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Abstract

Cellular solids have been utilized in many engineering applications for thermal insulation,
their high specific out-of-plane compressive strengths and stiffnesses, their sieving
capabilities, and in-plane energy absorption properties. With the advances in additive
manufacturing, numerous novel 2D cellular solid designs have emerged. In-plane
properties of 2D cellular solids have attracted attention for their intriguing behaviour

under compressive, tensional and shear loads.

As structures deviate from common geometries such as square, triangular, or hexagonal,
analytical and numerical methods to predict effective elastic properties get dramatically
more convoluted. Thus, analytical models in particular have been limited to the simpler
designs. Moreover, validating and/or characterizing experimental analyses of novel
geometries are often limited in scope due to size effects and inconsistent constraints

among the test specimens and practical structures.

This study presents a new approach that amalgamates virtual and real-life static analysis
of cellular structures of repeating cells. Representative equivalent structures for testing,
i.e. analogue test specimens are determined using parametric FEM analysis. Analogues
for hexagonal honeycomb arrays are manufactured and tested under compression.
Compressive moduli of the selected analogues exhibit great consistency between
numerical and experimental analyses. The approach sets a framework for future research
in using analogues for determination of in-plane properties of numerous other 2D cellular

solid designs.



Deneysel Analoglar Kullanilarak Altigen Bal Petegi Yapilarin Diizlem Ici Tek

Eksenli Basma Modulunin Belirlenmesi
Baris Emre Kiral
Malzeme Bilimi ve Nanomiihendislik
Yiksek Lisans Tezi, 2020
Tez Damismani: Prof. Dr. Melih Papila

Anahtar Kelimeler: 2B hiicreli katilar, birim hiicreler, etkin elastisite moduli

ongorasu, sonlu dgeli ¢oziimleme, mekanik testler, deneysel analog yapilar

Ozet

Hiicreli kat1 malzemeler, 1s1 yalitimi, yiiksek diizlem dig1 biikkilmezlik ve mukavemeti,
eleme oOzelligi ve diizlem igi ve disi enerji emme Kkapasitesi nedeniyle pek cok
miihendislik alaninda kullanilmaktadir. Eklemeli tiretimdeki gelismeler ile pek ¢ok 6zgiin
iki boyutlu (2B) hiicresel yap1 tasarimi ortaya c¢ikmistir. 2B hiicreli katilarin basma,

cekme ve kesme altindaki davranisi 6zellikle ilgi ¢cekmektedir.

Yapilar kare, liggen, altigen gibi alisilmis yapilardan uzaklastikca etkin elastik
ozelliklerin analitik ve numerik yontemlerle 6ngoriilmesi ¢arpici bigimde karisik bir hal
almaktadir. Bu nedenle, 6zellikle analitik ¢oziimler daha basit sekillerle sinirl kalmustir.
Buna ek olarak 6zgiin sekilleri nitelendirmek ve/veya dogrulamak icin yapilan deneysel
testler, boyut etkileri ve deney-gergek yap1 arasindaki tutarsiz kisitlama kosullart nedeni

ile sinirh bir sekilde yapilabilmektedir.

Bu ¢alisma tekrarlayan 2B hiicreli yapilarin denenmesi icin zahiri ve gergek duragan
¢oziimlemeyi birlestiren bir yaklagim sunmaktadir. Fiziksel test icin temsili esdeger aday
yapilar dnerilmis ve sonlu elemanlar ¢éziimleme yontemi ile sanal olarak tasarimlanmis
ve tekrarlayan referans yapi sonuglarina gore sinanmistir. Bu deneysel analog yapilar
daha sonra iiretilmis ve basma altinda test edilmistir. Sec¢ilen analog yapilarin basma
modulleri numerik ve deneysel ¢oziimlemeler arasinda tutarlilik gostermistir. Bu
yaklagim ile, gelecekte pek ¢ok diger hiicreli yapilarin 6zelliklerinin deneysel analoglar

kullanilarak belirlenmesi i¢in bir ¢ergeve ortaya konulmustur.
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1 Introduction

1.1 General Introduction
Cellular solids are low assemblies of cells with solid edges or faces, packed to fill a
desired space efficiently. These structures can be found both in nature and manufactured

synthetically.

Cellular solids are used in many applications for their thermal insulation properties, their
high specific compressive strengths and moduli, their buoyancy, and their
filtration/sieving capabilities. Early applications of honeycombs were mostly done to
utilize their out-of-plane properties; however, some recent studies have focused on
buckling and localized and progressive deformation behavior of honeycombs under in-

plane compressive loads.

Out-of-plane[1]-[9] and in-plane[3], [6], [10]-[27] properties of honeycomb core
structures have been studied both experimentally and theoretically. Theoretical works
ranges from analytical calculations to Finite Element Method analysis (FEM) for

determination of mechanical properties.

In this work, various physical analogues are studied under compression. Low-
deformation compressive moduli of these structures are then correlated to the

corresponding larger array.

One of the most important properties of these solids are their relative densities. Relative

density can be expressed as[28]:

*

relative density = Z— (Eg. 1)

S

where p* is the density of the cellular material and py is the density of the solid comprising
the walls of the cellular solid. Commercial cellular solids can have relative densities
ranging from 000.1 to 0.5; after which cell walls are too thick to warrant the use of cellular
solids. With increasing relative density, the cell walls thicken and the voids within the

structure shrink.

Hexagonal honeycombs are among the simplest, but most effective arrangement of cells.
This shape gathers a lot of attention as hexagonal honeycombs are found in nature where

evolution lead to such arrangements to maximize packing and stacking. Synthetic

1



hexagonal honeycombs can also be made in several ways: they can be pressed into half-
hexagon shaped strips which can then be adhered together, can be cast into moulds in a
liquid state to harden later on, can be processed in top-down approaches such CNC
milling from a bulk solid, or lastly, with the advent of additive manufacturing, 3D printed

in a bottom-up approach.

Figure 1 summarizes the deformation mechanism under compression. The compression
mechanics of a hexagonal honeycombs initiate with bending of cell walls. If the material
behaves linearly elastic under compression, then this bending region of the compression
exhibits the effective elastic modulus of the honeycomb. Following this region of
compression, additional loads will start to crush individual cells progressively. The first
crushed cells can initiate at any point of the honeycomb but will usually cause a cascading
collapse of neighboring cells perpendicular to the load. This crushing of cells will plateau
the stress-strain profile until a point where a sufficient number of cells are crushed. After
this point, the bulk material starts carrying the load and a sudden peak in the stress-strain

profile is observed.

