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Abstract 

Conformational transitions in proteins facilitate precise physiological functions. 
Therefore, it is crucial to understand the mechanisms underlying these processes to 
modulate protein function. Yet, studying structural and dynamical properties of proteins 
are notoriously challenging due to the complexity of the underlying potential energy 
surfaces (PES). Perturbation Response Scanning (PRS) method has previously been 
developed to identify key residues that participate in the communication network 
responsible for specific conformational transitions. PRS is based on a residue-by-residue 
scan of the protein to determine the subset of residues/forces which provide the closest 
conformational change leading to a target conformational state, inasmuch as linear 
response theory applies to these motions. In this thesis, two novel methods are developed 
to further explore the dynamics of proteins. Perturb-Scan-Pull (PSP) method evaluates if 
conformational transitions may be triggered on the PES. It aims to study functionally 
relevant conformational transitions in proteins using results obtained by PRS and feeding 
them as inputs to steered molecular dynamics simulations. The success and the 
transferability of the method are evaluated on three protein systems having different 
complexity of motions on the PES: calmodulin, adenylate kinase, and bacterial ferric 
binding protein. Results indicate that PSP method captures the target conformation, while 
providing key residues and the optimum paths with relatively low free energy profiles. 
Unlike PSP method, which is developed to study conformational changes between two 
known states of a protein and considers the best force vector toward the target state, 
protein perturbation responses can be clustered with the hope of exploring the collective 
variables (CV) toward new conformations of a protein. The perturbation response 
clustering (PRC) technique is developed to study the alternative conformations available 
to proteins for which these have not yet been detected via experimental methods. Using 
collective variables predicted via clustering of the response vectors, new conformations 
are sampled, which capture low lying energy states that exist under specific circumstances 
in vivo. The methodologies developed in this thesis can be applied on a wide range of 
proteins having different functions and displaying various types of motions. More 
importantly, these methods can be extended to study nucleic acids (DNA, RNA) or 
membrane proteins by considering lipids molecules. 
 
Keywords: molecular simulation, conformational change, potential of mean force, 
steered molecular dynamics, perturbation-response scanning 
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Globüler Proteinlerin Yapısal Modülasyonunun İncelenmesi Amacıyla Etki Tepki 

Taraması Yöntemine Geliştirilen Yeni Uygulamalar 

 

 

Özet 

Prote൴nler൴n konformasyonları arasındak൴ yapısal geç൴şler bell൴ f൴zyoloj൴k ൴şlevler൴n 
gerçekleşmes൴ne olanak sağlar. Bu sebeple prote൴n ൴şlev൴n൴ yöneten bu mekan൴zmaları 
anlamak büyük önem arz eder. Prote൴nler൴n yapısal ve d൴nam൴k özell൴kler൴n൴ çalışmak, 
temel potans൴yel enerj൴ yüzeyler൴n൴n (PEY) karmaşıklığı sebeb൴yle bas൴t değ൴ld൴r. Daha 
önce gel൴şt൴r൴len, etk൴-tepk൴ taraması (ETT) metodu seç൴lm൴ş yapısal değ൴ş൴mler൴ tet൴kleyen 
൴let൴ş൴m ağındak൴ anahtar am൴no-as൴tler൴ tesp൴t eder. ETT, am൴no as൴tler൴ teker teker 
tarayarak, doğrusal tepk൴ kuramının ൴z൴n verd൴ğ൴ ölçüde, hedef yapısal duruma en yakın 
yapısal geç൴şe sebep olan am൴no as൴t/kuvvet altkümes൴n൴ bulur. Bu tezde, prote൴nler൴n 
d൴nam൴kler൴n൴ araştırmak ൴ç൴n ൴k൴ yen൴ metot gel൴şt൴r൴lm൴şt൴r. Sars-Tara-Çek (STÇ) metodu, 
PEY üzer൴nde yapısal geç൴şler൴n tet൴klen൴p tet൴klenmeyeceğ൴n൴ değerlend൴r൴r. Metodun 
amacı, EET’den alınan fonks൴yonel olarak ൴l൴nt൴l൴ yapısal geç൴şler൴, yönlend൴r൴lm൴ş 
moleküler d൴nam൴k benzet൴mler൴ne g൴rd൴ olarak kullanmaktır. Metodun başarısı ve farklı 
s൴stemlere uygulanab൴l൴rl൴ğ൴n൴ ölçmek ൴ç൴n, PEY üzer൴ndek൴ hareket örüntüsü farklı olan 
üç prote൴n s൴stem൴ kullanıldı; kalmodül൴n, aden൴lat k൴naz ve bakter൴yel dem൴r bağlayan 
prote൴n. Sonuçlar gösterd൴ k൴, STÇ metodu anahtar am൴no as൴tler൴ ve görece düşük enerj൴l൴ 
en ൴y൴ yolakları bularak hedef üç boyutlu yapıya ulışlmasını sağlamaktadır. Prote൴n൴n ൴k൴ 
b൴l൴nen durumunu arasındak൴ yapısal geç൴ş൴, hedef yapıya g൴den en ൴y൴ kuvvet vektörünü 
bularak çalışan ETÇ metodunun aks൴ne; prote൴n etk൴-tepk൴ler൴, prote൴n൴n yen൴ üç boyutlu 
yapılarına ulaşan kolekt൴f değ൴şkenler (KD) bulma amacıyla ൴le kümeleneb൴l൴r. Etk൴-tepk൴ 
kümelemes൴ (ETK) metodu, x-ışınımı kr൴stalograf൴s൴, NMR ve d൴ğer b൴l൴nen deneysel 
yöntemlerle tesp൴t ed൴lemeyen, prote൴n d൴nam൴ğ൴nce mümkün alternat൴f üç boyutlu 
yapıları çalışmak ൴ç൴n gel൴şt൴r൴lm൴şt൴r. Tepk൴ vektörler൴n൴n kümelenmes൴yle tahm൴n ed൴len 
KD’ler൴ kullanarak sadece ൴n v൴vo ortamda var olan ve düşük enerj൴l൴ durumlara karşılık 
gelen yen൴ yapılar örnekleneb൴l൴r. Bu tezde gel൴şt൴r൴len metotlar, farklı fonks൴yonlara sah൴p 
ve farklı hareket düzenler൴ gösteren, gen൴ş çeş൴tl൴l൴kte prote൴nlere uygulanmıtır. Daha da 
öneml൴s൴, bu metotların kullanımı, nükle൴k as൴tler (DNA ve RNA) ya da l൴p൴t moleküller൴ 
de gözet൴lerek hücre zarı prote൴nler൴ne kadar gen൴şlet൴leb൴l൴r. 
 
Anahtar kel൴meler: moleküler benzet൴m, yapısal değ൴ş൴m, ortalama kuvvet potans൴yel൴, 
yönlend൴r൴lm൴ş moleküler d൴nam൴ğ൴, etk൴-tepk൴ taraması 
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Proteins are dynamical entities, having high degree of conformational flexibility and 

plasticity which are mediated by breaking and reforming noncovalent bonds in a 

fluctuating environment. Protein motions are not random and they are evolutionarily 

conserved to carry out biological functions [Marsh and Teichmann, 2014]. In most 

proteins, including enzymes and those which are involved in signaling or membrane 

transport, functionally relevant conformational transitions occur between a pair of states 

such as active/inactive, bound/unbound, open/closed, or apo/holo forms [Atilgan et al., 

2010; Echols et al., 2003]. This conformational transition process is tightly regulated to 

maintain equilibrium between these end-states to control biological processes [Wu and 

Post, 2018]. 

Tracing conformational modulation of a protein is crucial for understanding the way it 

functions. Yet, analyzing dynamics and conformational modulation of a protein is a 

challenging procedure due to the lack of desired tools and the complexity of the 

information it contains [Jalalypour et al., 2020]. 

Experimental techniques such as X-ray crystallography, nuclear magnetic resonance 

spectroscopy (NMR) and cryo-electron microscopy provide probable conformations for 

the abovementioned end-states. X-ray crystallography and NMR have both been used to 

determine the conformational states and dynamics of proteins [Atilgan, 2018]. One 

limitation of X-ray crystallography is that not all proteins are amenable to crystallization, 

and even if they are, the structure of flexible parts such as loops might not be correct in a 

packed crystal [Srivastava et al., 2018]. NMR on the other hand is limited by protein size 

[Frueh et al., 2013]. In recent years, high-resolution cryo-electron microscopy has 

developed significantly, which has led to an exponential growth of available structures 

[Carroni and Saibil, 2016] and used to identify alternative conformations of a protein. 

However, they provide little, if any, information regarding intermediate states sampled 

during these transitions. Moreover, such structures may not represent physiologically 

relevant conformations as they may have been obtained under non-physiological 

conditions, e.g. non-cellular pH, low temperature, etc [Grant et al., 2010; Nussinov, 

2016]. it has turned out to be surprisingly difficult to correctly assign such conformations 

to functional states, not to mention explain the dynamics of the complex motions itself. 

Several limitations of experimental methods highlight the need for fast and efficient 

computational approaches – but they must also have good predictive power. Subjecting 

these experimental structures to molecular dynamics (MD) simulations that mimic 
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physiological conditions may help achieve a biologically relevant conformational 

ensemble or relax a structure [Atilgan, 2018; Nussinov, 2016].  

In classical MD, each protein is assumed to have a unique energy landscape that is 

captured under a particular set of conditions where individual distinguishable 

configurations represent a distinct energy level. Significantly populated conformations 

sampled under physiological conditions are generally associated with the “native state” 

and are postulated to correspond to the minimum on the free energy surface [Mallamace 

et al., 2016; Papaleo et al., 2016]. Elucidation of the underlying molecular mechanisms 

which govern conformational transitions is crucial to modulate protein function [Haspel 

et al., 2010]. While MD simulations may be used to investigate time-dependent structural 

and dynamical properties of proteins at the atomistic level, in general, classical MD 

cannot achieve time scales accessed by experiments [Karplus and Kuriyan, 2005] due to 

the rugged energy landscape of proteins that are decorated by various local minima. These 

states are usually separated by high energy barriers which further impede achieving 

complete sampling of the available conformational space [Gedeon et al., 2015].  

The conformational transitions are typically too rare to be captured within the limited 

timescales of MD [Karplus and Kuriyan, 2005]; even if they are captured, the methods 

are too slow to systematically identify the roles of various residues e.g. for allosteric 

modulation and critically test computational predictions against site-directed mutagenesis 

results. 

In silico methods Alternatively, enhanced sampling methods such as accelerated MD 

[Hamelberg et al., 2004], milestoning [Faradjian and Elber, 2004], adaptive biasing force 

[Darve et al., 2008], and metadynamics [Leone et al., 2010] may be used to surpass these 

high energy barriers [Pierce et al., 2012]. In particular, a number of conformational 

change specific enhanced-sampling methods that rely on variants of metadynamics 

simulations have been developed, and they have been successful in characterizing the free 

energy landscape of proteins that display conformational multiplicity[Brotzakis and 

Parrinello, 2018; Wang et al., 2016]. At the other end of the spectrum, non-equilibrium 

methods such as steered molecular dynamics (SMD) may be utilized to get free energy 

profiles for a given process [Isralewitz et al., 2001]. Non-trajectory techniques have 

also made a significant breakthrough in the field of protein dynamics. In particular, 

network-based methods such as anisotropic network model (ENM)[Atilgan et al., 2001], 

Gaussian network model (GNM) [Bahar et al., 1997], torsional network models 

(TNMs)[Mendez and Bastolla, 2010] as well as normal mode analyses (NMAs)[Bahar 
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and Rader, 2005; Case, 1994] have proved to be successful in analyzing conformational 

transitions, while each has its own limitations [Atilgan, 2018]. For instance, NMA is an 

effective tool for exploring functionally relevant protein motions if they are dominated 

by relatively simple movements such as hinge bending; however, problems arise while 

studying more complex conformational changes that are co-represented by several modes 

[Petrone and Pande, 2006; Yang et al., 2007]. This problem has also been identified in 

allosteric systems where the dominant motion may be localized to a limited number of 

key residues and it is not representable by a single dominant mode [Petrone and Pande, 

2006].  

Perturbation Response Scanning method (PRS) was developed to invoke the modes 

of motion relevant to the conformational change of interest and to identify key residues 

having significant role in modulation of the transitions between various states. 

PRS is based on protein perturbation which uses the idea of applying linear response 

theory to study conformational changes undergone by proteins under selected external 

perturbations [Ikeguchi et al., 2005]. Using PRS, protein perturbations responses are 

applied to a sequential scanning of all residues to search for the perturbations that invoke 

the response closest to the targeted conformational change [Atilgan and Atilgan, 2009]. 

PRS method has been tested on a number of systems of varying size and complexity of 

motion. PRS has been shown to capture key residues contributing to the residue-residue 

interaction network in the protein structure [Abdizadeh et al., 2015; Atilgan et al., 2011; 

Gerek and Ozkan, 2011; Guven et al., 2014; Penkler et al., 2017; Seyler and Beckstein, 

2014; Stetz et al., 2017]. One can combine PRS with other approaches to create new 

applications and methods. For example, using PRS-based methods, sensor and effector 

residues of proteins which are responsible for sensing and conveying the allosteric signal, 

respectively, have been identified [Dutta et al., 2015]. PRS has also been used in a 

pathogenicity prediction tool to study the significant impact of missense mutations on 

protein dynamics [Ponzoni and Bahar, 2018]. PRS output has also been utilized to 

quantify the resilience of individual residues to perturbation by calculating a metric called 

dynamic flexibility index (dfi) [Nevin Gerek et al., 2013]. dfi has later been used to study 

the differences in conformational dynamics of evolutionarily related proteins [Zou et al., 

2014]. The method has also been coupled with protein-ligand docking in a method called 

Backbone Perturbation-Dock (BP-Dock) whereby PRS is used to perturb the structure so 

as to imitate the force that the ligand exerts on the binding site, resulting in generation of 

a wide range of different conformations as binding-induced states for ensemble docking 
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[Bolia et al., 2014]. Combination of evolutionary analysis with PRS has been used to 

characterize the functional and regulatory role of post-translational modification sites in 

allosteric mechanism of Hsp90 proteins [Stetz et al., 2018]. In another study, a systematic 

analysis regarding allosteric roles of mutational hotspots in tumor suppressor genes has 

been provided [Verkhivker, 2019]. Specifically, residue interaction network and PRS 

results have been compared with experimental studies to reveal cancer mutations 

responsible for not only local, but also global dynamic fluctuations. Recently, the 

allosteric regulation of ABL tyrosine kinase using a methodology combining MD 

simulations and PRS has led to a novel network-centric approach to identify allosteric 

hotspots and important interactions [Astl and Verkhivker, 2019].  

Besides providing effective key residues in a conformational transition, protein 

perturbation also carries information on the direction along which those residues may be 

manipulated to achieve the target structure. It was postulated that pulling along the 

possible best direction given by PRS might help overcome the energetic barrier and allow 

the conformational change to achieve completion [Atilgan et al., 2011]. The most 

straightforward method to simulate forces acting on given residues is by using the SMD 

technique [Zhang and Lou, 2012]. SMD was designed for investigating unbinding or 

unfolding processes in which one has to define an optimal direction to obtain accurate 

prediction of work and free energy difference estimates. While different methods to find 

the optimal direction have been proposed [Baker et al., 2013; Sankar et al., 2015; Vuong 

et al., 2015], in most studies the pulling direction is chosen heuristically which may not 

lead to a favorable pathway, and increases the chances of inefficient SMD simulations 

[Liu et al., 2008]. A number of reaction coordinate protocols that are used to identify 

optimal directions to accelerate convergence of enhanced free energy surface sampling 

calculations rely on defining a reference path, usually calculated by a direct connection 

between the initial and target states (see e.g [Czerminski and Elber, 1990]). SGOOP 

[Tiwary and Berne, 2016] and VAC-MetaD [McCarty and Parrinello, 2017] methods both 

optimize the number of collective variables, the former based on the assumption that the 

best collective variables are those with maximum time scale separation between their 

slow and hidden fast processes, and the latter adopting a signal processing technique to 

identify slow order parameters that are used as collective variables. RAVE method 

[Ribeiro et al., 2018] on the other hand, cycles through MD and a deep learning approach 

to produce the reaction coordinate and its free energy simultaneously. While all these 

methods lead to the selection of reaction coordinates that greatly enhance the sampling, 
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the coordinates themselves do not necessarily display a direct biological relevance to the 

conformational change. 

In this thesis, protein perturbation is extended to investigate conformational transitions in 

protein systems by feedings its findings into SMD as novel methodologies entitled 

Perturb-Scan-Pull (PSP) and Perturbation Response Scanning (PRC). 

