
QUALITATIVE REASONING ABOUT CARDINAL DIRECTIONS
BETWEEN SPATIAL OBJECTS USING ANSWER SET PROGRAMMING

by
YUSUF İZMİRLİOĞLU

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of Doctor of Philosophy

Sabancı University
September 2020

QUALITATIVE REASONING ABOUT CARDINAL DIRECTIONS
BETWEEN SPATIAL OBJECTS USING ANSWER SET PROGRAMMING

Approved by:

Assoc. Prof. Esra ERDEM PATOĞLU .
(Dissertation Supervisor)

Prof. Volkan PATOĞLU .

Assoc. Prof. Hüsnü YENİGÜN .

Prof. Stefania COSTANTINI .

Asst. Prof. Orkunt SABUNCU .

Date of Approval: September 7, 2020

Yusuf İzmirlioğlu 2020 c©

All Rights Reserved

ABSTRACT

QUALITATIVE REASONING ABOUT CARDINAL DIRECTIONS
BETWEEN SPATIAL OBJECTS USING ANSWER SET PROGRAMMING

YUSUF İZMİRLİOĞLU

Ph.D. DISSERTATION, SEPTEMBER 2020

Dissertation Supervisor: Assoc. Prof. Esra ERDEM PATOĞLU

Keywords: Qualitative Spatial Reasoning, Answer Set Programming, Cardinal
Directional Calculus, 3D Space, Consistency Checking

Qualitative spatial reasoning studies representation and reasoning with different aspects
of space, such as direction, distance, size using parts of natural language rather than quan-
titative data. Qualitative models are useful in contexts where quantitative data is not avail-
able due to incomplete knowledge or uncertainty. Qualitative reasoning is also relevant
for contexts with complete information and quantitative data because human agents tend
to express spatial relation or configuration by means of qualitative terms for the sake of
sociable and convenient communication.

We introduce a novel formal framework (called NCDC-ASP) for qualitative reasoning
about cardinal directions between spatial objects on a plane, based on Cardinal Directional
Calculus (CDC) and using Answer Set Programming (ASP), and extend it further (called
3D-NCDC-ASP) to 3-dimensional space. Each framework provides solutions to all con-
sistency checking problems in CDC (i.e., for a complete/incomplete set of basic/disjunc-
tive CDC constraints over connected/disconnected spatial objects); many of these consis-
tency checking problems are NP-complete and cannot be solved with the existing systems.
Furthermore, each framework extends CDC with novel types of constraints (i.e., default
CDC constraints and inferred CDC constraints) to offer other types of reasoning as well
(i.e., commonsense reasoning, nonmonotonic reasoning with defaults, explanation gen-
eration for inconsistencies, and inference of missing cardinal directional relations). We
prove the soundness and completeness of both NCDC-ASP and 3D-NCDC-ASP , com-
prehensively evaluate their computational efficiency, and illustrate their usefulness with
applications in different domains ranging from underwater robotics to digital forensics.

iv

ÖZET

ÇÖZÜM KÜMESİ PROGRAMLAMA KULLANARAK
UZAYSAL NESNELER ARASINDAKİ ANA YÖNLERLE İLGİLİ

NİTEL AKIL YÜRÜTME

YUSUF İZMİRLİOĞLU

DOKTORA TEZİ, EYLÜL 2020

Tez Danışmanı: Doç. Dr. Esra ERDEM PATOĞLU

Anahtar Kelimeler: Nitel Uzaysal Akıl Yürütme, Çözüm Kümesi Programlama, Ana
Yönlerle Hesaplama, Üç Boyutlu Uzay, Tutarlılık Kontrolü

Nitel uzaysal akıl yürütme, sayısal verilerden ziyade doğal dilin bazı kısımlarını kulla-
narak yön, mesafe, büyüklük gibi uzaysal ilişkileri formel olarak biçimlendirmeyi ve
bu bilgiler üzerinde otomatik akıl yürütmeyi inceleyen bir yapay zeka alanıdır. Ni-
tel modeller, özellikle eksik bilgi veya belirsizlik nedeniyle sayısal verilerin mevcut ol-
madığı durumlarda faydalıdır. Bununla birlikte, insanların uzaysal ilişkileri nitel terimler
aracılığıyla ifade etmeleri, bilginin tam olduğu ve sayısal verilerin mevcut olduğu durum-
larda da nitel akıl yürütmenin gerekliliğini göstermektedir.

Bu tez kapsamında, bir düzlemdeki uzaysal nesneler arasındaki ana yönler hakkında nitel
akıl yürütme için, Ana Yönlerle Hesaplamaya (CDC) dayalı ve Çözüm Kümesi Program-
lama (ASP) kullanarak (NCDC-ASP olarak adlandırılan) yeni bir hesaplama yaklaşımı
sunuyoruz ve bu yaklaşımı üç boyutlu uzayda nitel akıl yürütme yapabilecek şekilde (3D-
NCDC-ASP) genişletiyoruz. Her iki yaklaşım, CDC’deki tüm tutarlılık kontrolü prob-
lemlerine çözümler sağlamaktadır; bu tutarlılık kontrolü problemlerinin çoğu NP zor-
lukta olduğu gibi mevcut sistemlerle de çözülememektedir. Dahası, her iki yaklaşım da,
CDC’yi yeni kısıtlarla (yani, varsayılan CDC kısıtları ve çıkarım yapılan CDC kısıtları)
genişleterek diğer akıl yürütme problemlerine de (örneğin sağduyuya dayalı akıl yürütme,
varsayılan koşullarla monotonik olmayan akıl yürütme, tutarsızlıklar için açıklama oluş-
turma ve bilinmeyen ana yön ilişkilerinin çıkarımı) çözümler sunmaktadır. Tez çalış-
ması kapsamında, hem NCDC-ASP ’nin hem de 3D-NCDC-ASP ’nin doğruluğunu is-
pat edip, hesaplama verimliliğini kapsamlı bir şekilde deneylerle test ediyoruz. Ayrıca, bu
yaklaşımların uygulanabilirliklerini ve faydalarını su altı robotlarıyla deniz florası araştır-
masından adli bilişime kadar farklı alanlarda gerçekçi senaryolarla gösteriyoruz.

v

ACKNOWLEDGEMENTS

Our studies in the scope of the thesis have been supported by TUBITAK Grant 114E491,
Chist-Era COACHES and Cost Action CA17124.

I am grateful to my advisor Esra Erdem for her supervision throughout the PhD program.
Her background, mentorship, feedback have illuminated my studies and improved my
scientific thinking. Her experience has provided our success in conferences and publica-
tions.

I want to thank Volkan Patoğlu and Hüsnü Yenigün for their suggestions and guidance
during my thesis work and thesis progress committee meetings. I am grateful to Volkan
Patoğlu about the motivating examples and potential applications of qualitative reason-
ing on robotics, Hüsnü Yenigün for suggestions about the experimental evaluations. I
also want to thank Nihat Gökhan Göğüş for our discussion on real analysis concepts and
methods used in our proofs, Philippe Balbiani for discussions about qualitative spatial
reasoning and CDC, Stefania Costantini for comments about applications of nCDC and
3D-nCDC in digital forensics, and Orkunt Sabuncu for his suggestions on the use of ASP
for qualitative spatial reasoning.

I have also benefited from useful discussions with Sanjiang Li for comments about our
nCDC manuscript and Spiros Skiadopoulos on the computational problems in CDC.

I thank past and present members of the Cognitive Robotics Labarotory and the mem-
bers of the Knowledge Representation and Reasoning Group at Sabancı University for
discussions and feedback during my study. They are my fellow collegues.

I am also grateful to Sabancı University for hiring me as a PhD researcher and providing
necessary resources for research. Besides, I have benefited from my family for their
support in my education. I want to acknowledge the support of administrative officers
Banu Akıncı, Sinem Aydın, Elif Tanrıkut, Elif Yıldız, Elanur Oruç for helping me in the
roadmap and the dissertation process.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xii

1. INTRODUCTION . 1

2. PRELIMINARIES . 6
2.1. Answer Set Programming . 6
2.2. Cardinal Directional Calculus . 8

2.2.1. Regions . 8
2.2.2. Basic CDC Relations Between Spatial Objects . 10
2.2.3. Disjointness of Tiles and Relations . 11
2.2.4. Disjunctive CDC Relations . 12
2.2.5. CDC Constraints and Networks . 12
2.2.6. Complexity of CDC Consistency Checking . 13

3. NCDC-ASP: NONMONOTONIC QUALITATIVE REASONING ABOUT
CARDINAL DIRECTIONS BETWEEN 2-DIMENSIONAL EXTENDED
OBJECTS USING ANSWER SET PROGRAMMING . 14
3.1. nCDC: Nonmonotononic 2D Cardinal Directional Calculus 14

3.1.1. Inferences over CDC Constraints . 14
3.1.2. Default Reasoning over CDC Constraints . 15
3.1.3. nCDC Constraints . 15

3.2. Discretized Consistency Checking in 2D . 16
3.3. Basic CDC Consistency Checking in 2D Using ASP . 18

3.3.1. Regions in Reg* : Spatial Objects May Be Disconnected 18
3.3.1.1. Represent the Input. 19
3.3.1.2. Generate Assignments of Spatial Objects to Variables. . . 19
3.3.1.3. Eliminate the Assignments that Violate the Constraints. . 20
3.3.1.4. Correctness. 21

3.3.2. Regions in Reg : Spatial Objects Must Be Connected 21
3.4. Disjunctive CDC Constraints . 23

vii

3.5. Inferring Cardinal Directions Using ASP. 24
3.6. Default CDC Constraints . 25
3.7. Further Improvements . 28

3.7.1. Improving the Lower Bound on the Grid Size . 28
3.7.2. A Divide-and-Conquer Approach for Basic CDC Consistency

Checking . 30
3.7.3. Improving the ASP Formulation . 31

3.7.3.1. Defining vs. Generating the Minimum Bounding Rect-
angles . 31

3.7.3.2. Connectedness: Transitive Closure vs. Reachability 33
3.8. Applications of NCDC-ASP . 34

3.8.1. Scenario 1: Meeting . 34
3.8.2. Scenario 2: Missing Child . 36
3.8.3. Scenario 3: Tabletop Placement . 37

4. 3D-NCDC-ASP: NONMONOTONIC QUALITATIVE REASONING
ABOUT CARDINAL DIRECTIONS BETWEEN 3-DIMENSIONAL
EXTENDED OBJECTS USING ANSWER SET PROGRAMMING 39
4.1. 3D-nCDC: Nonmonotonic 3D Cardinal Directional Calculus 39
4.2. Discretized Consistency Checking in 3D-nCDC . 42
4.3. Discretized Consistency Checking in 3D-nCDC Using ASP 43

4.3.1. Basic 3D-nCDC Networks . 44
4.3.2. Disjunctive 3D-nCDC Constraints . 46
4.3.3. Default 3D-nCDC Constraints . 47

4.4. Connected Spatial Objects . 48
4.5. Inferring Missing 3D-nCDC Relations . 50
4.6. Explaining Inconsistencies in 3D-nCDC . 51
4.7. Applications of 3D-NCDC-ASP . 52

4.7.1. Marine Exploration with Underwater Robots . 52
4.7.2. Building Design and Regulation . 53
4.7.3. Evidence-Based Digital Forensics. 54

5. EXPERIMENTAL EVALUATIONS . 56
5.1. Experimental Setup for Evaluations of NCDC-ASP . 56
5.2. Benchmark Generation in 2D . 57

5.2.1. Benchmarks: Basic CDC Networks . 57
5.2.2. Benchmarks: Disjunctive CDC Constraints . 60
5.2.3. Benchmarks: Default CDC Constraints . 61
5.2.4. Randomly Generated Benchmarks . 62

5.3. Experimental Evaluations of NCDC-ASP . 62

viii

5.3.1. Experimental Evaluations of the ASP Improvements 62
5.3.2. Evaluating the Scalability: Input Size and Degree of Incompleteness 66
5.3.3. Evaluating the Usefulness of Theorem 8 . 69
5.3.4. Experiments with Disjunctive CDC Constraints . 69
5.3.5. Experiments with Default CDC Constraints . 72
5.3.6. Experimental Evaluations with Random Benchmark Instances 74
5.3.7. Experimental Comparisons with the Existing Solver 74

5.4. Detailed Results of the NCDC-ASP Experiments . 77
5.5. Experiments with 3D-NCDC-ASP . 88

6. RELATED LITERATURE . 90
6.1. Work Related to NCDC-ASP. 90
6.2. Work Related to 3D-NCDC-ASP. 93

7. PROOFS . 97
7.1. Proof of Theorem 1 . 97
7.2. Proof of Theorem 2 . 99
7.3. Proof of Theorem 3 . 101
7.4. Proof of Theorem 4 . 102
7.5. Proof of Theorem 5 . 104
7.6. Proof of Theorem 6 . 105
7.7. Proof of Theorem 7 . 108
7.8. Proof of Theorem 8 . 108
7.9. Proof of Theorem 9 . 109
7.10. Proof of Theorem 10 . 111
7.11. Proof of Theorem 11 . 112
7.12. Proof of Theorem 12 . 115

8. CONCLUSION . 118
8.1. Contributions of Our Thesis: NCDC-ASP. 118
8.2. Contributions of Our Thesis: 3D-NCDC-ASP. 120
8.3. Future Work . 121

BIBLIOGRAPHY . 122

ix

LIST OF TABLES

Table 2.1. Complexity of consistency checking in CDC . 13

Table 5.1. Comparison to the existing solver for complete CDC networks 75
Table 5.2. Comparison to the existing solver for incomplete CDC networks 76
Table 5.3. Effect of program improvement on computation time: Consistent

instances over Reg* . 77
Table 5.4. Effect of program improvement on computation time: Inconsistent

instances over Reg* . 78
Table 5.5. Effect of program improvement on program size: Consistent in-

stances over Reg* . 79
Table 5.6. Effect of program improvement on program size: Inconsistent in-

stances over Reg* . 79
Table 5.7. Effect of program improvement on computation time: Consistent

instances over Reg . 80
Table 5.8. Effect of program improvement on computation time: Inconsistent

instances over Reg . 80
Table 5.9. Effect of program improvement on program size: Consistent in-

stances over Reg . 81
Table 5.10. Effect of program improvement on program size: Inconsistent in-

stances over Reg . 81
Table 5.11. Effect of the number of objects and the network density: Consistent

instances over Reg* . 82
Table 5.12. Effect of the number of objects and the network density: Inconsis-

tent instances over Reg* . 82
Table 5.13. Effect of the number of objects and the network density: Consistent

instances over Reg . 83
Table 5.14. Effect of the number of objects and the network density: Inconsis-

tent instances over Reg . 83
Table 5.15. Impact of the grid size on computational performance, with consis-

tent instances generated over Reg* . 84

x

Table 5.16. Impact of the grid size on computational performance, with incon-
sistent instances generated over Reg* . 84

Table 5.17. Impact of the disjunctive constraints on computation time: Consis-
tent instances . 85

Table 5.18. Impact of the disjunctive constraints on computation time: Incon-
sistent instances . 85

Table 5.19. Default CDC constraints: Computation time for instances over Reg* 86
Table 5.20. Default CDC constraints: Computation time for instances over Reg . 86
Table 5.21. Experimental results for random benchmark instances over Reg* . . . 87
Table 5.22. Experimental results for random benchmark instances over Reg 87
Table 5.23. Experimental evaluations for 3D-nCDC . 89

xi

LIST OF FIGURES

Figure 2.1. Regions in CDC . 9

Figure 3.1. Solution of consistency checking in CDC over discrete space 17
Figure 3.2. Meeting scenario . 35
Figure 3.3. Missing child scenario . 37
Figure 3.4. Tabletop placement scenario . 38

Figure 4.1. Tile relations in 3D-nCDC . 40

Figure 5.1. Layout of handcrafted regions for benchmark instances. 58
Figure 5.2. Effect of program improvement: Instances over Reg* 64
Figure 5.3. Effect of program improvement: Instances over Reg 65
Figure 5.4. Effect of the number of objects and the network density on com-

putation time . 67
Figure 5.5. Impact of the grid size on computational performance 70
Figure 5.6. Impact of the disjunctive constraints on computation time 71
Figure 5.7. Computation time for problem instances with default CDC con-

straints . 73
Figure 5.8. Experimental results for random benchmark instances 74

Figure 6.1. Solution for projected 2D networks . 94
Figure 6.2. Inverse of a 3D relation . 95

Figure 7.1. Cases in the proof of Theorem 6 . 105

xii

1. INTRODUCTION

Spatial representation and reasoning is an essential component of geographical informa-
tion systems, artificial intelligence, cognitive robotics, spatial databases and digital foren-
sics. Many tasks in these areas, such as satellite image retrieval, navigation of a robot
to a destination, describing the location of a landmark, constructing digital maps involve
dealing with spatial properties of the objects and the environment.

For higher precision of solutions, if data is available, quantitative approaches can be em-
ployed to find metric solutions for these tasks. On the other hand, in some applications
(e.g., exploration of an unknown territory), qualitative models are more suitable because
quantitative data may not always be available due to uncertainty or incomplete knowl-
edge. In cognitive systems, spatial information obtained through perception might be
coarse or imperfect. In some applications (e.g., that involve human-robot interactions),
even if quantitative data is available, sociable and understandable interactions and accept-
able explanations are often more desirable than high precision (Kuipers, 1983). Although
qualitative terms have less resolution in geometry than their quantitative counterparts, it
is easier for people to communicate with and understand them. Consider, for instance, a
robot describing the location of the library to a tourist, with a qualitative description like
“The library is in front of the theater, near to the cafeteria” compared to a quantitative
description like “The library is at 38.6 latitude and 27.1 longitude”. Normally, the former
is preferred in our daily lives. For these applications, qualitative spatial relations seem
more suitable. They can deal with describing imprecise data about spatial relations in en-
vironments, and their verbal descriptions are sufficient and understandable for describing
a way to some destination or the location of an entity.

Qualitative spatial relations between objects can be described via different aspects of
space, such as topology, direction, distance, size, and shape. In this study, we focus
on a particular sort of qualitative spatial relations, cardinal directions (e.g., west/left,
south/front, north/back, east/right, and their combinations), to describe the orientation of
objects relative to each other in a 2-dimensional space. We understand cardinal directions
as in Cardinal Directional Calculus (CDC) (Goyal & Egenhofer, 1997; Skiadopoulos &
Koubarakis, 2004,2005). We consider spatial objects as extended regions of any shape on
the plane; they may have holes (e.g., “Store A may have a small garden in the middle”)

1

or may be disconnected (e.g., “Store A may consist of two parts across a small street”).
We describe the cardinal directional relations between objects by basic CDC constraints
like “The missing child is in front of the toy store”, and disjunctive CDC constraints like
“The missing child is to the south or to the west of Store B”.

The most widely studied problem in CDC is checking the consistency of a given set of
CDC constraints, i.e., checking whether a feasible configuration of objects exists on the
plane with respect to the given CDC constraints. Consider, for instance, an agent helping
a parent to find her missing child in a shopping mall that is not completely known to the
agent nor to the parents. Suppose that the agent receives some sightings of the child,
e.g., “to the south of Store A” and “in front of the playground”. Each sighting can be
represented as a CDC constraint. Then the agent can see whether the sightings make
sense or not, by checking the consistency of the corresponding CDC constraints.