In Plane Compression of Honeycombs

Densification Region ]

[ Linear Elastic Region ]

Compressive Stress ¢

Plateau Region

Strain £

Figure 1. Behavior of honeycombs under in-plane compression
(Adapted from Ashby; Gibson; ‘Cellular Solids’ 1997)



1.2 Analytical Models for Calculating Effective Modulus

The bending of cell walls can be described by 5 equivalent material constants: E;
(Young’s modulus of the honeycomb in I-direction), E; (Young’s modulus of the
honeycomb in 2-direction), Gy, (shear modulus of the honeycomb in 1-2 direction),
V12, V31 (Poisson’s ratios of the honeycomb in 1-2 and 2-1 directions respectively). The

five properties are not independent, and the following reciprocity relation holds:
Eivz = Ezvi; (EQ.2)

In the linear region, deformation occurs mostly by the bending of inclined walls[16], [19],
[29]-[31], and walls parallel to the load exhibit negligible deformation. Thus, E; and E;
can be approximated by the bending of walls non-parallel to the load.

Figure 2. Dimensions and orientations in a regular
hexagonal unit cell.

Figure 3. Forces and moments acting on inclined members under
compression in the 1-direction (a) and 2-direction (b).



For direction 1, the moment bending the cell walls can be expressed as:

Plsinf Eq. 3
w = Pein (€09

The force P causing the bending moment can be expressed as:
P = o,(h+Ising)p  (E4-4)

From Roark and Youngs standard beam theory (1976), the total deflection 6 of the beam

can be expressed as:

pi3sing  (EQ.5)

0 = 1251

where |, the second moment of inertia is:

_ bt®  (Eq.6)
12

Then the strain in the 1 direction, &;, becomes:

_ Osind (Eq. 7)
B = lcosO
Plugging in equations 4, 5 and 6 into equation 7 yields:

_ 01(h + Isin@)bPsind sind _ oy(h + Ising)*sin’6 (Eq. 8)

€& = 3 = 3
1255% lcosB Egt3cosO
Since
gr=2 (B9
&

Then:

£ = oy B E.t3cosO B (t)3 E,cos6

L7 gy (h + Isind)12sin?0 ~ (h/l + sinB)13sin20 ~ \1) (h/l+ sinf)sin?6

E t3cosO (Eq. 10)

Similarly, for direction 2, the moment bending the cell walls can be expressed as:

_ Wlcos6
2 (Eq. 11)

The force W causing the moment can be expressed as:

4



W = o,lbcosf (Eq. 12)

From Roark and Youngs standard beam theory (1976), the total deflection ¢ of the beam

can be expressed as:

Wl3cos6 (Eq. 13)
12E,1

where | is once again, the second moment of inertia:

_ bt®  (Eq.14)
12

Then the strain in the 2 direction, &,, becomes:

_ bcosb (Eq. 15)
2 = Wi lsing

Plugging in equations 12, 13 and 14 into equation 15 yields:

_ 0ylbcosBl3cos® cos§  o,l*cos’6 3 o,13cos30
f2 = bt3  h+lIsin@  Eit3(h+Isinf)  Egt3(h/l + sinf)
12E, 7
(Eq. 16)
Since
o
g = %2 (E9.17)
&2
Then:
. 0, 3 (t>3 E;(h/l +sinf) (Eq. 18)
27 o,13c0s36 —\u cos36

Est3(h/l + sin0)

For regular hexagonal arrays in which 6 = 30°, we see isotropic behaviour:

Ef _E; 223<5)3 (Eq. 19)
=\l

B, Es
For large deformations, the effects of axial and shear loads on the non-parallel wall
deflections become non-negligible. For high deformations, stress-strain profile becomes

nonlinear. The bending deflections are magnified:



6large = Osmal (Eq. 20)

_ Paxial
Pcritical

where P..i+icqi1S the Euler load. For this reason, linear studies and models only govern
honeycombs in low-strain regimes.

The Poisson’s ratios of hexagonal arrays can be expressed as:

2
v = 2= 50 (gq.a)
& (h/l + sin@)sind

and

. & (h/l + sinf)sind  (Eq. 22)
[CE cos26

For regular hexagonal arrays in which 6 = 30°, we see that vi, =v;; = 1. For

honeycombs in which 0 < 0°, a negative Poisson’s ratio is observed.

The relative density can also be defined by a simple geometric relation:

p*  t/l(h/l+2) (Eq. 23)

ps  2cosO(h/l + sinb)

which reduces to
L =1 (Eq. 24)

for regular honeycombs.

1.3  Refining the Analytical Model
This analytical model can be improved upon by expressing the deflections of the inclined

members as the sum of deflections due to axial, shear and bending deformations[32]:

6, = 64c0s0 + 64sinf + §,sinf  (EqQ. 25)



Figure 4. Deflection of inclined member represented as the sum of
deflections from axial, shear and bending loads.

The axial deflection can simply be expressed from Hooke’s Law:

_ Filycos8  (Eq. 26)

o)
. E.bt

The shear deflection can be expressed by Timoshenko beam theory (1970):

F,13sind t\%.  (Eq.27)
65 = TESI(24 + 1.51/5 (E) )

The bending deflection can by expressed by Roark and Youngs standard beam theory
(1976):

_ Fljsing
b 12E (Eq. 29)

Plugging equations 26, 27 and 28 into equation 25:

5 — F,l,cos6 0+ F,I3sin@ 4415 (t)2 . F,I3sinf 0
1= TRt cos 1251 (2. SV L, )sin 1251 sin
(Eq. 28)

Using the relations:
8
“1 = Jcoso’ (Eq. 30)
F
=— - (Eq.31
N = gy Y
E; = 91 (Eq.9)
€1

The modulus in the 1-direction then becomes:

/ (Eq. 32)



3 cos6

t
i =k (E) (h/l+sin0)sin29A

where:

1 .
Ao (Eq. 39)

t 2
1+ (2.4 + 1.5v, + cot26) (E)

Similarly, the modulus in the 2-direction becomes:

. t\3(h/l +sinf)  (Eq. 34)
B2 =k (E) cos30 B
Where
B = 1 e %)
2 ZA\Tb/ b N (=
1+ (2.4 + 1.5v5 + tan?6 + 0520 ) (lb)

1.4  Limitations of Analytical and Experimental Models

1.4.1 Geometric Changes in Stiffness

Analytical models neglect the change of stiffness due to geometrical changes. When the
walls of the hexagonal array are under stress, their shapes change, resulting in a change
in their effective stiffness. This instantaneous change in shape affects how the geometry

will respond to additional incremental load.

I

Figure 5. Change in dimensions and orientations of load-carrying
members causing a change in effective stiffness.



Numerical analysis like finite element method can capture these small changes. In
ANSYS® Academic Research Mechanical, Release 19.2, this effect can be accounted for

with the ‘Large Deflection’ option.

1.4.2 Isotropic Assumption

Classical analytical models were theorized for isotropic materials. There have been
efforts to modify them for laminated multi-material walls[5]. Honeycombs made from an
assorted layup of fiber reinforced composites are also of increasing interest which can
greatly complicate the stiffness response of the honeycomb. In the case of orthotropic
materials like continuous fiber reinforced polymer matrix composites, Wang and Wang
(2018) theorized that Ashby and Gibson’s analytical honeycomb stiffness model can be
adapted by modifying the moments and the longitudinal forces to behave in accordance
to composite’s A (extensional-stiffness), B (coupling-stiffness) and D (bending stiffness)

matrices from Classical Laminated Beam Theory (CLBT).

