears as a solution space. Therefore, besides from F2m ,
all 2m subspaces Uz , z ∈ F2m , must appear as a solution
space, and the intersection of each two of those spaces must
be trivial. Hence the subspaces F2m , Uz , z ∈ F2m , form a
spread of F2n . 2

Remark 1. Note that whereas the subspaces Uz = Uz(r, γ,Λ)
depend on r, γ and Λ, the spread in Lemma 2, i.e., the
collection of the subspaces Uz , z ∈ F2m , solely depends on r
and Λ.

From Lemma 2, we immediately infer the following theo-
rem:

Theorem 2. For an integer r ≥ 0, γ ∈ F2n \ F2m , and a
linearized permutation Λ ∈ F2m [x], let F : F2n → F2m be
the vectorial bent function

F (x) = Trn
m(γx2r

Trn
m(Λ(x))).

For a ∈ F∗2m we then have F (x) + F (x + a) + F (a) = 0
if and only if x ∈ F2m . The solution space of DaF (x) =
F (x) + F (x + a) + F (a) = 0 is Uz if and only if a ∈ Uz ,
where Uz , z ∈ F2m , are the subspaces defined in (4).

In the special case r = 0 and Λ(x) = x it is easily
observed that the spread in Lemma 2 reduces to the classical
representation of the Desarguesian spread, i.e., the subspaces
Uz = Uz(0, γ, x) are the multiplicative cosets of F2m (the zero
element added). In fact, this was shown in [6] for the function
x2m+1, which differs from Trn

m(γxTrn
m(x)) only by a linear

term.
The set of the solution spaces of DaF = 0 forming a spread

is a quite extremal property (and as we will see in Theorem
3 below not just the typical behaviour of a quadratic vectorial
bent function). As every a ∈ F∗2n is a solution of DaF (x) = 0,
hence every a ∈ F∗2n is in at least one of the solution spaces,
the number of distinct solutions spaces takes on the minimal
possible value 2m + 1.

In the following theorem we show that with this respect
the vectorial bent function K(x) = Trn

m(γx3), n = 2m, m
odd, and γ is a noncube in F2n , is at the other end of the
spectrum. For different a, b ∈ F2n , the solution spaces Sa
and Sb for DaK = 0 and DbK = 0 are different. Hence we
have the maximal possible number 2n− 1 of distinct solution
spaces. Employing Bezout’s theorem on intersection points of
two projective plane curves we more generally show that |Sa∩
Sb| ≤ 4 if a 6= b.

Theorem 3. Let n = 2m for an odd integer m and K(x) =
Trnm(γx3) for a noncube γ ∈ F2n . We denote by Sa the
solution space of DaK(x) = K(x + a) + K(x) + K(a) = 0
for a nonzero a ∈ F2n . If a 6= b, then |Sa ∩ Sb| ≤ 4.

Proof: First of all note that without loss of generality, we
can suppose that a = 1. Otherwise we perform the change of
variable x → ax and exchange γ with γ/a3. Note that with
γ, also γ/a3 is a noncube, hence not in F2m .

Suppose that there exists b ∈ F2n with b 6= 1 such that
|S1 ∩ Sb| > 4. We set Y := x2m

and X := x. Let X1 and X2

be the curves defined by

X1 : γ2m

Y 2 + γ2m

Y + γX2 + γX = 0, and

X2 : γ2m

b2
m

Y 2 + γ2m

b2
m+1

Y + γbX2 + γb2X = 0,

respectively. Since b 6= 1, the curves X1 and X2 are distinct
conics. Note that x is a zero of Trnm

(
γ(x2 + x)

)
(resp.,

Trnm
(
γ(bx2 + b2x)

)
) if and only if (x, x2m

) is a point on the
curve X1 (resp., X2). Then the fact that |S1 ∩Sb| > 4 implies
that X1 and X2 intersect in more than 4 points. Therefore,
they have a common component by Bezout’s Theorem. The
common component has to be a line as X1 and X2 are
distinct conics. In particular, X1 is a union of two lines, say
X = L1 ∪ L2. Since

∂X1

∂X
= γ and

∂X1

∂Y
= γ2m

,

X1 has no singular affine points. In particular, L1 and L2

intersect at infinity, otherwise X1 would have an affine singular
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point. Therefore, by using the fact that (0, 0) ∈ X1, we obtain
the following equalities:

γ2m

Y 2 + γ2m

Y + γX2 + γX = (αY + βX + c)(αY + βX)

= α2Y 2 + cαY + β2X2

+ cβX (5)

for some nonzero α, β, c in the algebraic closure of F2n . That
is, by Equation (5), we have

γ2m

= α2, γ2m

= cα, γ = β2 and γ = cβ.

Note that the facts that γ2m

= α2 = cα and γ = β2 = cβ
imply that c = α = β. Therefore, we have α2 = β2. This
implies that γ2m

= γ, i.e., γ ∈ F2m , a contradiction. �
We finally remark that Sa ∩ Sb = {0} or Sa = Sb, where

Sa = {x ∈ F2n : F (x) + F (x+ a) + F (a) = 0}, is also not
the typical behaviour of a nonquadratic vectorial Maiorana-
McFarland bent function F . As we observed computationally,
as a counterexample one may for instance take the function
F : F24 × F24 → F24 , F (x, y) = xg7(y), where g7 is the first
order Dickson polynomial g7(x) = x7 +x5 +x, a permutation
of F24 .

C. Differential Uniformity Conditions

In [6], the properties of the Desarguesian spread of F2n

in standard representation were employed to give conditions
for the function H(x) = (x2m+1, G(x)) from F2n to F2m ×
F2m to have small differential uniformity. The construction of
Carlet’s, the Zhou-Pott, and Taniguchi’s APN-functions, all of
the form H̃(x, y) = (xy,G(x, y)) are based on the analog
observations in bivariate form, [5], [18], [22].