The main advantage of the PSP method is that it is computationally cheap, only needs a 

short MD simulation of about 100 ns as input, and direction is a natural output of PRS 

that is fed automatically into SMD. Moreover, we have previously shown that the residues 

and directions produced by PRS have direct biological relevance, e.g. by pointing to 

allosteric sites that manipulate the conformational change [Abdizadeh and Atilgan, 2016; 

Aykut et al., 2013; Penkler et al., 2017]. Once the collective variable is determined, PRS 

may be combined with, e.g. metadynamics or umbrella sampling, instead of SMD to 

determine the landscape more precisely. Since PRS provides a single collective variable, 

it proves to be advantageous over the other approaches, as the number of collective 

variables selected in reaction coordinate methods should be small in free energy surface 

construction methods. For example, in metadynamics, the cost of reconstructing the free 

energy grows exponentially with the number of collective variables used. Similarly, VAC-

MetaD [McCarty and Parrinello, 2017] attempts to improve the initial, non-optimal 

collective variables using a variational principle approach that is based on the time-lagged 

independent component analysis. Consequently, one needs a long trajectory as opposed 

to PRS. 

Up to now, different conformational states have been captured experimentally both for 

prokaryotic and eukaryotic proteins, but there are many cases with limited data e.g., where 

structure on one side of a transition is not available. Unlike PRS and PSP methods, which 

are developed to study conformational changes between two known states of a protein 

and only consider the best force vector toward a target state, protein perturbation 

responses can be clustered with the hope of exploring the collective variables toward new 

conformations of a protein. Protein Perturbation Response Clustering (PRC) takes all 

responses into account to indicate the total movements of a protein as a whole. Two 

different clustering approaches were utilized to classify displacement vectors using K-

means algorithm [Lloyd, 1982]. The first approach aims to identify residues with a 

significant role in the protein dynamics and conformational modulations, by considering 

the fluctuation of the structure in response to a single residue perturbation. In the second 

approach, all possible displacement vectors are considered to predict a collective variable 
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which then feed to MD simulation in order to predict new conformations. The summary 

of the input necessary for these methodologies and the information obtained as a result is   

illustrated in     Figure 1. 

 

    Figure 1. Summary of the perturbation response scanning and clustering 
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Details of experimental structures 
 
The Protein Data Bank (PDB) is a free open access data archive which provides 3D 

structure of wide range of biomolecules including proteins, DNA, and RNA [Berman et 

al., 2000]. Protein structures studied in this thesis were retrieved from the PDB and 

information regarding all proteins are summarized in Table 1. 

 

Table 1. PDB structures utilized in this thesis 

Protein Motion State PDB 
code 

Residue 
indices 

Resoluti
on 
(Å) 

Ligand reference 

 
ADK 

 
Hinge 

Open 4AKE  214 2.2 - [Müller et al., 
1996] 

Closed 1AKE  214 2 substrate-
mimicking 
inhibitor 

[Müller and 
Schulz, 1992] 

 
FBP 

 
Hinge 

Open 1D9V  
 

309 1.75 Phosphate 
ion 

[Bruns et al., 
2001] 

Closed 1MRP  309 1.6 Phosphate 
ion/ Fe3+ 

[Bruns et al., 
1997] 

  
 

Ras 

 
 

Loop 
Motion 

 

 
 
 

open 

 
 
 

5P21 

 
 
 

166 

 
 
 

1.35 

Phosphoami 
nophospho -

nic acid-
guanylate 

ester 
(GNP), 

Magnesiu
m ion 

 
 
 

[Pai et al., 
1990] 

CaM*  
 
 
 

       Complex           
motions 
 

Extended 3CLN  5-147 2.2 Calcium 
ions 

[Babu et al., 
1988] 

Compact 1PRW  148 1.7 Calcium 
ions 

[Fallon and 
Quiocho, 

2003] 
Compact 1LIN  3-148 2 Calcium 

ions/ TFP 
[Vandonselaar 
et al., 1994] 

Compact 1CDL  5-146 2 Calcium 
ions 

[Meador et al., 
1992] 

Extended 1RFJ  147 2 Calcium 
ions/ MPD 

[Yun et al., 
2004] 

Compact 1QIW 2-146 2.3 Calcium 
ions/DPD 

[Harmat et al., 
2000] 

   Compact 2BBM9 148 NMR Calcium 
ions 

 

[Ikura et al., 
1992] 

Extended 1MUX  148 NMR Calcium 
ions/ 
WW7 

[Osawa et al., 
1998] 
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* For all CaM systems, the Cα coordinates of residues 5-147 as well as four calcium ions 

are utilized. We exclude coordinates for 1−4 and 148 since they are not reported in the 

3CLN x-ray data. 

 
 
Principles of Molecular Dynamics (MD) simulation 
 
In the molecular dynamic (MD) simulations, the physical motion of molecule/particle is 

calculated in silico [Alder and Wainwright, 1959; Carlo, 1995] via Newton’s law of 

motion 

 

𝐅୧ =  𝑚௜ 𝐚୧      (1) 

or 

𝐱̈୧ =  − ቀ
డ 𝐱౟ ௏೔(௫)

௠೔
ቁ         (2) 

 

Where Xi, mi and Fi are position, mass and applied force on particle i. To simulate how 

the atoms, move according to time (trajectory), the initial configuration including initial 

position and initial velocity of each atom is defined for a system having N number of 

atoms. Then the displacement from initial position is calculated via the force acting on 

each atom. The force can be measured from the interatomic energy or simply the energy 

between atoms which mainly depends on their distance (r). In another word, force can be 

obtained via differentiating the potential energy function (U) with respect to the position 

of all atoms 

Fi= - ∇i U(r1, … , rN)        (3) 

 

The force field is a mathematical model of the potential energy function based on the 

chemical and physical characteristics of a system in which the potential energy (U), is 

divided into two parts for bonded and non-bonded interactions (Figure 2). 

U(r1, ... , rN) = Ubonded (r1,..., rN) + Unon-bonded (r1, ... , rN)    (4) 

 

Ensemble 
of 

160 models 

2K0E  148 NMR Calcium 
ions 

 

[Gsponer et al., 
2008] 

 Ensemble 
of 

20 models 

2KDU 148 NMR Calcium 
ions 

 

[Rodríguez‐
Castañeda et 

al., 2010] 
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Figure 2. Potential energy (U) is defined based on two types of interactions; bonded and non-
bonded. 

The bonded interactions include the covalent bonds between two atoms (2-body), angle 

between three atoms (3-body), and torsion angle between four atoms (4-body). The 

covalent bond potential is calculated via 

 

Ubond = kij (bij-beq)2         (5) 

 

Where bij is the distance between pairs of atoms, i and j, (bij=|bj-bi|) and beq is the reference 

distance or the average bond length. k is the spring constant rely on type of the atoms. 

The angular bond potential of three covalently bonded atoms, i, j, and l, is calculated via 

 

Uangle = kijl (θijl - θeq)2    (6) 

 

Where kijl is the constant, θeq and θijl   are equilibrium angle and angle between two vectors, 

ij and jl, respectively. 

 

The torsion angle potential is calculated via 

 

                        Utorsion = kijlh (1+ cos (mijlh – γ))             (7) 

 

In which , m, and γ are the angle between planes (ijl and jlh), phase shift angle, and 

integer constant, respectively. 

The non-bonded interactions consist of Coulombic, van der Waals (VDW) and 

electrostatic interactions, which the latter can be calculated via Lennard-Jones potential 
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               𝑈௅௃,௧ (𝑟) = ቊ
4 ∈ [( 

ఙ

௥
 )ଵଶ − ( 

ఙ

 ௥
 )଺              𝑟 ≤ 𝑟௖

           0                                       𝑟 > 𝑟௖  
   (8) 

 

where r, σ, and ϵ are the distance between two atoms, size of atom, and the depth of the 

potential, respectively. And the former can be measured via 

 

𝑈஼௢௨௟௢௠௕ =
௤೔௤ೕ

ସ஠ఌబఌೝ௥೔ೕ
                            (9) 

 

After measuring the force between particles, as the following, the 𝐫𝐢(𝑡 +  ∆𝑡)  is 

calculated by substituting the force with second derivative of the position. The 

displacement from initial position after a short time interval (timestep) is given by a 

standard taylor expansion series 

 

𝐫𝐢(𝑡 +  ∆𝑡) = 𝐫𝐢(𝑡) +  
ௗ𝐫𝐢(௧)

ௗ௧
 ∆𝑡 +  

ௗమ𝐫𝐢(௧)

ௗ௧మ

∆௧మ

ଶ
+ ⋯                       (10) 

 

The Verlet integration is a numerical method to integrate equation 1 to obtain the position  

𝐫𝐢(𝑡 +  ∆𝑡). The Verlet algorithm [Darden et al., 1999] truncate the series after third order 

by summing up equation 2.10 with 𝐫𝐢(𝑡 −  ∆𝑡) one, leading to equation 11 by substituting 

the force with second derivative of the position with respect to time. 

 

𝐫𝐢(𝑡 +  ∆𝑡) = 2𝐫𝐢(𝑡) + 𝐫𝐢(𝑡 − ∆𝑡) +  
𝐅𝐢(௧)

௠೔
∆𝑡ଶ.  (11) 

 

Principle of Steered Molecular Dynamics (SMD) 
 
The rationale behind Steered molecular dynamic simulation is to study protein dynamics 

by exerting an external force on a selected atom (SMD atom), while a certain atom is 

fixed. SMD simulations can be performed in two types of either constant force or constant 

velocity. The constant force pulling is utilized when one knows the exact force value to 

apply, whereas constant velocity pulling is proper for unknown systems. 
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In constant velocity pulling, force is applied on a dummy atom which is attached to SMD 

atom with a virtual spring and moves with a constant velocity. The force between dummy 

atom and SMD atom is calculated via equation 12 and 13 

 
F =  −∇ 𝑈          (12) 

and 

𝑈 =  
ଵ

ଶ
 𝑘[𝑣𝑡 − (r − r଴) . n]ଶ       (13) 

 

Where U, v, k, t is potential energy, pulling velocity, spring constant, and time, 

respectively. The higher the speed is, the stronger is the force. The SMD atom will be 

moved from its initial position r଴ to r along direction n. As shown in Fig. the external 

force is applied on the dummy atom depicted in green, which allows a linear motion with 

respect to time. The force applied on SMD atom relies on the distance between SMD and 

dummy atom. The SMD atom shown in red, as well as the rest of the structure attached 

to it via covalent bonds, follow the harmonic spring (Figure 3)   [Célerse et al., 2019] 

 

Classical MD simulations protocol 
 
We have performed classical MD simulations starting with the listed PDB structures in 

Table 1. Each protein is solvated in a water box of at least 10 Å from all directions using 

Figure 3. Principle of the constant velocity and constant force SMD simulations. Left: The 
constant velocity pulling; Green: SMD atom, red: dummy atom, Gray: harmonic spring. Dummy 
atom moves with constant velocity which enforces SMD atom to move via the force exerted by 
the spring. Right: The constant force pulling; the force is directly applied on SMD atom. The 
figure is taken from ref (Célerse, et al. 2019) 

 



14 

the VMD 1.8.7 program [Humphrey et al., 1996] 

(https://www.ks.uiuc.edu/Research/vmd/) with solvate plugin version 1.2 

(https://www.ks.uiuc.edu/Research/vmd/plugins/solvate/). The NAMD package [Phillips 

et al., 2005] (https://www.ks.uiuc.edu/Research/namd/) is used to model the dynamics of 

the protein-water system. The CharmM36 [Best et al., 2012] force field parameters 

(http://mackerell.umaryland.edu/charmm_ff.shtml) are used with the TIP3P model for 

water. The protein-water system is neutralized by addition of ions to reach 150 mM KCl 

for calmodulin (CaM), Ras, and adenylate kinase (ADK) as intracellular proteins, and 

150 mM NaCl for the periplasmic FBP protein (FBP). Particle mesh Ewald method with 

periodic boundary conditions was used for calculating electrostatic interactions, with a 

cutoff distance of 12 Å and a switching function at 10 Å [Darden et al., 1999]. RATTLE 

algorithm [Andersen, 1983] is applied to use a step size of 2 fs in the numerical integration 

with the Verlet algorithm [Darden et al., 1999].  Temperature control is carried out by 

Langevin dynamics with a damping coefficient of 5 ps-1. Pressure control is attained by a 

Langevin piston. Volumetric fluctuations are preset to be isotropic. The system was first 

minimized for 5000 steps to remove bad contacts. Then, the MD simulation is run in the 

isothermal-isobaric (NPT) ensemble at 1 atm and 310 K until volumetric fluctuations are 

stable to maintain the desired average pressure. Production runs are made for the next 100 

ns and the coordinate sets are saved at 2 ps intervals leading to 50000 snapshots for each 

trajectory. More details regarding MD simulation are listed in  

Table 2. 

 

Table 2. Details of the classical MD simulations. 

Protein Starting 
structure 

Equilibrated 
box size (Å) 

Number 
of 
atoms 

Ionic 
concentration 

Simulated 
molecules 

CaM 3CLN 75 × 90 × 70 47778 150 mM KCl Protein, 
calcium 
ions 

CaM 1PRW 70 × 69 × 72 32521 150 mM KCl Protein, 
calcium 
ions 

ADK 4AKE 78 × 95 × 95 67335 150 mM KCl Protein 
 
FBP 

 
1D9V 

 
92 × 82 × 69 

 
49580 

 
150 mM NaCl 

Protein, 
phosphate 
anion* 

 
FBP 

 
1MRP 

 
78 × 86 × 80 

 
49580 

 
150 mM NaCl 

Protein, 
phosphate 
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anion*, 
ferric iron 

Ras 5P21 73× 72 × 72 35145 150 mM KCl GTP 
 

*phosphate group is modeled as H2PO4
- in all FBP simulations. 

 

Additionally, in order to sample more conformations for clustering purposes, 400 ns 

simulations are performed for wild type, protonated, and mutated CaM system start from 

extended form. The protonation state of residues are determined using H++ 

[Anandakrishnan et al., 2012] (http://biophysics.cs.vt.edu) and PROPKA  web servers 

[Rostkowski et al., 2011] (http://server.poissonboltzmann.org) for CaM system. The point 

mutation is performed using the Mutator plugin (https://www.ks.uiuc.edu/ 

Research/vmd/plugins/mutator/) in the VMD software. 

 

Steered MD simulations (SMD) protocol 
 
SMD simulations were performed under the same conditions as those set in the classical 

MD runs, starting from the same initial snapshot as that used for the starting PRS 

structure, but with a timestep of 1 fs. SMD runs are continued to the extent that required 

approaching the target state. SMD simulations were carried out by fixing a residue along 

the pulling direction and applying external forces to the key residues, K*. All SMD 

(pulling) simulations are named with a job ID that is prefixed P, followed by a job index. 

These simulations are performed with various combinations of parameters for constant 

velocity, v (0.01, 0.02, and 0.03 Å ps−1) and spring constant, k (80, 90, and 100 kcal mol−1 

Å−2). Relaxation simulations are carried out under the same conditions as the classical 

simulations; they are named with the job ID of the SMD simulation that led to the new 

point followed by R and a job index. 

 

PRS calculations and analysis 
 
The PRS methodology was introduced and described in ref [Atilgan and Atilgan, 2009]. 

Briefly, PRS requires two distinct forms of a protein, denoted by initial (I) and target 

structures (T) as inputs. The objective is to find a perturbed residue and perturbation 

direction in I that leads to displacements that are most similar to the conformational 

change between I and T. Based on linear response theory, PRS relates the external force 
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(ΔF) to displacements (ΔR) via a covariance matrix, C, derived from MD simulations. 

The shift in the coordinates is calculated by 

 

∆𝐑ଵ = ⟨𝐑⟩ଵ − ⟨𝐑⟩଴ ≅ 𝛽⟨∆𝐑∆𝐑்⟩଴∆𝐅 = 𝛽𝐂∆𝐅      (14) 

 

where R0 and R1 represent initial conformation of protein (unperturbed state) and the 

predicted coordinates (perturbed state), respectively, and 𝛽 = 1 𝑘஻⁄ 𝑇. ΔF vector contains 

the coordinates of the force vectors applied on the residues. C is the cross-correlation 

matrix of the fluctuations of the nodes in the initial state of the protein. 