With these modifications in mind, for an orthotropic honeycomb, the moments and

longitudinal force becomes:

M = BSx + DW
(Eg. 37)

d?w

N =Ae; +B—

where:

n
A= Z Esi(zi —zi-1)  (Eq. 38)
i=1
n
1 2 2
B = EZ ESi(Zi —Zj_1 ) (Eq 39)
i=1

15 3 3
D= 52 Esi(z° —z4°)  (Eq. 40)
=1

where Esi is the elastic modulus of ith ply, and z; is the distance between the bottom

surface of the bottom ply to top surface of the ith ply.

If no normal cell wall stress is assumed, we are left with the bending moment that works

to bend the inclined cell walls of the honeycomb:

9



B?_ d?%y
— (D ——)—=2 (Eq. 43
M=(D-—)—3 (Eq. 43)

where X is the longitudinal and y is the transverse direction of the laminate comprising
the cell walls. Since (D-B%/A) is the effective flexural rigidity, the effective modulus of

the honeycomb becomes:

t\3 cosf B?

* = — —_— (Eg.41
B = E (lb> (h/l + sin@)sin26 D A) (Ea. 41)
t\3 (h/l + sind) B?

g (LY Witsmb) BT g a2
Ea = Es (lb> cos30 (D A) (Eq.42)

1.4.3 Size Effect
Furthermore, cellular solids are, in practice, finite objects, and the boundary conditions
imposed upon them in real life differ from numerical studies with periodic boundary

conditions. Several works have been done on the ‘size effect’ on the response of

honeycombs[33]-[36].

The same honeycomb will react to in-plane compression differently depending on how
many cells are found in the particular structure, even after normalization by area.
Generally, an increasing (axial # of cells / transverse # of cells) ratio will result in an

increase in effective modulus[37].

Displacement ‘

Partially Constrained
Surfaces

Fixed Boundary

Figure 6. Different shapes of honeycombs with equally dimensioned
unit cells. Different boundary conditions result in different moduli.
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Onck, Andrews and Gibson (2001) determined that there exists a relation between a (the

width of the honeycomb divided by width of a single cell D = /3L, refer to Figure 7), E*
(effective modulus of the honeycomb) and Ej, (effective modulus of the same

honeycomb extending in 1 and 2-directions to infinity):

az? E'
Eﬂf
1<a<2 1
2a
2<0<3 41
28a
3<a<4 165
67a
8<a<9 7.45
a
16<a<17 15.45
Figure 7. W and D lengths in size a

parameter ‘o’.

Table 1. Relationship between o, E* and
E{ ¢ in a regular hexagonal honeycomb.
(Adapted from Onck, Andrews and
Gibson ‘Size effects in ductile cellular
solids. Part I: modeling” 2001)

1.5  Research Hypothesis

Contrary to numerical analysis, it is significantly challenging, if not impossible to apply
periodic boundary conditions to an experimental setting. To realize or simulate these
boundary conditions practically, a unit cell can be designed to be a representation of a
reference array. This unit cell by design, when tested experimentally, should exhibit the
behavior of the reference array despite its much-reduced size and preparation cost.

Propose a unit Investigate the Test

cell design to ) correct geometry experimentally
simulate the using parametric —) to confirm the
constraints analyses. hypothesis.

Figure 8. Flowchart summarizing research steps.
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2 Methods

2.1  Representative Element and Reference Array Design

Computational representative volume elements (RVE) have been investigated in
thoroughly for in-plane behavior of honeycombs[32], [38], [39]. Some of these

representative volume elements are shown in Figure 9.

b) c)

ok X

Figure 9. RVE’s under periodic boundary conditions from various research”.

These RVE’s are sections taken from the whole structure and they can be stacked

periodically to create the infinite array.

To design a representative test element that would practically simulate an array of many
cells, constraints must be implied so that a repeating unit cell within the array would react

similarly to deformation.

If a single unit cell (for hexagonal honeycombs, a single hexagon) is isolated and tested
under compression, the non-inclined walls are free to translate in the transverse direction
(Figure 10).

*: a) Malek, Sardar; Gibson, Lorna Effective elastic properties of periodic hexagonal honeycombs, 2015

b) Zhao, Yang; Ge, Meng; Ma, Wenlai The effective in-plane elastic properties of hexagonal honeycombs with
consideration for geometric nonlinearity, 2020

¢) Chen, Yu; Hu, Hong In-plane elasticity of regular hexagonal honeycombs with three different joints: A
comparative study, 2020
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Figure 10. Deformation of an isolated unit cell under compression.

However, within an array under a distributed load, the transverse translation of non-
inclined walls of a unit cell in the center of the array is constrained by the neighboring
unit cells (Figure 11) as the whole assembly should work in concert. This causes the non-
inclined walls to act as rigid bodies that anchor the bending inclined walls. Note that
moving away from the central cell to the sides, the number of neighboring cells in each
of the sides of the cell starts to differ. And getting closer to the array’s edge, this disparity
of prohibitive structures causes the cells to undergo transverse deformation. Thus, the

overall array structure will exhibit transverse deformation (Figure 12).

o, .
v &
O : ?" :
P - P ~ = ~
- - - ~ ~ ~
- A ~
Figure 11. Deformation of a central cell within the array.
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A: Static Structural
Directional Deformation
Type: Directional Deformation(X Axis)
Unit: mm

Global Coordinate System
Time: 1

Custom

Max: 6.8309

Min: -6.8309

6.8309
E 53129
3.7949

7‘ 2277
0.75899
-0.75898
-2.277
-3.7949
-5.3129
-6.8309

0.00 45.00 90.00 (mm)
I

2250 67.50

Figure 12. Transverse directional deformation of an array under
compression in the 2-direction (y-axis in the image). Note that the
central array experiences no transverse deformation and the edges show
maximum transverse deformation (red and dark blue)

When designing a representative testing cell, this constrained deformation of non-inclined
walls must be considered. A single basic repeating unit cell tested experimentally does
not simulate the larger array accurately. Instead, the basic repeating unit cell was extended
to include the complete joint structure and segments of its closest neighboring unit cells.
When this so called ‘spider-web’ structure (Figure 13) is enclosed by a shell, the
prohibitive effect of the original neighboring cells can be simulated. To generalize the
approach for enclosing these shells, 3 models are proposed that could arguably be
applicable to any periodic 2D cellular structure (Table 2). The dimensions for strain

calculation and stress normalization were based on the deformation of the spider-web
structure (Figure 14).
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Constraining Elements

Figure 13. The spider-web structure and the constraints imposed on these
structures by an enclosed shell.

