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ABSTRACT

EARLY DETECTION OF IMBALANCE IN LOAD AND MACHINE IN FRONT
LOAD WASHING MACHINES BY MONITORING DRUM MOVEMENT

HAMED MOHAMMADI

COMPUTER SCIENCE AND ENGINEERING M.S. THESIS, DECEMBER 2020

Thesis Supervisor: Asst. Prof. Dr. Öznur Taştan Okan

Keywords: imbalance detection, artificial intelligence, condition monitoring,
machine learning, predictive maintenance, vibration measurement, washing

machines

Balance issues in washing machines manifest themselves in the form of vibrations.
These unwanted vibrations become more prominent at high spin speeds. They can be
detrimental to the machine’s performance and shorten lifespan by causing permanent
physical damage. Detecting these vibrations early in the wash cycle and at spin
speeds below the machine’s resonant frequency is critical in devising proper measures
to alleviate their effects. In this thesis, we focus on the two common balance issues
observed in washing machines. The first one is machine imbalance, which stems
from the improper adjustment of leveling legs. The second balance problem is the
load imbalance, which is the result of an uneven distribution of the load inside the
drum. We specifically investigate the possibility of detecting these imbalances as
early as possible using models trained on sensory data collected from the drum.
For this aim, we collect vibration data on the two types of imbalance scenarios
throughout the wash cycle. Using these data, we build supervised classification
models using different feature extraction techniques on the multivariate times series
data and different machine learning models. We compare models that are trained
with different partial data collected at different time segments early in the wash
cycle. Our results show that we can attain a 95% F1-score with input as short as
500 ms of the wash cycle, indicating that early prediction of these two imbalances
during the wash cycle is possible. The collected data are shared for the research
community.
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ÖZET

ÖN YÜKLÜ ÇAMAŞIR MAKİNELERİNDE TAMBUR HAREKETİNİN
İZLENMESİYLE YÜK VE MAKİNEDE DENGESİZLİĞİN ERKEN TESPİTİ

HAMED MOHAMMADI

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, ARALIK
2020

Tez Danışmanı: Dr. Öğr. Üyesi Öznur Taştan Okan

Anahtar Kelimeler: dengesizlik tespiti, yapay zeka, durum izleme, makine
öğrenimi, öngörücü bakım, titreşim ölçümü, çamaşır makinesi

Çamaşır makinelerinde denge sorunları titreşim şeklinde kendini gösterir. Yük-
sek dönüş hızlarında daha belirgin hale gelen bu titreşimler, kalıcı fiziksel hasara
neden olarak makinenin performansına ve ömrünü olumsuz şekilde etkileyebilir.
Bu titreşimleri yıkama döngüsünün başlarında ve makinenin rezonans frekansının
altında tespit edilmesi, uygun önlemlerin belirlenmesi için kritik öneme sahiptir.
Bu tezde, çamaşır makinelerinde görülen iki genel denge sorununa odaklanıyoruz.
İlki, makinenin dengesizliği,tesviye ayaklarının yanlış ayarlanmasınan kaynaklanan
makine dengesizliği; ikincisi ise tambur içindeki yükün eşit olmayan dağılımından
kaynaklanan yük dengesizliği. Tamburdan toplanan sensör verileri ile eğitilmiş yapay
öğrenme modelleri kullanarak özellikle bu dengesizliklerin olabildiğince erken tespit
edilme imkanını araştırmaktayız. Bu amaçla, iki tür dengesizlik senaryosuna ilişkin
veri toplamaktayız. Bu ardışık verilerden, farklı özellik çıkarma teknikleri ve farklı
makine öğrenimi modelleri kullanarak denetimli ardışık veri sınıflandırma modelleri
oluşturmaktayız. Yıkama döngüsünün farklı zamanlarından toplanan kısmı sensor
verisi ile kurulan modelleri karşılaştırmaktayız. Sonuçlarımız, yıkama döngüsünün
500 ms’sinden toplanan veri ile %95 F1 skoruna ulaşabildiğini göstermektedir, bu da
yıkama döngüsü sırasında bu iki dengesizliğin erken tespitinin mümkün olduğunu
işaret eder. Toplanan veriler, araştırmacıların erişimine sunulmuştur.
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1. INTRODUCTION

Washing machines are among the most essential durable goods found in every mod-
ern household. Front-loading (or horizontal-axis) washing machines are becoming
more popular due to their energy efficiency and considerably less water consumption
compared to their top-loading counterparts (Ramasubramanian & Tiruthani, 2009).
These machines are produced to be durable and last for many years. However, mi-
nor anomalies in their working conditions, such as imbalances and improper belt
tension, that happen repeatedly over a prolonged duration of usage can adversely
affect their performance and lifespan (Yörükoğlu & Altuğ, 2012).

Among the imbalance issues, some are caused by the incorrect installation of the
machine, while others can be the result of an undesirable distribution pattern of the
laundry items put inside the drum. The two most common types of imbalances that
can be prevented, or their consequences can be alleviated, are machine imbalance
and load imbalance. Machine imbalance is caused by improper adjustment of the
leveling legs of the washing machine during installation, while the load imbalance
is the result of an unbalanced distribution of the laundry item inside the drum at
high spin speeds.

In order to get a grasp of the extent of damage that these imbalances can cause, let us
assume a washing machine drum rotating at 1200 rounds per minute (RPM) with 1
kilogram of laundry tangled and concentrated on one side of it. The centrifugal force
produced by this laundry can be calculated using the equation ~F =mω2r, in which
m is the mass of the load, ω is its angular velocity, and r is the radius of the drum.
Assuming the radius to be 25 centimeters, the force exerted by this unbalanced load
on the drum is 3948 N, or 402.6 kilograms perpendicular to the drum. Although
the spring and damper mechanism in modern washing machines can absorb some of
this force, it still can permanently damage the drum - and the washing machine - if
the spin is not interrupted immediately. While certain precautions can prevent the
formation of these imbalances, the user might be unaware of them. In this thesis, we
investigate the possibility of detecting them early in the wash cycle so that required
measures can be taken and physical damage to the machine can be avoided.
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Most of the previous work on imbalance detection in washing machines focus on load
imbalance detection, and formulate it as a classification problem (Lee & Kim, 2010;
Murray, Henderson, Marcetic, Marcinkiewicz, Sadasivam & Rajarathnam, 2011; Ra-
masubramanian & Tiruthani, 2009; Yörükoğlu & Altuğ, 2012; Yuan, 2008; Zhang,
Xie, Garstecki, Xie, Slabbekoorn & Buendia, 2011). The main limitation with most
of the proposed methods, however, is that they either rely on complex mathematical
models of the machine or use data from multiple sensors located at different posi-
tions in the machine to achieve the task. The former approach requires extensive
expertise and experience in the physics and design of the machine, while the latter
imposes extra production costs. In addition, to the best of our knowledge, there is
no previous work that focuses on the early detection of these balance issues.

In this thesis, we address these problems by using an inexpensive inertial measure-
ment unit (IMU) attached to the drum of a washing machine and utilize the data
obtained from it to detect both load imbalance and machine imbalance as early
as possible in the wash cycle. We also aim to classify the amount of unbalanced
load when load imbalance is detected. The developed method does not require any
mathematical modeling of the machine, nor any prior knowledge and expertise in its
design and physical properties. Another contribution of this work is that we collect
data and make it available for the other researchers working on similar problems 1.

