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ABSTRACT
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Using an optical microscope, most viruses, proteins, and small molecules cannot
be successfully imaged because of Abbe’s diffraction limit. The super-resolution
structured illumination microscopy (SIM) technique overcomes this issue and ex-
pands the lateral resolution to the half of the diffraction limit. The cost of the SIM
technique results from the need to record at least nine raw images to reconstruct
a single super-resolution image. This requirement has two consequences: photo-
bleaching and motion artifacts. To alleviate these problems, we need a system that
is extremely fast for recording raw images (to observe high dynamic processes) and
projects less excitation light onto the sample (to avoid photobleaching). Compressed
sensing (CS) can be a candidate for achieving these objectives. First, CS allows us to
record an object scene with a photomultiplier tube (PMT) instead of a camera. The
acquisition speed of a PMT is much higher than a scientific complementary metal-
oxide-semiconductor (sCMOS) camera. Second, the scene in the CS framework is
sampled faster (thanks to the higher frame rate of a digital micromirror device -
DMD), and also sampled with lower excitation light (because of sampling patterns).
Third, the CS framework can recover the scene reliably with few measurements,
reducing the overall data collection time further.

The main objective of this dissertation is to combine CS and SIM techniques, but
we also make various contributions to this framework. The main contributions of
this dissertation are (1) proposing a dictionary learning method based on the multi-
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layer convolutional sparse coding (ML-CSC) model to improve the performance of a
CS recovery algorithm; and (2) proposing a method for the combination of CS and
SIM and demonstrating the method with simulation-based studies as well as real
data collection experiments. In early attempts in the sparse representation theory;,
some off-the-shelf dictionaries were utilized. However, training dictionaries instead of
using a known transform significantly improved signal reconstruction quality. On the
other hand, the success of a CS recovery algorithm is directly related to the sparsity
level of a signal. The sparsity level of a signal depends on the sparsifying transform
or dictionary. With that perspective, we need to learn a sparsifying transform or
dictionary that is compatible with a signal of interest. Therefore, we propose a
dictionary learning method based on ML-CSC. The method does not depend on
any parameters or the success of a CS recovery algorithm involved in the dictionary
learning steps although the ancestor of the proposed algorithm depends on some
parameters and the recovery algorithm. We also implement the learned dictionaries
into a CS recovery algorithm and discuss the performance of the proposed learning
algorithm.

The other main contribution of this dissertation is to combine the CS framework and
the SIM technique. We demonstrate this combination utilizing a simulation-based
study. The mathematical foundation of the proposed study is demonstrated. Then,
experimental results for both stationary and non-stationary objects are presented.
We utilize some CS recovery algorithms presented previously and compare the re-
construction results for the case of the combination of CS and SIM. We propose an
optical configuration for the data collection problem with the photomultiplier tube
(PMT), and then we discuss the limitations of the DMD in the laboratory. Then,
an optical configuration for the combination of CS and SIM is introduced. Using
the proposed configuration, an experimental study is performed for both stationary
and non-stationary objects. The normalized intensity profiles of the reconstructions
and the other conventional microscopy methods for the same object are compared.
The proof-of-principle solution for the photobleaching issue is evaluated for the real
optical configuration.

We also present a CS approach for holography and demonstrate the extraction of
depth information from a single hologram. An optical configuration for holographic
data collection is first presented. The depths of the variety of digital holograms
(include compressive ones) are obtained using the stereo disparity method. The
proposed method does not require the phase information of the hologram but two
perspectives of the scene, which are easily obtained by dividing the hologram into
two parts (two apertures) before the reconstruction. We investigated the effects of
gradual and sharp divisions of the holograms for the disparity map calculations,
specifically for divisions in the vertical, horizontal, and diagonal directions. After
obtaining the depth map from the stereo images, a regular two-dimensional image
of the object is merged with the depth information to form 3D visualization of the
object.



OZET

SUPER COZUNURLUKLU YAPILANDIRILMIS AYDINLATMA
MIKROSKOPISI iCIN SIKISTIRILMIS ALGILAMA VE OGRENMEYE
DAYALI YONTEMLER

BATURAY OZGURUN
ELEKTRONIK MUHENDISLIGI DOKTORA TEZI, EKIM 2020
Tez Danismani: Do¢. Dr. Miijdat Cetin

Tez Es Danigmani: Prof. Dr. Selim Saffet Balcisoy

Anahtar Kelimeler: Sikigtirilmig Algilama, Siiper Coziiniirliiliik, Yapilandirilmig
Aydinlatma Mikroskopisi, Evrisimli Kiitiiphane Ogrenimi

Optik mikroskop kullanarak, ¢cogu viriis, protein ve kii¢iik molekiillerin Abbe kirinim
limiti nedeniyle gortintiilenmeleri zordur. Stiper ¢oziiniirliklii yapilandirilmig aydin-
latma mikroskop (SIM) teknigi bu problemi ¢ozer ve yanal ¢oziiniirligi kirmim
sinirinin yarisina kadar genigletir. SIM tekniginin problemi, tek bir stiper ¢oziintir-
liiklii goriintiiyii yeniden olusturmak igin en az dokuz ham goriintii kaydetme ihtiy-
acindan kaynaklanmaktadir. Bu gereklilik iki sonuca neden olur; florigildama bozul-
mas1 ve gorinti kalitesinin hareket nedeniyle bozulmasi. Ham goriintiileri kaydet-
mek i¢in (yiiksek dinamik siiregleri gézlemlemek i¢in) ve numuneye daha az uyarma
15181 yansitmak i¢in (foto agartmayi dnlemek igin) son derece hizli bir sisteme ihtiy-
acimiz var. Sikigtirilmig algilama (CS), bu hedeflere ulagmak i¢in bir aday olabilir.
[k olarak, CS, kamera yerine bir fotocogaltica tiip (PMT) ile bir nesne sahnesini
kaydetmemize izin verir. Bir PMT nin ¢ekim hizi, bilimsel bir tamamlayici metal
oksit yari iletken (sCMOS) kamerasindan ¢ok daha hizhidir. Tkinci olarak, CS yén-
temiyle sahne, daha hizli 6rneklenir (dijital mikro aynanin (DMD) yiiksek hiz1 olmasi
sayesinde) ve ayrica daha dugiik uyarma 15181 ile 6rneklenir (6rnekleme desenleri ne-
deniyle). Uciincii olarak, CS yontemi, birkac élgiimle kullanarak sahneyi yeniden
yapilandirabilir ve bu toplam veri toplama siiresini daha da kisaltabilir. Bu go-
zlemlere dayanarak, CS yonteminin temel SIM problemlerinin ¢éziimii i¢in uygun
olabilecegine inaniyoruz.
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Bu tezin temel amaci, CS ve SIM tekniklerini birlestirmektir, ancak bu cercevede
gesitli katkilar da sunuyoruz. Bu tezin ana katkilary; (1) CS yeniden yapilandirma
algoritmasinin performansini iyilestirmek icin ¢ok katmanl evrisimli seyrek kod-
lama (ML-CSC) modeline dayali bir sozliik 6grenme yontemi geligtirmek; ve (2) CS
ile SIM kombinasyonu i¢in yontem 6nermek ve 6nerilen yontemi simtilasyon tabanlh
calismalarin yani sira gercek veri toplama deneyleri ile desteklemek. 1lk girisimlerde,
seyrek temsil teorisi temellendirilerek yapilandirilma yapilabilmesi i¢in hazir sozliik-
ler kullanildi. Diger yandan, CS yeniden yapilandirma algoritmasinin basarisi, bir
sinyalin seyreklik seviyesi ile dogrudan ilgilidir. Bir sinyalin seyreklik orani, doniigiim
matrisine veya sozliige baghdir. Bu nedenle, doniigiim matrisini veya sozliigii 6gren-
memiz gerekir. Bundan dolayi, ML-CSC modeline dayanan bir sozlik 6grenme
yontemi Oneriyoruz. Yontem, daha onceden sunulan kiitiiphane 6grenme algorit-
mas1 baz1 parametrelere ve yeniden yapilandirma algoritmasina bagl olmasina rag-
men, sunulan sozliikk 6grenme yontemi herhangi bir parametreye veya CS yeniden
yapilandirma algoritmasina bagl degildir. Diger yandan, ogrenilen sozliikler, CS
yeniden yapilandirma algoritmasina uygulanmig ve sozlitk 6grenme algoritmasinin
performans: tartigilmigtir.

Bu tezin diger ana katkisi, CS yontemini ve SIM teknigini birlestirmektir.
Simiilasyon tabanli caligma ve cesitli matematiksel modeller kullanarak bu bir-
legtirme gosterilmigtir. Ardindan hem sabit hem de hareketli nesneler i¢in deney-
sel sonuclar sunulmustur. Daha 6nceden sunulan birkag adet CS yeniden yapi-
landirma algoritmasit kullanarak, CS ile SIM yoéntemlerinin birlegimine dayanan
model i¢in yeniden yapilandirma sonuclari kargilagtirilmigtir. Simiilasyon tabanh
calisma gerceklestirildikten sonra, PMT ile veri toplama problemi i¢in optik bir
diizenek oOnerilmis ve ardindan laboratuvarda bulunan DMD cihazinin limitleri
ele alinmigtir. Ardindan, CS ve SIM birlegimi i¢in optik bir diizenek verilmistir.
Onerilen diizenek kullanarak, hem sabit hem de hareketli nesneler icin deney-
sel bir caligma gergeklegtirilmistir. Yeniden yapilandirilmig gortintiilerin normal-
ize edilmis yogunluk profilleri, diger geleneksel mikroskop yontemleri sonuclari ile
kargilagtirilmigtir. Florigildama bozulma problem icin deneysel diizenegin en iyi
durum sonucu verilmigtir.

CS ve SIM yontemlerinin birlestirilmesine ek olarak, CS yontemi holografiye de uygu-
lanmis ve tek bir hologram kullanarak derinlik bilgisi cikarilmugtir. ilk olarak holo-
grafik veriyi kaydedebilmek icin bir optik konfiglirasyon sunulmugtur. Sikigtirilmig
hologramlar1 da igeren cesitli hologramlarin derinlikleri, stereo esitsizlik yontemi
kullanilarak c¢ikarilmigtir. Sunulan yontem, hologramin faz bilgisine ihtiya¢ duy-
mamakta, yeniden yapilanmadan 6nce hologramin iki parcaya (iki agikliga) bolin-
mesiyle kolayca elde edilen sahnenin iki perspektifine ihtiyag duymaktadir. Holo-
gramlarin agamali ve keskin boéliinmelerinin, 6zellikle dikey, yatay ve capraz yon-
lerdeki boliimler icin egitsizlik haritasi hesaplamalar: i¢in etkileri de aragtirilmigtir.
Stereo gortintiilerden derinlik haritasi elde edildikten sonra, nesnenin normal iki
boyutlu gortintiisii derinlik bilgisi ile birlestirilerek nesnenin 3D gorsellestirilmesi
olugturmustur.
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1. INTRODUCTION

In this chapter, we introduce the fundamental role of an optical microscope in life
sciences and the problem of the optical microscopy — Abbe’s diffraction limit. The
diffraction problem can be eliminated by recently developed super-resolution mi-
croscopy methods, and these techniques are reviewed in the following section. Since
we are interested in the super-resolution structured illumination microscopy (SR-
SIM) technique in this dissertation, we review the main issues involved in SR-SIM
and propose a framework - which combines SR-SIM and compressed sensing (CS) -
to alleviate the posed issues. Eventually, the main contributions and outline of this

dissertation are presented.

1.1 Fluorescence Microscopy

An optical microscope plays a fundamental role in biology laboratories. It is used
for microbiology investigations, cell culture studies and variety of applications such
as structural and biochemical analyses of cells, tissues or microorganisms. The
usefulness of this device causes rapidly expansion of the biology science such that
the optical microscope has enabled us to investigate drug-resistance bacteria [159],
to discover modern drugs [20] and some tissue engineering products [171, 190], and
to diagnose cancer [107, 178]. We are interested in fluorescence microscopy as an
optical microscope because it enables us to acquire high resolution and high contrast
images. However, the spatial resolution of fluorescence microscopy is limited by
diffraction. The diffraction limit makes an observed object blurry since it wipes
out finer structures or higher frequency components of the object. The diffraction
limit is also known as Abbe’s diffraction limit, and the limit can be mathematically

described as

A
min — 1.1
d 2N A (1.1)
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where d,,;, is an optically resolved peak-to-peak distance of two points, A and N A
denote an emission wavelength and numerical apperture of an objective lens, respec-
tively [38]. When a high numerical aperture and visible light are utilized in an optical
configuration, the optical resolution becomes almost 200 nm. This means that the
distance between any two points less than 200 nm cannot be optically resolvable.
Therefore, most viruses, proteins, and small molecules cannot be successfully imaged

because of their dimensions.

1.2 Super-Resolution Fluorescence Microscopy Techniques

A method surpasses the diffraction limit is called a super-resolution microscopy tech-
nique, and it is developed on either a wide-field configuration or a laser scanning
implementation. The localization based super-resolution microscopy technique is
one of the super-resolution methods. It is established on a wide-field microscopy
configuration. This technique uses photoswitchable fluorescent probes due to their
on-and-off states. The states allow us to record fluorescent probes one-by-one in-
stead of recording all probes at once like a conventional microscope does. Therefore,
each raw image contains small portion but non-overlapping probes, and this enables
us to scholastically define an exact position of each probe in a raw image. Recon-
struction of a super-resolution image using the localization based method results
from the summation of the exact positions of entire probes in all raw images. Of
course, the reconstruction procedure requires thousands of raw images, and hence the
localization-based method is time-consuming and sensitive to motion artifacts. This
method is known as fluorescence photoactivation localization microscopy ((F)PALM
[13, 75] and stochastic optical reconstruction microscopy (STORM) [158] in the lit-
erature. The former one uses photoactivatable fluorescent proteins while the latter
one uses synthetic dyes, which have switching characteristics. The techniques and
probes are different for (F)PALM and STORM, but they are classified as localization

based microscopy because of the same reconstruction procedure [202].

The second super-resolution technique is stimulated emission depletion (STED) mi-
croscopy [72], which is based on a laser scanning implementation. In this method,
the sample is illuminated with an excitation spot and a depletion beam. Depletion
beam has a donut-shaped structure and zero intensity distribution at the center.
This structure enables us to detect the center of the excitation beam alone, and
the detected area is smaller than the area of the excitation beam. This, of course,

enhances spatial resolution because resolution is highly restricted by the size of the
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excitation spot. Increasing depletion beam intensity can shrink the area of the spon-
taneous emission further, but extremely higher intensities are not preferred because
of the photobleaching issue. STED is based on a laser-scanning configuration. It
scans the excitation spot and depletion beam together on the sample to acquire a
super-resolution image. Hence, this method like the previous one is time-consuming
and sensitive to moving artifacts. However, this method can provide an image with
a 10 nm spatial resolution [3]. STED has been shown to record the video of synaptic
vesicles with a 62 nm spatial resolution [193], and it can achieve an axial resolution
of ~50 nm [46].

In this dissertation, we are interested in the super-resolution structured illumina-
tion microscopy (SR-SIM) technique. This technique utilizes sinusoidal illumination
patterns to down-modulate higher frequency components of a sample under the mi-
croscope into the observable region of an objective lens. It is demonstrated that the
lateral resolution can be expanded to the half of the diffraction limit using SR-SIM
(or just SIM). On the other hand, SIM requires multiple raw images to reconstruct
a super-resolution image. However, the number of the raw images in this method
is much smaller than the number of the raw images required by the previously de-
scribed super-resolution methods. Slightly changing the SIM optical configuration
to generate three-dimensional illumination patterns allows us to extend the axial
resolution to the half of the diffraction limit. The SIM technique is presented in
the next chapter; therefore, this microscopy method is not discussed further. SIM
has been successfully used in a variety of problems in cell biology. For example,
the SIM technique is used to analyze the structure of chromatin distribution of my-
oblast cells [164]. SIM was utilized to investigate parasites inside red blood cells
[149, 152]. Even, DNA double-strand break was observed using SIM [93]. It was

also demonstrated that SIM could be used to examine viral structures [78].

1.3 Motivation for the Use of Compressed Sensing in Super-

Resolution Structured Illumination Microscopy

The cost of the super-resolution structured illumination microscopy technique re-
sults from a need for recording a number of raw images to reconstruct a single frame
super-resolution SIM image. This requirement causes two significant results; the flu-
orescently labeled biological specimens are exposed over a long period of time — that

leads to photobleaching — [39], and recording high dynamical processes such as mov-



ing cells or high-speed biological events is prevented — that causes motion artifacts
in the reconstructed image [77, 209]. Recording high dynamic processes are actually
restricted by the read-out time of a camera [168, 198]. In other words, these pro-
cesses cannot be observed unless a camera with a higher signal-to-noise ratio (SNR)
and with a lower read-out time is presented. On the other hand, photobleaching
can be avoided by reducing excitation intensity, but this increases read-out time
duration that reduces SNR. Low SNR is not usually desirable in a super-resolution
technique because noise may cause damage an image. The camera is also a noise
source, and it contains a mixture of two noise distributions — read-out noise and
shot noise. The former one can be modeled using the Gaussian distribution, but
the latter one is the Possion distribution [29]. These issues should be taken into

consideration while building a state-of-the-art SIM microscopy.

We need a system that (1) provides extremely high acquisition speed (or lower read-
out time) to observe high dynamic processes, (2) generates an image with a high SNR
to reduce noise, and (3) excites a specimen with a lower excitation light to alleviate
photobleaching. In this dissertation, we propose to combine the compressed sensing
(CS) framework and SIM to address these issues. In the proposed configuration, a
photomultiplier tube (PMT) instead of a camera is utilized as an acquisition device.
The acquisition speed of a PMT is extremely faster than a scientific complementary
metal-oxide semiconductor (sSCMOS) camera. Furthermore, the CS framework has
an ability to recover a scene using a few measurements. The acquisition speed in
the proposed method can be roughly two or three times faster than the acquisition
speed in a conventional SIM when proper devices in the optical configuration are
used. This can allow us to observe high dynamical processes of a specimen. In
addition, a CS recovery algorithm can recover a scene in a noise scenario. This can
enable us to reduce noise and increase SNR of an image. Eventually, a scene can be

sampled with lower excitation light using CS. This can reduce photobleaching.

1.4 Contributions of this Dissertation

The CS framework relies on the sparse representation theory. Sparsity level of an
observed signal influences performance of a CS recovery algorithm. When the signal
itself becomes sparse, the performance of the algorithm usually increases. However,
most signals have a dense structure. Therefore, a signal is usually represented as a
sparse signal to increase the performance of the recovery algorithm. To represent a

dense signal as a sparse signal, a transform matrix is usually utilized. The trans-
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form matrix can be off-the-shelf dictionary such as Fast Fourier Transform (FFT)
or Discrete Cosine Transform (DCT). The off-the-shelf dictionaries are used for
sparse representation since some transforms are suitable for transforming of certain
classes of signals. However, using off-the-shelf dictionaries are limited in practical
applications because of two reasons: (1) inflexibility of transforms to deal with rare
signal families; and (2) the partial match between the signal and the transform.
The demand for getting appropriate dictionaries presented an idea of dictionary
learning. Our first contribution is a novel dictionary learning method based on the
multi-layer convolutional sparse coding (ML-CSC) model. The recently presented
dictionary-learning algorithm based on the ML-CSC model is highly dependent on
the parameters and the success of the recovery algorithm involved in the learning
process. However, our learning algorithm does not depend on parameters and does
not involve any sparse recovery algorithm. We build our algorithm based on the
network observations, and these are demonstrated with some correlations values of

sparse signal at the output of the convolutional neural network.

The CS framework requires a recovery algorithm to reconstruct a signal using under-
sampled data. Most of the CS recovery algorithms are based on relaxation and
greedy pursuits. In this dissertation, we do not provide a novel CS recovery al-
gorithm. However, our second contribution is to implement the trained dictionar-
ies, which will be presented in the first contribution, into the alternating direction
method of multiplier (ADMM) algorithm. We also implement the trained dictio-
naries learned using the projection problem, which relies on the recently presented
dictionary-learning algorithm based on the ML-CSC model, into the ADMM algo-
rithm. Once these implementations are performed, we undersample a test scene
and then recover using these implementations to compare the recently presented
dictionary-learning method and the proposed dictionary-learning method. We also
recover the test scene using some state-of-the art ADMM based algorithms. These
algorithms are Plug-and-Play (PnP) ADMM that uses the deep residual learning
method, total variation (TV) regularizer implementation into the ADMM algorithm,
and DCT transform implementation into the ADMM algorithm. These last three al-
gorithms do not involve trained dictionaries, and hence this will allow us to compare
the performance of the recovery algorithms dependent on and independent from the
trained dictionaries. This contribution will also contribute to the study based on

the combination of the CS framework and the SIM technique.

The main contribution of this dissertation is the development of a method that
combines CS and SIM. Our third contribution presents and applies this combina-
tion based on a simulation study. This study addresses several key problems in

SIM, including long readout time photobleaching, and motion artifact. To set the
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simulation parameters, we are inspired by the real optical configuration parameters.
The proposed combinational study involves that sampling and down-modulation
operations of a scene under the microscope will be simultaneously performed, and
these operations will corrupt the sampling patterns. The proposed approach has the
ability to extract finer structures of the scene using the corrupted sampling patterns.
The simulation be performed for stationary scene to demonstrate the CS framework
performance and non-stationary scene to show the alleviation of the motion artifact

problem, considering reductions in both data quality and quantity.

Another contribution is to provide an optical configuration and real data collec-
tion experiments for the combination of the CS framework and the SIM technique.
We first discuss the problem of data collection using a PMT in a real application.
To transform analog signal that is produced by the PMT into digital signal that
will be used by a CS recovery algorithm, we present a simple optical configura-
tion. Once this configuration is introduced, we also discuss the limitations of the
Digital Micromirror Device (DMD) in the laboratory that is used for the sampling
and illumination projections. Then, we introduce the optical configuration of the
proposed study. The configuration is built around a commercial microscope. Using
the proposed configuration, we also collect real data to recover raw SIM images,
and then we reconstruct a super-resolution image using the recovered raw SIM im-
ages. We also compare the reconstructions with the confocal microscope, wide-field

microscope, and conventional SIM results.

In addition, we also present a CS-based method for the holography, and we extract
depth information from a single hologram. An optical configuration for holographic
data collection is first presented. The depths of the variety of digital holograms
(include compressive ones) are obtained using the stereo disparity method. The
provided method does not require the phase information of the hologram but two
perspectives of the scene, which are easily obtained by dividing the hologram into
two parts (two apertures) before the reconstruction. We investigated the effects of
gradual and sharp divisions of the holograms for the disparity map calculations,
specifically for divisions in the vertical, horizontal, and diagonal directions. After
obtaining the depth map from the stereo images, a regular two-dimensional image
of the object is merged with the depth information to form 3D visualization of the

object.



1.5 Organization

This dissertation is organized as follows. In Chapter 2, the working principles
for both 2D-SIM (or SIM) and 3D-SIM techniques are presented. These methods
are also mathematically demonstrated in the spatial and the reciprocal (frequency)
spaces. Then, optical configurations for these microscopy techniques are introduced,
and the fundamental reconstruction algorithm for the SIM technique is described.
Eventually, some of the SIM issues are discussed with the possible solutions. In
Chapter 3, the CS framework with its constraints is presented. Some recovery al-
gorithms based on relaxation and greedy pursuits are reviewed. Some of the CS
applications in imaging science such as compressive magnetic resonance imaging,
compressive radar imaging, compressive ultrasound imaging and compressive com-
puted tomography are presented. Eventually, some of the CS applications in optical
science such as single-pixel camera, and compressive holography are introduced. In
Chapter 4, the convolutional dictionary learning method and the motivation for
dictionary learning are presented. Convolutional sparse modeling with its mathe-
matical foundations and limitations is reviewed. Connection between convolutional
neural network and convolutional sparse coding is introduced. Then, the multi-layer
convolutional sparse coding model and some of the dictionary learning algorithms
based on the convolutional sparse coding model are presented. The proposed dic-
tionary learning method as well as its advance over the other dictionary learning
methods are introduced. Loss functions formed using the proposed dictionary learn-
ing method and the trained local filters are shown in the experimental section. In
Chapter 5, some of the alternating direction method of multipliers (ADMM) based
pursuit algorithms are reviewed. Incorporation of trained dictionaries presented
in Chapter 4 into the ADMM algorithm and the mathematical foundations of the
implementation are shown. Then, implementation of the Plug-and-Play (PnP) Im-
age Reconstruction Method using residual deep learning is demonstrated. This
reconstruction method does not depend on the trained dictionaries. In the exper-
imental section, the implementations of the CS framework are tested, and their
performances are compared. In Chapter 6, the proposed study that is combina-
tion of the CS framework and the SIM technique is presented as a simulation-based
study. The theoretical foundations of the proposed study are demonstrated. Then,
experimental results for both stationary and non-stationary objects are presented.
Some of the CS recovery algorithms presented in Chapter 5 are compared for the
proposed study. In Chapter 7, optical configuration and real data collection experi-
ments for the study that combines CS and SIM are presented. First, data collection
problem with a PMT is discussed. Then, the limitations of the DMD in the labo-
ratory are evaluated. Once these concepts are discussed, the optical configuration
7



is presented. Then, experimental study is presented for both stationary and non-
stationary objects. The normalized intensity profiles of the reconstructions and the
other conventional microscopy methods for the same object are shown. The proof-
of-principle solution for the photobleaching issue is evaluated when the optimum
optical devices are utilized. In Chapter 8, we present a depth extraction method
for real macroscopic three-dimensional (3D) objects using a single digital hologram.
We also perform the depth extraction method for a compressive hologram generated
from a computer-generated hologram. First, we present the underlying depth ex-
traction method that is based on the stereo disparity technique. Then, we present
the optical configuration for hologram data collection. The depth maps for a variety
of 3D objects are provided. The depth map from a compressive hologram is also
presented by utilizing a computer-generated hologram. To evaluate the effects of
the under-sampling rates on the depth map profiles, we sample the hologram with a
variety of under-sampling rates, and then we construct the depth maps. In Chapter
9, the overall dissertation and the obtained results are summarized, and the future

directions are discussed.



2. SUPER-RESOLUTION STRUCTURED
ILLUMINATION MICROSCOPY

In this chapter, we present the super-resolution structured illumination microscopy
(SR-SIM) technique, which nearly extends the resolution to the half of the diffrac-
tion limit laterally (2D-SIM) and axially (3D-SIM) in linear regime. The working
principle of this method is examined for both 2D-SIM and 3D-SIM, and these two
versions of the SIM method are mathematically demonstrated in the spatial and
the reciprocal (frequency) spaces. Then, a SIM configuration is introduced for each
optical elements. This is followed by the fundamental reconstruction algorithms for
the 2D-SIM and the 3D-SIM methods. Eventually, some of the issues in SIM — pho-
tobleaching, acquisition duration and noise — are introduced with their solutions in
the literature but the solution of these issues should be further investigated to build
a robust and state-of-the-art SIM system. Of course, solution of these challenging

issues is addressed and forms one of the primary objectives in this dissertation.

2.1 Theoretical Foundations for Super-Resolution Structured

Illumination Microscopy

Super-resolution structured illumination microscopy (SR-SIM), two-dimensional
structured illumination microscopy (2D-SIM) or structured illumination microscopy
(SIM) [1, 64, 66, 71, 73, 83, 86, 111, 163, 194] is one of the super-resolution mi-
croscopy techniques using a wide field configuration. It has been very attractive
microscopy method in the literature recently. Indeed, super-resolution imaging with
structured illumination was firstly explored by Lukosz, see [100], then this method
was largely improved for a fluorescence microscope by Gustafsson, see [64]. The nov-
elty of this technique is to extend the resolution to the half of the Abbe’s diffraction

limit in the linear regime by structuring excitation light or modulating a scene.

Improvement in the spatial resolution actually arises from the moiré fringes where
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the product of the unknown scene pattern and the spatially structured excitation
pattern. These fringes, see Figure 2.1a, are much coarser than the other two pat-
terns, and hence higher frequency components in the scene are modulated into the
observable region or the optical transfer function (OTF) of a microscope objective.
This modulation causes overlapping of lower frequency components and modulated
higher frequency components on the observable region. The observable region of the
objective, of course, does not capture all of the higher frequency components of the
scene, see Figure 2.1b, In other words, some parts of the offset regions outside the
OTF is prevented from being recorded by the objective. To extract overlapped com-
ponents on the observable region and to place the higher frequency components to
their original position, we require to record a set of modulated images with multiple
phase transitions of the structured light. Then, these recorded images are executed
with an algorithm to reconstruct a super resolution image. To improve the spatial
resolution isotropically, the structured light is spatially rotated, and then modulated
and multiple phase-transitioned images are recorded, and finally these images are
executed to extract the higher frequency components of the scene and to place them
to their original position in the frequency domain. These steps are processed for each
rotation of the structured light. Adding up the contributions from all extracted and
placed frequency components for at least three rotations of the structured light, see

Figure 2.1c, provides us to improve the spatial resolution isotropically [52].

ky ky
(b) (c) F

Figure 2.1 The concept of the super-resolution structured illumination microscopy.
(a) Moiré fringes, the product of the unknown scene pattern and the spatially struc-
tured excitation pattern, are coarser than the other two patterns. (b) Representation
of the observable region or the OTF of the microscope objective (red circle), three
frequency components — DC and the first order — of the sinusoidally patterned illumi-
nation (blue dots) and the modulated higher frequency components (yellow circle).
(¢) Adding up the contributions of three rotated illumination patterns.

