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Durmuş Demir1

Received: 29 November 2020 / Accepted: 9 February 2021 / Published online: 22 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
In the same base setup as Sakharov’s induced gravity, we investigate emergence of
gravity in effective quantum field theories (QFT), with particular emphasis on the
gauge sector in which gauge bosons acquire anomalous masses in proportion to the
ultraviolet cutoff Λ℘ . Drawing on the fact that Λ2

℘ corrections explicitly break the
gauge and Poincare symmetries, we find that it is possible to map Λ2

℘ to spacetime
curvature as a covariance relation and we find also that this map erases the anoma-
lous gauge boson masses. The resulting framework describes gravity by the general
relativity (GR) and matter by the QFT itself with logΛ℘ corrections (dimensional
regularization). This QFT-GR concord predicts existence of new physics beyond the
Standard Model such that the new physics can be a weakly-interacting or even a non-
interacting sector comprising the dark matter, dark energy and possibly more. The
concord has consequential implications for collider, astrophysical and cosmological
phenomena.

Keywords Emergent gravity · Anomalous gauge boson masses · Extended general
covariance

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 UV cutoff and the UV sensitivity problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 How not to take effective QFTs into curved spacetime . . . . . . . . . . . . . . . . . . . . . . . 5
4 Λ2

℘ versus logΛ℘ : Symmetry structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Erasure of anomalous gauge boson masses by emergent curvature . . . . . . . . . . . . . . . . . 8
6 QFT-GR concord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7 Conclusion and future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B Durmuş Demir
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1 Introduction

The problem of reconciling QFTswith the GR has been under intense study for several
decades. The concord between the special relativity and quantum mechanics that led
to QFTs seems to be not evident, if not absent, when it comes to the GR and QFTs.
This problem has been approached by exploring various possibilities.

The first possibility is to quantize the GR but it is known to be not a renormalizable
field theory [1–3]. In general, quantization of gravity is not a straightforward task,
and this difficulty has given cause to various alternative approaches [4–6] (string/M
theory, loop quantum gravity, asymptotic safety, supergravity, . . . ). The problem here
is actually absence of a renormalizable ultraviolet (UV) completion of the GR (like
completion of the Fermi theory by the electroweak theory). Even so, it must be kept in
mind that, independent of the details of the UV completion, leading quantum correc-
tions can be reliably calculated as they are determined by the low-energy couplings
of the massless fields in the completion [7–10]. By a similar token, asymptotic safety
of the GR is known to lead to a reliable prediction of the Higgs boson mass [11].

The second possibility is to keep the GR classical and make QFT to fit to it [12–
14]. This route, which may be motivated by the views [15–17] that the gravity could
be fundamentally classical, is hindered by the fact that curved spacetime does not
allow for preferred states like the vacuum and detectable structures like the parti-
cles (positive frequency Fourier components) [18,19]. Indeed, allowing no privileged
coordinates, curved spacetimes do not accommodate a unique vacuum state as diffeo-
morphisms shuffle negative and positive frequency modes and one observer’s vacuum
can become another observer’s excited state. Besides, incoming and outgoing parti-
cles and their scattering amplitudes are properly defined mainly in symmetric [20] and
asymptotically flat [21] spacetimes. These hindering features of the curved geometry
have been attempted to overcome, respectively, by promoting the operator product
expansion in QFTs to a fundamental status [22–24] and by introducing microlocal
spectrum conditions [25–29]. These attempts, which leave the mechanism underly-
ing the Newton-Cavendish constant and other couplings to a future quantum gravity
theory, have led to axiomatic QFTs [30,31] in curved spacetime.

The third possibility is to induce the GR from fluctuations of the quantum fields in
flat spacetime. (It is possible to consider also curved spacetimebut for loop-inducedGR
to arise outrightly onemust find away of removing at least the Cavendish-Newton con-
stant in the classical action, let alone the problems noted in [22–24]. One possibility is
to invoke classical scale invariance but it removes not only the Cavendish-Newton con-
stant but also all the field masses, including the Higgs mass [32–34].) This approach,
which rests on flat spacetime where QFTs work properly with well-defined vacuum
states and particle spectra [22–24,35,36], has the potential to avoid principal difficul-
ties with curved spacetime QFTs [25–29,35]. To this end, Sakharov’s induced gravity
[37–39] (see also [40,41], and see especially the furthering analysis in [42]) provides
a viable route as it starts with flat spacetime QFT, and induces curvature sector at
one loop through the curved metric for the fields in the loops. The gravitational con-
stant, viewed as metrical elastic constant of the spacetime [37–41,43], emerges in a
form proportional to the UV cutoff [37–39,42,44], with implications for black holes
[45–48] and Liouville gravity [49]. (Besides the Sakharov’s, various attempts have
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been made to generate gravity from quantized matter such as entropic gravity [50],
entanglement gravity [51–53], analog gravity [54], broken symmetry-induced gravity
[55–63], Nambu-Jona-Lasinio type gravity [64,65], and agravity [66], with a critical
review in [67]).

The present work has the same base setup as Sakharov’s induced gravity: A flat
spacetime effective QFT with the usual logΛ℘ , Λ2

℘ and Λ4
℘ loop corrections, Λ℘

being the UV cutoff [37–39,42]. The loop corrections, giving cause to various UV
sensitivity problems [68–74], are specific to the flat spacetime [75] such that Λ2

℘

breaks explicitly both the gauge and Poincare (translation) symmetries [76,77] while
logΛ℘ breaks none of them. This symmetry structure paves the way for a covari-
ance relation between Λ2

℘ and (Poincare-breaking) spacetime curvature, with intact
logΛ℘ . This novel covariance relation retains the effective QFT with sole logΛ℘ cor-
rections (dimensional regularization) [78,79], and induces the GR in a way removing
the anomalous gauge boson masses (which arise frommatter loops in exact proportion
to Λ℘ and which explicitly break charge and color (CCB) symmetries [73,74]). The
end result is a QFT-GR chime or concord.

