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Abstract 

Long armature linear motor is an example of a distributed control system with a large number of 
motor drivers spread in a linear fashion. Having multiple movers on the same motor increases the 
level of complication while adding a new challenge to the control and network aspects of it. 

In such a system, there is no room for error on the communication between nodes, as the motor 
drivers must be accurate despite delay and packet loss. Although delay and packet loss in 
communication networks are almost unavoidable, reducing these disadvantages by choosing a 
suitable network topology with accompanying communication protocol is possible. 

In this thesis, Ethernet, CANBUS and EtherCAT protocols have been tested for their suitability for 
a reliable real-time communication protocol to be used on control systems while being implemented 
on three different network topologies taking three different approaches to the same problem. These 
topologies are introduced for the communication of motor drivers and sensor nodes of long 
armature linear motor with multiple elevator cars. 

Topology G with its global approach, is a system containing motor drivers spread linearly, a main 
computer to plan and coordinate the motion of the linear motor movers and a gateway computer in 
between. The structure of this topology, with its simplicity introduces a bandwidth problem having 
over a certain number of motor drivers. Due to this, some of the sensor nodes messages collide and 
packets drop while running multiple elevator cars simultaneously. 

Unlike Topology G, Topology L is a hierarchical system with a more localized approach, consisting 
of motor drivers, gateway computers that group motor drivers into small networks, and a main 
computer connecting to every gateway computer with an outer network. Thanks to the structure of 
this topology, increasing the number of motor driver nodes is not increasing each individual 
network load. 

Finally, Topology R with an unorthodox method uses a completely different network structure yet, 
successfully utilizes gateways to group motor drivers and other nodes, similar to Topology L does, 
so that increasing the number of motor drivers does not affect the overall load on the network. 

The proposed topologies are simulated on MATLAB Simulink using TrueTime, a toolbox for 
simulation of distributed real-time control systems. As creating such a system with multiple 
networks and many nodes connected to those networks is a re-iterative task, instead of using 
Simulink as its graphical user interface (GUI) with drag and drop method, we used MATLAB 
scripts to create and modify the Simulink models which also allowed us to easily change parameters 
and test various cases recording and analyzing the responses of the system. 

The advantages and disadvantages of all topologies are explained in detail with examples of some 
test cases, comparing the performance of them based on reliability and delay amount. The results 
indicate that when compared the three, Topology L with a local approach and Topology R with a 
ring approach have a better performance with higher reliability and nominal delay than Topology 
G. Therefore, either Topology L or Topology R is suggested for the communication of motor 
drivers of long armature linear motor with multiple elevator cars. 
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1 - Introduction 

Since late 1800s, when the first skyscraper was introduced, architects and engineers are 

creating more useful spaces within the limited area of land by designing taller buildings 

allowing more people to live and work in. The ten-story high Home Insurance Building in 

Chicago, which was built in 1884-85 is considered as the first skyscraper today, which 

initiated the building of taller buildings movement. This led to another problem of reaching 

from one floor to the other with less effort and time which was challenging especially as 

these buildings got taller and taller. It was around same time Elisha Otis introduced the 

safety elevator that allowed easy and safe movement from one floor to the other for 

passengers and other heavy weight goods. 

In very tall skyscrapers, one of the bigger challenges is the average amount of time it takes 

for an individual to get from one floor to the other such that the height of the building does 

not become illogical [1], [2], [3]. To achieve this, the number of elevators can be increased, 

but this means every elevator added will be stealing precious space from the building on 

every floor which could be utilized for other things. One way to tackle these problems is 

to use multiple elevator cars on the same elevator shaft. Although implementing this idea 

on traditional cable driven elevators are mechanically complicated and inefficient, with the 

introduction of linear motors, along the whole elevator shaft, driving each separate elevator 

car, there will be no physical connections such as cables reaching to the top of the building, 

eliminating the mechanical complications [2], [1], [3], [4], [5]. This cableless elevator car 

introduces some other challenges of its own; electrical connections such as position 

sensors, power supply and call buttons all needing to be implemented externally [6], [7], 

[8]. With these limitations considered, the best design option is to use long armature linear 

motors where the stator contains the coils and the movers contain the permanent magnets.  

Having the coils on the stator side allows easier electrical connections, equipped with 

special motor drivers they can also allow smooth braking and even a low precision position 

sensing which is very useful to track the elevator cars’ position and speed while moving in 

higher speeds. However, this does not apply for lower speed, high precision measurements, 

for that purpose, optical linear encoders are used and they are connected to the same 



2 

network as motor drivers so that the position data can be transferred in a very short amount 

of time.  

We approach this multi car elevator system with different network topologies to test which 

are always suitable and reliable. In large buildings with multiple cable-driven elevators, a 

network tries to minimize the waiting time for any passenger at any given time by arranging 

which elevator car to be sent to which floor and after that, the large electrical motor at the 

top or the bottom of the building use set of pulleys and counterweights to move the elevator 

car to where it needs to go. It is an electrically simple but mechanically more complicated 

system. When the cable restrain is removed the number of elevator shafts can be decreased 

without necessarily decreasing the number of elevator cars. A similar network handles the 

same task of deciding which elevator car to be sent to which floor to minimize the amount 

of time the passengers wait. But the main difference is, rather than having a single motor 

driving the car up or down, there are multiple sections that compose a long armature linear 

motor throughout the whole building. This, while allowing for almost no mechanical 

complication such as pulley sets and cables, introduces the challenge of driving consecutive 

motors in perfect harmony, one after the other for a smooth and steady ride.  

In this thesis, we will concentrate on simulations of different network topology models on 

MATLAB Simulink based simulator, TrueTime. TrueTime allows us to model and 

simulate real-time systems and networks topologies which can use different 

communication protocols. By using parametric MATLAB scripts and functions, we can 

create network topologies with various options and variables that we can play to fine tune 

as we wish. 
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2 - Background 

In this section, existing network topologies and communication protocols that are being 

used with those topologies will be given followed by, proposed topologies and protocols 

for our specific case used in this thesis as well as their advantages and disadvantages. 

2.1 – Existing Network Topologies 

Network topologies are classified into two basic categories, physical topologies and logical 

topologies [9]. A physical topology is the transmission medium layout to link devices in 

physical world such as cabling layout, location of nodes and the links in between those 

nodes and other devices. A logical topology, however, is the way that the data passes 

through the network from one device to the next regardless of the physical interconnection 

of the devices. A network does not necessarily have the same logical topology as its 

physical topology. In this thesis we will be mostly talking about the logical topology of the 

network therefore it will be mentioned as network topology as shortly.  

There are many various topologies and standards already existing, which are created to 

solve earlier challenges or problems in communication systems through years. In this 

section, we checked the most common network topologies and that helped us to decide on 

which network topologies are most appropriate for our system. 

2.1.1 – Point-to-Point (Telecommunication) 

It is the most basic link between two endpoints. There can be different versions depending 

on how it is set up but we can divide into two types, permanent point-to-point; there is one 

and only one connection between two specific nodes at all times, and on-demand point-to-

point; where there can be more than two nodes but any link only connects two nodes to 

each other and for one of these nodes to be able to connect to a different node, the old link 

needs to be removed. The best example for these kinds of networks are phone lines. There  
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used to be telephone centrals which connects the caller’s line to the person who is being 

called and once the phone call ends the line is removed until a new call. Telephone centrals 

let their place to automation, but the main idea is still viable. 

 

2.1.2 – Daisy Chain 

In a daisy chained network all nodes are connected in a series way, and if a message is 

intended for a specific node, it is transmitted one by one from the source to that node 

bouncing off every node in between. A daisy chained network can be in two different 

forms: linear and ring. In a linear topology every node is connected only to the next one, 

and the nodes that connect to only one node are at each end of the network. By simply 

connecting those ends to each other in a linear topology, we get a ring topology. On a ring 

topology if a message is sent to a specific node, every node in that topology will eventually 

get the message. One great advantage of using ring topology instead of linear topology is 

the fault tolerance (only if implemented) that, in a situation where one of the nodes die on 

the linear topology, the network is cut into two pieces where in a ring topology if one of 

the nodes die, the ring topology becomes similar to a linear topology and can continue until 

fixed.  

Figure 2: Daisy Chain (Linear) Topology 

Figure 1: Point-to-point Topology 
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2.1.3 – Bus 

In a network if all the nodes are connected to a single central line and any two or more 

nodes can communicate through that central line it is called a bus topology. This central 

line acts as a communication medium between every single node on the network and it 

allows all nodes to receive messages simultaneously [10]. In bus topologies the message 

contains the intended recipient node’s address as the message is sent to all nodes 

simultaneously, this way any node can check the address on the message with its own 

address and if it is not matching, data part of the message is ignored.  

 

Figure 4: Bus Topology 

Figure 3: Ring Topology 
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2.1.4 – Star 

In a star topology, every node in the network is connected to a central node also known as 

a hub. This hub acts as a server where all other nodes and peripherals act as clients. All 

message traffic within the network passes through the central hub, making the hub a 

repeater. Since every node is separately connected to the central hub, it is very easy to add 

or remove new nodes without affecting others. The downside of this is that, if the 

communication frequency of nodes is too high the central hub becomes a bottleneck on the 

maximum communication speed between nodes. Even though, every node is separately 

connected to the hub and if a link between a node and the hub fails, the rest of the network 

can work; if the hub fails the whole network fails hence creating a single point of failure. 

 

 

2.1.5 – Ring 

A ring topology, as we introduced in daisy-chained networks, is a linear topology with the 

two ends connected to each other. In ring topologies data travels in one direction on the 

network and each node passes the data to the next until a message is sent to the intended 

recipient. There is no server and client, all the nodes are peers. This allows better 

Figure 5: Star Topology 
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performance on increased loads on network, but it can also create problematic situations as 

the whole network bandwidth is bottlenecked by the weakest link between any two nodes. 

(see Figure 3) 

 

2.1.6 – Mesh 

A mesh network consists nodes that connect to more than two other nodes allowing some 

or all nodes to have more accessibility within the network. We can classify mesh networks 

as partially connected mesh networks and fully connected mesh networks. A partially 

connected mesh network have some of the nodes connecting to multiple other nodes acting 

as a relay for other nodes, where a fully connected mesh network has all nodes connected 

to all other nodes within the network. In mesh networks in general, as the number of the 

nodes increase, the amount of links necessary increase a lot faster; especially in fully 

connected mesh networks so it becomes impractical to use mesh networks in systems that 

consist a large number of nodes.  