The concept of of the SIM can be analyzed further with the visualization of con-
volutional operations in both spatial and frequency domains — due to duality, see
Figure 2.2, [202]. This concept is also compared with mathematical operations in

conventional fluorescence microscopy. In the conventional microscopy, the scene
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is modulated with a uniform illumination in the spatial domain or the frequency
representation of the scene is convolved with the dirac delta function. The emis-
sion pattern is then convolved with the point spread function (PSF) of the imaging
optics. This operation corresponds to application of a low-pass filter to the fre-
quency distribution of the emission pattern. This causes to lose higher frequency
components or fine details of the scene. In the SIM, the scene is modulated with a
sinusoidal illumination — so called structured illumination — in the spatial domain or
the frequency representation of the scene is convolved with frequency components
of a sine function. So high frequency components are shifted into the observable
region of the objective lens. The PSF of the imaging system convolves the modu-
lated pattern in the spatial domain or the modulated pattern is filtered by the OTF
in the frequency domain. Hence, the higher and lower frequency components are
recorded together but they overlap in the frequency domain. These overlapped com-
ponents are extracted using the structured illuminations with at least three phase

transitions.
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Figure 2.2 The visualization of the some optical operations (from top to bottom) in
both spatial and frequency domains for conventional fluorescence microscopy (left
column) and SIM (right column) techniques. PSF and OTF denote the point spread
function and the optical transfer function, respectively.

Previously, the SIM technique is considered for the resolution enhancement in the
lateral direction. This technique can also be advanced to improve resolution in the
axial direction using only three mutually coherent light beams, i.e. -1,0,1 order
beams. This concept is known as three-dimensional structured illumination mi-
croscopy or 3D-SIM [38, 44, 53, 67, 164, 168]. In this technique, the axial resolution
is nearly extended to the half of the diffraction limit, and hence the resolution is
improved up to 300 nm. Three interference beams generate a three-dimensional si-
nusoidal pattern — that contains seven Fourier components — along the lateral as well
as the axial directions, see Figure 2.3, and this pattern interacts in the specimen,

which down-modulates the distribution of the specimen in the frequency space [44].
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Figure 2.3 The representation of the three-dimensional sinusoidal pattern on xy (the
first row) and xz (the second row) planes. Three orientations/rotations — 0°, 120°
and 240° from left to right — of the pattern on xy plane with their corresponding
xz plane are presented. The axial position of the pattern is fixed with respect to
the objective lens but the focal plane (indicated as yellow square on the xz plane)
moves along the z-axis.

To reconstruct a super resolution image in the 3D-SIM technique, the illumination
pattern should be shifted laterally five times. The interaction of these patterns
with the specimen generates five raw images. They are utilized in the reconstruc-
tion algorithm to extract higher frequency components of the emission distribution
and to place these higher frequency components to their original position in the
frequency domain. This provides an image whose resolution is enhanced axially
and laterally but in only one direction. To acquire an image whose resolution is
improved isotropically, the illumination pattern is also rotated at least three times
with respect to optical axis [67]. In other words, at least fifteen raw images are
required in the 3D-SIM technique to acquire an image whose resolution is extended
to the half of the diffraction limit axially, laterally and isotropically. Of course, this
operation provides a super-resolution image for only one z-plane. To reconstruct
three-dimensional super-resolution volume, the sample is stepped along the z-axis,

and fifteen raw images are recorded for each z-step.

Another issue related to the SIM technique is the the size of an OTF support
restricted by the microscope objective. A conventional OTF support is a donut-

shaped structured in the three-dimensional spatial frequency (k,, ky, kz), see Figure
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2.4a. The OTF has hole or missing cone along the k,, so the missing cone causes
out-of-focus structure problems in a conventional microscope image [138]. In 2D-
SIM or SIM, the spatial frequency along the z direction is not interested but the
lateral spatial frequencies, i.e. spatial frequencies along the k;, and k,, see Figure
2.4b. However, the missing cone problem also appears in SIM; in other words, the
out-of-focus structures also exist in SIM images. This problem can be eliminated by
illuminating the scene with a coarser pattern but this obviously sacrifices the lateral
resolution [130].

(b)

Figure 2.4 The representation of the observable region in the frequency space. (a)
The conversional optical transfer function (OTF). (b) The OTF for the structured
illumination microscopy using two illumination beams. (c¢) The OTF for the struc-
tured illumination microscopy using three illumination beams in only one direction.
(d) The OTF for the structured illumination microscopy using three illumination
beams in three sequential directions.

On the other hand, the missing cone problem can be solved with the 3D-SIM tech-
nique, see Figure 2.4c. The OTF supports are shifted in a way that the missing
cone is covered. Indeed, this results from the fact that these supports are not single
in 3D-SIM but the single OTF support exists in both the conventional and SIM
microscopies. Two transfer functions, which are the convolution of the OTF with
the axial function — further discussed in the next section — are cloned and shifted
(below and above the z plane) versions of the conventional OTF support. That is

way the 3D-SIM is the advanced version of the SIM technique, and it also extends

14



the lateral and axial resolutions to the half of the diffraction limit. In addition, the
illumination pattern should be rotated at least three times to acquire an isotropic

support and to to fill the side dimples of the support, Figure 2.4d, [67].

The last issue in SIM is that the diffraction limit can be further surpassed with
increasing excitation intensity that drives non-linearly. This method is known as
saturated structured illumination microscopy (SSIM) [65, 74]. It exploits photo-
switchable fluorochromes — have abilities to retain their on and off states quite
a while, so high excitation intensity is performed to get high harmonic frequen-
cies in the frequency space. This allows us to expand the frequency space further
that means finest structure of the scene can be reconstructed. The scientists, see
[150], achieved 50nm lateral resolutions in images of dye-filled polystyrene beads
and actin cytoskeleton by performing the SSIM. In these investigations, of course,
high excitation intensity is utilized but high intensity can damage living specimens
(photo-toxicity) and accelerate photobleaching [52]. However, the SSIM technique is
beyond the scope of this dissertation. We only consider 2D and 3D SIM techniques
in the linear regime, so we stopped here. In the next section, the mathematical

details of linear SIM technique are reviewed.

2.2 Numerical Analysis for Super-Resolution Structured Il-

lumination Microscopy

Principle algebraic operations such as multiplication and convolution play a fun-
damental role to build the SIM technique in a mathematical manner. Here, these
operations are reviewed through each optical element in a SIM configuration but
the extended version of the mathematical operations can be found in [90]. The light
source in SIM is different than the conventional wide filed microscopies. In the SIM,
a sinusoidal illumination pattern I(r) is generated because of two beam illumination,

and this can be mathematically presented as

I(r) =1+2mcos(2rp-r+¢) (2.1)

where r is lateral Cartesian coordinates, i.e. r = (x,y), m is a modulation factor, p is
the frequency vector of the illumination pattern, i.e. p = (pcos(0), psin()) — where
0 denotes the orientation of the illumination pattern, and ¢ is the phase transition.

The multiplication of the illumination pattern I(r) and the fluorochrome density
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distribution S(r) provides the fluorochrome emission distribution E(r), namely that
E(r) =1I(r) S(r). The optical elements in the SIM configuration diffract the emission
distribution by the point spread function (PSF) P(r). So the E(r) is convolved with

the PSF, and hence the observed emission distribution D(r) is formed

D(r) = E(r)®@P(r)+ N(r) =[I(r)S(r)]® P(r) + N(r) (2.2)

where ® is the convolution operation, and N(r) is additive white Gaussian noise
AWGN. This statement is equivalent in the frequency or reciprocal space to the
multiplication of the optical transfer function (OTF) O(k) — matches the PSF in the
spatial domain — and the frequency distribution of emission E(k) — where k denotes
frequency position. In addition, as known from the signal theory, the convolution
operation in the spatial domain is the multiplication operation in the frequency

domain or vice versa.

D(k) = E(k)O(k) + N(k) = [I(k) ® S(k)]O(k) + N (k) (2.3)

This equation can further expanded by replacing mathematical expression of the
illumination pattern in the first equation with the equation of D(k). So, the last

equation becomes

D(k) = [S(k) +mS(k —p)e’® + mS(k+p)e7?|O(k) + N (k) (2.4)

This claims the distribution of the observed emission in the frequency space D(k)
is formed as; distribution of the fluorochrome densities in the frequency space S (k)
is shifted and centered at the origin of —p and p, i.e. S(k—p) and S(k+p); then
these shifted components and the S (k) are filtered by the OTF; this product is
added with AGWN N (k).

The SIM raw images are recorded by playing with the rotation and the phase of
the illumination pattern. Three phase transitions, i.e. ¢1 = 0°, ¢o = 120° and ¢3
= 240°, are usually utilized, and the distribution of the specimen is changed with

these three phase transitions. So the distribution of the observed emission becomes

1 mel?l me=iol S(k)O(k) ]\7¢1 (k)
Dgo(k)| = |1 mel?? me 92| | S Ok)| + N¢2(k)
1 mei® me 93| | S
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These distributions for three phase transitions provide resolution improvement in
only one direction. So the illumination pattern is rotated at least three times to get
a super-resolution image whose lateral resolution is improved isotropically. This and
other issues are expanded, and a reconstruction algorithm for the SIM technique is

presented in one of the following sections.

In 3D-SIM, a three-dimensional sinusoidal illumination pattern I(x, y, z) is gener-
ated along the lateral r and the axial z directions — or three coordinates d = (x, y,
z) — because of three mutually coherent diffracted beams of orders 0 and +1. The

intensity distribution of the illumination pattern is formed mathematically as

I(I‘,Z) = (E_1+E0+E1)(E_1+E0+E1)* (2.5)

where E_1, Eg and E; are the electric fields of each diffraction orders. The electric
field with a unit amplitude assumption can be formulated with respect to each

diffraction orders as

E_; =P_jexp(j(—cosbsinfx — sinfsinfy + cosfz).d) (2.6)
Eo = Poexp(jz.d) (2.7)
E1 = Piexp(j(cosbsinfx + sinfsinfy + cosfz).d) (2.8)

where P_1, Pg and P are the polarization vectors, # denotes the orientation of the
illumination pattern and (8 is an angle between the zero-order beam and one of the
side beams or first order beams. The polarization vector is perpendicular to the
propagation vector. Here, we consider two types of polarization states: fixed linear
polarization and circular polarization. The polarization states for the fixed linear

polarization are

P_1 = cosfsinf(cosp — 1)x + (sin*0cos + cos*0)y + sinfsin Bz (2.9)

Py=y (2.10)
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P1 = cosfsinf(cos — 1)x + (sin*Ocos + cos*0)y — sinfsinfz (2.11)

The polarization states for the circular polarization are described as

P_;= L [cosOsinf(cos — 1)x + (sin*0cos + cos>0)y + sinfsinz]
V2 (2.12)

_\ii [(cos®Ocos 3+ sin®0)x + cosBsinf(cos — 1)y + coslsin Bz
Py— [y jx (2.13)

= ——[y—jx :
0 /2 y—J

P, = 1 [cosBsinf(cosf —1)x + (sin*0cos + cos*0)y — sinfsinfz]

\/.§ (2.14)

~ L [(cos*Bcos B+ sin0)x + cosfsinb(cos — 1)y — cosfsinz]

V2

The intensity distribution of the illumination pattern for each fixed linear polariza-
tion and the circular polarization can be calculated using the previously described
electric fields and polarization vectors. They are not presented here, but the cover-
age of the polarization states and intensity distributions for each state can be found

in an article by Huang et al., see [81].

The three beams generate three-dimensional sinusoidal pattern. This concept is
demonstrated above, and the extension version of this demonstration is provided.
Here, generation of the observed emission distribution D(r) for 3D-SIM is discussed.
The coverage is based on the reviews of the article by Gustafsson, see [67]. The

illumination pattern consists of axial and lateral functions, so it is described as

I(r,2) =) In(2) Jm(r) (2.15)

where r is lateral Cartesian coordinates, i.e. r = (x, y), m denotes the number of
lateral spatial frequency — five for 3D-SIM, I,, and .J,, respectively are axial and

lateral functions. Indeed, the lateral function is a harmonic wave, so

Jm (1) = exp(j (2 (mp)r) +me) (2.16)
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where p is the frequency vector of the illumination pattern and ¢ denotes phase

transition. This function can be transformed into the frequency space, so

Jm (k) = 6(k —mp)exp(me) (2.17)

where k is frequency position. Indeed, the lateral function shifts the distribution
and adds phase to it in the frequency space when the lateral function is multiplied
with it. In addition, the axial function I, or axial part of the pattern multiplies
with the PSF because the illumination pattern fixed with the focal plane of the
microscope. Hence, the observed emission distribution D(r) in the spatial domain

can be mathematically described as

D(r) = _(P(r)In(z)) @ (S(r)Jm(r)) (2.18)

where P(r) is the PSF and the density distribution of fluorescent dye is described
with S(r). The observed emission distribution in the frequency space D(k) can be
defined as

D) = 3 Du(k) = 3 0(K)S (k= mp)eap(jmo) (2.19)
m m
where Oy, (k) is the transfer function, which is the convolution of the conventional
OTF O(k) and the axial function in the frequency space I, (k), i.e. O (k) = O(k)
@® In(k). D(k) is formed with the application of the transfer function for each
m lateral frequency components O,,(k) to the laterally m times shifted spectrum
distributions of fluorescent dye S(k —mp) with exponential multiplication of the m
different phase transition term exp(jme). Three transfer functions — O_2, Og and
O9 — are actually the conventional OTF support, i.e. O(k), but other two transfer
functions — O_; and O; — are cloned and shifted (below and above the z plane)

versions of the conventional OTF support.
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2.3 Super-Resolution Structured Illumination Microscopy

Configuration

The illumination pattern in the SIM technique is usually generated by a fixed diffrac-
tion grating [188], a spatial light modulator (SLM) [30, 54, 76, 87, 98, 169] or a digital
micromirror device (DMD) [33, 211]. Early SIM configurations were based on the
diffraction grating. The illumination pattern is rotated and translated mechani-
cally when the diffraction grating is used. This negatively influences the acquisition
speed for living cells. In addition, a polarizer is need to corotated with the grating to
maintain the s-polarization state, which provides high contrast, in the illumination
pattern. Fortunately, SLM based SIM configuration achieved to acquire SIM raw
images. SLM electronically rotates illumination patterns within less than one sec-
ond rather that rotating patterns mechanically, and also polarization state is faster
rotated with liquid crystal waveplates [53]. In addition, DMD based SIM configura-
tions become popular recently. The configurations have been diversifying, and the

SIM system is becoming more robust.

Here, we review a SLM based configuration for the SIM and 3D-SIM microscopies,
see [98]. The difference between these two microscopies is that the latter one uses
only three diffraction beams to form a three-dimensional illumination pattern but
the former one constructs a two-dimensional pattern by eliminating the zero order
diffraction beam or by utilizing the first diffraction beams alone. The other optical
elements are nearly same in both types of microscopies. In the setup showed in
Figure 2.5, the SLM, which displays a periodic phase pattern, is exposed to the
partially incoherent and polarized excitation laser light, and hence the light source
is diffracted into different orders. The polarization of the diffraction beams is trans-
formed into the circular polarization by a quarter-wave plate (QWP). Then, the
first diffraction orders for 2D-SIM or the first and zero diffraction orders for 3D-SIM
are selected by a rotating mask or a fixed passive Fourier filter. An azimuthally
patterned polarizer is utilized to get high contrast in the sample plane. Then, the
light source is directed using a set of optical elements like lenses and a dichromatic
mirror, and the diffraction beams are focused onto the pupil plane of the microscope
objective. These beams interference on the sample plane, and the distribution of
the observed emission is reflected back to the dichromatic mirror, where the ob-
served emission is directed towards a recording camera after it is passed through the

emission filter.
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Figure 2.5 The schematic diagram of the SLM based SIM configuration. The par-
tially incoherent and polarized excitation laser light is projected onto the SLM.
Three (3D-SIM) or two (2D-SIM) diffracted beam orders are collected by a rotating
mask. These beams are focused onto the back focal plane of the objective lens after
polarization of them are adjusted. These beams are interacts with the sample, and
the emission light is directed to the camera. Some of the optical elements in the con-
figuration are simple lenses (f1, 2, f3 and f4), quarter wave plate (QWF), emission
filter (EF), passive Fourier filter (PFF), azimuthal polarizer (AP), charge-coupled
device (CCD) camera.
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2.4 The Fundamental SIM Reconstruction Algorithm

Here, one of the fundamental reconstruction algorithms for each SIM, see [71], and
3D-SIM, see [67], is discussed. In the SIM technique, one requires at least nine raw
images — three phase transitions/shifts for each three rotations — to reconstruct a
super-resolution image. In the algorithm, the pattern spatial frequency is assumed to
be known a priori and stationary for each raw images. For each rotation, the pattern
phase shifts are equally spaced and also stationary. Under these assumptions, the
reconstruction algorithm gets three phase shifted raw images and generate an image
G(k) with a single delta function in the frequency domain. The details for the

algorithm can be found in [71] but the generated image is briefly calculated as

G(k) = Dor(k) = D ¢é(k) —Ds(k) | jD¢2(1;)ﬁ£¢3(k)

where [)4)1 (k), D¢2(k) and D¢,3(k) are the the spectrum of the observed emission

(2.20)

for each phase shifts, ¢1, ¢2 and ¢3 denote phase shifts. The main processes of the

reconstruction algorithm are firstly to acquire an image with a single delta function
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in the frequency domain executing three phase shifted raw images; secondly to
shift the frequency spectrum of the acquired image to its original position in the
frequency domain; thirdly to calculate the complex conjugate of the shifted image
in the frequency domain; eventually to merge the spectrum of the shifted and the
conjugated images. These processes are of course executed for only one pattern
rotation but they are repeated for the other two rotations. In this way, the merging
of the frequency components extends the spectrum with a two fold isotropically, and
the inverse Fourier transform of the extended spectrum provides a super-resolution

image in the spatial domain.

In the 3D-SIM reconstruction algorithm, one requires at least fifteen raw images
— five phase transitions/shifts for each three rotations — to reconstruct a super-
resolution image. Initially, the reconstruction algorithm gets five phase shifted raw
images and generate an image G (k) in the frequency domain. The details for the

algorithm can be found in [67] but the generated image is briefly calculated as

St | O (k+m'p") |2 + w?

A(K) (2.21)

where m denotes the lateral frequency components (m = {—2,—1,0,1,2} for 3D-
SIM), D, (k) is the the spectrum of the observed emission for each phase, w? is the
constant Wiener parameter, and A(k) denotes apodization function — similar to the
extended OTF support. The processes in the algorithm in 3D-SIM are similar to the
processes in the previous algorithm. Indeed, these processes are firstly to acquire an
image in the frequency domain executing five phase shifted raw images; secondly to
shift the frequency spectrum of the acquired image to its original position in the fre-
quency domain; eventually to merge the spectrum of the shifted images. These steps
are of course executed for only one pattern rotation but they are repeated for the
other two rotations. In this way, the merging of the frequency components extends
the spectrum with a two fold isotropically in both lateral and axial directions, and
the inverse Fourier transform of the extended spectrum provides a super-resolution

image in the spatial domain.
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2.5 Issues in Super-Resolution Structured Illumination Mi-

Croscopy

The cost of the super-resolution structured illumination microscopy technique results
from a need for recording a number of raw images to reconstruct a single frame
super-resolution SIM image. This requirement causes two significant results; the
fluorescently labelled biological specimens are exposed to excitation light over a
long period of time — that leads to photobleaching — [39], and recording dynamic
processes like high speed moving objects are limited — that causes artifacts in the

reconstructed image [77, 209].

To record the dynamic processes of living cells, the acquisition speed was increased in
some degree by using a spatial light modulator (SLM) instead of a diffraction grating
[30, 73]. However, recording SIM raw images in high speed is restricted by the
read-out time or the exposure time of a camera like scientific complementary metal-
oxide semiconductor (sCMOS) camera [168, 198]. In addition, reducing excitation
intensity to avoid photobleaching increases not only read-out time but also noise
level in raw images — that causes lower signal-to-noise ratio (SNR). Of course, low
SNR is not desirable in a super-resolution image because noise may result false
indications about the specimen. A sCMOS camera usually exhibits mixture of two
types of noises — read-out noise and shot-noise. The former one can be modeled with
a Gaussian distribution but the latter one has a Possion distribution [29]. During
the SIM reconstruction, these noises are generally considered separately, namely
only for Poisson noise [174] or only for Gaussian noise [84, 99, 119], or together, i.e.

the mixture of these noises [29] — due to the study of Huang et al. [80].

These issues should be taken into consideration during building a state-of-the-art
SIM microscopy. These challenges are tried to be addressed in this dissertation, and
designing a SR-SIM system, which has higher SNR reconstructed images (robustness
to noise), further increased acquisition speed (lower image acquisition duration) and
lower photobleaching impact on the fluorochromes (reduced exposure intensity), is
one of the primary objectives in this study. Proposed solutions of these challenging

issues and other contributions to the SIM system are addressed in the later chapters.
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3. THE COMPRESSED SENSING FRAMEWORK

In this chapter, the compressive sensing or CS theory is presented. In the first sec-
tion, the conventional sampling procedure or Nyquist-Shannon sampling paradigm
is described. We see compressibility features of signals with an example for a three
channel image. The CS framework is introduced with some issues such as designing
a sensing matrix and determining the dimension of a measurement vector. In the
second section, the CS recovery algorithms based on relaxation and greedy pursuits
are presented. It is seen the relaxation pursuit is a Basis Pursuit (BP) optimization
problem. Then, some greedy pursuit algorithms are introduced. These are Matching
Pursuit (MP), the Orthogonal Matching Pursuit (OMP), the Iterative Hard Thresh-
olding (IHT) and the Compressive Sampling Matching Pursuit (CoSaMP). In the
third section, CS applications in imaging — such as magnetic resonance imaging
(MRI), radar imaging, ultrasound imaging and computed tomography (CT) — with
their technical background are described. Eventually, CS applications in optics are
examined. The compressive optical applications are divided mainly into three cat-
egories: single pixel camera architecture, compressive holography and compressive
microscopy techniques. We do not discuss on compressive microscopy techniques
in this chapter, but these techniques are mainly compressive confocal microscopy
[207], compressive fluorescence microscopy [175], and stochastic optical reconstruc-
tion microscopy (STORM) [212].

3.1 Concept of Compressed Sensing

In the signal processing theory, the Nyquist-Shannon sampling paradigm claims
that a band-limited analog signal can be entirely reconstructed from its uniform
time-spaced measurements when the sufficient sampling rate is fulfilled. This rate
should be taken at least twice the highest frequency of the continuous-time signal,
i.e. the Nyquist rate [124, 167]. This theorem has fired digitalization that most of

the acquisition and processing systems have been adapted to the digital domain. So,
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these digital systems have become more powerful, flexible and cheaper. However,
high sampling rate has been demanded within the digital improvements but this
has caused to storing and processing too many samples, and also this have made

impossible to build devices that are capable to acquire entire samples [191].

To address storage and computational challenges for high dimensional data, signal
compression, which is a representation of a signal in a concise manner, can be consid-
ered. One of the signal compression methods is transform coding. This method aims
to find a certain basis that transforms signal into compressible or sparse representa-
tion [19, 37, 47]. Sparse representation means that a signal can be represented with
k non-zero weights, i.e. much lower dimension than the signal’s dimension, while
compressible representation means that the signal can be exactly reconstructed with
these k non-zero weights. Storing the locations and values of the k non-zero weights
forms the transform coding techniques such as JPEG, MPEG and MP3 standards
[48].

Signal compression concept is imitated to build compressed sensing (CS). CS the-
ory states that perfect reconstruction of a signal can be performed with far fewer
measurements unlike the Nyquist-Shannon sampling theory. This enables us to
significantly reduce sampling rate when the signal of interest has a sparse represen-
tation. In other words, CS theory based on sensing data at a lower sampling rate
or in a compressed form instead of a concept, which is firstly sampling data at a
higher rate and then compressing the sampled data. Donoho, Candes, Romberg and
Tao have maturated the CS, and they demonstrated that a finite-dimensional signal
can be recovered from non-adaptive incoherent measurements when the signal has

sparse representation in some orthonormal bases [5, 7, 22, 23, 24, 25, 27, 41].

Actually, the theoretical improvements since the 18th century have underlain the
CS concept. In 1795, an algorithm was recommended by Prony to estimate the
parameters of the sampled complex exponentials. The next theoretical improve-
ment was achieved by Carathéodory in the early 20th century that a positive linear
combination of k sinusoids can be defined by its value at time of origin and at any
other 2k points in time. This causes the fact that fewer measurements rather than
Nyquist sampling rate is sufficient to recover the signal of interest when k is small
[48]. In the late 20th century, several scientists evaluated this work in the sense
of sparsity [61, 62, 89, 147], and also during this time other researchers suggested
a sampling method to obtain the signal consisting of k elements even though pure
reconstruction is not sufficient [18,; 50, 187]. Eventually, scientist in the early 21st
century purposed a sampling scheme to sample and recover certain class of signals

from only 2k samples [189].
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The modern pioneers, who are Donoho, Candes, Romberg and Tao, showed exactly
recovering a signal from few measurements when the signal has sparse representation
in some orthonormal bases. They claimed that one could sense a sparse signal
by taking fewer samples - so called compressed sensing. CS is different than the
conventional sampling scheme in three ways. In the conventional method, signals
are continuous-time and infinite-length, signals are sampled with uniform intervals,
and recovery is performed through sinc interpolation. In CS technique, on the other
hand, finite-length signals are measured, measured signals are acquired with the
inner product of sampling functions and signal of interest, and recovery of signals

can be achieved through non-linear recovery algorithms.

CS theory is established on finite-dimensional and discrete signals as vectors in
an n-dimensional Euclidean space, denoted by R. Norms are used to quantify
the magnitude of an error. Suppose that a signal, z € R2 , R2, is given, and it
is approximated in one-dimensional affine space A, and also the estimated signal,
T € A, is also provided in that space. The magnitude of an error can be quantified
by using a [, norm, and minimizing of ||Z — z||, is the main task. . The error itself
is directly affected by the choice of p. This is illustrated in the Figure 3.1 that the
length of the intersection of the points are different for each norm. In addition, it
is seen that sparsity is dominant when smaller p is used. This plays a fundamental

role in the CS theory, and it can be expanded to the higher dimensional spaces [48].

Figure 3.1 Estimation of a two-dimensional signal, z € ®2, in a one-dimensional
space using the /[, norms when p is 0.5, 1, 2 or oo.

CS theory is interested in sparse signals but all natural signals appear to be non-
sparse ones. However, most signals have sparse representation in some bases. A real
valued basis consists of a set {¢;}I"; that a signal, z € R", is represented by the

linear combination of the basis and unique weights of the signal {¢;}" ,

T = Zn:Cicbi (3.1)
i=1
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The previous summation is represented below as a simple matrix multiplication.
Here, ® indicates the n-by-n matrix, whose columns are constructed by ¢;, and also

n-length vector c is built by the coefficients of ¢;.

r=®c (3.2)

Weights of the signal can be easily calculated when the basis is an orthonormal basis
that ®®T = I,, = ®T'®, where I,, indicates the n-by-n identity matrix. The weights
of the signal simply is

c=oTz (3.3)

A signal, © € R", is called k-sparse when the most k non-zeros is measured as
||z]lo < k. Addition, the set of all k-sparse signals is indicated as > = {x : ||z|lo <k,
and the number of k is extremely less than the dimension of the signal that k < n.
As mentioned before, most of the signals are not sparse naturally but they have
sparse representation in some bases — ®. The signal x is again k-sparse, but k

non-zeros is measured as ||c||o < k rather than the signal itself [48].