To this end, the coarse-grained representation of each state is constructed by taking the 

Cα atom of each residue as a node. Then, many random, fictitious, forces (ΔF) in different 

directions are sequentially introduced on each node to perturb the structure, leading to the 

predicted ΔR1 values for each ΔF. PRS records the resulting predicted displacements to 

compare them with the conformational change determined from experimental 

coordinates, here difference between initial and target crystal structures (ΔS). As the final 

step, the overlap between the predicted and measured directions is evaluated by: 

 

𝑂௜ =
∆𝐑೔∙∆𝐒

ห(∆𝐑∙∆𝐑)೔(∆𝐒∙∆𝐒)ห
భ
మ

       (15) 

 

High PRS overlaps (Oi) indicate high similarity of the predicted and experimental 

displacement vectors implies a good choice for perturbing vectors (force vectors) termed 

as best PRS direction (D*) to achieve the desired conformational transition. Calculations 

of PRS as well as the analyses of results have been performed using MDToolbox 

[Matsunaga and Sugita, 2018] implemented in MATLAB 

(https://github.com/ymatsunaga/mdtoolbox). The PRS steps are schematically shown in 

Figure 4. 
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Potential of mean force calculations 
 
SMD is used to accelerate the process of conformational transition by pulling a specific 

atom of the protein along a predefined direction. The energy profile, approximated by the 

PMF along the free energy pathway, can probe the underlying mechanisms of the 

conformational transition. Jarzynski’s equality [Eq. (16)] is applied to SMD simulation 

results for PMF calculation (see ref [Park and Schulten, 2004] for details). 

 

𝐅஛(୲) − 𝐅ఒ(଴) =
ିଵ

ఉ
log⟨exp[−𝛽𝑊(𝑡)]⟩   (16) 

 

Here, Fλ is the Helmholtz free energy of the system, t is time, W is the work done, 

calculated from the integral of force as a function of the distance the SMD atom has 

moved during the conformational transition. This equality links non-equilibrium 

processes of SMD simulations with equilibrium properties manifested in the PMF [Park 

and Schulten, 2004].  

In constant velocity SMD, a force is imposed on the center of mass of the SMD atom via 

a virtual spring. Having a stiff spring, its position changes along the pulling coordinate 

(λ) via 

𝜆(𝑡) = 𝜆(0) + 𝑣𝑡        (17) 

Figure 4. PRS steps illustrated schematically. 
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To calculate the PMF, each simulation is repeated 10 times to generate several SMD 

trajectories for each pathway. The spring constant (k) is chosen large enough to avoid 

fluctuation of the SMD atom. Thus, the reaction coordinate is calculated via equation 4. 

Stiff spring also minimizes the deviation between the reaction coordinate among the 

repeated trajectories [Park and Schulten, 2004] which are overlapped to ensure that SMD 

atom is moving through similar reaction coordinates. 

PMF is calculated using the second order cumulant expansion formula [Eq. (18)], which 

has proved to work better than exact formula [Eq. (16)] for SMD method with limited 

sampling (see ref [Park and Schulten, 2004]). 

 

𝐅ఒ(௧) − 𝐅ఒ(଴) = ⟨𝑊(𝑡)⟩ −
ଵ

ଶ௞ಳ்
(⟨𝑊(𝑡)ଶ⟩ − ⟨𝑊(𝑡)⟩ଶ) + ⋯                             (18) 

 

PMF calculation is performed with 0.02, 0.01, 0.02 and 0.02 Å ps−1 constant velocity for 

CaM, ADK, Ras and FBP, respectively. These values are slower than those for common 

SMD simulations, to improve PMF values. Spring constant is set 100 kcal mol−1 Å−2, 

which is large enough to prevent the fluctuation of the reaction coordinate among 

different trajectories. All simulations are performed at 310 K. Free energy path is 

computed with respect to the distance between initial and final position of the SMD atom 

which is measurable by equation 17; it is 45, 11, 18 and 6 Å for CaM, ADK, Ras and FBP 

systems, respectively. The final position is considered as where the SMD trajectory reach 

the minimum RMSD with T. 

 

K-means clustering 
 
K-means clustering is one of the most commonly used unsupervised machine learning 

methods; it aims to find groups with certain similarities in a data set with no predefined 

labels [Lloyd, 1982]. K-means is an iterative algorithm which ies dataset having N data 

points into k groups or clusters. Briefly, the number of clusters is determined as k (e.g. 

k=2, cluster data into two groups), and data points are randomly assigned to one of the 

clusters accordingly. Then the centroid is computed for each cluster to represent the 

cluster center; this can be an imaginary or a real location. Subsequently, data points are 

reassigned to the closest centroid (nearest mean) to generate new clusters for which the 

centroids are recomputed. The final two steps are repeated in each iteration until 
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convergence is reached and no improvement is possible. Convergence is defined as the 

iteration at which data points are allocated to the same cluster and there is not a significant 

change in the centroid of newly generated clusters. In this thesis, the perturbation response 

vectors are clustered using K-means algorithm. 

 

Scripting and programming language 
 

Matrix laboratory (MATLAB) is a programming language developed by MathWorks 

which allows matrix modification and manipulation, as well as algorithm 

implementation. MDToolbox [Matsunaga and Sugita, 2018] implemented in MATLAB 

(https://github.com/ ymatsunaga/mdtoolbox) was developed to analyze data generated via 

molecular dynamics (MD) simulations and provides a collection of required functions. In 

this thesis, PRS calculations as well as the analyses of results have been performed using 

MDToolbox. The required scripts to perform perturbation clustering have been 

implemented using the Statistics and Machine Learning Toolbox of MATLAB. 
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Perturb-Scan-Pull (PSP) as a methodology to determine conformational 
switching pathways in proteins 
 
PSP method is exemplified by three protein systems which are represented by different 

type of motions: (i) calmodulin (CaM; complex combination of rotation and 

bending)[Atilgan et al., 2011], (ii) adenylate kinase (ADK; open-to-closed loop 

motion)[Müller et al., 1996], and (iii) ferric binding protein (FBP; hinge bending)[Atilgan 

and Atilgan, 2009](Figure 5). Results show that PSP effectively identifies key residues 

and pulling directions for the three systems studied which are needed to accomplish the 

conformational change from the initial to the target structure. We also show that the 

energetically more favorable path is followed upon usage of the best possible direction 

and key residues provided by PRS. 

 

 

Figure 5. Motions of the three protein systems studied in this section. Extended form of proteins 
colored in cyan and compact structures colored in orange. Arrows indicate direction of motion. 
A) Calmodulin displays a complex transition which is represented by twisting and bending around 
the central helix. Cyan: 3CLN; orange: 1PRW. Calcium ions shown as black beads. Two structures 
are superimposed on the C-domain. B) Adenylate kinase (ADK); hinge motion of the flexible 
loop. Cyan: 4AKE; orange: 1AKE. Two structures are superimposed on the core domain. C) 
Ferric binding protein (FBP); hinge motion of the moving domain on the fixed domain. Cyan: 
1D9V; orange: 1MRP. Ferric iron colored in pink and phosphate group shown in space filling. 
Two structures are superimposed on the so-called fixed-domain. 

 

Development and parameter optimization of the PSP methodology 
 

The PSP methodology consists of two main stages: 1) PRS is applied to the system (see 

section II-Methods) to select candidate residues and directions that have the propensity 
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to accomplish the pursued conformational change, 2) information regarding key residues 

and force directions are used in SMD simulations to trigger the conformational change. 

PSP procedure is summarized in Figure 6. 

 

 

Figure 6. Summary of the PSP methodology; parameters to optimize are displayed in italics; 
arrows show the information fed from one box to another; the main component is in a green box. 
The first column displays the flow of PRS calculations. Structure I and T indicate the initial and 
target structures, respectively. Structure I is not directly used in PRS, but is fed to a classical MD 
simulation which yields a trajectory by which one can choose an equilibrated trajectory chunk for 
the approximation of the inverse Hessian (H-1) as well as a compatible well-equilibrated initial 
snapshot (structure II). A residue with high PRS overlap (K*) and its corresponding direction (D*) 
define the SMD atom and the best pulling direction, respectively. The second column displays the 
flow of SMD simulations. The fixed atom is defined according to pulling direction (see text). 
Pulling simulation starts with the same initial structure as used in PRS (structure II). A frame of 
pulling simulation having minimum RMSD with the target structure is recorded (Structure III) 
and subjected to relaxation simulation. Final structure (F) is obtained as the most similar frame 
of relaxation simulation to target structure. 

 
Information regarding the PRS part of the PSP methodology (column 1 in Figure 6) for 

each system is listed in Table 4. For this phase of PSP, 100 ns simulations were performed 

for each system, starting from the initial (PDB) structure which we label I. For PRS 

calculations, it is imperative that a well-equilibrated chunk of an MD trajectory is selected 

to construct the variance-covariance matrix which is used to approximate the inverse 

Hessian, H-1 (equation 1). For this purpose, RMSDs of the proteins from the starting 

structures are measured and displayed in Figure 7 for all the systems studied in PSP 
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section, wherein the portions of the trajectories used in matrix construction are marked 

with red horizontal lines. 

 

 

Figure 7. RMSD plots of the classical MD simulations performed starting from the PDB 

 
Previously, crystal structures were used as initial structures in the standard PRS method 

[Atilgan et al., 2011].  However, the output of such a PRS is not applicable to the PSP 

procedure, because the SMD simulation cannot be initiated from a non-equilibrated 

crystal structure. To address this issue, we have used the initial snapshot of the 

equilibrated chunk (II) for PRS calculations; this selection has served the purpose of 

reaching high overlaps in PRS. Regarding selection of the number of perturbations 

introduced on each residue, we have found that 600 perturbation vectors which are 

randomly distributed within a sphere sample all directions that provide large PRS 
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overlaps (Oi). Note that having maximum Oi < 0.6 may not lead to the targeted 

conformational changes in the second stage of the PSP methodology. 

 

Table 3. Summary of PRS results for the three protein systems including best overlap values and 
key residues 

* The time point of the trajectory used as the initial structure is displayed in parentheses and is 
selected as the initial structure of the trajectory chunk used. 

 

At the next phase of PSP (column 2 in Figure 6), using PRS outputs as input to SMD 

simulations, several constant velocity pulling simulations have been performed; see 

Methods section for details of SMD simulations. Thus, key residues (K*) and the 

 

Protein 

 

PRS 

type 

 

Initial 

structure 

 

(II)* 

  

Target 

structure 

 

(T) 

 

Equilibrated 

trajectory 

chunk 

Average 

RMSD 

of 

chunk 

(Å) 

 

best 

overlap 

 

(Oi) 

 

Key 

Residues 

 

(K*) 

 

 

CaM 

Extended 

to 

compact 

 

3CLN 

(30ns) 

  

1PRW 

 

30-80 ns 

 

2.5 

 

0.75 

 

106, 105, 

26, 122, 

118 

Compact 

to 

extended 

 

1PRW 

(5 ns) 

  

3CLN 

 

5-75 ns 

 

3 

 

0.71 

 

59, 108, 

53, 58, 

17 

 

ADK 

 

 

Open to 

closed 

 

4AKE 

(25ns) 

  

1AKE 

 

25-75 ns 

 

2.5 

 

0.89 

 

146, 153, 

151, 147, 

149 

 

FBP 

 

Open to 

closed 

 

 

1D9V 

(45ns) 

  

1MRP 

 

45-100 ns 

 

1 

 

0.91 

 

31, 6, 33, 

34, 37 

 

Closed 

to open 

 

 

1MRP 

(60ns) 

  

1D9V 

 

60-100 ns 

 

1.5 

 

0.91 

 

71, 70, 

46, 45, 

231 
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corresponding best PRS direction (D*) which are suggested by PRS, define the pulling 

(SMD) atom and pulling direction, respectively. To apply the same direction obtained 

from PRS, structure II is used to initiate both PRS and SMD (green boxes in Figure 6). 

To avoid rotations during the pulling, another residue that resides on the opposite domain 

and is alongside the vector defining the pulling direction is selected as the fixed atom. To 

this end, the angle between the pulling direction and the vectors between the Cα atoms of 

the SMD residue and all other residues are calculated on structure II. The Cα atom with 

the smallest angle and is at least 20 Å from the SMD atom is selected for constraining; 

note that this distance is based on size of the molecule and might be modified depending 

on the protein being studied. An SMD simulation is considered successful if the protein 

is not distorted, the secondary structure of the protein is stable and the pulling leads to 

conformations resembling the target state. Subsequently, a relaxation simulation is 

performed to eliminate the artificial tensions built in the pulled structure. The relaxation 

step also allows the protein to complete the process; either by reaching the target state, or 

by returning to the initial one. For this purpose, the frame of trajectory with minimum 

RMSD from the target structure is saved as the desired snapshot (structure III) for each 

pulling simulation and subjected to a relaxation simulation. The obtained final structure 

(F) is saved for further analysis. 

In what follows, we present the details of the PSP method on three different proteins. As 

the calmodulin (CaM) presents the hardest test case in terms of the complexity of the 

motion in the conformational change, we start out by outlining the optimization of PSP 

parameters on CaM. To test the generality of our approach, we follow by applying the 

optimized PSP methodology to ADK and FBP, two proteins which have long been utilized 

as test cases for studying conformational multiplicity in proteins. 

 

PSP proof-of-concept in the complex motions of calcium bound calmodulin 
 
CaM acts as an intracellular Ca2+ sensor, and plays an important role in calcium signaling 

pathways in eukaryotic cells [Dagher et al., 2009]. It regulates a variety of biological 

processes by its propensity to bind a wide range of targets. CaM can adopt a large variety 

of conformations which proves to be important for carrying out its function [Liu et al., 

2017]. CaM is made up of the N-domain (residues 1−68) and the C-domain (residues 

92−148) which are connected by a flexible helical linker (residues 69−91). The three 

dimensional structure of CaM includes seven α-helices which consist of mainly polar and 
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charged residues; the protein displays four EF-hand motifs, two on each domain, each of 

which can coordinate one Ca2+ ion [Atilgan et al., 2011].  

Apo-CaM is the ion-free state of the protein which is activated as a result of an increase 

in the intracellular concentration of free Ca2+ due to transient opening of the trans-

membrane Ca2+ channels. Calcium loaded CaM (holo-CaM) is the active form of the 

protein [Komeiji et al., 2002]. Ion binding causes large conformational changes in CaM, 

leading to significant exposure of non-polar regions on the protein surface that facilitate 

interaction between those non-polar regions of the protein and its targets [Vetter and 

Leclerc, 2003]. Besides the large structural change accompanying apo → holo 

transformation, holo CaM may also undergo large spatial changes to adopt a compact 

form after loading with a ligand. Moreover, even in the absence of the ligand, holo CaM 

is known to display conformational multiplicity, whereby the probability distribution 

between the available states depends strongly on the environmental conditions [Gsponer 

et al., 2008; Slaughter et al., 2005]. However, the structural details of the latter process 

remain elusive [Fallon and Quiocho, 2003]. As revealed by x-ray crystallography, 

extended dumbbell shape and compact form of the protein with a bent central linker are 

both representative of the active state of holo CaM [Babu et al., 1988; Fallon and 

Quiocho, 2003](Figure 5A). 

In MIDSTLAB previous work utilizing PRS to study the conformational transitions of 

holo CaM [Atilgan et al., 2011], 3CLN was selected as the initial (extended) state and 

seven alternative forms with distinct conformations represented by the PDB codes 1RFJ, 

and 1MUX (extended states) and 1CDL, 1PRW, 1QIW, 2BBM, and 1LIN (compact 

states) were each considered as target structures. RMSD values were measured for each 

initial - target protein pair. 1PRW gave the highest RMSD value of 16 Å with respect to 

3CLN among all of the target structures [Atilgan et al., 2011].  