 

 

 

 

Figure 6: Mesh Network Topology 

 

Figure 7: Fully Connected Network 
Topology 
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2.1.7 – Hybrid 

A hybrid topology also known as a hybrid network combines two or more types of 

topologies such that the resulting topology cannot be expressed by any of the standard 

topologies [11]. One example to a hybrid topology is the tree network which interconnects 

star networks to each other via bus networks. Some systems have complicated requirements 

and specifications such that none of the simple network topology types can manage to 

satisfy, so in these cases a hybrid topology is tailored specifically for these purposes.  

 

 

2.2 – Existing Communication Protocols 

As we can think of a network topology as the structure of a network, we can think of the 

communication protocol as the set of rules that allow nodes to communicate in a topology. 

This includes the rules, syntax, synchronization of communication and sometimes possible 

error recoveries [12]. When a specific message or data is sent from a node to another 

through the network, there is an exact intended meaning and possibly a pre-determined 

response for any given situation. [13] To make sure that, there needs to be some sort of 

standard that communication protocols follow depending on technical requirements 

 

Figure 8: Tree Network Topology Figure 9: Hybrid Topology (Ring + Linear) 
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including the network topology that protocol is going to be used on. [14] Some of these 

standards are Internet Engineering Task Force (IETF), Institute of Electrical and 

Electronics Engineers (IEEE), International Organization for Standardization (ISO). 

There are so many different communication protocols in existence, to go over all of them 

to choose which one to use in the system is very difficult, but there is a way that can make 

it easier. We already have some requirements for the system to meet, and if we also decided 

on the network topology to use, the number of communication protocols that can be 

compatible with the network topology we chose are limited. This is because some 

communication protocols are designed on purpose to be used with one or a few specific 

network topologies. We checked the following communication protocols which can be 

implemented with the network protocols from section 2.1. 

Testing different topologies accompanied by different communication protocols to see 

which one can handle this kind of a task, indicated the advantages and disadvantages of 

each method and let us choose the most reliable and preferable option. 

 

2.2.1 – Contention-based protocol (CBP) 

In a contention-based protocol there is no pre-coordination, and it is mostly used in wireless 

telecommunication equipment such as radio, where multiple users (nodes) can join on the 

same channel and the operating procedure “listen before talk” in IEEE 802.11 is applied 

here [15]. The main advantage of contention-based protocols is the ease of implementation, 

under light load they can perform efficiently but in higher loads performance drops [15]. 
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2.2.1.1 – Carrier-Sense Multiple Access (CSMA) 

Carrier-Sense Multiple Access (CSMA) is a communication protocol where every node 

needs to verify the absence of any traffic in the network before starting to transmit on it. 

This tries to minimize the collision of two messages transmitted by two different nodes 

within the same network. A node that is going to start transmitting, first attempts to 

determine whether any other transmission is in progress by using a carrier-sense 

mechanism. If there is such transmission, the node simply waits for that transmission to 

end before initiating its own transmission. There are a few different variations of CSMA 

some of which include collision avoidance, collision detection and collision resolution 

techniques. 

 

2.2.1.1.1 – Carrier-Sense Multiple Access with Collision Detection 

(CSMA/CD) 

In Carrier Sense Multiple Access protocol, a node can use carrier-sensing to determine if 

there are any ongoing transmissions and if not, that node can start transmitting. But this 

does not mean there will be no collisions; if two nodes need to transmit at the same time, 

they will check the communication line if there are any ongoing transmissions, and both of 

them will see that there are no traffic in the communication line resulting in both of them 

trying to transmit at the same time and ending up in a collision. 

Carrier Sense Multiple Access with Collision Detection protocol allows a node in the 

network to detect a collision while it is transmitting alongside being able to use carrier-

sensing. As soon as a collision is detected, both nodes terminate their transmission, 

shortening the amount of time required before a re-transmission can be attempted.  

CSMA/CD was the protocol used in old Ethernet variants which used repeater hubs. 

Modern Ethernet networks that we use today is built with network switches and full-duplex 

connections, so CSMA/CD is no longer needed. Each ethernet segment or collision domain 

is now isolated. CSMA/CD on Ethernet is still supported for backwards compatibility and 
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for half-duplex connections. The IEEE 802.3 standard defines all Ethernet variants which 

until 802.3-2008 are under the name of “Carrier sense multiple access with collision 

detection (CSMA/CD) access method and physical layer specifications”, where after 

802.3-2008 switched to the new name shortly as “IEEE Standard for Ethernet”. 

 

2.2.1.1.2 – Virtual Time Carrier Sense Multiple Access (VTCSMA) 

Virtual Time Carrier Sense Multiple Access (VTCSMA) protocol is used mostly in hard 

real time communication systems meaning messages in the system have explicit hard 

deadlines. These messages are critical to reach before their deadlines or there may be data 

loss or other consequences to the system. In networks that use this protocol every node in 

the topology has two clocks; a real time clock and a virtual time clock which runs in a 

higher rate than real time, and it is reset (set equal to real time point) whenever the node 

finds the channel to be idle [25]. This extra clock allows scheduling messages to be sent in 

such a way that collisions between messages transmitted simultaneously by different nodes 

is avoided as much as possible. 

 

2.2.2 – Token-based protocol / Token Passing 

On a token-based protocol there exists a special signal message called “token” which is 

passed between nodes to authorize the node holding the token to transmit meaning that 

there is no pre-determined master or slave nodes. By implementation this prevents any two 

or more nodes to transmit at the same time as there is always only one token allowed. The 

network checks if there is only one token on the network periodically and sometimes the 

token might get corrupted or lost, in those situations the communication protocol realizes 

the token is lost and generates a new token. The advantage of this type of protocols is the 

nodes can utilize the full bandwidth of the network without idle time with heavy loads, but 

the disadvantage of this type of protocol is even on light load if a node wishes to transmit, 

it has to wait for the token, increasing latency.  
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2.2.2.1 – Token Ring 

Token ring is a protocol used to create local area networks (LAN) which is defined in 

IEEE 802.5 standard. As other token passing protocols, token ring protocol also has a 

special signal message called a token which passed between nodes on the network in a 

ring form. Every node can only receive from its neighbor and usually there is one 

common direction for transmission, so possibility of collision is eliminated. This protocol 

was introduced in 1984 by IBM as IBM Token Ring LAN and in 1989 it is standardized 

under IEEE 802.5. Unlike contention-based communication protocols, token passing 

protocols are deterministic, which means we can calculate the maximum amount of time 

needed before a specific node can start transmitting. This property makes networks with 

token passing protocol to be ideal for predictable delay applications and more robust 

networks [16].  

 

2.2.2.2 – ARCNET 

Attached Resource Computer Network (ARCNET) is a communication protocol for local 

area networks just like token ring protocol. ARCNET was the beginning of a widely 

available network between microcomputers such as Amiga 500. It was especially popular 

Figure 10: Token Ring Protocol 
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for office automation tasks in 1980s and later it was also applied to embedded systems. It 

used a star network topology, and this brought so much ease to set up, expand and maintain, 

leading it to become more popular than its competitor, the linear bus Ethernet of the time. 

One disadvantage of ARCNET was the requirement of active or passive hubs between 

nodes if there were more than two nodes when compared to Ethernet but the passive hubs 

were easy to access and cheap, so it was not a big disadvantage. Later on, as Ethernet 

switched to an easier to work with physical topology with higher quality wiring, network 

throughput and reliability increased massively and ARCNET lost the popularity race to 

Ethernet. 

2.2.3 – Polled Bus / Polling 

In computer science, polling is the terminology used for, when a client device or program 

actively sample the status of an external device or task as a synchronous activity. In 

embedded systems polling is used for checking the state of a line in the network. In a 

network topology that polled protocols are used, there is a bus-busy line that all nodes have 

access to and can check if there is any transmission ongoing on the system as well as 

switching the state of it if they started transmitting a message. In these networks usually 

by design all the tasks or messages are prioritized and when there are more than one node 

that wants to transmit, they transmit a poll number on the bus proportional to the priority 

of the message. After the ongoing transmission ends and the bus-busy line resets, the node 

that has the highest priority message has the right to transmit, and all other nodes wait until 

they are the node with the highest priority message waiting to transmit. This protocol works 

with time slots for better scheduling and every slot duration is equal to the end-to-end 

propagation time of the bus. 
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2.2.4 – Controller Area Network BUS (CANBUS) 

A Controller Area Network Bus (CANBUS) was created to have a robust communication 

protocol connecting various subsystems within a vehicle allowing each of the nodes on the 

bus to communicate with the rest. Later, as it performs reliable enough that it has been used 

in other applications mostly industrial. CANBUS is a multimaster broadcast serial bus 

protocol that connects electrical control units (ECUs) and as there are no general master 

nodes in this protocol, every one of these ECUs can transmit and receive messages, but not 

simultaneously. When a node transmits, all other nodes receive the message. A message is 

composed of two things; an ID which sets the priority of the message and the 8 byte sized 

data. In CANBUS protocol all the nodes are connected to each other via bus lines so there 

can be collisions but by design this is solved. When the communication bus is idle, it is 

represented by recessive level (TTL=5v) and any node can start to transmit. If multiple 

nodes begin transmission simultaneously, As every message start with the ID (priority) 

part, in the case of more than one node start transmitting at the same time, a priority based 

bus arbitration steps in and bit by bit the IDs are compared and the node with the recessive 

ID bit stops transmission until only the most dominant ID is left on the bus and the node 

with the most dominant ID keeps on transmitting until the end of its message. 

2.2.5 – Fieldbus 

Fieldbus is the name of a family of industrial computer networks used for real-time 

distributed control systems. Fieldbus profiles are standardized by the International 

Electrotechnical Commission (IEC) as IEC 61784/61158. 

In complex automated industrial systems, there is the need to use structures in hierarchical 

levels as distributed control systems (DCS). In this hierarchy the upper levels for 

production managements are linked to the direct control level of Programmable Logic 

Controllers (PLC) via a non-time-critical communication system such as Ethernet. The 

fieldbus links the PLCs of the direct control level to the components in the plant of the field 

such as sensors, actuators, motors, lights etc. This way of connection allows us to replace 

direct connections via current loops or digital Input-Output (I/O) signals. 
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2.2.5.1 – Ethernet for Control Automation Technology (EtherCAT) 

EtherCAT is an Ethernet-based fieldbus system, invented by the German company 

Beckhoff Automation. The protocol is suitable for both soft and hard real-time computing 

requirements and it is standardized in IEC 61158. The goal during development of 

EtherCAT was to apply Ethernet for automation applications that require short data update 

times with low communication jitter and reduced hardware costs. 

