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Abstract

We investigate mechanism design under incomplete information allowing for in-

dividuals to display different behavioral biases in different states of the world. Our

primitives are individual choices, which do not have to satisfy the weak axiom of

revealed preferences. In this setting, we provide necessary as well as sufficient con-
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1 Introduction

People have limited cognitive abilities and are prone to various behavioral biases;

this is documented by ample evidence in the literature of marketing, psychology, and

behavioral economics. Thus, it is not surprising that the behavior of individuals may

not be consistent with the standard axioms of rationality.1,2 What shall a planner do

if she wants to implement a goal when the relevant information is distributed among

“predictably irrational” individuals?

The present paper provides an analysis of the theory of implementation under in-

complete information when individuals’ choices do not necessarily comply with the weak

axiom of revealed preferences (WARP), the condition corresponding to the standard ax-

ioms of rationality. We allow individuals’ choices to be interdependent while independence

is not ruled out. Our results provide useful insights into behavioral mechanism design as

information asymmetries are inescapable in many economic settings.

In particular, we analyze mechanism design under incomplete information when indi-

viduals may have different behavioral biases in different states of the world, such as falling

for an attraction effect, displaying a status-quo bias, or revealing cyclic preferences, among

others. In doing so, we focus on full implementation employing ex-post equilibrium (EPE)

and provide necessary as well as sufficient conditions. Therefore, our paper can be viewed

as the incomplete information counterpart of de Clippel (2014), which is one of the pio-

neering papers on behavioral implementation under complete information.

Full implementation of a predetermined social choice rule requires that the set of

equilibrium outcomes of the associated mechanism fully coincides with the given social

choice rule. On the other hand, partial implementation only requires that the social choice

rule be sustained by an equilibrium of the mechanism; hence, it allows for other equilibria

associated with outcomes that are not aligned with the social goal at hand. An important

1This is why the recent trend involving the use of behavioral insights in policy-making has been
growing stronger, implying an increased interest in adapting economic models to allow behavioral biases.
In particular, Thaler and Sunstein’s book Nudge has been influential in guiding real-life policies. For
instance, the Behavioral Insights Team, a.k.a. the Nudge Unit, has been established in 2010 in the United
Kingdom. In the United States, President Obama released an executive order in 2015, emphasizing the
importance of behavioral insights to deliver better policy outcomes at lower costs and at the same time
encouraging executive departments and agencies to incorporate these insights into policy-making. Many
countries and international institutions followed, there are now more than a dozen countries besides the
EU, OECD, UN agencies, and the World Bank integrating behavioral insights into their operations (Afif,
2017). There is such a trend in the academic literature as well, e.g., Spiegler (2011) provides a synthesis
of efforts to adapt models in industrial organization to bounded rationality.

2We say that individuals’ choices satisfy the standard axioms of rationality whenever their choices
obey the weak axiom of revealed preferences (see Footnote 10). Besides Nudge (Thaler & Sunstein,
2008), two other books documenting various behavioral biases leading to failure of the standard axioms
of rationality are Predictably Irrational (Ariely, 2009) and Thinking, Fast and Slow (Kahneman, 2011).
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appeal of partial implementation involves the revelation principle, which implies, in the

rational domain and under incomplete information, the following: if there is a mechanism

that partially implements a predetermined goal, then there is a direct mechanism that

truthfully implements it.3 The undesired equilibria are then often disregarded on the

basis of the equilibrium with truthful revelation being the salient equilibrium, elegantly

pointed out by Postlewaite and Schmeidler (1986) among others.4

We show that the revelation principle (for partial implementation) fails when indi-

viduals’ choices do not satisfy WARP.5 Hence, in our environment, one cannot restrict

attention to direct mechanisms without a loss of generality. Thus, focusing on full imple-

mentation rather than partial implementation becomes crucial in our setup.

The EPE is a strategy profile such that each individual’s plan of action is measurable

only with respect to her type and it results in Nash equilibrium play at every state of

the world. It is well-suited to our environment with choices, not necessarily derived from

preference maximization, for the following reasons: It makes no use of any probabilis-

tic information, it is belief-free, it does not involve any belief updating or expectation

considerations, and it does not require any common prior assumption. It induces robust

behavior on account of the ex-post no-regret property: “no agent would like to change his

message even if he were to know the true type profile of the remaining agents” (Bergemann

& Morris, 2008). Further, it provides a plausible extension of dominant equilibrium to

the case of interdependence: With independent choices, we show that the EPE is equiv-

alent to (behavioral) dominant equilibrium under some full-range conditions (that hold

in direct mechanisms), while dominant equilibrium with interdependent choices imposes

excessively stringent requirements reducing its appeal.

The Bayesian Nash equilibrium seems impractical in our setup because it employs an

aggregation of individuals’ welfare in different states using associated probabilities. At the

very least, this necessitates the need for complete and transitive preferences over the set of

certain outcomes to obtain a utility representation. However, this is neither coherent nor

consistent in a setting in which individuals’ choices over certain outcomes do not satisfy

WARP. In our environment, individuals’ choices over certain outcomes may not even be

representable by well-defined preference relations (see Footnote 13).

In order to highlight the new grounds our results cover relative to the complete in-

3A direct mechanism is a game-form in which each individual’s actions consist of a report about her
own privately observed type.

4“[The] problem [of multiple equilibria] is sometimes dismissed with an argument that as long as
truthful revelation is an equilibrium, it will somehow be the salient equilibrium even if there are other
equilibria as well” (Postlewaite & Schmeidler, 1986).

5To the best of our knowledge, the failure of the revelation principle in behavioral environments is
first documented by Saran (2011).
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formation analysis of de Clippel (2014), we emphasize that behavioral (full) ex-post im-

plementation is not the same as behavioral (Nash) implementation on every complete

information type space: Each individual’s strategy is measurable with respect to her type

and cannot vary with others’ type profiles. This, therefore, results in a requirement akin

to the addition of incentive compatibility constraints. Indeed, the associated necessary

conditions are not nested even in the rational domain (Bergemann & Morris, 2008).6

Our necessity result, Theorem 1, shows that if a mechanism ex-post implements a

social choice set (SCS), then the opportunity sets sustained in EPE of this mechanism,

alternatives that an individual can obtain by changing her messages while her opponents’

remain the same, form a collection of sets with two desirable properties. We refer to

such family of choice sets as the collection of sets consistent with the given SCS under

incomplete information. Each member of this collection is associated with an individual

and a social choice function (SCF) in the SCS and a type profile of the other individuals

with the following property novel to the case of incomplete information—causing a sig-

nificant difference with its complete information counterpart, consistency of de Clippel

(2014): Each such choice set is independent of the type of the individual whom this set

is associated with. Moreover, the following hold: (i) For all individuals, all her types, all

SCFs in the SCS, and all type profiles for the other individuals, this individual’s choices at

the resulting type profile (state) from the corresponding choice set contain the alternative

that corresponds to the outcome of the SCF for that type profile; (ii) whenever there is a

deception that leads to an outcome that is incompatible with the SCS, there is an infor-

mant state (i.e., a type profile) and an informant individual such that she does not choose

at the informant state the alternative generated by this deception from her set associated

with others’ types identified via their deception from the informant state. We show that

the first of these, (i), implies a pseudo ex-post incentive compatibility (Proposition 2),

while the second, (ii), implies an ex-post choice monotonicity condition (Proposition 1).

Another implication (Proposition 3) is that the revelation principle holds if individuals’

choices satisfy the independence of irrelevant alternatives (IIA). Furthermore, we estab-

lish that under rationality our ex-post choice incentive compatibility is equivalent to the

ex-post incentive compatibility of Bergemann and Morris (2008), and our ex-post choice

monotonicity implies their ex-post monotonicity while their ex-post monotonicity coupled

with their ex-post incentive compatibility implies our ex-post choice monotonicity.

We provide two methods that strengthen consistency to deliver sufficiency: The first,

6See Bergemann and Morris (2008, Propositions 3 and 4) and notice that, under WARP, our necessary
conditions are equivalent to theirs. Besides, Bergemann and Morris (2005) shows that even though
(partial) ex-post implementation is equivalent to interim (Bayesian) implementation for all possible type
spaces in some environments, this equivalence does not hold in the case of full implementation.
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Theorem 2, involves a mild condition that requires some level of disagreement in the

society (choice incompatibility). Theorem 3 presents the second method that uses a com-

bination of consistency and a choice counterpart of no-veto (consistency-no-veto).

To showcase the applicability of our results in economically relevant domains, we an-

alyze the behavioral ex-post implementation of efficiency and allocation problems with

endowment effects. First, we introduce an ex-post analog of efficiency of de Clippel (2014)

for incomplete information settings and establish that the failure of incentive compati-

bility prevents its ex-post implementability (echoing the well-known incompatibility of

efficiency and strategy-proofness). That is why, we consider the constrained efficient SCS

obtained by additionally imposing our incentive compatibility constraints, and show that

it is ex-post implementable on all domains containing weak levels of disagreement. Sec-

ond, we formalize implementation of allocation problems with endowment effects à la

Masatlioglu and Ok (2014) and independent choices and describe how to design individu-

als’ opportunity sets for the planner to have their status-quo biases induce choices aligned

with the desired goal. This demonstrates the use of initial endowments as critical tools

in the design of the mechanism, an observation that cannot be obtained with rationality.

In the implementation literature, positive sufficiency results often rely on “augmented”

mechanisms asking individuals to report more than their types. Such mechanisms seem

less intuitive and less practical than direct mechanisms to many researchers. That is why

we analyze the scope of situations where ex-post implementation is achievable via direct

mechanisms: Theorem 4 identifies necessary and sufficient conditions for the social goal

to be ex-post implementable via the associated direct mechanism. Moreover, restricting

attention to independent choices, we reexamine consistency and obtain choice counterpart

of strategy-proofness as a necessary condition.7 We also elaborate on the relation between

(behavioral) dominant equilibrium and EPE identifying a full-range condition that ensures

the equivalence of these two equilibrium notions.

When dealing with individuals having cognitive limitations, simplicity becomes a se-

rious concern. That is why, besides direct mechanisms, we consider the size of the joint

message space, the number of message profiles, of a mechanism as a measure of its simplic-

ity. This measure is similar in spirit with the total size of message spaces used to analyze

communication complexity in Segal (2007, 2010). In Theorem 5, we identify lower bounds

with respect to this measure for mechanisms that ex-post implement a given SCS. This

7Interdependence plays a critical role in full ex-post implementation in the rational domain and brings
about a “stark contrast” to the case with independent choices: The generalized VCG allocation is ex-
post implementable with interdependence but not with independence (Bergemann & Morris, 2008, Section
7.3). Our analysis encompasses the rational domain and hence this observation as well. Further, none
of our results demands interdependence (e.g., the failure of the revelation principle) while independence
provides convenience and paves the way to (behavioral) dominant strategy implementation.
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provides a better understanding of the scope of the well-known criticism based on com-

plexity of mechanisms used in the literature. Moreover, we corroborate that behavioral

aspects induce less simple mechanisms by comparing the rational case with the situation

where only one individual suffers severely from a status-quo bias in an allocation problem

with endowment effects and independent choices.

To further demonstrate the practicality and applicability of our results in tangible

(finite) environments, we also provide Python codes associated with our necessity and

sufficiency theorems: Using the SCS and individuals’ state-contingent choices as inputs,

these codes deliver consistent collections as well as those satisfying our sufficiency condi-

tions—choice incompatibility and consistency-no-veto, reminiscent of the economic envi-

ronment assumption and monotonicity-no-veto, respectively (Jackson, 1991). Therefore,

these induce better understanding and application capabilities by mitigating the effects

of complications observed in implementation under incomplete information that arise due

to conditions such as monotonicity-no-veto and ex-post-monotonicity-no-veto.

In the implementation literature, it is well-known that the two-individual case in-

volves additional complications. Nevertheless, we extend our results to the case of two

individuals, while we defer its presentation to Appendix B due to expositional purposes.

Our paper is mostly related to de Clippel (2014), which provides necessary as well as

sufficient conditions for behavioral implementation under complete information. Besides

de Clippel (2014), another closely related paper is Bergemann and Morris (2008), analyz-

ing ex-post implementation in the rational domain under incomplete information.8 In a

sense, our paper can be thought of as an envelope of de Clippel (2014) and Bergemann

and Morris (2008). We extend de Clippel (2014)’s analysis to the case of incomplete

information and Bergemann and Morris (2008)’s analysis to the case where individual

choices’ need not satisfy WARP. Another related paper is Jackson (1991), which analyzes

Bayesian implementation for the case of three or more individuals in the rational domain.

It generalizes the analysis of Maskin (1999) (on Nash implementation under complete

information) to the case of incomplete information. In this sense, what Jackson (1991) is

to the seminal work in Maskin (1999), our paper is to de Clippel (2014).

Another significant and related paper is Saran (2011), which considers behavioral

partial implementation under incomplete information formalizing behavioral aspects with

8Ohashi (2012) provides sufficiency results for ex-post implementation with two rational individuals
in an environment that is economic and has a bad outcome. Our sufficiency results with two individuals
differ from those of Ohashi (2012) in three dimensions: (i) we allow for non-economic environments,
(ii) we do not require the existence of a bad outcome, and (iii) we allow individuals’ choices to violate
WARP. Some of the other influential and related work on ex-post implementation and robust mechanism
design in the rational domain include Bergemann and Morris (2005, 2009, 2011), Jehiel, Meyer-ter Vehn,
Moldovanu, and Zame (2006), Jehiel, Meyer-ter Vehn, and Moldovanu (2008).
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menu-dependent preferences over interim Anscombe-Aumann acts. It establishes that

weak contraction consistency, a condition implied by the IIA, is sufficient for the revelation

principle. In Appendix D, we discuss how our setup compares with that of Saran.

A recent paper, de Clippel (2020), issues a warning for the use of EPE and (behav-

ioral) dominant equilibrium in environments with probabilistically sophisticated individ-

uals having singleton-valued choices over alternatives: The failure of the IIA may be at

odds with the plausibility of the EPE and (behavioral) dominant equilibrium. That is

why, in environments with individuals acting in lieu of groups of rational and probabilis-

tically sophisticated agents, the planner has to take this warning seriously when designing

a mechanism. Our setup, on the other hand, does not involve any probabilities and hence

is a good fit for environments where probabilistic sophistication comes at a cost (possibly

due to the failure of the IIA). Besides, adopting the analog of the sure-thing principle

induced by the EPE and the dominant equilibrium as an axiom implies that the failure

of the IIA is not compatible with probabilistic sophistication, reaffirming the significance

of the IIA in regard to bounded rationality. We deliberate over these in Appendix E.

Hurwicz (1986), Eliaz (2002), Korpela (2012), and Ray (2018) have also investigated

the problem of behavioral implementation under complete information. Hurwicz (1986)

considers choices that can be represented by a well-defined preference relation that does

not have to be acyclic. Eliaz (2002), a seminal paper containing pioneering research on

behavioral implementation, provides an analysis of full implementation when some of the

individuals might be “faulty” and hence fail to act optimally. Then, the mechanism has

to deal with the complications that emerge due to each individual “optimally respond[ing]

to the non-faulty players regardless of the identity and actions of the faulty players.” On

the other hand, Korpela (2012) shows that when individual choices fail rationality axioms,

the IIA, also known as Sen’s α, is key to obtaining the necessary and sufficient condition

synonymous to that of Moore and Repullo (1990).9

The organization of the paper is as follows: Section 2 presents a motivating example.

In Section 3, we provide the notation and the definitions. Section 4 contains necessity

results; Section 5, sufficiency results with at least three or more individuals. In Section 6,

we analyze the behavioral ex-post implementation of efficiency, while Section 7 contains

9There have been other papers investigating implementation under complete information that allow
for “non-rational” behavior of individuals. An earlier paper of ours, Barlo and Dalkiran (2009), provides
an analysis of implementation for the case of epsilon-Nash equilibrium, i.e., when individuals are satisfied
by getting close to (but not necessarily achieving) their best responses. Glazer and Rubinstein (2012)
provides a mechanism design approach where the content and the framing of the mechanism affect
individuals’ ability to manipulate their information. Some of the other related work include Benoit and
Ok (2006), Cabrales and Serrano (2011), Kucuksenel (2012), Saran (2016), and Bochet and Tumennasan
(2018). For more on full implementation, we refer the reader to surveys such as Moore (1992), Jackson
(2001), Maskin and Sjöström (2002), Palfrey (2002), and Serrano (2004).

