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Abstract: The Augmented Lagrangian Smoothed Particle Hydrodynamics (ALSPH) method is a
novel incompressible Smoothed Particle Hydrodynamics (SPH) approach that solves Navier–Stokes
equations by an iterative augmented Lagrangian scheme through enforcing the divergence-free
coupling of velocity and pressure fields. This study aims to systematically investigate the time
step size and the number of inner iteration parameters to boost the performance of the ALSPH
method. Additionally, the effects of computing spatial derivatives with two alternative schemes on
the accuracy of numerical results are also scrutinized. Namely, the first scheme computes spatial
derivatives on the updated particle positions at each iteration, whereas the second one employs the
updated pressure and velocity fields on the initial particle positions to compute the gradients and
divergences throughout the iterations. These two schemes are implemented to the solution of a flow
over a circular cylinder at Reynolds numbers of 200 in two dimensions. Initially, simulations are
performed in order to determine the optimum time step sizes by utilizing a maximum number of
five iterations per time step. Subsequently, the optimum number of inner iterations is investigated
by employing the predetermined optimum time step size under the same flow conditions. Finally,
the schemes are tested on the same flow problem with different Reynolds numbers using the best
performing combination of the aforementioned parameters. It is observed that the ALSPH method
can enable one to increase the time step size without deteriorating the numerical accuracy as a
consequence of imposing larger ALSPH penalty terms in larger time step sizes, which, overall, leads
to improved computational efficiency. When considering the hydrodynamic flow characteristics,
it can be stated that two spatial derivative schemes perform very similarly. However, the results
indicate that the derivative operation with the updated particle positions produces slightly lower
velocity divergence magnitudes at larger time step sizes.

Keywords: smoothed particle hydrodynamics; sph; augmented Lagrangian; augmented Lagrangian
sph; alsph; incompressible flow; flow past cylinder; channel flow

1. Introduction

Smoothed particle hydrodynamics (SPH) method is a mesh free, particle based, La-
grangian computational method that was introduced simultaneously by Lucy [1] and
Gingold and Monaghan [2] for solving astrophysics problems. Following its introduction
to hydrodynamics studies by Monaghan [3], the SPH method has become a fast growing
computational fluid dynamics (CFD) approach. The initial SPH formulation employed
a weakly compressible velocity–pressure coupling scheme, in which the pressure field
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is numerically computed from the density variation through an equation of state. Al-
though this explicit Weakly Compressible SPH (WCSPH) scheme has clear advantages in
tackling various types of violent free-surface hydrodynamics problems, which have large
and non-linear deformations [4–6], it always requires additional numerical treatments to
prevent the occurrence of noisy and oscillatory pressure fields [4,7,8].

Therefore, for dealing with incompressible fluid flow accurately, a fully incompress-
ible SPH (ISPH) approach [9,10] is proposed through being inspired from the algorithm
originally developed for a mesh based method [11]. In ISPH, the velocity-pressure coupling
scheme is based on the projection method, wherein a computationally expensive implicit
solution of pressure Poisson equation is required [12]. Many challenging incompressible
fluid mechanics problems were successfully simulated with the conventional ISPH method,
including free surface flows [13,14], multiphase flows [15,16], electrohydrodynamics [17,18],
among others. The ISPH methodology has also been implemented with hybrid Lagrangian–
Eulerian discretization approaches [19] and Eulerian SPH [20] in order to achieve a more
consistent and stable numerical framework for the SPH method in general [21]. Moreover,
in order to reduce the computational costs, explicit incompressible SPH formulations are
also present in the literature [22–24], which introduce simplifying assumptions for solving
the pressure Poisson equation in an explicit fashion. Augmented Lagrangian SPH (ALSPH)
is the most recent and novel explicit incompressible SPH method that has been recently
introduced and further improved by the authors [25,26].

In general framework, Augmented Lagrangian method is an optimization method [27],
which utilizes Lagrange multipliers, together with penalty functions, in order to minimize
(or maximize) an objective function. With this combination, constrained optimization
problems are solved as unconstrained sets of equations in a manner that the penalty
terms are modified at each iteration with respect to the Lagrangian multipliers defined
for the mathematical model. Inspired from this mathematical optimization perspective,
the ALSPH method utilizes suitable augmented Lagrangian penalty terms on the pressure
and velocity fields decoupled by the projection principle [11] and it performs iterations to
minimize velocity divergence without solving implicit Poisson equation for pressure.