Clearly, the differential spectrum of our quadratic functions
H(x) = (F (x), G(x)) is determined by the differential
behaviour of G on the solution spaces of DaF (x) = 0.
With the analysis of these solution spaces for F (x) =
Trn

m(γx2r

Trn
m(Λ(x))) in Section II-B we immediately infer

the following proposition:

Proposition 1. Let r ≥ 0 be an integer, γ ∈ F2n \ F2m and
let Λ be a linearized permutation of F2m . For a quadratic
function G(x) from F2n to F2m let H : F2n → F2m ×F2m be
given as

H(x) = (Trn
m(γx2r

Trn
m(Λ(x))), G(x)).

Then H is differentially k-uniform if and only if
- G is differentially k-uniform on F2m ;
- for all z ∈ F2m and every a ∈ Uz the function G(x) +
G(x+ a) from Uz to F2m has at most k elements in the
preimage set of any element in F2m .

We now restrict ourselves to the case that F (x) =
Trn

m(γx2r

Trn
m(x)), i.e., Λ(x) = x, and further analyse for

this case the corresponding solution spaces

Uz = Uz(r, γ,Λ) ={x ∈ F2n : Trnm(γx2r

) + zTrnm(x) = 0}.
(6)

One objective is to obtain simpler conditions for a small
differential uniformity of H(x) = (F (x), G(x)).

Lemma 3. Let r ≥ 0 be an integer, and γ ∈ F2n \ F2m .
For z ∈ F2m let Uz = Uz(r, γ,Λ) with Λ(x) = x be given
as in (6). Then U0 = βF2m , where β is the unique element
satisfying γβ2r

= 1. If α ∈ Uz , z 6= 0, then for every c ∈ F∗2m

the element cα lies in Uc2r−1z .

Proof: Obviously, for x = βy with γβ2r

= 1 and y ∈ F2m ,
we have Trnm(γx2r

) = Trn
m(y2r

) = 0. Hence x ∈ U0, and
by the dimension of U0 we have U0 = βF2m . Let α be in
Uz , i.e., γα2r

+ zα = d ∈ F2m . Hence for cα, c ∈ F∗2m ,
we have γ(cα)2r

+ (c2
r−1z)(cα) = c2

r

d ∈ F2m . Therefore,
cα ∈ Uc2r−1z . �

As a consequence of Lemma 3 we obtain the following
lemma:

Lemma 4. Let r ≥ 0 be an integer, and γ ∈ F2n \ F2m . Let
η be a primitive element of F2m , let gcd(2m − 1, 2r − 1) =

2d − 1 and Rd = {1, η, η2, . . . , η2d−2}. Then every subspace
Uz = Uz(r, γ,Λ) with Λ(x) = x given as in (6) and z 6= 0, is
of the form Uz = cUs for some c ∈ F∗2m and a unique s ∈ Rd.
In particular, if gcd(2m− 1, 2r − 1) = 1, i.e., Rd = {1}, then
for every Uz , z 6= 0, we have Uz = cU1 for some c ∈ F∗2m .
In the special case r = 0, i.e., gcd(2m−1, 2r−1) = 2m−1 and
Rd = F∗2m , the relation between the subspaces Uz described
as above dissolves, and the spread F2m ∪ {Uz : z ∈ F2m}
reduces to the standard representation of the Desarguesian
spread of F2n , i.e., {βiF2m : i = 0, . . . , 2m} where β is a
primitive (2m + 1)th root of unity.

Proof: Observe that every nonzero element z in F2m has a
unique representation as z = cηt for some t ∈ {0, 1, . . . , 2d−
2} and (2d − 1)th power c ∈ F2m . Since gcd(2m − 1, 2r −
1) = 2d − 1, any (2d − 1)th power is (2r − 1)th power, i.e.,
c = c2

r−1
1 for some c1 ∈ F∗2m . The general statement of the

lemma follows then from the fact that Uz = Uc2r−1
1 ηt = c1Uηt

as shown in Lemma 3.
In particular, if gcd(2m − 1, 2r − 1) = 1, i.e., d = 1, then
Rd = R1 = {1} and for every nonzero z we have Uz = cU1

for some c ∈ F∗2m .
If r = 0 then d = m, Rm = F∗2m and the observed relation
between the subspaces Uz reduces to the trivial statement that
Uz = Us for a unique s ∈ F∗2m . As already remarked, in this
case we obtain the standard representation of the spread. In
fact it is easily seen from (6) that for r = 0, every subspace
Uz is a multiplicative coset of F2m (plus the 0). Hence, we
only need to show that {βiF2m : i = 0, . . . , 2m} forms the
set of multiplicative cosets of F2m . Note that βiF2m = βjF2m

for some i, j ∈ {0, . . . , 2m} if and only if βi−j ∈ F2m . This
holds if and only if i−j ≡ 0 mod (2m+1), which is possible
only in the case that i = j as β is a primitive (2m + 1)th root
of unity. �

We first can recover results in [6] as the special case when
r = 0, cf. [6, Theorem 2.1, Proposition 2.3]. We give the proof
for completeness, and remark that differently than stated in
[6, Proposition 2.3], the condition in (ii) is required only for
β ∈ F2n for which β2m+1 = 1.

Corollary 1. Let H : F2n → F2m × F2m be given as
H(x) = (Trn

m(γxTrn
m(x)), G(x)) for some γ ∈ F2n \ F2m

and a quadratic function G : F2n → F2m .
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(i) H is APN (resp.,differentially k-uniform) if and only if
G(ax)+G(ax+a) = b has at most 2 (resp., k) solutions
for all b and nonzero a in F2n as a function from F2m

to F2m .
(ii) If G(x) = Trn

m(σx2i+1 + τx2i+m+1), σ, τ ∈ F2n ,
gcd(m, i) = 1, then H is APN if and only if σβ1+2i

+
τβ1−2i 6∈ F2m for all β ∈ F2n with β2m+1 = 1. If H is
not APN, then H has differential uniformity 2m.