This protocol is used in topologies similar to Daisy-Chain (Linear) Topology where each 

node is only connected to two adjacent nodes, with a slight difference that; instead of 

leaving the two ends of this line at the start and end, we create a loop that is similar to Ring 

Topology but not exactly the same. As we discussed previously, the Ring Topology (fig 7) 

connects the two ends of a Daisy-Chain Topology directly to each other whereas EtherCAT 

(fig 8) loops back on itself by having every connection between the nodes as bi-directional. 

So when a message reaches to the last node, it is being sent back to the node before itself 

instead of the first node, going node by node back to the first one (there is no direct 

connection between the two end nodes). This full cycle takes a very short amount of time 

and more importantly, when implemented correct it can make sure that any given message 

will take a constant amount of time to arrive at its recipient. 

When it was being developed, the aim of EtherCAT was to apply Ethernet for automation 

applications which require very low cycle times (=<100µs) with low communication jitter 

and low hardware costs. The standard Ethernet packet or frame is not sent, received or 

interpreted as process data at every node but instead nodes read and modify the part of the 

packet containing the data addressed to them while the whole message frame (a.k.a. 

datagram) passes through the device, allowing to process data “on the fly”. 
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Figure 11: EtherCAT Topology 
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3 – Problem Definition  

In this thesis, we will implement a simulation of a long armature linear motor elevator 

system with multiple cars using three proposed network topologies with realistic 

simulation of the real-time computer nodes and communication protocols in the network 

to observe the system can handle the given task or not. 

 

3.1 – Long Armature Linear Motor Elevator System 

The starting point of this work was to implement a network topology for a linear motor 

elevator with multiple elevator cars to create an alternative to the elevator system we 

currently use. Since there will be multiple elevator cars on the same shaft there can be no 

electrical connection reaching to the elevator cars. This means we need a system 

configuration where the electrical coils are on the stator side, and the best solution for this, 

is to use long armature linear motors. 

This experiment aims to observe if the proposed topologies can handle multiple elevator 

cars on the same network. We need to ensure the message transmission between sensors 

and motor drivers are within requirements to move each elevator car at a certain speed. 

This will prove if the proposed topologies and protocols can be later applied to a real 

skyscraper with long armature linear motor elevator with multiple cars. The long armature 

linear motor elevator system consists heaps of linear motor actuators and motor drivers 

controlling them. As explained in 2.3, hard real-time systems are very sensitive against 

delay and missed deadlines, so controlling many motor drivers within a very small margin 

of error is critical. We need to use a protocol that allows high number of nodes as well as 

low latency and high response rate which is emphasized in 2.2.  

MATLAB Simulink’s TrueTime library allows us to use any communication protocol we 

need on any custom network topology we can create on Simulink and with changing some 

parameters on creating the network we can also simulate multiple elevator cars running on 

the same network, with a few exceptions that are going to be explained following sections.  
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3.2 – Custom Network Topologies 

The first part of this experiment has been considering various network topologies and 

communication protocols to decide which topology-protocol couples can make sense and 

can be used to meet the requirements. For example, we can use a simple bus topology with 

Ethernet protocol; adding every motor driver and position sensor as a node on the network 

then also add the main computer and we have a network that can work but we have other 

requirements, such as easily maintainable and adjustable. To achieve these requirements 

as well we can add one more network and a gateway in between these two networks and 

this is how we get Topology G (Global). The second network allows us to off-load the 

main computer and if we ever want to change settings or when we need to maintain we can 

connect to that network to handle. This topology being very simple comes with 

disadvantages such as the massive number of nodes creating problems such as bandwidth 

and increased response time (latency) when main computer sends a message to a node. To 

solve this, we need to approach the problem in a different way; we need to localize the 

motor drivers into small groups with gateway computers. We will be calling these groups 

including a certain number of drivers and a gateway computer on a separate network, a 

“Motor Section”. 

By applying this we end up with a network topology like Topology L (Local). This will be 

dividing the number of nodes -the main computer sends a message- to the number of motor 

drivers per motor section. So instead of directly sending a message to each and every motor 

driver one by one, it can send every gateway computer that can relay the message to five 

motor drivers hence the number of nodes the main computer needs to transmit is divided 

by five. To overcome each problem we had, we made small changes on the basic network 

we had and with trying to keep the simplicity we created this custom network topology we 

needed. A similar approach has been examined previously in [23]. 

This second network topology is created by solving the problems occurring in the first 

topology but there is still a chance of messages colliding while multiple nodes start 

transmitting at the same time. There is, of course, a solution implemented in Topology L 

to deal with this problem which is going to be explained in detail under section 3.4.2, but 
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there is a better solution to get rid of the collision problem by design. Instead of using a 

bus type topology that involves multiple nodes on the same network, where each node can 

transmit on the network that can lead to collision, we can have a ring type topology where 

there is only one message as a message frame (datagram) which allows each node to 

read/write messages from/onto it and pass to the next node so at any time during the system 

is active, there is only one message being transmitted. The third and final topology we 

cover on this thesis, Topology R (Ring), is using this method and will be explained in detail 

in the following sections. 

In all of these topologies we implemented a special sensor node that is allowing us to 

measure the position of the elevator car so that the system can precisely control the right 

motor driver at the right time allowing the elevator to move smooth and safely. In topology 

G we can see this sensor node every 5 motor driver and on Topology L and R every gateway 

computer have a sensor node connected to it. We designed the implementation in such a 

way that there is a linear encoder (transducer) as the sensor and there is a scale (strip) which 

the encoder can move in front of and encode the position data. As the elevator is cable free, 

the sensor is positioned on the wall with motor drivers and the scale is attached to the 

elevator mover. By keeping the scale longer than the height of the elevator on both sides, 

we can start measuring the position of the elevator before the elevator car enters the level 

of the specific motor drivers of that level which guarantees that either side of the level the 

elevator car approaches from, the sensor can measure the position. This also allows us to 

separate the motor drivers into groups as Topology L and Topology R does, simplifying 

the communication as the gateway computers can but do not have to communicate with 

each other for position transfer. 

3.3 – Proposed Topologies and Protocols 

In real-time systems, communication delay is an important concern, specifically the 

amount of time from a certain event to system response. Within specified time constraints 

which are called “deadlines”, real-time systems must guarantee response. There are three 

real-time systems based on how important it is for the system not to miss its deadlines: soft 

real-time, firm real-time and hard real-time.  
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Hard real-time systems -by definition- must not miss any deadlines, or it is a system failure. 

This scheduling is used in highly critical systems where a system failure results in a loss 

of life or property. We can think of this as the value of a task is 100% until the deadline 

and if deadline is missed the value of the task completion is minus infinity (-∞).  

An example for a hard real-time system in real life can be a missile trajectory controller; if 

the controller misses even one correction movement or responds too late, the missile can 

end up kilometers away from its original target, putting human lives or general valuable 

properties in danger. There is no way to take it back or undo. 

Firm real-time systems allow missing deadlines infrequently. In this scheduling method, 

the system can survive missed deadlines as long as they are adequately spaced, this means 

the task that missed its deadline has no value anymore, but the system can still operate. We 

can think of this as the value of a task is 100% until the deadline and if the deadline is 

missed the value of the task completion is zero.  

An example for firm real-time system in real life can be a manufacturing robot in 

production line; if the controller misses one of the deadlines in movement ending up mis-

assembling one product in the line, that specific product is going to be noticed in quality 

control and get recycled while the system can still operate. The value of that particular part 

suddenly got to zero, but the production continues. This is valid if the controller does not 

miss deadlines too often, and ruined parts are not that many. 

Finally, soft real-time systems can frequently miss deadlines, but it is better if they do not. 

In soft real-time scheduling, the system can miss the deadline but if the task is then 

completed within a short notice, there is still value for that task. We can think of this as the 

value of a task is 100% until the deadline and then if the deadline is missed, the value of 

the task completion decreases with time until reaches zero (for most cases).  

An example for soft real-time system in real life can be Bluetooth speakers to play music 

from; when we start the music to play on our phone, if the speaker misses the deadline to 

start playing the music, the task is not discarded and it is not of zero value, it is simply late 

and it can still execute and start playing. This does not affect the rest of the song or the 
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experience, it responded late so the quality of service diminished but is not completely 

disappeared. Like this behavior especially noticed when the speaker is running on low 

power as the range of the Bluetooth decreases and the responses start to take longer and 

some of which miss their deadlines. 

 

 

 

 

 

 

Our linear motor system can be thought as a hard real-time system, there is no room for 

delay and if any task misses its deadline, since it would jeopardize the transition of the 

elevator car from one motor driver to the next, the task instantly drops, and the system 

sends an emergency signal to the main computer that halts the movement and brakes the 

elevator. This of course is to eliminate any chances of putting people or valuable equipment 

transported by the elevator as well as the elevator itself in danger. 

The following proposed topologies aim to decrease the delay and have a higher response 

rate to satisfy the requirements of a hard real-time system. We will be discussing their 

advantages and disadvantages over the others in this section. 

 

 

 

 

Figure 12: Real-Time Scheduling Deadline Vs Value [24] 
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3.3.1 – TOPOLOGY G  

This topology is a simple bus topology which contains a main computer, a gateway 

computer, sensor nodes and motor drivers. The main computer is responsible to create and 

send the reference position to the gateway computer which is then distributed to all motor 

drivers, sensor nodes get the real position data and it is sent to the relevant motor drivers 

as well, then motor drivers combine these two information and calculate the motion and 

then apply the necessary current to the required section of the motor at the required time 

which moves the elevator car. In Figure 13 the structure of the topology can be seen. There 

are two different networks, one connecting the main computer to the gateway computer 

which is called “outer network”, and the other connecting the sensor nodes and motor 

drivers to the gateway computer which is called “driver network”. In the figure main 

computer is labelled as “MC”, gateway computer is labelled as “GWC”, sensor nodes are 

labelled as “SN” and finally the motor drivers are labelled as “MD”.  

From a real-time system requirements point of view; main computer’s response does not 

have to be hard real-time as, the reference does not change too quickly and milliseconds of 

delay to the user’s input is not critical. But the sensor nodes’ and motor drivers’ responses 

have to be hard real-time as sensors need to send the measurement to the motor drivers 

which also affects the motor driver performance, and motor drivers need to respond within 

the acceptable amount of delay so that the elevator ride is smooth and stable. 
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Figure 13: Topology G (Network Model) 
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3.3.1.1 – Suitable Communication Protocols for Topology G 

Since Topology G has hundreds of motor drivers and sensor nodes, we thought the most 

stable communication protocol to handle that many nodes is Ethernet. Using Ethernet 

allows to keep the network topology simple like a bus topology as well as allowing easy 

add and remove node operations if necessary. We have a point-to-point connection between 

main computer and gateway computer, so it does not have a major effect on the rest of the 

network which protocol we choose unlike driver network. Many different protocols are 

suitable for the outer network. 