This thesis is organized as follows. In Chapter 2, we present an overview of relevant
literature and review different methods for data collection, feature extraction, and
imbalance detection. Chapter 3 explains the data collection set up, and preprocess-
ing steps to be used for the classification algorithms. In Chapter 4, we talk about
the different models used for imbalance detection and load imbalance classification.
Chapter 5 shows the results obtained from all the implemented models, together
with the best models selected for each imbalance detection task. Finally, Chapter 6
concludes the thesis, and future research directions in this area are discussed.

1To download the datasets, please visit https://bit.ly/3i9ST5W
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2. LITERATURE REVIEW

In this chapter, we discuss different approaches to solving the problem of imbal-
ance detection in washing machines among researchers. First, we review imbalance
detection algorithms with a focus on industrial applications. We then discuss dif-
ferent data collection strategies used in previous works. We continue by examining
different early detection approaches. In the end, we go over the different feature
extraction methods that are used to address this family of problems.

2.1 Imbalance Detection Algorithms

Algorithms used from imbalance detection range from the most basic threshold-
based decision making, to the more sophisticated neural network approaches. These
methods can be classified as follows:

2.1.1 Threshold-based Detection and Linear Modeling

Many of the older solutions to the problem of imbalance detection using vibrations
and displacement rely on a threshold or a defined linear relation over the data read
from the sensors for decision making. Unless proper precautions are taken, this type
of approach is susceptible to noise and measurement errors.

Lee & Kim (2010) use this approach and classify the position of the unbalanced
load inside the drum into the front, center, rear, and diagonal. They monitor the
vibration amount of the drum at different positions using acceleration sensors, as
well as the spin speed of the drum. The phase differences between the vibration

3



signals are then obtained and divided by the spin speed to obtain a value. This
value is then compared to a reference value to detect the position of the unbalanced
load.

Ramasubramanian & Tiruthani (2009) derive a mathematical model of the machine
and use it to associate the amplitude of drum movements with the mass of the
unbalanced load. They use a simplified model of the drum as a one-dimensional
spring-mass system and use this model to predict the movement of the drum with
unbalanced load at different locations. The predictions are then compared with the
real data collected from the drum using a custom capacitive displacement sensor to
detect the location of the unbalanced load.

In another work, Murray et al. (2011) use a modeling approach with data obtained
from the motor to determine unbalanced mass. They construct a mathematical
model of the machine. The torque and speed information of the motor is monitored
and the amount of ripple in these variables is used to calculate the mass of the
unbalanced load inside the drum.

2.1.2 Machine Learning and Neural Networks

More recent works conducted in the area of imbalance detection, or more broadly
anomaly detection, use machine learning models to detect different types of anoma-
lies in rotary machinery, and more specifically washing machines. These methods are
more robust to noise and measurement errors and produce better results compared
to the ones discussed in Section 2.1.1.

Xing, Pei & Philip (2009) use a 1-nearest neighbor (1NN) model to perform early
detection on time series. They define minimum prediction length as the shortest
length of the input sequence for which the classifier predicts the same label as the
full-length input, and the predicted label does not change as longer data sequences
are provided to the model.

Kadous (1999) extracts events from the training data using parametrized event
primitives (PEPs) and combines them with features such as global maxima and
minima to use them for classification. They use naïve Bayes or C4.5 (Quinlan,
1993) as the learner, and k-means to cluster the data.

Yuan (2008) implements a support vector machine and a neural network model to
estimate the mass and position of the unbalanced load and compare their perfor-
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mance. Principal component analysis (PCA) is used for dimensionality reduction of
the data collected from multiple sensors attached at different locations of the ma-
chine, and the obtained features are fed to the neural network and support vector
machine to classify the input data.

Yörükoğlu & Altuğ (2012) use a fuzzy neural network (FNN) to estimate the mass
and location of the unbalanced load inside the drum. They use the collected data
to develop the rules and membership functions for a fuzzy logic-based estimator
and tune it experimentally. This estimator is then fed with the data collected from
multiple sensors mounted on the drum to predict the mass and position of the
unbalanced load.

2.2 Data Types Used in Imbalance Detection Algorithms

The type of data collected from the machine plays an important role in the perfor-
mance of the imbalance detection algorithms. There are three general approaches
in data collection for imbalance detection in washing machines. These approaches
are as follows:

2.2.1 Mechanical Data

The first approach consists of measuring mechanical data, such as vibration and dis-
placement of the drum, from the machine and using them to detect the imbalance.
This method is used by Yuan (2008), Yörükoğlu & Altuğ (2012), and Ramasubrama-
nian & Tiruthani (2009) to detect the imbalance and estimate the mass and location
of the unbalanced load. Yuan (2008) implements a multi-sensor solution composed
of two laser sensors and an accelerometer to estimate the mass of the unbalanced
load. Yörükoğlu & Altuğ (2012) achieve the same goal by using two accelerometers
and a Hall effect sensor. In another study, Ramasubramanian & Tiruthani (2009)
develops a capacitive displacement sensor to measure drum movements along a single
axis and use the data to estimate the unbalanced load.
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2.2.2 Motor Data

In another data collection approach, motor-related data such as spin speed, torque,
current, and power are used to detect balance issues in the washing machine. Murray
et al. (2011) use motor torque ripples and motor speed and feed them into a digital
signal processing (DSP) unit to carry out the unbalanced load detection task. Zhang
et al. (2011) determine the load imbalance condition by operating the motor in
three different speed profiles, i.e., constant speed, acceleration, and deceleration,
and measuring the average power output from the motor during these phases. This
value is then used to calculate the power fluctuation integral, which in turn is used
to detect the amount of unbalanced load.

2.2.3 Hybrid Data

There has been previous work that combines the two approaches mentioned in Sec-
tion 2.2.1 and Section 2.2.2 into a hybrid one. This approach uses both mechanical
and motor data to detect the imbalance in load. For example, Lee & Kim (2010)
classify the type of load imbalance in the washing machines by using a threshold-
based method. The authors use the data from a multi-axis acceleration sensor, along
with the fluctuations in motor spin speed subjected to unbalanced loads, to detect
unbalanced load in the machine.

2.3 Feature Extraction

Extraction of meaningful features from the raw data is required to prepare the input
data for machine learning models. Xing, Pei, Yu & Wang (2011) propose a method
to extract local shapelets from the signal to manifest a target class in a distinct
manner. In another work, Baydogan, Runger & Tuv (2013) use a bag-of-features
representation of the signal by choosing subsequences of arbitrary length from ran-
dom locations in the signal and dividing them into shorter partitions to capture the
local information. A more recent work deploys a kernel, namely Wasserstein time
series kernel (WTK), to measure the similarity between two subsequence distribu-
tions (Bock, Togninalli, Ghisu, Gumbsch, Rieck & Borgwardt, 2019). To detect
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the bearing fault in rotating machinery, Janssens, Slavkovikj, Vervisch, Stockman,
Loccufier, Verstockt, Van de Walle & Van Hoecke (2016) use signal shape represen-
tatives such as root mean square (RMS), Kurtosis, and Crest Factor as the features
for the machine learning algorithms. Multi-scale fractal dimension (MFD) and Mel
Frequency Cepstral Coefficients are among the other feature extraction methods
that are used to classify anomalies in multivariate time series (MTS) (Nelwamondo,
Marwala & Mahola, 2006).