Proof: (i) Note that for a ∈ F∗2n and F (x) =
Trn

m(γxTrn
m(x)), the solution space of F (x) + F (x + a) +

F (a) = 0 is exactly aF2m . Without loss of generality we
may assume that G(0) = 0. Then H is APN (differentially
k-uniform) if and only if G(ax) +G(ax+ a) +G(a) = 0 has
two solutions, 0 and 1, (at most k solutions) in F2m , which
gives the desired conclusion.
(ii) By Lemma 4, case r = 0, the function H is APN if and
only if for every element βF2m of the Desarguesian spread in
standard representation, the function G restricted to βF2m is
APN. Equivalently, for every (2m+1)th root of unity β ∈ F2n ,
the function G(βx) is APN as a function on F2m . For x ∈ F2m

we have

G(βx) = Trn
m(σβ2i+1x2i+1 + τβ2i+m+1x2i+1)

= Trn
m(σβ2i+1 + τβ2i+m+1)x2i+1,

which assuming that gcd(m, i) = 1 is APN if and only if
Trn

m(σβ2i+1 + τβ2i+m+1) 6= 0, i.e., σβ2i+1 + τβ2i+m+1 6∈
F2m . With β2m+1 = 1 this is equivalent to σβ1+2i

+τβ1−2i 6∈
F2m . Otherwise, G(βx) is the 0-function for some β, hence
H has differential uniformity 2m. �

Remark 2. Let W be the set of (2m + 1)th roots of unity.
If τ = 0, hence G(x) = Trn

m(σx2i+1), then the condition in
Corollary 1 (ii) reduces to σβ2i+1 6∈ F2m for all β ∈ W .
This is satisfied if σ does not lie in any of the spread elements
β−(2i+1)F2m for β ∈ W . Clearly such σ exist if and only
if {β−(2i+1) : β ∈ W} 6= W , which holds if and only if
gcd(2m + 1, 2i + 1) > 1. This applies if and only if m and i
are both odd. If m is even and τ = 0, then H in Corollary 1
(ii) always has the worst possible differential uniformity 2m.

For gcd(m, r) < m, with quadratic functions G with some
additional property, we can take advantage of the relations
between the solution spaces Uz which we showed in Lemma
4.

Corollary 2. Let G : F2n → F2m be a quadratic function
such that G(0) = 0 and for every nonzero c ∈ F2m we have
G(cα) = K(c)G(α) for some nonzero constant K(c) ∈ F2m

(depending on c) and every α ∈ F2n . For an integer r ≥ 0
and γ ∈ F2n \ F2m , let F (x) = Trn

m(γx2r

Trn
m(x)), and let

Uz = Uz(r, γ,Λ) be defined as in (4). If gcd(2m−1, 2r−1) =
2d − 1, then H(x) = (F (x), G(x)) is differentially k-uniform
if and only if

(i) G is differentially k-uniform on F2m ;
(ii) G is differentially k-uniform as a function from U0 to

F2m ;

(iii) for every 0 ≤ t ≤ 2d − 2, the function G is differentially
k-uniform as a function from Uηt to F2m , where η is a
fixed primitive element of F2m .

If gcd(2m−1, 2r−1) = 1, then Condition (iii) reduces to the
condition that G is differentially k-uniform as a function from
U1 to F2m .

Proof: For a ∈ F∗2m we require that G(x) + G(x +
a) + G(a) = 0 has at most k solutions in F2m , i.e., G is
differentially k-uniform as a function on F2m . For an element
a ∈ Uz= Uc(r, γ, x) for some z ∈ F2m , the solution space
of F (x) + F (x + a) + F (a) = 0 is precisely Uz . Hence we
require that the equation G(x) +G(x+ a) +G(a) = 0 has at
most k solutions in Uz . For z = 0 this is Condition (ii) in the
corollary.
If z 6= 0, then by Lemma 4, Uz = cUηt for a unique
0 ≤ t ≤ 2d − 2 and c ∈ F∗2m . The condition that
G(x) + G(x + a) + G(a) = 0 has at most k′ solutions as
a function from Uz to F2m for all nonzero a ∈ Uz can then
be rewritten that G(cx) + G(c(x + a)) + G(ca) = 0 has at
most k′ solutions as a function from Uηt to F2m for all nonzero
a ∈ Uηt (k′ may depend on a and k′ ≤ k). By our assumption,
we have G(cx) +G(c(x+ a)) = K(c)(G(x) +G(x+ a)) for
a nonzero constant K(c) ∈ F2m . Hence G(cx) +G(c(x+ a))
is k′-to-1 from Uηt to F2m if and only if G(x) +G(x+a) is.
The last statement in the corollary follows immediately. �

Remark 3. The condition in Corollary 2 is satisfied by every
monomial G (in the sense that G is a relative trace of a
monomial). But also the binomial G in Corollary 1 (ii), which
has been used in [6] for the case that F (x) = x2m+1, i.e.,
r = 0, satisfies the condition for all c ∈ F2m . Also note that the
condition G(cα) = K(c)G(α) for all c ∈ F2m in the above
corollary is stronger than needed, and may be replaced by

G(cα) = K(c)G(α) for all c ∈ {1, η, . . . , η
2m−1

2d−1
−1}, where

η is a primitive element of F2m .