6



an application to the allocation problems with endowment effects. Section 8 presents our

results regarding when behavioral ex-post implementation is possible via direct mech-

anisms and implications of independent choices to behavioral ex-post implementation.

In Section 9, we discuss simple mechanisms and Section 10 concludes. Meanwhile, the

proofs are presented in Appendix A. Our analysis with two individuals is relegated to

Appendix B. Moreover, Appendix C contains a comparison with Bergemann and Morris

(2008); Appendix D, a comparison of our setup with that of Saran (2011); Appendix E,

a comparison with de Clippel (2020); Appendix F, a comparison of our simplicity notion

with the communication complexity of Segal (2007, 2010); Appendix G, the description

of the canonical model of choice with initial endowments of Masatlioglu and Ok (2014);

finally, Appendix H, outlines of our Python codes.

2 Motivating Example

The following example aims to display the intricacies concerning the design of a mech-

anism which implements a behavioral welfare notion, the strict generalized Pareto opti-

mality due to Bernheim and Rangel (2009), in EPE with two individuals whose choices do

not satisfy WARP.10 These choices involve three types of behavioral biases: (1) attraction

effect, (2) status-quo bias, and (3) Condorcet cycles. Indeed, our example demonstrates

that behavioral implementation under incomplete information can be achieved with dif-

ferent behavioral biases in different states of the world.

Two individuals, Ann and Bob, are to decide what type of energy to employ or jointly

invest in, be it coal energy, nuclear energy, or solar energy. Thus, the grand set of

alternatives is X = {coal, nuclear, solar}.11 Let the set of all relevant states of the world

regarding the individuals’ choices be given by Θ. Suppose that Ann and Bob have two

possible types each, denoted by Θi = {ρi, γi} for i ∈ {A,B}. The set of all possible states

of the world is given by Θ = {(ρA, ρB), (ρA, γB), (γA, ρB), (γA, γB)}.
The individual choices of Ann and Bob at state θ ∈ Θ are described by the choice

correspondences, Cθ
A : X → X , and Cθ

B : X → X , where X denotes the set of non-empty

subsets of X and Cθ
i (S) ⊆ S for each S ∈ X and i ∈ {A,B}. Table 1 pinpoints the

10Sen (1971) shows that a choice correspondence satisfies WARP (and be represented by a complete and
transitive preference relation) if and only if it satisfies independence of irrelevant alternatives (referred
to as IIA or Sen’s α) and an expansion consistency axiom (known as Sen’s β). Letting X be the set
of all non-empty subsets of alternatives, we say that the individual choice correspondence C : X → X
satisfies (i) Sen’s α if whenever x ∈ S ⊂ T for some S, T ∈ X , x ∈ C(T ) implies x ∈ C(S); (ii) Sen’s β if
x, y ∈ S ⊂ T for some S, T ∈ X , and x, y ∈ C(S) implies x ∈ C(T ) if and only if y ∈ C(T ).

11Ann and Bob can also be interpreted as regions A and B within the same legislation, such as two
states in the U.S. or two countries in the E.U. In his Nobel Prize Lecture “Mechanism Design: How
to Implement Social Goals” (December 8, 2007), Eric Maskin provides an example in which an energy
authority “is charged with choosing the type of energy to be used by Alice and Bob.”
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specific choices where c stands for coal, n for nuclear power, and s for solar energy.

S C
(ρA,ρB)
A C

(ρA,ρB)
B C

(ρA,γB)
A C

(ρA,γB)
B C

(γA,ρB)
A C

(γA,ρB)
B C

(γA,γB)
A C

(γA,γB)
B

{c, n, s} {n} {s} {n} {n} {n} {c} {c, s} {n, s}
{c, n} {n} {n} {n} {n} {n} {c} {n} {c}
{c, s} {c, s} {s} {s} {s} {c} {c} {c} {s}
{n, s} {n} {s} {s} {s} {n, s} {n, s} {s} {s}

Table 1: Individual choices of Ann and Bob.

At state (ρA, ρB), Ann’s choices can be rationalized by the preference relation n �A
c ∼A s, and Bob’s choices can be rationalized by the preference relation s �B n �B c.

The identical choices of Ann and Bob at (ρA, γB) can be explained by the attraction

effect, one of the commonly observed behavioral biases.12,13 On the other hand, at state

(γA, ρB), Bob’s choices can be rationalized by the preference relation c �B s ∼B n,

whereas Ann’s choices feature a status-quo bias where the status-quo is c.14 Finally, at

state (γA, γB), neither of the individual choices can be rationalized by a complete and

transitive preference relation because the individual choices of Ann and Bob violate the

12Decoy alternatives, alternatives that are known to be dominated by other alternatives, can cause
preference reversals when they are introduced into the choice set. Herne (1997) demonstrates how the
presence of a decoy alternative causes the attraction effect in a policy-making context: In September 1993,
Finland took the decision to build a new nuclear power plant to a parliamentary vote. The majority of
the opponents of nuclear power favored the alternative of decentralized solar power plants. Even though
it was not on the table, the supporters of nuclear energy used coal as a decoy alternative. Motivated
by this, in our example, at (ρA, γB), Ann and Bob choose n from {c, n, s} and s from {n, s}. They also
choose n from {c, n}. This means either of Ann and Bob chooses n whenever it is presented with c,
the decoy option, even though s is chosen from {n, s}. Thus, their choices cannot be rationalized by a
complete and transitive preference relation, as they violate the IIA. For more on attraction effect, see
Huber, Payne, and Puto (1982), de Clippel and Eliaz (2012), and Ok, Ortoleva, and Riella (2015).

13There is no well-defined preference relation representing Ann and Bob’s choices at (ρA, γB): For any
given individual choice correspondence C : X → X , let �C be the induced preference relation and be
defined by: x �C y if and only if there exists S ∈ X with x, y ∈ S and x ∈ C(S). On the other hand,
given a preference relation � on X, the induced normal choice correspondence C� : X → X is defined
by C�(S) = {x ∈ S : x � y for all y ∈ S} for S ∈ X . We say that the individual choice correspondence

C : X → X is represented by a well-defined preference relation �C if C equals C�
C

. Further, Theorem
9 of Sen (1971) in the current setting says that a choice correspondence can be represented with a well-
defined preference relation (which is not necessarily transitive) if and only if the choice correspondence
satisfies Sen’s α and γ. While Sen’s α is defined in Footnote 10, a choice correspondence C : X → X
satisfies Sen’s γ if x ∈ C(S) ∩ C(T ) for some S, T ∈ X implies x ∈ C(S ∪ T ). It can easily be verified
that at state (ρA, γB) the individuals’ choices satisfy neither Sen’s α nor γ.

14It is well-documented that when individuals face new alternatives to replace a status-quo they have
a tendency to keep the status-quo unless it is fully dominated by one of the alternatives in all rele-
vant attributes. At (γA, ρB), Ann suffers from status-quo bias and her choices do not obey WARP (in
particular, Sen’s β); they cannot be rationalized by a complete and transitive preference relation. For
more on status-quo bias, see Samuelson and Zeckhauser (1988), Kahneman, Knetsch, and Thaler (1991),
Masatlioglu and Ok (2005), and Dean, Kıbrıs, and Masatlioglu (2017).

8



IIA and Sen’s β. Furthermore, Ann’s choices lead to a Condorcet cycle.15

Our model allows individuals’ choices to be interdependent : between (ρA, ρB) and

(ρA, γB), Ann’s private information (type) does not change; yet, the choice behavior of

Ann is not identical at these two states. That is, even though Ann does not know Bob’s

private information (type), she knows the set of all possible types of Bob. Therefore,

Ann might consider what she were to choose contingent upon each possible type of Bob.

This is especially relevant when the information in the hands of Bob is relevant for Ann’s

choices as in the case of a common value auction.

Our social choice notion is based on the welfare criterion developed by Bernheim and

Rangel (2009) delivering the notion of BR-optimality.16 The BR-optimal alternatives

State (ρA, ρB) (ρA, γB) (γA, ρB) (γA, γB)
BR-optimal alternatives {n, s} {n, s} {c, n} {c, s}

Table 2: BR-optimal alternatives.

contingent on the states are as summarized in Table 2.

As in Palfrey and Srivastava (1987), an SCS refers to a selection of state-contingent

allocations. In our example, the planner aims to implement the SCS, F = {f, f ′}, de-

scribed in Table 3, consisting of state-contingent allocations each of which is BR-optimal

State (ρA, ρB) (ρA, γB) (γA, ρB) (γA, γB)
f n n n s
f ′ s s c c

Table 3: The social choice set F for Ann and Bob.

at every state.17 We note that F is mutually exhaustive of BR-optimal outcomes as

{f(θ)} ∪ {f ′(θ)} equals the set of BR-optimal outcomes at every θ ∈ Θ.18

15Ann chooses n from {c, n}, c from {c, s}, and s from {n, s}. Such a pattern may arise when Ann
makes her choices by consulting a group of rational individuals, such as pairwise voting with her parents,
or a parliamentary vote. Hurwicz (1986) investigates the problem of implementation in such cases.

16An alternative x is strictly unambiguously chosen over another alternative z, if z is never chosen
whenever x is available; an alternative x is weakly unambiguously chosen over another alternative z, if
whenever they are both available, z is never chosen unless x is chosen as well. These extend the notion
of Pareto efficiency beyond the rational domain as follows. An alternative x is a strict generalized Pareto
optimum if there does not exist any other alternative y, such that y is weakly unambiguously chosen over
x for every individual, and y is strictly unambiguously chosen over x for some individual(s). We refer to
a strict generalized Pareto optimum alternative as a BR-optimal outcome. Another paper that provides
a welfare analysis that is in line with non-rational choices is Rubinstein and Salant (2011).

17BR-optimal alternatives are defined under certainty. It is not clear how to extend this notion of
efficiency to the case of uncertainty as the individual choices of Ann and Bob violate the standard
rationality axioms and hence the expected utility hypothesis. So, the goal of the social planner can be
thought of as obtaining an ex-post strict generalized Pareto optimal state-contingent allocation.

18There is no particular reason other than simplicity for choosing the mutually exhaustive selection
{f, f ′} as the SCS F . In general, the design of a mechanism depends on the given SCS.
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A mechanism µ makes Ann and Bob send individual messages (in MA and MB, respec-

tively) to the social planner and describes the outcome to be implemented as a function

of these messages (given by the outcome function g : M → X with M = MA ×MB).

Given a mechanism µ = (M, g), de Clippel (2014) points out an intuitive and straightfor-

ward extension of the notion of Nash Equilibrium (NE) involving individuals’ choices that

cannot be rationalized by a complete and transitive preference relation: For each individ-

ual, the equilibrium outcome should be among the chosen within the set of alternatives

he/she can generate by unilateral deviations. Formally, m∗ = (m∗A,m
∗
B) is an NE of the

mechanism µ = (M, g) at θ if g(m∗) ∈ Cθ
A(Oµ

A(m∗B)) and g(m∗) ∈ Cθ
B(Oµ

B(m∗A)) where the

opportunity sets of Ann and Bob are given by Oµ
A(mB) := {g(mA,mB) | mA ∈ MA} and

Oµ
B(mA) := {g(mA,mB) | mB ∈ MB}, respectively. If m∗ is an NE of µ at θ, we refer to

g(m∗) as an NE outcome of µ at θ.

In our setting, the state of the world is distributed knowledge between Ann and Bob,

and they observe only their own types before sending their messages. Thus, their plans

of actions (strategies) can depend only on their own types and not the whole state of the

world. That is, a strategy for Ann and Bob in a mechanism µ = (M, g) is a function σi :

Θi → Mi for i ∈ {A,B}. There is no clear way of defining a Bayesian Nash Equilibrium

of a mechanism in our example as Ann and Bob cannot be modeled as (expected) utility

maximizers. Due to the same reason, we restrict our attention to pure strategies. We

say that the strategy profile σ∗ = (σ∗A, σ
∗
B) is an ex-post equilibrium of the mechanism

µ = (M, g) if for all θ ∈ Θ, g(σ∗(θ)) ∈ Cθ
A(Oµ

A(σ∗B(θB))) and g(σ∗(θ)) ∈ Cθ
B(Oµ

B(σ∗A(θA))).

In words, an EPE requires that the strategies of Ann and Bob induce an NE of the

mechanism µ at every state of the world and that they are measurable with respect to

their private information.

2.1 The revelation principle fails

The revelation principle (for partial implementation) fails in our example: Consider

the SCF f given in Table 3. Later in the section, we show that the mechanism µ in Table

5 possesses an EPE sustaining f . Hence, the mechanism µ partially ex-post implements

f . However, the corresponding direct mechanism, gd : Θ → X, given in Table 4, fails to

partially ex-post implement f truthfully as truthful revelation is not an EPE of gd: At

Bob

Ann
ρB γB

ρA n n
γA n s

Table 4: The direct mechanism gd.
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state (ρA, γB), reporting truthfully delivers n (circled in Table 4), but Ann’s opportunity

set at state (ρA, γB) is {n, s} and n /∈ C(ρA,γB)
A ({n, s}) = {s}.19

This conclusion does not depend on the interdependence of choices: In Section 7, we

present an example of an allocation problem with endowment effects where the revelation

principle fails with independent choices.

To the best of our knowledge, the failure of the revelation principle on the behavioral

implementation front is first documented by Saran (2011).20 That study establishes that

weak contraction consistency, a condition implied by the IIA, is sufficient for the revelation

principle. In Section 4, we reaffirm that the revelation principle holds under the IIA in

our setup as well. This justifies our search for indirect mechanisms, even for partial

implementation, when individuals’ choices do not satisfy the IIA. In this context, our

results identifying (indirect) mechanisms for full implementation are also useful as full

implementation implies partial implementation.

2.2 An indirect mechanism that ex-post implements F

We now show that the following indirect mechanism µ = (M, g) fully ex-post imple-

ments the SCS F = {f, f ′}, described in Table 3: MA = {U,M,D} and MB = {L,M,R};
g : M → X is described in Table 5.

Bob

Ann

L M R
U n c n
M c s c
D n s s

Table 5: The mechanism µ for Ann and Bob.

To exemplify how to identify NE of this mechanism, below we identify Bob’s best

responses at (γA, γB): If Ann sends the message U , Bob can unilaterally generate the set

{c, n} under the mechanism µ, i.e., Oµ
B(U) = {c, n}. Bob chooses c from the set {c, n}

at (γA, γB), which implies that Bob finds it optimal to send the message M . Similarly,

when Ann sends the message M , Bob can unilaterally generate the set {c, s} under the

mechanism µ, i.e., Oµ
B(M) = {c, s}, and Bob chooses s from the set {c, s} at (γA, γB).

Thus, Bob finds it optimal to send the message M against Ann’s action M . Finally, if Ann

19A direct mechanism is one where the message sets equal the type spaces of individuals. So it is
enough to specify only the outcome function gd : Θ→ X to describe a direct mechanism.

20Saran (2011) considers a setup with menu-dependent preferences over interim Anscombe-Aumann
acts. In Appendix D, we discuss how our setting can be captured by menu-dependent preferences over
interim (deterministic) Anscombe-Aumann acts. Meanwhile, Bierbrauer and Netzer (2016) notes that
the revelation principle fails with intention-based social preferences.

11



sends the message D, Bob can unilaterally generate the set {n, s} under the mechanism

µ, i.e., Oµ
B(D) = {n, s}. Bob chooses s from the set {n, s} at (γA, γB); hence, both M

and R are the best responses for Bob.

Repeating this exercise, one can show that NE and NE outcomes of our mechanism

at other states of the world are as presented in Table 6 (where NE message profiles are

depicted using circles in the corresponding cells).