In what follows, Sect. 2 explicates the UV sensitivity problems, including the
explicit CCB stemming from anomalous gauge boson masses [73,74,80–83]. Sec-
tion 3 reveals that effective QFTs, unlike classical field theories, necessitate, in getting
to curved spacetime, curvature sector to be spanned exclusively by the QFT mass
scales. Section 4 shows that Λ2

℘ breaks explicitly both the gauge and Poincare sym-
metries while logΛ℘ respects both of them, and one takes note of the Poincare affinity
between Λ2

℘-induced broken Poincare (translation) invariance and nonzero spacetime
curvature, with intact logΛ℘ . Section 5 extends the usual general covariance between
the flat and curved metrics by introducing a covariance relation betweenΛ2

℘ and affine
curvature, and showsby a step-by-step analysis that the anomalous gaugebosonmasses
are wiped out (namely, CCB is solved dynamically up to doubly Planck-suppressed
terms) by the emergence of curvature. Section 6 carries the entire flat spacetime effec-
tive QFT into curved spacetime via the extended general covariance, and shows that an
intertwined whole of a purely loop-induced GR plus the same QFT with sheer logΛ℘

regularization (equivalent to dimensional regularization [84,85]) emerges to form a
QFT-GR concord. Section 6 discusses some salient aspects of the concord in view of
the Starobinsky inflation [86,87], cosmological constant problem (CCP) [71,72,88],
little hierarchy problem [89,90], and induction and field-dependence of the Newton-
Cavendish constant [94–97]. Section 6 also discusses the standard model (SM) and
shows how symmergence necessitates a new physics sector [75,83] and what effects
this new physics sector might have on cosmological [98–100], astrophysical [99,101]
and collider [102,103] phenomena. Section 7 concludes the work, and gives prospects
for future research by highlighting the salient aspects of the QFT-GR concord.

2 UV cutoff and the UV sensitivity problems

The UV cutoff Λ℘ is a physical scale. It cuts off the loop momenta to lead to finite
physical loop corrections. It is not subject to any specific bound (like unitarity bound
from graviton exchange) in flat spacetime. Indeed, for flat spacetime QFTs gravity is
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a completely alien interaction. For incorporating gravity into QFTs, QFTs must be
endowed with a mass scale evoking the fundamental scale of gravity or the curvature.
The UV cutoffΛ℘ is the aforementionedmass scale. It has a physical correspondent in
the gravity sector. It therefore is not a regularization scale. Its effects cannot therefore
be imitated by the cutoff regularization [104] or the dimensional regularization [78,79]
or any other regularization scheme.

In the presence of the UV momentum cutoff Λ℘ , each coupling in a flat spacetime
QFT (of various fields ψi with masses mi ) develops a certain Λ℘ sensitivity via
the matter loops [104–107]. The sensitivity varies with the mass dimension of the
operators involved and, in this regard, a systematic analysis of particle masses and
vacuum energy proves useful:

(1) Massless gauge bosons Vμ (like the photon and the gluon) acquire masses

δM2
V = cVΛ2

℘ (1)

with a loop factor cV that can involve logΛ℘ at higher loops. These purely loop-
induced masses are plain quadratic in Λ℘ , that is, there exist no logarithmic
contributions to δM2

V (as they live in the transverse part of the Vμ self-energy). It
is clear that δM2

V are anomalous gauge boson masses, which give cause to explicit
CCB [73,74] (see [108] for spontaneous CCB), as exemplified in Table 1 for the
SM gauge bosons. Here, it must be emphasized that δM2

V are physical corrections
rather than cutoff regularization terms, and their effects therefore are not subject
to any (finite or otherwise) renormalization prescription, and the anomalies they
give cause to are true anomalies.

(2) The corrections to scalar masses

δm2
φ = cφΛ2

℘ +
∑

i

c(l)
φψi

m2
i log

m2
i

Λ2
℘

(2)

contain both Λ2
℘ and m2

i contributions. The former, whose loop factor cφ is given
in Table 1 for the SMHiggs boson, gives rise to the big hierarchy problem [68–70].
The logarithmic m2

i contribution, on the other hand, involves a loop factor c(l)
φψi

,
and gives cause for the little hierarchy problem [89,90].

(3) Finally, the shift in the vacuum energy

δV = c∅Λ4
℘ +

∑

i

cψi m
2
i Λ

2
℘ +

∑

i

c(l)
∅ψi

m4
i log

m2
i

Λ2
℘

(3)

involves quartics and quadratics of both Λ℘ and mi . The loop factors c∅ and
cψi are given in Table 1 for a generic QFT as well as the SM. The shift in the
vacuum energy gathers both scales marginally. It causes no problem (like the
CCP [71,72,88]) in flat spacetime.
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Table 1 One-loop corrections in a generic QFT (first column) and in the SM (other columns)

QFT value SM fields SM value Problem caused in SM

cV Gluon
21g2s
16π2 Color breaking

cV Weak boson
21g22
16π2 Isospin breaking

cV Hypercharge boson
39g2Y
32π2 Hypercharge breaking

cφ Higgs boson
g22str[m2]
8π2M2

W
≈ − g22m

2
t

π2M2
W

Big hierarchy problem

c∅ = − str[1]
128π2 Over all SM fields 31

32π2 No CCP (flat spacetime)

∑
i cψi m

2
i = str[m2]

32π2 Over all SM fields ≈ − m2
t

4π2 No CCP (flat spacetime)

Here, str[1] = ∑
s (−1)2s (2s + 1)tr[1s ] = nb − n f , where nb( f ) is the number of bosons (fermions)

and tr[1s ] traces over charges of fields with spin s (like electric and color charges). Likewise, str[m2] =∑
s (−1)2s (2s + 1)tr[m2

s ]. The top quark mass is denoted by mt , W boson mass by MW , strong coupling
by gs , weak coupling by g2, and the hypercharge gauge coupling by gY

3 How not to take effective QFTs into curved spacetime

Classical field theories [109], governed by actions Sc (η, ψ, ∂ψ) of various fields ψi

in the flat spacetime of metric ημν , are carried into curved spacetime of a metric gμν

by letting

Sc (η, ψ, ∂ψ) ↪→ Sc (g, ψ,∇ψ) + “curvature sector” (4)

in accordance with general covariance [110], which itself is expressed by the map

ημν ↪→ gμν , ∂μ ↪→ ∇μ (5)

such that the Levi-Civita connection

gΓ λ
μν = 1

2
gλρ

(
∂μgνρ + ∂νgρμ − ∂ρgμν

)
(6)

sets the covariant derivative ∇μ in (5), and gives rise to the Ricci curvature

Rμν(
gΓ ) = ∂α

gΓ α
μν − ∂ν

gΓ α
αμ + gΓ β

μν
gΓ α

αβ − gΓ β
μα

gΓ α
νβ (7)

as well as the scalar curvature R(g) = gμνRμν(
gΓ ). The curvature sector in (4),

added by hand for the curved metric gμν to be able to gain dynamics, must be of the
specific form

“curvature sector′′ =
∫
d4x

√−g

{
− R(g)

16π G̃
− c̃2(R(g))2 − c̃3G̃(R(g))3 + . . .