2.4 Early Detection in Sequential Data

Early classification of temporal data has been addressed as a general machine learn-
ing problem in various previous studies (Alonso González & Diez, 2004; Anderson,
Parrish & Gupta, 2012; Dachraoui, Bondu & Cornuejols, 2013; Ghalwash, Radosavl-
jevic & Obradovic, 2014). The problem is to make a decision with partial temporal
input. Xing et al. (2009) uses a 1-nearest neighbor classifier to achieve reliable pre-
dictions with minimal temporal input lengths. They do not make any assumptions
about the form of the underlying distributions on the input. In another work, the
cost of deferring decision is incorporated in the cost function and early prediction is
attained by extracting local patterns called multivariate shapelets and classifying the
time series by probing the earliest pattern that is closest to the training shapelets
(Ghalwash & Obradovic, 2012). A similar approach is used by He, Duan, Peng,
Jing, Qian & Wang (2015) to extract distinctive shapelets from a multivariate time
series, and use methods such as query by committee (QBC) to classify the samples.
Achenchabe, Bondu, Cornuéjols & Dachraoui (2020) introduce an optimization cri-
terion by considering misclassification and decision postponement costs and use it in
algorithms that seek to predict future information gain by considering the waiting
cost. In another work, Hatami & Chira (2013) put forward a classifier structure
including a reject option. This architecture is able to make online decisions without
waiting for the entire length of the input data.

In the existing literature, the aim is to decide whether to make a classification at a
given time or to defer the prediction at a later time step. Thus, the previous work is
an online learning setup. In our work, we conduct a comparative study to determine
the sufficient portion of the data to attain a good prediction error. However, we do
not formulate the problem as an online learning problem.
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3. DATA COLLECTION AND PREPROCESSING

In this chapter, we first describe the data collection procedure from washing ma-
chines for machine imbalance and load imbalance prediction. Next, we describe the
steps for processing the raw data and prepare it for the imbalance detection models.

We collected the data using a sensor board attached to the concrete block on the
drum of a washing machine. This board encapsulates an inertial measurement unit,
including an accelerometer and a gyroscope sensor, and transfers the collected data
to a computer where the data is stored, and later used for model training and testing.

3.1 Data Collection Setup

To be able to detect the presence of machine imbalance and load imbalance, we use
two different strategies to collect the required data. The reason for this is that in
the machine imbalance detection problem, the earliest drum spin is the one at 52
RPM during the first washing cycle, which happens right after the washing machine
takes the required amount of water. However, this rotation speed is not enough for
detecting the load imbalance. In order to detect this type of imbalance, the drum
needs to rotate at a speed high enough to cause centrifugal forces to push the laundry
to the drum and make them stay there, but lower than the resonant frequency of the
machine to avoid extreme movements and physical damage to the machine. This
speed, known as satellization speed, is the angular velocity at which the velocity
of the drum and the laundry become equal (ωdrum = ωlaundry). Satellization speed
can be calculated by mathematically modeling the machine and the laundry inside
it (Janke, Richmond & Zasowski, 2015). For the purpose of this work, we take
the satellization speed to be 100 RPM. As a result, the data required for detecting
machine imbalance was collected during a normal 30-minute wash cycle, while load
imbalance data was collected with the drum rotating at a fixed speed of 100 RPM.
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x

y
z

Figure 3.1 Data collection sensor board (a) mounted on top of the concrete block
(b) attached to the washing machine drum (c)

We collect the data using the setup shown in Figure 3.1. In this setup, a sensor board
with a gyroscope and an accelerometer is fixed on the concrete block attached to
the drum of a washing machine. The sensors measure the linear acceleration and
angular velocity of the drum along and around x, y, and z axes, respectively. The
board then transfers the measurements to a computer over WiFi, where the data
is recorded. Figure 3.2 illustrates some samples of the raw data collected from the
accelerometer during a full wash cycle, and with the drum rotating at 100 RPM.

In order to choose the sampling rate for the sensors, we use the Nyquist-Shannon
Theorem which states that a digitally sampled signal can be fully reconstructed if
the sampling frequency is at least twice as large as the highest frequency component
in the signal (Shannon, 1949). The highest selectable spin speed of the machine
that is used for data collection is 1000 RPM (16.67 Hz). As a result, a sampling
frequency of 33.3 Hz is sufficient to reconstruct the signal. However, since the lowest
sampling frequency that the sensor board supports is 50 Hz, this rate was chosen
to collect the data from the two sensors. As the detection needs to happen in the
early stages of the wash cycle and even below the machine’s resonant frequency,
the chosen sampling rate is well above the minimum required frequency to fully
reconstruct the signal.

The data is collected for both the normal and unbalanced behavior of the machine.
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Figure 3.2 The x-, y-, and z-axis of accelerometer data from (a) the daily program
with balanced machine, and (b) the drum rotating at 100 RPM with balanced load

The data for the normal behavior of the machine is collected by operating it under
normal conditions, i.e. fully balanced for machine imbalance data and with balanced
loads for load imbalance data. In order to collect the abnormal data, we inflicted
the two types of imbalances on the machine separately. We set up experiments that
simulate these imbalance cases as follows:

3.1.1 Unbalanced Machine

To produce this type of imbalance, the machine was perfectly leveled, and then one
of the leveling legs of the machine was deliberately made shorter than the others. By
doing this, the washing machine could swing by as much as 0.3◦ along its diagonal
axis. The machine was then run by choosing the Daily Wash 30-minute program
with the following load and spin speed combinations: laundry load of 2.5 and 5
kilograms, and rinse spin speeds of 400, 600, 800, and 1000 RPM. Ten different
samples were taken from each run, resulting in a total of 80 samples labeled as
abnormal. The same procedure was repeated with the fully balanced machine and
80 samples were recorded and labeled as normal runs.

3.1.2 Unbalanced Load
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Figure 3.3 Different load combinations attached to the drum for load imbalance data
collection

Since the behavior of the laundry inside the drum cannot be reliably controlled, we
simulated this type of imbalance using custom-sized metal loads. As Figure 3.3 illus-
trates, these loads are evenly distributed among the three regions between the drum
paddles, with one of them being heavier than the others to produce the imbalance.
We collected data using the following balanced and unbalanced load combinations:
0, 1200, 1950, and 2550 grams of balanced, and 0, 350, 650, and 1000 grams of an
unbalanced load. The samples with no unbalanced load are labeled as normal, and
the rest as imbalanced load. Data labels also include the amount of unbalanced load,
with 1, 2, and 3 representing 350, 650, and 1000 grams of such load, respectively.
The machine was operated at 100 RPM with each of these load configurations, and
one hour of data was collected at each run, resulting in a total of 16 hours of load
imbalance data.

