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Abstract
For a positive integer k and a linearized polynomial L(X), polynomials of the form P(X) =
G(X)k − L(X) ∈ Fqn [X] are investigated. It is shown that when L has a non-trivial kernel
and G is a permutation of Fqn , then P(X) cannot be a permutation if gcd(k, qn − 1) > 1.
Further, necessary conditions for P(X) to be a permutation of Fqn are given for the case
that G(X) is an arbitrary linearized polynomial. The method uses plane curves, which are
obtained via the multiplicative and the additive structure of Fqn , and their number of rational
affine points.
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1 Introduction

Let q be a power of a prime p and let Fqn be the finite field with qn elements. A polynomial
P(X) ∈ Fqn [X] is called a permutation polynomial of Fqn if the associated map from Fqn

to Fqn defined by x �→ P(x) is a bijection. For short we will say that P(X) is a permutation
of Fqn . Permutation polynomials over finite fields have been studied widely in the last
decades, especially due to their applications in combinatorics, coding theory and symmetric
cryptography, see [7, 10] and references therein.

The theory of curves is one of the main tools to show that P(X) is not a permutation
of certain finite fields, see for instance [2, 6]. The usual approach can be summarized as
follows.
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For a given P(X) ∈ Fqn [X], we define the bivariate polynomial

g(X, Y ) := P(X) − P(Y )

X − Y
∈ Fqn [X, Y ]. (1.1)

Suppose that g(X, Y ) in (1.1) has an absolutely irreducible factor f (X, Y ) ∈ Fqn [X, Y ].
Let X be the absolutely irreducible curve corresponding to f (X, Y ). Then the Hasse-Weil
bound [12, Theorem 5.2.3] implies that there exists an affine point (x, y) ∈ Fqn ×Fqn of X
with x �= y if qn is sufficiently large compared to the degree of f (X, Y ). This proves that
P(x) = P(y) for some x, y ∈ Fqn with x �= y, hence P is not a permutation of Fqn . We
remark that in this approach, we require P(X) to have a small degree to guarantee that the
absolutely irreducible factor f (X, Y ) has a sufficiently small degree compared to qn.

Polynomials of the form

P(X) = G(X)k − L(X) (1.2)

for a linearized polynomial L(X) and a polynomial G(X) over Fqn , have attracted a lot
attention in recent literature on permutation polynomials. In [4, 16] research on permutation
polynomials given as

P(X) = (Xpi − X + δ)k − L(X) (1.3)

for some positive integers i, k and an element δ ∈ Fqn was initiated. Meanwhile there is a
series of papers devoted to the classification of permutation polynomials P(X) ∈ Fqn [X]
of the form (1.3), see for instance [8, 13–15, 17, 18] and references therein.

Polynomials of the form P(X) = Xk − γ Tr(X) ∈ Fqn [X], where Tr : Fqn �→ Fq is the
Trace function defined by

Tr(X) = X + Xq + · · · + Xqn−1
,

have been investigated intensively with the objective to determine values of k, γ , for which
P(X) is a permutation of Fqn , see [6, 9] and references therein. Recently, it has been shown
in [1] and in [3] as a particular case that P(X) is not a permutation of Fqn if gcd(k, qn−1) >

1. While finite fields arithmetic is used in [3], the approach in [1] uses absolutely irreducible
curves over Fqn in a different way, since the common approach, which we described above,
is not applicable for these classes of polynomials as the degrees are quite large compared to
the cardinality of the finite field. More precisely, the method in [1] relates the multiplicative
and the additive structure of Fqn via an absolutely irreducible curve.

In this article, we study polynomials P(X) given as in (1.2). In Section 2, we investigate
special function fields as a composition of rational function fields. In Section 3, we then
relate the number of affine rational points of curves, whose function fields we analysed in
Section 2, with the permutation property of our polynomials to prove our main results. We
first show that for a permutation G and a linearized polynomial L with non-trival kernel,
P(X) = G(X)k − L(X) cannot be a permutation if gcd(qn − 1, k) > 1. Although this has
been recently presented in [3] by using the finite fields arithmetic, we apply the method in
[1] as mentioned above. We then analyse general criteria for functions of the form (1.2),
where G(X) is an arbitrary linearized polynomial.
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2 Compositum of rational function fields