Designation Description Visualization
10x10 A larger array with 10
Reference cells in the 1-direction
Array and 10 cells in the 2-
(RA) direction

Representative A RE enclosed by a

Element 1 parametric shell, with @
(RE-a) vertexes on closest joints

Representative A RE enclosed by a

Element 2 parametric shell, with
(RE-B) vertexes on closest

neighboring cell centers

Representative | A RE surrounded by

Element 3 closest neighboring
(RE-y) cells, enclosed by

parametric shell

Table 2. Geometries of reference array and representative elements
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Note that these representative elements are no longer typical unit cells. They cannot
be added together with a periodicity to form the targeted larger array. Representative
elements are separate, but equivalent structures to the larger array for investigation of in-

plane elastic properties.

A specific thickness of this enclosing boundary is expected to exhibit the compressive
response of the larger array. This thickness varies with the wall thickness, the wall length,
and the inclined wall angle of the simulated array. Thus, this boundary thickness ‘t_b’

behaves akin to the material constants of a bulk material.
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Figure 14. Dimensions of RA (top-left), RE-a (top-right), RE-B (bottom-
left) and RE-y (bottom-right) for FEM and experimental analysis.
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The dimensions for strain, stress and relative density calculation for each specimen are:

Specimen Stress Strain Stress Strain
(1-direction) (1-direction) (2-direction) (2-direction)

RA F ALy F AL;,
(Liz) b Ly (Li1) b L

RE-a F ALy F ALy,

(Lic2) ba Lia (Lict) bq Liz

RE F ALy, F ALy,
(Lig2) by Ligy (Lig1) by Ligz

RE-~ F ALy F ALy
(Liyz) by Ly (Liy1) by Liy»

Table 3. Stress and strain definitions for all specimens in the 1 and 2-

Where F is the force reaction due to displacement boundary condition.

2.2
ANSYS® Workbench 19.2 Static Structural Module was used to conduct the FEA

Finite Element Analysis

Simulations. A linear elastic model was selected to represent the PLA specimen. To
determine elastic modulus and Poisson’s ratio, dog bone specimens were printed and
tested in tension with a UTM. Print orientation of the dog bone sample was kept the same
as honeycomb and unit cell specimens to account for the same anisotropy inherent in 3D
printing. Longitudinal and transverse 350 Ohm Omega strain gauges were used in unison
to measure the Poisson’s ratio. Values of E=2780 MPa and v=0.25 were in agreement
with the literature[40] [41].

PLA Mechanical Tests

Tensile Stress [MPa]
= = = =
-~ (o] [os] o ) Py (0]
[=] (=] [=] [=] [=] [=] (=]

~
o

| BT

(=]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Strain [mm/mm)]

Figure 15. Mechanical tests of PLA for modulus determination.
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Large deflection was enabled to simulate geometric effects on elasticity. Weak springs
with forces in the order of 0.001% or less of the reaction forces were used to eliminate

mechanical instability. Meshes around the joints were refined edgewise to capture joint-

related deflections more accurately. Boundary conditions fixed the geometry with O

D.O.F. on the bottom edge/edges for RA, RE-a, RE-y and on the bottom face for RE-p.

A constant displacement was applied from the top edge/edges of RA, RE-o, RE-y and on

the top face for RE-B. D.O.F. were restrained in the other two axes. These boundary

conditions were selected to simulate the testing conditions in a compression test.

i
4
1]

%
b

SN
AN AN,

1000

2000 (mm)

138.16 Max

196
10015
81143
62.137
PERED]
124
51181
-13.888

-32.894 Min

L

Figure 16. Typical mesh applied to specimens (left) and a specimen
under deformation showing maximum principal stress (right).

Analysis Geometry Solver Weak Large Inertial Material
Type Type Type Springs Deflection Relief Model
Static 3D Direct On On Off Linear

Structural Elastic/

Isotropic
# of Load BC Constraint Load BC Constraint Input Output
Steps BC BC Parameters | Parameter
1 Displacement Fixed Displacement Fixed tw,th Force
u(y), Support u(y), Support Reaction
u(x)=u(2)=0 u(x)=u(2)=0 v @
Supports
Element Element Element # of Mesh Meshing Meshing
Size Type Order Elements Refinement Method Algorithm
Along Walls
2 mm SOLID186 Quadratic >10 3, Around | Tetrahedrons Patch
Joint Edges Conforming

Table 4. ANSYS® Workbench simulation parameters.
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The following procedure was followed for the parametric analysis of all specimens:

Import R, L and M
‘Skeleton’ geometries of
RA, RE-a, RE-B, and
RE-y specimens with
arbitrary and minimal

Parametrize wall and
boundary thicknesses
and link data to ANSYS

Import Linear Elastic
material properties
acquired from

Static Structural Module mechanical testing

wall thicknesses into
ANSYS® SpaceClaim

1 7/

Apply
strain on

(BC) to

of the specimen. Select boundary conditions

mechanical test as best as possible.

displacement to induce 5% overall
the specimen. Restrain opposite side

simulate the loading conditions of a

For RE-a, RE-fB, and RE-y
specimens, do a preliminary 5 step
analysis with varying boundary
thicknesses to determine the
approximate range containing the
representative boundary thickness.
This will capture the local shape of
the boundary thickness vs stress
curve with greater accuracy.

l

Do a 20 sub-step analysis. For RA,
parametrize the wall thicknesses. For
RE-0, RE-B, and RE-y specimens,
parametrize both wall and boundary
thicknesses. Probe force reactions due

If the results converge,
normalize the force values
with area of the cross-
section of specimen to get
the stress values

If the results do not converge due to
highly distorted elements, either
increase weak spring stiffness, or re-
mesh using nonlinear adaptive region
with strain energy coefficient of 0.85

to displacement.

!

\

For RA specimens, use
linear regression to fit a
line to the stress-strain
curve of the array to find
the elastic modulus.

For RE-a, RE-B, and RE-y specimens,
use up to 6-degree polynomials to fit the
boundary thickness-stress curves. Use
the Newton-Raphson Method to find the
representative boundary thickness.

Figure 17

. Flowchart for FEM analysis



2.3 Design and 3D Printing of Specimens

Arrays and representative elements were modeled in SOLIDWORKS® using parametric
dimensions for wall thickness, boundary thickness, and wall length. A sufficiently high
depth of 24mm was selected among all specimens to ensure no buckling occurs during
compression testing. Models were exported in .stl’ format to be sliced in PrusaSlicer®
2.0 software.

Specimens were sliced with their out-of-plane orientation coinciding with the printer’s z-
axis. This was done to eliminate the need for supports during printing and keep material
properties constant in the in-plane axes.

Physical analogues were manufactured using a Prusa® MK3S FDM printer in batches.
All specimens were printed with Esun® PLA+ filament (silver color). Several printing
parameters were tested to optimize layer adhesion, gap fill, stringing, bed adhesion, hot
end wobble and other printing artifacts. An enclosure was used to keep the chamber

temperature slightly higher than room temperature.

X A ) Motor
-._/ _’/

Heating
Block

Printed
/ Layers

Specimens were modelled

ol Models were sliced for 3D Specimens were printed in
parametrically in printing using PrusaSlicer batches in a Prusa MK3S FDM
SOLIDWORKS 2018 2.0 software. Printer with the 3-direction

software. coinciding with printer’s Z-axis.