Despite other protein systems which easily lead to PRS overlap values of ~0.9, CaM has 

lower maximum values due to the complexity of its conformational change. Therefore, 

here we describe PSP optimization for CaM as an example of how to achieve the highest 

possible value using this method. The inputs to PRS that have been monitored, the 

resulting maximum overlaps, and key residues determined are listed in Table 4. 
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Table 4. PSP optimization part 1: PRS input optimization on the starting structure 3CLN 

PRS input 
monitored 

Initial 
structure 

time 
point 

Target 
structure 

P Trajectory 
Chunk 

Oi Key Residues, K* 

 
 
 

A. Perturbed 
structure 

and trajectory 
chunk 

Crystal 1PRW 600 10-90ns 0.60 27, 106, 105, 110, 
28 

100 ps 1PRW 600 10-90ns 0.65 106, 28,105,110, 
27 

20 ns 1PRW 600 10-90ns 0.68 106, 27, 110, 28, 
123 

30 ns 1PRW 600 10-90ns 0.69 27, 106, 124, 
105,110 

20 ns 1PRW 600 20-80ns 0.70 106, 124, 122, 
27,31 

30 ns 1PRW 600 30-80ns 0.75 106, 105, 26, 122, 
118 

 
 

B. Number of 
perturbations, 

P 

30 ns 1PRW 400 30-80ns 0.71-
0.74 

106, 105, 26, 122, 
118 

30 ns 1PRW 500 30-80ns 0.74-
0.75 

106, 105, 26, 122, 
118 

30 ns 1PRW 600 30-80ns 0.75 106, 105, 26, 122, 
118 

30 ns 1PRW 700 30-80ns 0.75 106, 105, 26, 122, 
118 

30 ns 1PRW 1000 30-80ns 0.75 106, 105, 26, 122, 
118 

 
 
 
 
 

C. Target 
Structures, T 

30 ns 1CDL 600 30-80ns 0.65 106, 105, 122, 
27,26 

30 ns 1MUX 600 30-80ns 0.84 17, 41, 16, 39, 101 

30 ns 2BBM 600 30-80ns 0.70 105, 26, 122, 106, 
27 

30 ns 1LIN 600 30-80ns 0.72 106, 105, 118, 
28,110 

30 ns 1PRW 600 30-80ns 0.75 106, 105, 26, 122, 
118 

30 ns 1QIW 600 30-80ns 0.68 26, 105, 106, 
118,108 

30 ns 1RFJ 600 30-80ns 0.79 107, 108, 106, 
105,30 

 

Different lengths of trajectory chunks and initial snapshots (structure II) were utilized to 

achieve the highest PRS overlap value (Oi) (see row A in Table 4). Based on RMSD time-

series of the 3CLN trajectory, a suitable chunk for PRS is selected from the plot (Figure 

7). From the 100 ns trajectory, 10-90 ns, 20-80 ns and 30-80 ns parts have been selected 

for H-1 construction and subjected to PRS together with snapshots at the 100 ps time 



28 

point, as well as snapshots selected from within the chunk. Results show that the first 

frame of each chunk can be considered as a compatible initial state (II) for PRS 

calculations. Comparing the results, 30-80 ns of 3CLN trajectory together with the initial 

structure at the 30 ns time point give the highest overlap and are considered as a proper 

input for subsequent steps. Note that using more than P = 600 perturbations does not 

improve the overlaps (see row B in Table 4). Finally, the conformational change from 

3CLN to each of the other target x-ray structures is examined in a series of PRS runs (row 

C in Table 4). These structures vary in conformation due to the type of ligands which bind 

the protein. 1MUX and 1RFJ, having extended structures similar to 3CLN, give higher 

PRS overlaps in comparison to compact conformations (0.84 and 0.79, respectively). On 

the other hand, the PRS overlaps corresponding to compact structures are ~0.7 at best. 

The highlighted residues in these analyses are 106, 105, 27 and 26. Amongst the compact 

states, 1PRW indicates the greatest PRS overlap of Oi = 0.75 due to key residues 106, 

105, and 26 (Table 4). The 3CLN to 1PRW is selected as the test case to validate the PSP 

methodology, because the structural difference between 1PRW and 3CLN is the highest 

amongst all pairs studied (RMSD is 16 Å) and this transition the most complicated one. 

The rationale behind the PSP method is to use an educated guess for the collective 

variables to drive the protein from a starting conformation to another, targeted stable state. 

To test this hypothesis, key residues K* are pulled along the best PRS directions D* in 

SMD simulations. To optimize pulling velocity and spring constant, SMD experiments 

are repeated several times. Simulations along the direction which leads to the distortion 

of the protein and its secondary structure are discarded. Details of SMD simulations 

performed for parameter optimization are listed in  

Table 5. 

 
Table 5. PSP optimization part 2: SMD input optimization due to holo-CaM extended to compact 
conformational transition. 

SMD 

Label 

Selected 

trajectory 

chunk(ns) 

Initial 

structure 

(III) 

SMD 

atom 

Fixed 

atom 

k 

(kcal 

mol-1Å-2) 

v 

(Å 

ps-1) 

Pulling 

Direction

* 

Time 

(ns) 

P1 10-90 100 ps 106 7 80 0.05 -0.58, 

0.27, 

0.70 

2.1 
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P2 10-90 100 ps 28 65 80 0.05 0.26, 

0.78, 

-0.59 

2.1 

P3 10-90 20 ns 106 5 80 0.05 -0.57, 

0.26, 

0.53 

2.1 

P4 10-90 20 ns 27 113 80 0.05 -0.19, 

-0.69, 

0.32 

2.1 

P5 10-90 20 ns 27 80 80 0.05 -0.19, 

-0.69, 

0.32 

2.1 

P6 10-90 20 ns 106 5 80 0.05 -0.87, 

0.40, 

0.88 

2.1 

P7 10-90 20 ns 28 80 80 0.05 -0.26, 

-0.78, 

0.49 

2.1 

P8 10-90 20 ns 110 80 80 0.05 -0.39, 

0.84, 

0.48 

2.1 

P9 10-90 20 ns 110 80 80 0.05 -0.49, 

0.94, 

0.51 

2.1 

P10 20-80 20 ns 106 6 80 0.05 -0.19, 

0.53, 

0.64 

2.1 

P11 20-80 20 ns 106 6 80 0.05 -0.14, 

0.94, 

0.94 

2.1 

P12 30-80 30 ns 106 7 80 0.05 0.09, 

-0.80, 

-0.35 

2.1 
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P13 30-80 30 ns 106 7 80 0.05 -0.19, 

0.88, 

0.50 

2.1 

P14 30-80 30 ns 26 80 80 0.05 0.07, 

-0.18, 

0.13 

2.1 

P15 30-80 30 ns 106 7 80 0.05 -0.09, 

0.80, 

0.35 

2.1 

P16 30-80 30 ns 105 7 80 0.05 -0.10, 

0.64, 

0.61 

2.1 

P17 30-80 30 ns 105 7 80 0.05 -0.13, 

0.84, 

0.76 

2.1 

P18 30-80 30 ns 26 80 80 0.05 0.07, 

-0.18, 

0.13 

2.1 

P19 30-80 30 ns 106 7 90 0.03 -0.09, 

0.85, 

0.35 

2.2 

P20 30-80 30 ns 105 7 90 0.03 -0.10, 

0.44, 

0.61 

2.2 

P21 30-80 30 ns 106 7 90 0.03 -0.19, 

0.58, 

0.53 

2.3 

P22 30-80 30 ns 106 7 90 0.03 0.09, 

-0.80, 

-0.35 

2.3 

P23 30-80 30 ns 26 80 90 0.03 0.07, 

-0.18, 

0.13 

2.3 
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P24 30-80 30 ns 105 7 90 0.03 -0.13, 

0.84, 

0.76 

2.3 

P25 30-80 30 ns 26 80 90 0.03 0.07, 

-0.18, 

0.13 

2.3 

P26 30-80 30 ns 106 7 90 0.03 -0.02, 

0.31, 

0.51 

2.3 

P27 30-80 30 ns 105 7 90 0.03 -0.09, 

0.58, 

0.86 

2.3 

P28 30-80 30 ns 106 7 90 0.03 -0.34, 

0.71, 

0.86 

2.3 

*Directions used as SMD inputs obtained from PRS runs are relative to the same 
coordinate frame and are listed to enable comparison between pulling directions 

 

We find that a pulling velocity of 0.03 Å/ps, force constant of 90 kcal mol-1 Å-2 are optimal 

for utilizing the SMD simulations for our current purposes; these constants are typical of 

values used in the SMD simulation literature [Martin et al., 2009]. To this aim, the RMSD 

between the reference 1PRW structure and each of the snapshots recorded in the SMD 

trajectories is monitored. Of the 28 pulling simulations performed, the five (shown in bold 

amongst the listed in Table 5) that display the lowest RMSD values along the pulling 

trajectory compared to 1PRW are studied in more detail. Note that, while we have 

performed PSP on the conformational change from 3CLN to 1PRW, we also compare the 

results with other target structures including all the crystal forms and an NMR ensemble 

of 160 structures (PDB code 2K0E). The RMSDs for selected structures are listed in Table 

6. We find that there are many other compact structures that are attained in these 

simulations that have lower RMSD than 1PRW (lowest values are shaded in gray in Table 

6), although the key residues and pulling direction is selected based on the latter. 
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Table 6.Minimum RMSD between states of top ranked SMD trajectories compared to selected 
PDB structures (Å).1 

PDB code of 

compared structure2 

Simulation label 

P19 P21 P26 P27 P28 P19.R6 

ex
te

n
de

d
 

fo
rm

s3  

3CLN 12.16 10.59 10.11  9.71 9.13 13.85 

1RFJ 11.71 9.44 9.13  8.55 8.19 13.69 

1MUX 14.32 11.64 11.56  10.41 10.15 16.38 

co
m

pa
ct

 f
or

m
s 

1CDL 5.56 8.48 7.01 11.47 8.69 1.94 

1LIN 5.58 8.92 7.58 11.76 9.11 2.89 

1QIW 5.34 8.60 7.17 11.51 8.86 2.11 

1PRW 6.23 9.46 8.34 12.23 9.86 4.34 

2BBM 5.55 8.55 6.85 11.57 8.73 2.43 

2K0E (36) 3.44 2.89 2.43 5.57 3.25 5.28 

2K0E (52) 2.90 4.38 3.23 7.53 4.52 3.55 

2K0E (114) 3.57 2.90 2.43 5.51 3.42 4.73 

2K0E (138) 4.76 7.03 5.34 10.15 7.06 2.95 

1 the targeted 1PRW comparisons are shown in bold; cells are shaded for the most similar 
structures in a given pulling / relaxation experiment. For the extended forms, the first 500 ps is 
not used in comparison, as these are similar structure I. 

2 For the NMR ensemble of 160 structures, the number in parentheses represent the index in the 
reported PDB structure 2K0E. 

3 for the extended forms, the first 500 ps is not used in comparison, as these are similar structure 
I. 

 

The frame with the lowest value (III) for 1PRW (row shown in bold in Table 6) is saved 

for classical MD simulations to test if these transient structures are near the transition 

state that leads to the compact form; these relaxation simulations are labelled with the 

extension R; e.g. P19.R1, P19.R2, etc. The removal of the restraint many eventually lead 

to the return of the structures to the extended forms, finalize a conformational change to 

the compact form, or they remain in the transient state during the relaxation trajectory. 

We exemplify further compaction in the P19 simulation which gives the lowest RMSD 

with respect to 1PRW. In this SMD, residue 106 located on C-lobe is pulled along the 

largest overlap PRS direction, and residue 7 residing on the opposite domain is fixed 

(Figure 8, thick black line). Six relaxation simulations are performed for durations of 5 

(twice), 8 (once) and 10 ns (thrice) labelled P19.R1 – P19.R6 (Figure 8, gray lines). In 
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the relaxation simulation P19.R6 yields the lowest RMSD, not only with 1PRW, but also 

with other structures with bent central helix (Table 6, last column). By comparing the 

results of P19 and P19.R6 runs, we can follow how the structures tip over from the 

extended forms (3CLN, 1RFJ, 1MUX) to the compact ones upon relaxation. The final 

RMSDs between the best sampled states and 1CDL, 1LIN, 1QIW, 1PRW, 2BBM are 1.94, 

2.89, 2.11, 4.34, 2.43 Å, respectively. Thus, 19R.6.CaM attains a conformation similar to 

the compact crystal form and some of the NMR ensemble structures while other 

relaxation simulations stay near closed transient molecular structure within the 10 ns 

window of observations. 

 

 

Figure 8. Progress of 3CLN (extended form) towards 1PRW (compact form) for selected five 
SMD trajectories (black), monitored by the RMSD between each point and the targeted 1PRW 
crystal structure. Swarms of relaxation runs is generated from the minimum point (III) of each 
trajectory; that for the P19 trajectory is displayed with six trajectories (shades of gray; termination 
points emphasized by filled circles) emanating from the gray encircled minimum point. Trajectory 
labels are illustrated on the figure. 

 

Using PSP method, our assumption is to perturb a structure located in one minima of 

the free energy landscape and find the pathway that connects that minimum to another 

one. This process is reproduced using SMD simulations and completed by the relaxation 

simulation. Obviously, P19 that has the lowest RMSD with target structures likely passed 

the barriers that enabled it to stay at the transient state (P19.R1 – P19.R5) or even 

complete the process during the relaxation (P19.R6). While RMSD is an overall measure 

of the similarity between structures, the conformational change of CaM is quite complex 

and the steps to achieve a compact form are better described by a combination of 

motions. In MIDTSLAB previous work, we showed that displaying the CaM structure 

in a reduced conformational space described by two degrees of freedom conveniently 
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illustrates the main features of its motions [Aykut et al., 2013]. A dihedral angle that 

shows the motion of domains; and a distance which indicates the bending of linker were 

considered as reduced variables therein, which we also adopt here (schematically shown 

on the left of Figure 9). The former is described by the four consecutive points, center of 

mass (COM) of the N-domain, Cα atom of residue 69, Cα atom of residue 92 (residues 

at the two end points of linker) and COM of the C-domain. The latter is the distance 

between the Cα atoms of residues 69 and 92. Selected coordinates from the SMD and 

relaxation trajectories are projected on this space along with the crystal structures and 

160 structures (PDB code 2K0E) which are listed in the NMR ensemble (Figure 9; 

individual NMR models are enumerated and plotted in Figure 10. The P19 simulation is 

colored in dark green and its relaxation simulation P19.R6 is colored in light green. 

Together they display the progress of 3CLN towards 1PRW in two steps. The relaxation  

trajectory covers the area of compact CaM structures and includes most of the compact 

target structures studied.  

 

 

 

 

Figure 9. Conformations sampled by calmodulin, projected on the simplified two-degree-of-
freedom model. Dihedral angle was measured between four points: center of mass (COM) of 
N-Domain, residues 69 and 92 and COM of C-Domain (lower left). Distance was measured 
between residues located on each side of central helix, 69 and 92, to trace its bending (upper 
left). Encircled dots: crystal structures; crosses: 2K0E NMR ensemble structures; colored dots: 
simulation trajectories as labelled in the inset. 3CLN and 1PRW represent the respective 
classical MD simulations.  



35 

 

Figure 10. CaM structures projected on the two-dimensional reduced space of helix end-to-end 
distance vs. torsional angle representing the relative placement of the two lobes (see Figure 9, 
left). Crystal structures are displayed in cyan and labelled with their PDB codes; the NMR 
ensemble (PDB code 2K0E) containing 160 model structures are displayed by the numbered black 
dots or by encircled dots if they are similar to our PSP structures. 

 

In MIDSTLAB previous work, we have shown that the extended linker of CaM is 

extremely stable. While it is relatively easy to achieve population shifts that sample the 

relative positioning of the N- and C-domains by changing the salt and pH conditions, it 

is a rare event to achieve a bent-linker conformation in classical MD simulations, even 

on the order of microseconds [Atilgan et al., 2011]. On the other hand, NMR and Förster 

resonance energy transfer (FRET) experiments show that both extended and compact 

conformations can be sampled in solution [Johnson, 2006]. It is evident that the landscape 

towards the bent-linker conformation is tightly controlled. Note that while in the SMD 

simulation set only P19 has a relatively low RMSD with respect to the compact crystal 

structures, they all achieve the bent linker conformation. Therefore, PRS can identify 

residues and directions along the free energy pathway connecting the two states. 

 
PSP distinguishes between the landscapes of the forward and reverse transitions of 
calmodulin 
 
To test the transferability of the PSP methodology, the reverse transition on the PES 

should also be attainable using the outlined protocol. Therefore, we have next studied the 

conformational transition of compact to extended form in CaM. To this aim, a single 100 
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ns simulation is performed using 1PRW as the starting structure. The 5-75 ns trajectory 

chunk of the 1PRW simulation is depicted in Figure 7 and the PRS results are summarized 

in Table 3 Table 4. Best PRS direction (D*) is found to be on residue 59, while residue 

115 is chosen as the fixed atom. Using the aforementioned SMD parameters, the extended 

form is obtained which remains stable upon relaxation. In Figure 11 we summarize the 

PSP findings for the forward and reverse transition of calcium loaded CaM. Key residues 

are mapped onto the CaM extended and compact structures as shown in Figure 11A; the 

best pulling residue and direction are displayed in Figure 11B and D, respectively. The 

resulting final structures are superimposed on the targeted crystal forms in Figure 11C 

and E. The superposition of the final structure and target state indicates a significant 

overlap. 

 

Figure 11. Applying PSP on CaM system to study extended to compact (A, B, C) and 
compact to extended (A, D, E) transition. A) Key residues which are effective in the 
transition identified by PRS. Cyan: 3CLN (extended); Orange: 1PRW (compact). Key 
residues effective in extended to compact transition colored in blue and orange on 3CLN 
and 1PRW, respectively. Key residues effective in compact to extended transition colored 
in purple and yellow on 3CLN and 1PRW, respectively. B) Residue 106 with the highest 
PRS overlap is depicted with the blue bead; red arrow shows the corresponding best PRS 
direction. C) Final structure (F) obtained from the extended → compact PSP scheme 
superposed on the target crystal structure (1PRW). Cyan: final structure (F); Orange: 
target structure (1PRW). D) Residue 59 with the highest PRS overlap depicted with the 
yellow bead; red arrow shows the corresponding best PRS direction. E) Final structure 
(F) which is obtained from the PSP methodology on CaM system superposed on the 
target crystal structure (3CLN). Orange: final structure (F); Cyan: target structure 
(3CLN). 
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Insofar as the PSP scheme allows for finding the ridges separating two desired 

conformations of a protein, it should be possible to quantify the relative free energy 

differences between the states through the identified transition state. Therefore the 

potential of mean force (PMF) profiles is reproduced using SMD (see ref [Park and 

Schulten, 2004] and section II-Methods). For the extended to compact PSP, we have 

selected P19 that has provided the best result. We have also chosen P28 that represents 

pulling of the same key residue (106), but along a slightly different direction (dot product 

between the two force directions is 0.86) as well as P27 representing pulling of the 

neighboring residue 105. PRS overlap is 0.75, 0.63 and 0.68 for P19, P27 and P28, 

respectively. To investigate the transition of the compact to extended transition, we 

selected the successful pulling of residue 59 along the best PRS direction (D*) and 

another one with a slightly lower PRS overlap (dot product between the two force 

directions is 0.81). A sample PMF of CaM computed with respect to the distance between 

initial and final position of the SMD atom is illustrated in Figure 12. 