State: (ρA, ρB) State: (ρA, γB) State: (γA, ρB) State: (γA, γB)

L M R
U n c n
M c s c
D n s s

L M R
U n c n
M c s c
D n s s

L M R
U n c n
M c s c
D n s s

L M R
U n c n
M c s c
D n s s

NE outcomes: {n, s} NE outcomes: {n, s} NE outcomes: {c, n} NE outcomes: {c, s}

Table 6: Nash equilibria and Nash equilibrium outcomes of the mechanism.

Going over Tables 2 and 6 reveals that the set of BR-optimal outcomes and the set

of NE outcomes of our mechanism coincide at every state of the world. Therefore, if the

true state of the world were common knowledge between Ann and Bob, our mechanism

would be (fully) implementing the BR-optimal outcomes in NE.21

The true state of the world is not common knowledge between Ann and Bob under

incomplete information. Then, employing EPE demands individuals’ strategies (which

are measurable with respect to individuals’ private information) induce an NE of the

mechanism at every state of the world. In the following, we show that there are three EPE

of our mechanism, two of which are equivalent in terms of the outcomes they generate:

Claim 1. The strategy profiles σ′∗ = (σ′∗A , σ
′∗
B), σ′′∗ = (σ′′∗A , σ

′′∗
B ), and σ′′′∗ = (σ′′′∗A , σ′′′∗B )

described below are the only EPE of the mechanism µ = (M, g), where the outcomes

generated under σ′′∗ and σ′′′∗ are equivalent, i.e., g(σ′′∗(θ)) = g(σ′′′∗(θ)) for each θ ∈ Θ.

σ′∗ : σ′∗A(ρA) = U σ′∗A(γA) = D and σ′∗B(ρB) = L σ′∗B(γB) = R,

σ′′∗ : σ′′∗A (ρA) = D σ′′∗A (γA) = U and σ′′∗B (ρB) = M σ′′∗B (γB) = M,

σ′′′∗ : σ′′′∗A (ρA) = M σ′′′∗A (γA) = U and σ′′′∗B (ρB) = M σ′′′∗B (γB) = M.

Table 7 summarizes the EPE outcomes of µ where message profiles corresponding to

21We would like to emphasize that µ Nash implements the BR-optimal outcomes under complete
information and ex-post implements F under incomplete information. In general, a mechanism that ex-
post implements an SCS F does not have to Nash implement the social choice correspondence associated
with F . For example, the mechanism presented in Table B.3 of Appendix B ex-post implements the SCS
F of our motivating example under incomplete information but does not Nash implement the BR-optimal
outcomes (the social choice correspondence associated with F ) under complete information.
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σ′∗ are depicted with circles while those associated with σ′′∗ are indicated with squares

and those corresponding to σ′′′∗ with diamonds in the corresponding cells.

State: (ρA, ρB) State: (ρA, γB) State: (γA, ρB) State: (γA, γB)

L M R
U n c n
M c s c

D n s s

L M R
U n c n
M c s c

D n s s

L M R
U n c n
M c s c
D n s s

L M R
U n c n
M c s c
D n s s

EPE outcomes: {n, s} EPE outcomes: {n, s} EPE outcomes: {c, n} EPE outcomes: {c, s}

Table 7: Ex-post equilibria and ex-post equilibrium outcomes of the mechanism.

Tables 2 and 7 show that the set of BR-optimal outcomes and the set of EPE outcomes

of µ coincide. Referring to Table 3 which describes the SCS F , we also observe that

g(σ′∗(θ)) = f(θ) for each θ ∈ Θ, and g(σ′′∗(θ)) = g(σ′′′∗(θ)) = f ′(θ) for each θ ∈ Θ. That

is, (i) each SCF in the SCS is induced by a particular EPE of the mechanism µ; and (ii)

for each EPE of the mechanism µ, there is a particular SCF in the SCS that induces the

same outcomes state by state. Thus, µ fully ex-post implements the SCS F . In Appendix

B.3, we show that µ is the “simplest mechanism” ex-post implementing F .

3 Notation and Definitions

Consider a set of individuals, denoted by N = {1, . . . , n}, who have to select an

alternative from a non-empty set of alternatives X. Let Θ denote the set of all relevant

states of the world regarding the choices of the individuals from (the subsets of) the set

of alternatives X. We assume that there is incomplete information among the individuals

regarding the true state of the world, and that the true state of the world is distributed

knowledge. That is, Θ has a product structure, i.e., Θ = ×i∈NΘi where θi ∈ Θi denotes

the private information (type) of individual i ∈ N at state θ = (θ1, . . . , θn) ∈ Θ. We also

assume that the choice behavior of individual i at state θ is described by the individual

choice correspondence Cθ
i : X → X , such that the feasibility requirement of Cθ

i (S) ⊆ S

for all S ∈ X holds where X denotes the set of all non-empty subsets of X. Therefore, the

environment we are interested in can be summarized by the tuple 〈N,X,Θ, (Cθ
i )i∈N,θ∈Θ〉.

We assume that 〈N,X,Θ, (Cθ
i )i∈N,θ∈Θ〉 is common knowledge among the individuals, and

that it is known to the designer. We also note that our setup allows (but does not depend

on) individual choices to be interdependent. That is, individuals are allowed to choose

differently when their own type is fixed but others’ are different.

An SCF is f : Θ→ X that specifies a socially optimal alternative—as evaluated by the

planner—for each state, i.e., f is a state-contingent allocation. For any θ−i ∈ Θ−i, we let

f(Θi, θ−i) := {f(θ′i, θ−i)|θ′i ∈ Θi}. As there may be many socially optimal state-contingent
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allocations that a designer may wish to consider simultaneously, we focus on SCSs rather

than SCFs. An SCS, denoted by F , is a non-empty set of SCFs, i.e., F ⊂ {f | f : Θ→ X}
and F 6= ∅.22 F denotes the set of all SCSs.

We denote a mechanism by µ = (M, g) where Mi denotes the non-empty set of mes-

sages available to individual i with M = ×i∈NMi, and g : M → X describes the outcome

function that specifies the alternative to be selected for each message profile.

The opportunity set of an individual under a mechanism is the set of alternatives that

she can generate by unilateral deviations given the messages of the other individuals:

The opportunity set of individual i under µ for each m−i ∈ M−i is given by Oµ
i (m−i) =

{g(mi,m−i) ∈ X | mi ∈ Mi}. Consequently, an NE of a mechanism at a particular state

of the world is defined as follows: A message profile m∗ is a Nash equilibrium of µ at θ if

g(m∗) ∈ Cθ
i (Oµ

i (m∗−i)) for all i ∈ N .

The mechanism µ in our environment induces an incomplete information game-form.

A strategy of individual i under the mechanism µ, a contingent plan of actions, specifies

a message for each possible type of i, and is denoted by σi : Θi → Mi. Due to the

aforementioned reasons, we restrict attention to pure EPE.

Definition 1. A strategy profile σ∗ : Θ→M is an ex-post equilibrium of µ if for each

θ ∈ Θ, we have g(σ∗(θ)) ∈ Cθ
i (Oµ

i (σ∗−i(θ−i))) for all i ∈ N .

In words, an EPE requires that the outcomes generated by the mechanism be an NE at

every state of the world, while individuals’ strategies have to be measurable with respect

to only their own types. This delivers the notion of ex-post implementability:

Definition 2. We say that an SCS F ∈ F is ex-post implementable if there exists a

mechanism µ such that:

(i) For every f ∈ F , there exists an EPE σ∗ of µ that satisfies f = g ◦ σ∗, and

(ii) For every EPE σ∗ of µ, there exists f ∈ F such that g ◦ σ∗ = f .

Given an SCS, ex-post implementability demands the existence of a mechanism such

that (i) every SCF in the SCS must be sustained by an EPE strategy profile, and (ii)

every EPE strategy profile of the mechanism must correspond to an SCF in the SCS.

Hence, this is full ex-post implementation. We refer to an SCF f as being partially

ex-post implementable whenever condition (i) in Definition 2 holds for F = {f}.
Any mechanism that ex-post implements an SCS should take into consideration the

private information of the individuals. However, individuals may misreport their private

22We note that it is customary to denote a social choice rule as an SCS rather than a social choice
correspondence under incomplete information. To that regard, we refer to Postlewaite and Schmeidler
(1986), Palfrey and Srivastava (1987), Jackson (1991) and Bergemann and Morris (2008).
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information. We denote a deception by individual i as αi : Θi → Θi. The interpretation is

that αi(θi) is individual i’s reported type. Therefore, α(θ) := (α1(θ1), α2(θ2), . . . , αn(θn))

is a profile of reported types, which might be deceptive.

4 Necessity

We show that the notion of consistency under incomplete information is necessary for

ex-post implementation. When the meaning is clear, we refer to it simply as consistency.

Definition 3. We say that a collection of sets S := {Si(f, θ−i) | i ∈ N, f ∈ F, θ−i ∈
Θ−i} ⊂ X is consistent with the SCS F ∈ F under incomplete information if for

every SCF f ∈ F , we have

(i) for all i ∈ N , f(θ′i, θ−i) ∈ C
(θ′i,θ−i)
i (Si(f, θ−i)) for each θ′i ∈ Θi, and

(ii) for any deception profile α with f ◦α /∈ F , there exists θ∗ ∈ Θ and i∗ ∈ N such that

f(α(θ∗)) /∈ Cθ∗
i∗ (Si∗(f, α−i∗(θ

∗
−i∗))).

A collection of sets S satisfying consistency with an SCS F under incomplete informa-

tion obeys the property that Si(f, θ−i) does not depend on θi, for all i ∈ N and f ∈ F and

θ−i ∈ Θ−i, and the following hold: (i) Given any i ∈ N and any f ∈ F and any θ−i ∈ Θ−i,

it must be that i’s choices when she is of type θ′i at state (θ′i, θ−i) contains f(θ′i, θ−i) for

all θ′i ∈ Θi; (ii) given any f ∈ F , whenever there is a deception profile α that leads to

an outcome not compatible with the SCS, i.e., f ◦ α /∈ F , there exist an informant state

θ∗ and an informant individual i∗ such that i∗ does not choose at state θ∗ the alternative

f(α(θ∗)) (generated by this deception) from Si∗(f, α−i∗(θ
∗
−i∗)).

23

If a mechanism µ = (M, g) ex-post implements a given SCS F ∈ F , then for any SCF

f ∈ F , there exists an EPE σf of µ such that f = g◦σf . Thus, for each θ ∈ Θ, g(σf (θ)) =

f(θ) is in Cθ
i (Oµ

i (σf−i(θ−i))) for all i ∈ N . Defining S by Si(f, θ−i) := Oµ
i (σf−i(θ−i)) with

i ∈ N , f ∈ F , and θ−i ∈ Θ−i (i.e., the collection sustained by the opportunity sets

associated with the EPE of µ), we observe that (i) of consistency of S with F holds.

On the other hand, if a deception profile α is such that f ◦ α /∈ F , then σf ◦ α cannot

be an EPE of µ. Otherwise, by (ii) of ex-post implementability (Definition 2), there exists

f̃ ∈ F with f̃ = g ◦ σf ◦α. But, since f = g ◦ σf , we have f̃ = f ◦α ∈ F , a contradiction.

So, there is a state θ∗ and an individual i∗ who does not choose at θ∗ (going along with

23Consistency of de Clippel (2014), a necessary condition for behavioral implementation under complete
information, requires that, given a social choice correspondence Φ : Θ→ X , the collection consistent with
Φ is {Si(x, θ) ∈ X | i ∈ N, θ ∈ Θ, x ∈ Φ(θ)}, such that (i) for all i ∈ N , all θ ∈ Θ, and all x ∈ Φ(θ),
x ∈ Cθi (Si(x, θ)); (ii) x ∈ Φ(θ) \Φ(θ′) with θ, θ′ ∈ Θ implies there is i∗ ∈ N such that x /∈ Cθ′i∗ (Si∗(x, θ)).
The critical difference between de Clippel’s consistency and ours is that, with incomplete information,
each choice set must be independent of the type of the individual whom this set is associated with.
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the deception and obtaining) the alternative f(α(θ∗)) from Oµ
i∗(σ

f
−i∗(α−i∗(θ−i∗))) which

equals Si∗(f, α−i∗(θ−i∗)). This delivers (ii) of consistency of S with F .

This discussion proves that the existence of a collection consistent with an SCS under

incomplete information is a necessary condition for this SCS to be ex-post implementable:

Theorem 1. If an SCS F ∈ F is ex-post implementable, then there is a collection S :=

{Si(f, θ−i) | i ∈ N, f ∈ F, θ−i ∈ Θ−i} consistent with F under incomplete information.

Theorem 1 affirms the following intuition: if the designer cannot identify sets from

which individuals make choices compatible with the social goal, then she cannot succeed

in the corresponding implementation attempt.

In Supplementary Materials, we provide Python codes computing consistent collections

given individuals’ choices and the SCS as inputs (see Appendix H.1.1 for an overview).

We also display how to compute consistent collections using these codes on a variety of

examples, one of which is our motivating example.

Next, to establish that our study extends the analysis of Bergemann and Morris

(2008) to the irrational domain, we show that our necessary condition implies analogs

of theirs: ex-post choice monotonicity and quasi-ex-post choice incentive compatibility.

Under WARP, these conditions are equivalent to ex-post monotonicity and ex-post incen-

tive compatibility of Bergemann and Morris (2008).

Proposition 1. If there exists a collection of sets consistent with an SCS F ∈ F under

incomplete information, then F is ex-post choice monotonic; i.e., for every SCF f ∈ F
and deception profile α with f ◦ α /∈ F , there is a state θ∗ ∈ Θ and an individual i∗ ∈ N
and a set of alternatives S∗ ∈ X such that

(i) f(α(θ∗)) /∈ Cθ∗
i∗ (S∗), and

(ii) f(θ′i∗ , α−i∗(θ
∗
−i∗)) ∈ C

(θ′
i∗ ,α−i∗ (θ∗−i∗ ))

i∗ (S∗) for all θ′i∗ ∈ Θi∗.

Our ex-post choice monotonicity requires that when there is a deception leading to

an outcome not compatible with the state-contingent allocations allowed by the SCS,

there exists an informant state and an informant whistle-blower for this state and an

informant reward set for this whistle-blower such that (i) the whistle-blower does not

choose the outcome arising due to going along with the deception from the reward set

at the informant state; and (ii) the whistle-blower does not falsely accuse the other

individuals of deceiving when the outcome is compatible with the SCS at hand.

Proposition 2. If there exists a collection of sets consistent with an SCS F ∈ F under

incomplete information, then F is quasi-ex-post choice incentive compatible; i.e.,

for every SCF f ∈ F and state θ ∈ Θ and individual i ∈ N , there exists a set of

alternatives S ∈ X such that f(θ) ∈ Cθ
i (S) and f(Θi, θ−i) ⊆ S.
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Quasi-ex-post choice incentive compatibility of an SCS F demands that for all f ∈ F ,

all state θ ∈ Θ, and all individuals i ∈ N , there is a set S from which i chooses f(θ) at θ

while S contains f(Θi, θ−i), all the alternatives achievable by i under f given θ−i.

In Appendix C, we show that under WARP (i) quasi-ex-post choice incentive com-

patibility is equivalent ex-post incentive compatibility; (ii) ex-post choice monotonicity

implies ex-post monotonicity while ex-post monotonicity coupled with ex-post incentive

compatibility implies ex-post choice monotonicity. Consequently, the necessary condi-

tions of Bergemann and Morris (2008) are equivalent to our ex-post choice monotonicity

coupled with quasi-ex-post choice incentive compatibility under WARP.

If F = {f}, quasi-ex-post choice incentive compatibility also describes a necessary

condition for partial ex-post implementation of the SCF f . As we show in Section 2.1,

the revelation principle (for partial ex-post implementation) does not hold in our setup.