Figure 18. Flowchart for FDM manufacturing.
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Printing parameters:

Layer Nozzle Print Bed Max Print Nozzle Perimeter Infill
Height Temperature | Temperature | Speed Diameter Width Percentage
0.2 mm 210° (PLA+) | 60° (PLA+) 80 mm/s 0.4 mm 0.46 mm 100%
245° (PETG) | 90° (PETG)
250° (ABS+) | 100° (ABS+)
Extrusion | Number of Infill Angle # of Seam Infill/Perimeter | Retraction
Multiplier | Perimeters Top/Bottom | Alignment Overlap Compensation
Layers
0.94 1 40° 5/4 Random 25% 0.03 mm
Table 5. 3D printing parameters. (Parameters may vary with different
printers and filament brands)
2.4  Mechanical testing

Uniaxial compression tests (up to %5 contraction) were performed with a Zwick/Roell

Z100 Universal Testing Machine. A strain rate of 5 mm/min was utilized. Thin aluminum

tape was adhered to both compression plates and were allowed to be indented during the

test. This negligible deformation in the larger scope of things prevented slippage when

applying edge loads as shown. The rotating ball joint of the mobile compression plate

were also fixed perpendicularly to the load direction to reduce the D.O.F. The force

readings were done through a 100kN load cell. Displacement readings were done from

the crosshead movement.

Crosshead
Displacement
Measurement

Specimen | +—

Crosshead
Downward

Displacement

N\
Aluminum Tape
Vel

Compression
Plate

Rotation-Locked

Fixed
Compression
Plate

Figure 19. Schematic of the compression jig.
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Figure 21. Close up of RE-o_1 loaded on the face (left) and RE-a_2
loaded on the edge (right).
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3 Results & Discussion

3.1 FEAResults

3.1.1 Naming Convention

Specimens are grouped as 4 different geometries: RA (reference array), RE-a
(representative element alpha), RE-p (representative element beta) and RE-y
(representative element gamma). These geometries have 3 subgroups: R (for ‘regular’),
L (for ‘larger’) and M (for ‘mixed’: a mix of long and short cell walls). Throughout this
work, R, L and M specimens have been color coded: R in red, L in cyan, and M in
green. Each of these subgroups have 5 different wall thickness specimens, denoted with
_0.46t_w, 0.92t w, 1.38t w, 1.84t wand 2.30t w. Refer to Figure 22 and Figure
23 for visualization of several example specimens. All specimens are investigated in both

_land _2 directions.

2w

Figure 22. RA_R_2.30t_w (left), RA_L 2.30t_ w (middle), RA_M_2.30t w
(right). Shapes are to scale within the figure.

Figure 23. Top row: RE-a_R_1.38t_w (left), RE-a_L_1.38t_ w (middle), RE-
a_M_1.38t_w (right). Middle row: RE-p_R_1.38t_w (left), RE-p_L_1.38t w
(middle), RE-p_M_1.38t_w (right). Bottom row: RE-y_R_1.38t_w (left), RE-
y_L_1.38t_w (middle), RE-y_M_1.38t_w (right). Shapes are to scale within the
figure.

23



3.1.2 List of Virtual Test Specimens

Designation Wall I (mm) h(mm) | 6 E Vs Relative # of | Parametric
Thickness ) (MPa) Density Cells Boundary
(mm) (Yes/No)

RA_R_0.46t_w 0.46 9 9 30 2780 0.25 0.059 100 No
RA_R_0.92t w 0.92 9 9 30 2780 0.25 0.118 100 No
RA_R_1.38t_w 1.38 9 9 30 2780 0.25 0.177 100 No
RA_R_1.84t w 1.84 9 9 30 2780 0.25 0.236 100 No
RA_R_2.30t_w 2.30 9 9 30 2780 0.25 0.295 100 No
RA_L_0.46t_ w 0.46 18 18 30 2780 0.25 0.030 100 No
RA_L 0.92t w 0.92 18 18 30 2780 0.25 0.059 100 No
RA_L 1.38t w 1.38 18 18 30 2780 0.25 0.089 100 No
RA_L 1.84t w 1.84 18 18 30 2780 0.25 0.118 100 No
RA_L_2.30t_ w 2.30 18 18 30 2780 0.25 0.148 100 No
RA_M_0.46t_w 0.46 45 9 30 2780 0.25 0.094 100 No
RA_M_0.92t w 0.92 45 9 30 2780 0.25 0.189 100 No
RA_M_1.38t_ w 1.38 45 9 30 2780 0.25 0.283 100 No
RA_M_1.84t w 1.84 45 9 30 2780 0.25 0.378 100 No
RA_M_2.30t_w 2.30 45 9 30 2780 0.25 0.472 100 No
RE-o_R_0.46t w 0.46 9 9 30 | 2780 0.25 - 1 Yes
RE-a R 0.92t w 0.92 9 9 30 | 2780 0.25 - 1 Yes
RE-o R 138t w 1.38 9 9 30 | 2780 0.25 - 1 Yes
RE-a R _1.84t w 1.84 9 9 30 | 2780 0.25 - 1 Yes
RE-a R 2.30t_ w 2.30 9 9 30 2780 0.25 - 1 Yes
RE-o L 0.46t w 0.46 18 18 30 2780 0.25 - 1 Yes
RE-o. L 0.92t w 0.92 18 18 30 2780 0.25 - 1 Yes
RE-o L 1.38t w 1.38 18 18 30 2780 0.25 - 1 Yes
RE-o L 1.84t w 1.84 18 18 30 | 2780 0.25 - 1 Yes
RE-o L 2.30t w 2.30 18 18 30 | 2780 0.25 - 1 Yes
RE-o_M 0.46t w 0.46 45 9 30 | 2780 0.25 - 1 Yes
RE-o_M 0.92t w 0.92 45 9 30 | 2780 0.25 - 1 Yes
RE-o M 138t w 1.38 45 9 30 | 2780 0.25 - 1 Yes
RE-o M 184t w 1.84 45 9 30 | 2780 0.25 - 1 Yes
RE-a_M 2.30t_ w 2.30 45 9 30 2780 0.25 - 1 Yes
RE-B_R_0.46t_w 0.46 9 9 30 2780 0.25 - 1 Yes
RE-B_R_0.92t w 0.92 9 9 30 2780 0.25 - 1 Yes
RE-B_R_1.38t_w 1.38 9 9 30 2780 0.25 - 1 Yes
RE-B_R 1.84t w 1.84 9 9 30 | 2780 0.25 - 1 Yes
RE-B_R_2.30t_w 2.30 9 9 30 2780 0.25 - 1 Yes
RE-B_L 0.46t w 0.46 18 18 30 | 2780 0.25 - 1 Yes
RE-B_L_0.92t w 0.92 18 18 30 | 2780 0.25 - 1 Yes
RE-p_L_1.38t w 1.38 18 18 30 | 2780 0.25 - 1 Yes
RE-p_L_1.84t w 1.84 18 18 30 | 2780 0.25 - 1 Yes
RE-p_L_2.30t w 2.30 18 18 30 | 2780 0.25 - 1 Yes
RE-B_M_0.46t w 0.46 45 9 30 | 2780 0.25 - 1 Yes
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RE-B_M_0.92t w 0.92 45 9 30 | 2780 0.25 1 Yes
RE-B_M_1.38t w 138 45 9 30 | 2780 0.25 1 Yes
RE-B_M_1.84t w 1.84 45 9 30 | 2780 0.25 1 Yes
RE-B_M_2.30t w 2.30 45 9 30 | 2780 0.25 1 Yes
RE-y R 046t w 0.46 9 9 30 | 2780 0.25 1 Yes
RE-y R 0.92t w 0.92 9 9 30 | 2780 0.25 1 Yes
RE-y R 1.38tw 138 9 9 30 | 2780 0.25 1 Yes
RE-y R_1.84L w 1.84 9 9 30 | 2780 0.25 1 Yes
RE-y R 2.30t w 2.30 9 9 30 | 2780 0.25 1 Yes
RE-y L 0.46t w 0.46 18 18 30 | 2780 0.25 1 Yes
RE-y L 0.92t w 0.92 18 18 30 | 2780 0.25 1 Yes
RE-y L 138t w 138 18 18 30 | 2780 0.25 1 Yes
RE-y L 1.84t w 1.84 18 18 30 | 2780 0.25 1 Yes
RE-y L 230t w 2.30 18 18 30 | 2780 0.25 1 Yes
RE-y M_0.46t_w 0.46 45 9 30 | 2780 0.25 1 Yes
RE-y M_0.92t w 0.92 45 9 30 | 2780 0.25 1 Yes
RE-y M_1.38t_w 1.38 45 9 30 | 2780 0.25 1 Yes
RE-y M_1.84t w 1.84 45 9 30 | 2780 0.25 1 Yes
RE-y M_2.30t_w 2.30 45 9 30 | 2780 0.25 1 Yes