Fortin and Glowinski pioneered the idea of solving Navier–Stokes equations as an
optimization problem with the help of the Augmented Lagrangian method [28]. Fortin and
Glowinski [28] introduced augmented Lagrangian algorithms for solving Navier–Stokes
equations and other engineering problems. Followingly, Desai and Ito [29] applied the
method for optimal control problems that are governed by steady state Navier-Stokes
equations. The method is employed on solving 2D lid-driven cavity and channel flow
with sudden expansion problems utilizing a grid based discretization approach. Again,
with a grid based approach, Vincent and Caltagirone [30] solved 2D and 3D unsteady
fluid flow problems with an incompressible projective augmented Lagrangian application.
Vincent et al. [31] applied an adaptive augmented Lagrangian method on 3D direct
numerical simulation (DNS) with a multiphase, volume of fluid (VOF) framework, where
the augmented Lagrangian is implemented in the predictor step of the projection approach.
The adaptivity is provided by evaluating the augmented Lagrangian penalty term locally
over a conditional penalty coefficient that is based on the dominant flow characteristics.
There are also meshless applications of the approach in solid mechanics field for the
solution of material and crack discontinuity problems [32] and on elastic solids [33] to
enforce boundary conditions.

To this end, the ALSPH method is the first meshless implementation of the augmented
Lagrangian approach to the solution of the Navier–Stokes equations. The augmented
Lagrangian penalty term in the ALSPH method is designed to mimic the bulk viscosity
term of the Navier–Stokes equations, which should normally be equal to zero for an
incompressible flow problem. In this regard, the ALSPH method tries to ensure that this
term be zero through its iterative scheme. The penalty term is modified (or augmented)
at each iteration while the bulk viscosity term diminishes. Fatehi et al. [25] performed
simulations with the ALSPH method on 2D flow over the backward facing step and 2D
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pressure jump problems, when comparing the results with the weakly compressible SPH
(WCSPH) method. In our recent study [26], along with algorithm enhancements and a
simple adaptive scheme for the penalty term estimation, we have further investigated
the performance of the ALSPH method through solving a challenging incompressible
flow problem, namely, 2D flow past a circular cylinder under low to moderate Reynolds
numbers. The authors [25,26] demonstrated the advantage of ALSPH over WCSPH in
terms of rendering smoother pressure fields and smaller velocity divergences at the expense
of a larger computational cost. The findings of our study [26] have further indicated the
accuracy of the ALSPH method, especially in higher Reynolds numbers, as compared
to the WCSPH method at same particle resolutions and time step sizes. In our previous
study [26], the effects of the time step size or the maximum number of iterations per time
step were not investigated. When considering higher particle resolution requirements of
the WCSPH method at higher Reynolds numbers [34–36], our results have also pointed
out the advantage of the ALSPH method over WCSPH in terms of computational costs,
even without optimizing these temporal and iterative discretization parameters [26].

Given the fact that the ALSPH is a relatively new approach to enforcing the incom-
pressibility condition in particle based simulations, it is important to scrutinize its all
aspects to be able to make it a versatile pressure-velocity coupling algorithm. To this end,
it is essential to understand the effect of various parameters (i.e., time step, number of
iterations and locations of derivative operations) on the accuracy of the ALSPH results.
Hence, the main focus of the current study is to determine the optimum time step size,
and a practical iteration procedure for the ALSPH method, which involves the number
of inner iteration for each time step and the identification of the most effective particle
location for computing spatial derivatives during each inner iteration. With n representing
temporal discretization in the scheme, the first approach computes the spatial derivatives
at n + 1 by utilizing the displaced particle position results of the previous iteration [25].
In the second approach, the derivatives are always computed with respect to the initial
particle positions at n [26]. The velocity and pressure values are approximated with the
same SPH procedures in both of the schemes.