The complexity of CDC consistency checking has been studied under different circum-
stances, where the objects are connected vs. disconnected, the CDC constraints are basic
vs. disjunctive, and the set of CDC constraints is complete vs. incomplete (i.e., qualitative
spatial relations between some spatial objects are not known). Although polynomial time
complexity fragments of the problem have been identified, in general, consistency check-
ing problem is proven to be NP-complete (Liu, 2013; Liu & Li, 2011; Liu, Zhang, Li &
Ying, 2010; Skiadopoulos & Koubarakis, 2005). In particular, with uncertainty or incom-
plete knowledge, checking the consistency of a given set of constraints is NP-complete.
A summary of these complexity results is provided in Table 2.1.

In this thesis, we provide a unifying framework (called NCDC-ASP) that provides solu-
tions to all types of intractable consistency checking problems in CDC. In addition to its
generality, NCDC-ASP has two important novelties: it supports inference of the missing
CDC relations, and default reasoning over commonsense knowledge.

Let us consider the missing child scenario again. Suppose the agent checks the consis-
tency of the gathered information, and finds out that it is consistent. Then the agent has
some idea about the possible locations of the missing child. Then it will be desirable for
the agent to be able to express such possible locations to the parents in an understandable
way, like “the child might be to the southeast of the food court and to the east of the park”,
and lead the parents “to the north of where they are”. Motivated by such examples, we
introduce a method to infer the missing CDC relations from the given set of basic/dis-
junctive CDC constraints. We call these new CDC relations, inferred CDC constraints.

In various applications, due to dynamic domains with human presence, qualitative spa-
tial relations may have exceptions. For example, in the missing child scenario, suppose
that the agent has the following commonsense knowledge: “The children are normally

2

in front of the ice-cream truck” and “The ice-cream truck is by default in the free area
which is to the north of the movie theater.” Then it will be desirable to express such com-
monsense knowledge formally similar to CDC constraints, and to allow default reasoning
over them. Motivated by such examples, we introduce default qualitative directional con-

straints (default CDC constraints), and extend CDC consistency checking to include such
constraints. Due to the nonmonotonic aspects of our framework, we call this extension of
CDC as nonmonotonic CDC (nCDC).

In real environments, agents move and explore all 3 dimensions or deal with complex
3-dimensional (3D) objects. For instance, while designing a building, we can describe the
location of the transformer room as follows: “The transformer room must be at the rear
side of the building, near the electric panel. It should be located on a lower level than the
entrance”. With these motivations, we further extend nCDC to reason about qualitative
directions in 3D space based on the 3D extensions (Chen, Liu, Jia & Zhang, 2007; Hou,
Wu & Yang, 2016) of CDC. In addition, we consider another form of reasoning important
for various real-world applications: explaining inconsistencies.

We utilize the knowledge representation and reasoning paradigm Answer Set Program-
ming (ASP) (Lifschitz, 2002; Marek & Truszczyński, 1999; Niemelä, 1999), based on
answer set semantics (Gelfond & Lifschitz, 1988,1991) to provide a meaning to the novel
CDC constraints and to provide methods to compute solutions for various types of rea-
soning problems about spatial objects in 2D or 3D.

In the CDC literature, consistency checking problem is defined over a continuous domain
(i.e., the objects are regions on a plane). To use ASP for nCDC consistency checking (and
other types of high-level qualitative spatial reasoning problems), we define the discretized
version of the CDC consistency checking problem over a grid of appropriate size.

Let us summarize the theoretical contributions of our studies in the thesis regarding qual-
itative reasoning about cardinal directions between spatial objects in 2D space:

• We extend CDC (called nCDC) with two novel CDC constraints, inferred CDC
constraints and default CDC constraints, to represent the inferred missing relations
and to represent the commonsense knowledge about CDC relations that involves
defaults (Section 3.1.2).

• We introduce the discretized nCDC consistency checking problem where the con-
sistency of a set of nCDC constraints is determined over a grid of appropriate size
(Section 3.2). We provide lower bounds on the grid size so that the discretized
consistency checking returns correct solutions for CDC consistency checking (The-
orems 1, 6, 7, 8).

3

• We provide semantics of nCDC using the nonmonotonic formalism of ASP, based
on the discretized consistency checking problem (Sections 3.3–3.6). We discuss
further improvements of ASP formulations (Section 3.7).

• We prove the correctness of ASP formulations of basic CDC constraints (Theo-
rem 2) and disjunctive CDC constraints (Theorem 4) with respect to CDC consis-
tency checking, and when some objects are connected (Theorem 3). These results
show that our ASP-based framework is general enough to solve all types of CDC
consistency checking problems. We also prove the correctness of ASP formulation
for inferring missing CDC relations (Theorem 5).

Let us now summarize the theoretical contributions of our studies in the thesis, regarding
qualitative reasoning about cardinal directions between spatial objects in 3D space:

• We extend nCDC to 3D space and call this calculus 3D-nCDC (Section 4.1); 3D-
nCDC involves default 3D constraints and inferred 3D constraints. We define con-
sistency checking in 3D-nCDC and prove its NP-completeness (Theorem 9).

• We introduce the discretized 3D-nCDC consistency checking problem where the
consistency of a set of 3D-nCDC constraints is determined over a 3D grid of ap-
propriate size (Section 4.2). We provide lower bounds on the grid size so that the
discretized consistency checking returns correct solutions (Theorem 10).

• We provide semantics of 3D-nCDC using the nonmonotonic formalism of ASP,
based on the discretized 3D-nCDC consistency checking problem (Section 4.3).

• We prove the correctness of ASP formulations of basic 3D-nCDC constraints (The-
orem 11) and disjunctive 3D-nCDC constraints (Theorem 12) with respect to 3D-
nCDC consistency checking.

• Furthermore, we introduce novel methods for other types of reasoning about 3D-
nCDC relations: default reasoning, inferring missing relations between spatial ob-
jects and explaining inconsistencies (Sections 4.3.3, 4.5, 4.6).

Let us also summarize the practical contributions about 2D qualitative reasoning about
cardinal directions between spatial objects:

• We introduce an ASP-based framework (called NCDC-ASP) to represent and rea-
son about nCDC constraints.

• We present three different scenarios motivated by real-world applications, to illus-
trate the uses and benefits of the ASP-based framework for representing nCDC con-
straints, to check consistency of nCDC constraints, to infer missing CDC relations,
and to reason about commonsense knowledge that involves defaults (Section 3.8).

4

• We introduce a comprehensive set of benchmarks for experimental evaluations
(Section 5.2). Some of these benchmarks are carefully handcrafted, avoiding too
many redundant CDC contraints, to better analyze the scalability of the ASP-based
method for consistency checking, the effect of the degree of incompleteness of the
CDC constraints, and the effect of including different types of constraints. Some of
the benchmarks are randomly generated.

• We perform a comprehensive set of experiments, present the results compactly with
bar-charts and more detailed with tables, and discuss the results (Section 5.3).

The practical contributions about 3D qualitative reasoning about cardinal directions be-
tween spatial objects are:

• We introduce an ASP-based framework (called 3D-NCDC-ASP) to represent and
reason about 3D-nCDC constraints.

• We discuss the usefulness of 3D-NCDC-ASP by three interesting real-world ap-
plications that involve checking consistency of 3D-nCDC constraints, inferring un-
known 3D directional relations, and reasoning about commonsense knowledge that
involves default constraints (Section 4.7).

• We create handcrafted benchmark problem instances for experimental evaluation of
3D-NCDC-ASP and report the results of the experiments (Section 5.5).

The thesis is organized into eight chapters. Chapter 2 provides the preliminaries about
Answer Set Programming and Cardinal Directional Calculus. Chapter 3 presents nCDC
formalism and the NCDC-ASP framework for reasoning with nCDC. In Chapter 4, we
extend nCDC into 3-dimensional space and construct 3D-nCDC calculus. This chapter
presents an ASP-based formal framework 3D-NCDC-ASP for consistency checking and
reasoning with 3D-nCDC. In Chapter 5, we explain the experimental setup and evalua-
tions of NCDC-ASP and 3D-NCDC-ASP . Chapter 6 reviews the related literature. In
Chapter 7, we provide proof of the theorems.

5

2. PRELIMINARIES

We present preliminaries about the Cardinal Directional Calculus and the Answer Set
Programming, to better describe the contributions of our thesis.

2.1 Answer Set Programming

Answer Set Programming (ASP) is a knowledge representation and reasoning paradigm,
based on answer set semantics (Gelfond & Lifschitz, 1988,1991). It provides a formal
framework for declaratively solving intractable problems, like consistency checking in
CDC. The idea of ASP is to model a problem by a set of logical formulas (called rules),
so that its models (called answer sets) characterize the solutions of the problem. The
models can be computed by ASP solvers, like CLINGO (Gebser, Kaufmann, Kaminski,
Ostrowski, Schaub & Schneider, 2011).

Let us briefly describe the syntax of programs and useful constructs used in this thesis.
For more general ASP programs and further constructs, we refer the reader to the books
on ASP (Baral, 2003; Gebser, Kaminski, Kaufmann & Schaub, 2012; Gelfond & Kahl,
2014; Lifschitz, 2019) and the special issue of AI Magazine on ASP (Brewka, Eiter &
Truszczynski, 2016).

In the thesis, we consider the rules of the form

(2.1) Head ← L1, . . . ,Lk,not Lk+1, . . . ,not Ll

where l ≥ k ≥ 0, Head is a literal (i.e., an atom A or its negation ¬A) or ⊥, and each Li
is a literal. A rule is called a constraint if Head is ⊥, and a fact if l = 0. A set of rules is
called a program.

ASP can express both classical negation (¬) and default negation (not). For example, the
following rule expresses that, normally, the elevator works fine (works) unless stated or

6

observed otherwise that it does not work (¬works):

works← not ¬works.

ASP provides special constructs to express nondeterministic choices, cardinality con-
straints, and aggregates. Programs using these constructs can be viewed as abbreviations
for programs that consist of rules of the form (2.1).

Choice rules provide a concise representation for nondeterministic choices, and thus allow
generation of answer sets. For instance, the answer sets for the choice rule

{p1,p2, . . . ,p5}←

are all subsets of the set {p1,p2, . . . ,p5}.

Cardinality expressions are of the form l≤{L1, . . . ,Lk}≤u where each Li is a literal and
l and u are nonnegative integers denoting the lower and upper bounds (Simons, Niemelae
& Soininen, 2002). Such an expression describes the subsets of the set {L1, . . . ,Lk}
whose cardinalities are at least l and at most u. Cardinality expressions can be used in
heads of choice rules; then they generate many answer sets whose cardinality is at least l
and at most u. For instance, the choice rule

(2.2) 1≤{p1,p2, . . . ,p5}≤3 ←

allows nondeterministically selecting at least 1 and at most 3 elements of the set
{p1,p2, . . . ,p5} to be included in an answer set. When a cardinality expression is in
the body of the rules, it imposes a cardinality constraint on the number of literals. For
instance, adding the following constraint

←#count {p1,p2, . . . ,p5}≥2

to (2.2) will impose a constraint on the choice rule, and thus only subsets of
{p1,p2, . . . ,p5} whose cardinality is exactly one will be generated.

Schematic variables can be used to compactly describe a group of rules, or a set of literals
in a choice rule. For instance, the cardinality expression 1≤{p1,p2, . . . ,p5}≤3 can be
represented as 1≤{p(i) : index(i)}≤3, along with a definition of index(i) to describe the
ranges of variable i: index(1..5). The following choice rule allows nondeterministically
selecting at least 1 and at most 3 numbers x for every set u:

1≤{select(u,x) : num(x)}≤3 ← set(u).

7

ASP also provides utilities to represent aggregates. For instance, the following rule de-
fines the smallest number, N , selected so far using the aggregate min:

smallest(N)←N=#min {x : select(u,x), set(u)}.

2.2 Cardinal Directional Calculus

Cardinal Directional Calculus (CDC) describes orientation of spatial objects with respect
to one another in terms of cardinal directions. We briefly describe some terminology and
notation relevant to the rest of the text, in the spirit of Liu et al. (2010), Skiadopoulos &
Koubarakis (2004,2005).

2.2.1 Regions

In CDC, spatial objects are nonempty, regular, compact subsets of R2. That is, spatial
objects are closed and bounded regions on the plane and they can be connected or discon-
nected. A region is connected if its interior is connected. Connected regions might have
holes inside. A disconnected region can be viewed as a finite union of connected regions.
In this thesis, we consider the following types of regions (Fig. 2.1(i)):

• Simp is the set of closed, connected and bounded regions on R2, that are topologi-
cally equivalent to a closed disk (i.e., with no holes).

• Reg is the set of closed, connected and bounded regions on R2. The regions in Reg
may have holes.

• Reg* is the set of closed, possibly disconnected and bounded regions on R2.

As in Liu et al. (2010), Skiadopoulos & Koubarakis (2004,2005), other arbitrary shapes
on the plane (like points, lines and regions with emanating lines) are excluded from these
three types of regions. The definition of a simple region above is the same as the definition
of a simple region in (Liu et al., 2010, Definition 3), and a Reg region in Skiadopoulos &
Koubarakis (2004,2005).

8

(i)

(ii) (iii)

(iv)

Figure 2.1 (i) Regions: a, b, c1, c2 are in Reg , where c = c1 ∪ c2 is in Reg* . (ii) A region b,
and its minimum bounding rectangle mbr(b) defined by infx(b), supx(b), infy(b) and supy(b).
(iii) Nine target regions (or tiles) with respect to region b: x = infx(b), x = supx(b), y = infy(b)
and y = supy(b): N(b) (“north of b”), S(b) (“south of b”), E(b) (“east of b”), W (b) (“west of
b”), NE(b) (“northeast of b”), NW (b) (“northwest of b”), SE(b) (“southeast of b”), SW (b)
(“southwest of b”), O(b) (“on b”). (iv) Sample CDC relations that describe different orientations
of a with respect to b: a S b (“the whole region a is in S(b)”), a NE:E b (“Some part of a is in
NE(b) and the rest of a is in E(b)”), a N :S b (“Some part of a is in N(b) and the rest of a is in
S(b)”).

The projection of a region a on the x-axis (resp. y-axis) is defined as the set of the
x-coordinates (resp. y-coordinates) of all the points in a. Let infx(a), supx(a) (resp.
infy(a), supy(a)) stand for the infimum and supremum of the projection of region a on the
x-axis (resp. y-axis). The minimum bounding rectangle of a region a, denoted mbr(a), is
the smallest rectangle which contains a and has sides parallel to the axes. Sides of mbr(a)
are the straight lines x= infx(a), x= supx(a), y = infy(a) and y = supy(a).

9

2.2.2 Basic CDC Relations Between Spatial Objects

The orientation of a spatial object a (called the primary or target region) with respect to
another spatial object b (called the reference region) is defined by nine cardinal directional

relations: north (N), south (S), east (E), west (W), northeast (NE), northwest (NW),
southeast (SE), southwest (SW), on (O).

For such a definition, first we extend the sides of the minimum bounding rectangle mbr(b)
of the reference region b along the axes, dividing the plane into nine regions, called tiles,
as illustrated in Figure 2.1(iii):

• N(b) (“north of b”) is the tile to the north of b, and consists of the coordinates
(x,y) ∈ R2 where infx(b)< x < supx(b), and y > supy(b).

• S(b) (“south of b”) is the tile to the south of b, and consists of the coordinates
(x,y) ∈ R2 where infx(b)< x < supx(b), and y < infy(b).

• E(b) (“east of b”) is the tile to the east of b, and consists of the coordinates (x,y) ∈
R2 where x > supx(b), and infy(b)< y < supy(b).

• W (b) (“west of b”) is the tile to the west of b, and consists of the coordinates (x,y)∈
R2 where x < infx(b), and infy(b)< y < supy(b).

• NE(b) (“northeast of b”) is the tile to the northeast of b, and consists of the coordi-
nates (x,y) ∈ R2 where x > supx(b), and y > supy(b).

• NW (b) (“northwest of b”) is the tile to the northwest of b, and consists of the
coordinates (x,y) ∈ R2 where x < infx(b), and y > supy(b).

• SE(b) (“southeast of b”) is the tile to the southeast of b, and consists of the coordi-
nates (x,y) ∈ R2 where x > supx(b), and y < infy(b).

• SW (b) (“southwest of b”) is the tile to the southwest of b, and consists of the coor-
dinates (x,y) ∈ R2 where x < infx(b), and y < infy(b).

• O(b) (“on b”) is the tile onto b, and consists of the coordinates (x,y) ∈ R2 where
infx(b)< x < supx(b), and infy(b)< y < supy(b).

Then, by identifying the unique tilesR1(b), ...,Rk(b), (1≤ k≤ 9,Ri 6=Rj for 1≤ i, j≤ k)
that contain parts of the target region a, we can describe the orientation of a with respect
to b with the basic CDC relation R1:R2:...:Rk. For example, in the second figure in
Figure 2.1(iv), the orientation of a with respect to b can described by the basic CDC
relation E:NE since some part of a is in E(b) and the rest of a is in NE(b).

10

A basic CDC relation a R1:R2:...:Rk b holds if and only if a∩Ri(b) 6= ∅ for every 1 ≤
i ≤ k. If k = 1 then this basic CDC relation is called a single-tile relation; otherwise, if
k ≥ 2, it is called a multi-tile relation. In the rest of the text, let Rs stand for the set of
single-tile relations, andR denote the set of basic CDC relations over Reg* .

2.2.3 Disjointness of Tiles and Relations

Note that, according to our definition of tiles,

• all tiles are open regions that do not include their boundary points,

• all tiles but O(b) are unbounded,

• the union of all nine tiles including their boundary points is R2, and

• two distinct tiles have disjoint interiors and do not share point in their boundaries.

As in Liu et al. (2010), Skiadopoulos & Koubarakis (2004,2005), we consider spatial
objects that have positive area, so the minimum bounding rectangle (and thus the tiles)
are nontrivial boxes.

According to Skiadopoulos & Koubarakis (2004,2005), the tiles are not defined as disjoint
from each other, and they share boundaries; however, the authors achieve disjointness of
relations by relying on that the class Reg* does not include points and lines. According to
Liu et al. (2010), the tiles are not defined as disjoint from each other either; however, the
satisfaction of a basic CDC relation is defined by ensuring that the interior part of a does
intersect with Ri(b), and hence the relations are disjoint. In our approach, the disjointness
of tiles is defined explicitly, leading to the disjointness of relations.

11

2.2.4 Disjunctive CDC Relations

A disjunctive CDC relation is a finite set δ={δ1, ..., δo}, o > 1 of basic CDC relations,
intuitively describing their exclusive disjunction. For example, if we are not certain about
the orientation of a with respect to b but know that one of the orientations illustrated in
Fig. 2.1(iv) is possible, then the orientation of a with respect to b can be described by the
disjunctive CDC relation {S, E : NE, N : S}. A disjunctive CDC relation between two
regions a {δ1, ..., δo} b holds if a δi b holds for exactly one i ∈ [1,o] in the disjunction.