In this section, we consider the function fields of the curves associated to polynomials
P(X) = Xk − L(X) ∈ Fqn [X], where k is a positive integer and L(X) is a linearized
polynomial, i.e.,

L(X) = amXpm + am−1X
pm−1 + · · · + a0X . (2.1)

Recall that a polynomial L(X) ∈ Fqn [X] is separable if L(X) and its derivative L′(X)

do not have any common factor of positive degree. This holds if and only if L(X) has no
multiple root in the algebraic closure F̄qn of Fqn . Hence, L(X) in (2.1) is separable if and
only if a0 �= 0.

As the proof uses the compositum of rational function fields, we first recall some basic
notions and facts about function fields. For details we refer to [12, Chapter 3].

Let E be a function field over Fqn and let F/E be a finite separable extension of function
fields, i.e., the minimal polynomial of any non-zero y ∈ F over E is separable. Say the
degree [F : E] of the extension is r . We write Q|P for a place Q of F lying over a
place P of E, and denote by e(Q|P) the ramification index of Q|P . Recall that when the
ramification index e(Q|P) > 1, then Q|P is said to be ramified. If e(Q|P) = [F : E],
we say that Q|P is totally ramified. In this case, Q is the unique place of F lying over P .
Moreover, if the characteristic p of Fqn does not divide e(Q|P), then Q|P is called tame;
otherwise it is called wild. A place P of E splits completely in F if there are r distinct places
Q1, . . . , Qr of F lying over P . Then by the fundamental equality [12, Theorem 3.1.11], we
have e(Qi |P) = 1 and deg(Qi) = deg(P ) for all i = 1, . . . , r . A place P is called rational
if deg(P ) = 1. Hence if P is a rational place of E splitting completely in F , then there are
r rational places of F lying over P . For a rational function field Fqn(z) and α ∈ Fqn , we
denote by (z = α) and by (z = ∞) the places corresponding to the zero and to the pole of
z − α, respectively.

Let k > 1 be a divisor of qn − 1, c ∈ Fqn and L(X) ∈ Fqn [X] be a separable linearized
polynomial. We consider the following extensions of Fqn(z).

(i) Fqn(x)/Fqn(z) defined by z = xk:
Since k is a divisor of qn − 1, the extension Fqn(x)/Fqn(z) is a Kummer extension

of degree k, see [12, Proposition 3.7.3]. The only ramified places are (z = 0) and
(z = ∞), which are totally ramified. In particular, (x = 0) and (x = ∞) are the
unique places lying over (z = 0) and (z = ∞), respectively. Hence,

e((x = 0)|(z = 0)) = e((x = ∞)|(z = ∞)) = k .

The place (z = α) splits completely in Fqn(x)/Fqn(z) if and only if α is a k-th power
in F

∗
qn . In particular, for α ∈ 〈ζ k〉, where ζ is a primitive element of Fqn , there are k

rational places of Fqn(x) lying over (z = α).
(ii) Fqn(y)/Fqn(z) defined by z = L(y) + c:

Since L(X) is separable, Fqn(x)/Fqn(z) is a separable extension of degree
deg(L(X)). Note that (z = ∞) is totally ramified and (y = ∞) is the unique place of
Fqn(y) lying over it. Also, the facts that L(X) is separable and linearized imply that
L(X)+β has no multiple roots in F̄qn for any β ∈ F̄qn , where F̄qn is the algebraic clo-
sure of Fqn . Hence there is no other ramification in Fqn(y)/Fqn(z). Denote by Im(L)

and Ker(L) the image and the kernel of L(X) in Fqn , respectively. Then there exists
a rational place of Fqn(y) lying over (z = α) if and only if α ∈ (Im(L) + c). In this
case, the number of rational places lying over (z = α) is |Ker(L)|.



Cryptography and Communications

Fig. 1 Compositum over Rational Function Fields

For i = 1, . . . , s, let Fqn(xi)/Fqn(xi+1) be the function field extension defined by x
ki

i =
xi+1 for some positive integers ki and let Fqn(y)/Fqn(xs+1) be the extension defined by
L(y) + c = xs+1 for a separable linearized polynomial L(X) ∈ Fqn [X]. Now we consider
the compositum Fi of Fqn(xi) and Fqn(y) over Fqn(xs+1) for i = 1, . . . , s, see Fig. 1.