In general, when the containment relation in quasi-ex-post choice incentive compatibility

holds strictly, truthtelling may not be an EPE of the associated direct mechanism. On

the other hand, the following is a necessary and sufficient condition for the revelation

principle: An SCF f is partially truthfully (ex-post) implementable in a direct mechanism

if and only if for every θ ∈ Θ, i ∈ N , f(θ) ∈ Cθ
i (f(Θi, θ−i)).

24 This condition neither

implies nor is implied by the quasi-ex-post choice incentive compatibility. Yet, under the

IIA, we obtain the following:

Proposition 3. If individual choices satisfy the IIA, then quasi-ex-post choice incentive

compatibility implies the revelation principle.

In summary, if a mechanism µ partially ex-post implements an SCF f and individuals’

choices satisfy the IIA, then there is a direct mechanism gd which partially implements f

in truthful EPE. That is, the IIA is sufficient for the revelation principle.

5 Sufficiency

Ex-post implementation of an SCS F is not feasible when there is no collection of

sets consistent with F under incomplete information. Therefore, the planner should start

the design by identifying such collections and then explore additional requirements to be

imposed on these collections for sufficiency. Below, we present such new conditions.25

Definition 4. We say that a non-empty set of alternatives S ∈ X satisfies the choice in-

compatible pair property at state θ if for each alternative x ∈ S there exist individuals

i, j ∈ N such that x /∈ Cθ
i (S) and x /∈ Cθ

j (S).

24If f is partially truthfully (ex-post) implemented by the direct mechanism gd : Θ→ X, the opportu-

nity set of i under truthtelling given θ−i is Og
d

i (θ−i) = f(Θi, θ−i).
25There is room for other sufficient conditions since we do not restrict choices using universal axioms.

But, it seems neither easy nor practical to close the gap between the necessary and sufficient conditions.
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This condition implies some level of disagreement among individuals regarding their

choices from a given set of alternatives at a given state. In words, a set satisfies the choice

incompatible pair property at a state, if for each alternative in this set, there is a pair

of individuals who do not choose this alternative from this set at that state. Then, any

alternative in this set can be chosen by at most n− 2 individuals at this state.

The choice incompatible pair property coupled with consistency is sufficient for ex-post

implementation:

Theorem 2. Let n ≥ 3. If F ∈ F is an SCS for which there exist

(i) a collection of sets S := {Si(f, θ−i) | i ∈ N, f ∈ F, θ−i ∈ Θ−i} consistent with F

under incomplete information, and

(ii) a set of alternatives X̄ ⊆ X with
⋃
S∈S S ⊆ X̄ that satisfies the choice incompatible

pair property at every state θ ∈ Θ,

then F is ex-post implementable.

In words, Theorem 2 establishes the following when there are three or more individu-

als: If (i) there exists a collection of sets S consistent with an SCS F under incomplete

information, and (ii) there exists a set of alternatives X̄ which contains every alternative

that appears in S and satisfies the choice incompatible pair property at every state, then

F is ex-post implementable. To check whether or not the hypothesis of Theorem 2 holds,

we present Python codes that take individuals’ choices and the SCS as inputs to compute

consistent collections and sets of alternatives X̄ satisfying the choice incompatible pair

property. Appendix H.1.2 contains an overview of these codes, and we display how to use

them on two three-individual examples, Examples SM-4 and SM-5. These demonstrate

that the choice incompatible pair property is a mild sufficiency condition: For all pairs of

consistent collections and resulting X̄’s that satisfy the hypothesis of Theorem 2, X̄ is a

strict subset of X, whereas individuals’ choices on X are aligned (i.e., at every state, an

alternative is chosen by at least n− 1 individuals from X). Therefore, the choice incom-

patible pair property imposes a weaker sufficiency requirement than the one imposed by

the choice counterpart of the economic environment assumption:26 The latter assumption

is not satisfied in these examples but the hypothesis of Theorem 2 holds, since choice

incompatible pair property concerns only X̄ obtained from a consistent collection of sets.

Indeed, Example SM-5 with rational individuals establishes that, the choice incompatible

pair property under rationality does not imply the economic environment assumption.

26Individuals’ choices satisfy the choice counterpart of the economic environment assumption if for all
θ ∈ Θ and for all x ∈ X, there are i, j ∈ N such that x /∈ Cθi (X) and x /∈ Cθj (X). Under WARP, this
requirement coincides with the economic environment assumption of Bergemann and Morris (2008).
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Hence, under rationality, our Theorem 2 (coupled with our necessity results, Theorem 1,

Propositions 1, 2, C.1, and C.2) extends Bergemann and Morris (2008)’s sufficiency result

that uses the economic environment assumption (their Theorem 2).

Theorem 2 identifies conditions that make sure that all EPE of the mechanism used

in its proof (described in Appendix A.3) falls under Rule 1 at every state of the world.

Below, we provide another set of sufficient conditions by employing the same mechanism,

but this time allowing for EPE to arise under Rules 2 and 3 as well. To do so, we turn to

the counterpart of the no-veto power property in our environment.

Definition 5. We say that an SCF f satisfies the choice no-veto-power property on

a set of alternatives S ∈ X at state θ ∈ Θ if x ∈ Cθ
i (S) for all i ∈ N \{j} for some j ∈ N

implies f(θ) = x.

The choice no-veto-power property on a set, at a particular state, requires that if an

alternative is chosen from this set by at least n − 1 individuals at this state, then this

alternative must be f -optimal at this state.

Our second sufficiency result employs a combination of consistency and the choice

no-veto-power property. Below, we present this condition followed by the result.27

Definition 6. An SCS F ∈ F satisfies the consistency-no-veto property whenever

there exist

(i) a collection of sets S := {Si(f, θ−i) : i ∈ N, f ∈ F, θ−i ∈ Θ−i} such that for all

f ∈ F and for all i ∈ N , f(θ′i, θ−i) ∈ C
(θ′i,θ−i)
i (Si(f, θ−i)) for each θ′i ∈ Θi,

(ii) and a set of alternatives X̄ ⊆ X with
⋃
S∈S S ⊆ X̄

such that for any collection of product sets of states {Θ̄f}f∈F with Θ̄ =
⋃
f∈F Θ̄f ⊂ Θ,

there exists f ∗ ∈ F such that

(iii) f ∗ satisfies choice no-veto-power property on X̄ at every θ ∈ Θ \ Θ̄, and

(iv) if for any f ∈ F and any deception profile α, f(α(θ)) 6= f ∗(θ) for some θ ∈ Θ̄f ,

then there exists i∗ ∈ N and θ∗ ∈ Θ̄f such that f(α(θ∗)) /∈ Cθ∗
i∗ (Si∗(f, α−i∗(θ

∗
−i∗))).

Theorem 3. Let n ≥ 3. If an SCS F ∈ F satisfies the consistency-no-veto property, then

F is ex-post implementable.

In words, an SCS F satisfies the consistency-no-veto property if there are a collection

of sets S and a set of alternatives X̄ containing every alternative in S such that:

27The set Θ̄ ⊆ Θ is a product set whenever Θ̄ = ×i∈N Θ̄i where Θ̄i ⊆ Θi with the convention that
Θ̄ = ∅ whenever Θ̄i = ∅ for some i ∈ N .
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— Given any i ∈ N and any f ∈ F and any θ−i ∈ Θ−i, it must be that i’s choices from

Si(f, θ−i) at (θ′i, θ−i) contains f(θ′i, θ−i) for all θ′i ∈ Θi, and

— for any collection of product sets of states {Θ̄f}f∈F with Θ̄ =
⋃
f∈F Θ̄f ⊂ Θ, there

is an SCF f ∗ in F such that

– if θ ∈ Θ \ Θ̄, then f ∗ obeys the choice no-veto-power property on X̄ at θ, and

– if a deception profile α and an SCF f ∈ F lead to an outcome different than

f ∗(θ) for some θ ∈ Θ̄f , then there exists a whistle-blower i∗ ∈ N and an

informant state θ∗ such that i∗ does not choose at θ∗ the alternative f(α(θ∗))

(generated by this deception at θ∗) from Si∗(f, α−i∗(θ
∗
−i∗)).

Evidently, the consistency-no-veto property is analogous to the monotonicity-no-veto

condition of Jackson (1991) and the ex post monotonicity no veto property of Bergemann

and Morris (2008). Moreover, our findings are parallel with these papers in the following

sense: Jackson (1991) considers a rational domain with expected utility maximizing indi-

viduals and establishes that monotonicity-no-veto and incentive compatibility and a con-

dition called closure are sufficient for the Bayesian implementation of SCSs. Meanwhile,

Bergemann and Morris (2008) providing sufficiency conditions for ex-post implementation

in the rational domain employs ex-post monotonicity no veto condition and ex-post incen-

tive compatibility, both of which are “ex-post analogs of the Bayesian implementation”

conditions. In our setting, the closure condition is trivially satisfied as in Bergemann and

Morris (2008); by the same arguments presented in the proof of Proposition 2, quasi-ex-

post choice incentive compatibility follows from (i) of the consistency-no-veto property.

A due remark concerns the cases when attention is restricted to the behavioral ex-post

implementation of an SCF. Then, the hypotheses of Theorem 3 simplify to deliver the

following analog of Theorem 3 of Bergemann and Morris (2008):

Corollary 1. Let n ≥ 3. An SCF f : Θ → X is ex-post implementable whenever there

exists a collection of sets S := {Si(θ−i) : i ∈ N, θ−i ∈ Θ−i} such that for all individuals

i ∈ N , f(θ′i, θ−i) ∈ C
(θ′i,θ−i)
i (Si(θ−i)) for each θ′i ∈ Θi, and there exists a set of alternatives

X̄ ⊆ X with
⋃
S∈S S ⊆ X̄ such that for any product set of states Θ̄ ⊂ Θ,

(i) f satisfies choice no-veto-power property on X̄ at every θ ∈ Θ \ Θ̄, and

(ii) for any deception profile α with f(α(θ)) 6= f(θ) for some θ ∈ Θ̄, there exists i∗ ∈ N
and θ∗ ∈ Θ̄ such that f(α(θ∗)) /∈ Cθ∗

i∗ (Si∗(α−i∗(θ
∗
−i∗))).

Our Python codes related to consistency-no-veto (see Appendix H.1.3 for an overview)

help us gain better understanding of implementation under incomplete information when

the canonical mechanism has equilibria under rules other than Rule 1. By shedding light

on consistency-no-veto (and hence ex-post-monotonicity-no-veto), these codes alleviate
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associated complications and supply further application possibilities. Taking individuals’

choices and the SCS as inputs, our codes compute collections of sets, S’s, the sets, X̄’s,

and associated f ∗’s for each product sets of states, Θ̄’s, satisfying consistency-no-veto.

For a three individual example, see Example SM-4 in Supplementary Materials.

6 Efficiency

de Clippel (2014) introduces the following notion of efficiency: Φeff(θ) := {x ∈ X |
∃(Yi)i∈N with x ∈ Cθ

i (Yi) for all i ∈ N and X = ∪i∈NYi}. In words, an alternative x is

efficient at θ if each individual has an implicit opportunity set such that she chooses x

from this set and each alternative is in at least one of the implicit opportunity sets of an

individual. Φeff : Θ→ X is a social choice correspondence (SCC) that we refer to as the

de Clippel efficient SCC. de Clippel (2014) discusses the relation of this concept with the

opportunity criterion of Sugden (2004).

In what follows, we extend this notion to the case of incomplete information. Let

F eff := {f : Θ → X | f(θ) ∈ Φeff(θ) for all θ ∈ Θ}. In words, F eff is the set of all SCFs

that are selections from the de Clippel efficient SCC.

Proposition 4. F eff is not ex-post implementable.

To prove this result, we provide an example where F eff does not have a consistent

collection and hence cannot be ex-post implemented:

LetX = {x, y}, N = {A,B}, and Θi = {θi, ωi} with i = A,B. The individuals’ choices

are as given in Table 8. Given these choices, it is straightforward to see that the de Clippel

S C
(θA,θB)
A C

(θA,θB)
B C

(θA,ωB)
A C

(θA,ωB)
B C

(ωA,θB)
A C

(ωA,θB)
B C

(ωA,ωB)
A C

(ωA,ωB)
B

{x, y} {x} {x} {x} {x} {y} {x} {y} {x}

Table 8: Individual choices of A and B among the allocations x and y.

efficient SCC, Φeff, is: Φeff(θA, θB) = Φeff(θA, ωB) = {x}; Φeff(ωA, θB) = Φeff(ωA, ωB) =

{x, y}. So, F eff = {f, f ′, f ′′, f ′′′} is as in Table 9. If SA, SB were consistent with F eff

under incomplete information, then by (i) of consistency, x ∈ C
(ωA,θB)
B (SB(f ′, ωA)) and

(θA, θB) (θA, ωB) (ωA, θB) (ωA, ωB)

f x x x x
f ′ x x x y
f ′′ x x y x
f ′′′ x x y y

Table 9: The SCS F eff.
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y ∈ C
(ωA,ωB)
B (SB(f ′, ωA)). Therefore, SB(f ′, ωA) = {x, y}. However, C

(ωA,ωB)
B ({x, y}) =

{x}, and hence, y /∈ C(ωA,ωB)
B (SB(f ′, ωA)), a contradiction.

The reason behind F eff not being ex-post implementable is due to the lack of quasi-

ex-post choice incentive compatibility: Given f ′ ∈ F eff and state (ωA, ωB), f ′(ωA, θB) = x

and f ′(ωA, ωB) = y implies that the only candidate set S ′ ∈ X that satisfies the conditions

in quasi-ex-post choice incentive compatibility is {x, y}. However, Bob chooses x, and not

y = f ′(ωA, ωB), from this set at (ωA, ωB).

In the rational domain, ex-post incentive compatibility with independent types implies

(weak) dominant strategy incentive compatibility that parallels strategy-proofness. Given

the results regarding the incompatibility between efficiency and strategy-proofness in the

mechanism/market design literature, our result pointing out the incompatibility between

F eff and quasi-ex-post choice incentive compatibility is not very surprising. This leads us

to the following notion of constrained efficiency :

Ec.eff ≡

{
e : Θ→ X

∣∣∣∣∣ (i) ∀i ∈ N, ∀θ−i ∈ Θ−i, ∃ Y θ−i
i with ∀θ ∈ Θ, ∪i∈NY

θ−i
i = X, and

(ii) e(θ̃i, θ−i) ∈ C(θ̃i,θ−i)
i (Y

θ−i
i ),∀θ̃i ∈ Θi.

}
(1)

This notion internalizes ex-post incentive compatibility concerns into efficiency: A

state-contingent allocation e is constrained efficient if for any individual and for any type

profile of the others’, there exists an implicit opportunity set such that her choices from

this set for each of her types are aligned with e with the additional property that at every

state each alternative is in at least one of the implicit opportunity sets of an individual.

Therefore, constrained efficient SCS, Ec.eff, consists of all the constrained efficient state-

contingent allocations and can be considered as an ex-post counterpart of de Clippel

efficiency entangled with quasi-ex-post choice incentive compatibility.28 Below, we show

that Ec.eff satisfies our necessity condition:

Proposition 5. Ec.eff has a consistent collection of sets under incomplete information.

Theorem 2 and Proposition 5 deliver the following result presented without a proof:

Ec.eff is ex-post implementable when there is a weak form of disagreement in the society:

Proposition 6. Let n ≥ 3. Ec.eff is ex-post implementable on all domains with X satis-

fying the choice incompatible pair property at every state θ ∈ Θ.

28In the example used to prove Proposition 4, Ec.eff = {f, f ′′′}.
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7 Allocation Problems

In this section, we investigate the implications of our results in an allocation problem

under the assumption that the individual choices are independent. Then, we consider the

canonical model of choice with initial endowments of Masatlioglu and Ok (2014) to obtain

further insights on allocation problems with endowment effects.