 

3.3.1.2 – Advantages of the Topology G 

Motor driver nodes can be implemented with simple computers, they are not expected to 

be loaded heavily with tasks; there is a simple position reference to real sensor position 

difference calculation and using the end result of this calculation to send the signal to drive 

the motor. Having specific nodes just for sensors, while increasing the number of nodes on 

the network, off-load other components such as motor driver nodes or gateway computers. 

 

3.3.1.3 – Disadvantages of the Topology G 

There are two disadvantages of this topology that majorly affect the performance; the first 

one is that the number of nodes on the network is high and as the number gets higher, the 

constant bandwidth that gets shared between the nodes gets lesser and lesser. Every time 

the main computer transmits a message, the message is sent to the gateway and gateway 

spreads it to every motor driver node one by one, as there are more nodes on the network, 

one cycle of spreading the message to every motor driver takes longer time. The second 

disadvantage is that when multiple elevator cars move simultaneously, bandwidth needed 

may become less than the amount Ethernet can provide. This limits the number of elevator 

cars that can run at the same time. 
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3.3.2 – TOPOLOGY L 

This topology is a hierarchical system containing a main computer, gateway computers and 

motor drivers. The main computer’s job is the coordination of the motion in general, it is 

connected to the motor driver groups collected under gateway computers. Gateway 

computers have a few tasks; one of which is to act as a bridge between the main computer 

and motor drivers, it also is connected to the position sensors so it gets the mover position 

and use this data in calculations, which lead to driving the right motor drivers. Gateway 

computers also pass position information between each other when it is required. Finally, 

there are motor drivers which are connected to the linear motor coils and they generate the 

signal that motor drivers require to move the elevator car. All these nodes are placed in 

different networks in different ways. There are three different types of networks, each one 

is composed of different nodes. First one is the Outer Network; it is the network that 

connects the main computer to the gateway computers. Second one is the Gateway 

Network; which connects the gateway computers to each other, but every connection is 

between only two gateway computers, so it creates a daisy chained network between 

gateways computers. Finally, there is Driver Network which allows communication 

between a gateway computer and motor drivers. 

To understand better we can analyze each of the node types from a real-time requirement 

point of view with the tasks they do: 

Main computer sets the position reference for the mover to go then create the plan of that 

motion and finally transmit this as a message to the related motor drivers through gateway 

computers. It sends the necessary messages to the gateway computer on the outer network 

and after processing this the gateway computer transmits to the right driver. 

Gateway computers get the position reference data from the main computer and actual 

position data from the sensor that is connected to it and calculate which motor drivers need 

to work to move the elevator car and then send the message via driver network to the 

corresponding driver in the right time for a seamless operation.  
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Motor drivers receive the messages from gateway computer and start or stop driving the 

part of the motor they are connected to so that they move the elevator car. Motor drivers 

also calculate the amount of time passed from the task call until the execution of the task 

which lets us calculate the delay introduced to the system by the communication protocol. 
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Figure 14: Topology L (Network Model) 
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3.3.2.1 – Suitable Communication Protocols for Topology L 

As this network topology is going to be capable of serving for a very tall building, the 

linear motor will have so many motor drivers and connected to them will be so many 

gateway computers. To be able to guarantee that everything is going to work smoothly, 

there are some requirements that the system needs to meet. There will be limited number 

of drivers connected to each gateway computer with very low latency demands, so we 

chose the most suitable communication protocol for the driver network as CANBUS 

protocol. For the outer network however, we do not have hard real-time network 

requirements, but we have hundreds of gateway computer nodes that need to be connected 

and communicated on the same network, that’s why we chose Ethernet protocol for outer 

network. 

 

3.3.2.2 – Advantages of the Topology L 

The main advantage of this topology when compared to Topology G is separation into 

smaller networks with gateway computers. Since there are not many drivers on each of the 

motor sections, we can trade in more node support to low latency. As the number of nodes 

that main computer needs to communicate significantly dropped compared to Topology G, 

(since once the message is sent to gateway computer, main computer can send to the next 

gateway computer while the first gateway computer can distribute the message to motor 

drivers) the amount of load created on outer network decreased significantly. Moreover, 

since now there are gateway computers connected to motor drivers grouping them, outer 

network is not affected by the message loads that are sent to motor drivers. These messages 

are sent on the driver network from gateway computers to motor drivers. 
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3.3.2.3 – Disadvantages of the Topology L 

Since there are driver networks with gateway computers connected to each one, no need to 

attach the position sensor to another computer as a separate node but it can simply be 

connected to the gateway computer, decreasing the number of nodes on the network, with 

the price of adding some more load on the gateway computer. Having gateway computers 

as an extra layer between motor drivers and main computer adds a slight delay but it is 

unavoidable to have some delay on the system and as long as it does not make the system 

unstable or uncontrollable, it is acceptable. 

 

3.3.3 – TOPOLOGY R 

Similar to the Topologies G and L, Topology R consists of the same nodes with an addition. 

These nodes are;  

 main computer; which manages the motor drivers by sending messages periodically 
to every gateway computer, 

 gateway computers; which relay the messages coming from the main computer to 
the motor drivers and being positioned in-between motor drivers and the main 
computer, they group motor drivers into more manageable numbers,  

 sensor nodes; which obtain the position data of the elevator car and passes this 
information to the motor drivers,  

 motor drivers; which drive the actual elevator car with respect to the information 
coming from the main computer messages and the sensor input,  

 and last but not least the network interface controllers; which take charge in the 
communication of the afore mentioned nodes.  

As explained in section 2.2.5.1 Topology R is a 2-level hierarchical system with the lower 

level being a Ring Topology. In the lower level there are Network Interface Controllers 

(NIC) each connected to a critical piece of the overall system, the first connects to the 

gateway computer (GWC), second connects to the sensor node (SN) and the rest of the 

NICs (5 of them) each connect to a motor driver (MD). Moving to the higher level part of 

the hierarchy we have an outer network which allows us to connect the main computer, 
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which makes sure all the systems work in coordination, with the gateway computers that 

connect to NICs to relay the messages from main computer to motor drivers.  

 

Figure 15: Topology R (Network Model) 

 

As an example to how it works, we can follow the steps as it progresses assuming the 

elevator car is reaching in front of the 4th motor driver of the first gateway; 

 in the beginning of the cycle, the gateway computer checks if there are any 

messages coming from the main computer to be passed to the motor drivers, if there 

is, it is transferred to the NIC of node, connected to the GWC (if not the NIC 

prepares an all empty message frame (datagram)).  

 Then this node’s NIC sends the whole message frame to the next node’s NIC which 

is connected to the sensor node. The sensor node measures the elevator position 

and then calculates which motor driver is responsible for that position to actuate. It 

is the 4th motor driver, so the sensor node puts this position data measurement on 

the message frame’s respective empty space.  

NIC III NIC II NIC I NIC IV NIC VI NIC VII 

GWC SN MD I MD II 

MC 

NIC III NIC II NIC I NIC IV NIC VI NIC VII 

GWC SN MD I MD II MD IV MD V 

MD IV MD V 
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 Then this node’s NIC is done and the frame is sent to the next node’s NIC. From 

this node forward, all other nodes are motor drivers, so they are most likely not 

going to add/edit any data on the frame but rather read from it. So this NIC of node 

checks its respective position in the message frame (but this node is the 1st motor 

driver) and there is no data to read so the NIC of node passes the message frame to 

the next, 

 the 2nd motor driver checks and there is no message for it either,  

 the 3rd goes the same way as well and finally the NIC connected to 4th motor driver 

checks its respective position and gets the position measurement data coming from 

SN and drives the motor accordingly.  

 The message frame goes to the next and final node’s NIC and that motor driver 

does not get any data and the communication to all nodes are done but still the 

message frame needs to come back,  

 so the last (7th) NIC sends it back to the previous, and 6th to its previous and so on 

until it reaches to the beginning for a new cycle.  

Additionally, if there is a message coming from the main computer there is an extra 

space for gateway computer to add on the message frame and every motor driver reads 

this message independent from if they had a message from the sensor node or not. This 

whole process including the message frame to come back to the first node’s NIC to 

start a new cycle takes around 115 – 120 µs. 

 

3.3.3.1 – Suitable Communication Protocols for Topology R 

The higher level can use Ethernet for connection as it has a very similar structure to the 

Topology L, while the lower level simulates an EtherCAT communication network which 

also uses Ethernet as foundation, but some requirements and specifications are different 

from Ethernet. Using EtherCAT for the lower level communication for connecting sensors, 

actuators and other computers is very common in industry as it can guarantee hard real-

time distributed control systems.  
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One of the biggest differences between Topology R and L is that in Topology L, the nodes 

are communicating with each other on the network where in Topology R there are 

controller hardware with its own processing unit specifically used for the network 

communication side of the system so that each node is left with more free processing time 

for other calculations and other tasks. 

 

 

3.3.3.2 – Advantages of the Topology R 

When listing the advantages of Topology R, the most important one is that it is built to 

have constant delay as the messages on the network are periodically transmitted from one 

node to the next; and all sensors, actuators and gateway computers are connected to 

network interface controllers, allowing more processing time left for computations instead 

of using some of it for communications since there are specific hardware (NIC) for it. This 

assures that the network is always going to be on a certain schedule. 

Another advantage of this topology is, since it is Ethernet-based the NIC modules that 

handles the communication are cheaper compared to other industry standards and it is a lot 

simpler to track fault compared to a bus topology communication system.  

 

3.3.3.3 – Disadvantages of the Topology R 

One of the disadvantages of this topology is that it requires very low cycle times (period) 

for the message frame to start from a certain node, travel all nodes and come back to the 

same node. This is easily achievable on professional hardware such as the industrial 

systems’ use but on MATLAB it is more challenging given that the simulations have an 

upper limit on how quick the nodes process and how much bandwidth can be simulated. It 
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can be handled via decreasing the number of nodes on the network so that the message 

frame needs to travel less nodes to complete a full cycle.  