 

Figure 12. The distance between initial and final position of the SMD atom. Initial (red), 
midpoint (green) and last snapshots (blue) of the CaM conformational transition obtained 
in a sample SMD run. PMF profile is shown as a function of the distance this SMD atom 
has moved. Beads represent key residue 106 at different time steps; line indicates the 
pathway that the Cα atom of residue 106 travels from the initial to the final position. 

 

Free energy paths of CaM from extended to compact form are plotted in Figure 13A, and 

the reverse cases are displayed in Figure 13B. We note that the second order cumulant 

expansion formula, which was used to obtain free energy difference values in this study, 

has been proved to perform better than exponential average under limited sampling. Still, 
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these values should not be used for quantitative interpretations [Patel and Kuyucak, 

2017; You et al., 2019], but they should rather be utilized for ranking purposes as PMF 

values are overestimated. Both profiles in Figure 13 clearly display that the extended 

form of calcium loaded CaM is higher in energy than the compact conformation under 

the prevailing conditions. This is consistent with previous solution NMR studies 

reporting the linker’s tendency to adopt the bent conformation in calcium-bound CaM 

[Barbato et al., 1992]. Additionally, FRET studies indicated that the compact form of 

holo CaM is more populated in solution except that the extended form is dominant in 

solutions with low calcium concentration [Johnson, 2006]. Moreover, the barrier to 

extended to compact transition is lower than that is required to get to the extended 

conformation as shown in Figure 13. 

 

Figure 13. Reaction coordinates for conformational change of Ca-loaded CaM. Starting 
structures are depicted on the left; each simulation is repeated ten times and final 
structures are superposed on the right. In both cases, the compact form has lower energy. 
up) Extended to compact transition. 19P is pulled along the pathway, crosses a simple 



39 

barrier (up arrow) and reaches the minima corresponding to the compact conformation 
(down arrow); 27P and 28P selected as negative controls; 27P never reaches a low energy 
compact state, but explores a high, dead-end barrier; 28P enters a low energy barrier, but 
ends up in a semi-compact state that is less stable than that reached by P19. down) 
Compact to extended transition. 1PRW is pulled along the pathway, find a lower energy 
compact state before entering the on-pathway leading to extended form. The top of the 
barrier is more rugged than that for P19, but the pulling finally accomplishes reaching the 
minima corresponding to extended conformation (Black); Another pulling simulation 
along a direction with lower PRS overlap selected as negative control (gray); the final 
state is a compact, higher energy structure instead of the targeted extended form. 
 

In fact, in the compact to extended transition, it is possible that the system attains an 

even lower energy compact state than that described by the x-ray structure. The barrier 

that is crossed is also flatter in the latter case. The results also indicate that the top ranked 

PRS results show a more favorable pathway for reaching the desired target structure and 

even a slight deviation might lead to a less favorable path with a higher energy final state 

despite a lower barrier (e.g. P28), or might enter a wrong path and not be able to attain a 

stable structure at all (e.g. P27). Subsequently, the error bars are presented on the PMF 

curves of successful forward and backward CaM pullings along the pathway results in 

lower energy in Figure 14. 

 

Figure 14. PMF calculation along the PSP determined the best-performing reaction 
coordinate based on results of 15 series of SMD simulations, which are depicted as bolded 
curves in Figure 13. PMF profile is shown as a function of the distance the SMD atom 
has moved. The error bars refer to the standard errors (gray areas). Up: The extended to 
compact calmodulin transition; down: compact to extended calmodulin transition. 
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PSP accomplishes the simple barrier crossing in adenylate kinase (ADK) 
 

ADK can be considered as a simple model system for studying conformational changes 

in proteins, because it undergoes a large-scale, hinge-like loop motion which is relatively 

easy to conceptualize [Seyler and Beckstein, 2014]. ADK is a phosphotransferase enzyme 

that catalyzes the conversion of adenine nucleotides according to the chemical reaction, 

ATP+AMP ⇄ ADP+ADP, and plays an important role in cellular energy homeostasis by 

maintaining concentration of AMP, ADP, and ATP at the desired level. The three-

dimensional structure of ADK consists of flexible regions and a central rigid part formed 

by parallel β sheets, surrounded by α-helices (Figure 5B). The central stable core is 

flanked by two highly dynamic domains, named LID-binding or LIDb (residues 114–164) 

and NMP-binding or NMPbd (residues 31–60)[Arora and Brooks, 2007]. LIDb and 

NMPbd are found close together when ADK is bound with a ligand or ligand-mimicking 

inhibitors (PDB ID: 1AKE)[Müller and Schulz, 1992] while they adopt a distant 

positioning in the absence of the ligand (PDB ID: 4AKE)[Müller et al., 1996]. Structural 

elasticity of the enzyme allows the interconversion between the closed and the open forms 

in the unbound state, while upon ligand binding the closed state is preferred. The closed 

conformation is the catalytically potent form since it provides the solvent-free 

environment needed for transferring the phosphoryl group [Pontiggia et al., 2008].  

PSP is performed to study the ADK transition from the open state (4AKE), as the initial 

state, to the closed state (1AKE) as the target structure. As demonstrated in Figure 6 

(flowchart), the first step provides a suitable chunk of the MD simulation which 

extensively samples the initial structure. Based on RMSD time-series of the simulation, 

the 25-75 ns chunk of the ADK trajectory, is selected for constructing H-1 (Figure 7). 

Subsequently, the 25 ns time point snapshot of the trajectory was subjected to PRS. 

Overlaps are calculated for all 214 residues present in the PDB file. Results summarized 

in Table 3Table 4 demonstrate that residues 146, 153, 151, 147, and 149, all of which are 

located on LIDb (Figure 15A), display the best overlaps (maximum Oi = 0.89). 

The conformational transitions of ADK has been studied extensively via a plethora of 

biophysical and computational methods, and therefore it has become a testbed for 

evaluating path-sampling methods [Seyler and Beckstein, 2014]. We find that the top 

residue and direction plotted in Figure 15B closely mimics the first of the three collective 

variables used to bias the LID-core angle, the NMP-core angle, and the LID-NMP 

distances in, eg. bias-exchange metadynamics simulations[Li et al., 2015].73 Moreover, 
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PRS generates a single “best” collective variable  without resorting to the more 

complicated reaction coordinate optimization algorithms implemented in SCOOP 

[Tiwary and Berne, 2016], vac-MetaD [McCarty and Parrinello, 2017] or RAVE [Ribeiro 

et al., 2018].  

Key residues are pulled along their best PRS direction (D*) in a series of SMD 

simulations. Here, Cα atom of residue 25 having the smallest deviation from the pulling 

direction and is at least 20 Å from the SMD atom is fixed. RMSD between 1AKE and 

each snapshot recorded during the SMD simulations is measured and the frame with 

minimum RMSD (structure III) is subjected to 5 ns relaxation simulations. The most 

similar frame to the target structure (1AKE) is saved as the final structure (F). 

A sample RMSD value between the two end-point states, represented by crystal structures 

4AKE and 1AKE, is 7.13 Å. RMSD between structure II and 1AKE is 6.80 Å which 

decreases to 3.11 Å after pulling residue 146 along the corresponding best PRS direction 

(D*). Relaxation simulation starting from final structure does not affect the RMSD value 

and validates the stability of the obtained structure. The whole process leads to the 

transition from the open to an intermediate state whereby the LID closes and contacts the 

NMP domain while the latter domain stays in the open state. The most probable transition 

pathway from the open to the closed form of apo ADK has been shown to go through this 

intermediate [Li et al., 2015; Shao, 2016; Wang et al., 2020] which was found to have 0.1 

kcal/mol lower free energy than the open form [Li et al., 2015]. This intermediate is 

represented by several crystal structures in the PDB. The superposition of this final 

structure indicates low RMSD with 1DVR (1.1 Å), 1AK2 (1.2 Å), 2AK2 (1.2 Å), 2RH5 

(1.3 Å), 2BBW (1.5 Å) (Figure 15C). Note that the final results are satisfactory despite 

the fact that for a small protein such as ADK, it is more difficult to find a fixed atom in 

the pulling scheme that will minimize rotational motions of the protein. 

PMF results for this transition are displayed in Figure 15D (errorbars shown in Figure 

16). Results indicate that PSP guides the protein through a relatively low-energy pathway, 

yielding the desirable target state. Note how the energy of the open and partially closed 

states are similar, separated by a relatively low energy barrier (~30 kcal/mol), consistent 

with the experimental observation that the interconversion between the two states are 

allowed in the unbound state of ADK [Henzler-Wildman et al., 2007]. A recent FRET 

study indicates that both open and closed conformations are sampled in the solution; 

however, the open form is dominant in the absence of ATP and the closed form is 

preferable in the presence of ligand [Aviram et al., 2018]. However, as we have noted 



42 

earlier, the PMFs obtained from SMD are not to be interpreted at a quantitative level; in 

fact, while our free energy pathway between these two conformers closely mimics that 

described by Li et al., it fails to clearly identify an energetically equivalent local minimum 

between these two end points. On the other hand, since the pulling direction and residue 

uniquely identified by PRS delineate a single collective variable for the favorable path, 

in future work, the SMD stage of the PSP may readily be replaced by more sophisticated 

sampling techniques to map the free energy surface of the protein. 

 

Figure 15. PSP on ADK, open to closed transition. A) Key residues effective in the transition 
identified by PRS. Cyan: 4AKE (initial structure); Orange: 1AKE (target structure). B) Residue 
146 with the highest PRS overlap illustrated as blue bead and its corresponding pulling direction 
shown with red arrow. C) Final structure (F, cyan) obtained from the PSP methodology on ADK 
system superposed on the intermediate 2BBW (T, orange). Lateral view (up) and top view 
(bottom) indicate the proper overlap. D) Reaction coordinate for the conformational change of 
ADK obtained from SMD simulations. 4AKE is pulled along the PRS determined direction and 
reaches the minimum corresponding to closed conformation (Blue). The two conformations have 
similar energy; separated by a relatively low energy barrier (~30 kcal/mol in the PMF). Starting 
structure depicted on the left; SMD simulation repeated ten times and final structures superposed 
on the right. 

 



43 

We note that PSP readily lends itself to updates, so as to sample a conformational surface 

such as that of ADK which has several minima. Once a stable intermediate state is 

reached, one may update the pulled residue and direction by reapplying the PRS stage of 

the method followed by another SMD cycle. One may therefore navigate the 

conformational surface from minimum to minimum using sequential applications of PSP. 

There are other methods that couple enhanced sampling methods with continuous 

updating of collective variables obtained through slow modes calculated via ANM 

[Fuchigami et al., 2010; Fujisaki et al., 2013; Wang et al., 2019]. The advantage of PRS 

is to find a single collective variable that invokes several (collective) modes that are 

relevant to the sought-after conformational change. In contrast, using modes has the 

advantage of allowing continuous updating of the reaction coordinate throughout the 

sampling, but the inverse Hessian construction has the usual disadvantages within the 

framework of an elastic network model (e.g. cutoff distance selection). 
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Figure 16. PMF calculation along the PSP determined the best-performing reaction 
coordinate of open to closed adenylate kinase transition, based on results of  ten series of 
SMD simulations, which are depicted as bolded curves in Figure 15D. PMF profile is shown 
as a function of the distance the SMD atom has moved. The error bars refer to the standard 
errors (gray areas). 
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Iron binding dilemma observed in ferric binding protein (FBP) addressed by PSP 
scheme 
 
Iron uptake pathway 

Iron is a cofactor for many proteins engaged in fundamental biological processes and 

essential component in nearly all organisms. However, free iron can be toxic and harmful 

for the cell. Under physiological conditions, iron exists in its soluble form, as ferrous 

(Fe2+), which is unstable and turns to poorly soluble ferric (Fe3+) via the Fenton reaction 

(Fe2+ + H2O2 → Fe3+ + OH· + OH−). The reactive oxygen species generated in this process 

are able to destroy proteins, lipids, and even DNA molecules [Krewulak and Vogel, 2008; 

Neumann et al., 2017]. Hence, iron uptake, transport and storage are tightly regulated 

extracellularly by eukaryotic binding proteins such as ferritin, transferrin, lactoferrin, and 

intracellularly by hemoglobin [Krewulak and Vogel, 2008; Sherman et al., 2018]. 

Transferrin scavenges free iron from the gastrointestinal tract and shuttles stored iron 

from liver to cells where it binds to its receptors and enter cells via endocytosis. The acidic 

environment of the endosome facilitates iron separation [Anderson and Frazer, 2017]. 

Lactoferrin is secreted from granules of the activated neutrophils to collect iron at 

inflammation sites. It is also found in mucus, tears, and milk [Tang et al., 2001; Weinberg, 

2003]. Both gram-negative and gram-positive bacterial pathogens steal iron from their 

host to be able to survive at low iron concentrations. They either uptake “iron chelators,” 

e.g. siderophores and heme, as intact molecule or they extract iron from host proteins 

[Krewulak and Vogel, 2008]. The iron uptake pathway in gram-negative bacteria such as 

Neisseria gonorrheae and Haemophilus influenzae occurs via a receptor-mediated 

mechanism. Two lipoproteins on outer membrane (OM), TbpA/TbpB and LbpA/LbpB, 

are involved in iron extraction from transferrin and lactoferrin, respectively. They form a 

trimeric complex which removes iron by forcing domain separation (Figure 17a). TbpB 

(LbpB in lactoferrin complex) is anchored to the OM by a long unstructured linker and 

facilitates the binding of transferrin, while TbpA (LbpA in lactoferrin complex) is a trans-

membrane β-barrel protein which acts as a channel to import iron (Figure 17b) [Krewulak 

and Vogel, 2008; Neumann et al., 2017; Noinaj et al., 2012; Szewczyk and Collet, 2016]. 

The energy required for transport across the membrane is supplied by the proton gradient 

generated by the Ton system located in the inner membrane (IM) of bacteria. Ton system 

consists of three subunits: ExbB and ExbD proteins which together form the proton 

channel, and TonB which physically interacts with iron-loaded TbpA via its long 
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periplasmic domain. Ton box, a plug domain of TbpA, contains a conserved binding site 

for TonB protein which is exposed to the periplasmic side upon transferrin binding 

(Figure 17d)[Celia et al., 2019; Ciragan et al., 2020; Hickman et al., 2017].  

 

Figure 17. The iron uptake pathway by gram-negative bacteria. OM:Outer membrane; IM:Inner 
membrane; (a, b) Transferrin (TF) binding complex: Two lipoproteins, TbpA and TbpB, attract 
transferrin and form a trimeric complex to extract iron by forcing domain separation. The 
complex is modeled based on PDB codes 3V8X (Transferrin bound to TbpA) and 3VE1 
(Transferrin bound to TbpB). (b, c) The extracted ferric ion is transferred to the periplasmic FBP 
(PDB code 1D9V). The black and red arrows indicate the pore formed to facilitate iron 
translocation and putative binding site for FBP (loop B), respectively. Ton box, a plug domain 
of TbpA, contains a conserved binding site for TonB protein which is exposed to the periplasmic 
side upon transferrin binding (shown in red). (d) Ton system is located in the inner membrane 
(IM) of bacteria and is comprised of ExbB, ExbD, and TonB proteins. It supplies the required 
energy for transporta across the membrane. TonB physically interacts with Ton Box via its long 
periplasmic domain. The 3D model is based on the recently reported Cryo-EM structure of 
bacterial Ton motor (PDB code 6TYI; ExbB shown in Red, ExbD shown in Blue) as well as 
2PFU (the periplasmic domain of ExbD; shown in Blue), and 1XX3 (the periplasmic domain of 
TonB). (e) Iron loaded FBP binds to the ABC transporter (PDB code 1L7V: BtuCD). Upon 
binding, the ferric ion is released into a hydrophobic channel of transporter due to the distortion 
of the iron-binding pocket and the subsequent steric clash caused by a loop of the 
transmembrane domain (f) ATPase activity of the transporter leads to conformational change 
which allows ferric ion to translocate across inner membrane. Due to lack of experimental 
structure of FBP related ABC transporter, Escherichia coli vitamin B12 transporter is used as a 
similar model for this mechanism (PDB code 2QI9: BtuCD in complex with BtuF; Substrate 
binding protein). 
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Subsequently, the extracted ferric ion is transferred to the ferric binding protein which is 

responsible for shuttling iron in the periplasmic space (Figure 17c)[Guven et al., 2014; 

Jalalypour et al., 2020; Sensoy et al., 2017]. Finally, FBP interacts with ATP-binding 

cassette (ABC) transport system in the IM stimulating the conformational change of FBP. 