III. DIFFERENTIAL UNIFORMITY AND NONLINEARITY
RESULTS

In this section we analyse functions H(x) = (F (x), G(x))
where F is a Maiorana-McFarland bent function F (x) =
Trn

m(γx2r

Trn
m(x)), and G is a Gold function G(x) =

Trn
m(σx2i+1). We also add some results on the case that

G(x) = Trn
m(σx2i+1 + τx2i+m+1). We start with the differ-

ential uniformity of H , in the second part of this section we
will also investigate the nonlinearity.

The case r = 0 is covered by Corollary 1(ii). The form
of the binomial G(x), which, restricted to the elements of the
corresponding spread, is the Gold APN-function, indicates that
the APN-functions H are a version of Carlet’s function in [5],
which is given in bivariate form. They all have the classical
spectrum, we refer to [1].

Besides from the case when r = 0, in the light of Corollary
2, the case that gcd(2m−1, 2r−1) = 1 seems most promising
to construct functions with small differential uniformity. In this
case, the differential uniformity of H depends on the behaviour
of G on only three elements of the spread, F2m , U0 = βF2m ,
where γβ2r

= 1, and U1. For a given G, the conditions (i), (ii)
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in Corollary 2 for the spread elements F2m and U0 look sim-
pler than the condition for U1. With the argument used in the
proof of Corollary 1 for G(x) = Trn

m(σx2i+1+τx2i+m+1)) we
infer that H(x) is differentially k-uniform (for some k < 2m)
if and only if
(I) σ + τ 6∈ F2m and σβ2i+1 + τβ2i+m+1 6∈ F2m , where β

is the unique element such that γβ2r

= 1;
(II) G(x) +G(x+ a) +G(a) = 0 has at most k solutions in

U1 for every nonzero a ∈ U1.
To investigate the differential uniformity of H , we transform

(II) into a condition for a function from F2m to F2m . As {1, γ}
is a basis for F2n over F2m , we can write

γ2r+1 = a1γ + a0 for some a1, a0 ∈ F2m .

Let c ∈ F2m such that c2
r

= a1. Define ψ on F2n by

ψ(T ) := T + (γ + c)T 2r

. (7)

Note that since γ ∈ F2n \ F2m , we have γ + c ∈ F2n \ F2m .

Proposition 2. ψ is an isomorphism from F2m to U1.

Proof: We recall that |U1| = 2m. Therefore, it is enough to
show that ψ is one-to-one on F2m and ψ(F2m) ⊆ U1.

Note that ψ(x) = 0 if and only if x = 0 or (c+ γ)x2r−1 +
1 = 0, i.e., x2r−1 = (c + γ)−1. Since (c + γ)−1 6∈ F2m , for
x ∈ F2m , we have ψ(x) = 0 if and only if x = 0, which
proves that ψ is one-to-one on F2m .
ψ(x) ∈ U1 if and only if ψ(x) + γψ(x)2r ∈ F2m . By

definition of ψ, we have the following equalities:

ψ(x) + γψ(x)2r

= x+ (c+ γ)x2r

+ γ (x+ (c+ γ)x2r

)2r

= x+ cx2r

+ γc2
r

x22r

+ γ2r+1x22r

= x+ cx2r

+ (γa1 + γ2r+1)x22r

= x+ cx2r

+ a0x
22r

.

Note that we have used the fact that c2
r

= a1 in the third
equality and that γ2r+1 = γa1+a0 in the fourth equality. Since
x, c, a0 ∈ F2m , we conclude that ψ(x) + γψ(x)2r ∈ F2m . �

With Proposition 2 we obtain the following corollary.

Corollary 3. For γ ∈ F2n \ F2m and an integer r with
gcd(r,m) = 1 let H(x) = (Trn

m(γx2r

Trn
m(x)), G(x)) with

G(x) = Trn
m(σx2i+1). Let γ2r+1 = a1γ + a0, a0, a1 ∈ F2m ,

and c ∈ F2m such that c2
r

= a1, and let ψ(x) = x+(γ+c)x2r

be the isomorphism in Proposition 2. Then H is differentially
k-uniform (for some k < 2m) if and only if
(a) σ 6∈ F2m and σγ(−2i−1)2−r 6∈ F2m ;
(b) for every nonzero b ∈ U1 and for the function

Trnm(σb(c+ γ)2i

)x2r+i

+ Trnm(σb)x2i

+ Trnm(σb2
i

(c+ γ))x2r

+ Trnm(σb2
i

)x (8)

on F2m , the preimage of an element in F2m has size at
most k.

Proof: For τ = 0 the Condition (I) above reduces to the
condition that σ 6∈ F2m and σβ2i+1 6∈ F2m , where β is the
unique element such that γβ2r

= 1. Expressing β in terms of
γ, Condition (a) follows.

With Proposition 2, Condition (II) above can be rewritten
as G(ψ(x) + ψ(a)) +G(ψ(x)) +G(ψ(a)) = 0 has at most k
solutions in F2m for every nonzero a ∈ F2m , i.e., the function
G(ψ(x)) from F2m to F2m is differentially k-uniform. With
ψ(a) = b ∈ U1 we have

G(ψ(x) + ψ(a)) +G(ψ(x)) +G(ψ(a))

= Trnm

(
σ
(
bψ(x)2i

+ b2
i

ψ(x)
))

= Trnm

(
σ

(
b
(
x+ (c+ γ)x2r

)2i

+ b2
i
(
x+ (c+ γ)x2r

)))
= Trnm(σb(c+ γ)2i

)x2r+i

+ Trnm(σb)x2i

+ Trnm(σb2
i

(c+ γ))x2r

+Trnm(σb2
i

)x,

which completes the proof. �

Lemma 5. Let γ ∈ F2n \ F2m and let r and i be integers
relatively prime to m.
(i) If i 6= r, then the polynomial in (8) does not vanish.

(ii) If i = r and γ−1 6∈ U2r−1
1 , then the polynomial in (8)

does not vanish.