3.2 Preprocessing
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Figure 3.4 Data pipeline from washing machine to machine learning algorithm

The data collected from the sensors is not ready to be used for the purpose of
imbalance detection and classification. To prepare the data, we process the sensory
data from the inertial measurement unit as shown in Figure 3.4. These steps are
described in detail as follows:

3.2.1 Reconstruction and Resampling

Due to the internal working mechanism of the used sensor board and the delay
caused by wireless communication, some of the data points obtained from the two
sensors were not sampled at exactly the same time, and their timestamps were
not matching. To overcome this problem, the signals from the accelerometer and
gyroscope were reconstructed and resampled at the original sampling frequency of
50 Hz. The missing values were filled in using linear interpolation. Assuming we
have two points (x0,y0) and (x1,y1), to find the missing value y at a point x in the
interval (x0,x1) we can use Equation 3.1.

(3.1) y = y0(x1−x) +y1(x−x0)
x1−x0

All the data obtained for both imbalance detection tasks were reconstructed and
resampled before other processing steps can be applied on them.

3.2.2 Trimming

The data collected from the Daily Wash program includes an idle part before the
drum starts spinning, and another one after the program is finished and before
the data collection is stopped, as shown in Figure 3.2(a). These parts of the data
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do not have any significance in the detection of imbalances and can cause hidden
confounding effects. To trim these parts, a moving window with a threshold was
implemented. The window calculates the mean of all sample points inside it, and
if the distance from the mean to either the minimum or maximum value inside
the window exceeds a given threshold, we use the window location as the starting
position of the signal. The same window moving backward from the end of the
signal is used to detect its ending position. In this work, a window of size 25 and a
threshold value of 0.1 is used to trim the samples. Since load imbalance data was
collected at a fixed spin speed, it does not need trimming and can be directly used
in the next step.

3.2.3 Feature Extraction

Extraction of meaningful features from the raw data is required to prepare the
data for machine learning models. To do so, non-overlapping moving windows of
predetermined sizes were implemented. The windows move across the data and
extract the required features from within them, producing a single sample either for
training or testing. Figure 3.5 shows a sample window of size 5 seconds extracting
discrete Fourier transform features from the sensor data used for the load imbalance
detection task. The strategy for selecting the size of the window will be discussed
later in Section 4.4. Since the data collected during a full washing cycle include
the high-speed spin cycles where the anomalous behavior becomes evident, only the
parts during which the drum is rotating at 52 RPM were utilized for the detection
task.

In order to get the best results from machine learning models, the extracted features
need to be properly scaled. To do so, a min-max normalization strategy was used
to scale the feature vectors to range [0,1]. Equation 3.2 can be used to normalize a
single point x(j)

i in the xi component of a multivariate time series.

(3.2) x
(j)
inorm

= x
(j)
i −min(xi)

max(xi)−min(xi)

In this work, we use the following feature extraction strategies, the obtained features
are scaled, and the performance of the models using these extraction strategies are
compared to decide on the best feature representation. We also devise several simple
baselines to compare the methods against.
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Figure 3.5 Generating DFT representation from 5 seconds of sensor data from the
drum rotating at 100 RPM

3.2.3.1 Extrema

The extrema refers to the minimum and maximum of a time series in a given period.
Equation 3.3 is used to extract the extrema of the given sample as a 12-dimensional
feature vector v.

(3.3) v = {min(xi) | xi ∈X }∪{max(xi) | xi ∈X }

In this equation, X is the sample multivariate time series with 6 components (the 3
axes of the accelerometer and the 3 axes of the gyroscope), and each xi is a univariate
component of X. The models that use this feature are named with the suffix EX.

3.2.3.2 Mean and Variance
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The mean and variance of each univariate time series (UTS) are calculated and
concatenated as shown in Equation 3.6 to form a 12-dimensional feature vector for
model training and testing.

(3.4) µi = 1
n

n∑
j=1

x
(j)
i

(3.5) σ2
i = 1

n

n∑
j=1

(x(j)
i −µi)2

(3.6) v = {µi | 1≤ i≤m}∪
{
σ2

i | 1≤ i≤m
}

Here, x(j)
i is the jth element in xi, m is the dimensionality of the multivariate time

series, and n, µi, and σ2
i are the length, mean, and variance of xi, respectively.

When this feature is used in training a model, the model name is suffixed with MV.

3.2.3.3 Kurtosis and Crest Factor

Kurtosis is a measure to describe how tailed a function is. A higher kurtosis value
means the signal has sharper peaks (Pearson, 1905). Crest factor is defined as the
ratio of the peaks in a signal to its effective value (Andersen, 2001). These values
are calculated using Equation 3.7 and Equation 3.8, and concatenated to form a 12-
dimensional feature vector. For a better understanding of these features, Figure 3.6
illustrates some functions, and their kurtosis and crest factor values.

(3.7) Kurt(xi) = 1
n

n∑
j=1

(x(j)
i −µi)4

σ4
i

(3.8) Crest(xi) = max(|xi|)
RMS(xi)

(3.9) v = {Kurt(xi) | xi ∈X }∪{Crest(xi) | xi ∈X }
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Figure 3.6 Kurtosis (K) and crest factor (C) values of three sample functions

Here, RMS(xi) is the root mean square value of the univariate time series that can
be calculated using Equation 3.10.

(3.10) RMS(xi) =
√√√√ 1
n

n∑
j=1

(x(j)
i )2

The models that use this feature vector have their name ending in KC.

3.2.3.4 Histogram

We obtain a histogram from the time series by dividing the range of possible values
of the signal into a predefined number of bins, and the repetition frequency of the
values inside that bin is taken to be the height of that bin. We calculate histograms
for each component of the multivariate time series. We calculate the ranges and
the bins to obtain the histogram on the train data, and use the same values to
obtain the histogram of the test data. The features represent the content of each
bin, and since there are 6 components for the multivariate time series, the number
of features is 6 × the number of bins. To see the effect of the number of bins in the
performance of the models, two histogram representations with 10 and 20 bins were
used to train and test the models which produce 60- and 120-dimensional feature
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Figure 3.7 Histogram comparison of x-, y-, and z-axis of accelerometer data from
normal wash with balanced machine (top) and unbalanced machine (bottom)

vectors, respectively.

If this feature representation is used in training a model, its name ends in H10 or
H20, where 10 and 20 illustrate the number of bins used. Figure 3.7 shows the 20-bin
histogram of two 10-second samples from a balanced machine and an unbalanced
machine during a normal wash cycle.

3.2.3.5 Uniform Manifold Approximation and Projection

Uniform manifold approximation and projection (UMAP) is a dimension reduction
method that is based on Riemannian geometry and algebraic topology (McInnes,
Healy, Saul & Grossberger, 2018). This method can be described in terms of
weighted graphs, and particularly k-neighbor based graph learning. As such, the
reduction is achieved by constructing a weighted graph from the given data. The
low-dimensional layout of this graph is then calculated and used to represent the
reduced form of the input data. We use this algorithm to reduce each sample to
a 3-dimensional feature vector. These vectors are then fed into different machine
learning models to compare their performances. The models using this data repre-
sentation method are named with the suffix UMAP.
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Figure 3.8 Raw data and DFT of x-axis of (a) accelerometer and (b) gyroscope data
from a balanced machine during normal wash

3.2.3.6 Frequency Spectrum

The frequency spectrum of a discrete signal is obtained using discrete Fourier trans-
form (DFT), which represents the signal in the frequency domain. Figure 3.8 demon-
strates 10 seconds of raw data from the accelerometer and gyroscope during a nor-
mal washing cycle and their corresponding DFT representations. Since most of the
anomalies in the machine show themselves as a form of vibration, this information
can play a significant role in detecting the unbalanced working of the washing ma-
chine. This can be observed in Figure 3.9. In this figure, the amplitude of the signal
at frequencies around the spin speed of the drum (1.6 Hz) is increased in the pres-
ence of an unbalanced load. Fourier transform of a discrete signal can be calculated
using Equation 3.11.