Sparsity is one of the main research areas in the signal processing theory. The
examples are denoising [40], compression [37, 137, 179], statistical estimation and
model selection [180, 181], human visual system [126], image processing such as
multi-scale wavelet transform [109]. When a regular image is transformed using a
multi-scale wavelet transform, the image becomes nearly sparse, see Figure 3.2. The
transformed image is nearly sparse because most of the coefficients are not exactly
zero but very small. However, the small coefficients can be set to zero or large
coefficients can be kept — thresholding, to acquire a k-sparse signal. This is very
good option to approximate the signal of interest, see Figure 3.3. This approximation
does not determine that which coefficients will be set to zero. The choice of which
coefficients to be set to zero depends on from signal to signal. This is an example

for the non-linearity [37].
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(c) (d)

Figure 3.2 A RGB image (a) and its Haar wavelet transform for red (b), green (c)
and blue (d) channels. The image is not sparse but its wavelet transforms for each
channel are sparse.
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Figure 3.3 A RGB image (a) and its sparse approximation (b). Approximation
is performed keeping ten percent of the largest Haar wavelet coefficients for each
channels, and then the channels are merged together to get an approximated RGB
image.

In the CS theory, far fewer measurements are enough to perform perfect reconstruc-
tion of a signal, z € R". The sensing system gets m linear measurements and builds

measurement vector, y € R'™. This can be considered mathematically as

y=Ax (3.4)

where A is an m-by-n matrix and called sensing matrix or dictionary in some con-
cepts. The number of m is much smaller than the signal length, m < n. In the
previous equation, the signal of interest is considered as sparse signal, i.e. much of
the weights are zero or nearly zero. When the signal is not sparse naturally, it has
to be represented in a basis, ® € R that makes the signal sparse. This is men-
tioned previously but this is again expressed mathematically as x = ®c¢. The sensing
matrix consists of the product of a measurement matrix and the basis. The size of
the measurement matrix, ¥ € R is same as the sensing matrix. Mathematically

speaking this can be expressed as

A=Ud (3.5)

The only change of the former equation is that non-sparse signal x is changed with its

sparse representation, i.e. n-length vector ¢, by using a transformation. Intuition for
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CS by sensing matrix, measurement vector and sparse signal is illustrated in Figure
3.4. In the graph, it is obvious that sparse signal has only small number of valuable
weights but most zero weights. So linear combination of few atoms — columns —
in the dictionary builds the measurement vector. This is the main perspective for
the sparse signals [48]. Addition, the dimension of the signal is reduced using the
sensing matrix. In other words, high-dimensional signal can only be formed by
a few elements. The row number is equal to the dimension of the measurement
vector. The number of row is fixed and not signal dependent, so measurements are

non-adaptive.

Measurement

ensing Matrix

Sparse Signal

Figure 3.4 CS intuition. The dimension of the sparse signal is highly reduced using
the sensing matrix, and the number of row of the sensing matrix equals to the length
of the measurement vector.

The sensing matrix and measurement vector are known a priori, and recovery of
the sparse signal is one of the main questions in CS. Other questions are designing
procedure for the sensing matrix and defining the number of measurements — m.
Recovery methods are examined a few pages later but now the designing of the

sensing matrix is analyzed before defining measurement length.

The performance of the recovery algorithms is directly related to designing of the
sensing matrix. Sensing matrix must satisfies the restricted isometry property (RIP).
This is introduced by Candes and Tao, see [26], and this condition is guaranteed
when error and/or noise affects the measurements [48]. The condition can be defined

as

(1=0p)llz (13 < | Az[|3 < (1+ ) [l2]I3 (3.6)

where d; € (0,1) is a constant number, and ||.||2 denotes the l norm. When the
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sensing matrix satisfies this condition, it can be stated that sensing matrix keeps
the distance of any k-sparse vectors. Hence, this provides robustness to the disorders

in the measurements, i.e. noise and error [48].

The coherence of sensing matrix, p(A), another design condition that the perfor-
mance of the recovery algorithms, see [42, 182], measures the largest correlation
of any two columns in the sensing matrix A [43]. This measure can be defined

mathematically as

u(A) = 1£3én| < aj,a; > | (3.7)
RIP, coherence and other possible conditions in building a sensing matrix A can
be satisfied when the sensing matrix is constructed with random entries. These
entries can be independent and identically distribution (i.i.d.) such as Bernoulli or
Gaussian distribution [4, 148]. Randomness equalizes the measurements meaning
that same amount of energy is distributed to each measurement [35, 91]. Hence,
measurements become to be robust to the corruption or loss of the measurements
[48]. In addition, we assume that the signal x is already sparse. If not, it has to
be a sparse representation in a basis. In this scenario, the sensing matrix A is the
product of the measurement matrix ¥ and the representation basis ®. The coherence

between these two matrices, see [28], is measured like the previous one that

(Y, @) = max | <vi¢;> | (3.8)

High correlation results from the correlated elements of ® and ¥ matrices. The lower
correlation is possible when these matrices do not have any correlated elements.
However, the correlation is in a range [1,4/n]. High coherence is not desired in
CS theory [28]. Fortunately, maximal incoherence is fulfilled when the measurement
matrix which constructed with random entries, and appropriate representation basis
are used. For instance, the coherence is v/2 when ¥ and ® can be noiselets and the
Haar wavelets, respectively. Measurement matrix is constructed from independent
identically distributed (i.i.d.) entries such as Gaussian or Bernoulli displays again
low coherence with a fixed @ [28]. In addition, RIP condition is satisfied surprisingly
when the measurement matrix has i.i.d. entries. One can demonstrate that the

sensing matrix A has again Gaussian entries when Gaussian entries are utilized to
build ¥ with a fixed ® [48].

Defining the number of measurements or dimension of the measurement vector an-

other issue in CS. Defining the measurement length is straightforward when the
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sensing matrix is constructed from random entries and obeys the RIP condition.

The dimension of the measurement vector, see [28], is defined as

m > C.klog(n/k) (3.9)

where C is a positive constant, and k is the most non-zeros in the sparse signal.
Until now, the sensing matrix is designed providing RIP and coherence conditions,
and a simple equation is supplied to define measurement dimension. Hence, the

other concern in CS, non-linear recovery algorithms, can be discussed now.

3.2 Fundamental Compressed Sensing Reconstruction Algo-

rithms

In the CS theory, measurement vector dimension is obviously much smaller than the
dimension of a signal. This means that the number of unknown equations is less than
the number of variables (unknowns). Therefore, a special kind of algorithms has been
developed for the solution to underdetermined system of linear equations. Those are
non-linear recovery algorithms, and there exist numerous of them in the literature.
The most of them are known as pursuit algorithms, and the word of pursuit goes
back to the third quarter of the last century [108]. Various pursuit algorithms have
been developed recently. It is not possible to review all of them here but a few of
the most widely known algorithms are revisited. These algorithms can be divided
into two subcategories: greedy and relaxation pursuits. Several greedy methods
such as the Matching Pursuit (MP), the Orthogonal Matching Pursuit (OMP), the
Iterative Hard Thresholding (IHT) and the Compressive Sampling Matching Pursuit
(CoSaMP) are reviewed after the relaxation pursuit — the Basis Pursuit (BP) — is

evaluated.

3.2.1 Basis Pursuit

We are interested in compressible or sparse signals for the CS theory, and a com-

pressible signal can be easily transformed into a sparse signal using a transform
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coding. However, a signal here is considered as a sparse signal for the remainder for

the CS chapter. By using this knowledge, we can build a recovery algorithm.

A recovery algorithm takes the measurement vector y and the sensing matrix A as
inputs and it knows the signal x is sparse. Estimating sparse signal x is basically an

optimization problem, and this can be represented as

& =min ||z subject toy = Az (3.10)

In this problem, the measurements are noise free and not corrupted by an error.
When the measurements are corrupted by a bounded noise, i.e. y = Az +n and

|In|l2 < e, the previous optimization problem becomes as

izm&jonHo subject to ||Az —yl|l2 <e (3.11)

Both the optimization problems seek the sparsest x that is in agreement with the
measurements [48]. However, solution of the optimization problems is computation-
ally intractable or NP-hard due to non-convex solution of ly —norm [108]. Relaxation
or smoothing for this kind of challenging optimization problem is required. Replac-
ing of Iy —norm with its convex approximation /; —norm can smooth the non-convex
optimization problem. When the bounded noise is also taken into consideration, the

optimization problems becomes as

& =min|z[l subject to [|[Ax —ylla < e (3.12)

This is actually [} —minimization problem or Basis Pursuit (BP), and this is a well-
suited approximation method for both noisy or noise-free sparse signals, see Figure
3.1. There exists an equivalent but unconstrained version of the last optimization
problem in the literature [9, 51, 56, 128, 197, 205, 208] such that

& =min0.5| Az —y|3+ Al (3.13)

Here, a regularization term is utilized to penalize large coefficients in the reconstruc-
tion; thus it minimizes noise amplification [151]. So, there is a matching between the
regularization parameter A and bounded noise € — hence presents same optimization
result — but this matching is A and b dependent. Therefore, the choice of A is one
of the main considerations in this type of optimization problem. Studies to choose
an appropriate A can be found in [49, 57, 60].
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For the solution of the constrained and unconstrained I} — minimization problems,
there exist numerous recovery algorithms as linear programming solvers in the lit-
erature. We cannot present all of them here but the interested readers can refer to
[9, 10, 180, 204, 208] for the compressive review of some recovery algorithms. These
algorithms are the solution of the lj — minimization problem, and these are the
Least Absolute Shrinkage and Selection Operator (LASSO) [180], the Alternating
Directions Method (ADM) [204], the Iterative Shrinkage Thresholding (IST) [208],
the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [9], and the Fast and
Accurate First-Order Method for Sparse Recovery (NESTA) [10].

3.2.2 Greedy Pursuit

The algorithms of the I} — minimization problem suffer from computational cost
due to high scale real-world applications [203] although they are powerful tools to
recover a sparse signal. Alternatively, greedy algorithms, which depend on iterative
estimation of the signal and support, work better when the signal is sufficiently
sparse. A greedy algorithm iteratively defines the support or iteratively recovers the
best-estimated signal until a convergence criterion is met [48]. However, estimation
accuracy of a greedy algorithm weakens due to high number of non-zero entries in
x [140]. Although the recovery guaranty of the greedy methods is not as strong as
recovery accuracy of the BP optimization algorithms, greedy methods are power-
ful algorithms in the CS due to their discrete nature, simple implementation and

computationally fast nature [48].

It is impossible to survey all greedy pursuits but most widely known greedy al-
gorithms can be considered here. These are as the Matching Pursuit (MP), the
Orthogonal Matching Pursuit (OMP), the Iterative Hard Thresholding (IHT) and
the Compressive Sampling Matching Pursuit (CoSaMP). Although there are various
greedy algorithms in the literature, the family of greedy algorithms interest same
two principles — weight update and support choice. Sensing matrix and measure-
ments are usually inputs of all greedy algorithms, and the estimated signal z and
the support set S are usually initialized as a zero vector and null set, respectively.
The support set indicates the indices of the nonzero entries in the estimated signal.
Due to a zero vector is assigned to the initial estimated signal, the initial residual
vector is equals to measurements, i.e. ¥ =y — Az = y where 70 and z¥ denote the
initial residual and estimated signal, respectively. The estimated signal is updated

by building the support set S at each iteration and hence the residual is decreased.
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Summarized version for the Matching Pursuit (MP) algorithm [110] is shown in
Algorithm 1. In the algorithm, the multiplication of the sensing matrix and the
residual vector is performed first after the initialization step. This multiplication
provides us a vector g, whose dimension is same as the measurements. Then, we
seek an index that points the maximum value in g. This index is used to indicate
the coefficient of the estimated signal to be updated. The estimated signal for the
indicated coefficient is calculated by adding the previous coefficient of the estimated
signal and maximum value in g. This reduces the estimation cost ||y — A2%||3. In
the last step of the algorithm, the residual vector is updated for the next iteration.
This process described for MP algorithm is iteratively repeated until the residual

converges to the zero or another stopping criterion is met.

Algorithm 1: Matching Pursuit (MP)
Data: A and y

Result: 7 and 7t

Initialization: 2% =0 and r¥ = y;

for i = 1; i++ until the stopping criterion is met do
gi = ATyi=1.

J* = argmaz;|gi|/ || Ajll2;

A7 A 71 -

=25 495/ I14;13:

rt=rt = Ajg /|| A3

The MP repeatedly selects the same index — points the maximum value in g — to
reduce the estimation cost. This cannot be desired property for a sparse recovery
algorithm; therefore, the Orthogonal Matching Pursuit (OMP) algorithm [36, 135]
is proposed. The OMP finds unique supports and does not use the same support
again in the next iterations because the residual is always orthogonal to the selected
supports. In the algorithm, Algorithm 2, the vector g is again calculated as in the
MP algorithm after the initialization step. This index, which points the maximum
value in g, is utilized to build the support set S. The support set is utilized to build
a matrix A, whose columns are picked from the columns of A. The picking order
of the columns of A is directly related to the support set. The matrix A; must be
updated after each cycle because the support set enlarges after every iteration. So,
this recursive method minimizes the estimation cost ||y — A%||3 and converges the
residual to the zero. The OMP algorithm is iteratively repeated until the residual
is almost zero or another stopping criterion is met. The drawback of the OMP is
that it is usually computationally cost when a high dimensional data is used, and
the recovery of the signal sometimes dramatically takes a lot of time because of the

high-scale data.
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Algorithm 2: Orthogonal Matching Pursuit (OMP)
Data: A and y

Result: 7 and r*

Initialization: r% =7 and S =10 ;

for i = 1; i++ until the stopping criterion is met do

gi = ATpi-1,
J* = argmaz;|g;|/ || Ajll2;
Si — Sifl Uji;
it = (AT A1 ATy,
| rt=y— Az’

The MP and OMP algorithms have weaker recovery accuracies than the convex
relaxation methods while these greedy pursuits are highly fast algorithms. However,
thresholding type greedy algorithms eliminate the accuracy problem of the MP and
OMP algorithms. They are also highly fast and easy to implement algorithms [48].
We examine only two thresholding type greedy algorithms — the Iterative Hard
Thresholding (IHT), see [15, 21, 141], and the Compressive Sampling Matching
Pursuit (CoSaMP), see [122].

The IHT algorithm, seen in Algorithm 3, gets the measurements, the sensing matrix,
the step size p and the sparsity level k as the inputs. The user defines the p and
k parameters. The main computation of the IHT is the multiplication of vectors
by the sensing matrix and the hard thresholding operation. The hard thresholding
operation Hy(x), which is a nonlinear method, keeps the largest k entries for x and
sets the rest of the entries to zero. Hence, the algorithms is very easy to implement
and highly fast.

Algorithm 3: Iterative Hard Thresholding (IHT)

Data: A, y, k and p

Result: 2

Initialization: 2Y;

for i = 1; i++ until the stopping criterion is met do
| & = Hy(@ o+ pAT (y — Ad));

The Compressive Sampling Matching Pursuit algorithm is provided in Algorthm
4 as a thresholding type greedy algorithm. In the algorithm, the sensing matrix,
measurements and the sparsity level are driven as inputs. In the initialization, the
hard thresholding operation Hj — explained previously — is utilized to define the
support set S Here, supp(z) denotes the non-zero entries of x or the support of
X, i.e. supp(x) = {i;x; # 0}. In the iteration cycle, the vector g is calculated as
in MP and OMP algorithms to build an intermediate support set S?T0%-%  Then,
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this intermediate support set is used to construct a matrix As, whose columns are
selected from the columns of A. This selection order is determined by the S*+0.

The multiplication of the pseudo inverse of the As and the measurement vector y

1+0.5

provides us an intermediate estimate x . The support set S? is calculated by the

05 " and this support set is used to pick entries from the

support of the k-sparse x
203 to obtain an estimate 2. Eventually, a residual 7' is measured for the next
cycle. This iterative process ends until the stopping criterion is met. Eventually,

the estimate 2’ converge to the signal of interest x.

Algorithm 4: Compressive Sampling Matching Pursuit (CoSaMP)

Data: A, y and k
Result: z and r*
Initialization: 2° = 0,70 =y, S® = supp(H(ATy));
for i = 1; i++ until the stopping criterion is met do
gt = ATpi-1,
Si+0.5 — Sz U Supp(gi);
51?"%21)?5 = (A§;+045A3i+0~5)_114§i+0.5y§
i+1 ~140.5Y.
S = supp(77);

~i+1  _ ~140.5,
Lpit1 = Trpit1 s

rt=y— A"

The CS theory and pursuits algorithms described so far is mostly taken from a book
named compressed sensing theory and applications, see [48]. It is also highly recom-
mended the interested readers to review [28] to comprehend CS theory better. In
the remainder of this chapter, the CS applications in optics and optical architectures

as well as imaging are examined in depth.

3.3 Compressed Sensing Applications in Imaging Science

The CS framework has influenced various applications such as sensor networks [34,
70], sampling systems [58, 59, 116, 117, 183], optics [32, 45, 79, 113, 123, 155, 156,
175, 177, 195, 207, 212], and imaging techniques [6, 12, 31, 63, 101, 102, 103, 121,
142, 144, 146, 160, 170, 184, 185]. Here, we will review well-known compressed
sensing imaging applications. These are radar imaging [6, 142], ultrasound imaging
[12, 144, 146], computed tomography (CT) [31, 170] and magnetic resonance imaging
(MRI) [101, 102, 103, 160, 184, 185]. In the next section, we will investigate the

applications of CS framework to the optics.
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A magnetic resonance imaging device is a widely used diagnostic tool in the clinic.
This device is utilized to visualize anatomy and physiological changes of a patient.
It is equipped with a strong magnetic coil, radio frequency wave generator and
detector. The magnetic coil generates a strong magnetic field, and this parallels all
protons of the body to the generated field. After generation of the strong magnetic
field, the radio frequency generator excites a radio wave towards the body. This wave
changes the direction of the protons to an orientation transverse to the magnetic
field. When the emission of the radio wave is terminated, the protons return to their
initial position. This rotation produces a signal — collected by the detector. The rate
of rotation is associated with the tissue itself. MRI creates significant images, and it
is utilized to diagnose diseases but the data acquisition duration is extremely slow.
Slowness influences the quality of the images and costs to the hospital. However,
the CS can be a potential candidate to reduce data acquisition duration of the MRI
device. In the following two paragraphs, the sampling scheme for a conventional
MRI device and application of CS to the MRI are presented.

The MRI system samples an image in the frequency space or k-space rather than the
spatial space like a digital camera do. Sampling scheme should meet the Nyquist cri-
terion for a conventional MRI so that the aliasing in the image is avoided. However,
this sampling criterion extremely increases the acquisition time. Sampling strategy
in the MRI actually has very different sampling procedures compared to the other
imaging technologies. The MRI system utilizes the magnetic field variations for the
sampling. So, varying the gradient fields in three Cartesian axes, denoted as G,
Gy, G for each axis, encodes spatial information of a three dimensional MR image.
The gradient fields leads to minor changes in the actual magnetic field because the
base magnetic field By is much dominate than the gradients. Total magnetic field
can be calculated as B(z,y,2) = Bo+ Gz +Gyy + G.z. Changing magnetic field in
various directions provides us to detect corresponding signal levels on the k-space.
For instance, assume that the gradient field G, is constant so that the magnetic
field varies with the other two gradient fields, i.e. B(z,y) = Bo+Gyx+Gyy. These
gradient fields and a the radio frequency pulse are illustrated along a pulse sequence,
see the Figure 3.5. Gradient fields are actually waveforms, and the integral of them
forms a sampling trajectory on the k-space. A trajectory on the frequency space
and the corresponding trajectory along the pulse sequence are also represented in
the same figure. Changing the gradient waveforms forms different type of trajectory
and so sampling for entire k-space is performed by appropriately changing these
waveforms. One of the trajectory types are generally preferred for the sampling
scheme. These trajectory types are radial, variable density spirals, uniform spirals,

variable density perturbed spirals, lines, random points and etc. Each trajectory
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type has different effects for the MRI system, and these effects can be found from
numerous MRI textbooks. It is recommended the interested readers, who want to
comprehend the MRI system in depth, to review a MRI survey paper by Wright,
see [196].

k-Space

RE ? (1) (2) 3) (4) (3)

Gx ‘
Gy -

Figure 3.5 A pulse sequence for two gradient waveforms, illustration of a sampling
trajectory on the k-space and representation of the corresponding trajectory along
the pulse sequence.

Sampling is one of the main problems for the conventional MRI system due to ex-
tremely higher acquisition durations. Scientists demonstrated the combining of the
CS and the MRI [101, 102, 103, 160, 184, 185]; thus acquisition time is significantly
reduced. Indeed, this combination is easily developed because of the nature of the
MRI. The CS theory relies on the incoherent measurements, and the MRI system
has ability to incoherently sample an image on the k-space through random trajec-
tory points. However, the sensing matrix should include a random sampling matrix
as well as a representation matrix. The latter matrix sparses the MR image in an-
other spatial space. The interested readers, who want to comprehend the CS-MRI

technique further, can review the article by Lustig, see [103].

Another imaging technique joins the CS framework is compressive radar imaging.
Here, we briefly describe this method utilizing the survey by Potter, i.e. see [142],
but the interested readers can review this survey to see the extended version of
this technology. In the radar imaging, the scene is reconstructed utilizing scattered
electric fields. The model of the radar imaging varies with several factors such as
propagation medium, bandwidth size, target speed, type of the radar system and
so on. A monostatic radar, one of the radar systems, has collocated receiver and
transmitter antennas. In this system, a transmit waveform is generated immediately
after the modulation of a baseband signal by a carrier frequency. The reflection of

the transmitted waveform encodes the complex scene, and this reflection is rep-
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resented with the scene reflectivity function x. The independent variable of this
function is delay 7 and Doppler w as x(7,w). The receiver takes the integral of the
scene reflectivity function and the delayed version of the baseband signal; hence, a
complex baseband signal yp(t) is acquired. Then, a matched filter convolves the
scene reflectivity function with the radar ambiguity function A(7,w). This idea can
be barrowed to build compressive radar imaging. The scene reflectivity function is
firstly discretized to produce a reflectivity signal x. Then, the complex baseband
signal yp(t) is sampled to form a measurement vector y. The received waveform
for given Doppler is represented on each column of a sensing matrix A. Indeed,
the ambiguity function is related to the sensing matrix that the coherence of A is
measured utilizing the ambiguity function. These operations are sufficient to math-
ematically formulate the underdetermined system, i.e. y = Az. Although noiseless
case is adopted for this formulation, thermal noise usually arises in the receiver and
transmitter antennas. However, this can be easily considered by adding noise to the

right-hand side of the equation.

In a conventional ultrasound imaging device, the sampling rate is usually taken at
least four times the bandwidth. This rate results in extremely high dimensional
data, and hence storage and computational challenges are arised. It has been re-
cently demonstrated that the application of the CS framework to the ultrasound
imaging can be used to reduce the high dimensional data. In this technology, the
random sampling could not be preferred because the ultrasound device has phys-
ical constraints when the image is randomly sampled. Therefore, other sampling
protocols, in which some rows or columns of images are not sampled, are proposed.
The maximal incoherence is not possible in these sampling protocols but they are
suitable for the ultrasound device. After designing the sampling protocol and its
application to the image, the ultrasound image can be reconstructed with the mea-
surements using one of the non-linear reconstruction algorithms proposed in this
chapter. It is not possible to review this technology here. So, the interested readers

are referred to [145] for the CS framework in ultrasound imaging.

The other imaging technique discussed in this section is the computed tomography.
The computed tomography, one of the well-known devices in the clinic, generates
two-dimensional cross-sectional images from a patient using ionizing x-radiation.
This device requires extremely high number of projections to reconstruct a high-
quality image. Once the projections are collected, the image is reconstructed utiliz-
ing some mathematical operations such as analytical or algebraic methods. However,
a large number of projections slow the acquisition process, and this allows the patient
to be exposed to high X-ray dose. Obviously, decreasing the number of projections

shortens scanning time and reduces dose that the patient is exposed to. This demand
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can be fulfilled with the application of CS framework to the computed tomography.
Therefore, the number of projection can be reduced with random uniform sampling,
and the image reconstruction is performed with one of the CS recovery algorithms.
Here, it is not possible to review the entire theory behind this technology. However,
the interested readers can find numerous publications for the application of CS to
the computed tomography in the literature, and they can also review the paper by

Hassan, see [69].

3.4 Compressed Sensing Applications in Optical Science

In the literature, the single pixel camera by Baraniuk, see [45], is a well-known
application which combines the CS framework and the optics. This system consists
of a light source, a digital micromirror device (DMD), a single photodiode and
two simple lenses, see Figure 3.6. The scene is uniformly illuminated by the light
source, and then the incoming light from the scene is projected to the DMD using
one of the simple lenses. The DMD is made of a bunch of micro-sized mirrors,
and each of them is independently tilted by an actuated voltage. Indeed, each of
these mirrors has two states, i.e. on and off, so parts of the projected light on the
on-state mirrors is guided towards the single photodiode using another lens while
the off-state mirrors divert the unwanted parts of the light towards the out of the
photodiode. The DMD is actually utilized to sample the scene, and the states of
the DMD mirrors build the sensing matrix or the sampling basis. The states of the
mirrors or the DMD frames can be formed with the Bernoulli distribution entries.
However, only one measurement is acquired by the photodiode when the DMD is
loaded with a single frame. So, a series of different DMD frames should be used to
increase the dimension of the measurement vector. Once the acquisition data process
is performed, the scene is reconstructed by one of the CS recovery algorithms which

utilizes the measurement vector and the constructed sensing matrix.
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Light Source

Figure 3.6 The schematic diagram of the single pixel camera.

This system is one of the revolutionary applications in the optics because the scene
is recorded by the single photodiode or so-called the single pixel camera. In other
words, a megapixel range digital camera such as charge-coupled device (CCD) or
scientific complementary metal-oxide-semiconductor (sCMOS) can be transformed
into a single pixel camera. This novel camera architecture has some benefits over
a conventional digital camera. The size, cost and complexity of a megapixel range
sensor is reduced. Quantum efficiency of a single photodiode is higher than a pixel
in a digital sensor array. The fill factor of a DMD is approximately twice more than
the conventional camera. In addition, a single photodiode receives nearly half of the
pixel array size times more photons than a pixel in the conventional camera camera.

This reduces image distortion from read-out noise and dark noise.

The idea lying behind the single pixel camera technology has encouraged the scien-
tists in the combination of the CS framework and other optical technologies. One
of these combinations has arised in the digital holography. Here, the conventional
digital holography method is presented, and combination of the CS and the digital
holography is introduced in the next paragraph. In the conventional digital hologra-
phy, the light beam is separated into two arms, i.e. reference and object beams, by
a beam splitter (BS). After this separation, the object beam hits a non-transparent
object surface and returns to a CCD sensor or the object beam passes through a
transparent object and moves towards the CCD sensor. Unlike the object beam,
the reference beam is directed towards the sensor array alone. These two beams are
gathered by another BS, and they are simultaneously recorded by the sensor. The
distance traveled by these beams should be same as possible. This system serves to
record the phase and the intensity values of the object although a standard camera
records only the intensity level of the object. So, the depth information of the object
can be extracted by performing specialized algorithms. It is not possible to review

all the properties of the digital holography here. However, the interested readers can
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easily find numerous textbooks and articles about other instrumental configurations

and recovery algorithms for the digital holography technique.

In the compressive digital holography, the scene is usually recorded with a CCD
camera instead of a single photodiode. Hence, the measurement vector is generally
acquired by the product of the digital image and sensing matrix on a computer. The
combination of the CS and the digital holography is performed due to two reasons.
Firstly, a digital hologram needs dense data acquisition for the reconstruction but
the CS method reconstructs the scene with substantially smaller number of mea-
surements. Secondly, the Fourier transform is highly utilized for the reconstruction
of a digital hologram, and the same transform is also used as a sparsifying basis
in the CS. Therefore, various investigations for the compressive digital holography
has been carried out. Some of them are off-axis frequency-shifting holography [113],
compressive Fresnel holography [153], off-axis compressed holographic microscopy
[112], scanning-free compressive holography [97]. In addition, a brief survey on

several compressive holographic applications can be found in [154].
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4. CONVOLUTIONAL DICTIONARY LEARNING

In this chapter, we present a novel dictionary learning method that can be utilized
in a compressed sensing recovery algorithm. The demand for dictionary learning
will be first reviewed, and then the multi-layer convolutional sparse coding model
(ML-CSC), which is basis for our dictionary learning algorithm, will be introduced.
Here, we will evaluate (1) theoretical background of the ML-CSC model; (2) rela-
tion between this model and neural networks; and (3) recently presented dictionary
learning algorithms based on this model. Once these concepts are discussed, we will
provide our dictionary learning method with its detailed structure. The recently
presented dictionary-learning algorithm based on the ML-CSC model is highly de-
pendent on parameters and success of the recovery algorithm that involved in the
learning algorithm. However, our learning algorithm does not depend on parameters
and does not involve any sparse recovery algorithm. We build our algorithm based
on the network observations, and this is demonstrated with some correlation values
of sparse signals at the output of the convolutional network. The final section of
this chapter involves some experiments, demonstrating some trained local filters and
the loss functions for variety of dictionary structures. Please note that we mostly
review the studies in [106, 132, 133, 134, 176], interested readers can refer to these
studies for the compressive review of CSC, ML-CSC and some dictionary learning

methods.