ABC transporter is comprised of two nucleotide-binding domains (NBD) having ATPase 

activity and two transmembrane domains (TMDs) so that the majority of the protein is 

located in the cytoplasmic side. The structure of FBP related ABC transporter is not 

available and iron release process is not fully clear. However, based on a previous 

hypothesis, the iron-loaded FBP binds to the periplasmic part of the transporter in its open 

state. Then, iron-binding pocket of FBP is distorted upon binding and iron is picked up 

by a steric clash caused by the loops of the TMD (Figure 17e). Subsequently, iron is 

released into the hydrophobic cavity of the transporter and the ATP-driven conformational 

change of the transporter allows iron to cross the membrane into the bacterial cytoplasm 

(Figure 17f)[Hollenstein et al., 2007; Locher, 2016; Rees et al., 2009]. 

Ferric binding protein structure 
 
Typical structure of eukaryotic ferric binding proteins such as transferrin or lactoferrin 

consists of two lobes, each has the potential to bind one ferric ion, and connected by a 

short peptide linker. Each lobe is further divided into two similar sized 

domains [Abdizadeh et al., 2017]. This structural organization allows the protein to grab 

ligands between the two domains with a Venus flytrap mechanism [Berntsson et al., 

2010]. Bacterial FBP which consists of two domains that are connected by a pair of 

antiparallel β-strands, exhibits a remarkable structural similarity to a single lobe of 

eukaryotic FBPs [Shouldice et al., 2004]. However, it has higher affinity to iron in acidic 

environment which helps bacteria obtain iron from the host transferrin [Khan et al., 

2007a].  

FBP is found in a variety of bacterial species such as N. gonorrhoeae [Bekker et al., 2004] 

and H. influenza [Bruns et al., 1997].This periplasmic transport protein hijacks the host 

iron and delivers it to the bacterial ABC transport system for releasing it into the 

cytoplasm[Wyckoff et al., 2006]. It consists of 46% α-helix, 17% β sheets and 37% 

disordered regions. Two characteristic domains of FBP, namely N- and C-domain, contain 

residues 1–82, 88–101, 226–276 and residues 83–87, 102–225, 277–309, respectively, in 

H. influenzae. Fe3+ is captured between these two domains along with engagement of a 
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phosphate anion in the binding site [Sensoy et al., 2017]. FBP has been crystallized in 

both iron-free, open (PDB ID: 1D9V) and iron-bound, closed (PDB ID: 1MRP) 

conformations. The open form dominates the population in the absence of the ligand, 

whereas the closed conformation is preferred when the protein forms a complex with Fe3+ 

and a phosphate anion [Guven et al., 2014]. FBP exhibits an octahedral coordination of 

iron by utilizing conserved residues from both domains including two tyrosines (Y195 

and Y196), a histidine (H9), and a glutamic acid (Q57) residue as well as an exogenous 

phosphate ion and a water molecule [Khambati et al., 2010; Khan et al., 2007a]. FBP 

binds iron with remarkably high affinity in the open form on the order of ∼1018 M−1 

[Bruns et al., 1997; Khan et al., 2007a; Sensoy et al., 2017], but is somehow able to readily 

release it at the inner membrane side of the periplasm, a phenomenon sometimes termed 

as “iron binding dilemma.” We have applied the PSP scheme to address this problem, in 

particular to determine the relative positioning of the two conformations along the PES, 

as well as the free energy path connecting the two forms in both the forward (iron binding; 

open → closed) and the reverse (iron release; closed → open) transition. 

For the forward PSP, the 45-100 ns chunk of the 1D9V classical MD simulation is selected 

based on the RMSD plot (Figure 7) and fed to PRS together with the 45 ns time point as 

the initial conformation (). Overlaps are calculated for all 309 residues and residues 31, 

6, 33, 34, and 37 give the highest value of approximatively 0.91 (Table 4 and Figure 18A). 

SMD simulations are performed by pulling residue 31 and fixing residue 138. Cα atom 

of SMD residue is pulled along the best PRS direction D* (red arrow in Figure 18B). 

RMSD value between 1D9V (structure I) and 1MRP (T) crystal structures is 2.5 Å while 

that for structure II (45 ns time point) and T is 2.4 Å. The RMSD decreases to 0.98 Å 

after the SMD simulation which is further reduced to 0.80 Å during the relaxation run. 

Superposition of the final structure and target structure is illustrated in Figure 18C. 

Regarding the reverse conformational transition, from closed to the open state with the 

Fe+3 bound to the protein, the 60-100 ns chunk of the 1MRP classical MD simulation was 

subjected to PRS along with the 60 ns time point of the trajectory as the initial structure 

(Figure 7 and Table 4). Residues 71, 70, 46, 45, and 231 give the highest PRS overlaps of 

approximatively 0.91 (Figure 18A, D). Cα atom of residues 71 and 143 are selected as 

SMD atom and fixed point, respectively. The RMSD value was measured as 3.1 Å 

between the initial conformation (60 ns time point of 1MRP) and the target crystal 

structure (PDB ID: 1D9V) which was further decreased to 2.1 Å after pulling (Figure 

18E) and to 2.0 Å after the relaxation simulation. Previous studies reported that iron 



48 

uptake by FBP can occur in a thermally fluctuating environment, while its release is 

allosterically controlled [Atilgan and Atilgan, 2009]. A loop that spans residues 44–49, 

which contains conserved residues E45, G46 and T49, was reported as a significant region 

[Guven et al., 2014].  

Our new results identify the same (E45, G46), and spatially nearby residues (L70, L71, 

and A231) as being operative in the closed to open transition which imitated iron release. 

These residues may be considered as allosteric residues involved in motions required for 

iron binding. In open to closed conformational transition, the identified residues are 

located on the N-domain near the binding site (Figure 18A). 

Figure 18.  Applying PSP on FBP system to study open to closed (A, B, C) and closed to 
open (A, D, E) transition. A) Key residues in FBP conformational transition identified by 
PRS. Cyan: 1D9V (open); Orange: 1MRP (closed); RMSD is 2.5 Å. Key residues 
effective in the open to closed transition colored in blue and orange on initial structure 
and target structure, respectively. Key residues effective in the closed to open transition 
colored in purple and yellow on initial and target structure, respectively. B) Residue 31 
with the highest PRS overlap illustrated as blue bead and its corresponding direction is 
shown as red arrow on the 1D9V crystal structure. C) Final structure (F) obtained from 
the PSP methodology on FBP system superposed on top of target crystal structure 
(1MRP). Cyan: final structure (F); Orange: target structure (1MRP); RMSD is 0.8 Å. D)
Residue 71 with the highest PRS overlap and its corresponding direction is shown as 
yellow bead and red arrow, respectively, on the 1MRP crystal structure. E) Final structure 
(F) obtained from the PSP methodology on FBP; system superposed on the target crystal 
structure (1D9V). Orange: final structure (F); Cyan: target structure (1D9V). 
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As the conformational changes are predicted to be triggered by different phenomena, 

distinct PMF profiles are expected to accompany the two mechanisms. Also note that the 

open to closed simulations are devoid of the Fe3+ ion in the binding site, while the closed 

to open simulations include the bound cation. For the former transition, we find as a 

result of PSP that the closed form is located at a lower energy than the open form, and 

the transition is accompanied by a nearly flat barrier (Figure 19A); the error bars on the 

PMF (Figure 20) are large, pointing to the free sampling of the available space during 

the transition. This observation is consistent with the postulation that the apo FBP freely 

samples the open and closed forms and the transitions are triggered by thermal 

fluctuations in the absence of the iron and anion [Atilgan and Atilgan, 2009]. On the 

other hand, the opening process of FBP is not well understood and remains a 

controversial subject. Our PMF results indicate that in the prevailing conditions, i.e. 150 

mM ionic strength, physiological pH and the presence of the phosphate anion 

coordinating the binding site, the iron bound open form is predicted to be more populated 

(Figure 19B); however, unlike the case for apo FBP, the barrier between the open and 

closed states is high. The error bars on the PMF (Figure 20) also point that unlike the 

open to closed conformational change which is controlled by thermal fluctuations, there 

is a specific pathway required to reach the open form from the iron-bound closed 

conformation. 

The available direct experimental evidence indicates that the most populated state of the 

holo form is highly dependent on the environmental conditions. Thus, there is evidence 

to support our observations; e.g. several studies report holo form in the open 

conformation and mention that the closed conformation is obtained when specialized 

approaches such as crystallization in a proper buffer [Khambati et al., 2010] or in the 

presence of an anion such as phosphate were taken [Bekker et al., 2004]. However, 

phosphate ion is not essential for iron binding as confirmed by site-directed mutagenesis 

studies whereby crystal structures complex to iron without the synergistic anion [Bekker 

et al., 2004; Khan et al., 2007b]. It has been suggested that phosphate might be regulating 

FBP function by stabilizing the closed conformation [Bekker et al., 2004]. However, a 

small-angle X-ray scattering (SAXS) study indicated that the holo form tends to adopt 

an open conformation even in the presence of phosphate ion [Bulbul et al., 2018]. In fact, 

all mutated FBP proteins display open conformation while they still have iron or 

phosphate ion attached to them [Khambati et al., 2010; Khan et al., 2007a; Khan et al., 

2007b; Shouldice et al., 2003].  
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Figure 19. Reaction coordinate for the conformational change of FBP A) from open to closed, 
and B) from closed to open form. Starting structures are pulled along the favorable pathway and 
reach the minima corresponding to the targeted conformation; each simulation repeated ten times. 

 

Site-directed mutagenesis of iron-coordinating residues as well as phosphate-

coordinating residues indicate that, unlike transferrin, only one tyrosine is sufficient for 

iron binding and transfer process of bacterial FBP [Khambati et al., 2010; Khan et al., 

2007a]. Mutation of coordinating residues only decrease the iron binding affinity which 

can be improved in an acidic environment, while mutants harboring double mutation of 

key tyrosine residues (Y195A/Y196A) is totally defective in iron binding and transfer 

[Khambati et al., 2010; Khan et al., 2007a]. Based on the crystal structures of 

reconstituted FBPs, wild type holo FBP can sample both open and closed form 

[Khambati et al., 2010; Shouldice et al., 2004]. Thus, even a slight change in 

coordination of the iron binding site would lead to open conformation. The details of 

structures are listed in Table 7. 
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Table 7. The details of experimental structures () 

Type PDB code Ligands State  Organism 

Wild type 1D9V PO4 Apo open Haemophilus 

influenzae 

Mutant 

(E57A) 

2O6A FE Holo open Haemophilus 

influenzae 

Mutant 

(Y195A) 

3KN7 FE/PO4 Holo open Haemophilus 

influenzae 

Mutant 

(Y196A) 

3KN8 FE/PO4 Holo open Haemophilus 

influenzae 

Mutant 

(H9Q) 

1NNF FE/EDT Holo open Haemophilus 

influenzae 

Mutant 

(Q58L) 

2O68 FE/PO4 Holo open Haemophilus 

influenzae 

Mutant 

(N193L) 

2O69 FE Holo open Haemophilus 

influenzae 

Mutant 

(H9A) 

1QVS FE Holo open Haemophilus 

influenzae 

Mutant 

(N175L) 

1QW0 FE Holo open Haemophilus 

influenzae 

Wild type 1MRP FE/PO4 Holo closed Haemophilus 

influenzae 

Wild type 1D9Y FE/PO4 Holo closed Neisseria 

gonorrhoeae 

Wild type 3ODB FE Holo open Haemophilus 

influenzae 

Wild type 3OD7 FE/PO4 Holo closed Haemophilus 

influenzae 

Wild type 1SI1 FE Holo open Mannheimia 

haemolytica 

Wild type 1SI0 FE, EDO, CO3 Holo closed Mannheimia 

haemolytica 

Wild type 1O7T Metal 

nanoclusters 

- open Neisseria 

gonorrhoeae 

Wild type 1R1N Tri-nuclear 

oxoiron clusters 

- open Neisseria 

gonorrhoeae 
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Nevertheless, FBP closing, opening, and iron release probably occur in several stages 

and are triggered by ionic concentration, pH modification or protein-protein interaction 

with ABC system subunits. Thus, the picture provided in Figure 19B reproduce only the 

first step in a multi-step process. 

 

 

Figure 20. PMF calculation along the PSP determined the best-performing reaction 
coordinate based on results of ten series of SMD simulations. PMF profile is shown as a 
function of the distance the SMD atom has moved. The error bars refer to the standard 
errors (gray areas). up) open to closed ferric binding protein transition (apo form). down) 
closed to open ferric binding protein transition (holo form). 

 
PSP method highlights the residues effective in conformational dynamics of Ras 
protein 
 

The Ras protein family (H-RAS, N-RAS, K-RAS4A, and K-RAS4B) belongs to a small 

GTPases superfamily, having affinity for guanosine diphosphate (GDP) or guanosine 

triphosphate (GTP) nucleotides as well as intrinsic GTP hydrolysis ability, which is 

involved in cellular signal transduction[Azmi and Philip, 2017; McCormick, 1995] . Ras 

protein functions as an on/off switch and cycle between the active (GTP-bound) and 

inactive (GDP-bound) forms to mediate cell differentiation, proliferation, apoptosis, and 

survival. Hence, the Ras GDP/GTP switch process is tightly controlled in the cell by 

regulator proteins including guanine nucleotide exchange factors (GEFs)[Cook et al., 
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2014] and GTPase activating proteins (GAPs)[ten Klooster and Hordijk, 2007]. GAP 

expedites the intrinsic GTPase activity of Ras and facilitates GTP hydrolysis leading to 

the formation of inactivate Ras, whereas GEFs stimulate the release of GDP which allows 

binding of GTP and activation of Ras protein [Ilter and Sensoy, 2019]. 

Ras mutations are responsible for relatively 30 % of several types of human cancers. 

Hotspot mutations occur frequently at either residues 12 (G12D, G12V), 13, or 61 and 

hinder binding of GAP, which subsequently increases the lifetime of activated Ras by 

reducing its intrinsic GTPase activity [Ilter and Sensoy, 2019; Parker and Mattos, 2015]. 

Targeting these proteins could be considered a novel approach for cancer treatment. 

However, Ras is thought to be undruggable due to the lack of deep binding pockets on its 

surface as well as the high binding affinities of the Ras ligands (picomolar level) which 

prevent competitive binding of the inhibitors and therapeutic agents [Cox et al., 2014]. 

The typical structure of Ras consists of two lobes; G/catalytic domain which is highly 

conserved among Ras family members (residues 1-166), and allosteric domain (residues 

87-166). Ras family members anchor to membrane by hypervariable region (HVR) at 

their C-terminus (residues 173-189). The catalytic domain harbors the effector lobe 

(residues 1-86) which includes P-loop (residues 10-17), switch I (residues 30-40) and 

switch II (residues 60-76) loops which mediate GTP hydrolysis and interact with other 

regulator proteins such as RAF, GAP, GEF, and PI3K [Johnson et al., 2017; Parker and 

Mattos, 2015]. 

Switch I, in its open form, prevents the interaction of the Ras with its effector proteins, 

whereas binding of these proteins results in stabilization of Switch I while conferring 

flexibility to switch II. According to previous studies, phosphorylation of Y32 or Y64 

residues has an impact on the conformation of switch I and II loops [Bunda et al., 2014]. 

The phosphorylation-driven conformational changes might potentially preclude protein 

interactions and inhibit the signaling pathway regardless of the activation state of Ras. 