Theorem 2.1 Let k be a positive integer. Set

k1 := gcd(qn − 1, k) and ki := gcd

(
qn − 1,

k

ki−1 · · · k1

)

such that ki > 1 for all i = 2, . . . , s and gcd(qn − 1, k/ks · · · k1) = 1. Let Fi = Fqn(xi, y)

be the compositum of the rational function fields Fqn(xi) and Fqn(y) given as above and
let Hi be the subgroup generated by ζ ki , where ζ is a primitive element of Fqn . Then the
following holds for all i = 1, . . . , s.

(i) [Fi : Fqn(xi)] = deg(L(X)) and [Fi : Fqn(y)] = ks · · · ki .

(ii) Fi is a function field over Fqn defined by x
ks ···ki

i = L(y) + c.
(iii) The number N(Fi) of rational places of Fi satisfies

N(Fi) =
{ |Hi ∩ (Im(L) + c)| |Ker(L)| ki + |Ker(L)| + 1, if − c ∈ Im(L),

|Hi ∩ (Im(L) + c)| |Ker(L)| ki + 1, otherwise.
(2.2)
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Proof (i) Note that

[Fqn(xi) : Fqn(xs+1)] = ks · · · ki and [Fqn(y) : Fqn(xs+1)] = deg(L(X)) .

Since ks · · · ki and deg(L(X)) are relatively prime, Fi is the compositum of Fqn(xi) and
Fqn(y), which is linearly disjoint over Fqn(xs+1). That is, any linearly independent subset
of Fqn(y) (resp., Fqn(xi)) over Fqn(xs+1) is also linearly independent over Fqn(xi) (resp.,
Fqn(y)), which proves (i).

(ii) The facts that [Fi : Fqn(xi)] = deg(L(X)) and x
k�

� = x�+1 for � = i, . . . , s imply

that x
ks ···ki

i = L(y)+ c is a defining equation for Fi . Observe that the pole of x�+1 is totally
ramified in F�, i.e., (x� = ∞) is the unique place of F� lying over (x�+1 = ∞). Then the
transitivity of the ramification indices implies that e((xi = ∞)|(xs+1 = ∞)) = ks · · · ki .
Hence we have

e((xi = ∞)|(xs+1 = ∞)) = ks · · · ki and e((y = ∞)|(xs+1 = ∞)) = deg(L(X)) .

By Abhyankar’s Lemma [12, Theorem 3.9.1 ], we then conclude that (xs+1 = ∞) is totally
ramified in Fi ; hence, Fi is a function field over Fqn .

(iii) Note that the unique place of Fi lying over (xs+1 = ∞) is rational as (xs+1 = ∞)

is totally ramified in Fi . Set ζi = ζ (qn−1)/ki for i = 1, . . . , s, i.e., ζi is a primitive ki-
th root of unity. Let P be a rational place of Fi lying over (xs+1 = αs+1) for a non-zero
αs+1 ∈ Fqn . Set Q := P ∩ Fqn(y) and P� := P ∩ Fqn(x�) for � = i, . . . , s + 1, i.e., we
have (xs+1 = αs+1) = Ps+1 and

P | Q | (xs+1 = αs+1) and P | P� | (xs+1 = αs+1) .

Note that Q and P� are rational places of Fqn(y) and Fqn(x�) for � = i, . . . , s + 1, respec-

tively. Let P� = (x� = α�) for some non-zero α� ∈ Fqn . Then we have α
k�

� = α�+1 for
� = i, . . . , s. Recall that, as Fqn(x�)/Fqn(x�+1) is a Kummer extension, P� is rational if and
only if P�+1 splits completely in Fqn(x�) for � = i, . . . , s.