}

(8)
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for it to be able reproduce the GR at the leading order (with gravitational constant
G̃ and curvature couplings c̃i ). The unknown constants in (8), which are at the same
footing as the bare parameters in the QFT sector, cannot in general be avoided or
limited simply because curvature sector (kinetic terms for gμν) can contain arbitrary
curvature invariants [111–113] (in contrast to gauge theories where renormalizability
singles out a specific kinetic term).

The successwith classical field theories prompts an important question: Can general
covariance carry also effective QFTs into curved spacetime? This question is impor-
tant because effective QFTs, obtained by integrating out all high-frequency quantum
fluctuations of the QFT fields, are reminiscent of the classical field theories in view of
their long-wavelength field spectrum (with loop-corrected tree-level couplings). The
answer lies in the effective action (leaving out higher-dimension operators) [44,75]

Sef f
(
η,ψ,Λ℘

) = Sc (η, ψ) + δSl
(
η,ψ, logΛ℘

)

+δS∅φ

(
η,Λ2

℘

)
+ δSV

(
η,Λ2

℘

)
(9)

in which Sc (η, ψ) is the classical action,

δSl(η, ψ, logΛ℘)⊃
∑

i

∫
d4x

√−η

{
−c∅ψi m

4
i log

m2
i

Λ2
℘

− cφψi m
2
i log

m2
i

Λ2
℘

φ†φ

}

(10)

is the logarithmic action composed of the logΛ℘ parts of (3) and (2),

δS∅φ

(
η,Λ2

℘

)
= ∫

d4x
√−η

{
−c∅Λ4

℘ − ∑
i
cψi m

2
i Λ

2
℘ − cφφ†φΛ2

℘

}
(11)

is the vacuum plus scalar mass action gathering Λ4
℘ and Λ2

℘ parts of (3) and (2), and

δSV
(
η,Λ2

℘

)
= ∫

d4x
√−ηcVΛ2

℘ tr
[
ημνVμV ν

]
(12)

is the anomalous gauge boson mass action formed by the purely quadratic corrections
in (1).

If the effective QFTs described by (9) are really like the classical field theories then
the general covariance map in (5) take them into curved spacetime as

Sef f
(
η,ψ,Λ℘

)
↪→ Sef f

(
g, ψ,Λ℘

) + “curvature sector′′ (13)

in parallel with the transformation of the classical action in (4), with the curvature
sector defined in (8). The problem with this transformation is that the parameters G̃,
c̃2, c̃3, · · · in the curvature sector are all bare, and thus, they are not at the same
footing as the loop-corrected constants in the effective QFT. They remain bare since
matter loops have already been used up in forming the flat spacetime effective action
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Sef f
(
η,ψ,Λ℘

)
in (9), and there have remained thus no loops (quantum fluctuations)

to induce or correct any interaction like (8) or not. This means that the curvature sector
parameters bear no sensitivity toΛ℘ . This discord between the two sectors implies that
the parameters G̃, c̃2, c̃3, · · · are in fact all incalculable [75,83]. This problem, which
reveals the difference between the classical field theories and the effective QFTs, can
be overcome if the curvature sector in effective QFTs is also loop-corrected or loop-
induced. Namely, curvature sector must arise from the effective QFT itself during
the map of Sef f

(
η,ψ,Λ℘

)
into curved spacetime. This requirement falls outside the

workings of the general covariance map in (5) as it involves only the flat metric ημν

in Sef f
(
η,ψ,Λ℘

)
. This means that it is necessary to construct a whole new transfor-

mation rule for taking effective QFTs into curved spacetime. In this regard, this first
stage would be the determination of what parameters to transform other than the flat
metric: Field masses mi? The UV cutoff Λ℘? Some other scale in Sef f

(
η,ψ,Λ℘

)
?

The second stage would be the determination of the transformation rule itself (pre-
sumably some extension of the general covariance). The question of what to transform
other than ημν will be answered in Sect. 4 below by revealing the symmetry properties
of different UV sensitivities in Sef f

(
η,ψ,Λ℘

)
. The transformation rule itself, on the

other hand, will be determined in Sect. 5 by requiring that the transformation must be
able to erase the anomalous gauge boson masses in (1).

4 32
℘ versus log3℘ : Symmetry structures

The UV cutoff Λ℘ is not just a mass scale. It is more than that. To see why, it suffices
to scrutinize the two distinct roles it plays in shaping the effective QFTs:

(1) The Λ2
℘ correction is additive as ensured by the scalar masses (2). It breaks gauge

symmetries explicitly as proven by the gauge boson masses (1). It breaks also
Poincare (translation) symmetry [35,76,77] as it restricts loopmomenta �μ into the
range −Λ2

℘ ≤ ημν�
μ�ν ≤ Λ2

℘ . Thus, Λ
2
℘ has an affinity for spacetime curvature

as both of them break the Poincare symmetry.
(2) The logΛ℘ correction is always multiplicative. It does not alter the symmetry

structure of the quantity it multiplies. The field masses mi , for instance, respect
both the gauge and Poincare symmetries and so do the logarithmic corrections
δm2

i ∝ m2
i logΛ℘ . (The scalar masses in (2) set an example with m2

φ being the
Casimir invariants of the Poincare group [76,77].) The same is true for all the QFT
couplings. In parallel with this, as follows from the item (1) above,Λ2

℘ breaks both
the gauge and Poincare symmetries and so does the Λ2

℘ logΛ℘ (which can arise
at higher loops). It thus turns out that logΛ℘ respects both the gauge and Poincare
symmetries. It can have therefore no affinity for (Poincare-breaking) spacetime
curvature.