One other disadvantage compared to bus topologies is that it is easier to spot an error or an 

issue but it is much harder to fix it and it can directly cause problems to rest of the network 

as this is a daisy-chained communication system if a network interface controller stops 

working (malfunctions) the rest of the NICs and therefore the rest of the nodes would be 

cut away from the network. 
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4 – Simulation Models and Environment  

Networked control system (NCS) is a closed loop control system where the loops are 

complete through the network [26]. It is composed of a mixture of continuous time-driven 

dynamics and discrete event-driven dynamics. Both of those dynamics can be affected by 

delays in the system. To be able to measure the amount of delay and other critical timing 

operations in the system we need a software tool where we can create a tool to simulate 

and analyze this [17]. We need to be able to measure timing of tasks within the nodes as 

well as the timing of communication between nodes to observe how it affects the control 

performance [18]. 

 

4.1 – TrueTime 

TrueTime is a MATLAB/Simulink based library allowing networked control systems and 

embedded systems to be studied and simulated. It is developed at Lund University in 1999. 

TrueTime creates great opportunity for the user by enabling real-world continuous 

dynamics work alongside computer architecture such as task execution and network 

connections co-simulated to observe the interaction between the two. 

TrueTime consists a library of various blocks each can be added to a Simulink system and 

configured in detail. These blocks are; TrueTime Kernel Block, TrueTime Network Block, 

TrueTime Send Block, TrueTime Receive Block, TrueTime Battery Block, TrueTime 

Wireless Network Block and TrueTime Ultrasound Network Block as we can see the whole 

library in Figure 25. Any TrueTime block can be connected to any ordinary Simulink block 

to also be able to co-simulate a real-time control system.   
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4.1.1 – TrueTime Kernel Blocks 

A TrueTime kernel block is essentially a computer node, which simulates a generic real-

time kernel as well as network interfaces to connect to and communicate through a 

network. For a kernel block to work after adding it to our Simulink simulation we need to 

configure it. To configure we have an initialization script which allows us to create tasks, 

timers, interrupt handlers, etc. These objects are continuously called by the kernel. For our 

initialization scripts, we can use either C++ or MATLAB m-files. In a kernel block we can 

use a variety of scheduling algorithms such as, fixed-priority scheduling, earliest deadline 

first scheduling, deadline monotonic scheduling or a custom scheduling algorithm [19]. 

Figure 16: TrueTime Library 
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As we can configure a kernel block while we are creating it via a script, we can also use 

the block subsystem mask dialogue box after we have created the model on Simulink. As 

we can see on Figure 26, we can edit; initialization (init) function name, initialization (init) 

function argument, number of analog inputs and outputs the kernel has, number of external 

triggers, network and node numbers, local clock offset and drift. The important ones that 

we are going to be using are; init function name, init function argument, analog input and 

output ports and most importantly network and node numbers. (see Appendix A) 

4.1.2 – TrueTime Network Blocks 

TrueTime network block simulates medium access control and packet transmission in a 

local area network (LAN). Every time a node starts transmitting, a trigger signal is sent to 

the network block, and when a node finishes transmitting, a new trigger signal from the 

network block to the receiving node is sent. This transmitted message is saved in a buffer 

at the receiving computer node. [20] 

Figure 17: TrueTime Kernel Block Configuration 
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Similar to a TrueTime kernel block, we also need to configure a TrueTime network block. 

The configuration process is very similar, we can either use a script while creating it, or we 

can use the block subsystem mask dialogue box that we can open after we create. There 

are some parameters that are common for all networks such as; network type, network 

number, number of nodes, data rate and minimum frame size, as well as some parameters 

that are specific on the type of network such as; transmit power, receiver signal threshold 

in wireless networks as we can see in Figure 27. There can be more than one network block 

in a model that is why we use network numbers to be able to identify them. Every node 

connected to the network has a specific node number within that network. (see Appendix 

B) 

 

 

 

Figure 18: TrueTime Network Block 
Configuration 

Figure 19: TrueTime Wireless Network 
Block Configuration 
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4.2 – Creating Simulink Network Models using MATLAB Scripts 

While creating a linear motor for a very tall building, we need to use some nodes and 

modules in a re-iterative fashion. As we want to compare the performance of two different 

network topology, we need to create those topologies’ network models, communication 

protocols and models. This thesis discusses the development of Simulink models that are 

created by using MATLAB script-based methods which makes it especially easier in 

repeating situations such as this one. 

It allows us to create a parametric configuration file that keeps all the settings we want to 

set, before we want to create the topology and tune them as we wish. Since we need to 

meet some requirements, determining an optimum performance by tuning the parameters 

is crucial for the project. (see Appendix C) 

4.3 – Creating EtherCAT Model using MATLAB Scripts 

Even though the MATLAB Simulink library we use, TrueTime, does not have EtherCAT 

built in as a protocol, this does not mean we can not create this topology on MATLAB. In 

fact we can create our own EtherCAT protocol on a ring topology from kernel and network 

blocks that are built in the library but it requires a few simplifications. More detail can be 

found on Appendix D section at the end of the thesis. 

The original EtherCAT is designed to be cheap, simple and easily maintainable (easy to fix 

in case of any problems), which is possible thanks to the industry level products as 

EtherCAT is used in industrial level works such as factories. In our simulation we assumed 

that there is no random packet losses or corrupted packets as this affects this topology 

specifically to the extent that it stops completely. A fair warning at this point: this does not 

mean that this topology is not compared by the same circumstances, and there can still be 

packet losses and missed deadlines if the system is not capable of keeping up with the 

messages or if there are collisions on messages. We only restrain the system in such way 

that there is no external disturbances as it would directly stop/kill our simulation 

implementation but not a professional application of EtherCAT.  
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This is easily handled via software in professional solutions with algorithms that realizes 

the system has stopped or even better, it does not even let it stop but since we would like 

to study and research the network side of this topic and that such algorithm would take so 

much time to implement on our simulation we assumed there is no random packet loss or 

random message corruption. There is only one key idea that this simulation keeps running 

that is one network interface controller sends message to the following one, so the next one 

is triggered and the handler gets a function call and gets activated (this is basically a short 

coming of the library we use, and our simpler implementation of EtherCAT). As described 

in section 3, all communications for motor drivers are handled by the network interface 

controllers (NIC), which by design allows no conflicting messages as there is a single 

message datagram carrying messages from and to nodes, step by step. As we have 7 NICs 

per gateway computer which requires 12 transmissions to complete a full cycle for a 

message and set this period for the NICs around 10µs, we get roughly 120µs as the period 

of the full cycle which we can see on figure 20. 

 

 

As we can see, when datagram reaches to a NIC, even if there is no message contained for 

that node connected to that NIC, it still triggers that NIC to call the handler and pass the 

datagram to next NIC. This goes on until the last (7th on this topology) NIC is reached, and 

then last NIC sends the message backwards to 6th and 6th to 5th and so on which creates this 

“V pattern” until the datagram comes back to the first NIC and cycle completes. 

Figure 20: Topology R 4_20 Network Scheduling 
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5 – Simulation Results 

Computer simulations usually try to be as accurate to real life as possible, but there are 

always limitations; sometimes this is software limitations and other times it can be 

hardware limitations. This is not a problem though; this is usually expected, and we need 

to create the simulation as close to real life as possible within the limitations. In our system 

we have some limiting factors such as huge number of nodes and other elements that will 

include hundreds of real-time computers and networks, and simulating that on MATLAB 

on a single computer(given that an average spec computer) is not possible, but with that 

said, we can still run a realistic simulation within our boundaries. Our real system that we 

are trying to create a model for is a skyscraper elevator system for a 200 meters tall 

building, as one motor driver is only 9cm (0.09m), we should have approximately 2220 

motor drivers, 444 gateway computers and networks. These are huge numbers to simulate 

in MATLAB Simulink, so we create a smaller model that can still fully represent the real 

system and its problems. In our simulations we have tested many different size models and 

decided on two sizes that needs to be mentioned. We will go through each one of all three 

topologies and see how the size of the model affects the simulation and its results.  

In our simulation, the control loop had a frequency of 10 kHz and a period of 

100μs(0.000100s). We ran the simulation with various speeds for the elevator car and we 

will be looking at 5 m/s, 10 m/s and 20 m/s. These may sound like unusually high speeds 

but when working with a very tall building such as a skyscraper which is 200 meters tall, 

for the elevator to go from entrance floor to the top -200m-, with 5m/s moving speed the 

elevator takes 40 seconds to get to the top! With 10 m/s and 20 m/s, it is 20 seconds and 

10 seconds respectively. We can compare that to a standard elevator speed that varies 

between 0.5 to 2 m/s. Considering that, the same 200m trip would take 100 seconds which 

is longer than a minute and a half. That is a great improvement as long as the elevator can 

manage to keep stability network wise and that is what we wanted to test. 

As we went over it on section 3, we have three communication protocols that we use in our 

system: CSMA/CD (Ethernet), CSMA/AMP (CANBUS) and Fieldbus (EtherCAT). The 

first topology is based on Ethernet alone, where the other topology contains both Ethernet 
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and CANBUS, and the last one includes both Ethernet and EtherCAT. All three topologies 

have one common property that is, in all topologies the outer network that connects the 

main computer to the gateway(s) is Ethernet. The rest differs, as Topology G uses Ethernet 

for the whole system where Topology L uses CANBUS between motor drivers and 

gateway computers and Topology R uses EtherCAT with Network Interface Controllers 

connected to our actual nodes. On outer network side, the Ethernet protocol is used to 

convey messages carrying system information from main computer to gateway 

computer(s) with a period of 0.01s. In our MATLAB scripts, task execution takes 10 μs for 

gateway computers and motor drivers. 

We assume that the messages are consisting; 

Topology/Network Outer Network Driver Network 

Topology G 125 bytes (Ethernet) 46 bytes (Ethernet) 

Topology L 125 bytes (Ethernet) 8 bytes (CANBUS) 

Topology R 125 bytes (Ethernet) 125 bytes (EtherCAT) 

 

 46 bytes of data which is composed of several information across the whole 

network including position and velocity data on Ethernet protocol for driver 

network and 125 bytes of data on Ethernet protocol for outer network on Topology 

G  

 while 8 bytes of data which is composed of position (4 bytes) and velocity (4 bytes) 

on CANBUS protocol, 125 bytes of data on Ethernet protocol on Topology L  

 and 125 bytes of data capable message frame which consists of position, velocity 

etc. including the messages coming from the main computer for the EtherCAT 

(which operates as Ethernet) and 125 bytes of data on Ethernet for outer network 

on Topology R.  
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 Header Destination Source Length Data CRC TOTAL 

CANBUS 44 bits - - - 64 - 108 bits 

Ethernet 14 bytes 6 bytes 6 bytes 2 bytes 368 bits 4 bytes 64 bytes 

 

 In our CANBUS protocol implementation on MATLAB, each packet has 108 bits 

length consisting 44 bits of header and 64 bits of data (2 float numbers each of 

which is 4 bytes),  

 where in Ethernet protocol each packet has 512 bits length of packets that is 

composed of 14 bytes of header (6 bytes destination, 6 bytes source, 2 bytes length), 

4 bytes of CRC (cyclic redundancy check) and 368 bits (that is the minimum 

payload size for Ethernet standard) of data.  