Now we show that (x� = α�) is the only rational place of Fqn(x�) lying over (x�+1 =
α�+1) and splitting in Fqn(x�−1) for � = 2, . . . , s. This means that all rational places of
Fqn(xi) lying over (xs+1 = αs+1) are the ones lying over (xi+1 = αi+1). Therefore, there

are exactly ki rational places of Fqn(xi) lying over (xs+1 = αs+1), namely (xi = αiζ
j
i )

for j = 0, . . . , ki − 1. The places lying over (x�+1 = α�+1) are (x� = α�ζ
j
� ) for j =

0, . . . , k� − 1. Since α� = α
k�−1
�−1 , the place (x� = α�ζ

j

� ) splits in F(x�−1) if and only if ζ
j

�

is a k�−1-th power in Fqn . Note that

ζ
j
� = ζ

qn−1
k�

j
for j = 0, . . . , k� − 1 ,

i.e., ζ
j

� is a k�−1-th power if and only if k�−1 divides j (qn − 1)/k�. Since

gcd

(
qn − 1

k�

, k�−1

)
= 1

k�

gcd
(
qn − 1, k�−1k�

) ≤ 1

k�

gcd
(
qn − 1, k�−1 · · · ks

) = k�−1

k�

,

for a positive integer j ≤ k� − 1, we have

gcd

(
qn − 1

k�

j, k�−1

)
≤ j gcd

(
qn − 1

k�

, k�−1

)
≤ j

k�−1

k�

< k�−1 .

Hence, we conclude that k�−1 divides j (qn − 1)/k� if and only if j = 0, which gives the
desired conclusion.
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Note that if P is a rational place of Fi lying over (xs+1 = αs+1), then αs+1 is a (ks · · · ki)-
th power, i.e.,

αs+1 ∈ 〈ζ ks ···ki 〉 = 〈ζ gcd(qn−1,ks ···ki )〉 = 〈ζ ki 〉 = Hi .

Furthermore, Q is rational if and only if αs+1 ∈ (Im(L) + c). Set m := |Ker(L)|. Since the
minimal polynomial of y over Fqn(xi) is L(X) + c = x

ks ···ki

i , there are exactly m rational
places lying over (xi = αi) by Kummer’s Theorem, see [12, Theorem 3.3.7]. Hence, by
above argument, we conclude that there are mki rational places of Fi lying over (xs+1 =
αs+1) for each αs+1 ∈ Hi ∩ (Im(L)+c). Moreover, if L(X)+c has a root in Fqn , i.e., −c ∈
Im(L), then there are m rational places of Fqn(y) lying over (xs+1 = 0). By Abhyankar’s
Lemma, each place of Fqn(y) lying over (xs+1 = 0) is totally ramified in Fi . Therefore,
there are exactly m rational places of Fi lying over (xs+1 = 0). This gives the desired
result.

Corollary 2.2 Let k be a positive integer such that gcd(qn − 1, k) > 1, and let L(X) ∈
Fqn [X] be separable and linearized. Then f (X, Y ) = Xk − L(Y ) − c is absolutely irre-
ducible over Fqn for all c ∈ Fqn . Therefore, f (X, Y ) defines an absolutely irreducible curve
over Fqn .

We can generalize the result on the absolute irreducibility of Xk − L(Y ) − c to
G(X)k − L(Y ) − c. In this case, we need the intersection theory of plane curves. We hence
recall some basic facts related to plane curves over finite fields. For details, we refer to
[5, Chapter 3]. Let X be the curve defined by f (X, Y ). Then the degree of X is the degree
of f (X, Y ). A component of X is a curve Y for which the defining polynomial g(X, Y ) of
Y divides f (X, Y ).

Let X be a curve with the defining equation f (X, Y ) and � be a line with the defining
equation bX − aY + c, which is not a component of X . We can parametrize � as follows:

x = x0 + at y = y0 + bt for t ∈ F̄qn .

As � is not a factor of f (X, Y ), we have

f (x, y) = f (x0 + at, y0 + bt) = fmtm + · · · + fdtd ∈ F̄qn [t] with fm �= 0 .

Then m := m(P,X ∩ �) is called the intersection multiplicity of X and � at P . For P ∈ X ,

mP (X ) := min{m(P,X ∩ �) |P ∈ �}
is called the multiplicity of X at P . If mP (X ) = 1, then P is called a non-singular point;
otherwise it is called singular. The point P = (x0, y0) is a singular point of X if and only if

∂f (X, Y )

∂X
(x0, y0) = ∂f (X, Y )

∂Y
(x0, y0) = 0 ,

where ∂f/∂X and ∂f/∂Y are the partial derivatives of f (X, Y ) with respect to X and Y ,
respectively.