Proof: We may assume that σ 6∈ F2m so that Condition (a) in
Corollary 3 can be satisfied, and first consider the Case (i) that
i 6= r. Then it suffices to show that Trnm(σb) and Trnm(σb2

i

)
can not be both zero as this shows that the polynomial in (8)
does not vanish. Suppose that Trnm(σb) = Trnm(σb2

i

) = 0,
i.e., σb, σb2

i ∈ F2m . This holds if and only if σ2i

b2
i

, σb2
i ∈

F2m , which implies that σ2i−1 ∈ F2m . Since gcd(i,m) =
1, this holds if and only if σ ∈ F2m , which contradicts our
assumption.
Case (ii): The polynomial in (8) is then of the form

Trnm(σb(c+γ)2r

)x22r

+(Trnm(σb+σb2
r

(c+γ)))x2r

+Trnm(σb2
r

)x.
(9)

We recall that γ2r+1 = a1γ+a0 and c2
r

= a1. Then we have
the following equalities:

σb(c+ γ)2r

= σbc2
r

+ σbγ2r

= σba1 +
σbγ2r+1

γ

= σba1 +
σb

γ
(a1γ + a0) =

σba0

γ
. (10)

By definition of U1, we also have

σb2
r

=
σb

γ
+
σe

γ
, (11)

where e ∈ F2m such that b + γb2
r

= e. Moreover by our
assumption, e is not 0, otherwise γ−1 = b2

r−1 ∈ U2r−1
1 .

Therefore, by Equation (10), we conclude that the coefficient
of x22r

in Equation (9) is zero if and only if σb/γ ∈ F2m . In
this case, we have σ/γ 6∈ F2m since U1 ∩ F2m = {0}, i.e., by
Equation (11) the coefficient of x can not be zero. �

We remark that if r is odd, hence gcd(2r − 1, 2n − 1) = 1,
we can exchange the condition in Lemma 5(ii) with γ−v 6∈ U1

where v(2r − 1) ≡ 1 mod (2n − 1).
Lemma 5 in particular implies that H will never possess the

worst case differential uniformity 2m, as long as Condition (a)
is satisfied. As seen in Corollary 1, the worst case differential
uniformity 2m occurs frequently for r = 0 and G(x) =
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Trn
m(σx2i+1), by Remark 2 in any case whenever m is even.

Applying the following lemma on the number of solutions
of certain linearized polynomials, for many combinations of
r > 0 and i we can infer upper bounds for the smallest k for
which H is differentially k-uniform.

Lemma 6. Let r be an integer with gcd(r,m) = 1 and l be
a linearized polynomial of the form

l(x) = C0x+C1x
2r

+C2x
22r

+ · · ·+Cdx
2dr

∈ F2m [x] (12)

of degree 2dr. Then l has at most 2d solutions in F2m .

For the proof we refer to [19].

Theorem 4. Let r be an integer with gcd(r,m) = 1, i = dr,
gcd(d,m) = 1, let γ ∈ F2n \ F2m , and in the case of i = r,
let γ−1 6∈ U2r−1

1 . Then

H(x) =
(

Trnm

(
γx2r

(x+ x2m

)
)
,Trnm

(
σx2i+1

))
is differentially 2d+1-uniform if and only if σ, σγ−(2i+1)2−r 6∈
F2m . In particular if i = r, then H is differentially 4-uniform.

Proof: By assumption, Condition (a) in Corollary 3 is
satisfied. By Lemma 5, the linearized polynomial in (8) in
Condition (b) does not vanish. Observe that with i = dr, the
linearized polynomial in (8) is of the form (12) and of degree
2(d+1)r. The claim follows then from Lemma 6. 2

Remark 4. The condition gcd(d,m) = 1, i.e., gcd(i,m) =
1, is required to guarantee that the polynomial in (8) does
not vanish (see Lemma 5). However, gcd(i,m) = 1 is not
necessary for the polynomial in (8) not to vanish. Theorem 4
is hence also applicable more general for arbitrary i under
the assumption that the polynomial in (8) does not vanish.

As we can see, for i = r, the function H is differentially
4-uniform for most choices of γ, σ ∈ F2n . With such a choice
one can in fact obtain differentially 4-uniform functions of the
same shape for infinitely many extensions of F2n .

Corollary 4. Let γ ∈ F2n \ F2m such that γ−1 6∈ U2r−1
1 . For

some r with gcd(r,m) = 1, let

H(x) =
(

Trnm

(
γx2r

(x+ x2m

)
)
,Trnm

(
σx2r+1

))
be differentially 4-uniform. Then for any positive odd integer
s with gcd(s, r) = 1,

Hs(x) =
(

Trnsms

(
γx2r

(x+ x2ms

)
)
,Trnsms

(
σx2r+1

))
is also differentially 4-uniform. If H is differentially 4-uniform
but not APN, so is Hs.

Proof: By Theorem 4, we first have to show that
γ, σ, σγ−(2r+1)2−r 6∈ F2ms . If γ ∈ F2ms , then γ ∈ F2n ∩
F2ms = F2m , which gives a contradiction. Similarly, σ and
σγ−(2r+1)2−r

can not lie in F2ms . Hence Hs is differentially
4-uniform. Note that

U1 ⊆ {x ∈ F2ns |x+ γx2r

∈ F2ms} =: U
(s)
1 ,

and the map ψ given in Equation (7) is an isomorphism
from F2ms to U

(s)
1 . If H is not APN, then there exists

a ∈ F2m ⊆ F2ms such that the polynomial in (8) has exactly
4 zeros in F2m . Since Trnsms(α) = Trnm(α) for each α ∈ F2n ,
we conclude that Hs(x+ψ(a)) +Hs(x) +Hs(ψ(a)) = 0 has
also exactly 4 solutions. �

We finish this section with results on the nonlinearity. Recall
that an APN-function that has only bent and semibent com-
ponents is commonly called an APN-function with classical
spectrum. Several of the known (quadratic) differentially 4-
uniform functions have the same property, i.e., all component
functions are bent or semibent.