The two distinct roles played by Λ℘ are contrasted in Table 2. The main lesson is that
logΛ℘ must remain intact under a possible correspondence betweenΛ2

℘ and curvature
on the basis of their Poincare affinity.
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Table 2 The symmetry structures of Λ2
℘ and logΛ℘ , and their affinity to curvature

Gauge symmetry Poincare symmetry Affinity to curvature

Λ2
℘ X X �

logΛ℘ � � X

Λ2
℘ breaks both the gauge and Poincare symmetries but logΛ℘ does not (as it always comesmultiplicatively

and does not alter the symmetry of the term it multiplies)

5 Erasure of anomalous gauge bosonmasses by emergent curvature

In view of the conclusion arrived in Sect. 3, spacetime curvature must emerge from
within Sef f

(
η,ψ,Λ℘

)
in order not to hinge on arbitrary, incalculable constants as in

(13). This condition canbe taken to imply that theremust exist somecovariance relation
between the mass scales in Sef f

(
η,ψ,Λ℘

)
and spacetime curvature. To determine

if there exists such a relation, it proves effectual to focus first on the gauge sector,
whose anomaly action (12) breaks gauge symmetries explicitly [73,74]. It continues
to break in curved spacetime if carried there via (13). But the gauge anomaly (12) is
a pure Λ2

℘ effect and, in view of the Poincare affinity between Λ2
℘ and curvature (as

revealed in Sect. 4, Table 2), it is legitimate to ask a pivotal question: Is it possible to
carry the effective QFT in (9) into curved spacetime in a way erasing the anomalous
gauge boson mass term (12)? It will take a set of progressive steps to find out but the
answer will turn out to be “yes” [75,83]:

Step 1. The starting point of investigation is the self-evident identity

δSV
(
η,Λ2

℘

)
= δSV

(
η,Λ2

℘

)
− IV (η) + IV (η) (14)

involving the gauge-invariant kinetic construct

IV (η) =
∫

d4x
√−η

cV
2
tr
[
ημαηνβV

μνV αβ
]

(15)

=
∫

d4x
√−ηcV tr

[
Vμ

(
−D2

μν

)
V ν + ∂μ

(
ηαβV

αV βμ
)]

(16)

whose second line, obtained via by-parts integration of the first line, consists of a
surface term (the total divergence) and inverse propagator D2

μν = D2ημν − DμDν −
iVμν with D2 = ημνDμDν such that Dμ = ∂μ+iVμ is the gauge-covariant derivative,
Vμ = V a

μT
a is the gauge field with gauge group generators T a , and Vμν = V a

μνT
a is

the field strength tensor with the components V a
μν = ∂μV a

ν −∂νV a
μ +i f abcV b

μV
c
ν ( f abc

are structure constants). Now, the identity (14) can be put into the equivalent form

δSV
(
η,Λ2

℘

)
= −IV (η)

+
∫
d4x

√−ηcV tr
[
Vμ

(
−D2

μν + Λ2
℘ημν

)
V ν + ∂μ

(
ηαβV

αV βμ
)]

(17)
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after, at the right-hand side of (14), δSV is replaced with its expression in (12), “+ I ′′
V

is replaced with its expression in (16), and yet “− I ′′
V is left untouched (kept as in (15)).

Step 2. Now, the rearranged gauge boson anomalous mass action in (17) gets to
curved spacetime via the general covariance map (5) to take there the “curved” form

δSV
(
g,Λ2

℘

)
= −IV (g)

+
∫
d4x

√−gcV tr
[
Vμ

(
−D2

μν + Λ2
℘gμν

)
V ν + ∇μ

(
gαβV

αV βμ
)]

(18)

in which ∇μ is the spacetime covariant derivative with respect to the Levi-Civita
connection (6), Dμ = ∇μ + iVμ is the gauge-covariant derivative with respect to ∇μ

so that D2 = gμνDμDν and D2
μν = D2gμν − DμDν − iVμν .

Step 3. Now, a closer look at the action (18) reveals a crucial property:

(1) if Λ2
℘gμν were replaced with the Ricci curvature Rμν (gΓ ), and

(2) if cV (which can involve logΛ℘ at higher loops) were held intact under (1)

then δSV
(
g,Λ2

℘

)
would reduce to zero identically. To see this, one first replaces

Λ2
℘gμν with Rμν (gΓ ) in (18) to get

δSV (g, R) = −IV (g)

+
∫
d4x

√−gcV tr
[
Vμ

(
−D2

μν + Rμν

(gΓ
))

V ν + ∇μ

(
gαβV

αV βμ
)]

(19)

and then integrates (19) by parts using
[Dμ,Dν

] = Rμν (gΓ ) + iVμν to arrive at

δSV
(
g,Λ2

℘

)
= −IV (g) +

∫
d4x

√−g
cV
2
tr
[
gμαgνβV

μνV αβ
] = −IV (g) + IV (g)

(20)

which reduces to zero identically, as claimed above. This result holds provided that
Λ2

℘gμν is replaced with Rμν (gΓ ) in (18) and provided that this replacement leaves
cV (in fact, logΛ℘) intact. It is striking that the conditions (1) and (2) above are,
respectively, the first and the second rows of Table 2 in Sect. 4. This accord between
the erasure of the anomalous gauge boson masses and the Poincare structure of the
UV sensitivities of the QFT can be taken as a confirmation of the applied method.

It seems all fine. But actually there is a serious inconsistency problem here. Indeed,
in the flat limit (gμν � ημν) curvature remains nonzero (Rμν (gΓ ) � Λ2

℘ημν). If it
were not for this contradiction metamorphosis ofΛ2

℘gμν into curvature (confirmed by
Table 2) would completely erase the anomalous gauge boson mass (12) and solve the
CCB [75,83].
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Step 4. The inconsistency above can be remedied by introducing a more general
map [75,114–116]

Λ2
℘gμν ↪→ Rμν (Γ ) (21)

in which Rμν(Γ ) is the Ricci curvature of a symmetric affine connection Γ λ
μν . (Here,

Γ λ
μν and Rμν(Γ ) have, respectively, nothing to do with gΓ λ

μν in (6) and Rμν(
gΓ ) in

(7), as shown contrastively in Table 3). The metamorphosis of Λ2
℘gμν into Rμν(Γ )

goes parallel with the metamorphosis of ημν into gμν as a correspondence between
physical quantities in the flat and curved spacetimes, and removes the inconsistency
since the two maps, (5) and (21), involve independent dynamical variables. In fact,
affine curvature canwell be the substance that fixes the vacuousity [111–113] of general
covariance. In view of this fixture, it proves efficacious to introduce the extended
general covariance (EGC)

general covariance︷ ︸︸ ︷
Sef f

(
∂ψ, η, logΛ℘,Λ2

℘

)
↪→ Sef f

(
∇ψ, g, logΛ℘,Λ2

℘

)
↪→ Sef f

(∇ψ, g, logΛ℘,R
)

︸ ︷︷ ︸
extended general covariance (EGC)

(22)

by combining the affine curvature map in (21) with the general covariance map in
(5) on the effective action Sef f in (9). The underlying symmetry structure is given
in Table 2 in Sect. 4. The EGC reduces to the usual general covariance when Λ℘ is
absent.