Therefore, as a new approach, a flexible loop was designed by docking a drug to mimic 

the conformational change trigger by phosphorylation of the residue Y32 to increase 

flexibility of Switch I loop and alter protein stability with hopes of attenuating the Raf/Ras 

interaction. To follow the conformational modulation of Ras protein, PSP technique 

coupled with all-atom MD simulations is utilized. To do this, 2.5 s MD simulations of 

wild-type and Y32-phosphorylated Ras, provided by the Sensoy lab [Ilter and Sensoy, 

2019], is scanned to collect desired initial and target states based on the spatial positions 

of switch I and II loops. First, Ras structure is described with two degrees of freedom 
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which best indicate the protein motion. The distance between the Cα atoms of residue D12 

and P34 shows the movement of switch I loop, and the distance between NH group of 

residue G60 and-phosphate of GTP nucleotide illustrates the motion of switch II loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accordingly, three conformers of the Ras protein are selected as target states; 1) switch I 

is displaced from the nucleotide-binding pocket (NBP), while switch II remains in its 

initial state, 2) switch I is partially open and switch II is placed far from NBP, 3) both 

loops are open and displaced from the NBP. In total, four frames of trajectories including 

an initial state (fully closed) as well as target state 1 (switch I in open state), 2 (partially 

open), and 3 (fully open) are selected to represent the different structural minima of the 

Ras protein. Transition scenarios from initial state to each of target are numerated based 

on target states (Figure 21). The allosteric modulation between the initial and target states 

is investigated via separate PRS calculations. PRS calculations are optimized to obtain 

the highest overlap values. This method permits the identification of residues involved in 

Ras structural modification in describing various conformational changes from the initial 

Figure 21. The initial state as well as three different conformations of Ras protein as 
target states determined based on the position of switch I and II loops. State 1) Switch 
I displaced from the NBP, while switch II remains in its initial state. State 2) Switch I 
is partially open and switch II is placed far from NBP. State 3) both loops are open and 
displaced from the NBP. Transition scenarios from initial state to each target state are 
numerated based on target state. 
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to each of the target states. Details of the structures as well as PRS results are summarized 

in Table 8. 

 

Table 8. PRS calculation results of Ras protein system 

 

structural 

states 

of Ras protein 

 

 

Conformation states of 

switch I                  switch II 

(D12-P34, Å)             (G60-GTP, Å) 

 

PRS selected 

residues 

(Transition 

scenario) 

 

PRS 

overlap 

(Oi) 

Initial state closed 

(11.47) 

closed 

(8.11) 

- - 

Target state 1 

 

open 

(25) 

closed 

(9.72) 

34,37,33,32,17 

(scenario 1) 

0.76-0.71 

Target state 2 

 

partially open 

(13.17) 

open 

(12.01 ) 

32,30,31 

(scenario 2) 

0.51-0.53 

Target state 3 open 

(18.43) 

open 

(22.33) 

60,61,12,64,38 

(scenario 3) 

0.64-0.50 

 

Results indicate that in the two first scenarios, residues located on switch I (34, 37, 32, 

and 30) are important in conformational modulation. However, in the conformational 

change from the structure with both loops closed to the fully open Ras protein, residues 

located on switch II (60, 61, 64) as well as residue 12 play a key role. Results are 

consistent with refereed studies which highlight the importance of these residues in Ras 

dynamics[Azmi and Philip, 2017; Ilter and Sensoy, 2019; Parker and Mattos, 2015]. 

 

Designing a flexible loop as a new strategy to alter protein stability and interrupt 
RAS/RAF interaction 
 
To prove that the flexible loop designed by drug docking can mimic phosphorylation of 

residue 32 and is able to alter the stability of structure, PSP was applied on drug free and 

drug-bound Ras proteins to get the free energy profile. Binding a drug molecule is 

postulated to induce opening of switch I loop as best described in the first transition 

scenario. To prove the effectiveness of the drug molecule used to destabilize the structure, 

PMF is calculated in the first transition scenario for both drug-free and drug-bound Ras 

systems. Y32 and its best direction with overlap values (Oi) of 0.76 were used to perform 

SMD simulations. The structure was perturbed by pulling the Cα atom of Y32 along the 
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best direction. Results indicate the significant difference between PMF values of two 

systems (Figure 22). Manifestly, drug binding increases the flexibility of the structure and 

decreases its stability, which in turn leads to high PMF values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. PMF calculated using the Jarzynski equality along PSP predicted coordinate 
with the highest overlap for the Ras protein transition scenario 1 (Switch I loop opening 
motion) as a function of distance.; each simulation was repeated 10 times. 
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Part IV. Study dynamics of a model protein via protein perturbation 
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Protein perturbation identifies residue 75 as an effective residue in dynamics of 
calmodulin 
 
Introducing fictitious perturbations on proteins was first described as a systematic 

approach for conducting a survey of the conformations available to a protein in the 

perturbation response scanning (PRS) method [Atilgan and Atilgan, 2009]. Protein 

perturbation relates external forces applied on a structure, to displacements as responses 

via a covariance matrix derived from the classical MD simulations. Briefly, for a protein 

with N residues (i to N residues), the coarse-grained representation of structure is 

generated in which the Cα atoms are selected as N nodes. Then, to perturb the structure, 

random forces (ΔF) in various directions are applied on each node sequentially to 

generate displacement vectors (ΔR). The shift in the coordinates is calculated by equation 

14.  

Here, a similar approach to a method described by Nevin Gerek, et al.  [Nevin Gerek et 

al., 2013] is proposed which utilizes the Hessian matrix (C) to identify effective residues 

in the dynamics of the protein by considering the fluctuation of a structure in response to 

a single residue perturbation in M directions. To this end, displacement vectors generated 

by perturbation of each residue (N×M vectors) are sequentially recorded as the datasets 

(dataset i: displacement vectors of residue i perturbation, dataset i+1: displacement 

vectors of residue i+1 perturbation, …, dataset N: displacement vectors of residue N 

perturbation). For each dataset, displacement vectors of each residue are separately 

classified using K-means algorithm and cluster centroids are recorded. A centroid can be 

defined as a vector which represents the average displacement of a single residue. Lastly, 

obtained centroids are utilized to construct the final structures. To this end, coordinates 

of each centroid vector is added to the coordinates of the Cα atom of the residue on which 
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it is located. Eventually, each set is used to predict a single conformation. Figure 23 shows 

these steps schematically.  

 

Finally, the predicted structures are compared to the initial structure by measuring the 

RMSD to indicate the deviation from the initial state due to single residue perturbations 

and identify the residues with a significant role in the protein fluctuation and 

conformational modulations.  The highlighted residue is mutated in silico and studied via 

a separate MD simulation to evaluate its effect on the protein dynamics. 

Protein perturbation is applied on calmodulin protein based on the methodology 

previously described in section II. To do the perturbations, 400 ns MD simulation of 

calmodulin in its extended form (PDB code: 3CLN) is performed under physiological 

conditions. A 150 ns chunk of the trajectory (200-350 ns) is selected as the well-

equilibrated part of the MD simulation (Figure 24; part shown in red), based on the RMSD 

of the protein compared to its initial state, and utilized to construct the cross-correlation 

matrix.  

 

 

 

Figure 23. Perturbation response clustering to identify the key residues effective in dynamics of 
a protein is illustrated schematically. 
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Each and every one of the 143 residues of calmodulin (5-147) is perturbed 600 times to 

generate perturbation response vectors (M=600) and the obtained vectors (ΔR) are then 

accumulated in N×3N×M matrix as the main input. Perturbing a single residue in 600 

directions leads to 600 displacement vectors on each residue of the structure, including 

the perturbed residue itself. According to the methodology, 143 datasets are accumulated 

in separate matrices (N×3N×M). For each dataset, which only contains the response 

Figure 24. RMSD of CaM protein under physiological condition (pH=7.4) 

Figure 25. Protein perturbation clustering data presented on the first residue (i). In the actual 
implementation, the total movements of the protein as a whole, in response to single 
perturbations is clustered. A) data presented on residue 1; B) same data illustrated schematically. 
1) external force vectors applied on selected residue to perturb the structure; 2) response 
(displacement) vectors obtained from PRS calculation; 3) clustering the data into k groups (here 
k=2); 4) cluster centroids indicate the average displacement of a single residue. 
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vectors of a single residue perturbation, the vectors on each residue are clustered into two 

groups (k=2) and the centroids are recorded in a k×3N×M matrix. For ease of 

visualization, the residue-by-residue prediction of the clustered displacements is 

presented in Figure 25. Subsequently, the Cartesian coordinates of each centroid vector 

is added to the coordinates of the residue of initial structure on which it is located, which 

results in constructing k new conformations from the perturbation of each single residue. 

Then, RMSD values are measured to compare the similarity between the predicted and 

the initial structures. The highest RMSD between the predicted structures and the initial 

structure (PDB code 3CLN) were 4.54 and 4.31 Å, yielded by perturbing residues 75 and 

42, respectively (Figure 26).  

 

 

 

 

 

 

 

 

 

 

 

Additionally, clustering is applied on the closed form of calmodulin (1PRW) using 

previous simulations (Figure 7), and the highlighted residue was found to be 75 again. To 

evaluate the effect of residue K75 pinpointed via clustering, whose perturbation leads to 

significantly different displacement of the structure, mutation analysis was performed in 

silico.  The K75A mutant was subjected to MD simulation. RMSD of the mutated protein 

was measured compared to the initial structure (Figure 27). Additionally, distance-

torsional angle data, as described in Figure 9, were calculated for each frame of the 

simulation (Figure 27).  

 

Figure 26. RMSD measured between clustering predicted structures and the initial state (open 
state, 3CLN). Perturbation of residue 42 and 75 lead to significant deviation of the structure from 
its initial state. 
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For comparison purposes, 400 ns simulations of open form calmodulin in acidic 

environment (pH = 5.5) is performed and the protonation state of the residues are 

determined using the H++ [Anandakrishnan et al., 2012] and PROPKA [Rostkowski et 

al., 2011] web servers. The acidic residues 11, 31, 67, 84, 93, 104, 122, 133, and 140 are 

upshifted in pKa from the standard values of ∼4–5.5, therefore they are protonated in the 

simulation to mimic pH 5.5 conditions. Results show that RMSD values are relatively 

similar for wild type and protonated CaM protein systems (Figure 27). However, 

protonation altered the position and orientation of the domains but does not have an 

impact on the linker which is also consistent with previous studies [Atilgan et al., 2011; 

Figure 27. RMSD of the wild type, protonated, and mutated CaM systems. top) RMSD of 
wildtype CaM (black) protonated (blue) and mutated (yellow) compared to initial state; below) 
bending-torsional angles: wildtype CaM (black) protonated (blue) and mutated (yellow). Right: 
extended linker of mutated CaM. Right left: compact and bent linker of mutated CaM. 
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Aykut et al., 2013]. On the other hand, CaM with the K75A mutation tends to bend and 

form the structure similar to the closed form as shown in Figure 27. 

To further study the role of residue 75 in bending of the central helix, the interactions of 

residues are examined in two trajectories, mutated CaM and P19 simulations (section V), 

both representing the linker bending. In P19 SMD simulation, the SMD atom is pulled 

along the best PSP direction with constant velocity and the applied force is recorded every 

1 femtosecond (fs). Figure 28 shows the force values recorded in P19 SMD simulation 

plotted against the time. The interaction of residues including hydrogen bonds and salt 

bridges are monitored using the VMD timeline plugin.  

Figure 28. The force values applied on the SMD atom in P19 SMD simulation. The interactions 
between residues of the linker are determined using the timeline plugin and labeled on the figure.  

 
Force plot indicates three main peaks which are associated with the breaking of hydrogen 

bonds between residues 87-82, 79-83, and 77-81 (Figure 28 and Figure 29). Finally, the 

salt bridge between residue 54 and 75 is destroyed which leads in linker bending.  

As described in section V, the frame with minimum RMSD with 1PRW, the closed target 

state, is selected from P19 SMD simulation and subjected to relaxation simulation to 

complete the closing motion. Hence, the salt bridges are also monitored in two classical 

MD simulations, relaxation P19.R6 and mutated CaM K75A, which both indicate 

bending motion of CaM linker without applying external forces (Table 9). 
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Table 9. Salt bridges monitored in classical MD simulations for linker bending 

Wild type simulation 
(P19.R6 relaxation simulation) 

 

Mutated CaM (K75A) Simulation 

 

GLU82-ARG86 

GLU127-ARG126 

ASP118-ARG106 

GLU87-ARG90 

GLU123-ARG126 

ASP122-ARG126 

ASP80-LYS75 

GLU84-LYS75 

GLU54-LYS75 

GLU45-LYS30 

GLU114-LYS115 

GLU83-ARG86 

 

GLU127-ARG126 
GLU83-ARG90 
ASP78-ARG74 

GLU123-ARG126 
ASP22-LYS30 

GLU87-ARG86 
ASP78-LYS77 

ASP118-LYS115 
ASP80-LYS77 
GLU87-ARG90 
GLU45-LYS30 
GLU83-ARG86 
GLU84-LYS77 
GLU45-ARG37 
ASP93-ARG90 

GLU120-LYS115 
GLU82-ARG86 
GLU14-LYS13 
GLU6-LYS13 

ASP118-ARG106 
ASP122-ARG126 
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Figure 29. The hydrogen bonds monitored in P19 SMD simulation using timeline VMD plugin.  
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Lys75 is located in the middle of the linker, and forms a salt bridge with Asp78 in the 

extended state of CaM [Chattopadhyaya et al., 1992; Houdusse et al., 1997; Medvedeva 

et al., 2001]. Medvedeva et al. reported that the mutation in the position of residue 75 

may have an impact on the dynamics and stability of the central linker [Medvedeva et al., 

1999]. They claimed that the displacement of K75 with proline or charged residues e.g., 

glutamic acid may lead to an instability in the linker and its bending whereas, having 

hydrophobic residues (Ala, Val) at this position makes the linker more stable due to 

hydrophobic interactions with residues, 71 and 72 [Medvedeva et al., 2001; Medvedeva 

et al., 1999]. This assumption is in contradiction with our results which show that K75A 

mutation also destabilizes the linker.  
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Figure 30. A. distance between residues 78 and 86. B. The distance between residues 69 and 
92 which represents the bending of linker.  



67 

In P19.R6 relaxation simulation, residue 75 forms salt bridges with residues 80 and 84 to 

complete the closing movement (Table 9-bolded). In the simulation of mutated CaM, 

residue 77 mimics the situation where K75 is mutated to the neutral amino acid, Alanine. 

To understand the effective interactions in the bending of the central linker, the distances 

between residues located on the linker are investigated. Interaction between residues 78 

and 86 is found to be associated with the linker bending. As shown in the Figure 30A, the 

distance between Asp78 and Arg86 is at its minimum at the time points where the linker 

is bent which occurs twice during the 400ns trajectory (Figure 30B). 

 

The dynamics of calmodulin protein is altered in acidic environment 
 

400 ns simulations of the CaM system under different conditions are used to evaluate the 

reproducibility of PRS and compare the results to previous findings. To this end, pdb 

codes 3CLN and 1PRW are selected as the open (initial) and closed (target) states, 

respectively. 400 ns simulations of the open form in the physiological (pH=7.4) and acidic 

(pH=5.5) environments are used to run PRS calculation from open→closed transition. 

PRS highlights residues 106, 105, 26, 118, and 115 as effective residues in the transition 

from open to closed form of CaM under physiological conditions. These results are 

consistent with our previous study (section III) [Jalalypour et al., 2020] and confirm the 

reproducibility of the PRS method. Applying PRS on CaM under acidic conditions 

highlights residues 30, 31, 101, and 118 as being effective in the open→closed transition 

which indicates that protonation modifies the dynamics of the protein.  
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Part V. Perturbation Response Clustering 
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Perturbation Response Clustering as a methodology to determine unknown 
conformational neighbors of a selected state 
 
Previously developed methods, PRS and PSP, generate a set of N displacement vectors 

(ΔR) in response to each force, which can be utilized to predict a new conformation. 

Assuming the number of perturbations as M, in total, N×M structures will be predicted, 

which then a similarity parameter or overlap (Oi) is measured between each of them and 

the target structure. Accordingly, the best direction and its corresponding residue with 

highest Oi is selected to achieve the target state. Unlike PRS and PSP methods, which 

only consider the best force vector towards a known state and its corresponding set of 

displacements, clustering approach will take all sets of displacements, totally N×N×M 

vectors, into account to explore new nearby conformations available to a protein. Here, a 

clustering approach was utilized to classify displacement vectors (ΔR) using K-means 

algorithm [Lloyd, 1982]. In this approach, all possible displacement vectors (N×N×M) 

are considered to indicate the total movements of a protein as a whole. To this end, 

centroids obtained from all datasets using the suggested method in section IV, are 

clustered based on the origin and direction of the vectors. Using this approach, the protein 

structure is divided into different domains based on the number of clusters (K), each 

having a representative vector which can be considered as collective variables (CV). K 

value is determined based on the size of a protein. shows these steps schematically. 

  

  

Figure 31. Perturbation response clustering to predict collective variables is illustrated 
schematically. 
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Perturbation response clustering reveals new conformational states of calmodulin 
 
In the sections IV, we have discussed the k×3N×M matrix of centroids obtained from the 

perturbation of each residue, with k = 2. Here, all centroid matrices obtained from the 

perturbation of whole structure are accumulated and used as the main dataset (Figure 31). 