Remark 5. By Proposition 22 in [3], for every differentially 4-
uniform function F in even dimension n, which only has bent
and semibent component functions, the number of bent com-
ponents is determined by the number of 4’s in the differential
spectrum. In particular, if F is APN, then F has 2(2n− 1)/3
bent and (2n − 1)/3 semibent components. If on the other
hand F has only 0 and 4 in the differential spectrum, then all
component functions are semibent.

In the light of Remark 5, we use the term “functions with
classical spectrum” more general also for differentially 4-
uniform functions with only bent and semibent components.

We will use that a quadratic Boolean function f : Vn → F2

is always s-plateaued for some integer s with n+ s even. The
integer s is the dimension of the linear space of f defined as
Λf = {a ∈ Vn : f(x) + f(x+ a) is constant}. For the proof
of Theorem 5 we will use Proposition 2.4 in [1], which is a
generalization of Lemma 6 above:

Lemma 7. Let r be an integer with gcd(r,m) = 1 and let
f1(X,Y ), f2(X,Y ) be linearized polynomials of the form

C0X +D0Y + C1X
2r

+D1Y
2r

+ · · ·+ CdX
2dr

+DdY
2dr

∈ F2m [X,Y ], of degree 2d1r and 2d2r, respectively. If f1 and
f2 do not have a common factor, then

|{(x, y) ∈ F2m × F2m : f1(x, y) = f2(x, y) = 0}| ≤ 2d1+d2 .

In the following theorem, besides from i = r, which
guarantees that H is differentially 4-uniform, we suppose that
m is odd, and γ and σ are in different multiplicative cosets
of F2m . We will use in the proof that there exists an element
ρ ∈ F2n such that σρ ∈ F2m and γρ 6∈ F2m if and only if
σγ−1 6∈ F2m .

Theorem 5. Let γ, σ ∈ F2n \ F2m , where n = 2m, m odd,
and suppose that σγ−1 6∈ F2m and γ2r

σ−(2r−1) 6∈ F2m . Then
for an integer r relatively prime to m,

H(x) =
(

Trnm

(
γx2r

(x+ x2m

)
)
,Trnm

(
σx2r+1

))
has the classical spectrum.

Proof: For (η, µ) ∈ F2m × F2m , let

Hη,µ(x) = Trm1

(
ηTrnm

(
γx2r

(x+ x2m

)
)

+ µTrnm

(
σx2r+1

))
be the component function of H corresponding to (η, µ).

If µ = 0, then Hη,µ(x) = Trn1 (ηγx2r

(x+ x2m

)), which is
bent since ηγ 6∈ F2m .
If η = 0, then Hη,µ reduces to the Gold function Hη,µ(x) =
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Trn1 (µσx2r+1). With the standard calculations for the Gold
function, with gcd(m, r) = 1, we see that Hη,µ is bent if
µσ is not a (2r + 1)th power in F2n , and otherwise Hη,µ is
semibent. Hence we can assume that ηµ 6= 0.

Let ζ ∈ F2n such that σζ2r ∈ F2m and γζ2r 6∈ F2m . As
σζ2r ∈ F2m implies that ζ 6∈ F2m , we have F2n = F2m(ζ),
say ζ+ζ2m

= α for some nonzero α ∈ F2m . We can uniquely
write x = X + ζY for some X,Y ∈ F2m . Then we have

x+ x2m

= X + ζY + (X + ζY )2m

= (ζ + ζ2m

)Y = αY.

Define

F (X,Y ) := F (X + ζY ) = Trnm

(
γα(X2r

+ ζ2r

Y 2r

)Y
)

G(X,Y ) := G(X + ζY ) = Trnm

(
σ(X + ζY )2r+1

)
= Trnm

(
σ(X2r+1 + ζY X2r

+ ζ2r

Y 2r

X + ζ2r+1Y 2r+1)
)
.

For (η, µ) ∈ F2m × F2m , we denote by Hη,µ the component
function of H corresponding to (η, µ). That is,

Hη,µ(X,Y ) = Trm1 (ηF (X,Y ) + µG(X,Y )) .

To determine the nonlinearity, we have to determine the linear
space Λη,µ of Hη,µ. Recall that Λη,µ consists of the elements
(u, v) ∈ F2m × F2m such that

Hη,µ(X + u, Y + v) +Hη,µ(X,Y ) +Hη,µ(u, v) = 0 (13)

for all (X,Y ) ∈ F2m×F2m . Equation (13) holds for all (X,Y )
if and only if

Trn1

(
ηγα(vX2r

+ u2r

Y + ζ2r

vY 2r

+ ζ2r

v2r

Y )

+ µσ(uX2r

+ u2r

X + ζvX2r

+ ζu2r

Y + ζ2r

v2r

X + ζ2r

uY 2r

+ ζ2r+1vY 2r

+ ζ2r+1v2r

Y )
)

= 0 (14)

for all (X,Y ). Note that we used the facts that η, µ ∈ F2m and
Trn1 (x) = Trm1 (Trnm(x)) to obtain Equation (14). By setting
η̃ := ηγα and µ̃ := µσ, we observe that Equation (14) is
equivalent to

Trn1

(
(η̃v + µ̃u+ µ̃ζv)X2r

+ (µ̃u2r

+ µ̃ζ2r

v2r

)X
)

+ Trn1

(
(η̃ζ2r

v + µ̃ζ2r

u+ µ̃ζ2r+1v)Y 2r

+ (η̃u2r

+ η̃ζ2r

v2r

+ µ̃ζu2r

+ µ̃ζ2r+1v2r

)Y
)