Step 5. The EGC map in (22) takes the action (18) into

δSV (g,R) = −IV (g)

+
∫
d4x

√−gcV tr
[
Vμ

(
−D2

μν + Rμν (Γ )
)
V ν + ∇μ

(
gαβV

αV βμ
)]

(23)

which reduces to

δSV (g,R, R) =
∫

d4x
√−gcV tr

[
Vμ

(
Rμν (Γ ) − Rμν

(gΓ
))

V ν
]

(24)

for the same reason that (19) reduced to (20). This resultant action, which shows
metamorphosis of the anomalous gauge boson masses in (12) into curvature terms, is
a truly metric-affine action [114–119] in that it involves both the affine and metrical
curvatures (see Table 3). The “δSV ” is no longer a gauge boson mass term. It is in
this sense that the anamalous gauge boson masses get erased. The fate of the anomaly
(the CCB), as will be analyzed below, is determined by the dynamics of the affine
connection Γ λ

μν .
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Table 3 Basic geometrical objects in flat and curved (metrical or affine) spacetimes

Flat Curved (metrical) Curved (affine)

Metric η g

Connection 0 gΓ Γ

Covariant derivative ∂ ∇ = ∂ + gΓ Γ ∇ = ∂ + Γ

Curvature 0 R(gΓ ) R(Γ )

Step 6. It is the curvature sector that decides on ifRμν(Γ ) comes close to Rμν (gΓ )

to suppress the gauge anomaly, that is, the action (24). It originates from (11) plus
(12) by way of the EGC in (22), and takes the compact form

“curvature sector” =
∫

d4x
√−g

{
− Q

μν
Rμν(Γ ) + 1

16
c∅

(
gμν

Rμν(Γ )
)2

−cV tr
[
VμVν

]
Rμν(

gΓ )

}
(25)

after utilizing (24) and introducing

Qμν =
(
1

4

∑

i

cψi m
2
i + 1

4
cφφ†φ + 1

8
c∅gαβ

Rαβ(Γ )

)
gμν − cV tr

[
VμVν

]
(26)

as a disformal metric [120,121] typical of the metric-affine geometry [114–119,122].
(Transmutations of various objects from geometry to geometry are given in Table 3).
The metric-affine curvature sector (25), which involves not a single incalculable con-
stant, is precisely the structure anticipated at the end of Sect. 3 after realizing problems
with the by-hand curvature sector in (8). The EGC in (22) seems to have done the job.

Step 7. The affine dynamics, which follows from the requirement that the curvature
sector (25) must remain stationary against variations in Γ λ

μν , takes the compact form
(affine covariant derivative Γ ∇ defined in Table 3)

Γ ∇λQμν = 0 (27)

after replacing the affine curvature [114–119]

Rμν (Γ ) = ∂αΓ α
μν − ∂νΓ

α
αμ + Γ β

μνΓ
α
αβ − Γ β

μαΓ α
νβ (28)

in the curvature sector in (25). The solution of the equation of motion (27)

Γ λ
μν = gΓ λ

μν + 1

2
(Q−1)Λ℘ρ

(∇μQνρ + ∇νQρμ − ∇ρQμν

)
(29)

is a first order nonlinear partial differential equation for Γ λ
μν since Qμν involves not

only the scalars φ and vectors Vμ but also the affine curvature Rμν(Γ ) in (28). This
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means that Γ λ
μν from (29) can have degrees of freedom beyond φ, Vμ and gΓ λ

μν . Nev-
ertheless, a short glance at Qμν reveals that it has in it the inverse Newton-Cavendish
constant

1

GN
= 4π

(
∑

i

cψi m
2
i + cφ〈φ†φ〉

)
(30)

which is set by the masses mi of the QFT fields ψi and vacuum expectation values
〈φ〉 of the QFT scalars. It is the largest known mass scale (the Planck scale MPl =
(8πGN )−1/2), and its enormity enables one to expand (Q−1)μν as

(Q−1)μν = 16πGNg
μν − (16πGN )2

(cφ

4

(
φ†φ − 〈φ†φ〉

)
gμν + c∅

8
gαβ

Rαβ(Γ )gμν

−cV tr
[
VμV ν

] )
+ O

(
G3

N

)
(31)

so that Γ λ
μν in (29) becomes

Γ λ
μν = gΓ λ

μν + 8πGN
(∇μQνρ + ∇νQρμ∇ρQμν

) + O
(
G2

N

)
(32)

and Rμν (Γ ) in (28) takes the form

Rμν(Γ ) = Rμν(
gΓ ) + 4πGN

(
∇2

)αβ

μν
Qαβ + O

(
G2

N

)
(33)

where
(∇2

)αβ

μν
= ∇α ∇μδ

β
ν + ∇β ∇μδα

ν − �δα
μδ

β
ν − ∇μ ∇νgαβ + (μ ↔ ν) with

� = gμν∇μ∇ν . In the expansions (32) and (33), iteration ofRμν(Γ ) order by order in
GN reveals that dependencies onRμν(Γ ) reside always in the remainder (one higher-
order in GN ). This means that Γ λ

μν and Rμν(Γ ) get effectively integrated out of the
dynamics to leave behind only the scalarsφ, vectors Vμ and the Levi-Civita connection
gΓ λ

μν . This solution of Rμν(Γ ) causes the action (24) to vanish

δSV (g,R, R) =
∫

d4x
√−gcV tr

[
Vμ

(
Rμν (Γ ) − Rμν

(gΓ
))