(3.11) F (jω) =
N−1∑
k=0

f [k]e−jωkT

In this equation, N is the number of samples and T is the time delay between
two consecutive samples. The discrete Fourier transform for each component of the
multivariate time series was calculated and concatenated to form the feature vector.
Since the length of the Fourier transform is proportional to the signal length, the
dimension of the feature vector changes based on the length of the processed sample.
This feature representation is shown with the suffix DFT in the model names.
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3.2.3.7 Wasserstein Time Series Kernel

Wasserstein time series kernel introduced by Bock et al. (2019) measures the simi-
larity between two distribution functions. It implements a sliding window to extract
subsequences of the two given series. It then calculates a pairwise distance matrix
between the subsequences extracted in the previous step. An optimal transport
plan is then calculated to make the similarities more visible. This transport plan
is used to match the subsequences of the input series. The kernel is given using
Equation 3.12, in which W1 is the 1st Wasserstein distance between the two time
series Ti and Tj .

(3.12) WTK(Ti,Tj) := exp(−λW1(Ti,Tj)), λ ∈ R>0
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The 1st Wasserstein distance is defined as

(3.13) W1(Ti,Tj) := min
P∈Γ(Ti,Tj)

〈D,P 〉F

where P is the transport matrix, Γ(Ti,Tj) is the set of all transportation plans, D is
the pairwise distance of all subsequences, and 〈., .〉F is the Frobenius inner product.

Since histograms are representatives of signal distribution among bins, we used
this method with the 10-bin histogram that was constructed earlier. The resulting
kernel was then given to a support vector machine classifier model as a pre-computed
kernel. The model names are suffixed with WTK to show that they use this feature
extraction method.
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4. MODEL SELECTION AND TRAINING

In this chapter, the models used to classify the data are described in detail. Section
4.1 describes the different machine learning and neural network algorithms and
models used for the imbalance detection task. The hyperparameters used to tune
these models, as well as the tuning method used to find the best parameters are
reported in Section 4.2. Section 4.3 discusses the different performance metrics used
to assess different models and compare them together. Finally, in Section 4.4 we
discuss the earliness criteria that we implemented and used in this thesis.

4.1 Models

We classify the imbalances using traditional machine learning algorithms, as well
as deep learning models. When training the traditional machine learning models,
we use the various feature representations described in Section 3.2.3, while the deep
learning models are directly given the data acquired after resampling the raw sensor
output. We describe these models in the following sections.

4.1.1 Support Vector Machines

Support vector machines (SVM) are supervised learning models that find the lin-
ear hyperplane that maximizes the margin between two classes (Cortes & Vapnik,
1995). Although the model is linear in the original feature space, using the kernel
trick, SVMs can efficiently perform non-linear classification. This algorithm was
originally introduced as a solution to binary classification, i.e. when there are only
two classes for prediction. Although this solution meets our need for machine im-
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balance detection, we cannot use it for load imbalance classification without proper
modification. To this end, the one-vs-one method was used to expand SVM to a
multiclass classifier. In this strategy, each sample is classified for each two possible
label combinations, and the sample label is decided via a voting mechanism (Bishop,
2006). Assuming we have k distinct class labels, this method requires k(k− 1)/2
binary classifiers to classify the k labels.

As for the kernel, radial basis function (RBF) was used in all the implemented SVM
models. This kernel can be calculated using Equation 4.1. In this equation, x and
x′ are two feature vectors, and σ is known as the kernel parameter.

(4.1) K
(
x,x′

)
= exp

(
−‖x−x

′‖2

2σ2

)

4.1.2 Gradient Boosted Decision Trees

Extreme gradient boosting (XGBoost) is a scalable and resource-efficient tree-based
gradient boosting algorithm (Chen & Guestrin, 2016). This algorithm uses an en-
semble of trees and gradient boosting to produce a model for classification or regres-
sion. It gradually adds new trees to the ensemble to compensate for the residuals
of the current models, and hence improve the overall performance of the ensem-
ble. In this work, we used this algorithm to perform classification for both machine
imbalance and load imbalance detection problems.

4.1.3 Neural Networks

Artificial neural networks, generally called neural networks, are learning models
based on neuron units. These units, which are inspired by brain neurons, compute
the weighted sum of their inputs, and use an activation function to produce the
output. Equation 4.2 illustrate the mathematical model of an artificial neuron.

(4.2) y = Φ
(

n∑
i=0

ωixi + b

)

In this equation, xi is the ith input, ωi in the weight assigned to it, and b is the
bias term for the neuron. The function Φ(.) is known as activation function, and
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Figure 4.1 CNN model for load imbalance detection and classification with 1 second
of input data

activates the output of the neuron based on a threshold function.

Neural networks use these units in different arrangements and layers to perform the
learning and prediction task. What makes these networks powerful is that they can
operate with the raw data and extract the required features on their own, without
the need for manual feature extraction steps. In this work, we used the following
models for imbalance detection.

4.1.3.1 Convolutional Neural Networks

Convolutional neural network (CNN) is one of the most widely used neural networks
and has made significant achievements in different areas such as natural language
processing and computer vision (Li, Yang, Peng & Liu, 2020). Figure 4.1 shows one
of the CNN models used for detecting load imbalance issue and classify the weight of
the load. This sample model operates on the 6-dimensional inputs of size 1 second
and consists of two 1-dimensional convolution layers, each with 64 filters and a
kernel size of 10, followed by a dropout layer with rate 0.5, and a fully connected
layer with four outputs, each representing one of the classes to be predicted. We
use categorical cross-entropy for model training, and the training stops early if the
validation loss does not improve by more than 0.001 during five epochs.

4.1.3.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN)
designed to more accurately model the long-range dependencies among temporal
sequences (Hochreiter & Schmidhuber, 1997). In this work, we built and trained
three LSTM models with 25, 50, and 100 nodes. The training loss function is
selected to be categorical cross-entropy, and the same early stopping criteria as
explained in Section 4.1.3.1 is implemented to avoid overtraining the networks.
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4.2 Hyperparameter Tuning

The hyperparameters of the different used models are tuned using the grid search
method to produce the best outcome. We apply 3-fold cross-validation on training
data to assess the performance of the models trained with different combinations
of the hyperparameters. The values yielding the best mean performance are then
used to train the final models and we report the performance on the test data. The
hyperparameters used in the best-performing models can be found in Appendix C.

The SVM models were tuned for regularization parameter (C) and kernel coefficient
(γ). The values chosen for these parameters are as follows.