4.1 The Quest for Dictionary Learning

The sparse representation concept claims that a signal can be constructed by a linear
combination of few atoms from a dictionary and coefficients from a sparse vector.
In other words, the product of the dictionary and the sparse vector provides the
signal itself [134]. In early attempts, some off-the-shelf dictionaries were performed
in the sparse representation theory. The reason of this idea is that some transforms

that are suitable for certain signals could behave as a dictionary. However, using
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off-the-shelf dictionaries are limited in practical applications because of two reasons:
(1) inflexibility of transforms to deal with rare signal families; and (2) the partial
match between the signal and the transform. The demand for getting appropriate
dictionaries presented an idea of dictionary learning [134]. This approach instead of
using a known transform significantly improved signal reconstruction quality [106].
In the same manner, we have observed similar sparse representation issues for the
compressed sensing (CS) framework. The success of a CS recovery algorithm is re-
lated to how sparse a signal is represented. The sparsity ratio of a signal depends
on a sparsifying transform or dictionary. In conventional methods, the sparsify-
ing transform is formed using a transform matrix such as discrete cosine transform
(DCT) or fast Fourier transform (FFT). However, these transforms cannot repre-
sent a signal completely sparse, and this weakens the success of the CS recovery
algorithms. Therefore, we need to learn a sparsifying transform or dictionary that

is compatible with signal of interest.

In the literature, a number of dictionary learning algorithms, which vary with ob-
jectives, calculation steps, and basic assumptions about the dictionary, have been
proposed [134]. These learning algorithms are mainly k-singular value decomposi-
tion, method of optimal direction, trainlets, and online dictionary learning method.
They do not provide global solutions since they are patch-based algorithms [133]. Re-
cently introduced ML-CSC method can be utilized for dictionary learning [176], and
we believe a dictionary trained using ML-CSC can be adapted to the CS framework.
This learning method was actually presented as an alternative to the patch-based
methods. However, this method is basically slice-based one and trains a dictionary
to form slices. Patches are reconstructed by summations of these slices. The patch-
based methods process patches independently while the slice-based method forces
slices to communicate and reach an agreement on the reconstruction [133]. In addi-
tion, this method is highly dependent on the success of a sparse recovery algorithm
and some parameters. Here, we will present a novel dictionary learning method,
which is based on ML-CSC but does not involve any parameter and recovery algo-
rithm. This independence can affect the signal reconstruction quality. On the other
hand, the trained dictionary will also be utilized in a CS recovery algorithm that we
will discuss in the following chapter. In the following sections, we will first review
the CSC and ML-CSC models, and then we will provide our approach.
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4.2 Convolutional Sparse Modeling

One cannot process an independent and identically distributed noise because of its
non-structured form. Our fundamental ability to process signals results from that
they are all structured. Hereby, we can denoise, compress or transform a structured
signal. Signal processing studies are mainly about describing signal structures, and
then utilizing them to achieve processing goals. In order to achieve this, we need a
model that enables us to process a structured signal. In signal processing, models
play a fundamental role in handling many tasks, such as compressing, denoising or
sampling. One of the widely used models is the signal representation model. This
model provides a basis for the compressed sensing framework, and this model claims
that each image patch can be formed with a linear combination of few atoms from
the dictionary. Therefore, this model reduces dimensionality of patches. The major
problem in this model is identifying atoms and their weights. A number of algorithms
for tacking this problem have been proposed. These algorithms often work on low
dimensional and completely overlapping patches since dictionary learning can be
performed for low-dimensional signals. This local model assumption has been used
for a long time, but a global model has been emerged. The convolutional sparse
coding (CSC) model, which is a special case of sparse representation modeling, was

recently presented to resolve this global-local gap.

4.2.1 Introduction to Convolutional Sparse Coding

CSC presents a model that constructs an image by performing a number of con-
volutional operations between filters and sparse signals, and then by summing the

results. This relation can be formulated as follows:

m
X =Y di=T; (4.1)
=1

where X € R is an image with an assumption of one-dimensional signal, the set
{d;}™, € R™ represent m local filters (n < N), and the set {I';}7; € R denote
sparse feature maps. Here, N represents image size, n is filter length, and m denotes
filter size. All convolutional operations in the CSC model are assumed to be cyclic;
hence, all local filters are first flipped, and then each of them is shifted on the sparse

feature maps. The CSC model can also be described with a matrix-vector form,
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in which the filters are constructed with m circulant matrices C; € RV*V and the
sparse feature maps are presented in a vector form. Each circulant matrix presents

circulant form of filters. The image X can be reformulated as follows:

m Fl
X=YCli=[Cy - Cp||-|=Dr (4.2)
1=1 T,

where D € RVX™N g a dictionary, I' € R™V denotes a gathered sparse vector. In
other words, the image X is constructed with a multiplication of the dictionary D
and the sparse vector I', i.e. X = DI'. Figure 4.1 illustrates the CSC model. Here,
the columns of the dictionary D are permuted to acquire a sliding block diagonal
form. Each blocks in this diagonal represents same local dictionary of size n x m,
and each of them is denoted by Dp € R"*™.

D e RM™™ I e R™
e

XeRrY 1

|

Dg

Figure 4.1 The CSC model. The dictionary D is constructed with m circulant
matrices or a number of blocks Dg.
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4.2.2 Resolution of the Local-Global Gap

The CSC model resolves the local-global gap because of the dictionary struc-
ture. The dictionary contains a number of diagonally shifted stripe dictionaries
Q e R @n=1m  These stripe dictionaries are actually same and regardless of i. A
n — length patch from X i.e. p; € R", can be formed with the multiplication of stripe

n=m e o p; = QB;. This relation

dictionary € and a local sparse signal 3; € R!
is illustrated on the CSC model structure in Figure 4.2. From another point of
view, the i—th patch of length n can also be formed with a patch extractor operator
R; € RN and this results p; = R;X. Using the relation X = DI, the patch can
also be described as p; = R; X = R;DI". Here, R; D operation extracts n rows from
the stripe dictionary, and most of their content has zero weight. Therefore, the stripe

(2n—1)mxmN g presented, and this operator discards zero

extraction operator S; € R
weights from R; D operation. Using the stripe extraction operator, the patch can
be formed as p; = R;DS! S;T' = QB; where Q = R;DS! and $; = S;,I". This patch
definition is exactly same with the previously defined one. When the location is
moved from i to i+ 1, the patch p;y1 = R;+1X corresponds to pj+1 = Q28;+1. The
local sparse signal ;41 is a shifted version of 3; by m points. In other words, all
patches {pi}ij\il are constructed with a common dictionary 2 and the local sparse
signals {3;}¥,. Hence, the CSC model resolves the local-global gap since this model

tracks a local model and provides a global model for X.

Xer® D e RN r e R™
||

PiER“{ =

Bi = R(2n—1)m

Figure 4.2 The CSC model with the illustration of the signal patch p;, the stripe
dictionary €2, and the local stripe signal j;.
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4.2.3 Theoretical Foundations for Convolutional Sparse Cod-

ing

Sparse representation theory can provide a solid foundation for the CSC model.
When the image is corrupted by bounded noise, i.e. Y = DI'+ E where ||E|2 <e¢,

the condition for success of the basis pursuit algorithm can be described as follows:

HFHosz(lU(lD)) (4.3)

where p(D) is the mutual coherence of the dictionary, and ||T'||g is lp norm of I'. The
Welch bound presents a lower bound on the mutual coherence for the convolutional

dictionary [192]. This coherence can be described as follows:

u(D) > ,/mf_‘f)_l (4.4)

For instance, the mutual coherence is almost 0.033, i.e. u(D)~0.033, when the filter
length n is 300, and the filter size m is 3. Under these circumstances, the bound
for success of the basis pursuit becomes ||I'||p < 7.82. This means that the number
of non-zero entries on the sparse vector should be less that seven. In addition, this
bound does not dependent on the image size N. This number of bound is not mean-
ingful for the real-applications, and the conventional sparse representation theory
does not offer substantial foundation for CSC. However, processing the CSC model
in a local manner solves this problem. Despite counting the number of non-zeros in
the spare vector, i.e. ||I'||o, we can prefer to count the non-zero entries on the local
sparse signals ;. These local sparse signals are also called stripe representations.

The local cardinality can be described as follows:

IV 0 = max 51l (4.5)
where the superscript s denotes an operation on the stripe representation. Counting
non-zero entries on the stripe representation is measured by lp~ norm since we
maximize the stripe set. When [|T'[|§ o, can be shown to have a couple of non-zero
entries, this demonstrates that all stripe representations are sparse. Therefore, each
patch p; has a sparse representation 3; with respect to the stripe dictionary (2,
namely that p; = Q8;. Recall that this relation is previously shown and allows us
to operate locally while getting global optimality. While operation the CSC model
locally, the condition for success of the basis pursuit algorithm can be described as
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follows:

116,00 < ; <1+ /L(1D)> (4.6)

When the filter length n is 300, and the filter size m is 3, the ||T'|§ o, measure is
almost 10.43. The number of non-zero entries should be less that 10 over the stripe
whose length is 1198. The ratio of the non-zero entries over the stripe length for the
local model assumption can be higher than that for the global model assumption.
Therefore, the local approach provides stronger guarantees for the success of basis

pursuit, and this makes the CSC model more practical.

4.3 A Connection between Convolutional Neural Network

and Convolutional Sparse Coding

In this section, we briefly review convolutional neural network (CNN) to demonstrate
a precise connection between CNN and CSC. Two disciplines have some similarities;
both perform convolution operations, learning from data to present better results,
and sparsifying operations like rectified linear unit (ReLU) or shrinkage. We already
showed convolution operation involved in the CSC model, but sparsifying operation

and learning would be presented in the following sections.

Assume that an input image, X € RV, of dimensions v'N x v/N is given. In the feed-
forward CNN, the input image is performed by series of convolution and nonlinearity
operations [92]. In the first layer, the input image is convolved with a set of m;
kernels with size of |/ng X y/ng. These convolution operations are excepted to be
cyclic. Output of the convolution operations are summed with a bias value, and
then processed with a non-linear ReLU operation, where ReLU (z) = max(0,z). As
a result of these operations, Z is acquired in the form of a three-dimensional data
of size VN x /N x my. The acquired Z1 as one-dimensional signal is illustrated in
Figure 4.3. In matrix-vector form, the input image X is multiplied by a convolutional
matrix W{ of size Nmj x N. Vertically formed a number of m; circular matrices of
size N x N generates the convolutional matrix Wi . Once the operations of matrix

multiplication and bias addition are performed, the output is passed through ReLU
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operation. Therefore, Z; can be shown in a matrix-vector form as follows:

Zy = ReLUW{ X + b)) (4.7)

where by is the bias value in the first layer. In the second layer, the convolution
operations are performed across all m; channels of Z; together by using ms kernels
with size of \/n1 x y/n1. The output is biased by b2 and then passed through ReLU
operation. These serial operations generate the tensor Zo of size VN x VN X ma.
In matrix-vector form, the tensor Z is given by Zs = ReLU (W4 Z1 + by), where
WQT is a vertical concatenation of msg convolutional matrix of size N x Nmj. By
substituting of Z; into Zs, we can also obtain two layer feed-forward CNN in a

matrix-vector form as follows:

Zo = ReLU(WJ ReLU(W{ X +by) +by) (4.8)

The forward pass of CNN actually matches the layered thresholding algorithm —
one of the CSC pursuit algorithms. This algorithm and the forward pass of CNN
seek unique sparse representation. This connection is very important because this
provides a solid mathematical foundation, model and objective. On the other hand,
the matrix-vector form for the CNN architecture can allow us to deploy the multi-
layer convolutional sparse coding (ML-CSC) model, and this model will be discussed

in the next section.

Z, e RN, b, e RN
- - m,

w,Te RINmMXNm,

n;m;

bl e Rle w T = RNm]XN
~ b !

XERN

= ReLU + X ReLU + X

I

Figure 4.3 The forward pass of two layer CNN with illustrations of convolutional
matrices and sparsifying operations.
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4.4 Multi-Layer Convolutional Sparse Coding

The CSC model can be extended using the CNN architecture, and this provides
multi-layered version of this model. Recall that the CSC model presents a global

RNXNmM1 - which is

input image X € RV by a multiplication of a dictionary D; €
formed with a set of my local filters of length ng, and a sparse signal I'; € RVN™1.
Hence, the global input image can be defined as X = D1I';. Here, the subscript
for the sparse signal and the dictionary are indicated, and this presents the first
CNN layer. However, this mathematical expression is exactly same with the one
previously introduced, i.e. X = DI'. The sparse signal I'; can also perceived another
input image, and this image can be formed by a multiplication of another dictionary
Dy € RNmixN ™2 which is constructed with a set of mq local filters of length nymq,
and another sparse signal I'y € RV™2_ This operation can be mathematically defined
as ['y = Dol'9. This argument allows us to present the multi-layer convolutional
sparse coding (ML-CSC) model. In other words, X = D1I'] assumes that the global
input image X is a linear combination of atoms obtained from D;. By substituting
of 't = DoI'y into X = D1I'y, the equation X = DIy becomes X = D1 Dsl', and the
equation X = DjDsl's corresponds that the global input image X is a superposition
of molecules obtained from DiD3. These two-layer CSC model is illustrated in
Figure 4.4.

The ML-CSC model makes a sparse signal much more sparser since this model
views the first sparse signal I'y as an input image and uses the second dictionary
Dy to form the second sparse signal I'y. Therefore, the sparsity ratio for I's can
be much less than the ratio for I'y. This highly depends on the proper selection
of dictionaries. On the other hand, the ML-CSC model allows us to represent the
global input image X up to the K —th sparse signal I'g using cascade dictionaries.
This can be mathematically shown as X = D1 D9Ds---Dg 1 Dg['k. This can also
allow us to form the global input image X using only one non-zero coefficient in I'x
theoretically. Representing the sparse signal with a single coefficient can strengthen

the success of the pursuit algorithms.
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Figure 4.4 The ML-CSC model with an instance of X = D'y = D1 DsI'5. The signal
I'y is constructed by not only stripes S7 ;11 but also patches Py ;1"

The sparse signal I'; can be formed with stripes as well as patches as illustrated in
Figure 4.4. For the equation X = D1I'y, the sparse signal I'; is built by a number of
stripes 51 ;I'1 of length (2ng —1)my, where S; j extracts the j—th stripe from I';. On
the other hand, the sparse signal I'y is also formed by the equation I'y = Dol's. In
this point of view, the sparse signal I'y is composed of a set of patches P ;I'; with a
length of nymy, where P; ; extracts the j—th patch from I';. This perspective allows
each layer to be processed locally, and hence this makes the theoretical foundations
previously presented for the CSC model valid for the ML-CSC model.
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4.5 Examples for Dictionary Selections in the Convolutional

Sparse Coding Model

The ML-CSC model utilizes a set of dictionaries to represent the sparse signal
much more sparser. This can reduce the sparsity ratio, and low sparsity ratio can
strengthen the success of the pursuit algorithms. To make the ML-CSC model as-
sumption possible, we need to provide proper dictionaries. The best way to present
the dictionaries in the model is to learn them from data. Here, we review some
dictionary learning methods performed for the CSC model, and this revision will
allow us to compare these methods to our dictionary learning method that will be

discussed in the following section.

4.5.1 Sparse Dictionaries

Assume that the sparse signal I'i_1 is given by 'k 1 = DgI'k. Using the patch-
stripe illustration presented in Figure 4.4, the equation ' _; can be expressed as

follows:

Pr_1.:lk—1=QrPBK (4.9)

where Pg_1 ;"1 denotes the i—th patch from I'x_q, Qg is the stripe dictionary,
and B ; represents the corresponding stripe of Py _1;I'x_1. Using ||.||g7OO norm,
where the superscript p denotes operations on the patch representations, we can

express the equation as follows:

T &1 [16,00 = macx | Brc.ilo (4.10)

The maximum number of the operation of Qxfk ; can be less than the maximum

number of the superposition of each elements.

T 16,00 < max |2 ol Bxillo (4.11)

The term ||Qx||o equals to || Dx||o, which denotes the maximum number of non-zero

entries along any atoms in Dg. Using |[.|§ o, norm, the equation can be expressed
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as follows:

IT 111600 < I PxclloIT 115,00 (4.12)

This means that we can define the maximum number of non-zero entries in a patch
from T'g_1 when || Dgllo and [Tk ||§ o, are given. The patch and stripe dimensions
in Tg_q are ng_ymg_1 and (2ng_o — 1)mg_1, respectively. Assume that these
dimensions are equal to each other, i.e. [|Tx_1[[§ = [Tk -1/l oo- The equation can

be expressed as follows:

ITr—1115,00 < 1Pk Mol T & 116,00 (4.13)
Using the same assumption for all layers, we can conclude this equation with a

general form.

K

600 11 [1Djllo (4.14)
j=i+1

ITill6.00 = TG 00 < ITx

This general form gives an idea that the dictionaries should be much more sparser.
In other words, most of the non-zero weights in the dictionaries should be actually
zero. This approach promotes sparsity and prevents intermediate sparse signals from
becoming dense signals just after a couple of layers. These dictionaries are called
sparse dictionaries. The study in [132] offers a sample sparse dictionary based on the
assumption presented here. In this study, the coefficients in the first dictionary layer
are selected from discrete Meyer wavelet with a filter length ng of 29 and a filter
size mg of 1. To represent this dictionary much more sparser, a stride is employed
with a size of 6. Under these configurations, the dictionary coherence is measured
as u(D1) =0.000244. In the other dictionary layers, each filter is randomly selected
from 7 non-zero coefficients among the set of {—8,—7,—6,---,6,7,8} with a filter
length of 20 and a filter size of 1. To impose these dictionaries to become much more
sparser, a stride is again employed with a size of 6. The dictionary coherence for each
layer under these configurations is measured as p({D;}2,) = 0.00433. However, this
dictionary learning approach cannot give same reconstruction success for each image

structure. Therefore, other dictionary learning methods have been developed.
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4.5.2 Slice-Based Dictionary Learning

The dictionary-learning problem usually depends on the following optimization prob-

lem.

1
in || X — DT||2 + \||T 4.1
1571192“ 15+ AT (4.15)

where A is the regularization parameter that adjusts the sparsity level, the term
||.||l2 denotes Iz norm. The slice-based dictionary learning method performs this op-
timization problem using slice decompositions [133]. Based on slice decompositions,

the optimization problem can be rewritten as follows:

min HX ZRTSZHQ—i—)\ZHaZHl sit. s;=Qaq; (4.16)
Q{O‘z}z 15{51} =1

where a set of {ai}f\;1 is non-overlapping m—dimensional sparse vectors obtained
from the sparse vector I'. We do not introduce the other terms in the optimization
problem since they are defined previously. The above optimization problem can be
solved using the alternating direction of multipliers algorithm. This process leads

to the following equation.

RT s+ ()\H@ L+ Hs _Qa; +uu> (4.17)
o} N Z; e Z; Z Lo

where a set of{ui}i]\il is scaled dual variables, and p denotes the penalty parameter.

To minimize above equation for all the slices {si}g\il, the above equation becomes

min —HX Z:RTZ||2+pZ:HSZ Qozz—l—uZHQ (4.18)
{87/}1 1 1=1 Z 1

This sub-problem has a closed-form solution. The solution for the i—th slice can be

defined as follows:

1 N 1
— (“RX +Qa;—ui | - R ST RT [ SR;X 4+ Qaj—u, 4.1
s (pRZ + Qo uz> <p+n_ (pRj + Qo uj>> (4.19)

This equation reconstructs the slices but the dictionary update should be performed
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after each iteration. In the slice-based dictionary learning algorithm, any dictionary
is not actually learned, but the minimization with respect to the stripe dictionary
Q2 is performed using the reconstructed slices and the K-SVD algorithm. The slice-
based dictionary learning algorithm is unfortunately proposed for the CSC model
that uses only one dictionary. Stripe dictionaries can disappear when the cascade
dictionaries are used. Hence, this algorithm cannot be suitable for the ML-CSC
model. To review details for the slice-based dictionary learning algorithm, an inter-

ested reader can refer to the study in [133].

4.5.3 Online Alternating Minimization Algorithm

The online alternating minimization algorithm (OAMA) presented in [176] utilizes
sparse dictionaries that are presented previously for the ML-CSC model. However,
the weights of the sparse dictionaries are learned from the data rather than ran-
domly selection. This algorithm is based on the minimization problem given in the

following:

K L
min ly* — Di1DyD3--- DA% 13+ 3" &l Dillo (4.20)
{Di},{ﬂf}kz_:l ; R

where &; denotes the penalty parameter, L represents the dictionary length, and a set
of {yk}fle is K noisy training images, i.e. y = +n. x is an input image while n is
bounded noise, i.e. ||n|l2 < eg. This equation looks for the sparsest representation 3%
at the deepest layer for each training image y*, and it also constrains the dictionaries
from layer 2 to L to be sparse. The first dictionary D; is not forced to be sparse

since we do not expect x = D11 to be sparse.

Using this minimization problem, the online alternating minimization algorithm
is built on stochastic gradient descent, which looks for the deepest sparse signal
f£r, and then updates the sparse dictionaries. For each training image, its deepest
sparse signal is estimated using iterative shrinkage algorithms and fixed dictionaries.
After the estimation process, the respective dictionaries are updated by computing
gradient with respect to each dictionary, i.e.V f(D;), by making a gradient step, and
then by applying iterative hard thresholding algorithm [15], Hg,(.), which depends
on the parameters &;. The overall of the online alternating minimization algorithm is
presented in Algorithm 5. To review details for this algorithm, an interested reader

can refer to the study in [176].
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Algorithm 5: Online Alternating Minimization Algorithm (OAMA)
Data: Noisy training images {y*}/ ;, and initial dictionaries {D;}},
for k=1, ---, K do

Sparse Coding:

Bf < ming |ly* — D1Da D3 - D BE || + N BE 1

Update Dictionaries:

fori=1L,---, 2 do

L fort=1,---, T do

| DIt!'=H, (DL —nV f(DY))

fort=1,---, T do
| D"t =Di -V f(D})

Result: Trained dictionaries {D;}X

The sparse coding stage can also be tackled with basis pursuit such as least absolute
shrinkage and selection operator (LASSO), greedy pursuit as orthogonal matching
pursuit (OMP), or iterative hard thresholding (IHT). The dictionary update can also
be carried with a soft thresholding operator instead of a hard thresholding operator.
On the other hand, this algorithm depends on the selection of the parameter A in the
sparse coding step and the parameters & and 7 in the dictionary update step. The
parameter A and the learning step n can be adjusted manually, but it is hard to set
the parameter &; for each dictionary updates. Setting the parameter &; incorrectly

can affect the success of this algorithm.

4.6 The Proposed Dictionary Learning Method

The performance of the trained dictionaries learned in the online alternating min-
imization algorithm highly depends on some constrains of the pursuit algorithms
and proper selection of the parameter &; for each dictionary layer. We propose an
alternative convolutional dictionary learning method. The proposed method does
not depend on parameters, and does not involve any sparse recovery algorithm.
Hence, we are not interested in recovery guarantees of any pursuit algorithm. The
proposed dictionary-learning algorithm is developed on a simple neural network, but
we are inspired by the ML-CSC model. In other words, the learning architecture
is based on a sparse neural network, in which circular filters are used. We develop
the algorithm based on this observation: similar correlations or similar histogram
distributions exist among sparse signals that are generated as a result of driving
similar structure of images to the network. As the structures between two images
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become different, correlation values of signals at the network output diverge. To
clarify this, we first drive similar structure of images to the network, and then cal-
culate correlation coefficients between a reference output and each network output.
The reference signal is randomly selected among the network outputs. We observe
that the correlation values are high enough and almost identical to each other when
similar structure of images are driven into the network. These values can be seen in
Figure 4.5. In addition, we also feed different structure of images into the network,
and then calculate the correlation coefficients between the same reference output
calculated previously and the new network outputs. These correlation coefficients
are quite low, and there is a gap between the data clusters as seen in Figure 4.5.
As a result, we can claim that histogram distributions, which are generated by feed-
ing similar structure of images into the network, can be identical. Therefore, our
dictionary learning method should be performed using similar structure of training

images.
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Figure 4.5 Correlation coefficients calculated among the network outputs that are
generated as a result of feeding similar structure of images (red dots) and different
structure of images (blue asterisks).

In the proposed learning algorithm, some training images are fed into the network at

first. This process can also be presented in a matrix-vector form. Multiplication of

a training image and transpose of a convolutional dictionary provides a kernel map.

This map is passed through the rectified linear unit — ReLU. Multiplication of the
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ReLU output and transpose of another convolutional dictionary provides another
kernel map, and this kernel map is again passed through the ReLU operation. These
operations, i.e. multiplication and passing the multiplication result through ReLU,
are repeated until the last layer. As a result, a partially sparse signal is obtained for
this training image. These overall operations are repeated for some part of training
images to get their corresponding partially sparse signals. Omnce these partially
sparse signals are utilized, an average sparse signal is computed using these signals.
Then, small weights in the averaged signal are made to be zero while large weights
are kept. This allows us to present a sparse signal, and this sparse signal will be
utilized in the dictionary update stage. On the other hand, sparsifying operation is
performed over the stripe length of (2n,_1 —1)my, because of the recovery guarantee.
This constraint is related to the local cardinality of the sparse signal presented in
[134]. Here, L denotes layer length, and n and m are filter length and filter size,
respectively. The stripe is shifted by ny_i1my during sparsifying operation. Thus,
stripes are overlapped that can provide uniform sparse signal map. In the dictionary
update stage, the rest of the training images are utilized. At first, an image is
fed into the network, and then the cost function is measured between the network
output and the sparse signal calculated previously. Using this cost function, each
dictionary is updated using stochastic gradient descent. The operations for the
dictionary update stage are repeated for the other training images. The overall of

the proposed dictionary learning algorithm is presented in Algorithm 6.

In this algorithm, some of training images with a length of K are used for the
sparse signal estimation, and dictionary update step is performed using the rest
of the training images from Ky to K. Once the sparse signal I' is cumulatively
summed, signal weights in I are divided by K. Then, the small coefficients in the
averaged signal are made to be zero while the large coefficients are kept. The term
N(.) denotes this operation. In the dictionary update step, the cost function J is
calculated, and then the dictionaries are updated for each convolution dictionary
layer. The term 7 denotes learning step, and this can be adjusted manually. The

mathematical foundation for these dictionary updates is presented in Appendix A.
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Algorithm 6: Proposed Dictionary Learning Algorithm

Data: Training images {#¥}X | and initial convolutional dictionaries {D;}/
Initialization: I' =0
Sparse Signal Estimation:
for k=1, ---, Ky do

Fo = l‘k

fori=1,---, L do

| Ty=ReLU(DIT;_;)

I'=r+r1y

Average the Sparse Signal I' and Keep the Large Coefficients in the Averaged
Signal:

I'=T/Ky
T —x(T)
Update Dictionaries:
fort=1,---, T'do
for k =Ky + 1, ---, K do
To=ak

fori=1,---, L do
| Ty =ReLU(DIT; 1)
J=(T-Tp)?

fori=1L1,---, 1 do
| Dj:=D;—nVJ(D;)

Result: Trained dictionaries {D;}/,

4.7 Experimental Results

To train our network, the Mixed National Institute of Standards and Technology
(MNIST) dataset, which consists of handwritten digits of size 28 x 28, is utilized.
The network is developed in Python environment. Only images, which consist of
the number 8, are fed into the network because these images are the densest digits
among the other ones. Recall that one of the purposes for dictionary learning is to
represent a natural signal as a fully sparse signal. Therefore, we select the densest
patterns or the number 8. Three cascade dictionaries based on the ML-CSC model
are utilized, and the length of each dictionary is selected to be twice than the length
of previous one. Considering the RAM capacity, we select the first local dictionary
of size 8 x 8, the second one of size 16 x 16 and the third one of size 32 x 32. Using
these dictionaries and an input image of size 28 x 28, the size of an output signal can
be approximately 12 Mb. We also select two more but smaller cascade dictionaries
for performance evaluation. The first, second and third local dictionary sizes are
4 x4, 8x8, 16 x 16, respectively. For the other cascade dictionary, the first, second

and third local dictionary sizes are 2 x 2, 4 x4, 8 X 8, respectively. In other words, we
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utilize three convolutional dictionary layers in a cascade manner, i.e. D = DDy Ds,

and we also utilize three different convolutional dictionaries D.