V ν
]

=
∫

d4x
√−g {0 + O(GN )} (34)

up to an anomaly-plagued O(GN ) remainder

∫
d4x

√−gO(GN ) =
∫
d4x

√−g

{
4πGN tr

[
Qμν

(
∇2

)αβ

μν
Qαβ

]
+ O

(
G2

N

)}

(35)

which is an all-order derivative interaction following from (31). It never generates any
mass for φ and Vμ. In effect, anomalous gauge boson masses have been completely
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erased. The remnant anomaly effects in (35), which go like GN E2 at boson-boson
(say, photon-photon, Higgs-gluon, . . . ) collisions of energy E , are too tiny to leave
any detectable signatures at current collider experiments. They become important
though at scales near G−1/2

N as then the power series expansion in (31) fails, the affine
connection remains unintegrated-out, and the fifth-force type effects start coming into
play [123,124].

In summary, the EGC (22) has converted the anomalous gauge boson mass term
(12) into the metric-affine action (24), and integration of the affine curvature out of
the dynamics has killed (24) to leave behind only the doubly Planck-suppressed CCB-
plagued remainder in (35). The key determinant is the EGC. It has enabled curvature
to symmerge, that is, emerge in a way restoring gauge symmetries (albeit with an
O (GN ) tiny breaking [73,74,80–82]).

6 QFT-GR concord

It is now time to carry the entire flat spacetime effective QFT in (9) into curved
spacetime. To this end, the EGC in (22), which has arrived on the scene as if a deus
ex machina, provides the requisite transformation rules (in parallel with Table 2).

The power-law part of the flat spacetime effective action in (9), which has turned
into the metric-affine curvature sector in (25) via the EGC in (22), leads to the GR
action

SGR(g, φ) =
∫

d4x
√−g

{
− R(g)

16πGN
− cφ

4

(
φ†φ − 〈φ†φ〉

)
R(g) − c∅

16
R2(g)

+O (GN )

}
(36)

after integrating outRμν(Γ ) from (25) via its solution in (33). Each and every coupling
(GN , cφ, c∅, . . . ) in this action is a bona fide quantumeffect. In fact, theUVsensitivity
problems revealed in Sect. 2 are seen to have all disappeared en route to (36). They
have disappeared through the EGC as follows:

(a) EGC suppressed the CCB [73,74,80–83] by mapping the anomalous gauge boson
masses in (1) into the O (GN ) derivative interactions in (35),

(b) EGC eliminated the big hierarchy problem [68–70] by converting the Λ2
℘ part

of the scalar masses in (2) into non-minimal coupling cφ/4 between the scalars
φ and the curvature scalar R(g) [94–96] (This does not mean that the hierarchy
problem is solved because logarithmic corrections in (2) are not dealt with yet.),
and

(c) EGC prevented occurrence of the CCP [71,72,88] by transfiguring theΛ2
℘ andΛ4

℘

parts of the vacuum energy (3) into the Einstein-Hilbert and quadratic curvature
terms [125,126], respectively (This does not mean that the CCP is solved because
logarithmic corrections in (3) are not dealt with yet.).

The resolution of these notorious power-law UV sensitivity problems is one important
difference between symmergent gravity and Sakharov’s induced gravity [37–39,42].
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The logarithmic part δSl
(
η,ψ, logΛ℘

)
plus the classical part Sc (η, ψ) of the flat

spacetime effective action (9) gets to curved spacetime

SQFT
(
g, ψ, logΛ℘

) = Sc (g, ψ) + δSl
(
g, ψ, logΛ℘

)
(37)

since logΛ℘ remains unchanged under the EGC map in (22). In essence, the loga-
rithmic UV sensitivity is equivalent to the dimensional regularization [84,85]. Indeed,
the formal equivalence logΛ2

℘ ≡ 1/ε − γE + 1 + log 4πμ2 can always be used to
translate (37) into dimensional regularization scheme in 4+ ε dimensions with Euler-
Mascheroni constant γE ≈ 0.577 and renormalization scale μ. The removal of the
1/ε pieces, for instance, corresponds to minimal subtraction scheme renormalization
of (37) [78,79].

The EGC images in (36) and (37) of the flat spacetime effective action in (9)
combine to form the intertwined whole

SQFT∪GR = SQFT(g, ψ, logΛ℘) + SGR(g, φ) (38)

which describes matter by the regularized QFT and geometry by the GR. It is the
QFT-GR concord sought for. Its primary features are as follows:

1. The fact that a QFT-GR concord is formed can be understood via scattering
amplitudes. To this end, as an illustration, it can prove useful to take a glance
at f1 f2 → φ1φ2φ3 scattering – coannihilation of two fermions f1 and f2 into three
scalars φ1, φ2, φ3. It rests on the field operator structure

∫
d4x

√−g(x)
∫

d4y
√−g(y) f 1(x) f2(x)

{
h f1 f2φΔφ(x, y)λφφ1φ2φ3

+ λ̃ f1 f2φ1φ2φ3

Λ2
QFT

δ(4)(x, y)

}
φ1(y)φ

†
2(y)φ3(y) (39)

which has a non-contact part mediated by the scalar propagator Δφ , and a contact
part suppressed by the QFT scale ΛQFT (and hence left out of the effective action
(9)). The Yukawa coupling h, the quartic coupling λ, and the scalar massmφ in Δφ

are not tree-level objects but rather loop-level objects corrected by the flat spacetime
loops. Likewise, the higher-order coupling λ̃ originates from the flat spacetime
loops. The field operators (like φ1 and f2), on the other hand, are actually mean
fields (φ̄1 and f̄2) averaged over their quantum fluctuations while forming the flat
spacetime effective action in (9). In symmergence, therefore, operator structures
like (39) attain the mean-field form

∫
d4x

√−g(x)
∫

d4y
√−g(y) f̄ 1(x) f̄2(x)

{
h f1 f2φΔφ(x, y)λφφ1φ2φ3

+ λ̃ f1 f2φ1φ2φ3

Λ2
QFT

δ(4)(x, y)

}
φ̄1(y)φ̄

†
2(y)φ̄3(y) (40)
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whose fields (like φ̃1 and f̃2) are solutions of the associated wave equations in
the curved spacetime of the metric gμν . This means that scattering and decay
rates can be analyzed as interactions of the relativistic wavefunctions in curved
spacetime [91–93]. In symmergence, therefore, QFT-GR concord is achieved not
by quantizing gravity but by grounding on the flat spacetime effective QFT [75,83].
In the traditional approach of curved spacetime QFTs [12–14], attempts to deter-
mine scattering amplitudes get stuck already at the operator stage in (39) simply
because it is not possible to construct the |in〉 and |out〉Fock states [35,36]. Symmer-
gence is immune to all these problems simply because it is based on flat spacetime
effective QFTs.