Let X and Y be two plane curves such that P ∈ X ∩ Y . Then X and Y intersect at P

with multiplicity

m(P,X ∩ Y) ≥ mP (X )mP (Y) ,

and equality holds if and only if they do not have a common tangent line at P , see [5,
Theorem 3.7]. Moreover we have the following well-known result, see [5, Theorem 3.13].
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Proposition 2.3 (Bezout’s theorem) Let X and Y be two projective plane curves of degree
d1 and d2, respectively. If X and Y do not have a common component then∑

P∈X∩Y
m(P,X ∩ Y) = d1d2 .

Theorem 2.4 Let k be a positive integer such that gcd(qn − 1, k) > 1 and L(X) be a
separable linearized polynomial. Then f (X, Y ) = G(X)k − L(Y ) − c ∈ Fqn [X, Y ] is
absolutely irreducible for any c ∈ Fqn .

Proof Let X be the curve defined by the equation f (X, Y ). Note that deg G(T )k �=
deg L(T ); hence, there is a unique point P at infinity of multiplicity d = deg f (X, Y ),
namely P = (1 : 0 : 0) if deg G(T )k > deg L(T ) and P = (0 : 1 : 0) if deg G(T )k <

deg L(T ). In both cases, the line at infinity is the unique tangent line at P . Since L(Y ) is
separable and linearized, ∂f (X, Y )/∂Y = α for some non-zero α ∈ Fqn . Therefore, X has
no singular affine points.

Suppose that f (X, Y ) is not absolutely irreducible. Then X = X1 ∪X2 for some curves
X1 and X2 of degree d1 and d2, respectively. As X has no affine singular point, X1 and X2
have no intersection in the affine plane. In particular, X1 and X2 do not have a common
component and intersect only at the unique point P at infinity. As mP (Xi ) ≤ di and

d1 + d2 = d = mP (X ) = mP (X1) + mP (X2) ,

we conclude that mP (Xi ) = di for i = 1, 2. Then the intersection multiplicity m(P,X1 ∩
X2) of X1 and X2 at P satisfies

m(P,X1 ∩ X2) ≥ mP (X1)mP (X2) = d1d2 . (2.3)

Since the line at infinity is the common tangent at P , the equality in (2.3) cannot hold, i.e.,
we have

m(P,X1 ∩ X2) > d1d2 .

However, by Bezout’s Theorem, we have m(P,X1 ∩X2) = d1d2, which is a contradiction.

3 Curves over finite fields and permutation polynomials

Let P(X) = G(X)k −L(X) for some G(X) ∈ Fqn [X] and a linearized polynomial L(X) ∈
Fqn [X]. For c ∈ Fqn , we consider the curve Xc defined by the equation G(X)k = L(Y )+c.
Recall that an affine point (x, y) ∈ Xc is called rational if x, y ∈ Fqn . We denote by N(Xc)

the number of affine rational points of Xc.
The following result relates the number of affine rational points of curves Xc with the

permutation property of polynomials P(X). The proof is similar to the proof of [1, Theorem
3.1]. We present it here for the sake of convenience of the reader.

Proposition 3.1 If there exists c ∈ Fqn such that N(Xc) > qn, then P(X) is not a
permutation of Fqn .
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Proof Let �d be the line defined by the equation Y = X + d for d ∈ Fqn . Set

L := {�d | d ∈ Fqn} .

Note that L covers all affine rational points in the plane; hence, it covers all affine rational
points on Xc. Since N(Xc) > qn and |L| = qn, there exists d ∈ Fqn such that �d intersects
with Xc at least in two distinct affine rational points P1 and P2. Note that P1 = (x1, x1 +d),
P2 = (x2, x2 + d) for some x1, x2 ∈ Fqn since P1, P2 ∈ �d . Then P1 �= P2 implies that
x1 �= x2. Furthermore, we have

G(x1)
k − L(x1 + d) = G(x2)

k − L(x2 + d) = c

since P1, P2 ∈ Xc, which is defined by the equation G(X)k = L(Y ) + c. Since L is a
linearized polynomial, i.e., L(xi + d) = L(xi) + L(d) for i = 1, 2, we have

P(x1) = G(x1)
k − L(x1) = G(x2)

k − L(x2) = P(x2) = L(d) + c

for x1, x2 ∈ Fqn with x1 �= x2.