In the proposed algorithm, the first step is to find an averaged and sparsed signal.
To do this, 1000 images are fed into the network, and then the total of the output
signals are averaged. After averaging, small coefficients in the averaged signal are
made to be zero while large ones are kept over a defined stripe length. The sparsity
ratio is tried to be fixed for all cascade dictionary configurations, and this ratio is
defined 2 percent. Once the averaged and sparsed signal are acquired, the rest of the
training images are driven into the network, and the local filters are updated after
each feeding. The normalized loss functions with respect to the number of images
are illustrated in Figure 4.6 for each dictionary configuration and the dictionary

learning methods.
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Figure 4.6 The normalized loss functions with respect to the number of training
images for the local dictionaries 2 x 2, 4 x4, 8 x 8 (red line), 4 x4, 8 x 8, 16 x 16
(blue line), and 8 x 8, 16 x 16, 32 x 32 (black line). Loss functions are obtained using
the proposed dictionary learning method (a) and the online alternating minimization
algorithm (b).

We observe the loss function does not change after feeding some part of training
images into the network and executing the algorithm for the first 5 epochs. How-
ever, the loss functions suddenly decrease after feeding a small number of images.
Therefore, we show the loss function for small portion of training images. We think
that sudden decrease might result from feeding similar structure of images into the
network. Considering the loss function, the cascade dictionary, whose sizes of lo-
cal dictionaries are 4 x 4, 8 x 8, 16 x 16, performs better than the other dictionary
configurations. It does not fluctuate so much, and its loss function dramatically

decreases. For this cascade dictionary configuration, the local dictionary filters in
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Dy, D1Dy, and D1 Dy D3 are illustrated in Figure 4.7. The filters in Dy and D1 Do
represents some atoms and molecules of the number 8, and the number 8 can be
seen in some filters in D;DsD3. However, the numbers are not clear so much since

the local filter size is almost four times lower than the size of the training images.

Figure 4.7 The trained local filters in the dictionary D; (a), the cascade dictionary
D1Ds (b), and the cascade dictionary DjD2Ds3 (c).
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5. PURSUIT ALGORITHMS AND RECONSTRUCTION
RESULTS

In this chapter, we will implement the trained dictionaries, which presented in the
previous chapter, into the alternating direction method of multipliers (ADMM) al-
gorithm. Once this implementation is provided, we will overview the projection
problem presented in the convolutional dictionary learning study [176]. Actually,
we will present an implementation of the trained dictionaries learned using the pro-
jection problem into ADMM algorithm, and this implementation will allow us to use
these dictionaries in the compressed sensing (CS) framework. We will also review
recently presented recovery algorithm based on Plug-and-Play (PnP) ADMM that
uses deep residual learning. This algorithm does not involve trained dictionaries,
and hence this will allow us to compare the performance of the recovery algorithms
dependent on and independent from the trained dictionaries. In the experimental
section, we will compare some reconstruction results with a variety of undersampling
rates for a variety of ADMM based algorithms. Moreover, the recovery algorithms
will be examined by corrupting measurements with a noise. The study presented in
this chapter will contribute to the study based on the combination of the compressed

sensing framework and the structural illumination microscopy.

5.1 Implementation of Trained Dictionaries into the Alter-

nating Direction Method of Multipliers Algorithm

The CS framework claims that few measurements are enough to perform perfect
reconstruction of a signal X € RY. The sensing system gets M linear measurements
and builds a measurement vector Y € RM . This operation can be considered math-
ematically as Y = WX, where U € RM™*V is a sampling matrix. The number of M is
much smaller than the dimension of the signal N, i.e. M < N. This means that the

number of unknown equations is less than the number of variables (unknowns). The
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solution of this ill-posed problem is usually performed using a model-based inverse
method. This method can be designed to minimize a cost function that balances a
data-fidelity term @ and a regularization term R. This optimization problem can

be described as follows:

X = min®D(X) + AR (X) (5.1)

where \ is a regularization parameter and penalizes large coefficients in the re-
construction. The data-fidelity term guarantees that the reconstructed image is
consistent with measurements while the regularization term encourages optimum
solutions. To solve the optimization problem, a least squares can be chosen in terms
of the data-fidelity term.

DX) 2 Y —vX|; (5.2)

One of the widely used regularizer is I} norm, i.e. R(X) = |X||1, and other one is
total variation (TV) norm, i.e. R(X) = ||[VX]|1, where V is the discrete gradient
operator [157]. The optimization problem can be rewritten by substituting a least
squares into the data-fidelity term as well as substituting {; norm or TV norm into

the regularization term.

XZII}}HIIY—‘I’XlngrAIIXIIl (5-3)

X = min [y~ UX[3+ A VX (5.4)

Here, we deal with the first optimization problem, but we will provide some recon-
struction results in the experimental section using the second optimization problem.
We need to adapt the first optimization problem for the sparse signals, since CS
reconstruction is guaranteed when the signal of interest is sparse. In the previ-
ous chapter, we have introduced convolutional dictionary learning concept. Here,
we implement the trained dictionaries into the optimization problem. Recall that
the signal X € RY can be formed with multiplication of a dictionary D € RN*mN
and a sparse vector I' € RV i.e. X = DT, where m is the dimension of the local
filters. In addition, recall that the dictionary D can also be represented with cas-
cade dictionaries, i.e. DY) = D;DyDs---Dg_1Dg, where K is the layer length,
and here D®) denotes an effective dictionary or trained dictionaries. The signal
X can be expressed using cascade dictionaries as X = D1D2D3---Dg_ 1Dgl'k or
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X =DE) . Using these equations, we can implement the trained dictionaries into

the optimization problem as follows:

P =min|[Y = WD k|3 + ATk [l (5.5)
K

The multiplication of the sampling matrix ¥ and the dictionary D) can form the
sensing matrix A € RM>*mN

P =min[Y - AUk |3+ AT |1 (5.6)
K

The estimated signal or the reconstruction X can be calculated by multiplying the
estimated sparse signal fK and the trained dictionaries D®) | i.e. X = D(K)fK.
The solution of this optimization problem can be performed using a gradient based
algorithm [102], operator splitting algorithm [105], or variable splitting algorithm
[94, 205]. ADMM is one of the variable splitting algorithms and solves a maximum a
posteriori (MAP) estimation problem [16]. This algorithm considers the augmented
Lagrangian function. To perform the minimization problem, ADMM splits variables
into sub-problems to decouple the data-fidelity and regularization terms. This allows
us to minimize two decoupled optimization problems separately and implement a
parallel algorithm for these sub-problems [16]. To perform ADMM algorithm, we

need to define a new variable V', and then the optimization problem becomes:

fK,V:1;1111‘1/||Y—AFK||%+)\||VH1 st. Tp=V (5.7)
K>

We can solve this problem constructing the augmented Lagrangian function.

P, V.0 = min |[Y = ATk |3+ MV + 2Tk -V +URB- 2013 (5.8)
g, V,U 2 2

where p is the penalty parameter, and U is a scaled dual variable. Let =V —U and

V =T —U. The ADMM algorithm divides the optimization problem into three

sub-problems as follows:

Py =min |V — ATk |3+ 2|0k — T2 (5.9)
I 2
V:mVinAIIV||1+g||V—V||§ (5.10)
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U=U+Tg-V (5.11)

The first sub-problem depends on the data-fidelity term while the second sub-
problem depends on the regularization term. This allows us to perform two modules

independently. The solutions of these sub-problems are given as follows [16]:

A _1 ~

Py = (gI+ATA) (ATY+ gr) (5.12)
V=25, k+0U) (5.13)
U=U+Tg-V (5.14)

where I is an identity matrix, and Sy, denotes the soft thresholding operation with
a A\/p bound. These subproblems are solved iteratively using the sensing matrix A
— the multiplication of the sampling matrix and the trained dictionaries — measure-
ments Y and manually defined parameters (p and ) until the desired criterion is

met.

5.2 Implementation of the Trained Dictionaries Generated
Using Online Alternating Minimization Algorithm into
the Alternating Direction Method of Multipliers Algo-

rithm

In the previous chapter, we have shown one of the dictionary learning algorithms
— online alternating minimization algorithm (OAMA) — based on the multi-layer
convolutional sparse coding (ML-CSC) model. At the beginning of this algorithm
or before the dictionary update, there is a line for sparse estimation. The multipli-

cation of the estimated sparse signal 'k and the trained dictionaries D)

(K)

provides
the estimation of the signal of interest X , 1.e. X =p&Er - This process is called
sparse coding. However, several sparse coding methods based on the ML-CSC model
were proposed. These methods are derived from the deep coding problem, and these

are layered hard/soft thresholding and layered basis pursuit algorithms [132, 134].
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However, the study in [176] claims that the projection problem, which forms the
mathematical foundations of OAMA, performs well than the deep coding problem
since the layered basis pursuit and layered thresholding algorithms do not provide
signals that yield the model assumptions, and since these algorithms suffer from
boundaries that relax with the depth of the network. Therefore, we only focus on
OAMA here instead of the layered basis pursuit and layered thresholding algorithms,
but we will compare this algorithm with our proposed dictionary learning algorithm
for both sparse coding and compressed sensing in the experimental section. Al-
though the sparse coding calculations are straightforward, we need to implement
the trained dictionaries generated using OAMA into the ADMM algorithm for re-
constructions from undersampled data. For this implementation, we need to first
execute the OAMA to obtain trained cascade dictionaries. Then, we implement
the trained dictionaries Dpapr4 generated using OAMA into the ADMM algorithm

(K) generated using our pro-

rather than using the trained cascade dictionaries D
posed dictionary learning algorithm. To make an accurate comparison for these
dictionary learning methods, we use the same sampling matrix ¥ and parameters
(X and p) in the ADMM algorithm. However, we need to define new sensing matrix
since the sensing matrix A gets changed because of new trained dictionaries. We
can define this sensing matrix as Apaara, and this definition can provide the new

recovery algorithm based on ADMM.

. 1 i
I'x = (g[ + AOAMATAOAMA> <AOAMATY + ;)F) (5.15)
V:SA/p(fK+U) (5.16)

U=U+Tg—-V (5.17)

So using the same recovery algorithm for reconstruction we can evaluate the perfor-
mance of these two dictionary learning algorithms. In the experimental section, the
sparse coding results and reconstruction results from various undersampled data us-
ing the trained dictionaries generated from both OAMA and our proposed algorithm

are provided.
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5.3 Introduction to Plug-and-Play Image Reconstruction

Method Using Residual Deep Learning

Recall that the signal of interest should be sparse or represented as a sparse signal
for the perfect CS recovery. To make the signal sparse, one should utilize a transform
matrix or a sparsifying matrix. Since off-the-shelf transforms cannot produce coher-
ent sparse signals, we have discussed the development of the trained dictionaries in
the previous chapter, and then we have implemented the trained dictionaries into
the recovery algorithm in this chapter. The importance of the trained dictionaries
for CS recovery is indisputable. However, we need to compare the performance of
our implementation with the performance of the Play-and-Play (PnP) image re-
construction algorithm, which does not need a trained dictionary but a denoising

convolutional neural network (DnCNN).

The PnP algorithm relies on the model-based reconstruction method and the ADMM
algorithm. We have introduced the model-based method with two arms: data-
fidelity and regularization terms. In the PnP concept, the former and latter terms
are sometimes called forward model and prior model. Hereupon, we term forward
and prior models instead of data-fidelity and regularization terms. Recall that the
ADMM algorithm splits the state variables in the cost function to decouple forward
and prior models. The forward model is responsible for reconstruction while the
prior model performs denoising operation. Most studies focus on the development
of forward models and optimization problems while the integrations of priors imple-
mented by advanced image denoising methods with forward models are not usually
considered. However, the PnP algorithm incorporates forward models with such
advanced priors while relying on the ADMM algorithm [206]. To introduce the PnP
algorithm steps, we need to set the optimization problem again. Implementing the
DnCNN operation for the prior model and using the a least squares method for the

forward model, the optimization problem becomes:

X = min [Y — WX |3+ AJA(X;7) - X3 (5.18)

where h denotes the DnCNN operation, and 7 represents trainable parameters of
the DnCNN. Recall that in the PnP algorithm, we do not need to make the signal of
interest X sparse; thus, implementation of the trained dictionaries or any sparsfiying

transform is not required. Variable splitting is performed to decouple the forward
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and prior models. So, the optimization problem becomes:

4ﬁvz%%MC&WM+AMWTw—W@&tX:V’ (5.19)

Using the augmented Lagrangian, the problem becomes:

X700 = wmin [V X3+ MA(Vin) - VIE+EIX -V + U= L0 (520

where p is the penalty parameter, and U is a scaled dual variable. Let X = V-U
and V =X —U. The ADMM algorithm divides the optimization problem into three

sub-problems as follows:

X = min [y —wx |3+ 51X - X3 (5.21)
V = min \|[B(Vi7) = VI3+ 1V =V (5.22)
U=U+X-V (5.23)

Reconstruction is performed in the first sub-problem while the second sub-problem

performs the denoising operation. The first sub-problem has a closed form solution:

A _1 ~
X = (gIJrATA) (ATY+ gx) (5.24)
The solution of the second sub-problem is the response of the DnCNN operation.

A

V =n(V;7) (5.25)

To perform the denoising operation, we need to train DnCNN parameters using large
datasets. We utilize residual deep learning method for this operation. Training steps
and network structure for our problem are presented in the experimental section.
Interested readers can refer to [2, 186, 206, 210] for detailed explanation for the PnP

algorithm and the residual learning.
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5.4 Experimental Results

The performance of the pursuit algorithms presented here is tested for a variety of
undersampling rates. To perform the reconstruction, a test image is firstly under-
sampled using a binary random sensing matrix, and then the measurements and
the sensing matrix are driven into the recovery algorithm. We implement a off-
the-shelf transform, discrete cosine transform (DCT), into the ADMM algorithm.
This implementation is performed since this allows us to compare the performance
of a trained dictionary. The second algorithm is the plug-and-play reconstruction
method (PnP) that uses residual deep learning. This algorithm does not depend
on any dictionary or transform but it can depend on the residual network. We
presented this implementation in this chapter. However, we need to present the
network architecture. The residual network consists of 20 convolutional layers. All
layers consist of 3 x 3 x 64 convolutional filters, and rectified linear units (ReLU)
except the last later. Batch normalization — which speeds up training and enhances
denoising performance — is applied to all layers except the first and the last layers.
Once the layers are designed, the network is initialized with random weights and
trained with the stochastic gradient descent method. To train the network, we use
ordinary noisy images as input and noise-free images as their labels. This allows
the network to map from a noisy image to a noise-free version. The network is
trained with a learning rate of 0.0001, a minibatch size of 128, and 50 epochs. This
architecture is used in the PnP method to recover the test image. In addition, we
also use the implementations of trained dictionaries into the ADMM algorithm to
perform reconstruction. Dictionaries are trained using the OAMA method and the
proposed dictionary learning method in the previous chapter. This also allows to

compare the performances of the trained dictionaries.

We trained the dictionaries using the MNIST dataset and a microscope dataset.
The microscope dataset consists of some images of synaptic structures of a rat. The
images in the dataset are cropped to obtain 28 x 28 patches. However, one can
increase the image size or use single frames for dictionary learning process. We also
train the microscope dataset when the sizes of three consecutives local dictionaries
are 4 x 4,8 x 8, and 16 x 16. The sizes of the trained dictionaries for the MNIST
dataset are same with the size of the trained dictionaries for the microscope dataset.
The difference between these datasets is that the MNIST dataset does not contain
background noise, and the MNIST images are partially sparse. On the other hand,
the microscope dataset consists of noisy images and almost fully dense structures.
We perform the reconstruction process using only one MNIST and microscope test

images. These images are illustrated in Figure 5.1. The reconstruction results for
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these test images with the undersampling rates of 10, 20, 80, and 90 percent are pro-
vided in the following figures. We also corrupt the measurements with a Gaussian
noise, and then the images are reconstructed for the same test images. We also pro-
vide peak signal-to-noise (PSNR) and the structural similarity index (SSIM) values
for each reconstruction results. These values can be seen in Table 5.1. The recovery
algorithms using the trained dictionaries perform better among the other methods.
Although training network with noisy images can reduce the performance of the
recovery algorithm, the recovery algorithm that uses trained dictionaries perform
better than the other method. The proposed dictionary learning method slightly
performs better than the OAMA technique since OAMA depends on parameters
and the performance of the recovery algorithm. On the other hand, we repeat the
training process of the residual network using MNIST dataset, but we observe the
same network weights. The network can also be trained with the microscope dataset
that is used in the dictionary-learning algorithm. Please note that this could provide

more accurate results for the microscope image reconstruction.

(a) (b)

Figure 5.1 MNIST (a) and microscope (b) test images. The images are taken from
the dataset that is utilized in the dictionary learning algorithms.
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(d)

Figure 5.2 Reconstruction results for the MNIST test image when the under-
sampling rate is 90 (the first row), 80 (the second row), 20 (the third row), and
10 (the fourth row) percent. The reconstructions are performed using the method
of ADMM-DCT implementation (a), the plug-and-play reconstruction method (b)
the implementations of trained dictionaries, which are produced by OAMA (c) and
by the proposed dictionary learning algorithm (d), into ADMM. The measurements
are not corrupted by noise.
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Figure 5.3 Reconstruction results for the MNIST test image when the under-
sampling rate is 90 (the first row), 80 (the second row), 20 (the third row), and
10 (the fourth row) percent. The reconstructions are performed using the method
of ADMM-DCT implementation (a), the plug-and-play reconstruction method (b)
the implementations of trained dictionaries, which are produced by OAMA (c) and
by the proposed dictionary learning algorithm (d), into ADMM. The measurements
are corrupted by Gaussian noise with o = 0.01.
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Figure 5.4 Reconstruction results for the microscope test image when the under-
sampling rate is 90 (the first row), 80 (the second row), 20 (the third row), and 10
(the fourth row) percent. The reconstructions are performed using the method of
ADMM-DCT implementation (a), the plug-and-play reconstruction method (b) the
implementations of trained dictionaries, which are produced by OAMA (c) and by
the proposed dictionary learning algorithm (d), into ADMM. The measurements are
not corrupted by noise.
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Figure 5.5 Reconstruction results for the microscope test image when the under-
sampling rate is 90 (the first row), 80 (the second row), 20 (the third row), and 10
(the fourth row) percent. The reconstructions are performed using the method of
ADMM-DCT implementation (a), the plug-and-play reconstruction method (b) the
implementations of trained dictionaries, which are produced by OAMA (c) and by
the proposed dictionary learning algorithm (d), into ADMM. The measurements are
corrupted by Gaussian noise with o = 0.01.
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L.

Table 5.1 PSNR (dB) and SSIM values for the reconstructions of the MNIST and microscope test images with a variety of under-sampling
rates. The reconstructions are performed using the method that implements the DCT transform into ADMM (ADMM-DCT), using the
plug-and-play reconstruction method that uses residual deep learning (PnP), using the method that implements the trained dictionaries
by OAMA the into ADMM (ADMM-OAMA), and using the trained dictionaries by our proposed dictionary learning method into ADMM
(ADMM-DL). The reconstructions are tested when the measurements are not corrupted by noise (noise-free), and corrupted by the
Gaussian noise with o = 0.01 (noisy).

10% 20% 30% 70% 80% 90%

Reconstruction Method  poyp ™ qaini pSNR SSIM PSNR SSIM. PSNR SSIM PSNR~ SSIM PSNR. SSIM

g | ADMM-DCT  6.9549 0.1105 6.9829 0.1268 7.9838 0.2833 10.2705 0.5104 10.4901 0.5258 13.8564 0.6382

o é—: PnP 7.3010 0.1305 8.1922 0.2634 8.2427 0.3065 11.5872 0.5234 12.9805 0.5902 15.7709 0.6902
CE@ 2 | ADMM-OAMA 112007 0.2566 13.7270 0.4889 14.2385 0.5571 43.4607 0.8820 66.0847 0.9990 71.0104 0.9997
= |2 ADMM-DL 12.0519 0.3028 13.7996 0.5131 14.9383 0.5790 47.8842 0.9191 66.5666 0.9990 72.8139 0.9998
& ADMM-DCT  6.3725 0.1088 6.5493 0.1161 7.7137 0.2731 8.5499 0.4317 8.9343 0.4765 12.4430 0.5795
Z 5 PnP 6.4584 0.1271 8.0972 0.2623 8.2357 0.2976 11.0112 0.4923 12.3870 0.5733 12.9466 0.6019
= 2> | ADMM-OAMA 11.1700 0.2455 12.8823 0.4459 13.4132 0.5212 14.4015 0.5607 15.9496 0.6094 16.2793 0.6538
ADMM-DL 12.0139 0.2925 13.4554 0.4538 14.3353 0.53376 15.7174 0.5729 16.2502 0.6099 16.3825 0.6565

o § ADMM-DCT  5.0615 0.0812 5.3606 0.0847 6.1214 0.1211 7.3215 0.2212 7.7834 0.2832 8.4912 0.2961
o0 | PnP 5.6150 0.0904 5.8082 0.0912 6.5213 0.1242 7.9312 0.2856 8.1322 0.2924 9.1734 0.3412
& 2 | ADMM-OAMA  6.2423 0.1013 6.6624 0.1182 7.4312 0.2322 13.7992 0.5232 159294 0.6091 16.2384 0.6424
g 2 ADMM-DL 6.6845 0.1198 7.0704 0.2021 8.0413 0.2712 14.3243 0.5372 16.2404 0.6099 16.6412 0.6482
S ADMM-DCT  3.9413 0.0654 4.1310 0.0702 4.1717 0.0734 4.8312 0.0802 4.9910 0.0812 5.0613 0.0901
§ = PnP 4.0212 0.0682 4.1427 0.0712 4.2313 0.0762 5.0110 0.0813 5.0210 0.0844 5.2312 0.0903
§ 2> | ADMM-OAMA 4.1315 0.0693 4.1512 0.0721 4.5412 0.0774 5.6212 0.0872 6.1011 0.1009 6.3422 0.1110
ADMM-DL 4.1456 0.0712 4.1782 0.0742 4.6546 0.0792 5.8712 0.0893 6.3712 0.1193 6.4212 0.1202




6. COMPRESSED STRUCTURED ILLUMINATION
MICROSCOPY: SIMULATION BASED STUDY

In this chapter, we will investigate a simulation-based study which combines super-
resolution structured illumination microscopy (SR-SIM) and the compressed sensing
(CS) framework. This study addresses several key problems in SIM, including long
readout time and photobleaching. We propose that CS has a potential to elimi-
nate these problems since it allows to reduce the number of measurements, it can
record an image faster, and it excites fluorochromes with less excitation light. Key
contribution of our proposed method is that sampling and down-modulation of an
object scene are simultaneously performed. The CS recovery is performed using
some of the recovery algorithms presented in the previous chapter and using the
Fast and Accurate First-Order Method for Sparse Recovery (NESTA) [10]. We also
compare the algorithms performances for the study here. We carry the simulation-
based experiments using computer-generated super-resolution microscopy images,

considering reductions in both data quality and quantity.

6.1 Related Work and Contribution of This Study

An optical microscope does not have the ability to image most viruses, proteins,
and small molecules because of Abbe’s diffraction limit. This limit suggests that
the peak-to-peak distance of two points can be optically resolved up to 200-nm when
high numerical aperture and visible light emission are utilized. This causes an object
scene to be blurry where finer structures of the underlying scene are lost. The need
for finer resolution in life sciences has driven attempts to go beyond this limit, which

led to the emergence of super-resolution microscopy techniques.

In this study, we are interested in super-resolution structured illumination mi-
croscopy (SR-SIM) [64]. SR-SIM achieves 100-nm resolution images in the lateral

direction, but it requires at least nine raw images to reconstruct a single super-
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resolution image. This requirement has two consequences: (1) fluorescent probes
are exposed to excitation light over a long period of time, which leads to photo-
bleaching [39]; (2) recording dynamic biological processes over an extended time
period causes motion artifacts in the super-resolution image [209]. To record dy-
namic processes of living cells, acquisition speed has been increased to some degree
by using a spatial light modulator instead of a diffraction grating [73]. However,
high-speed recording is fundamentally restricted by the readout time of a camera
[198]. To avoid photobleaching, excitation intensity can be reduced, but this leads
to increased readout time and decreased signal-to-noise ratio (SNR) in raw images.
Of course, low SNR is not desirable in a super-resolution image because noise can

lead to false indications about the specimen.

Most SR-SIM problems can be traced to the camera. Therefore, we need a system
that is extremely fast for recording raw images (to observe high dynamic processes),
and projects less excitation light onto the sample (to avoid photobleaching). Com-
pressed sensing (CS) can be a candidate for achieving these objectives. First, CS
allows us to record an object scene with a photomultiplier tube (PMT) instead of
a camera. The acquisition speed of a PMT is much faster than a scientific comple-
mentary metal oxide semiconductor (sCMOS) camera. Second, the scene in the CS
framework is sampled faster (thanks to higher frame rate of a digital micromirror
device - DMD), and also sampled with lower excitation light (because of sampling
patterns). Third, the CS framework can recover the scene reliably with few mea-
surements, reducing the overall data collection time further. Based on these obser-

vations, we believe the CS framework can be suitable for alleviation of fundamental
SIM problems.

To the best of our knowledge, there is only one study which combines CS and SR-
SIM [115]. In that study, the object scene is undersampled by the camera, and hence
diffraction of sampling pattern is not considered and the CS framework is not fully
performed. However, we propose here that the sampling and down-modulation of
an object scene are simultaneously performed with a DMD. In other words, DMD
displays both sinusoidal and random sampling patterns at the same time, these
patterns diffract together along the optical system, and then they are collected by
a PMT. When compared to the study in [115], although the experiments performed
in this paper are based on simulations, our proposed approach would be low-cost
(an expensive scientific camera is not required); it would be capable of recording
a scene faster (due to the use of the PMT and the DMD); and it would alleviate
the photobleaching effect. We believe that recording raw SIM images faster would
decrease motion artifacts and photobleaching, which can enable the capture of new

information about biological specimens.
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6.2 Theoretical Foundations for Compressed Structured Illu-

mination Microscopy

We present a novel framework, based on a combination of SR-SIM and CS, to alle-
viate the two major issues: photobleaching and motion-induced artifacts in imagery.
We call this framework compressed sensing structured illumination microscopy (CS-
SIM). CS-SIM is a widefield microscopy technique. Although sampling and acquisi-
tion in conventional microscopy systems are usually performed by a camera, CS-SIM
only uses DMD for sampling and PMT for acquisition. This allows the acquisition
of images with high sampling rates. In addition, CS needs only a few measurements

for recovery. These facts can shorten the acquisition time.

In the CS-SIM method, a random sampling pattern, Ry (z,y) € RV*Y

, which con-
sists of only zeros and ones, and a sinusoidal illumination pattern, I; j(x,y) € RIV*N
are simultaneously generated by a DMD, which can be located in front of an epi-
illumination port of a commercial microscope system. Some of the sampling and
illumination patterns, which are generated by the DMD, are illustrated in Figure

6.1.

Figure 6.1 Sampling and illumination patterns (with different angles) on the DMD.

Once these patterns are generated, they are projected onto the object scene
(ground truth), O(z,y) € RY*N. This operation provides an emission distribution,
Dy(x,y) € RN such that:

where z and y are Cartesian coordinates and k = {1,2,...,m} where m is the mea-

surement length or the number of snapshots, where each snapshot corresponds to a
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different sampling pattern. The illumination pattern can be expressed as:

I; j(z,y) = 14 cos(2np(cos(0;)x +sin(0;)y) + ¢;) (6.2)

where p, 0;, and ¢; are frequency, angle, and phase of the illumination pattern,
respectively. The minimum number of phases and angles must be three, i.e.,
i=1{1,2,3} and j = {1,2,3}, at least. Once the emission distribution is formed,
the expression in Equation 6.1 is convolved with a previously defined point spread
function (PSF), PSF(z,y) € RV*N | to form an observed emission distribution. A
summation over variables of the observed distribution provides a single measurement
fr. In optics, this operation is almost equivalent to collection and acquisition of a
wave-front by a lens and PMT. Mathematically speaking, this can also be expressed

as:

N N

r=1y=1
where N is image size, and ® denotes the convolution operation and generates a
signal with the same image size N. To acquire the next measurement, i.e., fii1,
all entries in the sampling pattern are randomly changed; the generated sampling
pattern Ry 1(z,y) is projected onto the object scene with the same illumination
pattern, which is convolved with the same PSF, and variables in the diffracted
output are summed. To form a measurement vector, these processes are repeated
until the measurement vector reaches a desired length. These measurements can

also be corrupted by noise.

Y1 SN S PSF(z,y) @ Di(z,y) | [m
| = z +
N N
Ym Zx:1zy:1P5F(I7Q)®Dm(%Z/) m

where nj, is the measurement noise on the k-th measurement. The measurements,

2
y € R™, and sensing matrix, A € R™*N

, which is constructed from the sampling
patterns, are utilized in the basis pursuit (BP) algorithm to reconstruct a raw SIM
image or estimate a modulated object scene, 6 € RY *. The optimization problem
constructed in BP is described below with an assumption that measurements are
corrupted by bounded noise n, i.e. y = Ao+ n where o € RV ® is the object scene

and ||n|l2 <e.