Simulations are performed on the benchmark problem of 2D incompressible flow
past a circular cylinder using the in-house C++ code in order to examine the numerical
performances of both ALSPH schemes and to obtain the optimum time step and number
of inner iteration values. The results are compared in terms of the dynamic properties
(force and pressure coefficients), the wake kinematics (Strouhal number analysis), and the
velocity divergence as a measure of error in enforcing incompressibility condition in the
flow domain. Initially, a series of simulations employing the two derivative estimation
schemes are performed to determine an optimum dimensionless time step size by limiting
the maximum number of iterations per time step to five. Subsequently, utilizing the best
applicable dimensionless time step size, the schemes are tested for the iteration number of
two, five, and twenty. Finally, the two schemes are examined under Reynolds numbers
varying from 100 to 300 utilizing the optimum combination of the aforementioned parame-
ters. Ultimately, the novelty of this paper lies in the detailed and systematic investigations
of the above stated parameters, so that the ALSPH method can be reliably used to model
incompressible flow problems. The key findings of this research are elaborated within the
numerical results section and concisely stated in the conclusion.

2. Governing Equations and ALSPH Methodology

Continuity and linear momentum equations which govern the fluid motion are writ-
ten as;

Dρ

Dt
= −ρ∇ · u, (1)

ρ
Du
Dt

= −∇p +∇ · τ + ρg, (2)
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where D/Dt is the material time derivative, t is the time, ρ is the density, u is the velocity
vector, p is the thermodynamic pressure, τ is the viscous stress tensor, and g is the gravi-
tational acceleration vector. The viscous force expressed as the divergence of the viscous
stress tensor τ in Equation (2) can be written for a Newtonian fluid, as

∇ · τ = µ∇2u + κ∇(∇ · u), (3)

where µ and κ represent the dynamic and bulk viscosity coefficients, respectively. With an
incompressible flow assumption, the divergence of velocity becomes zero and the bulk
viscosity (volume viscosity) vanishes. Accordingly, the conservation of linear momentum
for incompressible flow is written as

ρ
Du
Dt

= −∇p + µ∇2u + ρg. (4)

2.1. Derivation of the ALSPH Formulation

In the ALSPH method, the velocity and pressure fields are decoupled via the projection
approach [11]. The Helmholtz-Hodge decomposition theorem states that any arbitrary
sufficiently smooth vector field u∗ can be written as the sum of a divergence-free vector
field and the gradient of a scalar field, such that

u∗ = u +
∆t
ρ
∇p. (5)

Differing from the conventional projective ISPH schemes, ALSPH utilizes the orthogo-
nal projection operator on the momentum balance equation in Equation (2), rather than the
one in Equation (4), such that

u∗ − u
∆t

= ν∇2u + κ∇(∇ · u) + g, (6)

where ν is the kinematic viscosity that is defined as ν = µ/ρ. As a result of the projec-
tion operation, the pressure gradient term presented in Equation (2) vanishes since it is
perpendicular to the divergence-free subspace. Hence, the predicted velocity field u∗ is
an intermediate velocity field without the contribution of pressure forces. The aim of this
decomposition approach is to obtain the velocity field u that ensures the divergence-free
condition. Therefore, upon taking divergence of Equation (5), with the assumption of
∇ · u = 0, the pressure Poisson equation is obtained as

∇2 p =
ρ

∆t
∇ · u∗. (7)

The augmented Lagrangian method is employed onto Equation (6) by replacing
the bulk viscosity coefficient κ with an augmented Lagrangian penalty coefficient rAL,
transforming the volume viscosity force into the augmented Lagrangian penalty term that
diminishes through iterations as the gradient of velocity divergence declines. With the
superscripts n and m representing the time step and iterations, respectively, initializing
the iterations with un+1,m = un and pn+1,m = pn, the ALSPH algorithm predicts the
intermediate velocity u∗ as

u∗ − un = rAL∆t
〈
∇
(
∇ · un+1,m

)〉n+1,m
+ ∆tν

〈
∇2un+1,m

〉n+1,m
+ ∆tg. (8)

Here, rAL is the penalty coefficient that is defined as rAL = CBVu2
max∆t, while umax

being the maximum velocity magnitude in the domain and CBV is a constant with a value
between 1 and 100 [25]. In this study, CBV is taken as 100. The value of rAL is only updated
at the beginning of time step and it stays constant through iterations. The angle bracket
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“〈〉” in Equation (8) instructs that the derivative operation is to be performed based on the
particle positions at the time n and iteration m frames that are designated by its superscripts.