There are n objects to be allocated among n individuals: Let H = {h1, . . . , hn} be a

set of objects (e.g., houses or offices) while H denotes the set of all non-empty subsets of

H. The set of allocations we focus on are those in which each individual gets only one

object, i.e., X := {x ∈ Hn | xi 6= xj, for all i, j ∈ N with i 6= j}.29

There are two different types of individual choice behavior one needs to consider in

this setup: choices on objects and choices on allocations of objects. Individuals’ choices

are independent and each individual cares only about her own object allocation—as is

standard in canonical assignment/matching models without externalities: For any i ∈ N ,

Z ∈ H, and θi ∈ Θi, ci(Z, θi) ⊂ Z with ci(Z, θi) 6= ∅ constitutes the chosen object(s) from

Z by i when her type is θi. For any set of allocations S ∈ X , Hi(S) is the set of objects that

is assigned to i in allocations in S; i.e., Hi(S) := {xi ∈ H | x ∈ S}. The choices of i ∈ N on

allocations at θi ∈ Θi is as follows: for any S ∈ X , Cθi
i (S) := {x ∈ S | xi ∈ ci(Hi(S), θi)}.

So, the individual choices on allocations are independent.

In this setting, constrained efficiency has a natural appeal. It takes the following

specific form: Ẽc.eff
H consists of ẽ : N × Θ → H with ẽi(θ) 6= ẽj(θ) for all i 6= j and

all θ ∈ Θ such that (i) for all i ∈ N and all θ−i ∈ Θ−i, there is Hi(θ−i) ∈ H with

ẽi(θ̃i, θ−i) ∈ ci(Hi(θ−i), θ̃i) for all θ̃i ∈ Θi; and (ii) for all θ ∈ Θ, ∪i∈NHi(θ−i) = H.30

We say that the choice incompatibility on the set of objects H holds whenever for all

θ ∈ Θ and all h ∈ H, there are i, j ∈ N with i 6= j such that h /∈ ci(H, θi) and h /∈ cj(H, θj).
That is, for all states θ ∈ Θ and all objects h ∈ H, there are two individuals not choosing

h from H at θ. Indeed, this condition implies that the choice incompatible pair property

holds on the set of all allocations X. Hence, by Proposition 6, we obtain the following:

Corollary 2. Let n ≥ 3. Ẽc.eff
H is ex-post implementable on all domains satisfying the

choice incompatibility on the set of all objects H.

In what follows, we use the canonical model of choice with initial endowments of

Masatlioglu and Ok (2014) to highlight insights about ex-post implementation in an

allocation problem with endowment effects. We consider a setting in which individuals’

29This setup parallels the housing market analyzed in Shapley and Scarf (1974) and de Clippel (2014).
30Ec.eff given in (1) is equivalent to Ẽc.eff

H : To see Ec.eff implies Ẽc.eff
H , for all i ∈ N and all θ−i ∈ Θ−i,

set Hi(θ−i) = Hi(Y
θ−i

i ); to see Ẽc.eff
H implies Ec.eff, let Y

θ−i

i = {x ∈ X : xi = h for some h ∈ Hi(θ−i)}.
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choices on objects are given by (singleton-valued) choice functions as in Masatlioglu,

Nakajima, and Ozbay (2012).

The initial endowment profile, h∗ = (h∗i )i∈N ∈ X, is common knowledge among the

individuals and the planner. We note that H = ∪i∈N{h∗i }. Whether or not the initial

endowment of individual i affects her behavior is privately known only by herself. When

she is a rational type, her behavior does not feature any endowment effects; we denote

this case by θi = ♦i. But when she is a behavioral type and hence θi = h∗i , then her choices

may be affected by her initial endowment. Masatlioglu and Ok (2014) shows that under

some reasonable assumptions the choices of individual i can be represented by a utility

function Ui : H → R and a consideration set Qi(h
∗
i ) := {h̃ ∈ H : h̃ = ci({h̃, h∗i }, h∗i )} such

that i’s choices when she is a rational type are ci(S,♦i) = arg maxh∈S Ui(h), while if she

is a behavioral type her choices are ci(S, h
∗
i ) = arg maxh∈Qi(h∗i )∩S Ui(h). The consideration

set of i consists of all the houses that are chosen against the initial endowment h∗i in a

binary comparison. Meanwhile, LCSi(xi) := {h ∈ H : Ui(xi) ≥ Ui(h)}.
Masatlioglu and Ok (2014, Theorem 1) implies that a behavioral type’s choices when

her initial endowment is offered is as if she is maximizing her utility subject to her con-

sideration set, a (psychological) constraint induced by her initial endowment. In all other

cases, she is a standard utility maximizer. Appendix G provides further details.

This construction implies that individual i’s choices on allocations (obtained from her

choices on objects) are as follows: For all θ ∈ Θ and all S ∈ X ,

Cθi
i (S) :=


{x ∈ S | xi = ci(Hi(S), h∗i )} if θi = h∗i and h∗i ∈ Hi(S),

{x ∈ S | xi = ci(Hi(S),♦i)} if θi = h∗i and h∗i /∈ Hi(S),

{x ∈ S | xi = ci(Hi(S),♦i)} if θi = ♦i.

We note that if a mechanism does not provide individual i the option to keep her initial

endowment, h∗i , then she makes her choices as if she is rational.

The following refines our necessary conditions implied in this setup:

Proposition 7. Let Ui be individual i’s utility function and Qi(h
∗
i ) her consideration set

representing her choice behavior over the set of objects H as in Masatlioglu and Ok (2014,

Theorem 1). If an SCS F ∈ F is ex-post implementable, then there exists a collection

of sets S := {Si(f, θ−i) | i ∈ N, f ∈ F, θ−i ∈ Θ−i} consistent with F under incomplete

information such that

(i) if f(θ) = x, then Hi(Si(f, θ−i)) ⊂ LCSi(xi),

(ii) if f(θ) = x and xi /∈ Qi(h
∗
i ), then h∗i /∈ Hi(Si(f, θ−i)),

(iii) if f(θ) = x and xi = h∗i , then Hi(Si(f, θ−i)) ∩Qi(h
∗
i ) = {h∗i },

(iv) if f(θ) = x and xi 6= h∗i , then either h∗i /∈ Hi(Si(f, θ−i)) or xi ∈ Qi(h
∗
i ).
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In words, Proposition 7 says that an SCS F being ex-post implementable (and hence

possessing a consistent collection of sets) implies that the following hold: (i) if an SCF

f in SCS F equals allocation x at θ, then the objects offered to i at θ−i associated with

f , Hi(Si(f, θ−i)), is a subset of LCSi(xi). (ii) if f equals x at θ and xi is not in i’s

consideration set, Qi(h
∗
i ), then the set of objects offered to i at θ−i associated with f

cannot include i’s initial endowment, h∗i . (iii) if f equals x at θ such that i is allocated

her initial endowment h∗i , then the set of objects offered to i at θ−i associated with f

cannot include any object in the consideration set Qi(h
∗
i ) other than h∗i . Finally, (iv) says

that if f equals x at θ while xi 6= h∗i , then either xi is in i’s consideration set Qi(h
∗
i ) or

her initial endowment h∗i is not among the objects offered to i at θ−i associated with f .

Below, we present an allocation problem with endowment effects that showcases that

offering initial endowments as options in individuals’ opportunity sets helps the designer

with ex-post implementation.

Consider three individuals whose choices can be described by the canonical model of

choice with initial endowments: N = {1, 2, 3}, H = {I, II, III}, Θi = {♦i, h∗i } where

h∗1 = II, h∗2 = I, and h∗3 = III. The corresponding consideration sets are given by

Q1(h∗1) = {I, II}, Q2(h∗2) = {I, II, III}, and Q3(h∗3) = {III} while the corresponding

utilities are as given in Table 10. When individual 1 is a behavioral type, she suffers

Object U1 U2 U3

I 2 2 3
II 1 3 2
III 3 1 1

Table 10: Individuals utilities Ui, i = 1, 2, 3, of objects.

severely from status-quo bias as c1({I, II, III}, h∗1) = {I} but c1({I, III}, h∗1) = {III}.
Meanwhile, the choices of individual 3 of type h∗3 satisfies WARP even though she suffers

from an “extreme status-quo bias” as in Masatlioglu and Ok (2014, Example 2).

The planner wishes to ex-post implement the SCF f : Θ → X such that f(θ) =

(I, II, III) if θ = h∗ and f(θ) = (III, II, I) for any other θ 6= h∗, where h∗ = (h∗1, h
∗
2, h
∗
3).

That is, if all three individuals are of behavioral types, then the planner desires each indi-

vidual to get the object that maximizes her utility function subject to her consideration

set. Otherwise, the planner demands each individual i to get the object that maximizes

her utility function without any constraints. We note that f ∈ Ẽc.eff
H .31

It follows from Proposition 7 that {I, III} ⊂ H1(S1(h∗−1)) and {I, III} ⊂ H3(S3(h∗−3))

because f1(h∗) = I, f1(♦1, h
∗
−1) = III, f3(h∗) = III, f3(♦3, h

∗
−3) = I. As a result, consis-

31To see this, set H1(h∗−1) = {I, II, III}, H2(h∗−2) = {II}, and H3(h∗−3) = {III}; H1(θ−1) = {III}
for all θ−1 6= h∗−1, H2(θ−2) = {II} for all θ−2 6= h∗−2, and H3(θ−3) = {I} for all θ−3 6= h∗−3.
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tency demands that H1(S1(h∗−1)) equals {I, II, III} because if it were to equal {I, III},
c1({I, III}, h∗1) = c1({I, III},♦1) = {III} implies an impasse due to f1(h∗) = I. There-

fore, given that both of the others are of behavioral types, individual 1’s initial endowment,

object II, must be offered to her as an option to make her choose as the planner wishes,

and ex-post implementation of f is impossible if II is not in her opportunity set. On the

other hand, H3(S3(h∗−3)) equals either {I, III} or {I, II, III}. For any other θ−1 6= h∗−1,

f1(♦1, θ−1) = f1(h∗1, θ−1) = III. Thus, H1(S1(θ−1)) is either {III} or {I, III}. So, if

one of the others is rational, then 1’s endowment cannot be offered to her. For any other

θ−3 6= h∗−3, H3(S3(θ−3)) could be either {I, II} or {I} as f3(♦3, θ−3) = f3(h∗3, θ−3) = I.

One can show that the collection of sets S (of allocations) that induces the following are

consistent with the SCF f under incomplete information: H1(S1(h∗−1)) = {I, II, III} and

H1(S1(θ−1)) = {III} for all θ−1 6= h∗−1; H2(S2(θ−2)) = {II} for all θ−2; H3(S3(h∗−3)) =

{I, III} and H3(S3(θ−3)) = {I} for all θ−3 6= h∗−3.

This consistent collection of sets enables us to construct the following mechanism

µ = (M, g) to ex-post implement SCF f : M1 = {U,C,D}, M2 = {M}, M3 = {L,R}
and g : M → X is as in Table 11. Notice that Oµ

1 (M,L) = {I, II, III} and Oµ
1 (M,R) =

Ind. 2 chooses M
Ind. 3

Ind. 1

L R
U (I, II, III) (III, II, I)
C (II, I, III) (III, II, I)
D (III, II, I) (III, II, I)

Table 11: A mechanism that ex-post implements f .

{III}. One can show that any EPE strategy σ∗1(θ1) equals D if θ1 = ♦1 and U if θ1 = h∗1.

This conclusion is based on employing individual 1’s initial endowment, object II, in her

opportunity set Oµ
1 (M,L). Also, the unique EPE strategy of individual 3, σ∗3(θ3), equals

R if θ3 = ♦3 and L if θ3 = h∗3 as Oµ
3 (U,M) = {I, III} and Oµ

3 (D,M) = {I}.
This example also displays that the revelation principle fails with independent choices:

The direct mechanism associated with f is as in Table 12. At state (h∗1, h
∗
2, h
∗
3), Oµ

1 (h∗2, h
∗
3) =

{I, III} and the EPE strategy of 1 must be σ∗1(θ1) = ♦1 for all θ1 ∈ {♦1, h
∗
1} as III =

c1({I, III},♦1) = c1({I, III}, h∗1). Thus, we obtain an impasse due to f1(h∗1, h
∗
2, h
∗
3) = I.

To provide comparative statics using this example, we refer to the above specifica-

tions as the behavioral-bias case. We construct an associated no-behavioral-bias case in

the rational domain with the property that the only difference pertaining to individuals’

choices involves individual 1’s behavior.32 Consider individuals’ rational choices as repre-

32In the no-behavioral-bias case, individuals’ choices are affected by their initial endowments while
WARP holds in all states of the world.
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Ind. 3 chooses h∗3 Ind. 3 chooses ♦3

Ind. 2

Ind. 1
h∗2 ♦2

h∗1 (I, II, III) (III, II, I)
♦1 (III, II, I) (III, II, I)

Ind. 2

Ind. 1
h∗2 ♦2

h∗1 (III, II, I) (III, II, I)
♦1 (III, II, I) (III, II, I)

Table 12: The direct mechanism associated with f .

sented by the payoffs given in Table 13. When individual 1’s type is h∗1, her choice from

Object U♦1
1 U

h∗1
1 U♦2

2 U
h∗2
2 U♦3

3 U
h∗3
3

I 2 3 2 2 3 2
II 1 2 3 3 2 1
III 3 1 1 1 1 3

Table 13: Individuals utilities Ui, i = 1, 2, 3, of objects with no behavioral biases.

{I, III} is {III} in the behavioral-bias case and it is {I} in the no-behavioral-bias case,

while the choices of every individual in the no-behavioral-bias and behavioral-bias cases

coincide in all other contingencies, as can be seen in Table 14. Thus, the transition from

Z c1(Z,♦1) c1(Z, h∗1) c2(Z,♦2) c2(Z, h∗2) c3(Z,♦3) c3(Z, h∗3)
{I, II, III} III I II II I III
{I, II} I I II II I I

{I, III} III III I I I III
{II, III} III II II II II III

The behavioral-bias case

Z c1(Z,♦1) c1(Z, h∗1) c2(Z,♦2) c2(Z, h∗2) c3(Z,♦3) c3(Z, h∗3)
{I, II, III} III I II II I III
{I, II} I I II II I I

{I, III} III I I I I III
{II, III} III II II II II III

The no-behavioral-bias case

Table 14: Individuals’ choices in the behavioral-bias and no-behavioral-bias cases.

the no-behavioral-bias to the behavioral-bias case entails only individual 1’s choices from

{I, III} when her type is h∗1. Then, one can show that, unlike in the behavioral-bias case,

the direct mechanism associated with f specified in Table 12 fully ex-post implements f

in the no-behavioral-bias case.
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Therefore, in the behavioral-bias case the planner is obliged to use a mechanism that

includes individual 1’s initial endowment, II, as a possible outcome in order to secure the

consistency of her choices with the desired goal. However, as the SCF f does not assign

individual 1 her initial endowment at any state, in the no-behavioral-bias case, ex-post

implementation does not compel the planner to offer individual 1 her initial endowment.

8 Direct Mechanisms and Independent Choices

We start this section by evaluating the significance of direct mechanisms pertinent

to ex-post implementation in general environments including interdependent choices.

Thereby, we portray settings where ex-post implementation is attainable using intuitive

mechanisms. We focus on SCFs instead of SCSs since direct mechanisms cannot coor-

dinate selections of SCFs from an SCS. Given an SCF f , there is an intertwined link

between the consistency of the collection F := {f(Θi, θ−i) | i ∈ N, θ−i ∈ Θ−i} and ex-post

implementability of f via its direct mechanism. This connection results in (i) of Theorem

4, our first characterization of situations in which ex-post implementation is possible only

when ex-post implementation via the direct mechanism is possible. Moreover, we provide

a second characterization, which is akin to Bergemann and Morris (2008, Proposition 1),

using the following condition we borrow from that study: An SCF f is full-range if for

all x ∈ X, all i ∈ N , and all θ−i ∈ Θ−i, there is θi ∈ Θi with f(θ) = x.

Theorem 4. Let f : Θ→ X be an SCF.

(i) f is (fully) ex-post implementable by its associated direct mechanism possessing a

truthful EPE if and only if the collection F := {f(Θi, θ−i) : i ∈ N, θ−i ∈ Θ−i} is

consistent with f under incomplete information. 33, 34

(ii) If f is full-range, then f is ex-post implementable if and only if it is (fully) ex-post

implementable via its direct mechanism.