0 =min|lofy s.t. [ly — Aol2 <¢ (6.4)
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The steps in the generation of the measurement vector are repeated for each illu-
mination pattern, whose angles ; or phases ¢; are different from each other. This
enables us to acquire a number of measurement vectors, and these vectors and the
sensing matrix are used to reconstruct entire raw images. Eventually, these raw
images are utilized in a SIM reconstruction algorithm to acquire a super-resolution

image.

6.3 Experimental Results

Simulation results evaluating the proposed method are presented in separate subsec-
tions for stationary and non-stationary objects. In the first subsection, we consider
stationary objects and demonstrate that the proposed CS-SIM method exhibits ro-
bustness to limitations in the number of available measurements. In the second
subsection, the method is evaluated for imaging non-stationary objects with far
fewer measurements. The simulation results in this subsection demonstrate the po-
tential of the CS-SIM method for alleviation of photobleaching and motion-induced

artifacts.

6.3.1 Experimental Results for Stationary Objects

The CS-SIM framework is demonstrated with simulations using synthetic and pre-
viously recorded stationary microscope images. In the simulations, we utilize three
ground truth images (128 x 128 pixels with a pixel pitch of 50 nm): computer-
generated fluorescent microspheres (the sparse image), computer-generated USAF
Target (the dense image), and experimental two-color stochastic optical reconstruc-
tion microscopy (STORM) image (the dense image because of the background),
which is obtained from the study of Bates et al. [8]. The point spread function
(PSF) is generated with parameters of 63x 1.4 NA, 488 nm excitation and 560 nm
emission wavelengths. In addition, each sample is exposed to 16 stripe illumination

patterns (4 phases + 4 angles).

The experimental results are shown in Figure 6.2 and Figure 6.3. All ground truth
images are illustrated in the first row. These images are diffracted with the PSF to

obtain conventional optical microscope images (the second row). Then, the ground
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truth images are used again to simulate SR-SIM. Once the simulation is completed,
the raw SIM images are reconstructed by fairSIM [120], which is a state-of-the-art
SIM reconstruction program. The SR-SIM images for each sample are illustrated in
the third row. It can be clearly observed that the spatial resolution of the SR-SIM

images is higher than that of the conventional optical microscope images.
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Figure 6.2 Experimental results for the stationary objects; computer-generated flu-
orescence microsphere (a), USAF target (b), and real STORM image (c). From top
to bottom, images for the ground truth, the widefield, the reconstruction result of

SR-SIM are presented. Scale bar is 1um.

83



AL

-
i =
'

(b) ()

Figure 6.3 Experimental results for the stationary objects; computer-generated flu-
orescence microsphere (a), USAF target (b), and real STORM image (c). From top
to bottom, images for the reconstruction results of the proposed CS-SIM approach
using the TV regularizer (the first row), using the NESTA algorithm (the second
row), and using the plug-and-play reconstruction algorithm (the third row) are pre-
sented. All CS-SIM images are acquired with the sampling rate of 25 percent. Scale
bar is 1um.

Next we present reconstruction results of our proposed CS-SIM approach. Raw
CS-SIM images are recovered using the NESTA algorithm [10], using the total vari-
ation (TV) regularization algorithm, and using the method of plug-and-play recon-
struction algorithm using residual deep learning. The plug-and-play algorithm is
presented in the previous chapter. TV regularization is one of the well-known meth-
ods, so we will not discuss the details of this method here. On the other hand, all

CS-SIM images are acquired with the sampling rate of 25 percent. In other words,
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the amount of data used by the proposed method is one fourth of that used by the
SR-SIM method. To evaluate the simulation results, we use Peak Signal-to-Noise
Ratio (PSNR). Each ground truth image is used as a reference image. PSNR results

for each simulation are given in Table 6.1.

It is seen that the CS-SIM results are reasonable, and they are mostly in very good
agreement with the SR-SIM simulations, despite using only one-fourth of the obser-
vations. For the fluorescent microsphere object, it is noteworthy that the proposed
method provides better quantitative performance than SR-SIM. For the other two
objects, SR-SIM generates better super-resolution images than those of CS-SIM.
This is the reason that the CS framework shows better performance when a sparse
object is recorded. For a dense scene, the image should be represented as a sparse
one by using a sparsifying transform. However, we do not utilize any sparsifying
transform here, but high under-sampling rate. When we utilize a learned sparsi-
fying transform for these dense objects, we probably get better PSNR results for
them. Although learned sparsifying transform is not applied on the reconstruction
process, reconstructions formed using the plug-and-play reconstruction algorithm

can provide results that are similar to the results of SR-SIM method.

Table 6.1 Peak Signal-to-Noise Ratio (dB) values for the images produced by con-
ventional microscopy (CM), SR-SIM, and CS-SIM. CS-SIM reconstructions are per-
formed using the total variation regularization algorithm (CS-SIM TV), using the
NESTA algorithm (CS-SIM NESTA), and using the plug-and-play reconstruction
method (CS-SIM PnP). Results are presented for the three ground truth images:
Bead, USAF, and STORM.

CM SR-SIM || CS-SIM TV || CS-SIM NESTA || CS-SIM PnP
Bead 18.2631 || 18.4411 17.7229 18.9242 18.9782
USAF 11.6490 || 13.4406 9.6755 10.8494 12.1580
STORM || 25.2758 || 28.0749 22.1069 24.5345 26.0529

6.3.2 Experimental Result for Non-Stationary and Sparse
Object

CS-SIM is also performed for a non-stationary object by using the simulation param-
eters presented previously. In this experiment, the object scene consists of several
beads with a diameter of 50 nm. These beads are uniformly located in the scene and

represent fluorescent dyes on Plasmodium falciparum, which has a speed of 1 um/s
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[17]. SR-SIM and CS-SIM are simultaneously performed while each bead glides
with a constant velocity along a straight line. The CS-SIM method for the moving
object experiment is performed with the sampling rate of one-percent. This means
that we require roughly 164 measurements to recover a raw SIM image. When a
DMD with a frame rate of 33 kHz is utilized for the CS-SIM method, the acquisition
speed becomes 200 Hz. Thus, CS-SIM can be approximately two times faster than
SR-SIM. When the acquisition is completed, the beads cover a distance of 200 nm
in SR-SIM and 100 nm in CS-SIM. This explains that SR-SIM is more sensitive to
motion artifact than CS-SIM. The reconstruction results of SR-SIM and CS-SIM,
and the object scene with the motion direction (blue arrow) are presented in Figure

6.4. The reconstruction results show that CS-SIM can be robust to artifacts.

(a) ()

Figure 6.4 Experimental results for the moving sparse object. The ground truth (a)

is illustrated with the moving direction (the blue arrow). Reconstruction results of
SR-SIM (b) and CS-SIM (c) are also shown. Scale bar is 1um.

The proposed method can also allevate photobleaching since cumulative energy ab-
sorbed by the sample is lower. This results from the fact that the object scene is
exposed with less photons in the CS-SIM method due to sparse illumination patterns
(shown in Figure 6.1) and high acquisition speed. In the following chapter, we will
investigate real data collection experiments for the compressed sensing structured
illumination microscopy technique, and we will evaluate the acquisition speed and

the photobleaching issue in practice.
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7. COMPRESSED STRUCTURED ILLUMINATION
MICROSCOPY: OPTICAL IMPLEMENTATION AND
REAL DATA COLLECTION

In this chapter, we will implement the compressed sensing illumination microscopy
(CS-SIM) configuration, and then we will collect data using the implemented setup.
Before implementing the microscopy configuration, we will first discuss data collec-
tion problem using a photomultiplier tube (PMT). PMT is one of the main devices
in optical configurations when compressive sensing is performed. PMT transforms
light signals into analog signals, but we need digital signals to reconstruct an image.
In other words, a simple setup should be presented to perform data collection using
a PMT. We will present this setup and discuss the limitations. Once the setup is
introduced, we will also discuss the limitations of the Digital Micromirror Device
(DMD), which is used in the CS-SIM configuration. We will also discuss possible
effects of the limitations to the real data collection experiments. Eventually, we will
introduce the CS-SIM configuration. The microscope is build around a commer-
cial microscope. In other words, we integrate DMD, PMT and controller devices
into the commercial microscope to build the CS-SIM setup. Once the configuration
is presented, data is collected using the PMT while the DMD projects illumination
pattern and sampling patterns simultaneously. The collected data and the projected
sampling patterns are utilized in the CS recovery algorithm. This provides us a raw
structured illumination microscopy (SIM) images. To form second raw SIM image,
(1) the illumination pattern should be changed, (2) the sample is exposed to the il-
lumination pattern and same sampling patterns while new data is collecting, and (3)
the raw SIM image is reconstructed using the new collected data and the sampling
patterns. These steps should be repeated until all raw SIM images are formed. Once
the raw images are formed, they are used to in a SIM reconstruction algorithm. This
provides us a single CS-SIM image. To compare the resolution of CS-SIM image
and the resolution of other microscopy images, we also record SIM raw images alone
to form a conventional super-resolution SIM image. In addition, we image the same
microscope sample under a commercial confocal microscope. Confocal microscopy

parameters such as wavelength of excitation light source, and light intensity are
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similar to structured illumination microscopy parameters. In other words, the res-
olution of the images is directly related to the microscopy techniques. Readers can

find the resolution comparisons of these techniques at the end of this chapter.

7.1 Data Collection with a Photomultiplier Tube

In the study, which combines the compressed sensing (CS) and the structured illu-
mination microscopy (SIM) methods, an object plane should first be collected by a
lens, and then the collected signal should be measured by a photomultiplier tube
(PMT), located at the focal point of the lens. The recorded measurements present
a measurement vector that can be utilized in the CS recovery algorithm. However,
since CS recovery algorithm estimates a scene based on numerical data and the
PMT output is an analog signal, the output must be converted into a digital signal.
Hence, the design of an analog-to-digital converter (ADC) board is required. Here,
a simple optical configuration, which converts PMT analog signal into digital signal

using the ADC board, is presented.

In Figure 7.1, experimental setup, in which the object plane is measured by the
PMT and in which PMT output is converted into digital data, is shown. In this
setup, a 488 nm laser source (Coherent Litbeck GmbH — Sapphire 488-20), which will
be utilized in the CS-SIM experiments, is operated. Laser beam is first expanded
using a laser beam expander, and then the beam is projected onto a microscope
sample. The generated object plane is collected by a lens with a focal length of 100
mm. Then, the collected signal is measured with a PMT that is placed at the focal
point of the lens. At this point, it is required to use an amplifier since the signal
level of the PMT output is too weak. The output type of the PMT is current, so a
current amplifier (Hamamatsu — H7422-50) is utilized. It should be considered that
the output of the current amplifier should be voltage type since the analog input of
the ADC board should be voltage type. During the experiments, it is observed that
the output of the current amplifier provides negative voltage. However, since the
analog signal to be driven on the ADC board must be positive, an inverting amplifier
(Texas Instrument — THS4011EVM) is located between the current amplifier and
the ADC board. The output of the inverting amplifier is serially connected to the
oscilloscope and the analog input of the ADC board. The digital data read on the
ADC board are compared with the oscilloscope results. This allows us to verify the
numerical data with the corresponding analog signals. In addition, the ADC board

is programmed to allow digital data to be transferred to the computer.
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Figure 7.1 The optical configuration for PMT data collection process.

In order to operate the PMT device, the device must be supplied with voltage. It is
observed that the device does not work if the PMT device is operated at an average
voltage value at first. Therefore, the device should first be operated at low voltage
values, and then the voltage level should be increased gradually. The optimum
operating voltage range for the PMT is detected to be from 0.2 V to 0.25 V. The
maximum signal level of the inverting amplifier output is measured around 2.5 V
to 3 V with these configurations. On the other hand, it is seen that PMT stops
when the laser intensity is increased after the PMT settings are made. Hence, PMT
should first be operated at high intensity level, and then the intensity level should
be reduced. In the experimental study with CS-SIM, it should be considered that
light intensity should be maximum for the first measurement. This can prevent the

PMT from stopping while data is being collected.
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7.2 Projection of Illumination Patterns with a Digital Mi-

cromirror Device

A Digital Micromirror Device (DMD) consists of a number of mirrors roughly sized
camera pixels. Each mirror rotates independently and has two states: on and off.
DMD is widely used in the structured illumination microscopy (SIM) configurations
to usually create stripe illumination patterns. These patters are used to demod-
ulate higher frequency components of the sample into the low-pass region of the
microscope objective. In the proposed method here, we will use a DMD (Mightex
Polygon 400) to create not only stripe illumination patterns but also random sam-
pling patterns, and illumination and sampling patterns are simultaneously projected
to the sample. The DMD frame rate is 4000 Hz. This frame rate is not enough to
accelerate acquisition speed, but the experiments for non-stationary objects here are
demonstrated as a proof-of-principle. However, there are DMDs whose frame rate
is higher than 30000 Hz in the market. If one carries the experiments here using a
higher frame rate DMD, the acquisition speed of the configuration would be higher

than the acquisition speed of a camera.

In the configuration, the DMD is mounted into the input of the epi-illumination
port of the commercial microscope. To guide and size the patterns, a number of
lenses are placed between the DMD and the input of the epi-illumination port. The
mirrors are exposed to a LED light source whose wavelength is 470 nm. The DMD
can be operated with a standalone graphical user interface. The interface asks the
users calibration procedures before the pattern illuminations. To cover the patterns
on the camera field-of-view, the DMD position should be adjusted first. Once the
calibration is performed, the patterns can be illuminated. To the best our knowledge,
the native resolution of the DMD is 608 x 684, and the mirrors are oriented in the
diagonal rotation that creates diamond shaped mirrors. Because of the orientation,
the DMD offers WVGA Resolution (854 x 480).

To the best our knowledge, the DMD has an addressing issue, and that creates
corrupted patterns. This issue is observed when the pattern with a DMD native
resolution, a camera area that covers all DMD array or offered aspect ratio image
is uploaded. The corruption can cause two significant result: (1) corrupted stripe
patterns can generate additional diffraction orders and this can cause SIM recon-
struction artifacts, and (2) CS recovery algorithm might not reconstruct an image
using corrupted sampling patterns. In Figure 7.2, the projected pattern and the
corresponding image are illustrated. As seen in the figure, the recorded image con-

sists of corrupted lines while the projected pattern with a native DMD resolution is
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Figure 7.2 The projected pattern with native resolution (a) and the corresponding
recorded image (b).

To overcome the corruption issue, we decided to address the DMD mirrors one by
one. We started to address the middle of the DMD array to get an image that is
prevented from the vignetting issue. We also used low Numerical Aperture (NA)
microscope objective (4x 0.13 NA) to observe the DMD mirrors in detail, and the
patterns are projected on a glass slide alone. In Figure 7.3, the projected pattern
and the corresponding image can be seen. We cropped the image to show the details.
The projected pattern covers 64 x 162 pixels out of 608 x 684 native resolution.
The corresponding image covers 393 x 481 camera pixels out of 2048 x 2048 camera
pixels. To create straight line along horizontal direction, the projected pattern is
corrupted. Addressed some DMD mirrors generate two pixels on the corresponding
image. Therefore, we need to leave them empty. We observed that the gap is not
periodic. In addition, we cannot address some of the DMD mirrors properly, and

these are seen on the bottom left side of the corresponding image.
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Figure 7.3 The projected pattern (a), and the corresponding image (b). The pixels
on (a) are addressed one by one to create straight patterns on (b). Images (a) and
(b) are cropped to show the details. The projected pattern covers 64 x 162 pixels
out of 608 x 684 native resolution. The corresponding image covers 393 x 481
camera pixels out of 2048 x 2048 camera pixels.

To create straight lines along horizontal direction, we decided to address the middle
of the DMD array in Figure 7.3 alone. The SIM technique suggests that we need
to create at least three consecutive phased straight lines. These straight lines along
horizontal direction and the corresponding images are illustrated in Figure 7.4. Im-
ages and are cropped to show the details. To create straight lines, we corrupted the
pattern. There are some defects on the corresponding images. These result from
the defects on the glass slide. However, one DMD mirror cannot be addressed, and
this can be seen on the right bottom side in Figure 7.4c. The images in Figure 7.4
are cropped to show the details. The projected pattern covers 100 x 100 pixels out
of 608 x 684 native resolution. The corresponding image covers 300 x 300 camera

pixels out of 2048 x 2048 camera pixels.
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Figure 7.4 The projected patterns (the first row) along horizontal direction, and
the corresponding images (the second row). The patterns are shifted to form three
different phases (a, b, and c¢) along horizontal direction. Images and are cropped to
show the details. The projected pattern covers 100 x 100 pixels out of 608 x 684
native resolution. The corresponding image covers 300 x 300 camera pixels out of
2048 x 2048 camera pixels.

To create straight lines along vertical direction, we also addressed the DMD mir-
rors to generate three consecutive phased straight patterns. These patterns will be
utilized to generate isotropically improved resolution image. These straight lines
along vertical direction and the corresponding images are illustrated in Figure 7.5.
Images and are cropped to show the details. To create straight lines, we corrupted
the pattern. Addressed some DMD mirrors along vertical direction generate two
pixels on the corresponding image (we leaved empty them). In addition, some of
the DMD mirrors on the right bottom side cannot be addressed. Therefore, the

working area should be shrunk.
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Figure 7.5 The projected patterns (the first row) along vertical direction, and the
corresponding images (the second row). The patterns are shifted to form three
different phases (a, b, and c¢) along vertical direction. Images and are cropped to
show the details. The projected pattern covers 100 x 100 pixels out of 608 x 684
native resolution. The corresponding image covers 300 x 300 camera pixels out of
2048 x 2048 camera pixels.

We decided to create square patterns on the defined working area. All of the DMD
mirrors on this working area can be addressed. In other words, not only the straight
lines along horizontal and vertical directions can be generated but also the sampling
patterns can be projected properly. The straight lines along horizontal and vertical
directions, and their corresponding images are shown in Figure 7.6. The square
region cover 27 x 27 DMD array, but this corresponds to 105 x 103 camera pixels.
Each DMD mirror roughly corresponds to 4 x 4 camera pixels. Although the DMD
array is square, the corresponding image is not exactly square. We think that this is
another issue of the DMD, but we ignored this issue for the next step. Images and
are cropped to show the details. The projected pattern covers 50 x 50 pixels out
of 608 x 684 native resolution. The corresponding image covers 150 x 150 camera

pixels out of 2048 x 2048 camera pixels.
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Figure 7.6 Square projected patterns along horizontal (the first row) and vertical
(the third row) directions, and the corresponding images (the second and fourth
rows). The patterns are shifted to form three different phases (a, b, and ¢) along
horizontal and vertical directions. Images and are cropped to show the details. The
projected pattern covers 50 x 50 pixels out of 608 x 684 native resolution. The
corresponding image covers 150 x 150 camera pixels out of 2048 x 2048 camera
pixels.
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7.3 Compressed Structured Illumination Microscopy: Opti-

cal Configuration

In the compressed sensing structured illumination microscopy (CS-SIM) configura-
tion, we use DMD whose specifications are discussed in the pervious subsection. The
DMD generates stripe and sampling patterns simultaneously. The DMD is mounted
into the input of the epi-illumination port of the commercial microscope. To guide
and size the patterns, a number of lenses are placed between the DMD and the
input of the epi-illumination port. The mirrors are exposed to a LED light source
whose wavelength is 470 nm. The object wavefront is collected by placing the PMT
in front of the output port of the microscope. A collection lens with a 100 mm focal
length is placed between the PMT and the lens. The PMT is roughly placed at the
focal point of the lens. Since the PMT output signal level is weak, it is required
to use an amplifier. The output type of the PMT is current, so a current amplifier
is used. It should be considered that the output of the current amplifier should be
voltage type since the analog input of the ADC board should be voltage type. Dur-
ing the experiments, it is observed that the output of the current amplifier provides
negative voltage. However, since the analog signal to be driven on the ADC board
must be positive, an inverting amplifier is located between the current amplifier and
the ADC board. The output of the inverting amplifier is serially connected to the
oscilloscope and the analog input of the ADC board. The digital data read on the
ADC board are compared with the oscilloscope results. This allows us to verify the
numerical data with the corresponding analog signals. In addition, the ADC board
is programmed to allow digital data to be transferred to the computer. The trans-
ferred data is stored, and then it is used in the CS recovery algorithm. It is observed
that PMT collects small signal intensity since small portion of the DMD mirrors can
be used. This leads to small intensity changes after each sampling pattern. Even-
tually, this leads to low signal-to-noise (SNR) ratio. To increase SNR ratio and to
extend the intensity values after sampling pattern changes, we decided to place a
pinhole between the lens and the PMT to eliminate surrounding wave front, and
also we decided to record at least 5 data for each sampling pattern. The data for
each sampling pattern is then averaged, and the averaged value is used in the CS
recovery algorithm. In other words, the effective frame rate of the DMD roughly
becomes 800 Hz. In the non-stationary experiments, we compared the results when
the sampling rate is 800 Hz and 400 Hz. Actually, these speeds are not enough
to accelerate the acquisition speed. Therefore, the experimental results here are
shown as a proof-as-principle. However, when the all portion of the DMD mirrors

are addressed properly, the PMT can collect higher signal intensity that differs the
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collected data after each sampling pattern change. Therefore, we cannot need to
record 5 data for each sampling pattern. In addition to that, when the DMD frame

rate high, the acquisition speed can be increased dramatically.

7.4 Compressed Structured Illumination Microscopy: Exper-

imental Results

In this section, we will discuss the experimental results. We will compare the res-
olutions of stationary and non-stationary objects. For each object, we form the
confocal microscopy image, the wide filed image, the structured illumination mi-
croscopy image, and the compressed structured illumination microcopy image that
is the proposed method. We used a commercial confocal microscope to form the
confocal microscope image. The excitation wavelength of the confocal microscope is
488 nm, and the laser light source is used in this microscope. The light intensity level
of the confocal microscope is almost same with the light intensity of the wide filed,
SIM and CS-SIM microscopes. In the experiments, we used high NA microscope
objective (60x 1.49 NA) to get higher resolution images. We discussed that the cor-
responding image (105 x 103) is not exactly square although the square DMD array
(27 x 27) is projected. In addition, we observed that some mirrors do not exactly
correspond to the expected position of the camera pixel. Therefore, we decided to
stimulate each 729 mirrors one by one, and then we recorded the corresponding dot
patterns. The position and intensity distribution of these dot patterns are stored to
form the sensing matrix that will be used in the CS recovery algorithm. Of course,
sampling patterns consist of the random distributions of these dot patterns. Some

of these dot patterns out of 729 dot patterns are illustrated in Figure 7.7.
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Figure 7.7 Some of the dot patterns that construct sampling patterns and sampling
matrix.

In the experiment, we used nanomembrane sample [173] and the sample is covered
by Streptavidin Coated Microspheres whose diameters are roughly 200 nm. The
thickness of the sample is very short, and it is around a couple of nanometers.
The short sample thickness for our method is good enough to prevent the sampling
patterns from diminishing. The sample with a 1024 x 1024 camera array and the

projected pattern on this sample are shown in Figure 7.8.



(b)

Figure 7.8 Nano membrane coated with Streptavidin Coated Microspheres (a) and
the projected pattern on the sample (b).

7.4.1 Reconstruction Results for Stationary Object

We recorded the stationary sample for wide-filed microscope, SIM, CS-SIM and con-
focal microscope to compare resolution results. In the proposed method (CS-SIM), a
camera is not required to record images, but PMT data recording is required. Once
the PMT data is acquired, the data and the sampling matrix, which is composed
of the sampling patterns, are used in the CS recovery algorithm. Here, we used
the method of the plug-and-play image reconstruction using residual deep learning
as the CS recovery algorithm. This method is introduced in the previous chap-
ter. We also show the reconstruction results for various sampling ratios that are
5, 10 and 15 percent. These ratios are very low to reconstruct an CS image, but
the method of plug-and-play image reconstruction using residual deep learning is
successful algorithm to reconstruct under-sampled data. On the other hand, we
also recorded the SIM raw images using the camera to form super-resolution image.
However, coarse stripe patterns are generated on the sample. This prevents the
higher frequency component of the scene from demodulation further. This leads to
minor resolution improvement, and this improvement is roughly 1.3 according to
the theory. However, the resolution improvement is less than 1.3 in practice. This
issue also influences the resolution improvement using the proposed method since
the resolution improvement result from the stripe patterns. On the other hand, the
sample is recorded using the confocal microscope. However, the image size of the
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confocal microscope is less than the image size of the wide-field microscope. To
compare the resolutions or intensity values, we need to interpolate the image of the
confocal microscope. The recorded confocal image and the interpolated image are

demonstrated in Figure 7.9.

(a) (b)

Figure 7.9 Confocal microscope image (a) and the interpolation result (b).

In Figure 7.10, the images of the same sample for each microscope technique are
shown. The images are actually monochrome, but they are dyed with a false green
color. To compare the resolution, we can compare the intensity values of two neigh-
bor microspheres, and we provide Figure 7.11. The intensity values are drawn across
the red lines in Figure 7.10, and these lines are very similar for almost all microscopy
technique. Actually we expect that the confocal and SIM techniques provide higher
resolution images. However, confocal image is interpolated to make same image size
with the image size of the other methods. The interpolation can reduce resolution
of the image. On the other hand, the stripe patterns are coarse that prevents from
higher resolution improvement. In addition, the SIM image consists of some recon-
struction artifacts since the DMD mirrors are diagonally oriented that can shine the
projected pattern edges, and each odd rows of the DMD array are not stimulated not
to create zigzag patterns that can create black pixels on the reconstructed and wide
field image. However, we demonstrate that the CS-SIM method can form similar

images with the other methods although the amount of data is reduced significantly.
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(a) (b) ()

(d) () (f)
Figure 7.10 The images for the stationary object. The interpolated confocal image
(a), the wide field image (b), the reconstruction result of the conventional structured

illumination microscopy approach (¢), and the reconstruction results of the proposed
CS-SIM approach with the sampling rate of 5 (d), 10 (e) and 15 (f) percent.
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Figure 7.11 The intensity profiles across the red lines in Figure 7.10. The intensity
profiles for the interpolated confocal image (a), the wide field image (b), the recon-
struction result of the conventional structured illumination microscopy image (c),
and the reconstruction results of the proposed CS-SIM approach with the sampling
rate of 5 (d), 10 (e) and 15 (f) percent.
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7.4.2 Reconstruction Results for Non-Stationary Object

We also record the images to evaluate the robustness of our method when the sample
is moved. The DMD frame rate is not fast enough; therefore, we do not expect
similar results when the stationary object is used. However, we slowed the DMD
frame rate, and made it 400 Hz. Therefore, we can compare the reconstruction
results when the DMD frame rate is 800 Hz and 400 Hz. To move the object,
the optical table was vibrated while the data was collecting. We also imaged the
same object using confocal microscope, wide field microscope and SIM. The object
is stationary for these microscopy techniques. Omnce the PMT data is collected,
the data and the sampling matrix are utilized in the CS recovery algorithm. Here,
we again used the method of the plug-and-play image reconstruction using residual
deep learning as the CS recovery algorithm. We also show the reconstruction results
for various sampling ratios that are 5, 10 and 15 percent. The same microscope
parameters are used for the non-stationary object. In Figure 7.12, the CS-SIM
reconstruction results of the non-stationary object are illustrated. In addition to
these reconstructions, the interpolated confocal image, the wide field image and the
SIM reconstruction result are shown. The images are actually monochrome, but
they are dyed with a false green color. To compare the resolution, we can compare
the intensity values of two neighbor microspheres, and we provide Figure 7.13 and
Figure 7.14. The intensity values are drawn across the red lines in Figure 7.12, and
these lines are very similar for almost all microscopy technique. Actually we expect
that the confocal and SIM techniques provide higher resolution images. The reason
why the resolution is not higher for SIM and confocal microscopes has been explained
previously. Since the DMD frame rate is not high enough, the reconstructions are
not good as the reconstructions for the stationary object. However, it is observed

that the reconstructions get better when the DMD frame rate is increased.
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(a) (b) ()

(d) () (f)

) (o 0
Figure 7.12 The images for the non-stationary object. The interpolated confocal
image (a), the wide field image (b), the reconstruction result of the conventional
structured illumination microscopy image (c), the reconstruction results of the pro-
posed CS-SIM approach with the sampling rate of 5 (d), 10 (e) and 15 (f) percent
when the DMD frame rate is 800 Hz, and the reconstruction results of the proposed

CS-SIM approach with the sampling rate of 5 (g), 10 (h) and 15 (i) percent when
the DMD frame rate is 400 Hz.
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Figure 7.13 The intensity profiles across the red lines in Figure 7.12. The inten-
sity profiles for the interpolated confocal image (a), the wide field image (b), the
reconstruction result of the conventional structured illumination microscopy image
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Figure 7.14 The intensity profiles across the red lines in Figure 7.12. The intensity
profiles across the reconstruction results of the proposed CS-SIM approach with the
sampling rate of 5 (a), 10 (b) and 15 (c¢) percent when the DMD frame rate is 800 Hz,
and the reconstruction results of the proposed CS-SIM approach with the sampling
rate of 5 (d), 10 (e) and 15 (f) percent when the DMD frame rate is 400 Hz.
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7.4.3 Photobleaching and the Proof-of-Principle Solution

Photobleaching is one of the problems in the fluorescent imaging techniques. One of
the motivations of the proposed method here is to solve photobleaching problem to
accelerate the acquisition speed. To accelerate the acquisition speed, we need to use a
DMD with a high frame rate. In the market, one can find this kind of DMDs, but we
use a DMD with a 4000 Hz and record 5 concecutive data for each sampling pattern
that reduce the frame rate of the DMD to almost 800 Hz. However, we want to
show the photobleaching results when the acquisition speed in the proposed method
is 2 times faster than the acquisition speed of a camera. The fixed sample, Bovine
Pulmonary Artery Endothelial Cells, is exposed to the SIM stripe patterns and also
the sampling as well as stripe patterns alone to simulate our method. However,
we consider that the proposed method is 2 times faster than the conventional SIM
although the acquisition speed of the proposed configuration is actually lower than
the acquisition speed of the camera because of the DMD frame rate. However, we
expect that our method can damage the sample less than 2 times because of the
patterns proposed by our method. The patterns for each method are exposed on
the same region 10 times. In Figure 7.15, small portion of the cell region is shown
for the case before the illumination and after the SIM pattern illuminations. This
is repeated on the similar cell region for the proposed method. As seen from the
figure, the SIM technique can have higher photobleaching effect under the proposed

assumptions.
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Figure 7.15 The images of the cell region for the case before the exposure (a - ¢) and
after the exposure (b - d). The region in (c) is exposed to the SIM stripe patterns
with two times longer duration, and the region in (d) is exposed to the stripe and
sampling patterns simultaneously. The red arrow shows the exposed area.
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8. DEPTH EXTRACTION FROM A SINGLE DIGITAL
HOLOGRAM AND ITS EXTENSION TO
COMPRESSIVE HOLOGRAPHY

In this chapter, we present depth extraction of macroscopic three-dimensional (3D)
objects from a single digital hologram using stereo disparity. The method does not
require the phase information of the hologram but two perspectives of the scene,
which are easily obtained by dividing the hologram into two parts (two apertures)
before the reconstruction. Variation of the hologram division is countless since each
piece of a single hologram contains all the information regarding the scene; therefore,
stereo disparity can be calculated along any arbitrary direction. We investigated the
effects of gradual and sharp divisions of the holograms for the disparity map calcu-
lations, specifically for divisions in the vertical, horizontal, and diagonal directions.
After obtaining the depth map from the stereo images, a regular two-dimensional
image of the object is merged with the depth information to form 3D visualization
of the object. Holograms were recorded with a rigid endoscope, and experimentally
obtained depth profiles of the objects are in very good agreement with the actual

profiles.