ALSPH utilizes an equation of state approach to fulfill the divergence-free condition in
order to avoid an implicit solution of Equation (7). Approximating ρ = c−2 p in Equation (1),
a velocity divergence is obtained, as

∇ · u = − 1
c2ρ

Dp
Dt

, (9)

where c is the speed of sound parameter. Taking divergence of Equation (5) and replacing
∇ · u with Equation (9), prospective pressure field is obtained in the iterative form as;

pn+1,m+1 − pn+1,m = −rALρ

(
〈∇ · u∗〉n+1,m − ∆t

ρ

〈
∇ · ∇pn+1,m

〉n+1,m
)

. (10)

In obtaining Equation (10), one can clearly see that the rAL value replaces c2∆t.
Upon setting c2∆t equal to the above definition of rAL = CBVu2

max∆t, it can be shown
that CBV = (c/umax)2. For any flow to be treated incompressible, the ratio of the speed of
the flow to the speed of sound should be smaller than 0.3. To be on the safe side, the ratio
of 0.1 is utilized, which leads to CBV of 100.

After obtaining new pressures, the velocity field is updated utilizing Equation (5),
as follows:

un+1,m+1 = u∗ − ∆t
ρ

〈
∇pn+1,m+1

〉n+1,m
. (11)

Respectively, new positions of particles are obtained by

rn+1,m+1
i = rn

i +
1
2

(
un

i + un+1,m+1
i

)
∆t, (12)

where ri represents the position vector of the particle i.
The convergence criteria is imposed either ensuring a satisfactory velocity divergence

value that is defined by the parameter ε;∣∣∣∣〈∇ · un+1,m+1
〉n+1,m+1

∣∣∣∣
max
≤ ε, (13)

or reaching a predefined maximum number of iterations per time step. In this study, ε is
taken as 10−3[s−1]. Section 2.4 provides the iterative algorithm for a given time step for the
ALSPH method.

2.2. Spatial Derivatives of Field Functions

The value of any field function in the computational domain can be approximated by
utilizing SPH interpolation, as follows [37];

f s
i =

N

∑
j=1

Vj f s
j Wij. (14)

Here, f s
i represents the value of any vector valued or scalar function at the spatial

coordinates of particle i. Subscript j designates the variables associated with the neighbor
particles of i, which reside within a support domain that is limited by the radius h. Hereby,
the neighbors constitute a total number N that varies for each particle i. Wij, or in full
form Wij

(
rij, h

)
is a smoothing kernel/an interpolation weight factor, which is a function of

relative particle positions rij = ri− rj and the smoothing length h. As another interpolation
factor, Vj is the volume of each neighbor particle computed by the inverse of the summed
kernel function as Vi = 1

/
∑N

j=1 Wij. This study employs the quintic kernel function used in
the reference [38].
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In the ALSPH method, flow domain is discretized with particles. Accordingly, the gra-
dient and the Laplacian terms in the ALSPH formulation are evaluated by a corrected SPH
approach [39], as follows;

∂ f s
i

∂xk
i

αkl
i =

N

∑
j=1

Vj

(
f s
j − f s

i

)∂Wij

∂xl
i

, (15)

∂

∂xk
i

(
∂ f s

i

∂xk
i

)
αsl

i = 8
N

∑
j=1

Vj

(
f s
i − f s

j

) rs
ij

r2
ij

∂Wij

∂xl
i

, (16)

αsl
i =

N

∑
j=1

rs
jiVj

∂Wij

∂xl
i

, (17)

where αsl
i is a second rank correction tensor.

2.3. Artificial Particle Displacement

Before moving to the next time step, the particle positions are shifted by the artificial
particle displacement method [8,40] in order to prevent non-physical particle clustering
effect. The corrected particle position r̂i is calculated as:

r̂i = ri + δri, δri =
N

∑
j=1

rij

r3
ij

r2
0uv∆t, uv =

∥∥∥∑N
j=1
(
ui − uj

)
Wij

∥∥∥
∑N

j=1 Wij
, (18)

where rij =
∥∥rij
∥∥, r0 = ∑N

j=1 rij/N and δri is the position displacement vector. Accordingly,
the velocity and pressure of the particle are also corrected, as [25]:

ûi = ui + r̂i · 〈∇ · u〉i, p̂i = pi + r̂i · 〈∇p〉i. (19)

2.4. Derivative Estimation Schemes

The original ALSPH algorithm that was developed by Fatehi et al. [25] is explained
at the beginning of this section. In our previous study [26], we proposed dropping the
computationally expensive, repeating neighbor searching operation during the iterations.
Furthermore, the algorithm on the estimation of the spatial derivatives was modified. The
aim of the present study is to compare two derivative estimation schemes, performing a
single neighbor searching operation in each time step.