Table 6. Naming of virtual test specimens.

3.1.3 Reference Array Simulations

Up to 5% strain, all specimens except for RA_M specimen in the 2-direction exhibited
linear elastic behavior. The RA_M specimen in the 2-direction underwent buckling below
5% strain for wall thicknesses of 0.46, 0.92, 1.38 and 1.84 mm. For these specimens, the
point at which the curve abruptly changed slope was taken as the limit. Corresponding
representative element analyses were done with these new limits in mind. Increasing
relative density resulted in an exponential increase in compressive moduli. Specimens
with similar relative density, regardless of specimen size, exhibited equal moduli
(RA_R_0.46t w & RA_L_0.92t w, RA_R _0.92t w & RA L _1.84t_w). In Figure 24,
the dashed curves represent the ‘L’ type (large) specimens, the solid curves
represent the ‘R’ type (regular) specimens and the diamond-marked curves

represent the ‘M’ type specimens. X and Y axes are shown in logarithmic scale.
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Compressive Stress [MPa]

Effect of t_w on RA Modulus in the 1-Direction
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Figure 24. Effect of Cell Wall thickness of RA on the honeycomb
elastic modulus under compression in the 1-direction (top) and 2-

direction (bottom).
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3.1.4 Representative Element Simulations

In figures Figure 25 to Figure 30, the dashed cyan curves, the solid red curves and the
solid green curves represent ‘L’°, ‘R’ and ‘M’ type specimens, respectively. The faint
dashed curves show the parametric analysis of various boundary thicknesses. The black-
bound diamond markers show the corresponding representative boundary thickness
‘t_b* that causes the representative element to exhibit modulus equivalent to the
reference array ‘AR’ for the same wall thickness ‘t W’ and the array stress that they

exhibit for 5% contraction.

The shape of the curve, or concavity discussion have been investigated in depth in section
3.3.1.

3.1.4.1 RE-a Simulations

Investigating the array moduli vs representative boundary thickness ‘t b*’, Re-a
specimens exhibited an exponential growth relation for R, L & M specimens in the 1-
direction (Figure 25 - middle graph). In the 2-direction, R and L specimens exhibited
exponential growth whereas the M specimen exhibited logarithmic growth (Figure 26-
middle graph). Re-a_ M 1 specimen also exhibited an inflection point that might be

attributed to the small sample size of the data pool.

Investigating the relative density vs representative boundary thickness ‘t b*’, Re-a
specimens exhibited an logarithmic growth relation for R, L & M specimens in the 1-
direction (Figure 25 - bottom graph). In the 2-direction, R and L specimens exhibited a
linear growth relation whereas the M specimen exhibited a logarithmic growth relation
(Figure 26- bottom graph).

For the Re-o. M_2.30t_w_2 specimen, varying the boundary thickness did not result in a
convergent solution. This is due to increasing dimension of the specimen and the total

displacement not scaling with this increase. For Re-o. M specimens, this analogue was

valid in a relative density range of 0 < z—* <0.38.
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Figure 25. Top: Parametric boundary thickness analysis of RE-a in the 1-direction.
Middle: Array modulus vs boundary thickness of RE-a. in the 1-direction.
Bottom: Relative density vs boundary thickness of RE-a in the 1-direction.
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Figure 26. Top: Parametric boundary thickness analysis of RE-a in the 2-direction.
Middle: Array modulus vs boundary thickness of RE-a in the 2-direction.
Bottom: Relative density vs boundary thickness of RE-a in the 2-direction.
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3.1.4.2 RE-p Simulations

Similar to RE-a specimens, for array moduli vs representative boundary thicknesses
behavior, Re-f specimens exhibited an exponential growth relation for R, L & M
specimens in the 1-direction and R, L, M specimens in the 2-direction. Re-p M 2

specimen exhibited 2 inflection points which could be contributed to limited sample size.

For relative density behavior vs representative boundary thicknesses, Re-B specimens
exhibited a logarithmic growth relation for R and M specimens and linear relation for L
specimen in the 1-direction. R and L specimens exhibited a linear relation in the 2-
direction, whereas the M specimen exhibited a logarithmic growth relation. Re-p M 2
specimen exhibited 1 inflection point which could again be contributed to limited sample

size.

For Re-p M 1.84t w_1 and Re-p M 2.30t_w_1 specimens, varying the boundary
thickness did not result in a convergent solution. This is due to increasing dimension of

the specimen and the total displacement not scaling with this increase. For Re-p_ M

specimens, this analogue was valid in a relative density range of 0 < ’;—* <0.28.
N
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Figure 27. Top: Parametric boundary thickness analysis of RE-B in the 1-direction.
Middle: Array modulus vs boundary thickness of RE-f in the 1-direction.
Bottom: Relative density vs boundary thickness of RE-f in the 1-direction.
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RE-B: Array Stress vs t_b [2-direction]
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Figure 28. Top: Parametric boundary thickness analysis of RE-f in the 2-direction.
Middle: Array modulus vs boundary thickness of RE-f in the 2-direction.
Bottom: Relative density vs boundary thickness of RE-f in the 2-direction.
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3.1.4.3 RE-y simulations
For array moduli vs representative boundary thickness behavior, Re-y specimens

exhibited an exponential growth relation for all specimens.