Eventually, the origin of each centroid vector is accumulated in the main dataset. Then, 

centroid vectors are clustered based on their origin and direction and classified into K 

subsets using the K-means algorithm. The number of clusters (K) is optimized based on 

the size of the protein. Calmodulin is divided to 6 regions (K=6) which covers all its 

moving parts. The final step generates the locations (origin) and directions of the average 

vectors of K clusters, called here as collective variables. The details of clustering via the 

clustering approach (run 1) is summarized in Figure 32 and Table 10. Besides, K-means 

starts with a random choice of cluster centers and therefore it may yield different 

clustering results on different runs of the algorithm. One can define initial values using 

k-means++ algorithm [David, 2007] to generate reproducible results. However, we take 

advantage of this issue and predict different CVs by repeating the runs. To this end, we 

produced 2 replicas titled as clustering run 2 and 3 (Figure 32). 
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Table 10. Residues resulting from the clustering shown in Figure 32, top, left (run 1). 

Cluster (K) Residues 
1 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 103, 104, 105, 106, 107, 

108, 109, 110, 111, 112, 113, 114, 115, 116,117 
2 5 , 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 

24, 25, 65 
3 26, 27, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 

69, 70, 71, 72, 73, 74, 75 
4 99, 101,102, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 

128, 129, 130, 131, 132, 133, 134, 135, 136, 137,140 
5 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 

45, 46, 47, 48, 49, 50, 51 
6 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 138, 139, 

141, 142, 143, 144, 145, 146, 147 
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Figure 32. Perturbation response clustering to predict new collective variables. Clustering repeated 
3 times to obtain different CVs. Top: left) The response vectors on each residue of CaM protein are 
clustered to 6 groups and the average of each group depicted as a red arrow. (For ease of 
visualization, average red arrow is magnified by the factor 1000) Right) clustering results represents 
in 3CLN pdb structure. Clusters 1 to 6 are shown in yellow, cyan, red, blue, purple, and green 
respectively. Bottom: clustering run is repeated twice using the same dataset (run 2 and 3). 
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Steered molecular dynamics (SMD) simulations along perturbation response 
clustering predicted collective variables 
 
The magnitude of the predicted CVs via each run is calculated and the top three CVs are 

fed into SMD simulations in order to predict new conformations. 100 ps frame of the 

trajectory (Figure 24) is used as the initial structure and the Cα atom of  the closest residue 

to the origin of the CV is selected as the SMD stom and pulled along the CV (pulling 

direction). Furthermore, a Cα atom of the residue along the CV is selected as fixed residue 

based on dot product calculations as described in PSP methodology in section III. The 

details of the top three collective variables obtained from the different clustering runs 

which are used to perform SMD simulations are listed in Table 11.  

Table 11. SMD simulation details performed along clustering predicted CVs; CVs are magnified 
by the factor 1000 to have consistence input with section III, However, SMD uses normalized 
direction. The hyphen indicates the distorted simulations. 

CV origin (XYZ) 
closest 

residue to 
origin 

SMD 
Simulation 

CV Direction (XYZ) 
 

Fixed 
atom 

Clustering run 1 

0.32 51.03 28.30 36 1.1 0.06 -0.17 -0.07 105 

-10.94 50.76 18.82 52 1.2 0.12 -0.08 -0.02 133 

-13.29 50.18 31.92 20 1.3 0.09 -0.02 -0.08 131 

4.54 22.57 16.87 89 - 0.05 0.01 -0.05 136 

10.62 12.31 8.82 121 - 0.04 -0.05 0.03 - 

-15.86 36.93 28.31 69 - 0.04 0.02 0.03 - 

Clustering run 2 

10.28 20.90 5.70 129 2.1 -0.14 0.06 0.01 57 

-7.32 51.10 24.75 29 2.2 0.09 -0.09 -0.05 132 

-6.30 28.41 20.13 78 2.3 0.05 0.08 -0.08 50 

9.20 6.91 10.97 106 - -0.01 -0.06 0.05 - 

8.30 20.19 17.70 89 - 0.03 -0.03 -0.06 - 

-16.39 40.04 30.43 12 - 0.02 0.00 0.04 - 

Clustering run 3 

-1.55 51.52 25.62 33 3.1 0.06 -0.14 -0.05 136 

12.13 20.97 11.72 136 3.2 -0.11 0.08 0.02 57 

-14.65 49.24 25.51 63 3.3 0.10 -0.03 -0.05 131 

-0.78 23.62 17.46 85 - 0.05 0.07 -0.07 - 

-15.61 36.33 29.51 12 - 0.06 0.01 0.03 - 

9.36 7.72 9.96 106 - -0.01 -0.04 0.04 - 
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The RMSD between each frame of SMD simulations is measured compared to the target 

crystal and NMR structures listed in Table 1. The minimum values are reported in Table 

12 for the crystal structures and Table 13 for the ensemble of NMR structures. 

 
Table 12. The minimum RMSD between each frame of SMD simulations compared to target 
crystal structures 

 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 
3CLN 3.32 4.52 4.54 4.55 4.58 4.58 4.08 4.39 4.40 
1RFJ 2.89 2.81 2.97 2.99 2.99 2.96 2.99 2.86 2.91 

1MUX 6.17 6.80 6.80 6.78 6.80 6.80 6.80 6.80 6.80 
1CDL 11.71 14.62 11.67 14.05 12.95 15.20 12.12 13.94 14.99 
1LIN 12.28 14.66 11.62 14.46 13.40 15.34 12.58 14.42 15.06 
1QIW 12.20 14.75 11.73 14.43 13.44 15.39 12.64 14.35 15.13 
1PRW 13.33 15.64 12.17 15.56 14.22 16.31 12.87 15.60 16.04 
2BBM 12.07 14.79 11.88 14.20 13.39 15.37 12.65 14.26 15.15 

 

Table 13. The minimum RMSD between each frame of SMD simulations compared to target 
NMR structures. 

 SMD Simulations (model/RMSD) 
1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 

 
 
 
2K0E 
 
 

19 
3.85 

80 
3.62 

86 
4.22 

64 
3.61 

93 
1.93 

160 
6.04 

115 
2.64 

160 
4.30 

48 
3.40 

3 
3.86 

48 
3.78 

22 
4.37 

80 
3.70 

21 
2.05 

9 
6.32 

19 
2.71 

115 
4.75 

96 
3.53 

79 
3.90 

64 
3.85 

118 
4.42 

48 
3.96 

61 
2.24 

115 
6.41 

21 
2.96 

77 
4.80 

80 
3.56 

 
 
 
 
2KDU 

19 
8.30 

18 
6.11 

19 
8.08 

3 
3.63 

8 
8.12 

18 
8.61 

19 
8.62 

18 
6.74 

18 
5.53 

13 
8.36 

8 
6.45 

13 
8.28 

18 
4.25 

12 
8.61 

19 
8.62 

13 
8.67 

8 
7.55 

8 
6.08 

12 
8.51 

1 
6.84 

7 
8.40 

1 
4.53 

19 
8.62 

13 
8.67 

12 
8.74 

1 
7.76 

1 
6.65 

  

Finally, distance – torsion plots of CaM are prepared according to previously described 

protocol (Figure 9) to explore the conformational change of CaM. Unlike PSP which 

sampled structures along the transition path to achieve the target structure, PRC sampled 

new states which have not been captured earlier (Figure 33). All SMD simulations cover 

areas where experimental structures are located. In addition, simulation SMD 3.3 samples 

an area with no experimental structure. According to literature, new conformations of 

CaM (PDB code. 2KDU) are found in complex with the Calmodulin-binding domain of 



74 

Munc13-1 protein which is docked to a distinct binding site on calmodulin. The NMR 

structures contained in (2KDU) are located in the area where SMD 3.3 is sampled. The 

collective variables obtained from clustering method resulted in SMD simulations 

without distortion and they all sample different structural states of CaM. 

 

 

 

 

 

 

 

 

 

 

Figure 33. Conformations sampled by calmodulin, projected on the simplified two-degree-of-
freedom model. Dihedral angle was measured between four points: center of mass (COM) of 
N-Domain, residues 69 and 92 and COM of C-Domain. Distance was measured between 
residues located on each side of central helix, 69 and 92, to trace its bending. Encircled dots: 
crystal structures; crosses: 2K0E NMR ensemble structures; stars: 2KDU NMR ensemble 
structures; colored dots: simulation trajectories as labelled in the inset: SMD 1.1 (dark blue), 
SMD 1.2 (blue), SMD 1.3 (light blue), SMD 2.1 (dark gray), SMD 2.2 (gray), SMD 2.3 (light 
gray), SMD 3.1 (dark red), SMD 3.2 (orange), SMD 3.3 (red). 
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VI. Conclusions 
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Proteins respond to various stimuli by adopting a variety of conformational states. 

Experimentally determined structures provide valuable information regarding 

conformations of the reactant and product, but they fall short of reporting intermediate 

states sampled along the pathway that links these states. On the other hand, achieving a 

holistic understanding of the mechanism of the reaction, hence the modulation of the 

function of the target protein, may be possible by investigating these intermediates which 

are located along the energy barrier and cannot be captured by means of classical MD 

simulations. Various computational schemes that direct the conformational change by 

imposing external forces or biasing the potentials have been devised, but the direction of 

change which is required to get to the final conformational state has usually been selected 

heuristically. In the first part of this thesis, PSP methodology was proposed which 

provides the key points and directions to apply forces to trigger a conformational change 

between the two preselected endpoints. The method readily handles the conformational 

landscape shifts accompanying changes that occur under selected environmental 

conditions. We have shown on four test systems that they could reach the target state from 

an initial conformation via the pre-designated pathway. The intermediate states sampled 

along the free energy pathways which are directed by high PRS overlaps may provide 

insight to the mechanism of the transition. Consequently, this knowledge can be used to 

guide development of therapeutics that can modulate the conformational transition 

processes of interest. PSP also has the potential to sample the high-energy transient 

conformations residing along the free energy pathway which are hard, if not impossible, 

to capture via common experimental methods. Thus, the PSP scheme outlines a clear 

approach to shed light on the underlying free energy landscape that governs the transition. 

Finally, we caution towards heuristic selection of force directions since we have also 

shown that even slight deviations in the selection of pulling directions may lead to false 

minima and a skewed view of the PES. 

The PSP methodology gathers information by sampling the system in one conformational 

energy well and assumes that it provides information on how to reach a nearby free energy 

minimum. Moreover, it applies linear response theory to estimate this information. While, 

as shown in this study, it applies well to a range of proteins displaying different 

conformational landscapes, the main assumption of the methodology might fail in cases 

where minima have very different curvatures and are separated by high barriers. The 

limits of applicability of the protocol remains to be tested on a wider variety of systems 

in future work. 
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In the section IV of this thesis, calmodulin protein system is exploited as the model system 

to indicate the potentials of protein perturbation technique in studying proteins under 

different conditions and more importantly regardless of a target state. Additionally, 

calmodulin transition between two known states is studied in physiological and acidic 

conditions using PRS. In this section, a similar approach to the method developed by 

Nevin Gerek et al. [Nevin Gerek et al., 2013] is utilized to identify the critical residues in 

the dynamics of a protein. In this approach, the centroids obtained via clustering the 

response (displacement) vectors on each residue can be considered as predicted B-factors 

which describe the fluctuation of residues. Residue 75 of calmodulin, which is highlighted 

via this method, has been reported in several experimental studies [Medvedeva et al., 

2001; Medvedeva et al., 1999] as a key residue having a significant role in CaM 

dynamics. However, its mechanism of function is not fully understood. To further 

investigate its role and to identify the effective interactions in bending of the central 

linker, hydrogen bonds and salt bridges are monitored via SMD and classical MD 

simulations which represent the linker bending event. The results show that the interaction 

between residues 78 and 86 is associated with the linker bending. On the other hand, the 

K75A mutant lacks formation of the salt bridge between residue Asp78 and Lys75, which 

is present in the extended form of wild type CaM [Chattopadhyaya et al., 1992; 

Medvedeva et al., 1999]. Lys75 may hinder interaction of residues 78 and 86.  

In the section V, perturbation response clustering is proposed as a more generalized 

method to study the landscape of proteins. In particular, it may designate regions on the 

landscape that cannot be captured via crystallography or have not yet been detected via 

NMR or other methods. Using clustering method, new conformations of calmodulin are 

captured which are rarely available under normal experimental conditions and are only 

obtained when a protein interacts with a distinct binding site of calmodulin.  

Biology has relied on trials and errors as a fundamental method for millennia. Nowadays, 

the amount of biological data is growing rapidly, and biologists prefer advanced methods 

to manage and analyze the big data rather than conventional ways. It is hard to suggest a 

treatment without knowing the exact molecular mechanism of function. Hence, tracing 

the structural change of a protein is important to understand the way it functions. 

However, studying protein motions and getting a full picture of its energy landscape is 

only possible via educated guesses and indirect approaches. Computational biology, 

molecular modeling and simulations provide a broad perspective in the hope of 
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understanding the function, structure, and the interactions of molecules at the atomic 

scale. In silico approaches such as MD simulations serve as a complement to in vitro and 

in vivo experiments and is able to reveal the details of molecular basis of biological 

functions, diseases as well as mechanism of action of conditions such as addiction or 

anesthesia. Besides, computer simulations provide effective ways to cut costs by reducing 

the number of time consuming, expensive wet-lab experiments, and more importantly, 

animal studies. For instance, computer simulations can be performed to test a theory in 

mutagenesis studies or structure-based drug design and narrow down a large number of 

candidates to be tested in wet-lab. Developing computational tools which are able to give 

us a full picture of protein dynamics in the least amount of time is of importance, 

particularly during times of crisis such as a pandemic. This thesis is focused on 

understanding the links between structure and function of proteins, in particular by 

identifying how individual residues in proteins influence the overall flexibility and 

function, say when a receptor binds a target or how proteins can be allosterically 

modulated by a small compound. It aims to combine simplified computational approaches 

with experimental methods on quite large scale by developing a practical toolbox to 

extract useful knowledge, facilitate the analysis, and be used by scientists all over the 

world. PSP and PRC generate new data regarding conformational transition and allosteric 

sites of proteins so as to assist in finding novel medications or medical applications. 

This thesis has been written during the COVID-19 pandemic in 2020, and the above-

mentioned methods are already used to study dynamic of SARS-CoV-2 spike 

glycoproteins to assist finding novel therapeutic agents and vaccines [Verkhivker, 2020], 

which indicates the importance of developing fast, precise, and user-friendly tools for the 

scientific community. 
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VII. Future work 
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The methodologies developed in this thesis can be applied to a wide range of proteins 

having different functions and displaying various types of motion. They can also be used 

to contribute new structures to the conformational ensembles provided by NMR. More 

importantly, these methods can be extended to study nucleic acids (DNA, RNA) or 

membrane proteins. For example, they can be utilized to study conformational changes 

which are allosterically triggered by lipid−protein interactions [Patrick et al., 2018].  

In future work, the SMD stage of the PSP may readily be replaced by more sophisticated 

sampling techniques such as metadynamics [Leone et al., 2010] or enhanced sampling 

methods[Yang et al., 2019] to precisely map the free energy surface of a protein. It is also 

possible to combine PSP method with Markov state models (MSMs)[Chodera and Noé, 

2014].  

A method to investigate the effect of protein perturbation on the free energy of ligand 

binding may also be developed in future work. The protein perturbation predicted 

displacements could be linked to the thermodynamic cycle of system to identify 

functionally critical regions of proteins. Previously, a network-based method was reported 

to identify residues which thermodynamically coupled with binding of a ligand to GLIC 

(Li, X.Y, et al., 2014, Eur Biophys J). However, this approach could be extended to an 

advanced MD-based method such as protein perturbation which uses the trajectory to 

generate the fluctuation matrix and have the advantage over the structure-based 

approaches.  

Secondly, the protein perturbation clustering can be improved in several ways: 1) The 

results of several runs can be collected and compared to determine the best CVs with the 

largest magnitude, 2) the results can be compared to the other methods such as normal 

mode analysis, ENM-based methods or methods which predict CV, and 3) K-means 

clustering method can be replaced by using more sophisticated machine learning 

approaches.  

One major drawback of the methodologies developed in this dissertation is the limitation 

on performing the PRS calculations on complex protein systems (e.g. viruses) with an 

exceedingly large number of residues. To overcome this limitation, a proper coarse 

graining method such as that by Ross et al [Ross et al., 2018] can be utilized to reduce the 

number of nodes. 

 



81 

ABBREVIATIONS 

 
PDB: protein databank 
 
MD: Molecular dynamics 
 
PRS: Perturbation response scanning 

PSP: Perturb-Scan-Pull;  

PRC: Perturbation Response Clustering 

ADK: adenylate kinase;  

CaM: calmodulin;  

FBP: ferric binding protein;  

PMF: potential of mean force;  

PES: potential energy surfaces; 

SMD: Steered molecular dynamics; 

NBD: nucleotide-binding domain; 

TMD: transmembrane domain; 

RMSD: Root-mean-square deviation  

VDW: Van der Waals; 

NMR: Nuclear Magnetic Resonance spectroscopy 

COM: center of mass 
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