 CANBUS is set to 1 Mbit/s that is the maximum data rate and  

 Ethernet is set to 100 Mbit/sec that is the standard rate we use for Ethernet today.  

 On Topology R the same values for Ethernet are used for EtherCAT as well since 

the infrastructure of it originates from normal Ethernet with the addition of 

EtherCAT being scalable and not bound to 100Mbit/sec,  

 a future extension to Gigabit Ethernet makes it possible to set up a Gigabit 

EtherCAT as well but even in industrial usage it does not exist simply because 

100Mbit/sec is highly sufficient. 
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5.1 – Topology G 

As we discussed in section 3, in Topology G we have a main computer connected to a 

gateway computer through Ethernet protocol which we named the network as “outer 

network” and then the gateway computer is connected to motor drivers and sensor nodes 

via another Ethernet protocol which we call as the driver network. In simulation we can 

see two network traffic going on, one of which is the main computer sending high level 

operation information to be distributed to every motor driver one by one, and the other is 

the overall traffic created on driver network by  the gateway distributing the message 

coming from main computer to every motor driver or  by the sensor nodes to the motor 

drivers if the elevator car is in front of a sensor. Since in driver network there are two 

separate transmission tasks taking part, there is a high likeliness of some nodes trying to 

transmit a message at the same time, and when this collision happens one of the nodes need 

to wait until the other one is done. Of course this is acceptable only if the message deadline 

is not passed yet, as this system uses a hard real-time scheduling, if we see any node trying 

to transmit after its deadline or if we see that packets are being dropped, that means the 

system model is failed. For us to be able to tell if a task is running late or missing its 

deadline we need to be able to measure the amount of time it takes for a message to go 

from the sender node until it arrives at the receiver node. In MATLAB to be able to do that, 

we use timestamps. We mark the exact time on the clock when the task is started and then 

after it is sent we compare the first timestamp with the exact time at the clock as it is 

received on the other side; and this difference in the timestamps is our delay, allowing us 

to see how much time has passed. We know how much time can pass for any task at any 

given time so we can check if any delay is higher than what is required and call the system 

failed. 

We have tested many situations and in order to check if the proposed topology is 

appropriate to be used in the real system, we came up with three cases to observe. These 

are: small size network; to see if the system is capable to handle the communication at all, 

then a larger size network; to see if there is any correlation between the size of the network 

and its performance, and finally a multi elevator car test on a mid-size network; to see if 

the topology can handle simultaneous runs by multiple elevator cars. 
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There are a few important notes that needs to be expressed in order to have a better 

understanding of the results and to be able to interpret the graphs easier; one of which is 

how to read the node transmission graphs, such as Figure 22. To be able to understand 

Figure 22 we need to know what a low, medium and high level signal means; a low level 

signal is, as one can guess, there is no activity on the channel, medium level signal means 

that the message is ready to transmit (message is prepared, but not transmitted at that 

moment), this usually happens when the communication medium is too crowded that there 

is no bandwidth to start transmitting so the node waits until the line calms down or the 

deadline is missed and packet is dropped, and finally high level signal which means the 

message from that node is being transmitted. 

In our naming sequence, we used “topology name”, “number of gateways”, “number of 

nodes” followed by the type of the test. We will be following this sequence while naming 

the figures as well. 

5.1.1 – Small Network Test 

To see if the topology can be useful for our system, we create a very small network 

consisting of ten motor drivers, two sensor nodes, one gateway computer and one main 

computer. Then we simply run the system and our motor drivers print out the amount of 

delay for each transmission on a text file, so that we can keep the results, and we can also 

check our scopes and displays to see the messages, delays and scheduling time events to 

make sure system works without any problem.  

Figure 21: Topology G 1_10 Small Network Sensor Data 
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In Figure 21 we can see the sensor values delivered to the motor driver and printed on our 

network transmission sequence. As we analyze the plot, we can see that every motor driver 

prints in a different color and they all seem to be continuous. This is important as it means 

none or only negligible number of messages miss their deadline and the system works 

smoothly. 

 

As we check the scheduling plot of the system on Figure 22, we can see messages seem to 

be consistently sent and received, which means there are not any problems which can lead 

the system to fail. We can see the first line (yellow) is the gateway computer relaying 

messages onto the driver network, the second line (blue) is the first sensor node responsible 

for the drivers one through five, and the third line (orange) is the second sensor node 

responsible for the drivers six through ten. As we can see even on the transition moment, 

we are not missing any messages. 

Figure 23: Topology G 1_10 Small Network Transmission 

Figure 22: Topology G 1_10 Small Network Scheduling 
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In Figure 23, we can see all transmissions through the network side of view. The blue 

periodic signals here are the messages from sensor node to the motor drivers. They have a 

period of 100 μs (0.0001 s) as we have set the task on our MATLAB script. The colorful 

ones between two sensor node messages is the message from main computer that is relayed 

by the gateway computer to motor drivers, each one of those colors represent a separate 

message from gateway computer to one of the motor drivers. We expect to see those signals 

equal to the number of motor drivers so that we will know gateway computer has no 

difficulty relaying messages to all motor drivers and we can clearly say that the gateway 

computer relaying messages from main computer is not causing any other message to miss 

its deadline. We can check in detail to see exactly how long this transmission section from 

gateway computer takes, which is approximately 55 μs (0.000055 s). 

 

5.1.2 – Large Network Test 

Now to have a simulation that is closer to the real system, let us try to increase the number 

of nodes. From the previous section, small network test, we have seen that the periodic 

messages coming from the main computer, relayed by the gateway computer to every 

motor driver one by one, creates a large period of continuous transmission block.  

 

Figure 24: Topology G 1_60 Large Network Transmission 
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As we can see in Figure 24, with 60 motor drivers on a single ethernet protocol network 

connected to one gateway computer, the amount of time required to relay the message from 

main computer to motor drivers is increased with the number of motor drivers increasing. 

We can compare head to head with the previous topology with ten motor drivers on Figure 

23. The amount of time from starting of the transmission to the end takes approximately 

350 μs (0.00035 s) which is around 6 times more. As expected, the amount of delay caused 

by the gateway computer is proportional to the number of motor drivers. This proves that 

by increasing the number of motor drivers further on this topology, we will be decreasing 

the performance of the system until it can no longer operate. 

When we look closer to the network scheduling of the topology, we can see that even 

though the messages are prepared they cannot be sent because the network is too crowded. 

We can see this behavior as in Figure 25 that the signal line does not go down but does not 

go up either, it stays in middle. This means the message is prepared but could not be sent, 

and here this happened because of the gateway computer transmitting on the network. So 

as one of the messages is being transmitted, the other messages from main computer to the 

rest of the motor drivers wait until it is over so the next one can start. This goes until the 

very last message for the last motor driver from the main computer is transmitted and 

finished. Only then the sensor node can transmit its messages to the motor driver again, 

and the gap in between can be critical, depending on the size of it.  

 

Figure 25: Topology G 1_60 Large Network Scheduling 
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The figure shows that when the network is larger with more motor driver nodes, the 

periodic messages from main computer to each motor driver takes a lot more time before 

letting sensor node to transmit again. This size of a network is not even close to the real 

system and causing these problems, so on a larger network these gaps get larger as the 

network gets more crowded. This is a problematic situation and one of the reasons why we 

had to design a second topology.  

 

5.1.3 – Multi Elevator Car Test 

Even though we already had some issues on the last section, we still wanted to observe 

how well can this topology handle the multi car test, so we created a medium sized topology 

not to create the problem mentioned in the last part but to be able to see if running 

simultaneous cars has a negative effect on the simulation results. With 40 motor drivers, 

the problem should not be too apparent so that we can analyze the multi elevator car test 

alone. 

 

In Figure 26, we have the topology with 40 motor drivers on a single network and they are 

connected to one gateway computer. So again, when we are reading these figures we need 

to check if signals are either colliding with each other resulting in some of them to be 

transmitted later or some signals missing their deadlines completely so the packets are 

dropped. 

Figure 26: Topology G 1_40 Single-car Network Transmission 
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If we look at the figure, we will be able to guess around 0.0701 second mark is the periodic 

green signal that we can see. That signal belongs to the sensor node sending position data 

to the motor drivers on the network. The colorful group of signals that is covering the 

sensor node signal is the messages from main computer to the motor drivers relayed by the 

gateway computer. Main computer sends a message to every motor driver node one by one 

and here we can see since there are 40 of them when they are added end to end, they can 

cover close to a period of 0.00025 s (250 μs). We can see that even though this period is 

long enough to block a message from the sensor node it is not critically harmful. 

As we have this network as a control variable, we can now simulate multi-car elevator 

system and see if the we have similar results. We will be using 8 elevator cars to make the 

difference more visible. 

 

On Figure 27, we can see a similar graph to what we can see on Figure 21, but there are 

some differences; first of all this is a sensor position data graph which means we should be 

seeing the position data of elevator cars, and since there are 8 movers, we can see 8 parallel 

lines slowly increasing their values, second and more importantly, in a successful 

simulation run we expect to see these lines to be uninterrupted, meaning they should be 

continuous in such a way that every time when one motor driver is finished receiving the 

next one should start so the switching should be seamless. Unlike the graph we see on 

Figure 21, this is not the case here; at multiple points in time, the graph is interrupted and 

Figure 27: Topology G 1_40 Multi-car Network Sensor Data 
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out for some period (see orange line at 0.02-0.023 s). This means while the elevator is being 

driven by a motor driver, the messages are cut out and the motor can no longer drive the 

mover as there is no new position signal coming. The reason for this is that the bandwidth 

of Ethernet protocol that we have implemented can withstand up to a certain amount of 

message load, and if in a situation that this certain amount is reached or passed, with 

messages overlapping, some of the messages will not be transmitted, they will wait for 

another node to stop transmitting but since they run together, that is not an option.  