2. The coupling cφ/4 in the GR action SGR(g, φ) is a loop factor expected to be a
few % (1.3% in the SM). It couples scalar curvature R(g) to scalar fields φ, and
gives cause thus to Newton-Cavendish constant to vary with φ [94–96]. For high
field values near MGUT ∼ 10−2MPl , GN gets rescaled to GN (1 − 10−4cφ) ∼
GN (1 − 10−6) since φ†φ − 〈φ†φ〉 ∼ M2

GUT . This variation in GN remains well
within the experimental uncertainty in GN [97]. The agreement with data gets
better and better with lower and lower field values. For higher field values, however,
variation in GN exceeds the experimental range (by three orders of magnitude at
|φ| ∼ MPl ). This means that |φmax | ∼ MGUT is the largest field swing allowed.

3. The Newton-Cavendish constant in SGR(g, φ)

1

GN
= 4π

(
∑

i

cψi m
2
i + cφ〈φ†φ〉

)
1−loop−−−−→ str[m2]

8π
+ 4πc(1)

φ 〈φ†φ〉 (41)

must agreewith empirical data [123] for gravity to symmerge correctly. It constrains
the QFT mass spectrum as str

[
m2

] ∼ M2
Pl (barring flat directions in which 〈φ〉 �

mφ). Its one-loop form reveals that the QFT particle spectrum must be dominated
by bosons either in number or in mass or in both. It thus turns out that the Newton-
Cavendish constant can be correctly induced in a QFT having

(i) either a light spectrum with numerous more bosons than fermions (for
instance, mb ∼ m f ∼ TeV with nb − n f ∼ 1032),

(ii) or a heavy spectrum with few more bosons than fermions (for instance,mb ∼
m f � MPl with nb − n f � 5),

(iii) or a sparse spectrum with net boson dominance.

TheQFT is best exemplified by the SM,which is fully confirmed by the LHC exper-
iments and their priors. Its spectrum yields GN ∼ −(TeV)−2, which is unphysical
in both sign and size. It is because of this inadequacy of the SM spectrum that
symmergence predicts existence of new physics beyond the SM (BSM). The BSM,
whose spectrum adds to (41) to correct the SM result, has no obligation to couple to
the SM in a specific scheme and strength. It can thus form a completely decoupled
black sector [75,127–129] or a weakly coupled dark sector [75,99], with distinc-
tive signatures for collider searches [130], dark matter searches [131], and other
possible phenomena [75].
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4. The quadratic curvature term in the GR action SGR(g, φ) can facilitate Starobinsky
inflation [86,87,132] since (at one loop)

c∅ = − (nb − n f )

128
(42)

acquires right sign and size for nb − n f ≈ 1013. In case this constraint is not met,
inflation can also be realized with the scalar fields φ in the spectrum [114,133,134].

5. The vacuum energy in SQFT(g, ψ, logΛ℘)

V (Λ℘) = V (〈φ〉) +
∑

i

c(l)
∅ψi

m4
i log

m2
i

Λ2
℘

1−loop−−−−→ V (1) (〈φ〉) + 1

64π2 str

[
m4 log

m2

Λ2
℘

]
(43)

gathers together the relevant logΛ℘ corrections in (10) in theminimumof the scalar

potential V (φ) at φ = 〈φ〉. Its empirical value is Vemp = (
2.57 × 10−3 eV

)4
[88],

and the QFT vacuummust reproduce this specific value. This constraint puts severe
restrictions on the UV cutoff and other parameters of the QFTs. This is what the
CCP [71,72] is all about. In Sakharov’s induced gravity [37–39,42], for instance,
induction of the Newton-Cavendish constant fixes Λ℘ to a Planckian value, and
this fix leads to an O (

M4
Pl

)
vacuum energy. In symmergence, however, logΛ℘ is

not fixed (as in Table 2), and it can be fixed in a way suppressing the vacuum energy.
Indeed, in view mainly of the one-loop value in (43), the rough concordance

Λ2
℘ ∼ str

[
m2

]
∼ M2

Pl (44)

suppresses the logarithms and induces theNewton-Cavendish constant consistently.
(This becomes clear especially when str

[
m2

]
is saturated by one large mass.) It

involves a severe fine-tuning, and thus, it certainly is not a solution to the CCP. But
it might be sign of an underlying symmetry principle or a dynamical theory of the
Poincare breaking scale Λ℘ . Symmergence cannot go beyond (44). (Clearly, the
CCP can be approached by other methods like degravitation mechanisms [135–
138].)

6. Light scalars φL in SQFT(g, ψ, logΛ℘) have their masses shifted as

δm2
φL

= c(l)
φLψH

m2
ψH

log
m2

ψH

Λ2
℘

(45)

via their couplings c(l)
φLψH

to heavy fieldsψH , as defined in (2) as well as (10). These
logarithmic corrections are of a new kind because they are sensitive to field masses
not to the UV cutoff. And they are crucial because heavier the ψH larger the δm2

φL
and stronger the destabilization of the light sector of the QFT. Symmergence cannot
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solve this problem (EGC in (22) leaves logΛ℘ untouched) but provides a viable
way to avoid it. The thing is that induction of the Newton-Cavendish constant in
(41) is the only constraint on the QFT field spectrum and it does not require any
special coupling scheme or strength among the fields. Namely, induction of the
Newton-Cavendish constant is immune to with what strengths the QFT fields are
coupled. This immunity enables QFTs to maintain their two-scale structure at the
loop level by having their heavy and light sectors coupled in a way keeping them
scale-split. The implied coupling