Theorem 3.2 Let P(X) = G(X)k −L(X) for a linearized polynomial L(X) ∈ Fqn [X] and
a polynomial G(X) ∈ Fqn [X]. If P(X) is a permutation of Fqn , then the curve Xc defined
by G(X)k = L(Y ) + c has exactly qn affine rational points for all c ∈ Fqn .

Proof By Proposition 3.1, it is enough to show that N(Xc1) > qn for some c1 ∈ Fqn if and
only if N(Xc2) < qn for some c2 ∈ Fqn . For given (x, y) ∈ Fqn ×Fqn , there exists a unique
c ∈ Fqn such that (x, y) ∈ Xc, namely c = G(x)k −L(y). Then the fact that there exist q2n

pairs (x, y) and qn curves of the form Xc gives the desired conclusion.

We are now ready to show a main result on polynomials of the form Xk − L(X). It
generalizes to a large extent earlier results on the case that L(X) = γ Tr(X), see for instance
[6, 9] and [1].

Theorem 3.3 Let k be a positive integer and L(X) ∈ Fqn [X] be a linearized polynomial.
If gcd(qn − 1, k) > 1 and the kernel Ker(L) of L is non-trivial, then P(X) = Xk − L(X)

is not a permutation of Fqn .

Proof For c ∈ Fqn , we define fc(X, Y ) := Xk − L(Y ) − c. We set

k1 := gcd(qn − 1, k) and ki := gcd

(
qn − 1,

k

ki−1 · · · k1

)
for i ≥ 2 .

We can write qn − 1 = ks · · · k1� such that � is relatively prime to qn − 1 and ki > 1 for all
i = 1, . . . , s. If L(Y ) is not separable, then we can write L(Y ) = L̃(Y ps

) for some positive
integer s and a separable linearized polynomial L̃. Note that the kernel of L̃ is non-trivial as
the kernel of L is non-trivial. Since the maps X �→ X� and Y �→ Yps

are permutations of
Fqn , there is a one-to-one correspondence between the affine rational points of the curves
defined by fc and f̃c(X, Y ) := Xk1···ks − L̃(Y ) − c. Therefore, we can without loss of
generality assume that L is separable and k = k1 · · · ks .

Denote by Xc the curve defined by fc(X, Y ). By Theorem 3.2, it is sufficient to show
that there exists c ∈ Fqn such that the number N(Xc) of affine rational points of Xc is
not equal to qn. By Corollary 2.2, we know that Xc is an absolutely irreducible curve over
Fqn . Moreover, by Theorem 2.4, there is a unique point of Xc at infinity, which is the only
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singular point of Xc. Let Fc be the function field of Xc. By Theorem 2.1, Fc = Fqn(x, y) is
a function field over Fqn defined by xk = L(y) + c. It is a well-known fact that each non-
singular rational point of Xc corresponds to a unique rational place of Fc, see [11, Section
3.1]. Moreover, there is a unique place corresponding to the point at infinity, namely the
unique place P lying over (x = ∞), see the proof of Theorem 2.1(ii). That is, there is one
to one correspondence between the set of affine rational points of Xc and the set of rational
places of Fc except P . As Ker(L) is non-trivial, there exists c ∈ Fqn such that −c does not
lie in the image of L. By Theorem 2.1(iii), for this element c we have

N(Xc) = |H ∩ (Im(L) + c)| |Ker(L)| k1 ,

where H be the subgroup generated by ζ k1 for a primitive element ζ of Fqn . In particular,
N(Xc) is divisible by k1 > 1. Since gcd(k1, q

n) = 1, we conclude that N(Xc) �= qn.

Remark 3.4 The idea to associate a polynomial to an absolutely irreducible curve via the
multiplicative and the additive structure of Fqn is taken from [1], where the permutation
property of the polynomials P(X) = Xk − γ Tr(X) is investigated. We remark that in the
main result of [1] instead of gcd(qn −1, k) > 1, the stronger condition that k divides qn −1
is imposed.