2.2.5 CDC Constraints and Networks

A CDC relation can be basic or disjunctive. A CDC constraint is a formula of the form
u δ v, where u and v are spatial variables and δ is a CDC relation. A pair (a,b) of spatial
objects satisfies a CDC constraint u δ v if a δ b holds.

A CDC (constraint) network is a set C of CDC constraints defined by spatial variables
V ={v1, ...,vl} that range over a domain D of spatial objects, and a set Q of CDC rela-
tions:

(2.3) C ⊆ {vi δ vj | δ ∈Q, vi, vj ∈ V }

such that, for every pair (u,v) of variables in V , there exists at most one CDC constraint
in C.

A CDC network C is complete if there exists a unique basic CDC constraint in C for
every pair (vi,vj) of variables in V , (i 6= j). Otherwise, if there does not exist a basic CDC
constraint in C for some pair (vi,vj) of variables in V , (i 6= j), C is called incomplete.

A CDC network is basic if it consists of basic CDC constraints. A solution for a basic

CDC network C with V ={v1, ...,vl} is an assignment X of spatial objects ai in D to
variables vi in V , such that every basic CDC constraint vi δ vj in C is satisfied by the
corresponding pair (ai,aj) of spatial objects in D. We sometimes denote X by an l-tuple
(a1,a2, ...,al) ∈Dl. A basic CDC network is consistent if it has a solution.

In the presence of disjunctive CDC constraints, consistency of a CDC network C can be
defined as follows. Let Ĉ be a basic CDC network obtained from C by replacing every
disjunctive CDC constraint vi δ vj in C by exactly one basic CDC constraint vi δ′ vj

12

Table 2.1 Computational complexity analysis of consistency checking problems in Cardi-
nal Directional Calculus

Basic CDC Relations Disjunctive CDC Relations
Complete Incomplete

Simp P P NP-complete
(Liu et al., 2010, Thm 8) (Navarrete et al., 2007, Thm 3) (Navarrete et al., 2007, Thm 4)

Reg P NP-complete –
(Liu, 2013, Thm 5.4) (Liu et al., 2010, Thm 5)

Reg* P NP-complete NP-complete
(Liu, 2013, Thm 5.7) (Liu, 2013, Thm 5.8) (Skiadopoulos & Koubarakis, 2005, Thm 6)

where δ′ ∈ δ. Then, a CDC constraint network C is consistent if there exists such a basic
CDC network Ĉ that is consistent.

As an example, suppose that V consists of two variables, v1 and v2, denoting two spatial
objects, and we are told that v1 is to the south of v2, i.e., C = {v1 S v2}. There exists
a solution for C in the domain D=Reg* as shown in the first figure of Fig. 2.1(iv):
instantiate v1 by the region a and v2 by the region b. Hence, C is consistent.

2.2.6 Complexity of CDC Consistency Checking

Deciding the consistency of a CDC network C is one of the main problems studied in
the literature about CDC. When C is a complete network, consistency checking in Simp ,
Reg , Reg* is a polynomial time problem. However, when the network is incomplete or
includes disjunctive CDC constraints, consistency checking becomes NP-complete. The
complexity analysis of consistency checking problem is summarized in Table 2.1. In the
thesis, we introduce a general framework (called NCDC-ASP) for reasoning about cardi-
nal directional relations, and provide solutions for all cases of CDC consistency checking.

13

3. NCDC-ASP : NONMONOTONIC QUALITATIVE REASONING ABOUT
CARDINAL DIRECTIONS BETWEEN 2-DIMENSIONAL EXTENDED

OBJECTS USING ANSWER SET PROGRAMMING

This chapter builds nCDC formalism by introducing new types of constraints into CDC,
define their semantics and develops NCDC-ASP framework for reasoning about cardinal
directional relations using nCDC.

3.1 nCDC: Nonmonotononic 2D Cardinal Directional Calculus

We extend CDC (called nCDC) with new types of constraints, i.e., default CDC con-
straints and inferred CDC constraints, to allow for different types of reasoning.

3.1.1 Inferences over CDC Constraints

Let us consider the missing child scenario explained in the introduction, where two par-
ents are looking for their missing child in a shopping mall and request help from an
assistive agent located in the food court. The agent receives some sightings of the child,
and checks the consistency of the gathered information. If the gathered information is
consistent, the agent has an idea about the possible locations of the missing child. Then
it will be desirable for the agent to be able to express such possible locations in an under-
standable way, like “the child might be to the southeast of the food court and to the east
of the park”.

Motivated by such examples, we introduce a method to infer the missing CDC relations
from the given set C of CDC constraints. We call these new CDC relations, inferred CDC

14

constraints.

Let C be a CDC network, where CDC constraints are defined over a set V of spatial vari-
ables, a domain D ⊆ Reg* , and a set Q of CDC relations. Suppose that C is incomplete.
Let X be an assignment of spatial objects in D to variables in V , that is a solution for C.
For a pair of variables u and v in V where there does not exist a CDC constraint u δ v
inC, an inferred CDC constraint with respect toX is a basic CDC constraint u β v, β ∈Q
where the regions X(u) and X(v) satisfy u β v.

3.1.2 Default Reasoning over CDC Constraints

In various applications, due to dynamic domains with human presence, qualitative spatial
relations may have exceptions. For example, let us consider the missing child scenario
again. The agent knows that the children are by default at the ice-cream truck, and the
ice-cream truck is by default in the free area which is to the north, east or northeast of
the movie theater. Then it will be desirable to express such commonsense knowledge
formally, similar to CDC constraints, to allow for default reasoning.

Motivated by such examples, we introduce default qualitative directional constraints (de-

fault CDC constraints) as expressions of the form:

(3.1) default u δ v

where u δ v is a CDC constraint.

3.1.3 nCDC Constraints

We have extended CDC by introducing new sorts of constraints and defined their seman-
tics. Due to its nonmonotonic aspects, we call this extension of CDC as nonmonotonic
CDC (nCDC). We build nCDC formalism based on CDC relations. An nCDC constraint

can be a basic, disjunctive, default or an inferred CDC constraint. An nCDC (constraint)

network is a set C of CDC constraints defined by spatial variables V ={v1, ...,vl} that

15

range over a domain D of spatial objects in Reg* , and a set Q of CDC relations:

(3.2) C ⊆ {vi δ vj , default vi δ vj | δ ∈Q, vi, vj ∈ V }

such that, for every pair (u,v) of variables in V , there exists at most one basic or disjunc-
tive CDC constraint in C. A basic nCDC network C is complete if there exists a unique
basic CDC constraint in C for every pair (vi,vj) of variables in V , (i 6= j). Otherwise, if
there does not exist a basic CDC constraint in C for some pair (vi,vj) of variables in V ,
(i 6= j), C is called incomplete.

We provide a general framework (called NCDC-ASP) for reasoning about cardinal direc-
tional relations between spatial objects, that provides solutions for consistency checking
(with respect to the model-based semantics given above), inference of missing relations,
and default reasoning over the given/inferred CDC constraints. NCDC-ASP is based on
the novel extension of CDC, called nCDC.

3.2 Discretized Consistency Checking in 2D

Let C be an nCDC constraint network defined by a set V of variables ranging over the
set D of all spatial objects in Reg* , and a set Q of nCDC relations. Let us denote by
I=(C,V,D,Q) the problem of checking the consistency of this network. Note that check-
ing the consistency of C is defined over continuous space since D ⊆ 2R2

. This problem
can be discretized in the spirit of Liu et al. (2010) by viewing the plane as a sufficiently
fine grid so that the regions occupied by spatial objects can be specified by a set of grid
cells.

For positive integers m and n, let Λm,n denote the set of all cells of a grid whose size is
m×n, where a grid cell is identified by the coordinates of its lower left corner. Let Dm,n

denote the set of all nonempty subsets a of the grid cells in Λm,n, where each subset a
characterizes a spatial object (i.e., the set of possibly disconnected regions) in D. Every
spatial variable u in V then can be instantiated by an element a of Dm,n.

We define the minimum bounding rectangle of a region b ∈Dm,n in an analogous fashion
as before, but with respect to Λm,n. The minimum bounding rectangle of a region b,
denoted mbrm,n(b), is the smallest rectangle in Λm,n which contains b and has sides
parallel to the axes; the sides of the rectangle are defined by the largest (i.e., infx(b),
infy(b)) and the smallest (supx(b), supy(b)) coordinate values of the projection of b on

16

(i) (ii) (iii)

Figure 3.1 For a consistency checking problem I with a set C = {b S a, c E b, a N :
NW c} of basic CDC constraints, (i) shows a solution on R2, (ii) shows a solution to
the discretized consistency checking problem I5,5 over a grid of size 5× 5, whereas (iii)
shows a solution to I{3,3} over a grid of size 3×3.

x-axis and y-axis in Λm,n.

We define the nine tiles of the grid Λm,n with respect to a reference object b ∈Dm,n, also
in a similar fashion. We denote by Rm,n(b) the tile in Λm,n with respect to a reference
object b and a cardinal direction R. For example, Nm,n(b) is the tile to the north of b, and
consists of the grid cells (x,y) ∈ Λm,n where x≥ infx(b), x≤ supx(b), and y>supy(b).

We say that a pair (a,b) of spatial objects in Dm,n satisfies a basic CDC constraint u δ v

in C if the following hold:

(C1) a∩Rm,n(b) 6= ∅ for every single-tile relation R in δ, and

(C2) a∩Rm,n(b)=∅ for every single-tile relation R that is not included in δ.

Similarly, a pair (a,b) of spatial objects in Dm,n satisfies a disjunctive CDC constraint

u δ v in C if the conditions (C1) and (C2) hold for some basic CDC relation δ′ ∈ δ.

Let X be an assignment of spatial objects ai in Dm,n to variables vi in V ={v1, ...,vl}.
Then, X is a solution of a CDC network C if every constraint vi δ vj in C is satisfied by
(ai,aj). We sometimes denote X by an l-tuple (a1,a2, ...,al) ∈ (Dm,n)l.

Consider, for example, the problem I with constraints C = {b S a, c E b, a N : NW c}
and V = {a,b,c}, where D consists all regions in Reg* , and Q consists of all basic CDC
relations. A solution to C relative to I is illustrated in Fig. 3.1(i): variable a (resp. b and
c) is instantiated by the region denoted by a (resp. b and c). In the discretized version
Im,n of I for m = n = 5, Dm,n consists of all subsets of the grid cells in a grid of size
m×n. A solution to C relative to Im,n is shown in Fig. 3.1(ii): variable a (resp. b and c)
is instantiated by the region that consists of the grid cells denoted by a (resp. b and c).

If the grid Λm,n is fine enough, then the discretized version Im,n=(C,V,Dm,n,Q) of the
consistency checking problem and I have the same answer. According to the following

17

theorem, if m,n≥ 2|V |−1 then the grid is fine enough:

Theorem 1 The consistency checking problem I=(C,V,D,Q) and the discretized con-

sistency checking problem Im,n=(C,V,Dm,n,Q) where m,n≥2|V | − 1 have the same

answers.

Liu et al. (Liu et al., 2010) have the same lower bound 2|V |−1 on the grid size for com-
plete networks in Reg* (Theorem 6 of Liu et al. (2010)). Theorem 1 extends this result
to possibly incomplete networks. The proof of Theorem 1 is presented in Section 7.1.

3.3 Basic CDC Consistency Checking in 2D Using ASP

After discretizing CDC consistency checking, we can represent it in ASP by a program.
Let us first consider basic CDC constraints defined over Reg* .

3.3.1 Regions in Reg* : Spatial Objects May Be Disconnected

Let Im,n=(C,V,Dm,n,Q) be a discretized version of a consistency checking problem,
where m and n are positive integers, C contains basic CDC constraints and may be in-
complete. Note that since D ⊆ Reg* , spatial objects may be disconnected regions and
have holes. We define the corresponding ASP program Πm,n as follows.

18

3.3.1.1 Represent the Input.

We represent the given constraint network C in ASP by a set of facts. In particular, we
describe every basic CDC constraint u R1:R2:...:Rk v (k ≥ 1) in C, by a set of facts as
follows:

(3.3) rel(u,v,Ri)← .

For instance, the basic CDC constraint u N :NE v is represented by the facts:

rel(u,v,N)←
rel(u,v,NE)← .

The answer set for the program (3.3) characterizes the input network C. Since the net-
work C might be incomplete, existrel(u,v) atoms are introduced to identify which pair
of variables are related by a constraint in the network:

(3.4) existrel(u,v)← rel(u,v,r) (r ∈Rs, u,v ∈ V).

3.3.1.2 Generate Assignments of Spatial Objects to Variables.

Recall that a solution of Im,n is characterized by an instantiation of every variable u ∈ V
by a spatial object in Dm,n, i.e., a nonempty set of grid cells (x,y) in Λm,n. We describe
such an instantiation by the atoms of the form occ(u,x,y).

An assignment of a nonempty set of cells (x,y) ∈ Λm,n to every variable u ∈ V is gener-
ated by a set of choice rules as follows:

(3.5) {occ(u,x,y) : (x,y) ∈ Λm,n}≥1 ← .

Note that these choice rules are augmented by a cardinality constraint to ensure that at
least one grid cell is assigned to every variable.

Every answer set for program (3.3)∪ (3.4)∪ (3.5) characterizes an assignment of spatial
objects to variables. Note that some of these answer sets do not correspond to solutions,
i.e., the corresponding assignments violate conditions (C1) and/or (C2).

19

3.3.1.3 Eliminate the Assignments that Violate the Constraints.

To check whether a generated assignment satisfies every basic CDC constraint u δ v in C,
first we identify the minimum bounding rectangle mbrm,n(v) of the spatial object inDm,n

assigned to v by defining the smallest and the largest coordinate values of the projections
of the object on x-axis and y-axis of Λm,n. We represent these coordinate values on x-axis
by the atoms of the form infm,nx (v,x) and supm,nx (v,x), respectively; we consider similar
atoms for the coordinate values on y-axis. Recall that the spatial object assigned to v is
defined by the atoms of the form occ(v,x,y). Then, we can define these coordinate values
as follows:

(3.6)
infx(v,x)← x= min{x : occ(v,x,y), (x,y) ∈ Λm,n}
supx(v,x)← x= max{x : occ(v,x,y), (x,y) ∈ Λm,n}.

Note that these definitions use aggregates min and max supported by ASP. Similar rules
are added for y axis.

Then, for each single-tile relation that δ contains (resp. does not contain), we add con-
straints for ensuring (C1) (resp. (C2)). For instance, if δ contains the single-tile relation
N (north) then the following constraint ensures condition (C1) for N : for every spatial
objects u,v∈V , if u is to the north of v then there should be some grid cells to the north
of mbrm,n(v) occupied by u.

(3.7)
←#count{x,y: occ(u,x,y), x<x<x, y>y, (x,y)∈Λm,n}≤0,

rel(u,v,N), infx(v,x), supx(v,x), supy(v,y) (u ∈ V).

If δ does not contain N , then the following constraint ensures condition (C2) for N : for
every spatial objects u,v∈V , if u is not to the north of v then there should not be any
cells to the north of mbrm,n(v) occupied by u.

(3.8)
←#count{x,y: occ(u,x,y), x<x<x, y>y, (x,y)∈Λm,n }≥1,
not rel(u,v,N), existrel(u,v), infx(v,x), supx(v,x), supy(v,y) (u ∈ V).

Similar rules are added for the other single-tile relations.

Then, the ASP program Πm,n for basic CDC consistency checking is composed of rules
(3.3), (3.4), (3.5), (3.6) and similar rules for y axis, (3.7), (3.8), and similar rules for the
other single-tile relations.

20

3.3.1.4 Correctness.

Let Om,n denote the set of all atoms of the form occ(u,x,y) where u ∈ V and (x,y) ∈
Λm,n. Recall that an assignment X of spatial objects in Dm,n (i.e., nonempty set of grid
cells (x,y) in Λm,n) to variables u in V , can be represented by a nonempty set Z ⊆Om,n
of atoms of the form occ(u,x,y) that describe the assignment X .

The following theorem states that the ASP program Πm,n correctly formulates the dis-
cretized consistency checking problem Im,n. In this way, we can decide for the consis-
tency of a basic CDC network using ASP.

Theorem 2 Let Im,n=(C,V,Dm,n,Q) be a discretized consistency checking problem,

where C is a basic CDC network. For an assignment X of spatial objects in Dm,n to

variables u in V , X is a solution of Im,n if and only if X can be represented in the form

of Z ∩Om,n for some answer set Z of Πm,n. Moreover, every solution of Im,n can be

represented in this form in only one way.

The proof of Theorem 2 is presented in Section 7.2.

From Theorems 1 and 2, we obtain the following corollary:

Corollary 1 For a consistency checking problem I=(C,V,D,Q), where C consists of

basic CDC constraints and may be incomplete, I has a solution if and only if the corre-

sponding ASP program Πm,n with m=n=2|V |−1 has an answer set.

3.3.2 Regions in Reg : Spatial Objects Must Be Connected

Let us consider a variation of basic CDC consistency checking where spatial objects are
connected. We can solve this problem using ASP, utilizing a recursive definition for
connectedness.

Suppose that I=(C,V,D,Q) is a consistency checking problem, where C contains basic
CDC constraints and may be incomplete, but the spatial objects are connected (i.e., D ⊆
Reg). We solve this problem by adding the following rules to the ASP program Πm,n.

First, for every spatial object u∈V , we recursively define (4-)connectedness of grid cells

21

that are occupied by the same spatial object u:

(3.9)

conn(u,x,y,x,y)← occ(u,x,y) ((x,y) ∈ Λm,n)
conn(u,x1,y1,x2,y2)← occ(u,x1,y1), occ(u,x2,y2)

((x1,y1),(x2,y2) ∈ Λm,n , |x1−x2|+|y1−y2|=1)
conn(u,x1,y1,x3,y3)← conn(u,x1,y1,x2,y2), conn(u,x2,y2,x3,y3)

((x1,y1),(x2,y2),(x3,y3) ∈ Λm,n).

Note that conn(u,x1,y1,x2,y2) expresses the reflexive transitive closure of the adjacency
relation of the cells occupied by u (due to Theorem 2 of Erdem & Lifschitz (2003)).

Next, we guarantee that every two grid cells (x1,y1) and (x2,y2) in Λm,n that are occupied
by the same spatial object u are connected indeed:

(3.10) ← not conn(u,x1,y1,x2,y2), occ(u,x1,y1), occ(u,x2,y2).

The following theorem states that extending Πm,n with the rules (3.9)∪ (3.10) correctly
solves the discretized consistency checking problem Im,n where the spatial objects are
connected:

Theorem 3 For a discretized version Im,n=(C,V,Dm,n,Q) of a consistency checking

problem, where C consists of basic CDC constraints and may be incomplete, and where

the spatial objects in Dm,n are connected (i.e., Dm,n ⊆ Reg), Im,n has a solution if

and only if the corresponding ASP program Πm,n combined with (3.9)∪ (3.10) for every

variable u ∈ V has an answer set.

The proof of Theorem 3 uses Proposition 4 of Erdem & Lifschitz (2003) to show that the
definition of connectedness i.e., the rules in (3.9) are correct, Proposition 3 of Erdogan &
Lifschitz (2004) to show that adding the definition of connectedness to the program Πm,n

extends its answer sets conservatively, and Proposition 2 of Erdogan & Lifschitz (2004)
to show that the connectedness is ensured for each spatial object.