= 0

for all (X,Y ), which applies if and only if

Trm1

(
Trnm(η̃v + µ̃u+ µ̃ζv + (µ̃u2r

+ µ̃ζ2r

v2r

)2r

)X2r
)

= 0,

and

Trm1

(
Trnm(η̃ζ2r

v + µ̃ζ2r

u+ µ̃ζ2r+1v + (η̃u2r

+ η̃ζ2r

v2r

+ µ̃ζu2r

+ µ̃ζ2r+1v2r

)2r

)Y 2r
)

= 0

for all (X,Y ). This holds if and only if

Trnm

(
η̃v + µ̃u+ µ̃ζv + (µ̃u2r

+ µ̃ζ2r

v2r

)2r
)

= 0, and

Trnm

(
η̃ζ2r

v + µ̃ζ2r

u+ µ̃ζ2r+1v + (η̃u2r

+ η̃ζ2r

v2r

+ µ̃ζu2r

+ µ̃ζ2r+1v2r

)2r
)

= 0.

Therefore, (u, v) ∈ Λη,µ if and only if (u, v) is a zero of the
polynomials

Trnm(η̃ + µ̃ζ)V + Trnm(µ̃)U + Trnm(µ̃2r

)U22r

+ Trnm(µ̃2r

ζ22r

)V 22r

, and

Trnm((η̃ + µ̃ζ)ζ2r

)V + Trnm(µ̃ζ2r

)U + Trnm((η̃ + µ̃ζ)2r

)U22r

+ Trnm((η̃ + µ̃ζ)2r

ζ22r

)V 22r

.

Recall that η̃ ∈ γF2m and µ̃ ∈ σF2m . Since σζ2r ∈
F2m and γζ2r 6∈ F2m , we have Trnm(µ̃ζ2r

) = 0 and
Trnm(η̃ζ2r

) 6= 0. Note that since Trnm(µ̃ζ2r

) = 0 we can not
have Trnm(µ̃ζ2r+1) = 0 or Trnm(µ̃2r

ζ22r+2r

) = 0, otherwise
we would have ζ ∈ F2m since gcd(r,m) = 1. Note
that Trnm(µ̃ζ2r

) = Trnm(µ̃2r

ζ2r

) = 0 holds if and only if
µ̃ζ2r

, µ̃2r

ζ2r ∈ F2m . Equivalently, this holds if and only if
µ̃2r

ζ22r

, µ̃2r

ζ2r ∈ F2m . This implies that ζ2r(2r−1) ∈ F2m .
Then this is equivalent to ζ ∈ F2m as gcd(r,m) = 1, which
is a contradiction. Hence, we conclude that Trnm(µ̃2r

ζ2r

) 6= 0
if Trnm(µ̃ζ2r

) = 0.
With η, µ 6= 0 we have η̃, µ̃ 6= 0. Moreover, note that then

η̃, µ̃ 6∈ F2m , and hence, Trnm(η̃)Trnm(µ̃) 6= 0. Consequently,

L1(U, V ) = Trnm(η̃ + µ̃ζ)V + Trnm(µ̃)U + Trnm(µ̃)2r

U22r

= 0, and

L2(U, V ) = Trnm((η̃ + µ̃ζ)ζ2r

)V + Trnm(η̃ + µ̃ζ)2r

U22r

+ Trnm((η̃ + µ̃ζ)ζ2r

)2r

V 22r

= 0.

(a) Suppose that η̃+ µ̃ζ ∈ F2m . Now we show that η̃+ µ̃ζ 6=
0. Suppose η̃+µ̃ζ = 0. This implies that γ(σζ)−1 ∈ F2m ,
i.e., γ2r

(σζ)−2r

= γ2r

σ−(2r−1)(σζ2r

)−1 ∈ F2m . Since
σζ2r ∈ F2m , this implies that γ2r

σ−(2r−1) ∈ F2m , which
is a contradiction. Then we have (η̃+ µ̃ζ)ζ2r 6∈ F2m and

Trnm(µ̃)U + Trnm(µ̃)2r

U22r

= 0, and

Trnm((η̃ + µ̃ζ)ζ2r

)V + Trnm((η̃ + µ̃ζ)ζ2r

)2r

V 22r

= 0.

Note that there are at most 2 solutions for U and for
V since gcd(2r,m) = 1 by Lemma 6. This shows
that the number of solutions is at most 4. Therefore,
the corresponding component function is either bent or
semibent.

(b) Suppose that η̃ + µ̃ζ 6∈ F2m , i.e., Trnm(η̃ + µ̃ζ) 6= 0. If
(η̃ + µ̃ζ)ζ2r ∈ F2m , then L1(U, V ) = L2(U, V ) = 0 if
and only if (U, V ) = (0, 0). That is, the corresponding
component function is bent. Therefore, we can suppose
that η̃ + µ̃ζ, (η̃ + µ̃ζ)ζ2r 6∈ F2m . Let X1 and X2 be two
curves defined by L1 and L2, respectively. Then X1 and
X2 have unique points at infinity, namely (0 : 1 : 0)
and (1 : α : 0), respectively, where α2r

= Trnm(η̃ +
µ̃ζ)/Trnm((η̃+ µ̃ζ)ζ2r

). That is, they have distinct points
at infinity; and hence, they do not have any common
component. Therefore, L1 and L2 do not have a common
factor. Then by Lemma 7, we conclude that the system
has at most 4 solutions as gcd(2r,m) = 1. That is,
the corresponding component function is either bent or
semibent. �

For the case i = r and m odd, we can now summarize the
nonlinearity and differential uniformity results as follows:
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Theorem 6. Let γ, σ ∈ F2n , where n = 2m for an
odd integer m, and r be a positive integer relatively prime
to m. If γ, σ, σγ−(2r+1)2r

, σγ−1, γ2r

σ−(2r−1) 6∈ F2m and
γ−1 6∈ U2r−1

1 , then

H(x) =
(

Trnm

(
γx2r

(x+ x2m

)
)
,Trnm

(
σx2r+1

))
is differentially 4-uniform and has the classical spectrum.