On the other hand, we also extract the depth from a compressive hologram using the
same technique. To form a compressive hologram, a computer-generated hologram
is first sampled with random binary patterns, and measurements are utilized in a
recovery algorithm. The compressive hologram is then divided into two parts (two
apertures) as before, and these parts are separately reconstructed to form a stereo
image pair. The pair is eventually utilized in stereo disparity method for depth
map extraction. The depth maps of the compressive holograms with the sampling
rates of 2, 25, and 50 percent are compared with the depth map extracted from the
original hologram, on which compressed sensing is not applied. It is demonstrated
that the depth profiles obtained from the compressive holograms are in very good
agreement with the depth profile obtained from the original hologram despite the

data reduction.
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8.1 Introduction

Even though three-dimensional (3D) object visualization is very important for many
applications, object images are mostly recorded in two-dimensional (2D) form, which
lacks depth information. Recording images in 2D form is simple and time efficient,
and current technology does not provide high-quality and efficient 3D imaging [136].
However, depth information is essential for specialized areas such as medical imag-
ing in that it provides more comprehensive indicators regarding diseased tissues,
and it helps experts to make better diagnoses. 3D visualization is useful in not only
medical imaging but also in training, entertainment, and simulation of real-world ob-
jects, such as surgery education, object recognition for military applications, virtual

reality, 3D object design, and so on [11, 129].

Holography is an alternative technique to record and reconstruct 3D images of ob-
jects. To record a hologram of an object on a photosensitive film, a laser beam is
split into two arms as reference and object beams, where the latter beam is used
to illuminate the object. The wave reflected from the object carries amplitude and
phase information of the object, and its interference with the reference beam is
recorded on film. Illuminating the same reference beam on the developed film re-
constructs the 3D image of the object in the original object position. Recently,
developments on high-speed computers and high-spatial-resolution charge coupled
device (CCD) sensors have made it possible to record holograms in discrete form
[82, 118, 127, 165, 200]. Afterward, recorded holograms are reconstructed numer-
ically by various wave propagation methods to recover the 3D object information.
There are several methods developed for this purpose, and one of the most widely
used is the Fresnel propagation method [165], which enables calculation of the depth
of the microscopic objects from the phase information [96]. However, since the phase
is wrapped for distances longer than the wavelength used in recording, it is neces-
sary to unwrap the phase numerically. Although the phase unwrapping works for
microscopic objects, it is practically impossible to apply it to macroscopic objects,
since the resolution of the recording is insufficient to record the wrapped fringes.
In another method, using two holograms with a dual beam illumination to provide
phase-contrast images and subtractions of these images can be used to calculate the
3D information of macroscopic objects, but 27 jumps reduce the efficiency of this
method [143, 172]. Phase shifting is another method for 3D visualization in digi-
tal holography, but limited depth of field ruins visualization of macroscopic objects
[199, 201]. Synthetic wavelength-based systems extend the range before occurrence
of the phase wrapping; however, this also provides limited success for depth extrac-

tion of macroscopic objects [88]. In another study, the gray level variance method
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has been investigated for the depth extraction of macroscopic objects. However, this
technique depends on highly textured objects to verify when the objects are in focus

[55, 104, 114].

Recently, Pitkaaho and Naughton described a novel technique for calculating depth
maps from a single digital hologram [139]. This method is called stereo disparity
and has been widely investigated in the computer vision field. The disparity is
basically the corresponding locations of a stereo image that accounts for the depth
of the objects. When a digital hologram is split into two parts along one direction,
and after the numerical reconstruction of each part separately, the resultant images
correspond to a stereo image pair of the object. Although the effective camera
separation is quite small, one half the CCD array dimension, experimental data

shows that it is quite sufficient to find the depth of objects.

Here, we divide digital holograms along different directions, such as the horizontal,
vertical, and diagonal directions, to obtain the stereo image pairs. This is effectively
having a stereo camera pair along any transverse direction from a single hologram,
since a hologram contains different perspectives of the object. In addition, we studied
the effects of hologram divisions by sharp and gradual intensity gradients. At the
end, the calculated depth information is merged in software with the ordinary 2D
image of the object to visualize the object in 3D. On the other hand, we repeat the
proposed technique for a single compressive hologram, and we evaluate the depth

extractions obtained from a compressive hologram and an original hologram.

8.2 Stereo Disparity Map Algorithms

A stereo image pair is a 2D projection of a 3D scene taken from two different
perspectives. It represents left and right images, which are regarded as the view of
the left and right eyes, respectively, and it consists of a number of points regarding
the scene. Any of these points do not fall onto the same pixel location in each image
but is on the same epipolar line or the same row [68]. Displacement of this point
on the stereo image provides the depth of the point, which can be calculated using
a disparity map algorithm. A disparity map image includes a number of disparity
values, which are correlated with the depth of the points in the scene and are shown
as a gray-scale image or as a color map image [131]. The closer points of a 3D scene
cause larger numbers in the depth map image, represented usually as white for gray-

scale images and red for the color map images. Similarly, the farther points in a
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scene cause smaller values in the depth map image, and they are usually represented

in black for gray-scale images and bluish for the color map images [162].

One of the most widely used disparity map algorithms is the sum of absolute dif-
ferences (SAD), which sums up the absolute difference pixel values between defined
(k x k) blocks in the left and right images. These blocks in the left and right images
are called reference LB(z,y) and candidate RB(x,y) blocks, respectively. The cen-
ters of the LB(x,y) and the RB(x,y) are located on the pixel (i,7) for each image
wherei=1,...,N and j=1,..., M for an image size of (N x M). Calculation of the
SAD is performed according to

ko k
SAD =% > | LB(z,y)— RB(z+A,y) | (8.1)
r=1y=1

where LB(z,y) and RB(x,y) refer to the left and the right image blocks, and A is
the shifting parameter. Another disparity map algorithm is the normalized cross-
correlation (NCC) method. This algorithm is robust to intensity offsets and contrast
changes although it is computationally costly [161]. The NCC algorithm also calcu-
lates a correlation peak over two rectangular (k x k) blocks on the stereo image pair.
These blocks are separately located on each stereo image pair, and they are also
called reference LB(z,y) and candidate RB(x,y) blocks. Calculation of the NCC is

performed according to

k [ _
> Y LB(xz,y)— RB(z+A,y)
NCC = —"=v=1

J 3 % LB(r.y)? ¥ 3 RB(a+A.y)?
r=1y=1 r=1y=1

where LB(x,y) = LB(x,y) — LB(z,y) and RB(z+A,y) = RB(z+A,y) — RB(z,y).
LB(z,y) and RB(z,y) are the mean pixel values over the reference and candidate
blocks, respectively. Once the first SAD or NCC value is calculated (A = 0), the
candidate block is shifted one column for the second SAD or NCC calculation (A =
1). The shifting operation is usually finalized when the shifting amount reaches half
of the image size. This process provides a number of SAD or NCC values. Among
these values, the minimum and maximum values are picked SAD and NCC methods,
respectively. The picked value is registered for the center pixel of the reference block.
The overall operation must be repeated for the other pixels of the stereo image pair.

This provides a depth map for the stereo image pair.

Eventually, some constraints should be applied to the algorithms: stereo image
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pairs should be the same size; the row and column of the LB(z,y) and the RB(z,y)
should be odd numbers; zero-padding should be added for both the left and right
images; and corresponding positions of pixels should be along the same epi-polar
line; therefore, estimating the corresponding right pixel for a given left pixel should

be carried out on the same pixel row [125].

Selecting suitable k£ x k block size is the main problem in that the block size should
be small enough to reduce projective distortion effects and large enough for reliable
matching. Too small of a block causes poor disparity estimation, while too large of
a block brings inaccurate matching between corresponding points. The best block
size can be found empirically or by an adaptive window method that depends on
local disparity and intensity variations [85]. Empirically found blocks have higher
error rates but lower processing speed, while the adaptive window method has longer
processing times since the measurement of disparity variation can be numerically

intensive [95].

8.3 Stereo Image Pairs from a Single Hologram

To create stereoscopic image pairs, a single hologram h(z,y) (it can also be a com-
pressive hologram), which is centered on x =0 and y = 0, is split into separate

holograms. Division of a single hologram is performed according to

0, x>0
HL(x,y) = {h(x,y), o0 (8.3)
HR(z,y) = {h(:g,y), i i 8 (8.4)

where HL(z,y) and HR(x,y) denote the left and right perspectives of the hologram,
respectively. An example is shown in Figure 8.1. Different perspective images of
an object can be obtained depending on how we divide a single hologram. The
example in Figure 8.1 corresponds to stereo images with two perspectives along the
horizontal axis. If we had divided the hologram along the vertical direction, this
would correspond to the stereo images along the vertical direction. This fact makes
the hologram different than stereo-camera-based recording since it records the scene

only along one axis at a time. However, we can split holograms in any direction, so
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we can have stereo vision along any direction. In addition, we have also investigated
sharp and gradual hologram divisions. Gradual intensity division provides uniform
illumination on the reconstructed images when compared with reconstruction of the
sharply divided stereo holograms. Gradual intensity division is achieved by using

an essentially one-sided Gaussian intensity profile:

(a—p)?
HL(z,y) = {h(af,y)e 207 | 2>0 (8.5)
h(x,y), x <0
h(z,y), x>0
HR(z,y) = { (o u)? (36)

h(z,y)e 20% | z<0

where 1 and o are the mean and standard deviation. An example is shown in Figure
8.1. Here we assumed p = 0 due to the centered single hologram on z =0 and y =0,

and o as the one-sixth of the width of the hologram.

Afterward, the left and right perspective holograms are reconstructed to obtain the
stereo image pairs. There are several methods for reconstruction, but here we used

Fresnel transformation to recover the object field g(¢,n) [166].

9(¢,n) = ;dexp {—i%d] exp [—iId(CQ +772)]

A
X 70 70 r(x,y)h(z,y)exp {—i;\rd(xQ +y2)] (8.7)
X exp [iig(xg“—l—yn)} 0xdy

where d is the distance between the camera and the object (reconstruction distance),
and coordinates (¢,n) in the reconstruction plane are related to the object plane
coordinates (z,y) by ¢ = Ad/x and n = Ad/y. Here, r(z,y) and h(z,y) refer to the
reference wave and the hologram intensity distribution, respectively. The left and
the right perspectives of the holograms, H L(x,y) and HR(z,y), are used instead of
h(z,y) to create the left and the right stereo images of the object.
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(d) (e)

Figure 8.1 Digital hologram (a), the left (b) and the right (c) sharp intensity divisions
along the horizontal direction, and the left (d) and the right (e) gradual intensity
divisions along the horizontal direction.
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8.4 Holographic Endoscope Setup and Depth Extraction Re-
sults Using A Single Digital Hologram

Although the methods explained above are applicable for any hologram recording
involves compressive holograms, we have chosen a classic off-axis holographic setup
that utilizes a commercial rigid endoscope (Karl Storz, Hopkins II Telescope). The
radius and the length of the endoscope are 10 mm and 31 c¢m, respectively. Two
CCD cameras were used: for the holographic recording, Allied Vision Tech., Guppy
Pro CCD (1200 x 1600 pixels with a pixel pitch of 2.2 um), and for the ordinary 2D
recording Pixelink (1024 x 1280 pixels with a pixel pitch of 5.2 um) was located in
two consecutive faces of the beam splitter that combines the object and the reference
beams, as shown in the sketch of the setup in Figure 8.2. For the holographic
recording, a 35 mW He-Ne laser source (A = 632.8nm) is used, and for the ordinary
2D recording a 250 W white-light source (Karl Storz, Halogen 250 Twin) is used.
To record the image of the object, a lens with focal length of 40 mm is placed in
front of the CCD2 camera. Hologram and ordinary object recordings are performed

sequentially. A photograph of the actual experimental setup is also shown in 8.2.

|
|
@ Attenuator
@ |
|

Expander

Object*

o '_‘_'|:|:| cco1

CCD2
White Source |:|
(a)

Figure 8.2 Holographic setup with the illustration of the sketch (a) and with the
photograph of the configuration (b). A coherent laser source is split into two arms
— the object and reference beams. The reference beam is delayed by mirrors M1,
M2, and M3, and also its intensity is reduced by an attenuator (40 dB) to equalize
the object and the reference beam intensities. The object beam is combined with
the reference beam by the beam splitter, and the interference pattern is recorded
by CCD1. The white-light source is used for illumination for ordinary 2D image
recording by CCD2. The laser and white-light sources are turned on sequentially
for their recording sessions.
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Reconstructed stereo image pairs from the left and right hologram pairs, formed by
gradual and sharp division of the single hologram along the horizontal direction, are
illustrated Figure 8.3. Please note that these hologram recordings are performed
using the setup in Figure 8.2. Although they are not the best quality images, these
pairs can still be used with the disparity map algorithm to provide the depth of
the recorded object. It is observed that, when the hologram is divided with gradual
intensity division, the intensity of the images is more uniform, not only in this

reconstruction, but this was the case in other recordings as well.

(c) (d)

Figure 8.3 Reconstruction of the left and the right holograms. Top row: when the
hologram is divided with sharp intensity division. Bottom row: when the hologram
is divided with gradual intensity division. With gradual intensity division, the in-
tensity of the images is more uniform. For example, (b) obtained by sharp division,
the upper left corner of the dice is darker than the one obtained (d) with gradual
intensity division. All reconstructed stereo images are shown as cropped to remove
the zero order and the conjugate image from the reconstructed hologram.
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As another example, here we show the diagonal division of the hologram of a dice
and its reconstruction results. Gradually and sharply divided hologram pairs and
their numerical reconstructions are illustrated in Figure 8.4. Again, gradual division
provides uniform illumination on the reconstructed object, and this also influences
the accuracy disparity map values. Numerically reconstructed hologram pairs are
processed with the disparity map algorithm to obtain the depth of the dice. To
perform the disparity map algorithm on the reconstructed images, the best reference
and candidate block sizes must be found. Disparity map calculations in the literature
use block sizes such as (3 x 3), (7x7), or (11 x 11), but here we have images obtained
from holograms and, since the holographic images contain speckle noise, we had to
use larger block sizes. Therefore, the empirical method was applied to find the
best block size, which was scanned from (11 x 11) to (101 x 101) with (10 x 10)
increments. In this study, the best block size was found to be (61 x 61). However,
the best block size will change as the holographic setup or nature of object is varied.
Also, the reconstructed hologram images are cropped to increase the execution time
of the algorithm. Later, the depth map is merged with the reference (reconstructed
left hologram) and normal 2D recorded images. Actual reconstructed image size is
(1200 x 1600) pixels, but the cropped image size is (160 x 220) pixels.
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(b)

Figure 8.4 Diagonal intensity divisions of the single-shot digital hologram (dice
recording) and their numerical reconstructions with the Fresnel approximation
method. The hologram is divided with sharp intensity division (a). The hologram
is divided with gradual intensity division along the diagonal (b).

119



The reference image perfectly overlaps the depth map image by default. However,
merging the depth map with an ordinary 2D image is not straightforward in that
alignment is required to perform the best matching. The ordinary image is cropped
and resized due to different resolutions of CCD1 and CCD2 to replace the reference
image. In our case here, the alignment of the 2D image with the depth map is
performed manually using visual cues from the reference (left) image. Ideally, one
should use exactly the same CCD for the holographic recording and the ordinary
image recording to eliminate this resizing. Image data is combined with the depth
map, and the resultant 3D matrix is plotted with the MATLAB surf function and

is shown in Figure 8.5.
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Figure 8.5 3D visualization of the dice using stereo image pairs reconstructed from:
sharp intensity divided holograms (a) and gradual intensity divided holograms (b)
along the diagonal direction. Left column: raw 3D reconstruction of the hologram
is combined with the disparity map. Right column: the disparity map is merged
with the ordinary 2D image captured by CCD2.

In another experiment, 3D visualization of a tissue phantom, made by modeling
clay and shown in Figure 8.6, is investigated. The raised area in the middle of the
modeling clay covers the field of view of the endoscope when it is located about 45

mm away from the endoscope tip.
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46mm

38mm

Figure 8.6 Homemade tissue phantom. Here two pieces of modeling clay are pasted
together. The raised part in the center enclosed by dashed lines is the object; it
is painted off-white for better reflection of the laser light. In the experiments, the
object is placed 45 mm away from the endoscope tip, and the dashed area of the
object was illuminated and recorded.

After recording the hologram of the modeling clay object, hologram divisions are
performed, holograms are reconstructed, and stereo image pairs are obtained, fol-
lowed by the depth map calculation with empirically found best block size (61 x 61).
Later, 2D image data is combined with this depth map, and the resultant 3D matrix
is plotted with the MATLAB surf function, as shown in Figure 8.7. To validate the
3D information of the object, the following experiment is performed: we measured
the actual profile of the tissue phantom (raised center part) manually and compared
it to the results obtained from the holographic recordings. The results shown in
Figure 8.8 indicate that the experimentally obtained depth profile of the object is
in very good agreement with the actual object profile. In this figure, we scaled all
of the experimental data with the same constant to get the best looking overlap
with the actual profile of the object. This scaling operation could be considered
the calibration of the system. It is seen from the figure that hologram divisions
influence surface profiles depending on the division directions. For instance, surface
profiles obtained from horizontally divided holograms have better agreement with
the actual profile than the surface profiles obtained from vertically divided holo-
grams. We speculate this results from the CCD size (1200 x 1600) in that the CCD
has more pixels in the horizontal direction, so the resultant object image - after the
hologram reconstruction - has higher resolution in the horizontal direction, which

directly affects the disparity map calculations.
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Figure 8.7 3D visualization of the modeling clay using stereo image pairs recon-
structed from: horizontally (a), vertically (b), and diagonally (c) divided holograms.
All hologram divisions were gradual intensity divisions. Left column: raw 3D re-
construction of the hologram combined with the disparity map. Right column: the
disparity map is merged with the ordinary 2D image captured by CCD2.
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Figure 8.8 Modeling clay tissue phantom profile determination. Two perpendicular
cross sections of the raised part of the tissue phantom calculated from the holo-
graphic 3D reconstruction are plotted in the right column figures. Here the profile
results of gradual intensity divisions along the horizontal (Hor), vertical (Ver), and
diagonal (Diag) directions are shown. The bold solid lines are the actual cross-
sectional profile of the object. The left column images are the actual 3D visual-
izations of the object obtained from gradual intensity division of the hologram in
the vertical direction. The dashed lines on these images specify the cross sections

plotted in the right column.

123



8.5 Depth Extraction Results Using A Single Compressive

Hologram

We also extract depth using a compressive hologram. To perform experiments, a
computer-generated hologram (CGH) of the Venus statue, which is provided by
David Blinder et al. as an open access file, is utilized [14]. The CGH (1920 x 1080
pixels with a pixel pitch of 8 um) and its numerical reconstruction with the Fresnel
approximation method are presented in Figure 8.9. The data dimension of the CGH
is high, and this increases the execution time. To reduce the computational cost, the
CGH is first transformed into the Fourier domain, and the low frequency region (one-
tenth of the bandwidth) is extracted and then back transformed. This operation
compresses the hologram size by 100 times. Although the sharp transitions of the
original hologram (1920 x 1080 pixels) disappear in the small hologram (192 x 108
pixels), most of the information about the structure of the Venus statue is preserved.
In this study, this compressed hologram is used for all numerical calculations instead

of the original hologram, and the small hologram is hereinafter referred to as the
CGH.

(b)

Figure 8.9 The CGH (a) of the Venus statue, and its numerical reconstruction (b)
with the Fresnel approximation method.

In the simulation-based experiments, the CGH is considered as a holographic scene,
and a digital micromirror device (DMD) is considered to be placed in front of the
CGH or a beam splitter that combines object and reference beams. The CGH is sam-
pled with random binary patterns since the DMD can produce this type of patterns.
Inner products between the random binary patterns and the CGH present measure-
ments. In a real optical configuration, the measurements are usually collected by a
photodiode or photomultiplier tube (PMT). A sensing matrix is constructed from
the product of a sampling matrix and a sparsifying matrix. The sampling matrix is
created from the random binary patterns while the discrete cosine transform (DCT)

is selected as the sparsifying matrix. The measurements and the sensing matrix are
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utilized in the NESTA algorithm, which is one of the open source CS recovery algo-
rithms [10]. The NESTA algorithm produces an estimated CGH or a compressive
hologram. The CGH reconstruction and the reconstructions of the compressive holo-
grams with sampling rates of 2, 25, and 50 percent are shown in Figure 8.10. All
numerical reconstructions are performed with the Fresnel approximation method.
The reconstruction result of the CGH is slightly better than the reconstruction re-
sults of the compressive holograms. We demonstrated that it is possible to record
a hologram about 1.6 times faster. This corresponds to the 2 percent sampling rate
case and assumes the frame rate of the DMD is 330 times higher than that of the

camera.

Figure 8.10 The numerical reconstructions of the CGH (a) and the compressive
holograms with the sampling rate of 50 percent (b), and 25 percent (c) and 2 percent
(d). The reconstructions are performed with the Fresnel approximation method.

Once the compressive holograms are acquired, depth profiles are also obtained. We
applied previous study, which is based on the depth extraction from a single holo-
gram, to the compressive holograms. To extract depth from a single compressive
hologram, the compressive hologram is first divided gradually into two parts (two
apertures) along the horizontal direction. Each of the separated holograms is equally
sized with the single compressive hologram, but each of them contains almost half

of the intensity weights of the single hologram. Division direction does not influence
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the accuracy of the depth information significantly; however, gradual division pro-
vides uniform illumination on the reconstruction, which increases the accuracy of
the depth. After the hologram division is performed, two apertures are separately
reconstructed with the Fresnel approximation method to form a stereo image pair.

The stereo image pair and the separated holograms are presented in Figure 8.11.

Figure 8.11 The gradual intensity divisions of the compressive hologram (the first
row) with the sampling rate of 25 percent, and their numerical reconstructions (the
stereo image pair) with the Fresnel approximation method (the second row).

We utilize the NCC algorithm for depth map extraction. We used an empirical
method to define the block size, and it was found that the best block size for our
stereo image pairs was (23 x 23) in terms of estimated depth map accuracy. Once
the depth maps of each hologram (compressive holograms and CGH) are acquired
with the method described above, each of them is separately merged with their nu-
merical reconstructions. The reconstructed images combined with the depth maps
are illustrated in Figure 8.12. The normalized depth profiles of the Venus statue
along the frontal axis are also presented in Figure 8.12 for each corresponding re-
construction. The results show that the normalized depth profile of the compressive
holograms with sampling rates of 2, 25, and 50 percent are very good agreement
with the normalized depth profile of the CGH. These results demonstrates that it
is possible to extract depth from a single compressive hologram, and that the depth

extraction quality is robust to reductions in sampling rate.

126



1 : | | ‘ | . / i :

Depth Profiles of the Venus Statue

o
;N

o
o

Normalized Intensity
o =)
-~ wv
T

o
w

Original Hologram (CGH) - Full Sampling
Compressive Hologram with Sampling Rate of 50%
Compressive Hologram with Sampling Rate of 25%
Compressive Hologram with Sampling Rate of 2%

o
o

o
[

(=]

Frontal Axis

(e)

Figure 8.12 The merging of the hologram reconstructions with the normalized depth
maps. The depth map of the CGH (a), and also the depth maps of the compressive
holograms with sampling rate of 50 percent (b), 25 percent (c), and 2 percent (d).
The normalized depth profile lines of the Venus statue along the frontal axis are also
illustrated for each depth map (e).
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9. CONCLUSIONS AND FUTURE DIRECTIONS

9.1 Summary and Conclusions

In this dissertation, we have contributed to not only the compressed sensing (CS)
framework but also the structured illumination microscopy (SIM) technique. In
other words, the dissertation can be divided into two categories, but the main con-
tribution is proposing a novel SIM method by joining the CS framework. First, we
have reviewed the SIM principle by providing the mathematical foundations for the
technique, by demonstrating SIM optical configuration, by showing the fundamen-
tal reconstruction algorithm for the SIM technique, and by discussing some of the
SIM issues and possible CS contributions to the alleviation of the SIM issues. Next,
we have presented the CS framework and provided the fundamental CS recovery
algorithms based on relaxation and greedy pursuits. We have also reviewed the CS

applications in imaging and optical sciences.

In Chapter 4, we have presented a novel dictionary learning method based on the
multi-layer convolutional sparse coding (ML-CSC) model. Before presenting the
dictionary method, we have reviewed the motivation for the dictionary learning
for the CS framework, the CSC model, the connection of CSC and convolutional
neural networks, the ML-CSC model, and some dictionary learning methods based
on the CSC and ML-CSC models. Once these concepts have been reviewed, we
have proposed our dictionary learning algorithm and its advance over the other
algorithms. Loss functions formed using the proposed dictionary learning method
and the trained local filters for the MNIST dataset have been demonstrated.

In Chapter 5, we have reviewed some of the alternating direction method of multi-
pliers (ADMM) based pursuit algorithms. Then, we have implemented the trained
dictionaries obtained from the proposed algorithm in Chapter 4 into the ADMM
algorithm. We have also shown the implementation of the trained dictionaries of

the recently presented dictionary-learning algorithm based on the ML-CSC model
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into the ADMM algorithm. To compare the trained dictionaries, we have also shown
another ADMM based implementation that does not depend on the trained dictio-
naries. The implemented algorithm is called the plug-and-play image reconstruction
method using residual deep learning. Once the implementation has been reviewed,
we have also tested the implementations for the CS framework. We have first under-
sampled one of the test MNIST images and then recovered the image with a variety
of undersampling rates. Then, we have compared the reconstruction results and the

performances of the recovery algorithms.