 

We can also check Figure 28 to see how much of the messages actually coincide, and as 

we stated in large network test, again we are facing a similar situation, where the nodes are 

ready to transmit as their messages are prepared but since the network is overloaded, some 

of the nodes cannot find space to transmit. As we observe with eight elevator cars running 

simultaneously, so many of the messages are either missed their deadlines being late as we 

can see on the pink signal on channel 49 on the network transmission sequence or dropped 

altogether as it happened with the green channel on 46. 

Additional to the second test, this also proves that this topology is not sufficient to meet 

the requirements of the system. In many cases, Ethernet with its large bandwidth is 

considered to be capable to serve all communication requirements including real-time ones 

as here. However, it is apparent from this example that even high-speed communication 

networks designed for high average transmission rates is not capable of sustaining real-

time communications on a modestly sized network. Next, we can observe how Topology 

L performs in the same conditions. 

Figure 28: Topology G 1_40 Multi-car Network Scheduling 
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5.2 – Topology L 

As we went over it on section 3, in Topology L we have an outer network consisting of a 

main computer and gateway computers, and every gateway computer is also connected to 

a driver network where motor drivers are grouped under. The biggest difference that we 

expect to become an advantage on Topology L compared to Topology G is that, as motor 

drivers are divided into small groups of networks, their cumulative load on one network is 

also divided into smaller pieces. 

Just like Topology G on last part we have three tests again. We will be testing the small 

network, large network and multi elevator car test to see if this topology is capable of the 

requirements of the real system.  

5.2.1 – Small Network Test 

Once again, we start by creating a small network, to keep everything fair we tried to keep 

the motor driver node amount same on the same type of tests. So, we start by a network 

where there are ten motor drivers, two (instead of one) gateway computers, no sensor nodes 

as they are in gateway computers and one main computer. 

 

 

Figure 29: Topology L 2_10 Small Network Transmission 
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Seen on Figure 29 when the network is small it works as expected, gateway computers 

sending sensor read data to motor drivers and around every 8 μs gateway interrupts the 

sensor data transmission to relay the message from main computer to the motor drivers. 

Sensor data being sent by the gateway computers is shown as orange here and main 

computer messages relayed by gateways are shown in multiple colors one after the other. 

 

On Figure 30, if we were to look at the network transmission sequence, we realize that the 

short and often transmission on the network is the messages coming from the main 

computer relayed by the gateway to the motor drivers. After around 0.09 s mark it is 

constantly occupied until 0.26 s mark meaning that the elevator car is passing in front of 

the sensors regarding this motor section. So, the motor drivers in this network are being 

used. And we could have seen if there are any interruptions or changes in the length 

pointing in a problematic situation but as we can see on Figure 30, none of these problems 

occurred. 

Now we can check large network to see if the problem we had in Topology G occurs in 

Topology L as well. 

 

Figure 30: Topology L 2_10 Small Network Scheduling 
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5.2.2 – Large Network Test 

 

As we expected, when we divide the topology into smaller networks, the load is divided as 

well. We can see on Figure 31 that even a six-fold increase in number of motor drivers, did 

not put any affect into the plot when compared with Figure 29. This is because independent 

of how many gateway computer nodes there are, each gateway is connected to a separate 

network and only 5 motor driver nodes. This way the messages coming to a motor driver 

in another motor section does not affect the rest of the system at all. 

We can see that the number of motor driver nodes does not affect the overall system load 

on this topology by checking the Scheduling plot on Figure 32 and the width of the total 

transmission of the driver network stayed exactly the same and the continuous transmission 

line is not interrupted either. This means no messages are being late, missing deadlines or 

colliding within driver networks. 

Figure 31: Topology L 12_60 Large Network Transmission 

Figure 32: Topology L 12_60 Large Network Scheduling 
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5.2.3 – Multi Elevator Car Test 

Finally, we can test if this topology is appropriate for the real system, we need to be able 

to see if any messages are delayed, late or completely missed while running 

simultaneously. 

 

In figure 33 we can see all eight driver networks’ sensor data in a single plot. Even though 

we are running eight elevator cars all simultaneously, since every elevator car occupy 

different driver networks there are no cases that a driver network can suffer from extended 

load.  

Figure 33:  Topology L 8_40 Multi-car Network Sensor Data 

Figure 34:  Topology L 8_40 Multi-car Network Sensor Data 



55 

On Figure 34 we can see one of the eight driver networks’ sensor data. As we grouped the 

motor drivers to separate networks, it is expected that the sensor data transmission within 

each network is not affected by the total number of motor driver nodes. In fact, the only 

parameter that can affect the driver networks is the amount of motor drivers per gateway 

computer hence the amount of motor driver per driver network. Throughout our simulation 

results here, we always kept the number of nodes per network constant as five since it was 

a design parameter. The real system is planned to have five motor drivers per gateway 

computer as well. That is how we can make sure if our simulation model and our results 

are realistic or not. 
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5.3 – Topology R 

Topology R has a few similarities with Topology L when we consider the motor drivers 

being grouped by gateway computers which relay the messages coming from the main 

computer. This side of the topology, alike Topology L, has a separate network called 

“Outer Network” handling messages from main computer to the gateway computer using 

Ethernet protocol. The rest is different as the inner network on Topology R uses a ring 

topology with EtherCAT protocol.  

Since all the messages are carried in a datagram for every 5 motor drivers, increasing the 

number of nodes does not really affect the overall performance of the system, just like we 

have seen the same effect on Topology L with small and large network comparison. It only 

increases the workload of the main computer ever so slightly as it needs to deliver the 

message to more gateway computers to be relayed to motor drivers of those gateways. As 

the network scheduling graph of a larger network seems exactly the same as Figure 20, it 

is not included.  

One other thing we can observe if the system is capable of performing correctly is the 

position data from sensor nodes transferred to the respective NIC which then puts this data 

in a message on datagram, and the correct NIC receives it to pass the message to the 

respective motor driver and the motor driver displays the position data. We can see the 

sensor data on Figure 35. 

 

Figure 35: Topology R 4_20 Network Sensor Data 
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5.2.4 – COMPARISON OF THREE TOPOLOGIES 

Given the results we discussed on 5.1, 5.2 and 5.3, Topology G is a simpler network 

topology compared to Topology L when we consider the ease of implementation and 

configuration change such as adding or removing a node. But this comes with the cost of 

being less efficient and less effective. As the network gets larger and the number of node 

increases, the performance of the topology decreases as much. When we switched to a large 

network on Topology G, we proved that, it is not going to be sufficient to use this topology 

for the real system and after testing the multicar test as well, it was for sure that Topology 

G cannot handle the communication traffic therefore fails to be solution for our problem in 

the real system. 

On the other hand, we have seen the performance of Topology L, which was stable through 

every test. As there were multiple networks, the load on the network was divided at every 

situation and this let the topology to never become ineffective. This behavior of Topology 

L lets us add as many drivers to the network (as long as other components do not fail) as 

we want, and still the load on any specific driver cannot be increased more than a certain 

value.  

Similarly, on Topology R as we are separating the motor driver and sensor nodes into 

groups under gateway computers, we divide the load into the number of gateway computers 

which guarantees that as much as we increase the overall number of motor drivers in the 

elevator system, every group will have a certain lower amount of (5 in our applications but 

can be arranged to any other amount depending on the system) motor drivers so the 

performance of the system is not going to change at all.  

Unlike Topology L though, on Topology R it is significantly more challenging to solve any 

issues regarding with the EtherCAT network or its nodes compared to CANBUS and 

Ethernet, even though it is easier to pinpoint the problem on EtherCAT.  
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6. CONCLUSION 

In this thesis, three different network topologies are introduced and simulated to control a 

long armature linear motor with multiple elevator cars. To be able to simulate various 

network topologies on MATLAB, a generic simulation environment was created utilizing 

the real-time control system toolbox, TrueTime. The advantages and disadvantages of all 

three network topologies are explained clearly and their results are compared in terms of 

stability and effectivity. 

In Topology G, the simplicity of the topology allows for easy installation and 

maintainability while giving up on performance directly proportional to the amount of 

motor drivers on the network. Having all motor drivers connected to a single gateway 

computer creates bottleneck in respect of communication delay up to the point that the 

whole system fails especially with multiple elevator cars running simultaneously. 

In Topology L, the gateway computers undertake the mission of the sensors along with 

relaying the messages from main computer to the motor drivers. And grouping a small 

number of motor drivers under each gateway computer decreased the communication delay 

significantly (section 5.2.2). This structure that Topology L and Topology R demonstrate, 

enables all motor drivers to have nearly the same amount of communication delay allowing 

the motors to work smoothly and in harmony, not experiencing any fluctuations. Of course, 

on Topology L there are still small spikes in delays particularly when the main computer 

is transmitting necessary information to the gateway computers to relay the messages to 

the motor drivers to be able to manage the elevator cars, but this is not the case with 

Topology R as it simply adds the message coming from main computer to the datagram 

and passes it to the following NICs, nothing changes from the perspective of any of the 

NICs or the nodes that are connected to them. These messages are crucial to drive the 

elevator car, but the frequency of these messages can be arranged so that they are 

sufficiently frequent but as low as possible. But regardless of the spikes, the delay levels 

are always within the margin of error and acceptable on both Topology L and R.  
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Therefore, we can recommend one of these two topologies for the communication of long 

armature linear motor with multiple elevator cars but not Topology G because of its 

shortcomings. 

Another important appendage of this thesis is the usage of MATLAB scripts to create 

Simulink models instead of using the graphical user interface (GUI) by using drag and drop 

method. As using the GUI method can be very frustrating with models that consist of tens 

and hundreds of kernel and network blocks that you need to put and connect one by one, 

the script method allows the usage of for loops that can handle re-iterative jobs while 

building the model. Another very important additional note on using the script method is 

to be able to make any changes on all of the related nodes at once by changing it on the 

script. By using uncomplicated MATLAB scripts, it is possible to enlarge, shrink or edit a 

network topology effortlessly by changing a few parameters and settings. Although it is 

time consuming at first, as the development of a project goes on, using this method instead 

of graphical user interface method clearly pays of in the long run. 
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APPENDIX A : TRUETIME KERNEL BLOCK 

Init function name is used to set the function that is going to be initializing the kernel. More 

than one kernels can be initiated with the same function, in fact we have one initialization 

function to initialize every kernel on the network. To be able to do that, in the initialization 

code we need to be able to separate different kernels from each other. This is where init 

function argument comes in, once every unique kernel has a different init function 

argument given according to a sequence to make things easier, it is as simple as an “if-else 

statement” to check which kernel should go to which function. Analog input and outputs 

can be thought as wired electrical connections to or from the kernel, so it is the number of 

input and output ports our kernel going to have. Network and node number is the slightly 

more complicated one; it allows us to set which networks are we going to connect the 

kernel to and in each one of those networks we also need to specify which node number is 

the kernel going to have. There is a special syntax for this, which goes like the following: 

If we have only one network, let it be network number 1 and on that network the kernel is 

node number 4, then we can write: “[1 4]” or “[4]” as the default network is “1” and if 

nothing is written for network it uses the default. 