Next, we analyze the implications of independent choices with regard to ex-post im-

plementation. Let i’s choices at θ ∈ Θ be described by Cθi
i : X → X such that Cθi

i (S) ⊂ S

for any S ∈ X . Then, consistency under incomplete information simplifies to: A collec-

tion of sets S := {Si(θ−i) | i ∈ N, θ−i ∈ Θ−i} ⊂ X is independent–consistent with

the SCF f under incomplete information if

33The direct mechanism associated with f may also have an untruthful EPE. But, the outcome of this
EPE must coincide with f whenever f is (fully) ex-post implementable by its direct mechanism.

34The example of Section 7 shows that indirect ex-post implementation is achievable while direct
ex-post implementation is not possible even when individuals’ choices are independent: f is ex-post
implementable via the indirect mechanism given in Table 11, whereas F is not consistent with f because
H1(f(Θ1, h

∗
−1)) = {I, III} but, in any consistent collection S, H1(S1(f, h∗−1)) must equal {I, II, III}.
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(i) for all i ∈ N and all θ′i ∈ Θi, f(θ′i, θ−i) ∈ C
θ′i
i (Si(θ−i)) for all θ−i ∈ Θ−i, and

(ii) for any deception profile α with f ◦ α 6= f , there are i∗ ∈ N and θ∗ ∈ Θ with

f(α(θ∗)) /∈ Cθ∗
i∗
i∗ (Si∗(α−i∗(θ

∗
−i∗))).

By (i) of independent-consistency, for all i ∈ N and θ−i ∈ Θ−i, f(Θi, θ−i) ⊂ Si(θ−i). Thus,

independent-consistency implies weak choice strategy-proofness (quasi-ex-post choice in-

centive compatibility with independent choices): An SCF f : Θ → X is weak choice

strategy-proof if there is a collection of sets S∗ = {S∗i (θ−i) | i ∈ N, θ−i ∈ Θ−i} with

for all i ∈ N and all θ−i ∈ Θ−i, f(Θi, θ−i) ⊂ S∗i (θ−i) and f(θ̂i, θ−i) ∈ C θ̂i
i (S∗i (θ−i)) for all

θ̂i ∈ Θi; choice strategy-proofness holds if for all i ∈ N , f(θ′i, θ−i) ∈ C
θ′i
i (f(Θi, θ−i))

for all θ′i ∈ Θi. Under the IIA, these notions are equivalent; under rationality, they equal

dominant strategies incentive compatibility (Bergemann & Morris, 2008, Definition 21).35

Another equilibrium concept suitable to incomplete information and independent

choices is the notion of dominant equilibrium analyzed in Mizukami and Wakayama

(2007) in the rational domain: Given a mechanism µ, a strategy profile s = (si)i∈N

with si : Θi → Mi is a dominant equilibrium of µ if for all i ∈ N and all θi ∈ Θi,

g(si(θi), m̃−i) ∈ Cθi
i (Oµ

i (m̃−i)) for all m̃−i ∈ M−i. But s is an EPE of µ if for all i ∈ N
and θi ∈ Θi, g(si(θi), s−i(θ−i)) ∈ Cθi

i (Oµ
i (s−i(θ−i))). Thus, the intricate relation between

the dominant equilibrium and EPE with independent choices is: (i) any dominant equi-

librium of µ is an EPE of µ; (ii) if s is an EPE of µ such that for all m̃−i ∈ M−i there

is θ̃−i ∈ Θ−i with s−i(θ̃−i) = m̃−i (s satisfies a full-range condition), then s is a dominant

equilibrium of µ. So, given f , the truthtelling strategy profile is a dominant equilibrium

of f ’s direct mechanism µf if and only if it is an EPE of µf .

With interdependence, dominant equilibrium loses its appeal due to its stringent re-

quirements we describe below: Given a mechanism µ, s∗ is a dominant equilibrium

of µ with interdependent choices if for all i ∈ N and all θ ∈ Θ, g(s∗i (θi), m̃−i) ∈
C

(θi,θ−i)
i (Oµ

i (m̃−i)) for all m̃−i ∈ M−i. Since s∗i is measurable only with respect to Θi,

s∗ being a dominant equilibrium of µ with interdependent choices is equivalent to for all

i ∈ N and for all θi ∈ Θi, g(s∗i (θi), m̃−i) ∈ C
(θi,θ̃−i)
i (Oµ

i (m̃−i)) for all m̃−i ∈ M−i and all

θ̃−i ∈ Θ−i. Therefore, s∗i is a strategy such that for any θi ∈ Θi, s
∗
i (θi) leads to a cho-

sen alternative from each opportunity set of i generated by any one of others’ messages

m̃−i ∈M−i at any one of the states (θi, θ̃−i), for all type profiles of others θ̃−i ∈ Θ−i.

35The SCF f of the example in Section 7 is weak choice strategy-proof, but not choice strategy-proof.
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9 Simple Mechanisms

There is a growing interest in simple mechanisms in the mechanism design literature.36

Dealing with individuals having limited cognitive abilities increases the relevance and

importance of the simplicity of mechanisms. But, “[t]he question as to what constitutes

a “simple” mechanism is a difficult and controversial one” (Dutta, Sen, & Vohra, 1995).

We consider the total number of message profiles of a mechanism as a measure of its

simplicity. Our measure is similar in spirit with the total size of message spaces used

to analyze communication complexity in Segal (2007, 2010) building upon the literature

on realization, message processes, and communication protocols (Williams, 1986; Reichel-

stein & Reiter, 1988).37 These studies seek the “minimal information that must be elicited

by the designer in order to achieve the goals” within the framework of communication

protocols with verification properties, whereas our analysis aims to answer the same ques-

tion restricting attention directly to mechanisms implementing a given social goal. As a

result, even though our notions of simplicity are similar, they do not produce perfectly

aligned implications (see Appendix F for the details).

Using our necessity result, we derive lower bounds on the cardinality of message profiles

needed for behavioral implementation under incomplete information: In the proof of

Theorem 1, the collection of sets S = {Si(f, θ−i) | f ∈ F, i ∈ N, θ−i ∈ Θ−i} consistent

with the SCS F is constructed from a mechanism that ex-post implements F . When

there are multiple such mechanisms, there could be different collections of sets consistent

with the same SCS. How many sets there are in a collection, and how small these sets

are, turn out to be important when designing simple mechanisms. Let {Sλ}λ∈Λ be the

set of all consistent collections of sets represented by Sλ = {Sλi }i∈N for each λ ∈ Λ

with Sλi = {Sλi (f, θ−i) | f ∈ F, θ−i ∈ Θ−i}. The goal of the planner is to select one of

these collections and design a mechanism that ex-post implements F . Suppose that Sλ is

the collection of opportunity sets generated by the mechanism that ex-post implements

F . Then, individual i is able to generate any set in Sλi and hence i must have at least

as many messages as the cardinality of the maximal set in Sλi . This implies that the

minimum number of messages required for individual i is minλ∈Λ maxS∈Sλi #S. At the

same time, for each different set in Sλi , there must exist a particular message profile of

the individuals other than i that should allow i to generate this particular set, which

implies that the minimum number of message profiles required for the individuals other

than i is minλ∈Λ #Sλi . So, the total number of message profiles in this mechanism must

be at least as much as the cardinality of Sλi times the cardinality of the maximal set

36See for example, Li (2017), Borgers and Li (2018), and Pycia and Troyan (2019).
37We thank an anonymous referee for pointing us toward the link with these studies.
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in Sλi for each i ∈ N . That is, the measure of simplicity of this mechanism is at least

maxi∈N(#Sλi maxS∈Sλi #S). Furthermore, the total number of message profiles required in

this mechanism must be more than
∏

i∈N maxS∈Sλi #S. Combining these, we observe that

the total number of message profiles must exceed both minλ∈Λ maxi∈N(#Sλi maxS∈Sλi #S)

and minλ∈Λ(
∏

i∈N maxS∈Sλi #S).

The following theorem summarizes the lower bounds established above:

Theorem 5. In any mechanism that ex-post implements the SCS F ∈ F ,

(i) the minimum number of messages required for individual i is minλ∈Λ maxS∈Sλi #S,

(ii) the minimum number of message profiles required for the individuals other than i is

minλ∈Λ #Sλi , and

(iii) the minimum number of total message profiles is

max
{

minλ∈Λ maxi∈N(#Sλi maxS∈Sλi #S),minλ∈Λ(
∏

i∈N maxS∈Sλi #S)
}

.

Whether or not the presence of behavioral aspects initiate simpler mechanisms is an

interesting and natural question. But it needs a structure for being well-defined. The

example of Section 7 provides a suitable framework in which we address this question in

the context of allocation problems with endowment effects and independent choices by

comparing the no-behavioral-bias case to the behavioral-bias case with only one individual

suffering severely from a status-quo bias (see Table 14). In that setting, we provide an

answer to this question: behavioral aspects induce less simple mechanisms.

First, notice that in that example individual 2’s behavior is independent of her type

and hence we now let Θ2 = {♦2}. Second, the transition from the no-behavioral-bias to

the behavioral-bias case is minimal in the sense that it entails a deviation from rationality

only for individual 1’s choices from {I, II, III} and {I, III} when her type is h∗1.

In the no-behavioral-bias case, the planner may use a direct mechanism to ex-post

implement the given SCF f : Θ→ X, which follows from Theorem 4 and F := {f(Θi, θ−i) :

i ∈ N, θ−i ∈ Θ−i} being independent-consistent with f under incomplete information.38

The direct mechanism associated with f is as in Table 15 and one can verify that this

mechanism ex-post implements f . The total number of message profiles, its measure

of simplicity, is four. In the behavioral-bias case, the mechanism in Table 11 ex-post

implements f , and the measure of its simplicity equals six.

We observe the following: First, the direct mechanism given in Table 15 does not ex-

post implement f in the behavioral-bias case. Second, the indirect mechanism presented

38Then, f is strategy-proof (Mizukami & Wakayama, 2007) as it is choice strategy-proof (by necessity),
a notion which is equivalent to strategy-proofness under rationality. See page 29 for the details.
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Ind. 2 chooses ♦2

Ind. 3

Ind. 1
h∗3 ♦3

h∗1 (I, II, III) (III, II, I)
♦1 (III, II, I) (III, II, I)

Table 15: The direct mechanism of the no-behavioral bias case.

in Table 11 ex-post implements f both in the behavioral-bias and no behavioral-bias

cases. Third, these mechanisms are the simplest ones of the corresponding cases. The

main cause of this discrepancy involves whether or not the mechanism offers individual 1

her initial endowment (which is not assigned to her at any state under f) as an option

to ensure the consistency of her choices with f : She needs to switch her choices between

her types ♦1 and h∗1 (as called for by f) in the behavioral-bias case. Thus, she must

have an additional action resulting in her initial endowment. Therefore, the simplest

mechanism in the behavioral-bias case is less simple than the simplest mechanism in the

no-behavioral-bias case.

The general analysis of the question about whether or not behavioral aspects initiate

less simple mechanisms necessitates adopting a particular behavioral bias and a systematic

method of associating resulting cases with their rational counterparts. We leave the

analysis of this interesting subject for future research.

10 Concluding Remarks

We investigate the problem of implementation under incomplete information when

individuals’ choices need not satisfy the standard axioms of rationality.

The focus is on full implementation in EPE because (i) the revelation principle fails

for partial implementation, and hence, one cannot restrict attention to direct mechanisms

without a loss of generality; and (ii) the concept of EPE is belief-free, does not require

any expectation considerations or any belief updating, and is robust to informational

assumptions regarding the environment, which makes it well suited when individuals’

choices violate WARP.

We provide necessary as well as sufficient conditions. These help us analyze (con-

strained) efficiency and allocation problems with endowment effects. We present condi-

tions characterizing instances when the social goal is ex-post implementable via direct

mechanisms. Finally, our necessary conditions provide us with hints regarding the limits

of simplicity for behavioral implementation under incomplete information.

An interesting direction for future research would be to analyze whether practical and

simple mechanisms are available for specific types of behavioral biases. We hope that our

results pave the way for contributions in this direction.
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A Proofs

A.1 Proof of Claim 1

We identify all EPE of µ = (M, g) by a case by case analysis on what Ann plays when

her type is ρA. Let σ∗ be an ex-post equilbirium of µ = (M, g).

Case 1. If σ∗A(ρA) = U : Then, Oµ
B(σ∗A(ρA)) = {c, n}. At (ρA, ρB) and (ρA, γB), Bob

chooses n from the set {c, n}. Thus, σ∗B(ρB) and σ∗B(γB) must be either L or R.

Subcase 1.1. If σ∗B(ρB) = L and σ∗B(γB) = L: Then, g(σ∗(ρA, ρB)) = n = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = Oµ

A(σ∗B(γB)) = {c, n}. At (γA, ρB), Ann chooses n from {c, n}
and hence σ∗A(γA) must be either U or D. But, at (γA, γB), Ann chooses c from {c, n}
which implies σ∗A(γA) must be M , a contradiction.

Subcase 1.2. If σ∗B(ρB) = L and σ∗B(γB) = R: Then, g(σ∗(ρA, ρB)) = n = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = {c, n} and Oµ

A(σ∗B(γB)) = {c, n, s}. At (γA, ρB), Ann chooses n

from {c, n}, which implies σ∗A(γA) must be either U or D. At (γA, γB), Ann chooses c and

s from {c, n, s}, which implies σ∗A(γA) must be M or D. So, σ∗A(γA) = D.

Indeed, the following observations imply that our first EPE is σ′∗ such that σ′∗A(ρA) =

U , σ′∗A(γA) = D, and σ′∗B(ρB) = L, σ′∗B(γB) = R

At (ρA, ρB) : n ∈ C(ρA,ρB)
A ({c, n}) =⇒ g(σ′∗(ρA, ρB)) ∈ C(ρA,ρB)

A (Oµ
A(σ′∗B(ρB))),

n ∈ C(ρA,ρB)
B ({c, n}) =⇒ g(σ′∗(ρA, ρB)) ∈ C(ρA,ρB)

B (Oµ
B(σ′∗A(ρA))).

At (ρA, γB) : n ∈ C(ρA,γB)
A ({c, n, s}) =⇒ g(σ′∗(ρA, γB)) ∈ C(ρA,γB)

A (Oµ
A(σ′∗B(γB))),

n ∈ C(ρA,γB)
B ({c, n}) =⇒ g(σ′∗(ρA, γB)) ∈ C(ρA,γB)

B (Oµ
B(σ′∗A(ρA))).

At (γA, ρB) : n ∈ C(γA,ρB)
A ({c, n}) =⇒ g(σ′∗(γA, ρB)) ∈ C(γA,ρB)

A (Oµ
A(σ′∗B(ρB))),

n ∈ C(γA,ρB)
B ({n, s}) =⇒ g(σ′∗(γA, ρB)) ∈ C(γA,ρB)

B (Oµ
B(σ′∗A(γA))).

At (γA, γB) : s ∈ C(γA,γB)
A ({c, n, s}) =⇒ g(σ′∗(γA, γB)) ∈ C(γA,γB)

A (Oµ
A(σ′∗B(γB))),

s ∈ C(γA,γB)
B ({n, s}) =⇒ g(σ′∗(γA, γB)) ∈ C(γA,γB)

B (Oµ
B(σ′∗A(γA))).

Subcase 1.3. If σ∗B(ρB) = R and σ∗B(γB) = L: Then, g(σ∗(ρA, ρB)) = n = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = {c, n, s} and Oµ

A(σ∗B(γB)) = {c, n}. At (γA, ρB), Ann chooses n

from {c, n, s}, which implies σ∗A(γA) must be U . On the other hand, at (γA, γB), Ann

chooses n from {c, n}, which implies σ∗A(γA) must be U or D. Therefore, we must have

σ∗A(γA) = U . This implies Oµ
B(σ∗A(γA)) = {c, n}. But, at (γA, ρB), Bob chooses c from

{c, n} even though it would be g(σ∗(γA, ρB)) = n, a contradiction.