22

3.4 Disjunctive CDC Constraints

Consider a CDC consistency checking problem I=(Cd∪Cb,V,D,Q) where D ⊆ Reg* ,
Cd is a set of disjunctive CDC constraints, and Cb is a set of basic CDC constraints.
Furthermore, C=Cd∪Cb may be incomplete. Recall that, in the presence of disjunctive
CDC constraints, consistency of a CDC constraint networkC is defined as follows. Let Ĉd
be a basic CDC network obtained from Cd by replacing every disjunctive CDC constraint
vi δij vj in Cd by a basic CDC constraint vi δ′ij vj where δ′ij ∈ δij . Then, a CDC network
C is consistent if there exists a basic CDC network Ĉd obtained fromCd such that Ĉd∪Cb
is consistent. In other words, I=(Cd ∪Cb,V,D,Q) returns Yes if and only if Î=(Ĉd ∪
Cb,V,D,Q) returns Yes for some consistent basic CDC network Ĉd obtained from Cd.

Thanks to Theorem 1, the consistency checking problem I has the same answer as the
discretized consistency checking problem Im,n where m,n≥2|V |−1. On the other hand,
the program Πm,n (described in Section 3.3) contains rules (3.3) that describe the basic
CDC constraints in Cb but not the constraints in Ĉd.

Based on this observation, we define the given disjunctive CDC constraints in Cd and
then nondeterministically construct the basic CDC constraints in Ĉd. We represent every
given disjunctive CDC constraint u {δ1, δ2, ..., δo} v in Cd, by identifying every single-tile
relation R ∈Rs included in every basic CDC relation δi:

(3.11) disjrel(u,v, i,R)← (R ∈ δi, 1≤ i≤ o).

Then, we nondeterministically construct basic CDC constraints Ĉd from Cd : For each
disjunctive CDC constraint u {δ1, δ2, ..., δo} v in Cd, a disjunct δi is nondeterministically
chosen:

(3.12) {chosen(u,v, i) : 1≤ i≤ o}=1 ←

and a new basic CDC constraint u δi v is constructed:

(3.13) rel(u,v,R)← chosen(u,v, i), disjrel(u,v, i,R) (R ∈ δi).

Let Πv
m,n be the program obtained from Πm,n by augmenting it with the rules (3.11),

(3.12) and (3.13). The rules (3.11), (3.12) and (3.13) define some Ĉd that is nondeter-
ministically constructed from Cd according to the definition for consistency checking of

23

disjunctive CDC constraints. Then, the program Πv
m,n extends the correctness results

stated in Theorem 2 to disjunctive CDC constraints.

Theorem 4 Let m,n≥2|V |−1, Im,n=(C,V,Dm,n,Q) be a discretized CDC checking

problem where D ⊆ Reg* and C is the union of a set of disjunctive CDC constraints and

a set of basic CDC constraints. Furthermore, C may be incomplete. For an assignment

X of spatial objects in Dm,n to variables u in V , X is a solution of Im,n if and only if X

can be represented in the form of Z ∩Om,n for some answer set Z of Πv
m,n. Moreover,

every solution of Im,n can be represented in this form in only one way.

3.5 Inferring Cardinal Directions Using ASP

When the given CDC network is incomplete, it may be useful to infer the cardinal direc-
tions between two spatial objects whose CDC relation is not known at all.

Let us first define inference of cardinal directions for discretized consistency check-
ing. Let Im,n=(C,V,Dm,n,Q) be a discretized consistency checking problem where
D ⊆ Reg* . Suppose that the given CDC network C, defined by a set V of variables over
a discrete domain Dm,n and a set Q of CDC relations, is incomplete. Let X be an assign-
ment of spatial objects ai in Dm,n to variables vi in V ={v1, ...,vl}, that is a solution for
C. For a pair of variables u and v in V where there does not exist a basic or disjunctive
CDC constraint u δ v in C, an inferred CDC constraint with respect to X is a basic CDC
constraint u β v, β ∈Q where the regions X(u) and X(v) in Dm,n satisfy u β v.

Now let us describe how missing CDC relations can be inferred using ASP.

For a pair of spatial objects u and v where there does not exist a CDC constraint u δ v in
C, first a basic CDC relation δ ∈Q is generated for them:

(3.14) {inferrel(u,v,R) :R ∈Rs}≥1 ← not 1{rel(u,v,R′) :R′ ∈Rs}.

Then, for every generated CDC constraint u δ v, we add constraints to ensure (C1) and
(C2). For instance, if the inferred relation δ contains the single-tile relationN (north) then
the following constraint (similar to (3.7)) ensures condition (C1) for N : for every spatial
object u,v∈V , if u is to the north of v then there should be some grid cells to the north

24

of mbrm,n(v) occupied by u.

(3.15)
←#count{x,y: occ(u,x,y), x<x<x, y>y, (x,y)∈Λm,n}≤0,

inferrel(u,v,N), infx(v,x), supx(v,x), supy(v,y).

If the inferred δ does not contain N , then the constraint (3.8) is replaced by the following
constraint to ensure condition (C2) for N : for every spatial object u,v∈V , if u is not to
the north of v then there should not be any cells to the north of mbrm,n(v) occupied by u.

(3.16)
←#count{x,y: occ(u,x,y), x<x<x, y>y, (x,y)∈Λm,n }≥1,
not inferrel(u,v,N), not rel(u,v,N), infx(v,x), supx(v,x), supy(v,y).

Similar rules are added for other single-tile relations.

Let Em,n denote the set of all atoms of the form inferrel(u,v,R) where u,v ∈ V and
R ∈ Rs. Let Πv,+

m,n be the program obtained from Πv
m,n by adding the rules (3.14), by

deleting the constraints (3.8) and similar constraints for other single-tile relations, and by
adding the constraints (3.15)∪(3.16) and similar constraints for other single-tile relations.
The added rules infer missing CDC relations.

Theorem 5 Let m,n≥2|V |−1, let Im,n=(C,V,Dm,n,Q) be a discretized CDC consis-

tency checking problem where D ⊆ Reg* and C is the union of a set of disjunctive CDC

constraints and a set of basic CDC constraints. Furthermore, C may be incomplete. Let

X be an assignment of spatial objects in Dm,n to variables u in V , that is a solution of

Im,n. For every pair of variables u and v in Dm,n where there does not exist a CDC

constraint u δ v in C, the regions X(u) and X(v) satisfy an inferred CDC constraint

u β v for some basic CDC relation β if and only if the inferred constraint u β v can be

represented in the form of Z ∩Em,n for some answer set Z of Πv,+
m,n.

3.6 Default CDC Constraints

A discussed in Section 3.1.2, we extend CDC with a set of default qualitative directional
constraints of the form (3.1) to be able to express commonsense knowledge like “the
children are by default at the ice-cream truck”, and “the ice-cream truck is by default in
the free area which is to the north of the movie theater”. We call this extension nCDC,
emphasizing its nonmonotonic aspect.

25

We provide the meaning of default CDC constraints over a discrete domain Dm,n, in ASP
utilizing the nonmonotonic construct not and the aggregates.

Now suppose that C contains default CDC constraints. We represent every default CDC
constraint default u δ v (where δ is a basic relation) in ASP by a set of facts:

(3.17) defaultrel(u,v,R)← (R ∈ δ).

Existence of a default constraint for a pair (u,v) is identified by the rule

(3.18) existDefRel(u,v)← defaultrel(u,v,R).

If δ={δ1, δ2, ..., δo} is a disjunctive CDC relation, we represent the disjunctive default
constraint default u δ v as:

(3.19)
disjdefrel(u,v, i,R)← (R ∈ δi, 1≤ i≤ o)
existdisjdefrel(u,v)← disjdefrel(u,v, i,R).

The rules below nondeterministically chooses a disjunct from δ and generates the corre-
sponding defaultrel(u,v,R) atoms.

(3.20) {defchosen(u,v, i) : 1≤ i≤ o}=1 ← existdisjdefrel(u,v).

(3.21) defaultrel(u,v,R)← defchosen(u,v, i), disjdefrel(u,v, i,R).

The default CDC constraint default u δ v applies if there is no evidence against it. Let
drel(u,v) represent the lack of an evidence against the default constraint.

(3.22) drel(u,v)← not ¬drel(u,v), defaultrel(u,v,R) (R ∈ δ).

The evidence against a default constraint default u δ v can be due to a violation of a CDC
constraint. Such a violation can come from an existing CDC constraint between (u,v)
in the network or an inferred CDC constraint between (u,v). Note that C may already
contain a basic or disjunctive CDC constraint for the pair (u,v). If the existing CDC
constraint or the inferred CDC constraint between (u,v) is different from δ, this would

26

constitute an evidence against the default constraint.
(3.23)
¬drel(u,v)← not inferrel(u,v,R), defaultrel(u,v,R), existinferrel(u,v) (R ∈Rs)
¬drel(u,v)← inferrel(u,v,R), not defaultrel(u,v,R), existDefRel(u,v) (R ∈Rs)
¬drel(u,v)← not rel(u,v,R), defaultrel(u,v,R), existrel(u,v) (R ∈Rs)
¬drel(u,v)← rel(u,v,R), not defaultrel(u,v,R), existDefRel(u,v) (R ∈Rs)

where existinferrel(u,v) atoms indicate the pair of variables for which inferred relations
are generated:

(3.24) existinferrel(u,v)← inferrel(u,v,R) (R ∈Rs, u,v ∈ V).

The following weak constraint minimizes the evidences against the default constraints to
satisfy as many default CDC constraints as possible.

(3.25) ∼←− ¬drel(u,v), existDefRel(u,v).

For instance, consider two spatial variables u and v for which no CDC constraint is pro-
vided. It is possible to infer a relation between them, and the inferred relation may not be
unique. Then, we prefer to minimize these inferences so that a given default constraint,
e.g., default u N v, applies.

The evidence (or an abnormal case) against a default CDC constraint might be provided
by the user. For example, the webcam is normally located on the laptop. However if the
webcam is a separate component detached from the laptop, this would be an exception to
the default constraint. This exception can be expressed as follows:

¬drel(u,v)← ab(v), existDefRel(u,v)
¬drel(u,v)← ab(u), existDefRel(u,v)
ab(WebCam)← .

Let Πv,+,d
m,n be the ASP program obtained from Πv,+

m,n by adding the rules (3.17)–(3.25).
For every answer set Z for the program Πv,+,d

m,n the assumption expressed by a default
CDC constraint default u δ v applies if there is no exception ¬drel(u,v) in Z against the
default.

27

3.7 Further Improvements

3.7.1 Improving the Lower Bound on the Grid Size

The grid size is critical in terms of computational efficiency in ASP: a larger grid is likely
to cause longer computation time due to the increase in domain size and possible assign-
ments of grid cells to regions. Therefore, it will be useful to provide lower bounds on the
grid size even further. Consider, for instance, the problem I of the previous section with
the constraints C = {b S a, c E b, a N : NW c} and V = {a,b,c}, where D consists of
all regions in Reg* , and Q consists of all basic CDC relations. A solution to C relative to
I3,3 can be found as in Fig. 3.1(iii).

In the following, we present a tighter lower bound on the grid size (Theorem 6) for con-
sistency checking of a basic CDC network, by examining the CDC constraints in the
network. Let us first introduce some useful notation.

Let C be a set of basic CDC constraints. Let Trg(C) (resp. Ref(C)) be the set of spatial
variables in V that denote the target (resp. reference) objects in some CDC constraint in
C:

Trg(C)={u ∈ V | (uδ v)∈C}
Ref(C)={v ∈ V | (uδ v)∈C}.

First, we define the projection of a single-tile CDC relation R ∈Rs on x-axis and y-axis:

Rx=


Left if R ∈ {SW,W,NW}

Middleh if R ∈ {S,O,N}

Right if R ∈ {SE,E,NE}

Intuitively, these projections describe whether a target object is to the Left , Right or
Middle of the reference object, relative to the x-axis.

Ry=


Top if R ∈ {NW,N,NE}

Middlev if R ∈ {W,O,E}

Bottom if R ∈ {SW,S,SE}

28

Likewise, these projections describe whether a target object is to the Top , Bottom or
Middle of the reference object, relative to the y-axis.

Then, we define the projection of a multi-tile relation δ=R1:R2:...:Rk on x-axis and y-
axis, accordingly:

δx={(Ri)x : 1≤ i≤ k, δ=R1:R2:...:Rk}
δy={(Ri)y : 1≤ i≤ k, δ=R1:R2:...:Rk}

Based on these projections, to satisfy a given set C of constraints, we define how many
slots (i.e., unit grid cells) on the x-axis and y-axis are needed to represent each spatial
object u in V :

Slotx(u,C)=



2 ifu ∈ Trg(C) and ∃v ∈ V such that (uδ v) ∈ C, {Left , Right} ⊆ δx

2 ifu ∈ Trg(C) ∩ Ref(C) and ∃v ∈ V such that

(uδ v),(vγ u) ∈ C, δx={Right , Middleh}, γx={Left , Middleh}

0 ifu 6∈ Ref(C) and ∀v ∈ V if (uδ v) ∈ C, δx∩{Left , Right}=∅

1 otherwise

Sloty(u,C)=



2 ifu ∈ Trg(C) and ∃v ∈ V such that (uδ v) ∈ C, {Top, Bottom} ⊆ δy

2 ifu ∈ Trg(C) ∩ Ref(C) and ∃v ∈ V such that

(uδ v),(vγ u) ∈ C, δy={Top, Middlev}, γy={Bottom, Middlev}

0 ifu 6∈ Ref(C) and ∀v ∈ V if (uδ v) ∈ C, δy ∩{Top, Bottom}=∅

1 otherwise

Intuitively, if a spatial object u is to the Left and to the Right of some (other) object,
then two more slots are required horizontally for u. Otherwise, if u does not appear as a
reference object in any constraint, then it does not appear in a constraint or it appears to
the middle of an object. In either case, u does not require any additional slots. Finally,
if u appears to the left and middle of an object or to the right or middle of an object, it
requires one additional slot.

Based on the number of slots required for each spatial object with respect to C, then we
can give a lower bound on the grid size as follows:

Theorem 6 The basic CDC consistency checking problem I=(C,V,D,Q) and the

discretized basic CDC consistency checking problem Im,n=(C,V,Dm,n,Q) where

29

m≥∑
u∈V Slotx(u,C) and n≥∑

u∈V Sloty(u,C) have the same answer.

For constraint networks C that include disjunctive CDC constraints, Theorem 6 may not
be directly applicable. Recall that the consistency of such a network C is defined as
follows. Let Ĉ be a basic CDC network obtained from C by replacing every disjunctive
CDC constraint vi δij vj in C by exactly one basic CDC constraint vi δ′ij vj where δ′ij ∈
δij . Then, a CDC constraint network C is consistent if there exists such a basic CDC
network Ĉ that is consistent. Then, depending on Ĉ, Slotx(u,Ĉ) and Sloty(u,Ĉ) may
have different values compared to Slotx(u,C) and Sloty(u,C), respectively. Therefore,
when C includes disjunctive CDC constraints, we can consider the maximum values of
Slotx(u,Ĉ) and Sloty(u,Ĉ) among all possible basic CDC networks Ĉ obtained from C.

From Theorems 2 and 6, we can get the following corollary:

Corollary 2 For a consistency checking problem I=(C,V,D,Q), where C consists of

basic CDC constraints and may be incomplete, I has a solution if and only if the corre-

sponding ASP program Πm,n with

m≥∑
u∈V Slotx(u,C) and n≥∑

u∈V Sloty(u,C) has an answer set.

3.7.2 A Divide-and-Conquer Approach for Basic CDC Consistency Checking

We can further improve the computation of consistency checking of a basic CDC con-
straint network C by analyzing its structure. Suppose that there exists a partition
{V1, ...,Vp} of the set V of variables that appear in C, such that the following hold:

• for every constraint u δ v in C, there exists a unique Vi such that u,v ∈ Vi .

Intuitively, each Vi characterizes a unique subnetwork Ci of C where the constraints in
Ci only mention variables in Vi. In such cases, consistency checking of C is equivalent to
consistency checking of each Ci.

Theorem 7 Let {V1, ...,Vp} be a partition of V subject to a set C of basic CDC con-

straints. The answer of the consistency checking problem I=(C,V,D,Q) is Yes if

and only if the answer of every consistency checking problem Ii=(Ci,Vi,D,Q) is Yes,

1≤ i≤ p.

Due to such a partition, the lower bounds on the grid size for C can further be decreased:

Theorem 8 Let {V1, ...,Vp} be a partition of V subject to a set C of basic CDC

30

constraints. The answer of the consistency checking problems I=(C,V,D,Q)
and Im,n=(C,V,Dm,n,Q) are identical if m≥maxVi

∑
u∈Vi

Slotx(u,Ci) and

n≥maxVi

∑
u∈Vi

Sloty(u,Ci).

Theorem 8 is useful, in particular for max-size partitions (i.e., partitions with maximum
cardinality), where the subnetworks are smaller.

The proof of Theorem 7 and 8 are presented in Sections 7.7 and 7.8.

From Theorems 2 and 8, we can get the following corollary:

Corollary 3 Let {V1, ...,Vp} be a partition of V subject to C. For a consistency check-

ing problem I=(C,V,D,Q), where C consists of basic CDC constraints and may be

incomplete, I has a solution if and only if the corresponding ASP program Πm,n with

m≥maxVi

∑
u∈Vi

Slotx(u,Ci) and n≥maxVi

∑
u∈Vi

Sloty(u,Ci) has an answer set.

3.7.3 Improving the ASP Formulation

3.7.3.1 Defining vs. Generating the Minimum Bounding Rectangles

The ASP formulation of Section 3.3 first nondeterministically generates grid cells for ev-
ery spatial variable (by the rules (3.5)) and then defines the minimum bounding rectangle
of the regions (by the rules (3.6)).

Alternatively, for every spatial object, instead of defining its minimum bounding rect-
angle, we can nondeterministically generate its minimum bounding rectangle, and ensure
that the grid cells of the region generated by the rules (3.5) stay inside its minimum bound-
ing rectangle.

Recall that a solution of Im,n is characterized by an instantiation of every variable u ∈ V
by a spatial object in Dm,n, i.e., a nonempty set of grid cells (x,y) in Λm,n. We identify
the minimum bounding rectangle mbrm,n(u) of a spatial object in Dm,n, by defining the
smallest (i.e., the infimum) and the largest (i.e., the supremum) coordinate values of the
projections of the object on x-axis and y-axis of Λm,n.

For the alternative ASP formulation, first, for every spatial object u, the infimum and the

31

supremum are nondeterministically guessed between 1 and m for the x-axis by the choice
rules:

(3.26)
{infx(u,x) : 1≤x≤m}=1 ← (u ∈ V)
{supx(u,x) : 1≤x≤m}=1 ← (u ∈ V)

and then the infimum is ensured to be less than or equal to the supremum:

(3.27) ← infx(u,x), supx(u,x) (x>x, u∈V).

Similar rules and constraints are added for the infimum and the supremum of the coordi-
nate values of the projection of u on y-axis.