Note that the curves defined by Xk − L(Y ) − c and G(X)k − L(Y ) − c have the same
number of affine rational points when G is a permutation of Fqn . As a result, we obtain the
following conclusion, which is presented in [3] by using the finite fields arithmetic.

Corollary 3.5 Let P(X) = G(X)k − L(X) ∈ Fqn [X], where G is a permutation of Fqn

and L is a linearized polynomial of non-trival kernel. If gcd(qn − 1, k) > 1, then P(X) is
not a permutation of Fqn .

In what follows, we deduce conditions on P(X) = G(X)k − L(X) for which P is, or is
not a permutation, where now G(X) is a polynomial of the form

G(X) = btX
pt + bt−1X

pt−1 + · · · + b0X + b ∈ Fqn [X] .

This may pave the way for further analysis on polynomials of such forms.

Theorem 3.6 Let P(X) = G(X)k − L(X) ∈ Fqn [X] for linearized polynomials L(X),
G(X) − G(0) and a positive integer k such that gcd(k, qn − 1) > 1. Assume that |Ker(G −
G(0))| = qm and |Ker(L)| = qs . Set

Sc = { η ∈ Im(G) | ηk ∈ Im(L + c) } . (3.1)

If there exists c ∈ Fqn such that |Sc| �= qn−m−s , then P(X) is not a permutation of Fqn .

Proof Let Xc be the curve defined by the equation fc(X, Y ) = G(X)k −L(Y )−c. As in the
proof of Theorem 3.3, we can assume that L, G−G(0) are separable linear polynomials and
k = k1 · · · ks , where ki , i = 1, . . . , s, are positive integers defined as before. Recall from
the proof of Theorem 2.1 that for any rational place P of F(x1) lying over (xs+1 = αs+1),
the function field F(x�) has a unique rational place lying over (xs+1 = αs+1) splitting in
F(x�−1) for all � = 2, . . . , s. Hence, the number of rational places of F(x1) is determined
by the extension F(x1)/F (x2). Therefore, we can without loss of generality assume that
k = k1, i.e., k is a divisor of qn − 1.
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Fig. 2 The function field Fc of Xc

Let Fc be the function field of Xc, see Fig. 2. By Theorem 2.4, we know that Fc is a
function field over Fqn . Note that the poles of x and y are the ones lying over (x2 = ∞).
Moreover, Xc has no singular affine point. Hence there is a one-to-one correspondence
between the set of affine rational points of Xc and the set of rational places of Fc not lying
over (x2 = ∞). Let P be a rational place of Fc lying over (x2 = α) for some α ∈ Fqn .
Suppose that we have

P | (x = β) | (x1 = η) | (x2 = α) and P | (y = γ ) | (x2 = α) .

Then η = G(β) and α = G(β)k , see Fig. 2. Since (y = γ ) is rational, α = G(β)k lies in
Im(L + c). We observe from the defining equation that if there is a rational place of Fqn(x)

lying over (x1 = η), then there are exactly |Ker(G−G(0))| = qm rational places of Fqn(x)

lying over (x1 = η), see Kummer’s Theorem [12, Theorem 3.3.7]. Similarly, if there exists
a rational place P of Fc lying over (x = β), then there are exactly |Ker(L)| = qs rational
places lying over (x = β). Therefore, there are exactly qm+s rational places of Fc lying over
(x1 = η).

If P(X) is a permutation of Fqn , by Theorem 3.2, the curve Xc has exactly qn affine
rational points for all c ∈ Fqn . As for each G(β) such that G(β)k ∈ Im(L + c), there are
exactly qm+s rational places of Fc lying over (x1 = G(β)), the set Sc must have cardinality
qn−m−s , which gives the desired result.

Remark 3.7 Note that if P(X) given as in Theorem 3.6 is a permutation polynomial, then
|H ∩ Im(L + c)| ≥ �qn−m−s/ gcd(qn − 1, k)� for any c ∈ Fqn , where �x� denotes the
smallest integer bigger than or equal to x.

Corollary 3.8 Let P(X) = G(X)k − L(X) ∈ Fqn [X] be a permutation given as above. If
m + s = n and G has no root in Fqn , then gcd(qn − 1, k) < qm.