Subcase 1.4. If σ∗B(ρB) = R and σ∗B(γB) = R: Then, g(σ∗(ρA, ρB)) = n = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = Oµ

A(σ∗B(γB)) = {c, n, s}. At (γA, ρB), Ann chooses n from {c, n, s},
which implies σ∗A(γA) must be U . But, at (γA, γB), Ann chooses c and s from {c, n, s},
which implies σ∗A(γA) must be either M or D, a contradiction.

33



Case 2. If σ∗A(ρA) = M : Then, Oµ
B(σ∗A(ρA)) = {c, s}. At (ρA, ρB) and (ρA, γB), Bob

chooses s from the set {c, s}. Therefore, σ∗B(ρB) and σ∗B(γB) must both be M . Then,

Oµ
A(σ∗B(ρB)) = Oµ

A(σ∗B(γB)) = {c, s}. At (γA, ρB) and (γA, γB) Ann chooses c from the set

{c, s}, which implies it must be that σ∗A(ρA) = U .

Then, the following observations imply that our second EPE is σ′′′∗ such that σ′′′∗A (ρA) =

M , σ′′′∗A (γA) = U , and σ′′′∗B (ρB) = M , σ′′′∗B (γB) = M

At (ρA, ρB) : s ∈ C(ρA,ρB)
A ({c, s}) =⇒ g(σ′′′∗(ρA, ρB)) ∈ C(ρA,ρB)

A (Oµ
A(σ′′′∗B (ρB))),

s ∈ C(ρA,ρB)
B ({c, s}) =⇒ g(σ′′′∗(ρA, ρB)) ∈ C(ρA,ρB)

B (Oµ
B(σ′′′∗A (ρA))).

At (ρA, γB) : s ∈ C(ρA,γB)
A ({c, s}) =⇒ g(σ′′′∗(ρA, γB)) ∈ C(ρA,γB)

A (Oµ
A(σ′′′∗B (γB))),

s ∈ C(ρA,γB)
B ({c, s}) =⇒ g(σ′′′∗(ρA, γB)) ∈ C(ρA,γB)

B (Oµ
B(σ′′′∗A (ρA))).

At (γA, ρB) : c ∈ C(γA,ρB)
A ({c, s}) =⇒ g(σ′′′∗(γA, ρB)) ∈ C(γA,ρB)

A (Oµ
A(σ′′′∗B (ρB))),

c ∈ C(γA,ρB)
B ({c, n}) =⇒ g(σ′′′∗(γA, ρB)) ∈ C(γA,ρB)

B (Oµ
B(σ′′′∗A (γA))).

At (γA, γB) : c ∈ C(γA,γB)
A ({c, s}) =⇒ g(σ′′′∗(γA, γB)) ∈ C(γA,γB)

A (Oµ
A(σ′′′∗B (γB))),

c ∈ C(γA,γB)
B ({c, n}) =⇒ g(σ′′′∗(γA, γB)) ∈ C(γA,γB)

B (Oµ
B(σ′′′∗A (γA))).

Case 3. If σ∗A(ρA) = D: Then, Oµ
B(σ∗A(ρA)) = {n, s}. At (ρA, ρB) and (ρA, γB), Bob

chooses s from the set {n, s}. Therefore, σ∗B(ρB) and σ∗B(γB) must be either M or R.

Subcase 3.1. If σ∗B(ρB) = M and σ∗B(γB) = M : So, g(σ∗(ρA, ρB)) = s = g(σ∗(ρA, γB)).

We have Oµ
A(σ∗B(ρB)) = Oµ

A(σ∗B(γB)) = {c, s}. At (γA, ρB) and (γA, γB), Ann chooses c

from {c, s}, which implies it must be σ∗A(γA) = U .

Indeed, the following observations imply that our third EPE is σ′′∗ such that σ′′∗A (ρA) =

D, σ′′∗A (γA) = U , and σ′′∗B (ρB) = M , σ′′∗B (γB) = M .

At (ρA, ρB) : s ∈ C(ρA,ρB)
A ({c, s}) =⇒ g(σ′′′∗(ρA, ρB)) ∈ C(ρA,ρB)

A (Oµ
A(σ′′∗B (ρB))),

s ∈ C(ρA,ρB)
B ({n, s}) =⇒ g(σ′′∗(ρA, ρB)) ∈ C(ρA,ρB)

B (Oµ
B(σ′′∗A (ρA))).

At (ρA, γB) : s ∈ C(ρA,γB)
A ({c, s}) =⇒ g(σ′′∗(ρA, γB)) ∈ C(ρA,γB)

A (Oµ
A(σ′′∗B (γB))),

s ∈ C(ρA,γB)
B ({n, s}) =⇒ g(σ′′∗(ρA, γB)) ∈ C(ρA,γB)

B (Oµ
B(σ′′∗A (ρA))).

At (γA, ρB) : c ∈ C(γA,ρB)
A ({c, s}) =⇒ g(σ′′∗(γA, ρB)) ∈ C(γA,ρB)

A (Oµ
A(σ′′∗B (ρB))),

c ∈ C(γA,ρB)
B ({c, n}) =⇒ g(σ′′∗(γA, ρB)) ∈ C(γA,ρB)

B (Oµ
B(σ′′∗A (γA))).

At (γA, γB) : c ∈ C(γA,γB)
A ({c, s}) =⇒ g(σ′′∗(γA, γB)) ∈ C(γA,γB)

A (Oµ
A(σ′′∗B (γB))),

c ∈ C(γA,γB)
B ({c, n}) =⇒ g(σ′′∗(γA, γB)) ∈ C(γA,γB)

B (Oµ
B(σ′′∗A (γA))).

Subcase 3.2. If σ∗B(ρB) = M and σ∗B(γB) = R: So, g(σ∗(ρA, ρB)) = s = g(σ∗(ρA, γB)). We

have Oµ
A(σ∗B(ρB)) = {c, s} and Oµ

A(σ∗B(γB)) = {c, n, s}. At (γA, ρB), Ann chooses c from

{c, s}, which implies σ∗A(γA) must be U . On the other hand, at (γA, γB), Ann chooses c

and s from {c, n, s}, which implies σ∗A(γA) must be M or D, a contradiction.
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Subcase 3.3. If σ∗B(ρB) = R and σ∗B(γB) = M : So, g(σ∗(ρA, ρB)) = s = g(σ∗(ρA, γB)). We

have Oµ
A(σ∗B(ρB)) = {c, n, s} and Oµ

A(σ∗B(γB)) = {c, s}. At (γA, ρB), Ann chooses n from

{c, n, s}, and at (γA, γB), Ann chooses c from {c, n}. They both imply we must have

σ∗A(γA) = U . Thus, Oµ
B(σ∗A(γA)) = {c, n}. But, at (γA, ρB), Bob chooses c from {c, n}

even though it would be g(σ∗(γA, ρB)) = n, a contradiction.

Subcase 3.4. If σ∗B(ρB) = R and σ∗B(γB) = R: So, g(σ∗(ρA, ρB)) = s = g(σ∗(ρA, γB)). We

have Oµ
A(σ∗B(ρB)) = Oµ

A(σ∗B(γB)) = {c, n, s}. At (γA, ρB), Ann chooses n from {c, n, s},
which implies σ∗A(γA) must be U . On the other hand, at (γA, γB), Ann chooses c, s from

{c, n, s}, which implies σ∗A(γA) must be M or D, a contradiction.

Therefore, there are exactly three EPE of the mechanism µ = (M, g), σ′∗, σ′′∗, and

σ′′′∗, as identified above where g(σ′′∗(θ)) = g(σ′′′∗(θ)) for all θ ∈ Θ: g(σ′′∗(ρA, ρB)) =

g((D,M)) = g((M,M)) = s = g(σ′′′∗(ρA, ρB)); g(σ′′∗(ρA, γB)) = g((D,M)) = g((M,M))

= s = g(σ′′′∗(ρA, γB)); g(σ′′∗(γA, ρB)) = g((U,M)) = c = g(σ′′′∗(γA, ρB)); g(σ′′∗(γA, γB))

= g((U,M)) = c = g(σ′′′∗(γA, γB)).

A.2 Proofs of Propositions 1, 2, and 3

Proof of Proposition 1. Let S be a non-empty collection of sets consistent with an SCS

F under incomplete information and let S∗ := Si∗(f, α−i∗(θ−i∗)) ∈ S. Then, condition (i)

of ex-post choice monotonicity follows from condition (ii) of Definition 3 while condition

(ii) of ex-post choice monotonicity follows from (i) of Definition 3.

Proof of Proposition 2. Let S be a non-empty collection of sets consistent with an SCS F

under incomplete information and take any f ∈ F , θ ∈ Θ, i ∈ N and let S := Si(f, θ−i) ∈
S. By (i) of Definition 3, f(θ) ∈ Cθ

i (Si(f, θ−i)) implies f(θ) ∈ Cθ
i (S) establishing the first

condition of quasi-ex-post choice incentive compatibility. Furthermore, since f(θ′i, θ−i) ∈
C

(θ′i,θ−i)
i (Si(f, θ−i)) for each θ′i ∈ Θi due to (i) of Definition 3, we have f(θ′i, θ−i) ∈ S for

each θ′i ∈ Θi establishing the second condition.

Proof of Proposition 3. Suppose the individual choices satisfy the IIA and let f be par-

tially (ex-post) implemented by the mechanism µ. Then, Theorem 1 together with Propo-

sition 2 implies that f is quasi-ex-post choice incentive compatible. That is, for every

θ ∈ Θ, i ∈ N there exists S ∈ X such that f(θ) ∈ Cθ
i (S) and f(Θi, θ−i) ⊆ S; by the IIA,

f(θ) ∈ Cθ
i ({f(θ′i, θ−i)|θ′i ∈ Θi}). Therefore, the revelation principle holds.

A.3 The mechanism with three or more individuals

Our mechanism makes use of the following observations: (i) the outcome should be

f(θ) when there is unanimous agreement between the individuals over f ∈ F and the

true state is θ; (ii) under such a unanimous agreement each individual j should be able

to generate unilaterally the set Sj(f, θ−j), i.e., when all other individuals (all i 6= j)

35



have unanimously decided on the particular SCF f ∈ F and sending messages as if their

types are θ−j ∈ Θ−j, j should be able to generate Sj(f, θ−j); (iii) whenever there is an

attempt to deceive the designer so that an outcome not compatible with the SCS is to be

implemented, a whistle-blower should be able to alert the designer; (iv) undesirable EPE

should be eliminated, e.g., by a modulo game or an integer game.39

Consider an SCS F ∈ F for which the collection of sets S := {Si(f, θ−i) : i ∈ N, f ∈
F, θ−i ∈ Θ−i} and X̄ are as specified in Theorem 2 or Theorem 3. For any i ∈ N , f ∈ F ,

θ−i ∈ Θ−i, let x̄(i, f, θ−i) be an arbitrary alternative in Si(f, θ−i).

The mechanism µ = (M, g) is defined as follows: The message space of each individual

i ∈ N is Mi = F ×Θi× X̄ ×N , while a generic message is denoted by mi = (f, θi, xi, ki),

and the outcome function g : M → X is as specified in Table 16.

Rule 1 : g(m) = f(θ) if mi = (f, θi, ·, ·) for all i ∈ N,

Rule 2 : g(m) =

{
xj if xj ∈ Sj(f, θ−j),
x̄(j, f, θ−j) otherwise.

if mi = (f, θi, ·, ·) for all i ∈ N \ {j}
and mj = (f̃, θ̃j, xj, ·) with f̃ 6= f,

Rule 3 : g(m) = xj where j =
∑

i ki (mod n) otherwise.

Table 16: The outcome function of the mechanism with three or more individuals.

In words, each individual is required to send a message that specifies an SCF f ∈ F ,

a type for himself θi ∈ Θi, an alternative xi in X̄, and a number ki ∈ N = {1, 2, . . . , n}.
Rule 1 indicates that if there is unanimity among the individuals’ messages regarding the

SCF to be implemented, then the outcome is determined according to this SCF and the

reported type profile in the messages. Rule 2 indicates that if there is agreement between

all the individuals but one regarding the SCF f ∈ F in their messages, then the outcome

is determined according to the alternative proposed by the odd-man-out, j, only if this

alternative is in Sj(f, θ−j), otherwise the outcome is x̄(j, f, θ−j) which is in Sj(f, θ−j)

as well. That is, when all the other individuals (all i 6= j) have unanimously decided

on the particular SCF f ∈ F and sending messages as if their types are θ−j ∈ Θ−j,

the odd-man-out j is able to generate unilaterally Sj(f, θ−j)—and nothing else since

x̄(i, f, θ−i) ∈ Sj(f, θ−j). Finally, Rule 3 applies when both Rule 1 and Rule 2 fail, then

the outcome is determined only according to the reported numbers (ki’s) and the outcome

xj is implemented where j is the individual
∑

i ki modulo n. Rule 3 makes sure that there

is no undesirable EPE of the mechanism. We need at least three individuals for our

mechanism to be well-defined. Otherwise, Rule 2 becomes ambiguous.

39Our mechanism resembles those used for sufficiency in the implementation literature. See for example,
Repullo (1987), Saijo (1988), Moore and Repullo (1990), Jackson (1991), Danilov (1992), Maskin (1999),
Bergemann and Morris (2008), de Clippel (2014), Koray and Yildiz (2018).
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A.4 Proof of Theorem 2

Consider the mechanism µ = (M, g) constructed in Appendix A.3.

First, we show that for any f ∈ F , there exists an EPE, σf , of µ = (M, g) such that

f = g ◦ σf . This implies that condition (i) of ex-post implementability (see Definition 2)

holds: Take any f ∈ F , let σfi (θi) = (f, θi, x, 1) for each i ∈ N and for some arbitrary

x ∈ X̄. By Rule 1, we have g(σf (θ)) = f(θ) for each θ ∈ Θ, i.e., f = g ◦ σf . Observe

that for any unilateral deviation by individual i from σf , either Rule 1 or Rule 2 applies,

i.e., Rule 3 is not attainable by any unilateral deviation from σf . If individual i deviates

to mi = (f, θi, x
′, n′) when her type is θi, then Rule 1 continues to apply at θ and the

outcome continues to be f(θ), which is in Si(f, θ−i) since, by condition (i) of consistency,

f(θ) ∈ Cθ
i (Si(f, θ−i)). If individual i deviates to mi = (f, θ′i, x

′, n′) with θ′i 6= θi when her

type is θi, then Rule 1 continues to apply at θ and the outcome at θ becomes f(θ′i, θ−i),

which is in Si(f, θ−i) as well since f(θ′i, θ−i) ∈ C
(θ′i,θ−i)
i (Si(f, θ−i)), again by condition

(i) of consistency. If individual i deviates to mi = (f ′, θ′i, x
′, n′) with f ′ 6= f when

her type is θi, then Rule 2 applies at θ and the outcome at θ becomes x′ if x′ is in

Si(f, θ−i), and otherwise x̄(i, f, θ−i), which is already in Si(f, θ−i) as well. This means, as

Si(f, θ−i) ⊂ X̄ for each θ ∈ Θ, i ∈ N , under σf , at any θ ∈ Θ, by unilateral deviations,

individual i can generate every alternative in Si(f, θ−i) and nothing else. That is, by

construction, Oµ
i (σf−i(θ−i)) = Si(f, θ−i) for each θ ∈ Θ, i ∈ N . Since, by (i) of consistency,

f(θ) ∈ Cθ
i (Si(f, θ−i)) for each i ∈ N , we have for each θ ∈ Θ, g(σf (θ)) ∈ Cθ

i (Oµ
i (σf−i(θ−i)))

for all i ∈ N , i.e., σf is an EPE of µ such that f = g ◦ σf .
Consider now any EPE σ∗ of µ denoted as σ∗i (θi) = (fi(θi), αi(θi), xi(θi), ki(θi)) for

each i ∈ N . That is, fi(θi) denotes the SCF proposed by i when her type is θi; αi(θi),

the reported type of i when her type is θi; xi(θi), the alternative proposed by i when her

type is θi; and ki(θi), the number proposed by i when her type is θi.