We finally remark that using Lemma 7 which depends on
Bezout’s theorem is also capable to deduce similar results
for functions H using the binomial G(x) = Trn

m(σx2i+1 +
τx2m+i+1), τ 6= 0, instead of the monomial. For instance with
the same method one can show the following theorem, which
we state without giving the details of the proof.

Theorem 7. Let gcd(r,m) = 1, γ ∈ F2n \ F2m , τ ∈
F∗2m such that τ−1 6= Trnm(γ−1), and σ = γ + τ . Then
H(x) = (Trn

m(γx2r

Trn
m(x)),Trn

m(σx2r+1 + τx2m+r+1)) is
differentially 22 gcd(m,2)-uniform, and any component function
of H is at most 2 gcd(2,m)-plateaued. In particular, if m is
odd, then H(x) is differentially 4-uniform and has the classical
spectrum.

IV. COMPUTATIONAL RESULTS AND PERSPECTIVES

In this section we first add some computational results
obtained by MAGMA. We then conclude the paper with some
questions and remarks.

APN-functions of the form
H(x) = (Trn

m(γx2r

Trn
m(x)),Trn

m(σx2i+1 + τx2m+i+1)):

For n = 6, for both, r = 0 and r = 1, there are 2352
combinations of σ and τ that give APN-functions H (for γ
w.l.o.g. we chose a primitive element of F26 ). As also the
form of G indicates, for r = 0, all APN-functions belong to
the class introduced in Carlet [5], the bivariate form of the
construction in [6]. The Γ-rank of all these APN-functions
is 1146, which confirms this observation. All APN-functions
for r = 1 have Γ-rank 1166 and ∆-rank 96, the same as the
function in Taniguchi [18], hence they belong to the same
class. (For the definitions of the Γ-rank and of the ∆-rank,
and for the Γ-rank and the ∆-rank for all classes of quadratic
APN-functions in dimension 6 we refer to [10].)

For r = 0, as one expects, many combinations of σ, τ yield
APN-functions also for larger n, belonging to the infinite
class of APN-functions in [5]. The number seems smaller for
r 6= 0. However until n = 30 we confirmed the existence
of APN-functions H for some r > 0 (our calculations use
r = 1, 2).

Differential uniformity for
H(x) = (Trn

m(γx2r

Trn
m(x)),Trn

m(σx2i+1)):

Though, at least in small dimension, many of these functions
with i 6= r are also differentially 4-uniform, we confirmed
that for i = dr, d 6= 1, there are functions H that are only
differentially 2d+1-uniform, hence by Theorem 4 they take
on the largest possible value. For instance, for m = 4, r = 1,
i = 2 (Remark 4 then applies), there are combinations of
γ, σ (satisfying the conditions in Theorem 4), for which H is

differentially 8-uniform.

Nonlinearity for H(x) = (Trn
m(γx2r

Trn
m(x)),Trn

m(σx2r

)):

By Theorem 5, H has only bent and semibent components
when m is odd (and σγ−1 6∈ F2m and γ2r

σ−(2r−1) 6∈ F2m ).
For even m we observe that many of the functions which by
Theorem 4 are differentially 4-uniform, have bent semibent
and 4-plateaued components.

Our analysis of the properties of Trn
m(γx2r

Trn
m(Λ(x))) in

connection with being a component of an (n, n)-functions for
arbitrary linearized permutations Λ, may help to find further
interesting results on classes of (n, n)-functions. Recall also
that the function G to be combined with Trn

m(γx2r

Trn
m(Λ(x)))

is chosen in order to satisfy the condition G(cα) = K(c)G(α)
for all c ∈ F∗2m and α ∈ F2n in Corollary 2. One may attempt
to investigate combinations with other choices for G, perhaps
satisfying a similar condition.

It would certainly be interesting to find further infinite
classes of APN-functions. As mentioned above, computa-
tionally we found APN-functions of the form H(x) =
(Trn

m(γx2r

Trn
m(x)),Trn

m(σx2i+1 + τx2m+i+1)) and r > 0 for
all n ≤ 30. In this connection we remark that a plateaued
APN-function in even dimension n with a nonclassical spec-
trum must have even more than 2(2n − 1)/3 bent component
functions. Starting with vectorial bent functions which allow
nontrivial extensions to (n, n)-functions with a large number
of bent components, may be a promising strategy to obtain
such APN-functions.

The function Trn
m(γx2r

Trn
m(Λ(x))) is the most ob-

vious vectorial bent function contained in the function
x2r

Trn
m(Λ(x)) on F2n with 2n−2m bent component functions.

But there are other ones, some of which may not even
be Maiorana-McFarland bent functions, see also Question 1
in [15]. A similar analysis for those functions would cer-
tainly be more difficult, but being obtained from that special
class of (n, n)-functions with the maximal number of bent
components, some of them may share interesting properties.
A general question in this direction is to characterize the
quadratic bent functions F for which the collection of the
solutions spaces for DaF (x) = 0, a ∈ F∗2n forms a spread of
F2n .

As we saw, the spread for Trn
m(γx2r

Trn
m(Λ(x))) reduces to

the Desarguesian spread in standard representation if r = 0
and Λ(x) = x. To describe properties of the spreads in general,
and the relation between the spreads when r or Λ varies, seems
an interesting problem. Whether all our considered spreads are
Desarguesian spreads seems not to have an obvious answer.
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