C =
{

10i | i ∈ Z,−2≤ i≤ 4
}

γ =
{

10i | i ∈ Z,−6≤ i≤ 0
}

As an example, Figure 4.2 shows the grid search results for the SVM model trained
with 10-bin histogram representation of samples of length 2 seconds. In this example,
the optimal parameter values are γ = 1.0 and C = 10.

XGBoost has more parameters to be tuned. In this work, these models were tuned
for maximum tree depth of base learners (depthmax), minimum sum of instance
weight needed for a child (wmin), and minimum loss reduction (γ). These parameters
are tuned using the following values.

depthmax = { i ∈ Z | 3≤ i≤ 9}

wmin = { i ∈ Z | 1≤ i≤ 5}

γ =
{
i

10 | i ∈ Z,0≤ i≤ 4
}

4.3 Performance Metrics

We evaluate the implemented models using different classification performance met-
rics. These metrics were used during model selection, as well as assessing the final
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Figure 4.2 Grid search results with SVM model for γ and C parameters with 10-bin
histogram as feature vector and samples of length 2 seconds

classifiers. These metrics are as follows:

4.3.1 Precision

Precision is the ratio of truly predicted positive classes to all the samples predicted
as being in positive. It can be calculated using Equation 4.3. In this equation, tp
and fp stand for truly classified positive samples and mistakenly classified negative
samples, respectively.

(4.3) Precision = tp

tp+fp

4.3.2 Recall
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Recall is the ratio of truly predicted positive classes to the number of all positive
samples in the data set. It is calculate as shown in Equation 4.4, with fn being the
number of positive samples that are mistakenly classified as negative.

(4.4) Recall = tp

tp+fn

4.3.3 F1 Score

This metric is the harmonic mean of precision and recall metrics, and is calculated
as shown in Equation 4.5.

(4.5) F1 = 2× Precision×Recall
Precision+Recall

This metric is used during the grid search, as well as performance assessment of
the models used for load imbalance detection and classification. Since this problem
is a multiclass classification problem, macro averaged F1 score was used. Macro
averaging includes calculating the average of the scores for each individual class as
shown in Equation 4.6, in which n is the number of classes.

(4.6) F1macro =

n∑
i=1

F1i

n

4.3.4 Average Precision

Average precision is the precision averaged over all recall values. This metric can be
calculated using the Equation 4.7.

(4.7) AP =
N∑

k=1
P (k)∆r(k)

In this equation, N is the total number of samples, P (k) is the precision achieved
with the first k samples, and ∆r(k) is the change in recall from k−1 to k samples.
Average precision was used to tune hyperparameters and measure the performance
of the models used for machine imbalance detection task.
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4.4 Earliness

In this work, we first establish a definition for earliness to be able to achieve early
detection of balance issues in the washing machine. We define minimum imbalance
detection length (MIDL) as the shortest length of the multivariate time series sensor
data for which the model performance is at maximum, and no data series longer than
that can produce a better result. Equation 4.8 illustrates this definition.

(4.8) MIDL = L 3 Perf(L)≥ Perf(L′) ∀ L < L′ ≤N

Here, Perf(L) is the performance of the model with a data of length L, and N

is the full length of the sample data. To select the best model, we find the model
with the best performance among all, while having the smallest MIDL. To do so,
the models discussed in Section 4.1 were trained and tested with samples of the
following lengths: 0.5, 1, 2, 5, 10, 20, and 30 seconds. As a result of combining
the different models, feature extraction methods, and sample lengths, a total of 259
models were trained and tested for the two imbalance detection problems at hand.
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5. RESULTS

As discussed earlier in Section 4.3, F1 performance score was used for the binary
classification problem of detecting machine imbalance issues, and average precision
was used when detecting the unbalanced load and classifying its weight. The models
are trained and tested with samples of different lengths as explained in Section 4.4,
and the resulting performance scores are recorded and illustrated in Appendix A.

Table A.1 reports the test average precision of the models trained for machine im-
balance detection. The data used for this task includes the drum spinning clockwise
and counterclockwise, with pauses between the two rotations. Due to this non-
homogeneous nature of the data, neural network models performed very poorly and
were not included in the results. Table A.2 demonstrates the F1 test scores of the
models used to classify load imbalance with respect to the length of the input se-
quence. The best performance for each sequence length is highlighted, and the
corresponding confusion matrix is illustrated in Appendix B.

It can be seen from these tables that the frequency spectrum feature extraction
method results in the best performance among the models with the shortest data
length in both imbalance detection tasks. However, as longer sequences are used,
other methods outperform DFT and produce better results. In the machine imbal-
ance detection task, the SVMmodel provides the best overall prediction performance
when used with mean and variance representation of the signal. Load imbalance is
better detected and classified with a 10-bin histogram representation of the data
and an SVM classifier.

The selected best-performing models for the two tasks are then tested with two
different strategies as follows:

• In the first method, the test cases were divided into easy and difficult sets.
The easy samples are the ones that the simplest model with the most basic
feature extraction method can correctly classify, and the difficult ones are the
remaining samples. Among the models used in this work, SVM with extrema
as the feature vector is chosen as the baseline model. The test samples that
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Table 5.1 Average precision test score of best-performing models with respect to
sample lengths for machine imbalance detection with difficult cases

Model
Sequence Length (s)

0.5 1 2 5 10 20 30
SVM_MV 0.865 0.962 0.988 0.995 0.998 0.998 0.999
XGB_DFT 0.971 0.980 0.996 0.998 0.998 0.997 0.991
XGB_MV 0.885 0.972 0.995 0.998 0.999 0.998 0.993

Table 5.2 F1 test score of best-performing models with respect to sample lengths for
load imbalance detection with difficult cases

Model
Sequence Length (s)

0.5 1 2 5 10 20 30
SVM_H10 0.579 0.796 0.923 1.000 1.000 1.000 1.000
SVM_H20 0.608 0.836 0.937 0.974 0.544 0.357 1.000
SVM_UMAP 0.746 0.922 0.971 1.000 0.297 1.000 1.000
XGB_DFT 0.638 0.833 0.960 0.987 1.000 1.000 1.000

this model could successfully classify were labeled as simple, and the rest as
difficult. The models with the best performance were used to classify the
difficult samples separately, and the corresponding scores are illustrated in
Table 5.1 and Table 5.2. As manifested by these tables, the performance of
the models shows a general decline with the hard samples; however, as the
length of the samples increases, they start to produce better results and even
achieve the same performance as the ones tested on all the data.

• The second strategy involves adding noise to the training data and re-training
the best performing models with noisy data. The new models are then tested
with the non-noisy test data. In order to produce the noise, a multivariate
normal distribution is used. A k-dimensional normal distribution is shown
using Equation 5.1.