After that, we ensure that the grid cells of a region u (generated by rules (3.5)) stay inside
its minimum bounding rectangle. In particular, after extracting the coordinate values of
the projection of u on x-axis:

(3.28) xocc(u,x)← occ(u,x,y) ((x,y) ∈ Λm,n, u∈V)

we ensure that these coordinate values lie within the minimum bounding rectangle of u:

(3.29)
← infx(u,x), xocc(u,x′) (x′<x, 1≤x′≤m, u∈V)
← supx(u,x), xocc(u,x′) (x′>x, 1≤x′≤m, u∈V).

We also ensure that the spatial object u occupies at least one grid cell at the infimum and
at least one grid cell at the supremum of the coordinate values of the projection of u on
x-axis; otherwise, the bounding rectangle whose boundaries are described the infimums
and the supremums would not be the minimum.

(3.30)
← not xocc(u,x), infx(u,x) (u∈V)
← not xocc(u,x), supx(u,x) (u∈V).

Similar rules and constraints are added for ensuring that the coordinate values of the
projection of u on y-axis, lie within the minimum bounding rectangle of u.

There is an important difference of this alternative ASP formulation of minimum bound-
ing rectangles, compared to the formulation described in Section 3.3: it does not use the
aggregates min and max .

32

3.7.3.2 Connectedness: Transitive Closure vs. Reachability

The ASP formulation of Section 3.3.2 defines connectedness of a region as the transitive
closure of the adjacency relation between the grid cells occupied by that region, and
ensures the existence of a path between every two grid cells of the region.

Another way of formulating connectedness is to incrementally define the connected grid
cells for each spatial object starting from some grid cell (called the stem grid cell), and
ensure that all the grid cells of the spatial object are reachable from this stem grid cell.
Furthermore, note that it is sufficient to check connectedness of spatial objects that act
as a target object in some CDC constraint. For the remaining objects, connectedness
can always be accomplished since they can be freely constructed inside their minimum
bounding rectangle.

In this alternative formulation, for a spatial object u that is a target object for some CDC
constraint, we define its stem cell as the grid cell (i) that is at the leftmost side of the
minimum bounding rectangle of u, and (ii) that is closest to the bottom corner of u.
Notice that the cell at the left bottom corner of the minimum bounding rectangle of u
might actually not belong to the object.

First, we identify the y-coordinates of the grid cells at the leftmost side of the minimum
bounding rectangle of u:

(3.31) left(u,y)← infx(u,x), occ(u,x,y) (1≤y≤n, u∈TrgC).

Among these grid cells, we pick the one that is closest to the bottom of the minimum
bounding rectangle of u:

(3.32) leftbottom(u,y)← left(u,y), #count{y′: left(u,y′), y′ < y}≤0.

and define the stem cell as follows:

(3.33) stem(u,x,y)← infx(u,x), leftbottom(u,y) (u∈TrgC).

After that, we ensure the connectedness of the grid cells occupied by u∈TrgC by means
of reachability from the stem cell:
(3.34)
reachable(u,x,y)← stem(u,x,y)
reachable(u,x2,y2)← reachable(u,x1,y1), occ(u,x2,y2) (|x2−x1|+ |y2−y1|= 1)
← not reachable(u,x,y), occ(u,x,y).

33

We have noticed in our experiments that the ASP formulation can be improved slightly
more, by replacing (3.32) with an incremental definition

leftbottom(u,y)← inf y(u,y), left(u,y) (u∈TrgC)
not-leftbottom(u,y)← inf y(u,y), not left(u,y) (u∈TrgC)
leftbottom(u,y+ 1)← not-leftbottom(u,y), left(u,y+ 1) (u∈TrgC)
not-leftbottom(u,y+ 1)← not-leftbottom(u,y), not left(u,y+ 1) (y≤y, u∈TrgC).

3.8 Applications of NCDC-ASP

Let us illustrate with some example scenarios, how NCDC-ASP can be used for CDC
consistency checking and inference of incomplete information. Consider an assisting
agent in a shopping mall, who has incomplete information about the relative locations of
the stores.

3.8.1 Scenario 1: Meeting

Suppose that the agent knows the following about the relative locations of the stores at
the shopping mall:

CoffeeShop O:S Cafeteria
Cafeteria O:N :E:NE BookStore
BookStore W :NW CoffeeShop
Boutique W :SW BookStore

Suppose that a girl wants to meet her father in the shopping mall, but she has not been to
this mall before. She knows that her father is waiting somewhere to the southwest of the
cafeteria and northwest of the boutique. The girl approaches the assisting agent and asks
for help. They are located to the north of the coffee store. From the information conveyed
by the girl, the agent also knows the following:

34

(a) (b)

Figure 3.2 Meeting scenario: (a) Basic CDC constraints. (b) A possible layout of spatial
objects.

CoffeeShop S:SE:SW Girl
Father SW Cafeteria
Father NW Boutique

For a better understanding, these CDC constraints are illustrated as a constraint graph in
Figure 3.2.

Using the improved ASP program described in Sections 3.3 and 3.7.3, with the improved
lower bounds on the grid size as stated by Theorem 8, the agent checks the consistency
of this basic CDC network. After checking that the information conveyed to him by the
girl makes sense with respect to what he knows, using the ASP programs described in
Sections 3.3 and 3.5, the agent infers a possible location of the father:

Father SW Girl .

Then, the agent guides the girl towards the direction of her father to the southwest.

Note that the agent also infers possible relative locations of the stores. These inferred
locations are depicted in Figure 3.2(b), over a discretized representation of the shopping
mall. For instance, the cafeteria is possibly located inside the blue-colored grid cells, to
the northeast of the boutique.

35

3.8.2 Scenario 2: Missing Child

Suppose that two parents are looking for their missing child in a shopping mall and request
help from the agent in the food court. Suppose also that the parents do not know the exact
locations of the stores. The agent have received sightings of the child at the south or west
of the pool. Meanwhile, he knows that the child is by default at the ice-cream truck; the
ice-cream truck is by default in the free area which is to the north, east or northeast of the
movie theater, and south or southeast of the pool.

Then the nCDC network that the agent knows contains the disjunctive CDC constraint

Child {S,W} Pool ,

the default CDC constraints

default Child O Truck
default Truck {N,E,NE}MovieTheater
default Truck {S,SE} Pool ,

and the basic CDC constraints

Parents O FoodCourt FoodCourt N :NE:NW Bedesten
Parents N Bedesten FoodCourt NW :NE PetStore
MovieTheater S:SE Bedesten Bedesten W :NW Pool
Bedesten W :SW PetStore Bank N :NE MovieTheater
Pool NW :SW Bank Pool SW PetStore
Pool N MovieTheater Grocery E:SE PetStore
Grocery NE Bank .

This nCDC constraint network is depicted in Figure 3.3(a).

Using the improved ASP program for consistency checking, extended with disjunctive
and default constraints, the agent can check the consistency of this network and identify
possible relative directions of spatial objects as depicted in Figure 3.3(b). In particular,
the agent can infer a new directional relation between the parents and the child:

Child SE Parents.

Then, the agent guides the parents towards the direction of their child to the southeast.

36

(a) nCDC constraint network (b) A possible layout

Figure 3.3 Missing child scenario

3.8.3 Scenario 3: Tabletop Placement

Consider a service robot whose task is to place a set of items in a particular 2-dimensional
environment like a desk which we take as reference frame. A human actor requests the
service robot to place items on his desk using statements such as “the book is to the right
of the notebook, the printer is located on the left side of the monitor and rear side of the
notebook, the fan is at the rear of the folder, but might be located a little to the right or left
of it”. Upon the inquiry, the robot creates the following nCDC constraint network from
the given information:

Printer N :NE:NW Notebook Book E Notebook
Keyboard E Book Printer W :NW :SW Monitor
Fan {N, N :NW, N :NE} Folder Mouse SW Fan
Folder {E:SE, SE}Monitor Cup S Folder
Cup E:SE Mouse .

In addition to the user’s specifications, the following commonsense knowledge of the

37

(a) nCDC constraint network (b) A possible layout

Figure 3.4 Tabletop placement scenario

robot is also included in the network:

default Monitor N :NE:NW Keyboard
default Mouse E Keyboard
default Pencil O Notebook
default Eraser O Notebook
default Eraser {E, W} Pencil .

The constraint network can be visualized in Figure 3.4(a). Using the improved ASP
program described in Sections 3.3 and 3.7.3, with the improved lower bounds on the grid
size as stated by Theorem 8, CLINGO 5.3.0 computes an answer set. From the occ(u,x,y)
atoms in this answer set, the robot finds an arrangement of the objects that conforms to
the request (Figure 3.4(b)).

38

4. 3D-NCDC-ASP : NONMONOTONIC QUALITATIVE REASONING
ABOUT CARDINAL DIRECTIONS BETWEEN 3-DIMENSIONAL
EXTENDED OBJECTS USING ANSWER SET PROGRAMMING

We extend nCDC and NCDC-ASP to represent and reason about directional relations
between 3D objects. The extension of nCDC to 3D is called 3D-nCDC, and the extension
of NCDC-ASP to 3D is called 3D-NCDC-ASP .

4.1 3D-nCDC: Nonmonotonic 3D Cardinal Directional Calculus

Recall that Cardinal Directional Calculus (CDC) (Goyal & Egenhofer, 1997; Liu et al.,
2010; Skiadopoulos & Koubarakis, 2004) describes qualitative direction of an extended
spatial object a (the primary or target object) with respect to another object b (the refer-
ence object) on a plane, in terms of cardinal directions as follows. The minimum bounding
rectangle of a region b, denoted mbr(b), is the smallest rectangle that contains b and has
sides parallel to the x and y axes. The minimum bounding rectangle of the reference object
b divides the plane into nine regions (called tiles) and these tiles define the nine cardinal
directions relative to b: north (N), south (S), east (E), west (W), northeast (NE), north-

west (NW), southeast (SE), southwest (SW), on (O), as illustrated in Fig. 4.1(i). After
identifying the unique tiles R1(b), ...,Rk(b), (1 ≤ k ≤ 9) occupied by the primary object
a, the direction of awith respect to b is expressed by the basic CDC relationR1:R2:...:Rk.

Spatial objects and relations in 3D-nCDC Our study relies on two extensions of CDC to
3D space: Three-dimensional Cardinal Directional (TCD) calculus (Chen et al., 2007),
and Block Cardinal Directional (BCD) calculus (Hou et al., 2016). TCD and BCD con-
sider spatial objects that are blocks in 3D space. Different from TCD and BCD, we
consider spatial objects as nonempty, regular, compact volumes in R3. Spatial objects
have positive volume, so lower dimensional entities such as points, lines, surfaces are not
considered in 3D-nCDC. A subset of R3 is regular if it is equal to closure of its interior;

39

(iii)

(i) (ii) (iv)

Figure 4.1 (i) The minimum bounding rectangle of a region b, and the 9 single-tiles on
the plane relative to b. (ii) The 27 single-tiles in 3D relative to object b. (iii) Two spatial
objects c and d. (iv) The spatial objects of (iii) are axes-aligned. The direction of c with
respect to d in 3D is represented by the multi-tile 3D-nCDC relation OM : OA : SWM :
SWA.

regular objects do not have isolated singular points or emanating lines or planes. A set is
connected if it cannot be stated as union of two disjoint nonempty closed sets. An object
is connected if its interior is a connected set (so trivial cases where an object has two sep-
arate components which touch on a mere single point or a line are excluded); connected
objects might have holes inside. An object that is not connected is called disconnected. A
possibly disconnected object is a union of finite number of connected objects. For the pur-
pose of simplifying notation, in this chapter, Reg and Reg* denote the set of connected
and possibly disconnected objects in R3, respectively.

Since we consider spatial objects of arbitrary shapes, we describe the direction of
a target object a with respect to a reference object b, by identifying the minimum
bounding box of b. Let infx(b) and supx(b) denote the infimum and supremum of
the projection of the object b on the x-axis. Similarly, the projections of b on the y
and z axes are described by infy(b), supy(b), infz(b), supz(b). We define the min-

imum bounding box (mbb) of an object b as the prism whose sides are described
by six planes: x = infx(b), x = supx(b), y = infy(b), y = supy(b), z = infz(b),
and z = supz(b). Therefore, the mbb(b) of an object b divides the space into 27
tiles: NWA(b), ...,SEA(b),NWM (b), ...,SEM (b),NWB(b), ...,SEB(b) as illustrated in
Fig. 4.1(ii). Here, the superscripts A, M and B denote the three levels on the z-axis:
above, middle, below. For example, NB(b) is the tile below and to the north of b, and
consists of the coordinates (x,y,z) ∈ R3 where infx(b) < x < supx(b), y > supy(b),
z < infz(b). Note that the tiles are open sets and do not include their boundary points. In
TCD and BCD, the objects are already blocks, so mbb(b)=b.

40

As in TCD and BCD, a basic 3D-nCDC relation a R1:R2:...:Rk b holds if and only if
a∩Ri(b) 6= ∅ for every 1 ≤ i ≤ k. For example, in Fig. 4.1(iii) (that is axes-aligned in
(iv)), c OM : OA : SWM : SWA d. If k = 1, this basic 3D-nCDC relation is called a
single-tile relation; if k ≥ 2, it is called a multi-tile relation. Let us denote by Rs the set
of single-tile relations, and byR the set of basic 3D-nCDC relations over Reg* .

As in BCD, a disjunctive 3D-nCDC relation is a finite set δ={δ1, ..., δo}, (o > 1) of ba-
sic 3D-nCDC relations, intuitively describing their exclusive disjunction. TCD does not
consider disjunctive relations. A 3D-nCDC relation can be basic or disjunctive.

Basic/disjunctive 3D-nCDC constraints A formula of the form u δ v, where u and v are
spatial variables and δ is a 3D-nCDC relation, is called a 3D-nCDC constraint.

A 3D-nCDC constraint network C is a set of 3D-nCDC constraints vi δ vj , (vi 6= vj)
defined by a set V of spatial variables (v1, ...,vl) where variables range over a domain
D of spatial objects in R3, and a set Q of 3D-nCDC relations δ, such that for every pair
(vi,vj) of variables in V , at most one 3D-nCDC constraint is included in C.

A basic 3D-nCDC (constraint) network consists of solely basic 3D-nCDC constraints. A
basic 3D-nCDC network C is complete if it includes a unique 3D-nCDC constraint for
every pair (vi,vj), i 6= j of variables in V ; otherwise, C is incomplete.

Consistency checking A pair (a,b) of spatial objects satisfies a basic 3D-nCDC constraint
u δ v if a δ b holds. A pair (a,b) of spatial objects satisfies a disjunctive 3D-nCDC
constraint u δ v where δ = {δ1, ..., δo}, if a δi b holds for exactly one δi ∈ δ.

Let C be a 3D-nCDC network that consists of basic or disjunctive 3D-nCDC constraints
specified by variables in V ={v1, ...,vl}. A solution forC is a set of l-tuples (a1,a2, ...,al)
of spatial objects inD such that every constraint vi δ vj inC is satisfied by the correspond-
ing pair (ai,aj) of spatial objects. If C has a solution then it is called consistent.

The consistency checking problem I=(C,V,D,Q) in 3D-nCDC, decides the consistency
of C.

Theorem 9 If C is an incomplete basic 3D-nCDC network, or C is a 3D-nCDC network

that includes disjunctive 3D-nCDC constraints over D=Reg* , then I=(C,V,D,Q) is

an NP-complete problem.

Default constraints of 3D-nCDC To enable defaults for commonsense reasoning, we in-
troduce default 3D-nCDC constraints, which are expressions of the form

default u δ v

where u and v are variables in V and δ is a basic 3D-nCDC relation in Q. The meaning

41

of default 3D-nCDC constraints is provided in ASP over a discretized space.

4.2 Discretized Consistency Checking in 3D-nCDC

Let Λm,n,p denote the set of unit cubes (called cells) in a prism of size m×n×p, aligned
with x, y, z axes. Every cell is identified by its x, y, z coordinates, relative to the origin
(1,1,1). Every spatial object a is described by a nonempty subset Λm,n,p(a) of cells in
Λm,n,p occupied by a.

A cell (x1,y1, z1) is a neighbor of another cell (x2,y2, z2) if
|x1−x2|+|y1−y2|+|z1−z2|=1. A cell (x1,y1, z1) is connected to another cell (x2,y2, z2)
if (x1,y1, z1) is a neighbor of (x2,y2, z2) or (x1,y1, z1) is connected to a neighbor
(x3,y3, z3) of (x2,y2, z2). A spatial object a is connected in the grid if there exists a
(stem) cell in Λm,n,p(a) that is connected to every other cell in a.

The projection of an object b on the x-axis is defined by x-coordinates of all cells of
b in Λm,n,p. Let infm,n,px (b) and supm,n,px (b) denote the infimum and supremum of the
projection of b on the x-axis. Similarly, the projections of b on the y and z axes are
denoted by infm,n,py (b), supm,n,py (b), infm,n,pz (b), supm,n,pz (b). The minimum bounding
box mbbm,n,p(b) of a spatial object b in Λm,n,p is the smallest prism in Λm,n,p that con-
tains b, and has the following sides parallel to the x, y, z axes: infm,n,px (b), supm,n,px (b),
infm,n,py (b), supm,n,py (b), infm,n,pz (b), supm,n,pz (b).

The prism is partitioned into a set Rm,n,p(b) of 27 tiles with respect to the minimum
bounding box of a reference object b. For example, NB

m,n,p(b) is the tile below and to the
north of b, and consists of the cells (x,y,z)∈Λm,n,p where infm,n,px (b)≤x≤ supm,n,px (b),
y>supm,n,py (b), z< infm,n,pz (b).

Let Dm,n,p denote the set of all spatial objects in Λm,n,p. A pair (a,b) of spatial objects in
Dm,n,p satisfies a basic 3D-nCDC constraint u δ v if

(C1) a∩Rm,n,p(b) 6= ∅ for every single-tile relation R in δ, and

(C2) a∩Rm,n,p(b)=∅ for every single-tile relation R that is not included in δ.

A pair (a,b) of spatial objects in Dm,n,p satisfies a disjunctive 3D-nCDC constraint u δ v
where δ = {δ1, ..., δo}, if a δi b holds for exactly one δi ∈ δ.

Let C be a 3D-nCDC network that consists of basic or disjunctive 3D-nCDC constraints

42

specified by variables in V ={v1, ...,vl}. A solution forC is a set of l-tuples (a1,a2, ...,al)
of spatial objects in Dm,n,p such that every constraint vi δ vj in C is satisfied by the cor-
responding pair (ai,aj) of spatial objects. If C has a solution then it is called consistent.

The discretized consistency checking problem Im,n,p=(C,V,Dm,n,p,Q) in 3D-nCDC, de-
cides the consistency of C. The following theorem allows us to solve I by declaratively
solving Im,n,p.

Theorem 10 The consistency checking problem I=(C,V,D,Q) over D=Reg*
and the discretized consistency checking problem Im,n,p=(C,V,Dm,n,p,Q) where

m,n,p≥2|V |−1 have the same answers.