The first scheme can be considered to be a modified version (without a repetitive
neighbor search) of the scheme that was introduced by Fatehi et al. [25], utilizing the
updated particle positions as 〈〉n+1,m. The second one is the same scheme employed in
our previous study [26], which uses the particle positions at the beginning of the time
step as 〈〉n. The aforementioned schemes will respectively be referred to as Algorithms 1
and 2 hereafter. The superscripts belonging to the angle brackets in Equations (8), (10)
and (11), corresponding to Algorithm 1, are changed from 〈〉n+1,m to the form 〈〉n, hence
constructing Algorithm 2, as given below as pseudo codes.
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Algorithm 1 The pseudo code for the algorithm that computes spatial derivatives on
updated particle positions

1: Time step initialization with rn, un, pn

2: Generate ghost particles for wall boundaries (Figures 1 and 2)
3: Neighbor particle search
4: Initialize iterations with: m = 0, rn+1,m = rn, un+1,m = un, pn+1,m = pn

5: while m ≤max iterations do
6: compute u∗ (Equation (8)) . compute derivative terms using rn+1,m

7: compute pn+1,m+1 (Equation (10)) . compute derivative terms using rn+1,m

8: update pressures of cylinder particles (Equation (20))
9: compute un+1,m+1 (Equation (11)) . compute derivative terms using rn+1,m

10: compute rn+1,m+1 (Equation (12))
11: check for convergence (Equation (13))
12: if converged then
13: apply artificial particle displacement (Equations (18) and (19))
14: finalize time step
15: else
16: m = m + 1

Algorithm 2 The pseudo code for the algorithm that computes spatial derivatives on initial
particle positions

1: Time step initialization with rn, un, pn

2: Generate ghost particles for wall boundaries (Figures 1 and 2)
3: Neighbor particle search
4: Initialize iterations with: m = 0, rn+1,m = rn, un+1,m = un, pn+1,m = pn

5: while m ≤max iterations do
6: compute u∗ (Equation (8)) . compute derivative terms using rn

7: compute pn+1,m+1 (Equation (10)) . compute derivative terms using rn

8: update pressures of cylinder particles (Equation (20))
9: compute un+1,m+1 (Equation (11)) . compute derivative terms using rn

10: compute rn+1,m+1 (Equation (12))
11: check for convergence (Equation (13))
12: if converged then
13: apply artificial particle displacement (Equations (18) and (19))
14: finalize time step
15: else
16: m = m + 1

Figure 1. Computational domain.
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Figure 2. Free slip ghost particles for channel boundaries [26].

3. Problem Definition

In this study, 2D incompressible channel flow past circular cylinder is simulated to
determine the best possible ALSPH parameters in terms of accuracy and computational
costs. Channel geometry is given in Figure 1, where D is the cylinder diameter and
L = 14D, H = 13D, and LU = 4D.

Reynolds number is defined as Re = UD/ν with uniform inlet velocity U. The
initial particle discretization is realized by uniform orthogonal fluid particles with equal
particle distances of ∆x in both x and y axes. Channel walls are represented by ghost fluid
particles with a free-slip boundary condition, as illustrated in Figure 2 [26]. Two buffer
zones with lengths of 6 h are defined along the inlet and outlet regions to ensure mass
conservation within the channel (Figure 1). Particles of the inlet buffer zone enters into
the flow domain with the constant velocity U. Fluid particles reaching the outlet buffer
zone are enforced to preserve the normal component of their velocity to the boundary until
they travel beyond 6 h thick outlet buffer zone. Fixed solid cylinder particles are radially
distributed with respect to the same ∆x scale. An additional pressure term is imposed
upon the cylinder particles in order to ensure no-slip and Neumann boundary conditions
for flow around the solid obstacle;

∂p
∂n

= ρ

[
Dus

Dt
· n
]

, ps = p +
∂p
∂n

rs, (20)

where us is a pseudo-velocity for the solid particles computed using Equation (8), n is the
outwards facing surface normal, ps is the modified pressure, ∂p/∂n = ∇p · n and rs is the
pseudo-displacement along the normal direction.