∣∣∣c(l)
φLψH

∣∣∣ �
m2

φL

m2
ψH

(46)

is see-sawish in nature and capable of stabilizing the light sector, as ensured by
(45). This implies that only those QFTs having see-sawish couplings can with-
stand loop-induced heavy-light mixing. And symmergence allows the see-sawish
couplings [75].
The importance of the see-sawish couplings is best revealed by examining the
realistic case of the SM. The SM needs be extended for various empirical and con-
ceptual reasons [139,140]. The extension, a BSM sector, is formed by superpartners
in supersymmetry, Kaluza-Klein modes in extra dimensions, and technifermions in
technicolor. Each of these BSM sectors couples to the SM with the SM couplings
themselves as otherwise their underlying symmetries get broken. And this means
that they never go to the see-sawish regime in (46) and, as a result, the SM Higgs
sector gets destabilized by these heavy BSM sectors. Indeed, even the Planck-scale
supersymmetry (generating no quadratic correction by its nature and merging with
the SM through an intermediate-scale singlet sector) destabilizes the Higgs boson
mass as in (45) [141]. It is for this non-see-sawish nature of theirs that all these
BSM sectors have already been sidelined by the LHC experiments for certain mass
ranges.
The BSM sector of the symmergence, required by the Newton-Cavendish constant
in (41), differs from superpartners, Kaluza-Klein levels and technifermions by its
congruence to the see-sawish couplings in (46). It is different in that it contains only
those fields which enjoy the see-sawish regime, and such fields may conveniently
be termed as symmergeons. In fact, new physics searches beyond the TeV domain
must assume a BSM sector that does not destabilize the SM Higgs sector and,
in this respect, possible discoveries at future experiments [102] may fit to the
symmergeons.

These salient points feature the field-theoretic and gravitational aspects of theQFT-GR
concord in (38) in relation to its cosmological [98–100], astrophysical [99,101], and
collider [102,103] implications.

7 Conclusion and future prospects

In confirmationof the title, emergent gravity has erased anomalous gaugebosonmasses
as in (34) and a QFT-GR concord is formed as in (38). The gauge anomaly (the CCB)
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is not completely banished as it survives in doubly-Planck suppressed derivative inter-
actions in (35). The resultant QFT-GR concord describes matter by (dimensionally)
regularized QFT and geometry by the GR. In the realistic case of the SM, it predicts
the existence of a BSM sector, which does not have to couple to the SM. It can form
therefore a weakly-interacting or completely non-interacting sector, and in either case
it can give cause for various cosmological, astrophysical and collider phenomena. It
is with advancements in energy, intensity and cosmology frontiers that the QFT-GR
concord will take shape, with the determination of its QFT part, for instance.

The present work is a small step. It needs be furthered and deepened in various
aspects:

– Thefirst aspect concerns the covariance between (UVcutoff)2 and curvature (based
on the affinity structure in Table 2). The question is this: Can this covariance be
given a more fundamental structure? The answer, which is far from obvious, may
involve gauge-theoretic approach to metric-affine gravity [142,143] or even to the
affine gravity [144–151] (in view of its quantization properties [152,153]). The
gauge-theoretic approach [142,143,154,155] may necessitate metric-independent
structures like the Ehressmann connection [156] (as well as the Finsler geometry
[157]). The gauge-theoretic (or some other) substructure can promote symmer-
gence to a more fundamental status.

– The second aspect concerns implications for theQFT spectrumof the simultaneous
realization of the Newton-Cavendish constant in (41) and the Starobinsky inflation
via (42). In fact, they seem to disagree on nb − n f in the degenerate cases, and a
sparse spectrum seems more plausible. Needless to say, a detailed knowledge of
the spectrum can help reveal symmetries for alleviating the CCP and generating
the see-sawish couplings.

– The third aspect is about the CCP [71,72,88]. A useful feature of symmergence is
its leaving of logΛ℘ free. Its use for cancellation of the vacuumenergy is insightful
but incomplete in that it is necessary to find an all-loop selection rule or symmetry
to prevent the enormous fine-tuning involved. To this end, cancellations of the
known components like the QCD and electroweak vacuum energies by the BSM
contributions can be helpful in revealing the aforementioned symmetry structure.
The envisaged symmetry (which might be inspired by mirror symmetry [158])
must correlate the SM and the BSM fields along with the freedom provided by
logΛ℘ .

– The fourth aspect refers to the see-sawish couplings of the symmergeons. This is
about not the UV boundary but the inner structure of the QFT. There is in general
no known symmetry principle that can lead to see-sawish structure. The problem
becomes clear especially inmulti-scalar theories [159] and, in this regard, themass-
degeneracy-driven unification proposed in [131] (see also [130]) seems to be one
likely approach. It is, however, more of a condition rather than a symmetry prin-
ciple, and needs therefore be furthered (by implementing perhaps mass-sensitive
extensions of the symmetries of the multi-Higgs doublet models [160,161]).

– The fifth aspect is related to the astrophysical and cosmological implications of the
QFT-GR concord. Indeed, in the symmergent GR in which the Newton-Cavendish
constant is set by (41), the quadratic curvature term by (42), and the vacuum energy
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by (43) the cosmological and astrophysical environments can put strong constraints
on the QFT spectrum. One of them is cosmic evolution and its implications in view
mainly of the persisting Hubble tension [162]. Another of them is the dense media
like neutron stars [163,164]. The solutions of the Einstein field equations in such
environments, with the added feature that all (matter) couplings are already loop-
corrected, can give information about the spectrum and the loop structure.

– The sixth point concerns high curvature limit. Indeed, if the affine curvature takes
Planckian values (R ∼ 1/GN ) then the expansion in (31) fails and the solution
of the affine connection in (32) breaks down. This means that its exact solution in
(29), which is a first order non-linear partial differential equation for itself, will
contain extra geometrical degrees of freedom not found in the Levi-Civita con-
nection. These new geometrodynamical fields will couple to matter and contribute
to the gauge anomaly, though anomalous gauge boson masses will still exactly
vanish since Rμν(Γ ) in (28) has always an Rμν(

gΓ ) part that cancels out the
Rμν(

gΓ ) in (24). This dynamical picture shows that symmergence may lead to
novel phenomena in high-curvature regions like the black holes [21,165].

It is with the investigation of these six salient aspects plus various other collateral ones
that the true potential of the symmergence will be revealed.
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