It is important to emphasize here that we discretize the consistency checking problem, not
the environment. For example, given a consistency checking problem with a set of quali-
tative spatial constraints about a building design (as mentioned in the introduction), we do
not discretize the building itself; rather we try to solve the discretized consistency check-
ing problem over a 3D grid of appropriate size. We do not process grounded numerical
spatial data or instantiate cardinal directions over real numbers either.

4.3 Discretized Consistency Checking in 3D-nCDC Using ASP

Let Im,n,p=(C,V,Dm,n,p,Q) be a discretized 3D-nCDC consistency checking problem,
where C consists of 3D-nCDC constraints and might be incomplete, and Dm,n,p is the set
of all spatial objects in Λm,n,p that may be disconnected and have holes. In the following,
we incrementally describe an ASP program to solve Im,n,p.

43

4.3.1 Basic 3D-nCDC Networks

Suppose that C contains basic 3D-nCDC constraints only. Let us describe the ASP pro-
gram Π1

m,n,p that solves Im,n,p.

1) We describe every basic 3D-nCDC constraint u δ v in C, by atoms of the form
rel(u,v,r) for each single-tile relation r in δ. Then, C can be represented by a set FB
of facts:

(4.1) rel(u,v,r)← (r ∈ δ, u δ v ∈ C).

For example, a basic 3D-nCDC constraint u NA : NWM v is represented in ASP by the
facts:

rel(u,v,NA). rel(u,v,NWM).

2) A mbbm,n,p(u) is generated for every spatial object u, by nondeterministically identi-
fying the infimum/supremum of its projection on the x axis with the choice rules:

(4.2)
{infx(u,x) : 1≤x≤m}=1 ← (u ∈ V)
{supx(u,x) : 1≤x≤m}=1 ← (u ∈ V)

ensuring that the infimum is less than or equal to the supremum:

(4.3) ← infx(u,x), supx(u,x) (x>x, u∈V).

Similar rules are added for the infimum/supremum of its projection on y and z axes.

3) We instantiate every variable u ∈ V by a spatial object in Dm,n,p, by nondetermin-
istically assigning some cells (x,y,z) in Λm,n,p to u so that (i) the minimum bounding
box of this object is exactly mbbm,n,p(u) generated by the rules (4.2)∪(4.3), and (ii) the
3D-nCDC constraints in C are satisfied.

3)(i) An assignment of cells (x,y,z) to a variable u is described by atoms of the
form occ(u,x,y,z), nondeterministically generated by the choice rules:

(4.4) {occ(u,x,y,z) : (x,y,z) ∈ Λm,n,p}≥1 ← (u ∈ V).

Projection of this spatial object onto x axis is defined by the rules:

(4.5) xocc(u,x)← occ(u,x,y,z) ((x,y,z) ∈ Λm,n,p, u ∈ V).

44

Similar rules are added for its projection on the y and z axes.

We ensure that, for x axis, the projected coordinates lie between the infimum and the
supremum,

(4.6)
← infx(u,x), xocc(u,x′) (x′<x, 1≤x′≤m, u∈V)
← supx(u,x), xocc(u,x′) (x′>x, 1≤x′≤m, u∈V)

at least one of the cells assigned to u is on the infimum, and another one on the supremum:

(4.7)
← not xocc(u,x), infx(u,x) (u∈V)
← not xocc(u,x),supx(u,x) (u∈V).

Similar constraints are added for its projection on the y and z axes.

3(ii) We ensure that the instantiation of objects (by assignment of cells (x,y,z) to vari-
ables u ∈ V) satisfies every basic 3D-nCDC constraint u δ v in C. For that, we add
constraints to ensure that conditions (C1) and (C2) are not violated.

For example, if δ contains the single-tile relation NB then we add the following to de-
scribe when condition (C1) for NB is violated (i.e., when u does not occupy any cell to
the north and below of mbbm,n,p(v)).
(4.8)
violated(u,v)← rel(u,v,NB), infx(v,x), supx(v,x), supy(v,y), inf z(v,z),

#count{x,y,z: occ(u,x,y,z),x≤x≤x, y>y, z<z, (x,y,z)∈Λm,n,p}≤0 (u ∈ V).

If δ does not contain NB , then the following rule describes when condition (C2) is vio-
lated (i.e., when u occupies some cells to the north and below of mbbm,n,p(v)).
(4.9)
violated(u,v)←#count{x,y,z: occ(u,x,y,z),x≤x≤x, y>y, z<z, (x,y,z)∈Λm,n,p}≥1,

not rel(u,v,NB), existrel(u,v), infx(v,x), supx(v,x), supy(v,y), inf z(v,z) (u ∈ V).

Here, since the network C might be incomplete, existrel(u,v) atoms identify which pair
of variables have a constraint in the network C:

(4.10) existrel(u,v)← rel(u,v,r) (r ∈Rs, u,v ∈ V).

For every one of 26 other single-tile relations, we add rules similar to (4.8) and (4.9).
After that, we eliminate such violations:

(4.11) ← violated(u,v), existrel(u,v) (u,v ∈ V).

45

The ASP program Π1
m,n,p described above (including the ASP description FB of C) for

checking the consistency of a basic 3D-nCDC network C over Dm,n,p is sound and com-
plete. Let Om,n,p denote the set of atoms of the form occ(u,x,y,z) where u ∈ V and x,
y, z are positive integers such that 1≤ x≤m, 1≤ y ≤ n, 1≤ z ≤ p.

Theorem 11 Let Im,n,p=(C,V,Dm,n,p,Q) be a discretized consistency checking prob-

lem, where C is a basic 3D-nCDC network. For an assignment X of spatial objects in

Dm,n,p to variables in V , X is a solution of Im,n,p if and only if X can be represented in

the form of X=Z ∩Om,n,p for some answer set Z of Π1
m,n,p. Moreover, every solution

of Im,n,p can be represented in this form in only one way.

From Theorems 10 and 11:

Corollary 4 The consistency checking problem I=(C,V,D,Q) has a solution if and only

if the program Π1
m,n,p (m,n,p≥2|V |−1) has an answer set.

4.3.2 Disjunctive 3D-nCDC Constraints

Suppose that C contains basic or disjunctive 3D-nCDC constraints only. Let us describe
the ASP program Π2

m,n,p that solves Im,n,p. The program Π2
m,n,p is obtained from Π1

m,n,p,
by adding new rules for each disjunctive 3D-nCDC constraint as follows.

1) Every disjunctive 3D-nCDC constraint u {δ1, ..., δo} v in C is represented in ASP by a
set FV of facts:

(4.12) disjrel(u,v, i,r)← (r ∈ δi, 1≤ i≤ o).

2) Recall that a pair (a,b) of spatial objects satisfies u δ v where δ = {δ1, ..., δo}, if a δi b
holds for exactly one δi ∈ δ. Therefore, for every disjunctive 3D-nCDC constraint u δ v,
we nondeterministically choose δi ∈ δ, and represent the basic 3D-nCDC constraint u δi v:

{chosen(u,v, i) : 1≤ i≤ o}=1 ←(4.13)

rel(u,v,r)← chosen(u,v, i), disjrel(u,v, i,r).(4.14)

The ASP program Π2
m,n,p is sound and complete.

Theorem 12 Let Im,n,p=(C,V,Dm,n,p,Q) be a discretized consistency checking prob-

lem, where C contains basic or disjunctive 3D-nCDC constraints. For an assignment X

46

of spatial objects in Dm,n,p to variables in V , X is a solution of Im,n,p if and only if

X can be represented in the form of X=Z ∩Om,n,p for some answer set Z of Π2
m,n,p.

Moreover, every solution of Im,n,p can be represented in this form in only one way.

4.3.3 Default 3D-nCDC Constraints

Suppose that C also contains default 3D-nCDC constraints. Let us describe the ASP
program Π3

m,n,p that solves Im,n,p. The program Π3
m,n,p is obtained from Π2

m,n,p, by
adding new rules for each default 3D-nCDC constraint as follows.

1) We represent every default 3D-nCDC constraint default u δ v (where δ is a basic
relation) by a set FD of facts:

(4.15) defaultrel(u,v,r)← (r ∈ δ).

2) The default 3D-nCDC constraint default u δ v applies if there is no evidence against
it:

(4.16) drel(u,v)← not ¬drel(u,v), defaultrel(u,v,r) (r ∈ δ).

3) The evidence against a default constraint default u δ v can be due to violations of
conditions (C1) and (C2), which are defined by the atoms of the form violatedDef(u,v)
similar to atoms violated(u,v): use defaultrel instead of rel . For example, if δ contains
the single-tile relationNB then we add the following rule to describe when condition (C1)
for NB is violated.
(4.17)
violatedDef(u,v)← defaultrel(u,v,NB), infx(v,x), supx(v,x), supy(v,y), inf z(v,z),

#count{x,y,z: occ(u,x,y,z), x≤x≤x, y>y, z<z, (x,y,z)∈Λm,n,p}≤0 (u ∈ V).

If δ does not contain NB , then the following rule describes when condition (C2) is vio-
lated.
(4.18)

violatedDef(u,v)← not defaultrel(u,v,NB), existDefRel(u,v),
#count{x,y,z: occ(u,x,y,z), x≤x≤x, y>y, z<z, (x,y,z)∈Λm,n,p}≥1,
infx(v,x), supx(v,x), supy(v,y), inf z(v,z) (u ∈ V).

47

For every one of 26 other single-tile relations, we add rules similar to (4.17) and (4.18).

4) Then, the evidence against a default 3D-nCDC constraint default u δ v via such viola-
tions can be defined as follows:

(4.19)
¬drel(u,v)← violatedDef(u,v), existDefRel(u,v)
∼←− ¬drel(u,v), existDefRel(u,v) [1@1,u,v].

where existDefRel(u,v) is defined as follows:

(4.20) existDefRel(u,v)← defaultrel(u,v,r) (r ∈Rs, u,v ∈ V).

The weak constraint above minimizes the evidences provided by abductive inferences of
the occupied cells. The rule aims to satisfy as many default 3D-nCDC constraints as
possible, so as not to conflict with the other 3D-nCDC constraints in C.

5) The evidence (or abnormal cases) against a default 3D-nCDC constraint can be pro-
vided by the user. Consider, for instance, a building whose entrance is from its ceiling;
then, the abnormal entrance provides an exception to a default constraint which expresses
that “normally, the terrace is above the entrance”. This exception can be expressed as
follows:

¬drel(u,v)← ab(v),existDefRel(u,v)
¬drel(u,v)← ab(u),existDefRel(u,v)
ab(Entrance)← .

For every answer set Z for Π3
m,n,p, the assumption expressed by a default 3D-nCDC

constraint default u δ v applies if there is no exception¬drel(u,v) inZ against the default.

4.4 Connected Spatial Objects

Until now, we have assumed that objects belong to Reg* , and they can be disconnected.
In many real-world applications, spatial objects are connected (and thus belong to Reg).
We ensure connectedness of these objects, by adding the following rules to Π3

m,n,p.

For each spatial object, we formulate the concept of connectedness by incrementally
defining its connected cells starting from one cell (called the stem cell), and then enforce
all the cells of the object to be reachable from this stem cell. Note that it is sufficient to

48

check connectedness only for the objects which act as target variables in some constraint
in C. The connectedness of other objects can be accomplished by freely constructing
them inside their minimum bounding boxes.

1) Let TrgC ⊆ V be the set of variables that appear as a target object in some constraint
in C. We define the stem cell for each target spatial object u ∈ TrgC , as the left bottom
below corner cell of the object. First, we find the cells with the minimum x coordinate:
(4.21)

left-side(u,y,z)← infx(u,x), occ(u,x,y,z) (1≤y≤n, 1≤z≤p, u∈TrgC)
left-border(u,y)← infx(u,x), occ(u,x,y,z) (1≤y≤n, 1≤z≤p, u∈TrgC).

Then, among these cells, we find the cells with the minimum y coordinate

(4.22) ymin(u,ym)←#min {y : left-border(u,y)}=ym (u∈TrgC).

Then, among these cells, we pick the cell with the minimum z coordinate:

(4.23)
zborder(u,z)← left-side(u,ym, z), ymin(u,ym) (u∈TrgC)
zmin(u,zm)←#min {z : zborder(u,z)}=zm (u∈TrgC).

Then, we define the stem cell as follows:

(4.24) stem(u,x,ym, zm)← infx(u,x), ymin(u,ym), zmin(u,zm) (u∈TrgC).

2) For every target spatial object u ∈ TrgC , we define a set of connected cells starting
from the stem cell:

(4.25)
connset(u,x,y,z)← stem(u,x,y,z) (u∈TrgC)
connset(u,x2,y2, z2)← connset(u,x1,y1, z1), occ(u,x2,y2, z2)

(|x2−x1|+ |y2−y1|+ |z2− z1|= 1, u∈TrgC).

3) We ensure that every cell of u belongs to the connected set:

(4.26) ← not connset(u,x,y,z), occ(u,x,y,z) (u∈TrgC).

49

4.5 Inferring Missing 3D-nCDC Relations

Let Z be an answer set for Π3
m,n,p. For every pair of different spatial objects a and b, we

say that a and b are related by a 3D-nCDC relation in Z if there exists a rel(a,b,r) atom
for some single-tile relation r ∈ Rs in Z, or a drel(a,b) atom in Z. Otherwise, we say
that there is a missing relation between a and b. In such cases (e.g., to explain the relative
direction between the two objects), it is beneficial to infer the missing relations.

1) Suppose that the user specifies which missing relations (u,v) shall be inferred, by a set
FI of facts of the form toinfer(u,v).

2) To infer a missing relation between two different spatial objects u and v, we nondeter-
ministically generate a basic 3D-nCDC relation δ that consists of single-tile relations r:

(4.27)
known(u,v)← existrel(u,v).
known(u,v)← drel(u,v).
{infer(u,v,r) : r ∈Rs}≥1 ← not known(u,v), toinfer(u,v).

3) We add rules similar to (4.8), (4.9), (4.10) and (4.11), using infer atoms instead of
rel atoms, inferViolated atoms instead of violated atoms, and existInfer atoms instead
of existrel atoms, to ensure the conditions (C1) and (C2) for each inferred single-tile
relation.

Let Π3,f
m,n,p be the program obtained from Π3

m,n,p as described above (including FI). The
atoms of the form infer(u,v,r) in an answer set for Π3,f

m,n,p describe inferred 3D-nCDC

relations.

50

4.6 Explaining Inconsistencies in 3D-nCDC

If the constraint network C is inconsistent, constraints are not satisfiable all together.
However, when we exclude some constraints, the network may become consistent. In that
sense, the set of excluded constraints are a source of inconsistency in the original network
C.

To find a source of inconsistency, we replace constraints (4.11) with the weak constraints:

(4.28) ∼←− violated(u,v),existrel(u,v) [1@2,u,v] (u,v ∈ V).

According to this weak constraint, each violated 3D-nCDC constraint has a cost of 1, and
the number of violated constraints are optimized with priority 2.

Let Z be an answer set for the program obtained from Π3
m,n,p by replacing (4.11) with

(4.28). Then, the set EZ of atoms of the form violated(u,v) that appear in Z describes
the basic/disjunctive constraints u δ v in C that are violated; furthermore if these con-
straints are excluded, then C would be consistent. Therefore, we say that EZ provides an
explanation for the inconsistency of the network C.

Note that the inconsistency might be due to the violation of mandatory constraints or
users’ requests/preferences. Since the mandatory constraints cannot be changed, it might
be better to explain inconsistencies in terms of violations of the user’s requests/prefer-
ences, by replacing (4.11) with the following weak constraint (instead of (4.28)):
(4.29)
← violated(u,v), mandatory(u,v), existrel(u,v) (u,v ∈ V)
∼←− violated(u,v), not mandatory(u,v), existrel(u,v) [1@2,u,v] (u,v ∈ V).

Such an explanation is illustrated with an example in Section 4.7.2.

Note that the weak constraint above allows us to find the minimal explanations. The
priority of the weak constraints in (4.28), (4.29) is higher than the priority of the weak
constraints utilized by the default constraints (4.19), since consistency checking is priori-
tized.

Since the explanations are provided in terms of violations of the constraints/preferences
specified by the user, they can be presented to the user in an understandable format in
the same way as constraints/preferences are specified. For instance, if the 3D-nCDC
constraint Director OA Entrance is specified by the user as a request in natural language

51

as “The director’s office is placed above the entrance” and the answer set Z includes
the atom violated(Director,Entrance), then an explanation for the inconsistency of the
network (i.e., that the design of the building with respect to the given constraints and
preferences is not possible) can be presented to the user also in natural language matching
with his/her own specification: “... because the director’s office cannot be placed above
the entrance.” If the user specifies his/her requests via a graphical user interface, then the
requests that cannot be fulfilled could instead be highlighted by red color.

4.7 Applications of 3D-NCDC-ASP

We discuss the usefulness of 3D-NCDC-ASP by three interesting real-world applica-
tions: marine exploration with an underwater human-robot team, building design and
regulation in architecture, and evidence-based digital forensics.

4.7.1 Marine Exploration with Underwater Robots

The application presented in this section is motivated by the challenges of 3D localiza-
tion and natural human-robot communication in underwater robotics and marine explo-
ration (Zereik, Bibuli, Miskovic, Ridao & Pascoal, 2018). Below a certain depth, GPS
does not function and sunlight cannot penetrate, so obtaining exact and absolute loca-
tions of objects is not possible. Topographical entities may be discontinuous and precise
boundaries are often not clear, so agents need to describe rough positions of the entities
in the fauna relative to one another.

Suppose that a group of researchers and underwater robots are in a mission to discover a
biological habitat in the ocean basin. The environment is unknown to them. During this
exploration, Researcher 1 is investigating the sedimentary rock, Robot 1 is checking the
fragmented marsh, which is below the sedimentary rock to its southwest and southeast,
and Robot 2 is at the thermal zone, which is above the sedimentary rock to its east and
southeast. Robot 2 reports the existence of a semi-active volcanic vent, located above the
marsh to its northeast. Researcher 2 finds a kelp forest with two separated parts: one part
is located to the north and the other part is located to the southeast of the volcanic vent,
both parts are located at a lower depth. Robot 3 discovers a fungi culture to the south

52

of the kelp forest on the same level, and to the east and below of the marsh. The fungi
culture is of interest to Researcher 1 but which direction should he proceed to reach it?

The qualitative spatial information provided by the five agents can be encoded as a 3D-
nCDC constraint network as follows:

Marsh SWB:SEB SedRock Volcano EA:SEA SedRock Volcano NEA Marsh
Kelp NB:SEB Volcano Fungi SM Kelp Fungi EB Marsh .

The goal is to infer the relation of the fungi culture with respect to the location of Re-
searcher 1, the sedimentary rock. For that purpose, we consider the program Π3

m,n,p,
including a set FB of facts (4.1) describing the basic 3D-nCDC constraints above, and
the fact toinfer(Fungi ,SedRock). In every answer set for this program, atoms of the
form infer(Fungi ,SedRock , r) reveal a possible location of the fungi culture with re-
spect to the sedimentary rock. For instance, one of these answer sets computed by
CLINGO includes infer(Fungi ,SedRock ,SEB), leading to the inferred 3D-nCDC con-
straint Fungi SEB SedRock . Then, Researcher 1 can be guided towards southeast and
below, to find the fungi culture.