The instantaneous values of drag coefficient CD(t) = 2FD(t)
/(

ρU2 A
)

and lift coeffi-
cient CL(t) = 2FL(t)

/(
ρU2 A

)
for the cylinder are computed by integrating the forces acting

on the solid particles of the cylinder as Fk(t) = ∑
Ncyl
i=1 Viρiak

i (t), where ak
i (t) = Duk

i (t)/Dt
and Ncyl is the number of cylinder particles. Similarly, the pressure coefficient is computed
over the cylinder surface as CP(t, θ) = 2(p(t, θ)− p0(t))/(ρU2), where θ is the angular
coordinate with respect to the center of the cylinder (Figure 1) and p0(t) is the instanta-
neous mean inlet pressure. Because the flow is oscillatory, the mean values of the drag
and pressure coefficients as well as the root mean square of lift coefficient, respectively, C

′
D,
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C
′
P, and C

′
L are computed over the averaging period T in accordance with the following

relations;

C
′
D =

1
T

ˆ t+T

t
CD(t)dt, (21)

C
′
P(θ) =

1
T

ˆ t+T

t
CP(t, θ)dt, (22)

C
′
L =

[
1
T

ˆ t+T

t
C2

L(t)dt

] 1
2

. (23)

The mean velocity divergence in the domain is computed as
´ t+T

t

(
∑

N f
i |〈∇ · ui(t)〉|

)
dt,

where N f is the total number of fluid particles.

4. Numerical Results

There are three main investigations in the present study. The first one is the comparison
of the spatial derivative Algorithms 1 and 2. To this end, all other investigations are realized
for both Algorithms 1 and 2. Two different particle resolutions, namely, D/∆x = 20 and
D/∆x = 30 are utilized for all relevant simulations in order to understand the effect of
spatial resolution on the numerical results. The second one is to determine the maximum
applicable time step size, written in a dimensionless form as ∆tU/∆x. Accordingly, time
step size is incrementally tested. Finally, after determining an optimum dimensionless time
step size for the problem at hand with five iterations per time step, the effect of the number
of iterations on the accuracy of the results are examined by utilizing the iteration number
of two and 20 per time step. All three investigations to find the optimum parameters are
realized at Re = 200. Ultimately, having determined the best performing time step size and
the number of iterations, both 1 and 2 algorithms are tested under Re = 100− 300 with
D/∆x = 30 to examine how these parameters respond to the Reynolds number of the flow.
It should be emphasized that the algorithms are equivalent in terms of computational cost.
In the figures of the following subsections, the results of Algorithms 1 and 2 will be
designated as (1) and (2), respectively.

4.1. Time Step Size

The mean force coefficients and vortex shedding characteristics are investigated and
presented in Figures 3 and 4, respectively, in order to capture both dynamics and kinemat-
ics of the problem. It must be restated that the simulations in this subsection are always
performed with a maximum of five iterations per time step.

Figure 3. Mean drag and lift coefficients versus dimensionless time step size.
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Figure 4. Strouhal number versus dimensionless time step size.

Figure 3 shows the values of mean drag and lift coefficients varying with the dimen-
sionless time step sizes (∆tU/∆x). Algorithms 1 and 2 are in tune with each other, as it can
be seen from both C

′
D and C

′
L results. As for the kinematics, periodic vortex shedding char-

acteristics are compared over Strouhal number "Sr” versus dimensionless time step size
in Figure 4, where Sr = f D/U, with f being vortex shedding frequency in Hz. Similarly,
Algorithms 1 and 2 yield coherent results in this aspect. The noticeable difference between
the force coefficient values for D/∆x = 20 and D/∆x = 30 indicates that D/∆x = 20
cannot provide a sufficient particle resolution. Yet, it can be inferred from Figure 5 that the
mean velocity divergence, hence the continuity error, is comparable for these two particle
resolutions. Figure 5 also indicates that increasing the time step sizes results in a better
achievement of overall incompressibility in the domain. This is due to the fact that, since
the time step size is a term in the penalty coefficient as rAL = CBVu2