Proof As in the proof of Theorem 3.6, we can assume that k is a divisor of qn − 1. Let H

be the subgroup generated by ζ k for a primitive element ζ of Fqn . Then the assumption that
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G has no root in Fqn implies that

{G(β)k | β ∈ Fqn} ⊆ H .

As m + s = n, by Theorem 3.6, we conclude that |Sc| = 1 for any c ∈ Fqn . Hence, each
coset of Im(L) contains exactly one k-th power from the image of G. This implies that Xk

is a one-to-one mapping on the image Im(G) of G. As a result, |Im(Gk)| = |Im(G)| ≤ |H |;
and hence, we have qn−m ≤ (qn − 1)/k. In particular, kqn−m ≤ qn − qn−m, which implies
the desired result.

Next we observe that the condition in Corollary 3.8 that G(X) has no root in Fqn holds,
if the degree of G is sufficiently small compared to qn.

Theorem 3.9 Let P(X) = G(X)k − L(X) ∈ Fqn [X] for linearized polynomials L(X),
G(X) − G(0) and a positive integer k such that gcd(k, qn − 1) > 1. Assume that |Ker(G −
G(0))| = qm and |Ker(L)| = qs with m + s = n. If P(X) is a permutation of Fqn and
deg(G) ≤ qn/4, then G(X) has no zero in Fqn .

Proof As in the proof of Theorem 3.6, we can assume that L and G are separable polynomi-
als and k is a divisor of qn −1. We suppose that G has a root in Fqn . By change of variables,
we can assume that 0 is a root of G(X). If Ker(G) = {0}, then L(X) is the zero polynomial
and P(X) = G(X)k . Then P(X) is not a permutation of Fqn as Xk is not a permutation.

Now we suppose that Ker(G) is non-trivial. Hence there exist β1, β2 ∈ Fqn with β1 �= β2
such that G(β1) = G(β2) = 0. For a k-th root of unity ζk �= 1, we consider h(X, Y ) =
G(X) − ζkG(Y ). Note that we have G(β1) = ζkG(β2), i.e., (β1, β2) is a point on the curve
Xh defined by h. By our assumption on separability of G, any affine point of Xh is non-
singular, i.e., (β1, β2) is a non-singular rational point of Xh. Then by [2, Lemma 2.1], the
factor h̃ ∈ Fqn [X, Y ] of h passing through (β1, β2) is absolutely irreducible. Let X

h̃
be the

absolutely irreducible curve over Fqn defined by h̃. Note that h̃ �= X − Y as β1 �= β2. By the
Hasse-Weil theorem [5, Theorem 9.57], the number N(X

h̃
) of rational points of X

h̃
satisfies

N(X
h̃
) ≥ qn + 1 − (d − 1)(d − 2)qn/2 ,

where d is the degree of h̃. As d ≤ deg(h(X, Y )) = deg(G(X)) = q� for some � ≤ n/4,
we have

N(X
h̃
) ≥ qn + 1 − (q� − 1)(q� − 2)qn/2 .

Note that X
h̃

has a unique point at infinity, namely (η : 1 : 0) such that ηq� = β. Moreover,
|X

h̃
∩ (X = Y)| ≤ deg(G(X)) = q� as X − Y is not a component of X

h̃
. Therefore, the

number N of affine rational points (β1, β2) on X
h̃

with β1 �= β2 satisfies

N ≥ N(X
h̃
) − (q� + 1) ≥ qn − (q� − 1)(q� − 2)qn/2 − q� . (3.2)

Recall that there are qm(qm − 1) pairs (β1, β2) with β1 �= β2 and G(β1) = G(β2). If
� ≤ n/4, then we have qm(qm − 1) ≤ q�(q� − 1) < N by (3.2). This implies that there
exists a pair (β1, β2) with β1 �= β2 such that G(β1) �= G(β2) and G(β1)

k = G(β2)
k .

However, by Theorem 3.6, we know that Xk has to permute the image of G. Hence, we
obtain a contradiction.

Corollary 3.10 Let P(X) = G(X)k − L(X) ∈ Fqn [X] be a permutation given as in
Theorem 3.6. If m + s = n and deg(G) ≤ qn/4, then gcd(qn − 1, k) < qm.
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