If we have multiple networks, let them be network number 1 and 3 and on network 1, kernel 

is the node number 4 and on network number 3, kernel is node number 6, then we can 

write: “[1 4;3 6]”. As we can see, we need to separate networks from each other with a “;” 

(semicolon) and in the beginning and end we have “[“ and “]” square brackets. A kernel 

can connect to as many networks as we want, although it is important for us to follow the 

syntax. 

In the kernel function, we can create a task that can simulate periodic and aperiodic actions. 

To be able to create a task we need to define some parameters, such as release time, worst 

case execution time, relative and absolute deadlines, priority, period [19], [21]. An example 

init function with periodic task creation and parameter definition is shown below: 
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The “ttInitKernel()” function initializes a node by specifying the scheduling algorithm 

given as a parameter. The built-in default scheduling algorithm is fixed-priority scheduling 

“prioFP” but we can specify other methods such as rate monotonic scheduling “prioRM”, 

earliest deadline first (EDF) “prioEDF” and deadline monotonic “prioDM” [17]. 

TrueTime blocks are event-driven and they can handle external interrupts which are 

correlated to external interrupt channels of the computer node. When the corresponding 

interrupt channel’s signal changes, it triggers an interrupt. This can be used for simulating 

disturbed controllers where a signal or measurement arrive to the node on the network. An 

interrupt can be handled by a user-defined interrupt handler when it occurs. An interrupt 

usually has a higher priority level. The syntax of an interrupt handler is first; name, then; 

priority, and then; function code name [21]. An example interrupt handler is shown below: 

 
 

A task execution can be preemptive or non-preemptive and there are three seperate priority 

levels. Highest priority level is the interrupts, then comes kernel and lowest priority level 

is the task. At kernel level and task level, dynamic priority scheduling can be used but at 

interrupt level only fixed priority scheduling can be used. The priority of a task is defined 

by user in a priority function in each scheduling point. This simplifies simulating different 

scheduling algorithms. For most scheduling algorithms that are commonly used, there is a 

pre-defined priority function [19], [21]. 

When the simulation runs, kernel executes the function code for the task and interrupt 

handlers. The function code can be divided into segments, and after the simulation is 

complete, each segment’s execution time is returned as output of the function code.[30] 
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During simulation, every time the function code is called it saves the current segment that 

has been executed, and if the task has been running for the specified execution time, it 

continues from the next segment [22]. An example function code of a sensor is shown 

below: 

 

This function code is of a simple sensor’s which the function is divided into three segments. 

The first segment is where the data is acquired from the analog input by the sensor which 

took 0.5 ms to execute, second segment is where the message acquired in the first segment 

is sent to node number 4 and took 0.3 ms to execute, and finally the last segment did nothing 

and sent a “-1” execution time that shows the end of execution. The structure “data” acts 

as the local memory which allows us to keep variable values such as the sensor read value 

between segment executions [20]. 
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APPENDIX B : TRUETIME NETWORK BLOCK 

A node can send and receive messages by using “ttSendMsg()” and ”ttGetMsg()” built-in 

functions on a network that they are in. For more detailed look over these built-in functions, 

please check the TrueTime Manual. 

A TrueTime network supports the following network types: CSMA/CD (Ethernet), 

CSMA/AMP (CANBUS), Round Robin (Token Bus), FDMA, TDMA (TTP), Switched 

Ethernet, WLAN (802.11b), and ZigBee (802.15.4). We will be using CSMA/CD 

(Ethernet) and CSMA/AMP (CANBUS) network protocols in this project. 

 

CSMA/CD (Ethernet) 

CSMA/CD stands for Carrier Sense Multiple Access with Collision Detection. If network 

is not idle, a node that wants to transmit must wait until the network is free, and if a message 

is transmitted within 1 microsecond of another a collision occurs. In the event of a collision 

the second node must back off for a period that can be calculated by: 

𝑡 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑓𝑟𝑎𝑚𝑒𝑑𝑎𝑡𝑎𝑟𝑎𝑡𝑒 × 𝑅 

where 

𝑅 = 𝑟𝑎𝑛𝑑(0.2 − 1)   (discrete uniform distribution)  

and K is the number of collisions in a row. K can be maximum 10 and minimum frame 

size cannot be 0. After waiting for tbackoff amount of time, the node will try to transmit 

again. 
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CSMA/AMP (CANBUS) 

CSMA/AMP stands for Carrier Sense Multiple Access with Arbitration on Message 

Priority. As expected from a real-life application of CANBUS, if the network is busy, then 

sending node will wait until it becomes free in the simulation. If a collision occurs, the 

message with the highest priority will continue to be transmitted. Explicit to simulation, if 

the collision is occurring between two equal priority messages an arbitrary choice is made 

to transmit which message to be transmitted first. Of course, in real life application, 

CANBUS nodes all have unique identifiers, which is used to compare priorities, so it is 

impossible to have two equal priorities [20]. 
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APPENDIX C  

These simple steps are followed while creating a new network topology model: 

- The parameters are introduced (Configuration) 

- Check if a model with the same name already exists, if it does then erase 

- Create a new empty model using new_system function of MATLAB 

- Open TrueTime library using open_system function of MATLAB 

- Now we can use other MATLAB functions such as add_block, add_line and 

set_param as well as some for loops and if statements. At the end when our model 

is created, we can use save_system command to save the model we just created. 

To be able to change any parameter easily we created a separate config file that holds all 

the parameters and the function code that creates the topology calls the config in the 

beginning to have access to all the parameters. This way all important parameters that the 

user may want to change to test a different configuration are in front of the user similar to 

a user interface. 

Now that we have a plan to follow, we can go in further detail creating a model below: 

 

Configuration 

First, we begin by the configuration file, which is the part we define all the parameters and 

set them according to the model we would like to create. 

 

After naming the model to create, we are ready to define parameters. The parameters that 

we define here are going to be used by other scripts while and after we create the model, 

so if we want to change a value and test again, we need to create the model from the 

beginning after the changes. 
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After defining every parameter, we need, we are ready to create the model, so this sums up 

the configuration file and we can move to the create topology code. 
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Create Topology  (Topology G) 

The very first thing we need to do before creating any models is to clear the workspace so 

that some parameters that are left from previous runs are erased and we can start fresh. This 

is especially important as some parameters’ values are changed while the simulation is 

running and in the case, we do not clean up, these changed parameters can cause some 

errors. To clear the workspace, we use: 

 
 
Now that we cleared the workspace, we can call our parameter definitions by calling the 

config.m file. In MATLAB to call another user script function we just need to write the 

name of the function without the “.m” extension. 

 
 

Then, we can check if any other file with the same topology name as we want to create 

exists. If it exists, we need to remove that before creating a new one. 

 
 

After that, we can create the new system by using the MATLAB function new_system: 

 
 

Just like we open the Simulink Library to use the common blocks in Simulink, we need to 

open the TrueTime Library to be able to use (copy) its blocks. Since we created our system, 
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we can open both TrueTime Library and our newly created system with the same 

command: 

 
 

Once these are all done, we are ready to add blocks, set those blocks parameters and 

connect them to one another. This is the part we create our model, we will be using the 

built-in functions that are “add_block()”, set_param() and “add_line()” respectively. These 

functions take multiple parameters each and they are shown below: 

 
 

As we will have detailed examples from our system, we are not going into too much detail 

here. For more detailed info on any command on MATLAB including the three above, 

there is built-in reference on MATLAB, accessible by typing “help” followed by the 

command the reference is needed for. 
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Adding Simulink Blocks 

In our model, as much as we use TrueTime blocks, we also need some Simulink blocks, 

such as clock, gain, display, constant, sum, display and sine wave. We can go over a few 

examples of how they are used below: 
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After executing it all, what we have on Simulink looks like this: 

 

Scope blocks by default show only the last 5000 data points, however we can force to show 

all data points by setting the parameter “LimitDataPoint” to “off” to have a better and more 

fair evaluation on the result. 

Adding a clock, a display or a sum block is simple as it is shown above, but what if we 

need to add many multiples of a block, for example the gateway computers, or motor 

drivers. We need to add so many of them, that adding them line by line is as frustrating as 

drag and drop method on Simulink. Another problem is that even if we add line by line, 

we need to name each block different, as MATLAB does not allow the user to use the same 

name twice. To solve these problems, we can use some algorithms with the help of “for 

Figure 36: Create Topology, Clock, Gain, Sum 
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loops” and “if-else conditional statements” to create multiples of the same block with a 

naming sequence that we prefer. We can create a for loop with the number of gateway 

computers, and inside the loop we can create another for loop with the number of motor 

drivers per gateway so that we can have nested loops and creating the network topology 

will be so much easier and practical. When we need to change a parameter for all the motor 

drivers for example, we will be changing one line and it will affect all of them. But before 

we add in the motor drivers and gateway computers, we need to add a network block since, 

all these nodes need to be specified to which network they are going to be connected to. 

The following example shows how to add and set the parameters of a network block: 

 
 

The code above creates our “outer network” which gateway computers and main computer 

are connected to. As we have a network to specify while creating the gateway computers 

now, we can see how they are created. 
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As we see above, we can create kernel blocks in loops to have multiples of it, as we can 

also create network blocks in loops to have multiples of. The example above first creates 

one main computer on the outer network, then goes into a for loop and in that loop it creates 

a network block as the driver network and then it also creates a kernel block as the gateway 

computer connected to both the outer network and the driver network. Later on, with a 

second for loop within the first one we can create the motor drivers the same way we 

created the gateway computers. 

 

 

 

Figure 37: Topology G Simulink Model 
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TrueTime Scripts and Functions 

Once our create topology function is ready, we need to prepare the initialize function for 

the kernel and network blocks. If we try to run the create topology function without the 

initialization function, we will get errors as networks and kernels are not initialized. We 

can have separate initialization functions as well as having all of them in one file. In our 

project we gathered all in one function to manage them easier. We need to define 

parameters, create tasks and interrupt handlers in the initialization function.  

 

Initialization Function 

 

 



81 

 

 

 

 

 

 

 

 



82 

APPENDIX D  

Create Topology  (Topology R) 
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