max∆t, the larger the
time step size, the larger is the penalty coefficient, which affects the iterative guesses of the
intermediate velocity field u∗ and the pressure field pn+1 through Equations (8) and (10),
respectively. Consequently, the penalty coefficient naturally influences the convergence
characteristics of the iterative process. It should be stated that for simulations with five
iterations per time step, the utilization of the time step beyond the maximum value that
is represented in Figure 5 yields diverging simulations for both particle resolutions and
both algorithms. Algorithms 1 and 2 show generally similar trend with increasing time
step sizes. However, Algorithm 1 performs slightly better than Algorithm 2 in larger time
step sizes.

Figure 5. Mean velocity divergence of flow domain versus dimensionless time step size.

It should also be noted that the simulations in our previous study [26] were performed
with a lower dimensionless time step size as ∆tU/∆x = 6.35× 10−4, which corresponds to
the lower ends on the x axes of Figures 3–5. Therefore, it is reasonable to conclude that the
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algorithm distinction does not noticeably affect the results of the previous study [26] due
to the unoptimized time step sizes.

For the sake of completeness, in Table 1, the results of two algorithms are compared
with the 2D numerical findings of the literature in terms of mean drag and root mean
square of lift coefficient as well as the Strouhal number for Re = 200, where the simulations
are performed with D/∆x = 30 and ∆tU/∆x = 5.08× 10−3.

Table 1. Comparison with two-dimensional (2D) numerical simulation results of literature for
Re = 200.

Source of the Result C
′
D C

′
L Sr

Algorithm 1 1.427 0.478 0.213
Algorithm 2 1.428 0.482 0.211

Zhang et al. [41] 1.423 0.529 0.203
Rajani et al. [42] 1.336 0.424 0.196

Marrone et al. [34] 1.380 0.680 * 0.200
* Mean lift amplitude.

At inner iterations, Algorithm 1 updates the particle positions by computing the
derivative terms on previously predicted particle positions, whereas Algorithm 2 calculates
the derivatives at initial particle positions with the updated field function values of u
and p, as explained in Section 2.4. The effect of derivative locations on the accuracy is
negligibly small because both schemes compute the new positions of particle for the inner
iteration using Equation (12) based on rn.

4.2. Number of Iterations

In the previous subsection, it was concluded that the best performing dimensionless
time step size is the largest applicable one for the simulations with five iterations per
time step. Thus, the effect of the maximum iteration number on the results is investi-
gated, utilizing this dimensionless time step value, namely ∆tU/∆x = 5.08× 10−3 for the
forthcoming simulations.

The same analysis pattern as the previous Section 4.2 is adopted in Figures 6–8,
investigating, respectively, force coefficients, Strouhal number, and the mean velocity
divergence against the number of iterations per time step. Figures 6 and 7 do not indicate
any clear distinction between the two algorithms both in terms of force coefficients and
Strouhal numbers with an increasing number of iterations. In Figure 8 a decreasing trend
of mean continuity error is observed with an increasing number of iterations per time step
for both resolutions.

Figure 6. Mean drag and lift coefficients versus number of iterations per time step.
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Figure 7. Strouhal number versus number of iterations per time step.

Figure 8. Mean velocity divergence of flow domain versus number of iterations per time step.

In Figure 9, spatial variations of the velocity divergence and the magnitude of vorticity
at similar lift extremities (around tU/D ≈ 88 for each case) are given for D/∆x = 30.
Despite the almost identical results of vorticities for Algorithms 1 and 2, there are dis-
tinguishable differences for velocity divergences as the mean values that are depicted in
Figure 8 suggest. Notwithstanding the fact that twenty iterations per time step yields the
best results for both algorithms in general, five iterations per time step is an expedient
choice, given the trade off between admissible accuracy and computational cost.