(5.1) X ∼Nk (µ,Σ)

In this equation, µ is the mean vector and Σ is the covariance matrix. The
mean and covariance of the original signals were used to produce the noise.
The noise produced using this distribution is added to the training data, and
the best-performing models are re-trained using this data. The test scores are
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Table 5.3 Average precision test score of best-performing models with respect to
sample lengths for machine imbalance detection with noisy data

Model
Sequence Length (s)

0.5 1 2 5 10 20 30
SVM_MV 0.752 0.893 0.967 0.987 0.996 0.998 0.999
XGB_DFT 0.833 0.956 0.968 0.993 0.979 0.986 0.976
XGB_MV 0.724 0.896 0.964 0.985 0.990 0.987 0.984

Table 5.4 F1 test score of best-performing models with respect to sample lengths for
load imbalance detection with noisy data

Model
Sequence Length (s)

0.5 1 2 5 10 20 30
SVM_H10 0.419 0.369 0.502 0.621 0.657 0.755 0.973
SVM_H20 0.338 0.463 0.291 0.470 0.830 0.881 0.786
SVM_UMAP 0.266 0.098 0.094 0.114 0.109 0.233 0.103
XGB_DFT 0.746 0.831 0.865 0.961 1.000 1.000 0.997

illustrated in Table 5.3 and Table 5.4. As seen, the general performance of
these models is lower than the ones with the non-noisy data. In addition, the
models used to predict load imbalance show a sharp decrease in performance
with the introduction of the noise. The reason for this is that the signal
amplitudes in the data collected during this imbalance condition are much
lower than the ones in machine imbalance data. As a result, noise greatly
affects and overwhelms the original signal. Yet again, the performances start
to recover as longer sequences of data are used in training the models.

Different strategies are implemented in order to choose a single best-performing
model for each of these imbalance detection problems. However, we need to keep
in mind that these models are supposed to work on microcontrollers with limited
available resources. As a result, we might need to add some constraints, such as
limiting input signal length, choosing simpler models, and preferring less resource-
consuming feature extraction strategies, and possibly sacrifice performance to be
able to deploy the models on the available hardware. The strategies for selecting
the best-performing models are discussed and summarized as follows.

• Minimum Performance Threshold
In this strategy, a minimum required performance score is defined, and the
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Figure 5.1 Comparison of performance of the models with difficult cases and noisy
training data for machine imbalance detection task
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Figure 5.2 Comparison of performance of the models with difficult cases and noisy
training data for load imbalance detection task

model that can achieve that performance with the shortest input sequence is
selected to be the best-performing model. For the purpose of this work, we de-
fine this performance threshold to be 0.900. As a result, there are six models
for machine imbalance detection, and 16 models for load imbalance classifi-
cation that satisfy this criterion. Among the machine imbalance detection
models, XGBoost with DFT representation of the input data has an average
precision score of 0.951 with 500 ms of input data, which is the highest among
all other six and is chosen as the best model. Likewise, XGBoost with DFT
feature extraction performs the best with the F1 score of 0.948 for the load
imbalance classification problem.

• Best Performance with Different Data Lengths
In order to choose the best models with this strategy, we consider the best
performing models highlighted in Table A.1 and Table A.2, and choose the
ones that perform the best with multiple data lengths. It can be observed
that using this criterion, the best-performing model for machine imbalance
detection is XGBoost with mean and variance representation of the data, and
SVM with 10-bin histogram feature extraction for load imbalance classification
problem.

• Lowest Minimum Imbalance Detection Length
The third strategy makes use of the MIDL definition introduced in Section
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4.4. The desired model is chosen as the one which has a performance above
a predefined threshold while maintaining the smallest MIDL. Using this crite-
rion, it can be found that the best performing model for machine imbalance
detection is XGBoost with mean and variance features with MIDL = 5. LSTM
with 50 nodes and MIDL = 1 is observed to be the best performing model for
load imbalance detection using the discussed criterion.

• Lowest Performance Drop with Noise and Difficult Samples
The final method of choosing the best model uses the results of the tests
with difficult samples and noisy train data. As illustrated by Figure 5.1 and
Figure 5.2, XGBoost with DFT data representation shows the least amount of
drop in performance for both machine imbalance and load imbalance detection
tasks. Consequently, this model is chosen as the best performing model with
the mentioned criterion.
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6. CONCLUSION

Among the durable goods found in most households nowadays, washing machines
are the ones most susceptible to anomalous behavior due to the heavy loads inside
them and the high spin speeds of their drums. These anomalies generally manifest
themselves as forms of vibration and can be detrimental to the performance and
lifespan of the machine if not detected and controlled in a timely manner. However,
if they are detected at low spin speeds and below the resonant frequency of the
machine, proper measures can be taken to alleviate their consequences, or warnings
can be displayed to the user to take necessary actions. Among these anomalies,
imbalance issues such as improper leveling of the machine and uneven distribution
of the load inside the drum at high spin speeds can cause vigorous vibrations and
permanently damage the machine if stayed unnoticed.

The machine imbalance problem, which is the improper adjustment of the leveling
legs, can be avoided by the end-user. However, the failure to do so needs to be
compensated by the machine to avoid the phenomena known as "Walking Washer"
and the harm resulted from it. On the other hand, since the arrangement of the
laundry inside the drum at high spin speeds cannot be foreseen, it is up to the
washing machine to detect the uneven distribution of the load inside the drum, and
take necessary precautions to avoid extreme vibrations and possible damage to the
machine.

In this thesis, we propose a method for detecting both types of imbalance issues by
using an inertial measurement unit attached to the drum to monitor its vibrations.
We investigate whether these imbalance issues can be detected early in the normal
washing cycles, without the need for any special condition provided by the machine.
To this end, we built machine learning models to predict machine imbalance and
load imbalance using data collected from machines.

We trained 259 models with different machine learning algorithms, using differ-
ent lengths of the input data, and inputting different feature extraction methods.
Among these, only the ones that provide the best performance for each detection
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task were selected. In the machine imbalance detection problem, XGBoost with
discrete Fourier transform as feature extraction strategy offers the best performance
with the shortest length of input data, while the highest performance is achieved
using SVM with mean and variance of the input time series. Similarly, in the load
imbalance classification task XGBoost with discrete Fourier transform features has
the best performance score with the shortest input. However, the highest perfor-
mance is achieved using a 10-bin histogram of the input data and SVM classifier.
In both imbalance detection tasks, the selected models can detect the problem with
just 500 ms of sensor data, and a performance score of 95%. We also observe that
the performance can be enhanced even more by providing the models with longer
sequences of input data. The developed imbalance detection methods do not need
any mathematical modeling of the machine, nor any expertise about the internal
workings of it.

All the data used for this study were collected from a single washing machine. To
further generalize the results of this study, more machines with different models
need to be used for data collection. This work can also be further expanded by ex-
panding it to other less evident faults in the machine such as improper belt tension
and bearing lubrication. In addition, the data can be collected in a uniform manner,
and the two imbalance detection models can be merged into a single model that can
detect both types of imbalance issues simultaneously, and classify the amount of un-
balanced load in the machine if such a problem is detected. Furthermore, estimating
the horizontal position of the unbalanced load in the drum can be investigated as a
future work.