4.7.2 Building Design and Regulation

The application presented in this section is motivated by the challenges of building design
and regulations in architecture. As argued in Borrmann & Beetz (2010), legal require-
ments and official regulations together with the client demands about housing, rooms and
equipment inside the building are usually documented using qualitative words of daily
language rather than mathematical formulas. For this reason, qualitative spatial reasoning
is required.

Suppose that an architect is designing a multi-floor library building. The entrance corridor
and the door are in the ground floor, and to the south (middle front) of the building.
The regulations impose the electric panel to be on the same floor or a lower level than
the entrance. The electric panel must also be situated next to the main cable, which is
at the north side of the building. The system room can be on another floor, however,
for ease of cabling along the shaft, it must be vertically aligned with the electric panel.
The heating unit is normally instituted on a lower level, and southwest to the entrance.
Moreover, the library director requests her office to be on and above the entrance corridor,
for convenience of monitoring. She also requests that the system room be located to the

53

left of her office on the same floor. The presumed location of the secretary is to the right
of the director’s office. Is it possible to come up with a design of this library to respect all
these constraints, requests, and assumptions?

The spatial requirements of the building design described above can be specified by the
following 3D-nCDC constraint network:

Panel {NM , NB} Entrance System {OB, OM , OA} Panel Director OA Entrance
System WM Director default Heating SWB Entrance default Secretary EM Director.

With the program Π3
m,n,p, including the set FB ∪ FV ∪ FD of facts describing

the 3D-nCDC constraints above, this constraint network is found inconsistent by
CLINGO . To explain this inconsistency, we utilize the method explained in Sec-
tion 4.6: replace the constraints (4.11) in Π3

m,n,p with the weak constraints (4.29),
where mandatory(Panel ,Entrance) given in the input represents an official regula-
tion. An answer set computed for this program by CLINGO includes the atom
violated(Director,Entrance), and thus provides the following explanation: the di-
rector’s request about the location of her office (i.e., the 3D-nCDC constraint
Director OA Entrance) cannot be fulfilled with respect to the other desired features of
the library.

4.7.3 Evidence-Based Digital Forensics

The application presented in this section is motivated by the challenges of evidence-based
digital forensics (Costantini, Gasperis & Olivieri, 2019), that goes beyond data analysis.
We consider a fictional crime story inspired by Agatha Christie’s novel “Hercule Poirot’s
Christmas”. Suppose that the grandfather of the Lee family is murdered.

The police obtains some images of the crime scene from the cameras located in the house.
The images yield the following information at the moment of the crime:
(4.30)

Body SM : SEM Table Teapoy EM Sofa Suitcase {SM , SWM} Table
Body NM :NEM Teapoy Phone OA Table Sofa SEM Bed Coat OM Hanger.

Notice that, since some images are not clear, there is some uncertainty regarding the
position of the suitcase. Meanwhile, the detective Poirot interviews the two suspects of
the crime.

54

Suspect 1 (Pilar): “... Suddenly, some noise and a scream came from upstairs. I immedi-
ately went to my grandfather’s bedroom and found him dead on the floor. His body was
lying in front of the table, a bit to the right. There was a rope hanging up on the window
that is behind the body, which is strange. There was a muffler on top of the drawer, which
probably belongs to my grandfather. The phone book on the table was open. Also, I saw
a whistle and a toy balloon on the floor, next to the body to its right, that is somehow
peculiar... ”

Suspect 2 (Alfred): “... I was sitting in the guest room with Stephan. I heard a noise and
then ran upstairs to my father’s bedroom. The room was untidy. Probably someone else
had visited him before because I noticed a suitcase in front of the table. I saw some drugs
on the teapoy. There was a knife on the floor next to the body, to its right. It was to the
front and underneath the phone...”

From Suspect 1’s statement, the following 3D-nCDC constraints are obtained:

(4.31)
Body SM : SEM Table Rope NA Body Muffler OA Drawer
PhoneBook OA Table Whistle EM Body Balloon EM Body.

From Suspect 2’s statement, the following 3D-nCDC constraints are obtained:

(4.32) Suitcase SM Table Drug OA Teapoy Knife EM Body Knife SB Phone.

Considering also the following commonsense knowledge about locations of the objects:
(4.33)

default Phone OA Table default Umbrella OM Hanger default Coat OM Hanger

the detective concludes that Suspect 1 is truthful whereas Suspect 2 is not.

The 3D-nCDC constraint network obtained from Suspect 2’s statements (4.32), the dig-
ital evidence (4.30) and the commonsense knowledge (4.33) is found inconsistent by
CLINGO , using the program Π3

m,n,p. An explanation for this inconsistency is found
by replacing the constraint (4.11) in Π3

m,n,p with the weak constraint (4.28): the atom
violated(Knife,Phone) in the answer set indicates that the knife cannot be to the front
and below of the phone.

55

5. EXPERIMENTAL EVALUATIONS

We have evaluated both NCDC-ASP and 3D-NCDC-ASP empirically. The results are
discussed in the following sections.

5.1 Experimental Setup for Evaluations of NCDC-ASP

Objectives. We have performed comprehensive set of experiments to evaluate our ASP-
based method for CDC consistency checking, to better understand the following ques-
tions:

• How does the input size affect the computational efficiency in terms of CPU time?

• How does providing more information about the CDC relations between spatial
objects affect the computational efficiency in terms of CPU time?

• How does the computational efficiency in terms of CPU time change for the incon-
sistent instances, compared with the consistent instances?

• How do the additional constraints about connectedness of objects, as discussed in
Section 3.3.2, affect the computational efficiency in terms of CPU time?

• How does the grid size suggested by Theorem 8 affect the computational efficiency
in terms of CPU time, in comparison with the grid size suggested by Theorem 1?

• How do the modifications of the ASP programs proposed in Section 3.7.3 (i.e.,
explicitly defining the minimum bounding rectangles instead of using aggregates,
and defining connectedness via reachability instead of transitive closure of the ad-
jacency relation) affect the computational efficiency in terms of CPU time?

Measures. For every instance of the discretized consistency checking problem
Im,n=(C,V,Dm,n,Q), we consider the following parameters descriptive of the input size:

56

the number |V | of spatial variables to be instantiated by l spatial objects (i.e., regions in
Dm,n), the number |C| of constraints in the network, and the size m×n of the grid Λm,n
that also determines the size of Dm,n.

In addition, we consider a measure to characterize to what degree the knowledge
about CDC relations is complete. Considering that a complete constraint network con-
tains |V |(|V | − 1) CDC constraints, we define the degree of incompleteness for an in-
stance as the ratio |C|/|V |(|V |−1). In our experiments, we consider four degrees of
incompleteness: Sparse, Medium, Dense, Complete corresponding to %15, %40, %70,
%100 densities, respectively.

Hardware and software. All tests have been performed on a Linux server with 3.3GHz
Intel Xeon W-2155 CPU, 32GB memory, single thread and using the ASP solver CLINGO

5.3.0. Numerical data is presented in tables which are relegated to Appendix for readabil-
ity.

5.2 Benchmark Generation in 2D

Considering the measures above, we have created a set of handcrafted CDC networks and
we have generated a set of random instances. Let us describe these benchmarks for basic
CDC networks, disjunctive CDC networks, and nCDC networks.

5.2.1 Benchmarks: Basic CDC Networks

Considering the measures above, we have created a set of handcrafted basic CDC net-
works and classified them in four groups with respect to whether the domain is Reg or
Reg* (i.e., whether the spatial objects are connected or not, respectively), and whether the
network is consistent or not. We conjecture that these instances will serve as benchmarks
for other researchers as well.

Incremental construction of instances with different degrees of incompleteness. To
generate benchmark problem instances, first, a layout of spatial objects has been manu-

57

(a) Disconnected regions (Reg*) (b) Connected regions (Reg)

Figure 5.1 Layout of handcrafted regions for benchmark instances.

ally instantiated over Reg* and Reg separately, as depicted in Figure 5.1; the objects are
indexed from 1 to 20.

On each domain, problem instances have been generated incrementally by varying the
number l of objects up to 20 and by realizing each incompleteness degree for every l. In
particular, starting with l1 number of spatial variables (in the benchmarks, l1 = 6), we
first form a consistent Sparse network over spatial objects 1..l1, by extracting some of the
constraints from the respective layout.

Next, a consistent Medium network is formed by augmenting to this Sparse network,
some more constraints among spatial objects 1..l1 in the same layout. We continue in this
way to construct a Dense network and then a Complete network with l1 variables.

Next, we incrementally construct Sparse, Medium, Dense and Complete networks with
l2 > l1 variables. This procedure continues until we have instances with l variables. Such
an incremental construction of instances helps us to analyze the effects of scalability and
the degree of incompleteness on computational efficiency.

Informativeness of the constraints. While we construct Sparse, Medium and Dense
networks, it is important to decide which constraints between spatial objects to include
in the constraint network. To resolve this issue, we have considered the diversity of the
variables in the constraints and the informativeness of the constraints. For the former
concern, for incomplete networks, we have avoided imposing constraints among a small
subset of variables, preferring to span a variety of spatial objects in the constraints as
much as possible. Regarding the latter concern, we have defined informativeness of basic
CDC constraints under some conditions.

If the directional relation in a basic constraint between two spatial objects has only one
possible inverse relation, then the constraint between the same objects with the inverse
relation is uninformative (i.e., it does not provide any additional information or affect
consistency) and there is no need to include it in the network. For example, in the layout

58

on Figure 5.1(a), let us assume that the relation between objects denoted by 4 and 2 are
described by a constraint d SW : SE b in a Sparse network. Then, the constraint b N d is
uninformative and there is no need to add it to the network, while turning it to a Medium
network. Note that the converse is not true: Existence of the constraint b N d in the
network makes d SW : SE b less informative but not totally uninformative because b N d

has five possible inverses.

If a basic CDC relation between two spatial objects can be inferred from the composition
of two other relations, then the constraint between these objects with the former relation
is uninformative. For example, the constraint e SE f is uninformative if the constraints
e SE a and a E : SE f are already present in the network, because the composition of
the latter two relations produces the unique relation e SE f .

While constructing the basic instances with l1 variables, we have distributed informative
constraints proportional to the level of incompleteness. Formally, the Complete instance
possesses all informative and uninformative constraints among l1 objects, whereas the
Medium and Dense networks contain roughly %40 and %70 of the informative constraints
included in the Complete instance, respectively, and the rest of their constraints are un-
informative. We have tried to obey this rule in Sparse networks as well, however, slight
deviations have occurred due to the fact that the size of a Sparse network is small but
we want to encompass diversity in variables. We somehow circumvent this drawback by
adding some less informative constraints.

Construction of inconsistent instances. Inconsistent problem instances are obtained by
modifying the corresponding consistent networks in a way that only one CDC constraint
between spatial variables indexed 2 and 1 (i.e., b S :O a) is replaced with a new constraint
(i.e., b O : E a) to contradict with the other constraint between 1 and 2 (i.e., a W :NW :
N :NE b).

Instances generated over Reg* vs. Reg . The constraints included in a network are
generated over the two layouts shown in Figure 5.1. These layouts are similar, except
that some spatial objects in Figure 5.1(b) are turned into disconnected objects in Fig-
ure 5.1(a), for the sake of better understanding the effect of connectedness on computa-
tional efficiency. This similarity allows us to obtain networks over Reg* from the net-
works generated over Reg with respect to the layout in Figure 5.1(b). In particular, we
consider constraints like d SW : S : SE b over connected objects, and replace them with
constraints like d SW : SE b to ensure that d is disconnected. In this way, none of the
solutions computed for instances generated over Reg* is consistent over Reg ; so, indeed,
disconnectedness is required for instances generated over Reg* .

59

5.2.2 Benchmarks: Disjunctive CDC Constraints

We have generated consistent instances with disjunctive CDC constraints, from the hand-
crafted consistent instances that are constructed over Reg* and Reg with basic CDC con-
straints and that are used in the experiments discussed above. In particular, we have
considered Dense networks with l = 14 objects. In each instance, we have selected some
basic CDC constraints, and then converted each selected basic CDC constraint into a
disjunctive CDC constraint such that the disjunctive CDC constraint includes the ba-
sic CDC constraint. For example, a basic constraint c SE f is converted into a dis-
junctive constraint c {W : O : E, SE} f with two disjuncts, or a disjunctive constraint
c {W :O : E, O, SW : S, SE} f with four disjuncts.

Each new instance constructed in this way is denoted by c× disj d, where c denotes the
number of disjunctive CDC constraints and d denotes the number of disjuncts in these
constraints. For example, 1× disj8 denotes an instance whose network contains only
one disjunctive constraint with 8 basic CDC constraints as disjuncts; 4×disj2 denotes an
instance whose network contains 4 disjunctive constraints and each disjunctive constraint
includes 2 disjuncts.

Then, we have defined some more instances by further modifying the basic CDC con-
straints in these disjunctive instances. For example, the disjunctive constraints of an in-
stance 24×disj2 already contain the disjunctive constraints of an instance 16×disj2. The
disjunctive constraints of an instance 8×disj2 coincide with those of an instance 8×disj8
except that the latter instance has disjunctions with 6 more disjuncts; for these instances,
all the basic constraints are the same. In this way, we have prepared instances with up to
32 disjunctive constraints and 8 disjuncts.

Inconsistent disjunctive instances are constructed in a similar way as in the case of nondis-
junctive instances: A basic constraint is replaced by another to make the network incon-
sistent, as explained in Section 5.2.1.

After that, to better observe the impact of disjunctiveness, we have considered the in-
stances where only one basic CDC relation in each disjunctive constraint makes the net-
work consistent.

60

5.2.3 Benchmarks: Default CDC Constraints

We have considered the benchmark instances that have been generated with l= 14, 16 ob-
jects over Reg* and Reg with Medium density of basic CDC constraints, and that we have
used in our experiments above. From each instance, we have incrementally constructed
six consistent instances that involve default CDC constraints as follows.

The first type of instance (Default v1) is formed by randomly picking one third of the
constraints in the Medium basic network and then by converting them into default CDC
constraints. For example, a basic constraint eE : SE c is replaced with default eE : SE c.

The second type of instance (Default v2) is formed by randomly picking two thirds of the
constraints in the Medium basic network and then by converting them into default CDC
constraints.

For the third type of instance (Default v3), we consider the Dense network built on the
Medium network as described in Section 5.2.1, take one third of the constraints that appear
in the Dense network but not in the Medium network, convert them to default constraints,
and add them to the Medium basic instance that we have started with.

For the fourth type of instance (Default v4), we consider the Dense network built on the
Medium network as described in Section 5.2.1, take two thirds of the constraints that
appear in the Dense network but not in the Medium network, convert them to default
constraints, and add them to the Medium basic instance that we have started with.

For the fifth type of instance (Default v5), the default constraints of Default v3 are added
to Default v1.

For the sixth type of instance (Default v6), the default constraints of Default v4 are added
to Default v2.

Inconsistent problem instances are generated from these consistent instances, as described
in Section 5.2.1.

61

5.2.4 Randomly Generated Benchmarks

We have also randomly generated benchmark problem instances with basic constraints
over Reg* and Reg for a variety of number of objects and incompleteness degree. The
pair of objects in the network and the CDC constraints between them have been randomly
chosen. For example, in a |V |=10, Sparse network over Reg , there are 13 constraints.
The 13 object pairs are randomly chosen out of 90 possible pairs; and the CDC relation
for each pair is randomly chosen from 218 possible basic CDC relations over Reg .

To obtain robust results, for the same |V | and incompleteness ratio, 50 samples over
Reg* and Reg have been produced (total 100) and the average value is taken within the
respective domain. Because CDC relations are random, most random problem instances
(%98 of them) turned out to have inconsistent network. Consistent instances could be
generated only for |V |=6, Sparse network.

5.3 Experimental Evaluations of NCDC-ASP

Let us present the results of our experiments and discuss them in connection with the
questions listed in Section 5.1.

5.3.1 Experimental Evaluations of the ASP Improvements

We have presented a straightforward ASP formulation of basic CDC consistency checking
in Section 3.3, suggested some modifications of these formulations in Section 3.7.3 to
improve computation timings. In particular, we have suggested

• explicitly defining the minimum bounding rectangles for spatial objects using ag-
gregates vs. generating the minimum bounding rectangles, and

• defining the connectedness of a region using reachability vs. transitive closure.

We have investigated experimentally how the computational efficiency is affected by
these modifications. We have experimented using the handcrafted instances with Sparse,

62

Medium, Dense, Complete networks constructed over l = 6,8,10 variables. For each in-
stance, the grid size is precomputed as suggested by Theorem 8. The total computation
time reported in the figures and the tables includes the time to calculate the grid size,
although this is negligible compared to the timings for consistency checking.

Defining the minimum bounding rectangles using aggregates vs. generating and
testing the minimum bounding rectangles. We have considered instances generated
over the layout in Figure 5.1(a), where some objects are disconnected. The improved
ASP program is obtained from the original ASP program presented in Section 3.3, as
explained in Section 3.7.3.

Figure 5.2 shows the total computation times. The height of the bar denotes the total
computation time. Each bar is splitted by a vertical line; the lower part of the bar shows
the grounding time, whereas the top part shows the search time. These results illustrate
the benefit of the suggested program improvement.

Tables 5.3, 5.4, 5.5 and 5.6 show more detailed results: the total CPU times in seconds,
including the grounding time and the total time, and the program sizes, including the
number of atoms, rules, constraints for both the original program and the improved one.

For example, for a consistent instance with l = 6 variables whose CDC relations are de-
scribed by a Medium network, viewing the plane as a grid of size 8x8, the grounded
program of the original ASP formulation obtained by CLINGO includes 18572 atoms,
268140 rules, 291052 constraints while that of the improved formulation includes 2302
atoms, 11860 rules, 15040 constraints (Tables 5.5 and 5.6). Because of its appreciably
larger program size, the original program requires 0.63 seconds for grounding, whereas
the improved program requires 0.04 seconds for grounding. Similar observation can be
done for the total CPU times.

The improvement can be observed in larger instances as well. For a consistent instance
with l= 10 variables described by a Dense network, the total CPU times are 57.06 seconds
and 0.33 seconds with the original program and the improved program, respectively. For
the corresponding inconsistent instance, these times are 49.60 seconds and 0.23 seconds
respectively.

Overall, these experimental results favor for the improved program (where the minimum
bounding rectangles are generated and tested, instead of being defined using aggregates)
in terms of scalability in CPU time and the program size.

Connectedness in terms of transitive closure vs. reachability. We have performed
experiments with the improved main program presented in Section 3.7.3.1 augmented
with the connectedness definition using the transitive closure of the adjacency of the grid

63

(a) Consistent problem instances

(b) Inconsistent problem instances

Figure 5.2 Effect of program improvement (i.e., defining the minimum bounding rectan-
gles using aggregates, rather than generating and testing the minimum bounding rectan-
gles) on computation time: Instances over Reg* (Figure 5.1(a))

cells, and the constraints presented in Section 3.3.2. We have also experimented with the
improved subprogram where connectedness of regions is defined instead using reacha-
bility, as explained in Section 3.7.3. In these experiments, we have considered instances
generated over the layout Figure 5.1(b), where the objects are connected.