In Figure 10, pressure coefficients for Algorithms 1 and 2 with two, five, and 20 it-
erations are compared over the simulations with D/∆x = 30. The results of C

′
P for the

Algorithm 1 are unaffected by the number of iterations per time step, yielding overlapping
mean pressure coefficients along the cylinder surface. Additionally, the differences between
the results of Algorithms 1 and 2 are trivial for a kind of flow characteristic, which is fairly
unsteady. It can be noticed that the mean drag and lift coefficient results of resolution
D/∆x = 30 in Figure 6 also support the findings of pressure coefficients, since they both
demonstrate almost insensitive responses to the number of iterations per time step for
Algorithm 1. The finite volume method results of Rajani et al. [42] and experimental results
of Thom [43] are also included in this comparison to present supplementary information.
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Figure 9. Comparison of instantaneous spatial velocity divergence and vorticity with a different number of iterations per
time step.

Figure 10. Mean pressure coefficient acting on the surface of the cylinder.
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4.3. Reynolds Number

Following a thorough investigation of flow characteristics at Re = 200, the two
algorithms are compared at Reynolds numbers that range from 100 to 300. All of the
simulations are performed utilizing ∆tU/∆x = 5.08 × 10−2 with a maximum of five
iterations per time step, except for the Re = 300 cases, which produce unstable simulations.
Thus, for only at Re = 300 cases, time step sizes are reduced to ∆tU/∆x = 3.59× 10−2.

In Figure 11, the mean drag and lift coefficients against Reynolds numbers are pre-
sented. It can be observed that both C

′
D and C

′
L series are almost identical. Higher particle

resolutions are required with increasing Reynolds numbers, which can be inferred through
comparing the results of the current study with that of Zhang et al. based on the finite
difference approach [41]. Moreover, the Strouhal number results of the two algorithms at
different Reynolds numbers are compared in Figure 12. Correspondingly to the results of
force coefficients (Figure 11), the Strouhal number results of Algorithms 1 and 2 match with
each other. The mean velocity divergences of the flow fields display similar behaviour with
the overall outlook of the results that were classified in the previous subsection. Figure 13
shows that Algorithm 1 produces slightly lower mean velocity divergence in the flow
domain at all Reynolds numbers covered.

Figure 11. Mean drag and lift coefficients versus Reynolds number.

Figure 12. Strouhal number versus Reynolds number.
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Figure 13. Mean velocity divergence of flow domain versus Reynolds number.

5. Conclusions

The aim of the current study is to investigate in detail the effect of time step size,
number of inner iterations, and two different algorithms as to the calculation of spa-
tial derivatives on the robustness, accuracy, and computational cost of the augmented
Lagrangian SPH method. To be clear, Algorithm 1 utilizes the particle positions of the
previous iteration to compute gradients and divergences of pressure and velocity fields,
whereas Algorithm 2 employs the initial particle positions of the time step for these com-
putations. As for the time step, a smaller numerical error is observed at larger time step
sizes for both algorithms, which is associated with fact that the time step size is embedded
in the penalty coefficient rAL, which augments the prediction of the optimum pressure and
velocity fields at each iteration. The largest applicable and best performing dimensionless
time step size is found to be around ∆tU/∆x = 5.08× 10−2 for Re = 200. The further
increase in the dimensionless time step size leads to instability and divergence in both
of the algorithms, hence blowing up the simulation. The findings of the present study
indicate that the dimensionless time step size that is utilized in our previous study based
on the Algorithm 2 is in a safe range, such that it does not produce any difference from
the Algorithm 1. It is observed that increasing the number of inner iterations improves the
accuracy of simulations for both algorithms, as expected. Nevertheless, the accuracy that is
gained by increasing the maximum number of iterations from five to twenty is not notably
high to justify the additional computational cost.

Finally, the most efficient combination of the dimensionless time step size and the
maximum number of iterations per time step, which are ∆tU/∆x = 5.08 × 10−2 and
five iterations respectively, are tested at Re = 100 to 300. Algorithms 1 and 2 yield overlap-
ping results in terms of both force coefficients acting on the cylinder and periodic vortex
shedding characteristics of the downstream. Overall, the results of the two algorithms do
not meaningfully differ in terms of the dynamics and kinematics of the flow. However,
Algorithm 1 can be deemed to be better, since it produces slightly smaller computational
error at larger time step sizes.

Although in this study, the ALSPH method is extensively tested against time step
size, the number of iterations, and locations of derivative operations for incompressible
laminar flow, it is expedient to test it further for challenging free surface and turbulent flow
problems, which will form the future direction of the current study.
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