Next, we show that, under any EPE σ∗ of µ, Rule 1 must apply at each θ ∈ Θ:

Suppose, for contradiction, that either Rule 2 or Rule 3 applies at some θ̃ ∈ Θ under σ∗.

If Rule 2 applies at θ̃, by construction, we have Oµ
j (σ∗−j(θ̃−j)) = Sj(f, αj(θ̃−j)) for the odd-

man-out j ∈ N and Oµ
i (σ∗−i(θ̃−i)) = X̄ for all i 6= j, i.e., for all the other n−1 individuals.

On the other hand, if Rule 3 applies at θ̃, we have, by construction, Oµ
i (σ∗−i(θ̃−i)) = X̄

for all i ∈ N . Therefore, under both Rule 2 and Rule 3, at least n − 1 individuals have

the opportunity set X̄. Since σ∗ is an EPE of µ, it follows that g(σ∗(θ̃)) ∈ Cθ
i (X̄) for at

least n− 1 individuals. This contradicts the choice incompatible pair property of X̄ at θ̃.

So, under any EPE σ∗ of µ, Rule 1 must apply at each θ ∈ Θ.

Moreover, under any EPE σ∗ of µ, there is a unique f ∈ F such that fi(θi) = f for all

i ∈ N and for all θi ∈ Θi. To see why, fix an EPE σ∗ of µ, pick an arbitrary θ ∈ Θ, and

37



as Rule 1 must apply at θ ∈ Θ under σ∗, let fi(θi) = f for all i ∈ N under σ∗. Suppose

there is i0 ∈ N , θi0 ∈ Θi0 such that fi0(θi0) 6= f . Without loss of generality, let i0 = 1

and θ̂1 ∈ Θ1 such that f1(θ̂1) 6= f . But, then, under the EPE σ∗, Rule 1 cannot apply at

(θ̂1, θ−1) ∈ Θ, as f1(θ̂1) 6= f and fj(θj) = f for all j 6= 1 under σ∗, a contradiction.

Therefore, for any EPE σ∗ of µ, there exists a unique f ∈ F such that fi(θi) = f for

all i ∈ N and for all θi ∈ Θi. Hence, by Rule 1, g(σ∗(θ)) = f(α(θ)) for each θ ∈ Θ.

Finally, we show that it must be that f ◦ α ∈ F : Since Rule 1 applies at each θ ∈ Θ,

and each i ∈ N reports the type αi(θi) ∈ Θi as the second entry of their messages at

θ ∈ Θ under σ∗, by construction, we have, at each θ ∈ Θ, Oµ
i (σ∗−i(θ−i)) = Si(f, α−i(θ−i))

for all i ∈ N . If f ◦ α /∈ F , then by (ii) of consistency (see Definition 3), there exists

θ∗ ∈ Θ, i∗ ∈ N such that f(α(θ∗)) /∈ Cθ∗
i∗ (Si∗(f, α−i∗(θ−i∗))). But this implies g(σ∗(θ∗)) /∈

Cθ∗
i∗ (Oµ

i∗(σ
∗
−i∗(θ

∗
−i∗))), a contradiction to σ∗ being an EPE of µ. That is, we must have

f ◦ α ∈ F , as desired. Therefore, g ◦ σ∗ = f ◦ α ∈ F , which implies that condition (ii) of

ex-post implementability holds as well.

A.5 Proof of Theorem 3

Consider the mechanism µ = (M, g) constructed in Appendix A.3.

As shown in the proof of Theorem 2, for any f ∈ F , σfi (θi) = (f, θi, x, 1) for each

i ∈ N (for arbitrary x ∈ X̄) is an EPE of µ such that f = g ◦ σf . That is, for any f ∈ F ,

there exists an EPE, σf , of µ such that f = g ◦ σf , which implies that condition (i) of

ex-post implementability (refer to Definition 2) holds.

Now, consider an EPE σ∗ of µ = (M, g) represented as before by σ∗(θi) = (fi(θi),

αi(θi), xi(θi), ki(θi)). For any f ∈ F and i ∈ N , let Θ̄f
i := {θi ∈ Θi|fi(θi) = f}. That

is, Θ̄f
i ⊂ Θ̄i is the set of types of individual i where the first entry of her message—her

proposed SCF—is f under σ∗. Let Θ̄f := ×i∈NΘ̄f
i . That is, Θ̄f is the set of states where

all individuals propose f ∈ F under σ∗. Consider the collection of product sets {Θ̄f}f∈F .

Θ̄ :=
⋃
f∈F Θ̄f describes the set of states where Rule 1 applies under σ∗.

Thus, at any θ ∈ Θ\Θ̄, either Rule 2 or Rule 3 applies, which means Oµ
i (σ∗−i(θ−i)) = X̄

for at least n−1 individuals for any θ ∈ Θ\Θ̄. Furthermore, σ∗ being an EPE of µ implies

g(σ∗(θ)) ∈ Cθ
i (X̄) for at least n− 1 individuals. Hence, we have, by (iii) of consistency-

no-veto, there is f ∗ ∈ F with g(σ∗(θ)) = f ∗(θ) for each θ ∈ Θ \ Θ̄.

Next, we show that it must also be that g(σ∗(θ)) = f ∗(θ) for each θ ∈ Θ̄. Suppose not,

for contradiction, then there exists θ̃ ∈ Θ̄f for some f ∈ F such that g(σ∗(θ̃)) 6= f ∗(θ̃).

Since θ̃ ∈ Θ̄f , we have fi(θ̃i) = f for all i ∈ N . Thus, Rule 1 applies at θ̃ under σ∗, and

hence g(σ∗(θ̃)) = f(α(θ̃)) where α is the deception profile induced by σ∗. This means, as

g(σ∗(θ̃)) 6= f ∗(θ̃), we have f(α(θ̃)) 6= f ∗(θ̃). Then, by (iv) of consistency-no-veto, there

exists i∗ ∈ N and θ∗ ∈ Θ̄f such that f(α(θ̃)) /∈ Cθ∗
i∗ (Si∗(f, α−i∗(θ

∗
−i∗))). But, since Rule 1
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applies at θ̃ under σ∗, by construction, Oµ
i∗(σ

∗
−i∗(θ̃−i∗)) = Si∗(f, α−i∗(θ

∗
−i∗)), which implies

g(σ∗(θ̃)) /∈ Oµ
i∗(σ

∗
−i∗(θ̃−i∗)), a contradiction to σ∗ being an EPE of µ.

So, g(σ∗(θ)) = f ∗(θ) for each θ ∈ Θ, i.e., (ii) of ex-post implementability holds.

A.6 Proof of Proposition 5

Consider Y := {Yi(e, θ−i) : i ∈ N, e ∈ Ec.eff, θ−i ∈ Θ−i} such that Yi(e, θ−i) equals

Y
θ−i
i associated with e ∈ Ec.eff as in the defining condition (1).

Let e ∈ Ec.eff and suppose there is a deception α = (αi)i∈N where the individual

deception αi : Θi → Θi is such that e ◦ α /∈ Ec.eff. Then, (by letting e ◦ α = eα)

∀(Yi)i∈N with ∪i Yi = X, ∃i∗ ∈ N, ∃θ∗−i∗ ∈ Θ−i∗ ,∃θ∗i∗ ∈ Θi∗ , s.t. eα(θ∗) /∈ Cθ∗

i∗ (Yi∗). (2)

Because e ∈ Ec.eff, we have that {Yi(e, θ−i) : i ∈ N, θ−i ∈ Θ−i} is such that ∪i∈NYi(e, θ−i) =

X for all θ−i ∈ Θ−i. Thus, by (2), if e ◦ α /∈ Ec.eff, then there exists θ̃ such that e(θ̃) /∈
Cθ∗
i∗ (Yi∗(e, θ̃−i∗)) where αj(θ

∗
j ) = θ̃j for all j ∈ N . Hence, e(α(θ∗)) /∈ Cθ∗

i∗ (Yi∗(e, α−i∗(θ−i∗)))

delivering consistency of Y associated with Ec.eff under incomplete information.

A.7 Proof of Proposition 7

Let µ ex-post implement F . Then, the existence of a collection of sets consistent with

F under incomplete information follows directly from Theorem 1.

For any f ∈ F , let σf be the corresponding EPE with f = g ◦ σf . Thus, (i) of con-

sistency implies f(h∗i , θ−i) ∈ C
h∗i
i (Si(f, θ−i)) and f(♦i, θ−i) ∈ C♦i

i (Si(f, θ−i)). Meanwhile,

C
h∗i
i (Si(f, θ−i)) = {x ∈ Si(f, θ−i)|xi = ci(Hi(Si(f, θ−i)), h

∗
i )} whenever h∗i ∈ Hi(Si(f, θ−i))

and C
h∗i
i (Si(f, θ−i)) = {x ∈ Si(f, θ−i)|xi = ci(Hi(Si(f, θ−i)),♦i)} whenever h∗i /∈ Hi(Si(f, θ−i)).

Finally, C♦i
i (Si(f, θ−i)) = {x ∈ Si(f, θ−i)|xi = ci(Hi(Si(f, θ−i)),♦i)}.

By Masatlioglu and Ok (2014, Theorem 1), we have that ci(Hi(Si(f, θ−i)),♦i) =

arg maxh∈Hi(Si(f,θ−i)) Ui(h). So, if f(θ) = x, then Ui(xi) ≥ Ui(h) for all h ∈ Hi(Si(f, θ−i)).

Therefore, Hi(Si(f, θ−i)) ⊂ LCSi(xi) establishing (i).

Suppose f(θ) = x and xi /∈ Qi(h
∗
i ), but also h∗i ∈ Hi(Si(f, θ−i)). Since h∗i ∈

Hi(Si(f, θ−i)), C
h∗i
i (Si(f, θ−i)) = {x ∈ Si(f, θ−i)|xi = ci(Hi(Si(f, θ−i)), h

∗
i )}. f(h∗i , θ−i) ∈

C
h∗i
i (Si(f, θ−i)) implies xi = c(Hi(Si(f, θ−i)), h

∗
i ) = arg maxh∈Hi(Si(f,θ−i))∩Qi(h∗i ) Ui(h). But

this contradicts xi /∈ Hi(Si(f, θ−i)) ∩Qi(h
∗
i ), establishing (ii).

Suppose now that f(θ) = x and xi = h∗i . Then, as xi = h∗i ∈ Hi(Si(f, θ−i)),

we have C
h∗i
i (Si(f, θ−i)) = {x ∈ Si(f, θ−i)|xi = ci(Hi(Si(f, θ−i)), h

∗
i )}. Hence, h∗i =

c(Hi(Si(f, θ−i)), h
∗
i ). Ergo, h∗i = arg maxh∈Hi(Si(f,θ−i))∩Qi(h∗i ) Ui(h). Furthermore, Ui(h) ≥

Ui(h
∗
i ) for all h ∈ Qi(h

∗
i ).Therefore, Hi(Si(f, θ−i)) ∩Qi(h

∗
i ) = {h∗i }, establishing (iii).

Next, suppose f(θ) = x and xi 6= h∗i . Then, either xi /∈ Qi(h
∗
i ) and hence by (iii)

above, h∗i /∈ Hi(Si(f, θ−i)) or xi ∈ Qi(h
∗
i ) establishing (iv).
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A.8 Proof of Theorem 4

For the necessity of (i) of the theorem, suppose f is ex-post implementable by its

direct mechanism µf = (Θ, gf ) with gf = f . Due to full ex-post implementation, let

the truthful EPE be sf with sfi : Θi → Θi for all i ∈ N and f = gf ◦ sf . Let i ∈ N

and θ̃−i ∈ Θ−i. So, f(θi, θ̃−i) ∈ C
(θi,θ̃−i)
i (f(Θi, θ̃−i)), establishing (i) of consistency of

F. This follows from Oµf

i ((sfj (θ̃j))j 6=i) = f(Θi, θ̃−i) as sfi (θi) = θi for all i ∈ N and

θi ∈ Θi. For (ii) of consistency, for any deception α with f ◦ α 6= f , sf ◦ α cannot

be an EPE of µf because otherwise gf ◦ sf ◦ α = f ◦ α and hence by (ii) of ex-post

implementation f ◦ α equals f , a contradiction. Thus, there is i∗ ∈ N , θ∗ ∈ Θ with

f(α(θ∗)) /∈ Cθ∗
i∗ (f(Θi∗ , α−i∗(θ

∗
−i∗))) since Oµf

i∗ ((sfj (αj(θ
∗
j ))j 6=i∗) = f(Θi∗ , α−i∗(θ

∗
−i∗)). For

the sufficiency of (i) of the theorem: By hypothesis, F is consistent with f . Define s̄

by s̄i(θi) = θi for any i ∈ N and θi ∈ Θi. Then, s̄ is a truthful EPE strategy and

gf ◦ s̄ = f : This is because gf (s̄(θ)) = f(θ) for all θ ∈ Θ; for all i ∈ N and all θ̃−i ∈ Θ−i,

Oµf

i (θ̃−i) = f(Θi, θ̃−i) and gf (s̄i(θ
′
i), (s̄j(θ̃j)j 6=i)) = f(θ′i, θ̃−i) ∈ C

(θ′i,θ̃−i)
i (f(Θi, θ̃−i)) for all

θ′i ∈ Θi, by (i) of consistency. Further, if s∗ is an EPE, then gf ◦ s∗ = f : Suppose s∗

is an EPE and gf (s∗(θ)) 6= f(θ) for some θ ∈ Θ. Let α be such that α(θ) = s∗(θ) 6= θ.

Then, f(α(θ)) 6= f(θ). Hence, by (ii) of consistency of F, there is i∗ ∈ N and θ∗ ∈ Θ

with gf (s∗(θ∗)) = f(α(θ∗)) /∈ Cθ∗
i∗ (f(Θi∗ , α−i∗(θ

∗
−i∗))), contradicting to s∗ being an EPE

as Oµf

i∗ (α−i∗(θ
∗
−i∗)) = f(Θi∗ , α−i∗(θ

∗
−i∗)).

For (ii) of the theorem: The sufficiency holds trivially. If f is full-range and ex-post

implementable by a mechanism µ and s is an EPE of µ with g ◦ s = f , then for all i ∈ N ,

Oµ
i (s−i(θ−i)) = X for all θ−i ∈ Θ−i. Hence, S = {Si(θ−i) | i ∈ N, θ−i ∈ Θi} such that

Si(θ−i) = X for all i ∈ N and θ−i ∈ Θ−i is consistent with f under incomplete information.

Therefore, (i) of consistency implies f(θ′i, θ−i) ∈ C
(θ′i,θ−i)
i (X); (ii) of consistency implies for

any α with f ◦α 6= f , there is i∗ ∈ N and θ∗ such that f(α(θ∗)) /∈ Cθ∗
i∗ (X). Now, consider

f ’s direct mechanism, µf , and observe that for all i ∈ N and Oµf

i (θ−i) = f(Θi, θ−i) = X

for all θ−i ∈ Θ−i. Therefore, the truthtelling strategy profile sT with sTi (θi) = θi for all

i ∈ N and θi ∈ Θi is an EPE of µf because (by (i) of consistency) for any i ∈ N and

θi ∈ Θi, g
f (sTi (θ−i), s

T
−i(θ̃−i)) = f(θi, θ̃−i) ∈ C(θi,θ̃−i)

i (X) for all θ̃−i ∈ Θ−i. For any other

EPE s̃ and for any θ̃ ∈ Θ, it must be that gf (s̃(θ̃)) = f(θ̂) for some θ̂ ∈ Θ, due to the

full-range condition. If f(θ̂) 6= f(θ̃), construct α such that α(θ) = s̃(θ) for all θ ∈ Θ.

Then, f(α(θ̃)) = f(θ̂) 6= f(θ̃); so, by (ii) of consistency, there is i∗ ∈ N and θ∗ ∈ Θ such

that gf (s̃(θ∗)) = f(α(θ∗)) /∈ Cθ∗
i∗ (X). Thus, s̃ cannot be an EPE, a contradiction.
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