For representative boundary thicknesses vs relative density behavior, Re- y specimens
exhibited a linear relation for all specimens.

This analogue was valid for all attempted relative densities: of 0 < L <0.47

Ps
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RE-y: Array Stress vs t_b [1-direction]
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. Top: Parametric boundary thickness analysis of RE-y in the 1-direction.
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RE-y: Array Stress vs t_b [2-direction]
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Figure 30. Top: Parametric boundary thickness analysis of RE-y in the 2-direction.
Middle: Array modulus vs boundary thickness of RE-y in the 2-direction.
Bottom: Relative density vs boundary thickness of RE-y in the 2-direction.
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3.1.5 Representative Ratio for Analogous Specimens

Parametric boundary thickness analysis showed that for every wall thickness value, there
exists an appropriate boundary thickness that simulates the larger array ‘RA’. Table 7 &
Table 8 outlines these representative boundary thickness (t_b*) along with the modulus
of the reference array and how it compares to Ashby/Gibson analytical model (1999) and
Malek/Gibson iteration of the same model (2015). Note that the RA FEM results lie in
between the two models for all specimens. If the size effect from Onck’s work (2001) is

adapted to RA, we see that:

a = (Eq. 44)

For 1-direction, for values of W=8H and D=H, a=S8.

For 2-direction, for values of W=10H and D=H, a=10.

E*

Referring back to Table 1 for 1-direction, the value of 7'745 is in good agreement with

*

inf
the data (Table 7, comparing FEA modulus to the analytical models) for relative densities
> 0.236 for R-type specimens (such as RA_R_1.84t w and RA_R_2.30t_w), for all
relative densities for L-type specimens, and for relative densities < 0.189 for M-type

specimens.

*

Then, E can be calculated for a=10 using the experimental data of L-type specimens
bulk

in the 2-direction. Averaging values of L-type specimens FEA modulus/Ashby-Gibson

modulus:
E 1% tfor 10<a<11] (Eq. 45)
Einf a
Thus, for 1-direction, EE: comes out to be 0.931 and for 2-direction E comes out to be
inf bulk

1.099 meaning a 10x10 array simulates an infinite array with less than 10% deviation.
The relative densities (RD) of arrays are calculated from (Eq. 23).
A new concept is introduced as the representative ratio (RR) where:

t_b*
RR = — (Eq. 46)
tw
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For specimen subgroups that exhibit < 5% standard error in RR can be considered to have
a linear relation between t_b* and t_w. This is shown highlighted in Table 7 and Table 8

as the dark green colored cells.
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3.2 Mechanical Testing Results

A preliminary experiment was done to test the consistency between mechanical testing
and FEM analysis. Same dimensions of RA_R was used, except for the wall thickness,
which was 0.74 mm, which was due calibration of the printer (for latter specimens,
geometries were printed accurately). Results showed very similar moduli for both the
virtual and real-life test.

RA Mechanical Testing and FEA Comparison

0.25

s RA FEA

0.2 4| ===RA Mechanical y=0.0396x + 0.0069
R?=0.997

Testing

ss [MPa]

0.15
y =0.0386x- 0.0049
R? = 0.9965

0.1 4

Compressive Stre:

0.05 4

o 1 2 3 4 5 6
% Strain

Figure 31. Comparison between FEA analysis and mechanical testing of
RA _R specimen.

Taking the perimeter width limitation of an FDM printer into consideration, accurate
manufacturing for wall thicknesses < 1.84 mm was unfeasible. 3 sets of specimens were
printed with the RA_R_1.84t, RE-a_1.84t, RE-B_1.84t and RE-y_1.84t geometries using
the 3 most common FDM plastics: PLA, PETG and ABS. All three plastics were Esun®
brand 1.75mm diameter gray colored filaments. Boundary thicknesses were selected from
FEM analysis to match the corresponding arrays. Refer to Figure 32, Figure 33 and Figure
34 for the results of these mechanical tests.

Results revealed well matched array and representative element moduli. The fact that
t b*’s were the same for 3 different materials suggests that the properties of the

representative elements are independent of compressive modulus and Poisson’s ratio.
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Figure 32. Mechanical test data of PLA array and representative elements
in 1-direction (left) and 2-direction (right)
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Figure 33. Mechanical test data of PETG array and representative
elements in 1-direction (left) and 2-direction (right)
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Figure 34. Mechanical test data of ABS array and representative
elements in 1-direction (left) and 2-direction (right)
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3.3 Choosing the Most Applicable Geometry

3.3.1 Consistency of Response

When choosing the best representative element, a consistency between array modulus vs
t_b and relative density vs t_b curve shapes of R, L and M type specimens are desired so
that structures are predictive for all aspect ratios of the same geometry. By inspecting the
concavity, or the sign of the second derivative of the curves in the middle (AM vs t_b)
and bottom (rel. density vs t_b) graphs in figures Figure 25 to Figure 30, we can outline
the behaviour of the geometries and how they change with varying honeycomb
parameters such as h/l ratio or 6.

For this goal, 2"! degree polynomial trendlines were fitted to array modulus vs t_b and

relative density vs t_b curves.

MAX([y])

Curves with f""(x) > AX (e

(0 01) were considered as concave up (increasing),

MAX([y])
MAX([x])

Curves with f"(x) < — (0.01) were considered as concave down (increasing),

MAX([y])
MAX([x]

MAX([y

Curves with —
MAX(

(0 01) were considered as linear.

£(0.01) <f"(0) <

Where MAX(x) is the maximum function, [y] is the data set of the y axis and [X] is the
data set of the x axis.

In this regard, RE-a_1, RE-B_1, RE-y_1 and RE-y_2 specimen groups retained

concavity among all geometries.

Specimen | Array Modulus vs | Relative Density | Specimen | Array Modulus vs |Relative Density vs| Specimen | Array Modulus | Relative Density
Type t b vst_b Type t b t_b Type vst_b vst_b
RE-a_R_1 (+) (-) RE-B_R_1 (+) (-) RE-y_R_1 (+) (-)
RE-o_L_1 (+) (-) RE-B_L 1 (+) (-) RE-y_L_1 (+) (-)
RE-a_M_1 (+) (-) RE-B_M_1 (+) (-) RE-y_M_1 (+) (-)
RE-a_R_2 (+) =0 RE-B_R_2 (+) (+) RE-y_R 2 (+) (-)
RE-a_L_2 (+) =0 RE-B_L_2 (+) (-) RE-y_L 2 (+) (-)
RE-a_M_2 (-) (-) RE-B_M_2 (+) (-) RE-y_M_2 (+) (-)

Table 9. The sign of 2" derivative of the trendline functions of array modulus vs t_b
and relative density vs t_b among all representative elements. A positive 2"
derivative indicates up-increasing concavity, a negative 2" derivative indicated
down-increasing concavity and values close to 0 indicate linear behavior.
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3.3.2 Scalability of Response