In these models, we experiment with simple feature extraction and classification
algorithms to make the solution implementable on the limited resources available
to the control systems inside the washing machines. However, to deploy the models
in the machines other hardware constraints could be taken into account and the
models could be further simplified.
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APPENDIX A

Performance of the Models

Table A.1 Average precision test score of different models with respect to sample
lengths for machine imbalance detection

Model
Sequence Length (s)

0.5 1 2 5 10 20 30

SVM_EX 0.860 0.853 0.845 0.828 0.797 0.782 0.743

SVM_DFT 0.938 0.978 0.991 0.994 0.995 0.994 0.996

SVM_H10 0.890 0.933 0.961 0.982 0.988 0.992 0.996

SVM_H20 0.909 0.951 0.972 0.983 0.992 0.996 0.996

SVM_KC 0.706 0.715 0.706 0.741 0.738 0.731 0.789

SVM_MV 0.920 0.972 0.990 0.995 0.998 0.999 0.999

SVM_UMAP 0.679 0.671 0.686 0.671 0.686 0.635 0.676

SVM_WTK 0.841 0.894 0.928 0.965 0.976 0.985 0.994

XGB_EX 0.871 0.871 0.857 0.835 0.820 0.806 0.804

XGB_DFT 0.951 0.986 0.995 0.998 0.998 0.997 0.989

XGB_H10 0.886 0.928 0.956 0.982 0.991 0.996 0.999

XGB_H20 0.908 0.945 0.969 0.989 0.993 0.997 0.999

XGB_KC 0.727 0.738 0.727 0.726 0.728 0.718 0.759

XGB_MV 0.936 0.979 0.995 0.998 0.998 0.998 0.995

XGB_UMAP 0.674 0.670 0.669 0.669 0.651 0.695 0.676
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Table A.2 F1 test score of different models with respect to sample lengths for load
imbalance detection

Model
Sequence Length (s)

0.5 1 2 5 10 20 30

CNN 0.920 0.938 0.977 0.976 0.997 0.998 1.000

LSTM25 0.917 0.947 0.977 0.468 0.933 0.096 0.000

LSTM50 0.933 0.968 0.967 0.764 0.492 0.706 0.000

LSTM100 0.931 0.967 0.976 0.626 0.000 0.221 0.124

CNN_LSTM25 0.908 0.880 0.706 0.936 0.936 0.653 0.636

CNN_LSTM50 0.881 0.939 0.949 0.990 0.000 0.003 0.800

CNN_LSTM100 0.897 0.900 0.961 0.667 0.701 0.000 0.498

SVM_EX 0.922 0.944 0.960 0.975 0.975 0.982 0.976

SVM_DFT 0.921 0.966 0.994 0.999 0.999 0.920 0.907

SVM_H10 0.919 0.962 0.988 1.000 1.000 0.998 1.000

SVM_H20 0.933 0.973 0.990 0.999 0.999 1.000 1.000

SVM_KC 0.684 0.731 0.799 0.868 0.898 0.934 0.943

SVM_MV 0.943 0.971 0.993 0.998 1.000 1.000 1.000

SVM_UMAP 0.929 0.976 0.996 0.999 1.000 0.959 0.946

SVM_WTK 0.849 0.906 0.946 0.993 1.000 1.000 0.997

XGB_EX 0.925 0.945 0.962 0.976 0.984 0.988 0.989

XGB_DFT 0.948 0.979 0.994 0.999 1.000 0.972 0.976

XGB_H10 0.921 0.964 0.987 0.999 0.999 1.000 0.997

XGB_H20 0.937 0.973 0.991 1.000 0.998 0.998 0.997

XGB_KC 0.680 0.722 0.792 0.860 0.905 0.938 0.965

XGB_MV 0.942 0.975 0.994 0.998 0.998 1.000 0.997

XGB_UMAP 0.927 0.974 0.994 1.000 1.000 0.956 0.928
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Figure A.1 Average precision of SVM models on test data to detect machine imbal-
ance with different input lengths
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Figure A.2 Average precision of XGBoost models on test data to detect machine
imbalance with different input lengths
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Figure A.3 F1 score of neural network models on test data to detect load imbalance
with different input lengths
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Figure A.4 F1 score of SVM models on test data to detect load imbalance with
different input lengths
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Figure A.5 F1 score of XGBoost models on test data to detect load imbalance with
different input lengths
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APPENDIX B

Confusion Matrices of Best-performing Models

False True
Predicted labels

Fa
lse

Tr
ue

Ob
se

rv
ed

 la
be

ls

5610 979

2384 10195

2000

4000

6000

8000

10000

Figure B.1 Confusion matrix of XGBoost model with DFT features to detect ma-
chine imbalance with input length of 0.5 second
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Figure B.2 Confusion matrix of XGBoost model with mean and variance features to
detect machine imbalance with input length of 1 second
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Figure B.3 Confusion matrix of XGBoost model with mean and variance features to
detect machine imbalance with input length of 2 seconds
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Figure B.4 Confusion matrix of XGBoost model with mean and variance features to
detect machine imbalance with input length of 5 seconds
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Figure B.5 Confusion matrix of XGBoost model with mean and variance features to
detect machine imbalance with input length of 10 seconds
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Figure B.6 Confusion matrix of SVM model with mean and variance features to
detect machine imbalance with input length of 20 seconds
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Figure B.7 Confusion matrix of SVM model with mean and variance features to
detect machine imbalance with input length of 30 seconds
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Figure B.8 Confusion matrix of XGBoost model with DFT features to detect load
imbalance with input length of 0.5 second
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Figure B.9 Confusion matrix of XGBoost model with DFT features to detect load
imbalance with input length of 1 second
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Figure B.10 Confusion matrix of SVM model with UMAP features to detect load
imbalance with input length of 2 seconds
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Figure B.11 Confusion matrix of SVM model with 10-bin histogram features to
detect load imbalance with input length of 5 seconds
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Figure B.12 Confusion matrix of SVM model with 10-bin histogram features to
detect load imbalance with input length of 10 seconds
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Figure B.13 Confusion matrix of SVM model with 20-bin histogram features to
detect load imbalance with input length of 20 seconds
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Figure B.14 Confusion matrix of SVM model with 10-bin histogram features to
detect load imbalance with input length of 30 seconds
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APPENDIX C

Hyperparameters for Best-performing Models

Table C.1 Hyperparameters for best-performing machine imbalance detection models
- SVM models as (C, γ), and XGBoost models as (depthmax, wmin, γ)

Model
Sequence Length (s)

0.5 1 2 5 10 20 30

SVM_MV 1000, 1 10000, 1 10000, 1 1000, 1 100, 1 10, 1 10, 1

XGB_DFT 9, 4, 0.1 9, 5, 0.2 8, 3, 0.4 6, 2, 0.3 5, 2, 0.2 3, 2, 0.1 8, 1, 0.3

XGB_MV 7, 4, 0.3 8, 2, 0.2 9, 3, 0.4 9, 2, 0.3 5, 1, 0.1 7, 2, 0.1 6, 1, 0.1

Table C.2 Hyperparameters for best-performing load imbalance classification models
- SVM models as (C, γ), and XGBoost models as (depthmax, wmin, γ)

Model
Sequence Length (s)

0.5 1 2 5 10 20 30

SVM_H10 100, 0.1 1, 1 1, 1 1, 1 10, 0.1 1, 1 1, 1

SVM_H20 1, 1 1, 1 100, 0.1 10, 0.1 0.1, 0.1 0.1, 0.1 0.1, 0.1

SVM_UMAP 10, 1 0.1, 1 10, 0.1 0.01, 0.1 0.01, 0.1 1, 0.1 10, 1

XGB_DFT 8, 5, 0 7, 4, 0.3 4, 2, 0.3 3, 2, 0 3, 3, 0.2 5, 2, 0.3 6, 5, 0.2
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