In Chapter 6, we have demonstrated the proposed method that combines CS and
SIM. The study addresses several key problems in SIM, including long readout time
and photobleaching. Illumination patterns and random sampling patterns have been
generated on a single digital micromirror device (DMD), and the measurements have
been gathered using a photomultiplier tube (PMT). The proposed approach has
been tested with simulation using stationary and non-stationary samples, and the
simulation results have been evaluated with the peak signal-to-noise ratio. We have
demonstrated that this simulation-based study has the potential to alleviate motion
artifacts and photobleaching issues in practice. We have also compared some of the
CS recovery algorithms presented in Chapter 5 for the proposed simulation-based

study.

In Chapter 7, we have presented the simple optical configuration for the data col-
lection problem with the PMT. The DMD in the laboratory cannot produce pure
and wide-field stripe patterns. Therefore, we have selected the small region where
stripe patterns along horizontal and vertical directions can be produced. Unfor-
tunately, the area is very small, and the projected light intensity from the area is
very limited. This can lead to shortening the electrical intensity jumps produced by
the PMT after each sampling pattern changes. Therefore, we have measured more
than one light intensity levels for each sampling pattern change. This procedure
decreases the DMD frame rate and prevents from recording an image with a high
acquisition speed. Therefore, we cannot increase the acquisition speed, but we have
demonstrated the combination of the CS framework and the SIM technique. We
have also shown reconstruction results for stationary and non-stationary objects,
and we have compared the reconstructions with the outputs of some microscopy
techniques (wide-field, conventional SIM, and confocal). We have also evaluated the
proof-of-principle solution for the photobleaching issue when the optimum optical

devices for the proposed configuration are utilized.

In Chapter 8, we have presented experimental results on depth extraction of macro-

scopic objects from a single digital hologram using stereo disparity, and also we
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have extracted depth from a single compressive hologram. The proposed method
does not require the phase information of the hologram but only two perspectives
of the scene, which are easily obtained by dividing the hologram into two parts (two
apertures) before the reconstruction. We showed that hologram division along any
direction always provides a stereo view of the object because a hologram recording
captures the complete information, both amplitude and phase, from the object. We
investigated the effects of gradual and sharp intensity divisions of the holograms,
specifically for divisions in the vertical, horizontal, and diagonal directions. Grad-
ual intensity division provides a visually smoother and more uniform illuminated
object image, and experimentally obtained depth profiles of the objects are in very
good agreement with the actual object profile. In addition, the depth profiles of the
compressive holograms are almost the same with the depth profile of the computer-
generated hologram (CGH). This shows that depth extraction does not depend on

the hologram reconstruction results or under-sampling rates so much.

9.2 Future Directions

The dissertation presented here has the software and hardware developments, but
these can be extended further to get higher quality images. First, we have presented
a novel dictionary learning method and trained the weights for the MNIST dataset.
The presented algorithm takes a small portion of dataset and fixed dictionaries to
generate a sparse signal, and then the algorithm updates dictionaries using the rest
of the dataset and using the generated sparse signal. However, sparse signal can
be generated after each dictionary update. This can provide more accurate trained
dictionaries since we do not rely on the fixed dictionaries while generating a sparse
signal. On the other hand, the training process can be applied to all types of images.
The first future direction for this dissertation is that observing loss function for other
types of images, and comparing the performance of the proposed dictionary learning
method with the other dictionary learning methods in the literature. In addition, the
training dictionaries have been performed using small-sized images. However, the
proposed dictionary learning method provides a global solution. One can learn the
dictionary weights feeding high dimensional images. However, this can increase the
learning duration. On the other hand, one can test the proposed dictionary learning
method using a variety of noisy training images and compare the results for noisy as
well as noise-free training images. We also showed some implementation algorithms

and compared the reconstruction results formed using the undersampled data. The
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second future direction can be comparing the reconstruction results obtained using
the presented recovery algorithms and the reconstruction results obtained using the
state-of-the-art CS recovery algorithms in the literature. This can provide a wide
scope of understanding for the performances of the recovery algorithms when the CS
framework and the SIM technique are combined together. The third future direction
can be developments for the simulation-based study of the combination of CS and
SIM. The study has not been tested for noisy cases. However, the acquisition device
is a noise source and a DMD can be also a noise source. Testing the proposed
simulation-based study can provide a further understanding of the combination of
CS and SIM. The last future direction is developments on the hardware. The DMD
in the lab is a very slow device when we compare it with the other DMDs in the
market. The speed of the DMD prevents us from collecting data within a short time.
In addition, the projected area is very small that produces low light intensity and
reduces the signal level of the collected data. Therefore, we cannot fully understand
the robustness of the proposed method for motion artifacts. We have collected
data using the PMT. However, the system can also be tested using a photodiode.
This allows us to compare the performances of the PMT and a photodiode for the
proposed method. On the other hand, one can build a configuration to produce a
periodic vibrational wave to move a stationary sample. This allows us to test the
proposed method for motion artifacts. Another one is to use a living sample to test
the robustness of the motion artifacts of the proposed method. We have used a
LED source to project patterns, but one can use a laser instead of the LED source.
This can increase the quality of the stripe patterns and the quality of a reconstructed
image. On the other hand, the mirrors of the DMD in the lab are diagonally oriented.
This orientation can increase reconstruction artifacts and reduce the ability of coding
sampling patterns. Therefore, the data collection process can be repeated using an
orthogonal-oriented DMD. The other one is using dot illumination patterns instead

of stripe illumination patterns for the production of raw SIM images.
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APPENDIX A

Mathematical Foundation for the Convolutional Dictionary
Updates

The derivatives of the cost function with respect to each dictionary filters can be
provided using a simple sparse network. This network is illustrated in Figure A.1.
The size of the input image X € R, which is considered as one-dimensional signal,
is 3. This signal is fed into the network. At first, this signal is passed through
rectified linear unit (ReLU), i.e. Z!' = ReLU(X). In fact, the output signal Z! is
equal to the input signal X since the input image does not involve any negative

entries.

2Z1Q QO

?OOOOO OOOOOOO0.00.

Figure A.1 A simple sparse network with nodes and filter weights. Each connection
between two nodes denotes a filter in the convolutional dictionary. The connections
with the same color and shape in only one layer represent the same filter weight.

Once the signal Z! is obtained, assume that each node in Z!, i.e. {zzl }?:1 , is multi-
plied by a combination of 4 filters {d}};:l as shown in Figure A.1. The multiplication
generates the signal X2 or a set of {%2}?:1 , and then X? is passed through ReLU.
This operation provides an output signal Z?2 or a set of {21-2}?:1. The signal length is
6 because of filter length of 2. On the other hand, the filter weights in the first layer
form the first convolutional dictionary D! with both filter length and size of 2. In a
matrix-vector form, the signal Z2 is generated by multiplication of the transpose of

D' and the signal Z', and then passing through ReLU, ie. Z? = ReLU(DlTZl)
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This operation can be shown for each node in the following equation.

2 dl di 0
23 dy di 0 o
2 1 1 1
0 di d
=1 = ReLU NP
Z4 0 d3 d4 1
z
2 d o 4| ?
Ed di 0 di]

After the signal Z2 is acquired, each node in Z? is multiplied by a combination of
another set of 12 filters {d?}zl
or a set of {x?}il, and then this is passed through ReLU to form the sparse signal

. This multiplication generates another signal X3

73 or a set of {zf’}zlil The size of the sparse signal is 18 because the filter size
in the second layer is defined as 3. The filters in this layer construct the second
convolutional dictionary D? with a filter length of 4 and filter size of 3. In a matrix-
vector form, the signal Z3 is generated by multiplication of the transpose of D? and
the signal Z2, and then passing through ReLU, i.e. Z3 = ReLU(DQTZQ).

23 (2 B & B 0 0
23 2 di d¢ d2 0 0
& dy diy diy diy 0 0
23 0 & & & & 0
P 0 d d& & d&& 0
24 0 dj diy df, diy 0
3 0 0 & & & &|[2
z 0 0 d& d&& & d2| |3
5 _ 0 0 dj diy diy diy| |+
g | =RelUq ] 2 o 2|2
270 di 0 0 df di d3| |#]
4 o0 0 @ & 4|2
1 di, 0 0 d§ dip dfy _Zg_
235 a2 d 0 0 d¥ d3
23y 2 d2 0 0 d¢ di
1 diy di; 0 0 dj di
236 3 d3 di 0 0 &
23, 2 d¢ d¢2 0 0 d?
Ed diy diy di; 0 0 dj|

Based on these observations, we can derive the cost function with respect to each

filter. The dictionary filters are updated using the derivative of cost functions and a
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defined update step. However, the derivatives of the cost function alone are provided
here. The calculations should be performed from the last layer to the first layer,
and thus this operation is called back propagation. To begin calculations, we need

to define the sparse signal Z3.

A |olad)
41 | o)
23 o(z3)
73— | | = :
2%6 0<le))6)
Z%? 0(95%7)
_2%8_ _U(x?s)_

where o(x) denotes ReLU (x). Using previously defined equations, each node in the

signal X3 can be mathematically described as follows:

_x‘;’_ [ d%z%—l—d%z%—l—d%z%—l—dizi ]
x% d%z% + d%z% + d%zg + d%zf
3 d323 4+ d3g 23 +d2, 23 + d3y23
r3 d323 + d%z% + d%zi + dizg
x% d%z% + d%z% + d%zi + dgzg
o | |d§es +dfoas +diy 2] +diyd
m% d%z% +d323 + d%zg + d?lzg
:rjg d%z% + d%zz + d%zg + d%zg

X3 — 73 _ dgz3 +digzd + diy 28 + dTyeg
:17:1)’0 d3z3 + d%zg + d%zé +d322
3, d%zz + d%zg + d%z% + d%z%
% d2f + dfoz8 +di 28 + diazf
3, d222 +d322 + d323 4 d3=3
iy d3z3 + dgeg + dizf + d§3
vt d 23 + diozg + di 27 + dipz3
a:zl)’6 d%z% +d323 + d%z% + diz%
w7 dizg + gt + diz3 + di3

_I%s_ _dézé +dip2t +diy 25+ d%ﬂ%_

Using the above equations, the derivatives of the cost function with respect to each

filter in the second layer are calculated as follows:
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Once the derivatives for the second layer filters are performed, we can calculate the

derivatives for the first layer filters. To perform this, the signal Z? is defined first.
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Each node in the signal X2 can also be mathematically described as follows:

x% d%z% + d%z%

:U% d%z% + diz%
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o 21 dl 1 dl 1

Ty 3% T d423
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x% déz% + d}lz%

Using the above equations, the derivatives of the cost function with respect to each

filter in the first layer are calculated as follows:

154



5J . 8J 821 8 (71‘1 a[[‘g
odt 0z} 0x3 821 8x1 adl 823 8x3 od}
0J 023 (0x3 022 022 axg 023 0x3
023 0x3 \ 022 02 0dj} 82% O3 od}
(9J 823 3 821 81:1 31‘% 82’3 8333
023 0x3 \ 022 8d1 x3 Od}

0J 023 (0x} 823 0x3 8$i 825 Ox?
023 0x3 \ 023 03 adl x2 0d}

0J 023 (0x 8232, 03 aajg 82% Ox?
023 0x3 \ 023 023 0d} (32% Ox? odi
0J 023 (Ox (92’32) 03 8$6 022 Ox?
023 0x3 \ 023 023 0d} 82% 895 od}
3J 827 8 af[‘g 3:165
023 O3 823 8x3 adl 82:5 8x5 od}
3J 828 3 81‘3 81‘5
023 0z \ 023 8x3 od} 8252) 8x§ od}
(9J 829 3 823 8333 818 82’5 8335
023 O3 8z§ O3 0d} 8z§ Ox2 Od}
aJ 8210 6.1'10 825 3.%5 851,’10 821 axl
8210 &Elo (9d1 8d1
(9J 8211 axll 825 ax5 8.7}11 82% 8.7/'1
8211 8x11 8d1 8d1
&] 82’12 81‘12 82% afL'5 8:1:12 82% 8]}1
8212 a:L'lQ adl 3Z% al’ 8d1
3] 8213 .’L'13 81'5 1
8213 3x13 22 (9 8d1 821 axl 8d%
8J 8214 81'14 825 8I5 821 81‘1
(9214 Ox3, \ 022 Ox2 (9d1 (92% Ox? Od}
8J 8215 :C15 825 3:65 813:1))5 821 8131
8z15 Ox3s \ 022 Ox2 8d1 023 0z Od}
aJ 821 6.1'16 821 3.%1 a’lim 823 a(IJ3
ale adl 3d1
(9J 023 {IJ17 82% Ox? (9.7:17 8232) 03
8217 8ZE17 8d1 8d1
&] 0218 81‘18 821 8x1 8:1:18 82?3 8]}3
8218 al'lg adl 3Z§ 837 8d1

155

(A.13)



oJ oJ

adl = 337 (@) (dio' @Dt + o' (o))
&]
8z2 o'(x )(d50 (I1)Z1+d70/(1‘%)2%)
aJ
o ?3: o'(z )(ng (a1)21 +diy 0" ($3)Z%>
oJ
tog0e D (430" (3)25 + dio’ (13) )
aJ
+6§ o'(x )(%U (23)2 +d20/($§)z§)
o0J
To3 g, o'(x )(de (23)23 +dio0 (355)231,>
oJ
+7 @) (610 @5)2 + o’ (03)z3)
oJ
+g7 @) (d30" (23)25 +d3o’ (23)23)
(9J
+8 50 (23) (ng (43) 22 +diy 0" (%)Z%)
aJ
o o' (2%y) (d30" («3) 23 + dio’ (27)21)
aJ
823 o' (1) (d60 (23)23 +d3o’ (%)ZD
&]
3 0 \T12) (@100 \T5)%3 T a120 (T1)%]
o) (dhoo @)+ oo )]
8J
(‘3 03 o' (a;) (d1‘7 (23)23 + d30’ (%)ZD
GJ
8 PEN o' (ay) (d50/($§)25+d70 (%)ZD
+ 8J o' (3 )(d o' (a3l + 3o (xQ)zl)
9237 Wis) (G (#5)z3 + dn o)z
aJ
8 073 o' (w15) (d20 (27)2] +dio (%)Z%)
+—— 8J o' (x3 )(d o' (23) 2] +d3o’ (x )zl)
9=3. 7 ) (67 (11)21 A0 (53)%
T3 o' (as) (de (27)2] +df50’ (953)»2%)

156

(A.14)



doJ  0J 02} (0} 023 0a} 8x‘;’ 023 8x3>
ods 0z} 0x3 8,21 ox? adl 023 0x3 Od}
a0J 0z (03 821 O0x? ax% 023 81:3)
023 0x3 \ 022 0% Od} 8z§ O3 Od3
0J 023 (0x3 821 81:1 x3 023 (91:3>
023 0x3 \ 022 0% Od} 8232) O3 Od3
0J 023 (0x} 8z3 8353 w3 022 Ox?
0z 0x3 \ 023 023 0d} 82§ Ox? 8d1>
0J 023 (0x3 023 0x3 63:% 022 8955)
023 0x3 \ 023 023 0d} 82% dx2 Od3
8J 023 (0x 8z§ O3 Gx% 8z§ Ox?
82 Ox \ 023 8d1 x2 Od}
N dJ 023 [0z 82% O3 (%% 82% Ox?
023 O3 8:53 O3 adl 022 0x2 Od}
n dJ 0z (9 823 O3 axg 825 Ox?
023 0 adl x2 Od}
dJ 023 (%8 (923 O3 8x8 (925 Ox?
023 0x3 \ 023 03 Od} 8252) Ox2 Od3
0J 0z, (395?0 028 Ox? 89510 022 0x?
023y 0x3y \ 022 835% 8d1 82’% 833% od}
8J 023 ( 83:5 22 Ox?
8211 ox3, 82% axg 8d1 8z% 890% od}
8J 0212 Ox3y 022 0x?

8x% 8d1

022 Qx% od}

T
821 81’1 ad%

(5
aJ 023, (
(5

i
)
|
)
)

)
8x12 021 8x1>
)

)

!

)

129

1

32 0xds \ 022 Ozt 8d1
8J 8214 81'14 (9z§ 81'5 8.%%4 821 81)1

81’14 adl %
ae] 0215 :L’15 825 81’5 81315 821 %
8z15 o3 adl az% Ox? dd}
aJ 6216 621 3x1 823 fﬂ%
8z16 Oxg 62% 835 8d1 82’% 83: d}
8J 0217 8371 %
&] 6218 81‘18 81‘1 x3

157

(A.15)



oJ oJ

adl 02 50’ (2 )(dla (47)z3 +d30’ (553)2?1,>
a‘] 1.2\, 1
+5230'@3) (B0 (@) + dio’(a3)23)
&]
o ?3: o'(z )(ng (¢1)23 +diy 0" ($3)Z§>
oJ
tog0e D (430" (23)23 + dio’ (23)21 )
oJ
t53 37 o'(x )(d60 (43)23 +dio’ (%)ZD
oJ
To3 g, o'(x )(de (23)23 +dio0 (355)2%)
aJ
+8z7 o'(x )(dla ($3)23+d20/(1‘§)z%)
aJ
+3 70" (a%) (d '(23)23 +dio’ (%)ZD
aJ
+8 50 (23) (ng (¢3) 23 + diy 0" (%)ZD
aJ
8 PEN o' (1) (d2<7 (23)21 +d 0/(35%)25)
aJ
823 o' (1) (d60 (43)z1 +dgo (351)2%)
&]
8 023, o' (1s) (dlo<7 (23)2] +dfy0’ (95%)2%)
8J
(‘3 03 o' (a13) (d1‘7 (3)21 + 5o’ (%)Z%)
GJ
8 PEN o' (ay) (d50/($§)z%+d70 (%)Z%)
8J a2\ 1 2 re o8 ]
+g{)50 '(z15) (ng (z5)21 +dii0 (Il)ZQ)
3J
8 03 o' (75) (d20 (49)2; +dio (%)Z?l,)
aJ 1022y 1 1
T3 {,7‘7 '(x7) (d60 (47) 23 + dgo (553)23>
T3 o' (1s) (de (47) 23 + dis0’ (953)»2%)

158

(A.16)



doJ  0J 02} (0} 023 0x3 8x‘;’ 023 0x3
ody 0z} 0x3 (8,22 3 0x3 adl 023 Ox3 8d1>
0J 023 (Ox 822 03 ax% 023 0x3
023 O3 (8 x5 Odd 822 or} 8d1>
0J 023 (0 (922 (91:2 w3 023 0x3
023 O3 (8 x5 Odd azi or} 8d1>
n 0J 0z} (8 8z2 8352 w3 023 8354)
023 0x3 \ 023 8x2 od} azi Ox% Od}
0J 023 (0x3 8932 w3 023 0z
023 Ox (8 890% od} 822 Ox3 Od3
8J 023 (0 8z§ 03 Gx% 8@% ox3
82 ox} (8 8d1 w3 Od}
N dJ 023 (8 822 o} (%% 82% O}
023 0x3 \ 023 03 adl 028 0x2 Od}
n dJ 0z (3 824 oz} axg 826 O}
023 0 adl x¢ Od3

8x8 (926 O}

dJ 023 ((%8 (924 o}

3 3
0zy Oxy

023 0x3 Od}

azg Oxg Od3
a.flo 826 a$6

0J 0z, (395?0 023 0x}

3 3
82«/10 axlo

023 8:54 8d1

82’% 83:6 ody}

)
)
)
)
)
)
28 )
)
)
)
)
)
)
i)

8J 023 83:4

8211 ox3, ( 822 6x4 8d1
8J 023y (0235 023 022 8x12 028 0x
8212 O0x3y ( 2 0w} 8d1 02¢ Ox2 0d3
3] 023, x:{’g 028 02 8x13 023 0x3
3 Oy ( 028 Oz} 8d1 023 dx3 Od3
8J 023, (03, (9z§ (9x6 81:14 822 03
3,073, ( adl x5 Od3
(9J 0235 [ 0x3s 826 O} 81:15 (922 03
8z15 o3 ( adl 8z§ Ox3 Odi
8J 023 626 6956 36 023 03
8z16 Oxg ( azg 835 8d1 82’% 83: d}
8J 023 83:6 03
5217 oy ( 82% (?xﬁ 8d1 8z§ 890% ﬁdé
8906 22
3

&] 6218 81‘18
028 Oz} 8d1

159

32% ﬁx% od

(A.17)



oJ oJ
adl ~ W o'(x )(d20 (23)21 +dio’ («F Z)

+gj2 o'(x )(d@‘U (23)2 +d3o’ («] Z)
4 g ) 0! (53) (Boo’ (13)2) + oo (3)23)
+g§a () (dio’ (23) 2] + d3o’ (27 z)
—l-g;éa'(xg’) (d30’ (a3) 21 + d3o’ (23)23)
+gj3 (2 )<d9<7 (23)21 +dfy 0" (4F)2 )
+§ZJ7 o' (23) (50" () 25 + dio’ (23) 23)
+§‘]30 (e2) (B (63)4 + 20 (a2)23)
+§U30/($9) (dl()U ()22 + oo’ ()2 )
;;{ o' (2%y) (dio’ ()25 + d3o’ (1) 23)
ai}{ o' (1) (d50 (23) 23+ d3o" () )
a&?{ o' (a1s) (dgal($4)z2 +dfy0' (x3)z )
a&é o' (a13) (d2‘7 ()23 + df )z )
aag o' (ay) (dGU/(xg)Z§+ 50’ (a3)2 )
;}{ o' (z15) (de (3) 23 + dio0’ () )
aa}{ o' (w15) (d10 (28)23 +djo’ (23)z )

aa‘é o' (a7) (d50 (23)23 +dFo’ (25)z )
))

0J
_‘_730' (1'18) <d90/<x6)23 +d110’ Z

160

(A.18)



doJ  0J 02} (0} 023 0x3 8x‘;’ 023 0x3
od} 0z} 0x3 (8,22 2 0x3 0d} 8z4 ox3 8d4>

0J 023 (0x3 025 O3 (%% 023 0x3
023 03 (8 2 0x3 0d} 822 Oz} 8d4>

0J 023 (023 023 (91:2 w3 023 0x3
023 O3 (8 3 023 0d} 822 Ox? 8d4>

0J 023 (0x3 023 8352 w3 023 0x?
+6,sz ox3 (8 83:2 od} azi Ox? 8d4>

0J 023 (0x3 8932 w3 023 0z
023 Ox (8 890% od} 822 or} 8d4>

8J 023 (0 8z§ 03 Gx% 8@% Oxj
82 ox} (8 8d4 8d4>
N dJ 023 (8 3023 0a} (%% 82% 8x6>

023 0x3 \ 023 03 0d} 8z6 Ox3 0d}
N dJ 0z (3 824 oz} axg 826 8x6>

023 0z 3d4 z2 Od}

0J 0z3 [0z 023 Ox? 81:8 (926 oxg
023 O3 (822 Ox3 Od} 82% ox? 8d4>

0J 0z}, (023, 023 0x7 89510 028 01
023 03, ( GZZ 8:5?1 8d4 82’% 83:6 8d4>

8J 023 03:4 2§ Oxf
8211 ox3, ( 822 (?x?l 8d4 82% ox? 8d4>

8J 023y (0235 023 022 8x12 028 0x
8212 O0x3y ( 2 0w} 8d1 02% O3 8d4>

8] 023, x:{’g 028 02 8x13 023 0x3
3 Oy ( 028 Oz} 8d4 023 0x3 ad4>

8J 023, (03, (9z§ (9x6 81:14 822 Ox3
14 0,4 ( 30d} 3d4>

(9J 0235 [ 0x3s 826 O} 81:15 (922 0x3
8z15 o3 ( 2 0z 8d4 8z§ 0x3 0 i)

8J 023 3 022 6956 36 023 03
8z16 Oxg ( azg 835% 8d4 82’% 83: }1>

8J 023 83:6 3
5217 oy ( 82% ax% 8d4 8z§ 890% 8d}1>
o)

i

&] 6218 (81‘18 81'6

8218 81'18 ((9

zg 8@% 8d4

161

32% Qx% od

(A.19)



oJ oJ
adl ~ W o'(x )(d20 (23)2 +dio’ (} Z)

+gj2 o'(x )(d@‘U (23)2 +d3o’ (x7)z )
4 g ) 0! (53) (Boo’ (13)24 + oo (3)23)
Jrgé; o'(x )(d (13) 2 +d3o’ (13)= )
—l-g;éa'(xg’) (d30’(a3)25 + 30’ (23)23)
+gj3 (2 )<d9<7 (23)25 +dfy 0" (4F)2 )
+§ZJ7 o' (23) (0’ () 23 + dio’ (a3) 21 )
+§‘]30 (o) (B (63)4 + 20 (a2)=1)
+§U30/($9) (dl()U ()25 + dioo’ ()2 )
;;{ o' (2%y) (dio’ ()23 + d3o’ (25) 21
ai}{ o' (1) (d50 (23)23 + d3o’ () )
a&?{ o' (a1s) (dgal($4)z3 +dfy0' (x3)z )
a&é o' (a13) (d2‘7 (5)21 +d )z )
aag o' (ay) (dGU/(xg)Z%JF 50’ (a3)2 )
;}{ o' (z15) (de (3)21 + o0’ (3)2 )
aa}{ o' (w15) (d10 (23)21 +d3o’ (23)z )

aa‘é o' (a7) (d50 (23)2] +dFo’ (25)z )
)

_‘_730' (1'18) <d90/<x6)21 +d110’ Z

162

(A.20)



	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Fluorescence Microscopy
	Super-Resolution Fluorescence Microscopy Techniques
	Motivation for the Use of Compressed Sensing in Super-Resolution Structured Illumination Microscopy
	Contributions of this Dissertation
	Organization

	SUPER-RESOLUTION STRUCTURED ILLUMINATION MICROSCOPY
	Theoretical Foundations for Super-Resolution Structured Illumination Microscopy
	Numerical Analysis for Super-Resolution Structured Illumination Microscopy
	Super-Resolution Structured Illumination Microscopy Configuration
	The Fundamental SIM Reconstruction Algorithm
	Issues in Super-Resolution Structured Illumination Microscopy

	THE COMPRESSED SENSING FRAMEWORK
	Concept of Compressed Sensing
	Fundamental Compressed Sensing Reconstruction Algorithms
	Basis Pursuit
	Greedy Pursuit

	Compressed Sensing Applications in Imaging Science
	Compressed Sensing Applications in Optical Science

	CONVOLUTIONAL DICTIONARY LEARNING
	The Quest for Dictionary Learning
	Convolutional Sparse Modeling
	Introduction to Convolutional Sparse Coding
	Resolution of the Local-Global Gap
	Theoretical Foundations for Convolutional Sparse Coding

	A Connection between Convolutional Neural Network and Convolutional Sparse Coding
	Multi-Layer Convolutional Sparse Coding
	Examples for Dictionary Selections in the Convolutional Sparse Coding Model
	Sparse Dictionaries
	Slice-Based Dictionary Learning
	Online Alternating Minimization Algorithm

	The Proposed Dictionary Learning Method
	Experimental Results

	PURSUIT ALGORITHMS AND RECONSTRUCTION RESULTS
	Implementation of Trained Dictionaries into the Alternating Direction Method of Multipliers Algorithm
	Implementation of the Trained Dictionaries Generated Using Online Alternating Minimization Algorithm into the Alternating Direction Method of Multipliers Algorithm
	Introduction to Plug-and-Play Image Reconstruction Method Using Residual Deep Learning
	Experimental Results

	COMPRESSED STRUCTURED ILLUMINATION MICROSCOPY: SIMULATION BASED STUDY
	Related Work and Contribution of This Study
	Theoretical Foundations for Compressed Structured Illumination Microscopy
	Experimental Results
	Experimental Results for Stationary Objects
	Experimental Result for Non-Stationary and Sparse Object


	COMPRESSED STRUCTURED ILLUMINATION MICROSCOPY: OPTICAL IMPLEMENTATION AND REAL DATA COLLECTION
	Data Collection with a Photomultiplier Tube
	Projection of Illumination Patterns with a Digital Micromirror Device
	Compressed Structured Illumination Microscopy: Optical Configuration
	Compressed Structured Illumination Microscopy: Experimental Results
	Reconstruction Results for Stationary Object
	Reconstruction Results for Non-Stationary Object
	Photobleaching and the Proof-of-Principle Solution


	DEPTH EXTRACTION FROM A SINGLE DIGITAL HOLOGRAM AND ITS EXTENSION TO COMPRESSIVE HOLOGRAPHY
	Introduction
	Stereo Disparity Map Algorithms
	Stereo Image Pairs from a Single Hologram
	Holographic Endoscope Setup and Depth Extraction Results Using A Single Digital Hologram
	Depth Extraction Results Using A Single Compressive Hologram

	CONCLUSIONS AND FUTURE DIRECTIONS
	Summary and Conclusions
	Future Directions

	BIBLIOGRAPHY
	APPENDIX A -4em