RE-0_R_0.46t and RE-o_L_0.92t, RE-a_R_0.92t and RE-a_L_1.84t specimen pairs
have the same relative density (and therefore I/t) values. Thus, the representative ratio of
boundary thickness/wall thickness should be same for these geometries. This will exhibit
aregion of overlap (Figure 35, Figure 36 and Figure 37) in representative ratio vs relative
density curves of R, L and M geometries. RE-a_2, RE-p_1, RE-y_1 and RE-y_2 exhibit
this scalability. The geometries that show discrepancy in this regard are outlined in Table
7 & Table 8 with bold, larger red and bold, larger cyan numbers. Numbers of the same

color, in the same RR column should be equal to exhibit scalability.
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Figure 35. Boundary thickness/wall thickness ratio vs relative density of
RE-a specimens.
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Figure 36. Boundary thickness/wall thickness ratio vs relative density of
RE-[ specimens.
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Figure 37. Boundary thickness/wall thickness ratio vs relative density of
RE-y specimens.
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3.3.3 Range of Application

Some specimens, regardless of how much the boundary thickens, will not converge to a
solution due to having an invariable initial height of the inner bound specimen (Figure
38). RE-a_1, RE-p_2, RE-y_1 and RE-y_2 specimen subgroups exhibited applicable
representative boundary thicknesses on all attempted relative densities.

Specimen Type Relative Density Range | Specimen Type Relative Density Range Specimen Type Relative Density Range
RE-a_R_1 0.059 < p*/p, < 0.295 RE-B_R_1 0.059 < p*/ps £0.295 RE-y_R_1 0.059 < p*/p, < 0.295
RE-a_L_1 0.030 < p*/p, <0.148 RE-B_L_1 0.030 < p*/p, <0.148 RE-y_L_1 0.030 < p*/p, <0.148
RE-a_M_1 0.094 < p*/ps < 0.472 RE-B_M_1 0.094 < p*/p, <0.283 RE-y_M_1 0.094 < p*/p, < 0.472
RE-a_R_2 0.059 < p*/ps < 0.295 RE-B_R_2 0.059 < p*/p, < 0.295 RE-y_R_2 0.059 < p*/ps < 0.295
RE-o_L_2 0.030 < p*/p, <0.148 RE-B_L_2 0.030 < p*/p, <0.148 RE-y_L_2 0.030 < p*/p, £0.148
RE-a_M_2 0.094 < p*/p, <0.378 RE-B_M_2 0.094 < p*/p, <0.472 RE-y_M_2 0.094 < p*/p, <0.472

Table 10. Relative density range of applicability of boundary walls among
all representative elements

Figure 38. Even at extreme boundary thicknesses, few specimens did not
reach the stress of the array exhibited at 5% strain. This is due to initial
height of the specimen not scaling with the overall size of the specimen.

3.4  Data Fitting for Determination of b_t for Target Relative Densities

Curve fitting was done on specimens that showed scalability (RE-a_2, RE-B_, RE-y_1
and RE-y_2) in MATLAB® R2020a Academic. Refer to figures Figure 39 through
Figure 42 for trendline & residual plots of these specimens. Coefficients and goodness
of fit parameters are outlined in Table 11. Using these plots and equations, it is possible
to predict the representative boundary thickness of these geometries. Experimental
specimens can then be manufactured and tested under compression to simulate the

behaviour of the specific array.
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Figure 42. RR vs RD fitting (left) and residuals (right) of RE-y_2.
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Fit Equation pl p2 p3 SSE R? Adjusted R?| RMSE
RE-a_2 | (p1)x"*+p3 | -0.00061 | -2.048 2.276 | 0.02109 | 0.9611 0.95 0.05488
RE-B_1 [ (p1)x+p2 3.08 1.084 - 0.03903 | 0.9407 0.9333 0.06985
RE-y_1 [ (p1)x+p2 2.885 2.348 - 0.0227 | 0.9599 0.9549 0.05327
RE-y_2 | (p1)x+p2 1.577 1.427 - 0.01433 | 0.9189 0.9087 0.04232

Table 11. Fitting parameters and goodness of fit data of RE-a_2, RE-p_1,
RE-y_1and RE-y_2

3.4.1 Data Fitting Example Case

When designing a regular honeycomb structure that will be subject to compression in

the 2-direction, a relative density of 0.236 is desired by the engineer for its toughness.

Using this curve, the representative ratio is:

Using Equation 24 and a chosen | length of 9mm:

RR = (—0.00061)(0.236)72%48 4+ 2.276 = 2.26

2t
0.236 = —=

V39

t=1.84

The engineer can manufacture a RE-o type specimen withh=1=9 mm, t w=1.84

mm and t_b* = (2.26)(1.84) = 4.15 mm and test it under compression to infer the

compressive response of the structure in 2-direction. This is in fact, one of the

mechanical test cases outlined in this work.
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3.5 Future Work

Representative element approach should be tested in shear to accompany the compressive
response in 1 and 2-directions. The geometries should be diversified to include more
irregular shapes such as auxetic or chiral honeycombs. Example representative elements
are shown in Figure 43. Hexagonal array tests should be replicated with anisotropic
materials such as fiber reinforced composites to see if the reference element boundary

relations hold.

Figure 43. Applying the representative element approach to re-entrant (top
row), tetra-chiral (middle row) and hybrid (bottom row) honeycombs.

47



4 Conclusion

Material constants were obtained through mechanical testing of 3D printed plastic. Using
these material constants, parametric finite element analyses were done on preliminary
representative geometries theorised to simulate the elastic response of hexagonal

honeycombs.

All representative element types were able to simulate the corresponding larger array.
However, among 3 element types, only RE-y was consistent in shape, scalability, and
range among regular, scaled up, and irregular geometries. For hexagonal honeycombs, a
unit cell surrounded by its immediate neighbors and a parametrized outer shell can work
as an analogue for prediction of larger arrays. For analysis in solely 1-direction, the
approach of RE-p (bounding the unit cell with vertices on neighbouring cell centers) was
valid. For analysis in solely 2-direction, the approach of RE-a (bounding the unit cell with

vertices on neighbouring joints) was valid.

Due to size effect, the representative boundary thicknesses will vary when simulating
different size and aspect ratio arrays. However, the modulus of the 10x10 array was within
10% deviation from the modulus of an infinite array with the same geometric parameters,

making it a decent size array for laying this framework.

Mechanical tests confirmed that for RE-a_R, RE-B_R and RE-y_R, the representative
boundary thicknesses simulated the reference arrays successfully. The representative
elements exhibited moduli very similar to their respective reference arrays. The variation

of material used suggested that t_b* prediction is independent of material properties.

This approach of using experimental analogues can be used where novel array designs
are proposed, but their properties cannot be determined by the size limitations of either
the manufacturing or testing equipment, or cost limitations as representative elements use

much less material in comparison.
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