Figure 5.3 shows the comparison of two subprograms with respect to the computation
time. Tables 5.7, 5.8, 5.9 and 5.10 include more details. The results illustrate that the im-

64

(a) Consistent problem instances

(b) Inconsistent problem instances

Figure 5.3 Effect of program improvement (i.e., defining connectedness in terms
of reachability rather than transitive closure) on computation time: Instances over
Reg (Figure 5.1(b))

provements suggested in Section 3.7.3 yield smaller ground programs and hence shorter
computation times.

For example, for a consistent instance with l= 8 connected objects in a Medium network,
viewing the plane as a grid of size 12x11, the ground program with connectedness con-
straints has 150640 atoms, 695732 rules, 2376370 constraints, and a solution is computed
in 9.26 seconds using the original subprogram. On the other hand, the ground program
with reachability constraints has 9768 atoms, 51212 rules, 84218 constraints, and a solu-

65

tion is computed in 0.14 seconds with the improved subprogram.

Overall, these experimental results favor for the improved subprogram (where connect-
edness of regions is defined using reachability instead of transitive closure) in terms of
scalability in CPU time and the program size.

5.3.2 Evaluating the Scalability: Input Size and Degree of Incompleteness

In order to investigate how computational performance is affected by the sizes of the
instances (i.e., the number of variables) and the degrees of incompleteness of knowledge
about CDC relations between spatial objects, we have tested the handcrafted problem
instances generated over Reg* and Reg using the improved ASP program that is described
in Section 3.7.3.

The computation times are presented in Figure 5.4, while further details are shown in
Tables 5.11, 5.13, 5.12 and 5.14.

Input size. From these results, we see that as the number of variables increases, the
grid size increases, and the computation time and the program size increase as well. For
example, in Table 5.11, we can observe that, for a consistent instance with l= 10 possibly
disconnected objects in a Sparse network (with 13 constraints), viewing the space as a
grid of size 13x12, the ground program has 6754 atoms, 41208 rules, 51710 constraints,
and a solution is computed in 0.07 seconds. Increasing the number of variables to l = 18,
still in a Sparse network, increases the number of constraints to 46 and the grid size
to 21x20. This leads to an increase in the program size to 41310 atoms, 313462 rules,
388041 constraints, and the computation time to 0.49 seconds.

A similar increase in computation time can be observed for inconsistent instances in Ta-
ble 5.12. For example, the inconsistency of an instance with l= 10 possibly disconnected
objects in a Sparse network is determined in 0.07 seconds. Increasing l to 18, still in a
Sparse network, increases the computation time to 0.51 seconds.

These observations are not surprising, but does the amount of increase in computation
time (as the number of variables increase) change when we consider more dense net-
works? For a consistent instance with l = 10 possibly disconnected objects in a Dense
network (with 63 constraints), viewing the space as a grid of size 14x14, the ground pro-
gram has 20996 atoms, 145546 rules, 183734 constraints, and a solution is computed in
0.33 seconds. Increasing the number of variables (l = 18), in a Dense network, increases

66

(a) Consistent problem instances

(b) Inconsistent problem instances

Figure 5.4 Effect of the number of objects and the network density on computation time

the number of constraints (to 214 constraints) and the grid size (to 24x25) almost three
times. This leads to a significant increase (almost 10 times) in the program size to 186512
atoms, 1456450 rules, 1818532 constraints. However, the computation time increases
even more for Dense networks, to 18.86 seconds.

Degree of incompleteness. Note that the network density increases when more knowl-
edge (i.e., constraints) is provided about the CDC relations between objects. Consider
for example, the consistent instances with l = 18 variables. As we can observe from Ta-

67

ble 5.11, the number of constraints increases from 46 to 122, 214, 306, as the density of
the network changes from Sparse to Medium, Dense, Complete respectively. In parallel
to these changes, the computation time for a solution also increases from 0.49 seconds to
8.06, 18.86, 86.38 seconds, respectively. These observations suggest that the number of
constraints play a more significant role (compared to an increase in the number of vari-
ables) in the computation time. This can be explained due to a harder search for a solution
with greater number of constraints.

Consistent vs. inconsistent instances. From the Tables 5.11 and 5.12, we can observe
that, for instances with the same number of objects in a network of the same density,
the inconsistency is determined faster than finding a solution. For example, for a consis-
tent instance with l = 18 variables in a Dense network, a solution is computed in 18.86
seconds, whereas the corresponding inconsistent instance is verified in 7.15 seconds.

Remember that inconsistent instances are obtained from consistent instances by simply
modifying the constraint relating b to a in such a way that it contradicts the constraint
relating a to b. Then, the inconsistency can be detected as soon as the grid cells are
assigned to b and a. In such cases, checking inconsistency takes less time as observed
above.

Domain: Reg* vs. Reg . For the same input size, consistency of an instance over Reg* is
computed faster than the corresponding instance over Reg . This phenomenon is expected
due to the additional overhead of checking connectedness. The ASP program over con-
nected domain yields greater program size and computation time compared to the ASP
program over possibly disconnected domain. For example for l= 10, Medium, consistent
instance, the ASP program over Reg* produces 13638 atoms, 88708 rules, 112544 con-
straints on 14x13 grid with a computation time 0.19 seconds while the ASP program over
Reg produces greater program size, i.e., 17353 atoms, 103573 rules, 162539 constraints
on the same grid with a computation time 0.33 seconds.

68

5.3.3 Evaluating the Usefulness of Theorem 8

The grid size is critical in terms of computational efficiency in ASP: a larger grid is likely
to cause longer computation time due to the increase in domain size and possible assign-
ments of grid cells to regions. Therefore, it is expected that Theorem 8 would be useful
in improving computational efficiency by providing lower bounds on the grid size. This
is indeed observed from the results of our experiments.

The experiments in the previous section have been performed by taking into account the
grid size suggested by Theorem 8. When the experiments have been performed with the
grid size suggested by Theorem 1, the results are higher as seen in Table 5.15 and 5.16.
Comparison of results with different grid sizes are illustrated in Figure 5.5.

For example, for a consistent instance with l= 18 variables in a Dense network, a solution
over a grid of size 35x35 (as suggested by Theorem 1) is computed in 54.17 seconds,
whereas a solution over a grid of size 24x25 (as suggested by Theorem 8) is computed in
18.86 seconds.

5.3.4 Experiments with Disjunctive CDC Constraints

We have performed experiments to evaluate our ASP-based method for CDC consistency
checking, using the improved ASP program, to better understand how the number of
disjunctive constraints and the disjuncts affect the computation timings.

We have experimented with the handcrafted disjunctive instances that are generated as
described before, using the improved ASP program that allows disconnectedness.

Regarding the grid size, we have considered the grid size suggested by Theorem 8. Ob-
serve that computing the grid size as suggested by Theorem 8 depends on the nonde-
terministic choice of the basic CDC constraints from the disjunctive CDC constraints as
described in Section 3.4, and thus it takes considerable time to compute the grid size for
each instance and for each such choice. For that reason, we have taken the maximum
value of the slot values for all the basic relations in the disjunctive constraints, and set it
as Slotx(u,C) and Sloty(u,C) for each variable u. The grid size is then calculated as in
Theorem 8. In this way, the slot values do not depend on which basic CDC constraints
are chosen from the disjunctive constraints, but then may not lead to smaller grids.

69

(a) Consistent problem instances

(b) Inconsistent problem instances

Figure 5.5 Impact of defining the grid size with respect to Theorem 8 compared to Theo-
rem 1 on computational performance, with instances generated over Reg* (Figure 5.1(a))

The results are presented in Figure 5.6 and Tables 5.17, 5.18, considering that the grid
size is computed with respect to our approximate calculation based on Theorem 8 as de-
scribed above. For example, the consistent disjunctive instance 16× disj4 with possibly
disconnected objects over a grid of size 23x25 is determined in 4.03 seconds. The cor-
responding consistent 16× disj4 instance with connected objects is determined in 22.90
seconds over a grid of size 22x25. We observe that in both domains the timings do not
rise so much even though the number of disjunctive constraints and their sizes increase.

For inconsistent instances, the situation is a bit different: Notice the increase in compu-

70

(a) Consistent problem instances

(b) Inconsistent problem instances

Figure 5.6 Impact of the disjunctive constraints on computation time: Problem instances
with l = 14, Dense networks

tation time from 18.56 seconds to 160.46 seconds for instances 8× disj8 and 32× disj8
over Reg* when the number of disjunctive constraints increase four times; and from 12.54
seconds to 160.46 seconds for instances 32× disj2 and 32× disj8 when the number of
disjuncts increase four times in each disjunctive constraint.

71

5.3.5 Experiments with Default CDC Constraints

Recall that one of the contributions of our approach is a new sort of CDC constraints,
called default CDC constraints. As part of our experimental evaluations, we have also
performed experiments to evaluate our ASP-based method for CDC consistency check-
ing, using the improved ASP program, when the instances contain such default CDC
constraints.

In our experiments, we have used the improved ASP program augmented with the rules
that provide the semantics of the default CDC constraints, as described in Section 3.6. We
have considered the grid size as suggested by Theorem 8.

The results are shown in Figure 5.7 and Tables 5.19, 5.20. The computation time for the
instances with default constraints are an order of magnitude greater than the computation
time for the corresponding basic instances. The reason is that the definition of excep-
tions (i.e., 3.25) relies on the inference of all the missing relations in the network (i.e.,
atoms of the form inferrel(u,v,r)). To examplify, the consistency of a Medium-size ba-
sic consistent network with 72 constraints between l = 14 spatial objects over Reg* is
decided in 0.76 seconds (Table 5.11); on the other hand, using the improved ASP pro-
gram augmented with the rules that provide the semantics of the default CDC constraints
as described in Section 3.6, the consistency of the same instance (without any default
constraints) is decided in 7.79 seconds (Table 5.19).

With a similar reason, converting a basic constraint into a default constraint in general
(as observed by the instances Default v1 and Default v2) increases the computation time:
with this conversion, the relation between a pair of spatial objects becomes unknown; and
the ASP solver tries to infer this missing relation to match with the default constraint. For
example, for a consistent instance with Medium-size basic network with 72 constraints
between l = 14 variables over Reg* , it takes 7.79 seconds to find a solution, whereas it
takes 17.20 seconds for the first type (Default v1) and 16.33 seconds for the second type
(Default v2) when some of its basic constraints are converted into default constraints.
Corresponding timings for the basic, Default v1, Default v2 instances over Reg are 6.69,
11.76, 16.09 seconds, respectively.

Besides, adding a default constraint to the network that does not include any basic con-
straint for the same pair tends to increase the computation time. When a constraint is
not present between two variables in the network, the ASP solver just infers the miss-
ing relation. However, after a default constraint between such two variables is added to
the network, the program tries to find an inferred relation that would match the default
constraint. For instance, for a consistent basic constraint network with l = 16 variables

72

(a) Consistent problem instances

(b) Inconsistent problem instances

Figure 5.7 Computation time for problem instances with default CDC constraints

over Reg (Table 5.20), when new default constraints are added to obtain Default v3 and
Default v4 instances, the computation time increases from 34.58 seconds to 48.61 and
71.15 seconds respectively. Likewise, the computation time for the Default v5 and De-
fault v6 instances are generally greater than that of Default v1 and Default v2 instances,
respectively.

73

5.3.6 Experimental Evaluations with Random Benchmark Instances

Experiments have been performed with random benchmark instances using our improved
ASP program and the grid size in Theorem 8. Averaged results for the samples over
connected and possibly disconnected domain are tabulated in Table 5.21 and 5.22. The
pattern and absolute value of timings are comparable to the test results with handcrafted
basic instances. In particular, the grounding time and the total time increase as the number
of objects and the network density increase (Figure 5.8).

Figure 5.8 Test results for random inconsistent instances: Effect of input size

5.3.7 Experimental Comparisons with the Existing Solver

Liu et al. has implemented a software based on a polytime algorithm (Liu et al., 2010) to
check for the consistency of complete CDC networks (whose complexity is in P). We first
experimented with complete CDC networks to compare our approach with the other ex-
isting solver. As expected, we have observed that Liu et al.’s polytime algorithm performs
better (Table 5.1).

To decide consistency of incomplete CDC networks, algorithm of Liu et al. can be adapted
for exhaustive search. For the missing constraints in the network, all possible CDC rela-

74

Table 5.1 Complete CDC networks over Reg* and Reg : Computation times in seconds for
the relevant improved ASP programs (for Reg* or Reg) and for the polytime algorithm of
Liu et al. (2010)

Instance Reg* Reg
Objects Liu et al. NCDC-ASP Liu et al. NCDC-ASP

Consistent Instances
6 0.0004 0.07 0.0005 0.07
8 0.0009 0.28 0.0009 0.43
10 0.0004 0.78 0.0008 1.57
12 0.0006 1.85 0.0007 3.17
14 0.0008 8.65 0.0010 10.90

Inconsistent Instances
6 0.0001 0.06 0.0001 0.08
8 0.0001 0.24 0.0001 0.29
10 0.0001 0.38 0.0001 1.11
12 0.0001 0.94 0.0001 1.60
14 0.0001 2.44 0.0001 2.08

tions (218 over Reg and 511 over Reg*) can be tested one by one. Each possible combina-
tion of CDC relations is appended to the original incomplete network to fill it and make it
complete. Then the algorithm of Liu et al. is called to decide its consistency. The original
network is consistent if and only if at least one combination yields a consistent outcome.
If no combination results a consistent network, the original network is inconsistent.

We have modified the code provided by the authors of Liu et al. (2010) to implement the
above exhaustive search method for incomplete networks. We have experimented with
some of our benchmark instances on both domains to assess efficiency of this adapted
algorithm of Liu et al. and compare to our ASP formulation. Results of the experi-
ments for incomplete networks are tabulated in Table 5.2. For all problem instances, the
computation time of Liu et al.’s algorithm has exceeded the timeout value and is order
of magnitude greater than ASP. The reason is that the number of possible combinations
increases exponentially with the number of missing constraints hence exhaustive search
using algorithm of Liu et al. is not a viable option for incomplete CDC networks. Be-
sides the computation time for inconsistent networks is expected to be even greater than
the time for consistent ones since all possible combinations must be tested to determine
inconsistency.

75

Table 5.2 Incomplete CDC networks over Reg* and Reg : Computation times in seconds
for the relevant improved ASP programs (for Reg* or Reg) and for the modified algorithm
of Liu et al. (2010)

Instance Reg* Reg
Objects Density Liu et al. NCDC-ASP Liu et al. NCDC-ASP

Consistent Instances
6 Sparse > 1000 0.02 > 1000 0.02
6 Medium > 1000 0.04 > 1000 0.05
6 Dense > 1000 0.05 > 1000 0.07
8 Sparse > 1000 0.05 > 1000 0.05
8 Medium > 1000 0.09 > 1000 0.14
8 Dense > 1000 0.17 > 1000 0.29

Inconsistent Instances
6 Sparse > 1000 0.02 > 1000 0.02
6 Medium > 1000 0.03 > 1000 0.04
6 Dense > 1000 0.04 > 1000 0.06
8 Sparse > 1000 0.04 > 1000 0.04
8 Medium > 1000 0.09 > 1000 0.12
8 Dense > 1000 0.11 > 1000 0.15

76

5.4 Detailed Results of the NCDC-ASP Experiments

In this section, for further information, we present all the tables detailing the results of
our experimental evaluations of NCDC-ASP , discussed in Section 5.3.

Table 5.3 Effect of program improvement (i.e., defining the minimum bounding rectangles
using aggregates, rather than generating and testing the minimum bounding rectangles)
on computation time: Consistent instances over Reg* (Figure 5.1(a)).

Instance Original Program Improved Program
Objects Density Grid Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 6x5 0.08 0.08 0.02 0.02
6 Medium 8x8 0.63 0.65 0.04 0.04
6 Dense 8x9 1.24 1.42 0.04 0.05
6 Complete 8x10 2.18 2.62 0.06 0.07
8 Sparse 11x10 1.72 1.82 0.05 0.05
8 Medium 12x11 6.01 6.28 0.07 0.09
8 Dense 12x12 12.39 14.16 0.11 0.17
8 Complete 12x13 21.16 32.97 0.15 0.28

10 Sparse 13x12 6.36 7.10 0.06 0.07
10 Medium 14x13 21.02 22.88 0.12 0.19
10 Dense 14x14 44.50 57.06 0.21 0.33
10 Complete 14x15 72.08 146.69 0.32 0.78

77

Table 5.4 Effect of program improvement (i.e., defining the minimum bounding rectangles
using aggregates, rather than generating and testing the minimum bounding rectangles)
on computation time: Inconsistent instances over Reg* (Figure 5.1(a)).

Instance Original Program Improved Program
Objects Density Grid Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 6x4 0.06 0.06 0.02 0.02
6 Medium 8x7 0.46 0.51 0.03 0.03
6 Dense 8x8 0.96 1.06 0.04 0.04
6 Complete 8x10 2.17 2.61 0.05 0.06
8 Sparse 11x9 1.33 1.59 0.04 0.04
8 Medium 12x10 4.73 6.53 0.07 0.09
8 Dense 12x11 9.98 14.35 0.10 0.11
8 Complete 12x13 21.77 32.80 0.15 0.24

10 Sparse 13x11 5.14 6.56 0.07 0.07
10 Medium 14x12 17.02 23.08 0.12 0.18
10 Dense 14x13 35.86 49.60 0.19 0.23
10 Complete 14x15 72.20 128.35 0.32 0.38

78

Table 5.5 Effect of program improvement (i.e., defining the minimum bounding rectangles
using aggregates, rather than generating and testing the minimum bounding rectangles)
on program size: Consistent instances over Reg* (Figure 5.1(a)).

Instance Original Program Improved Program
Objects Density Grid Atoms Rules Constraints Atoms Rules Constraints

6 Sparse 6x5 3915 30244 35149 973 3867 4753
6 Medium 8x8 18572 268140 291052 2302 11860 15040
6 Dense 8x9 24255 410259 439474 3207 19101 23964
6 Complete 8x10 29346 569767 603084 4632 28140 35719
8 Sparse 11x10 45000 946084 1005332 3995 20483 26345
8 Medium 12x11 82880 2137802 2238222 7615 42659 55437
8 Dense 12x12 109327 3190212 3313384 11468 69648 89873
8 Complete 12x13 135421 4370724 4492523 16752 101680 132208
10 Sparse 13x12 124385 3455501 3611749 6754 41208 51710
10 Medium 14x13 178834 6073121 6288761 13638 88708 112544
10 Dense 14x14 226477 8614362 8869284 20996 145546 183734
10 Complete 14x15 274555 11475916 11726703 31049 211759 269674

Table 5.6 Effect of program improvement (i.e., defining the minimum bounding rectangles
using aggregates, rather than generating and testing the minimum bounding rectangles)
on program size: Inconsistent instances over Reg* (Figure 5.1(a)).

Instance Original Program Improved Program
Objects Density Grid Atoms Rules Constraints Atoms Rules Constraints

6 Sparse 6x4 2797 18396 21777 844 3180 3889
6 Medium 8x7 14873 195105 213386 2060 10316 13075
6 Dense 8x8 19952 310987 335164 2886 16800 21066
6 Complete 8x10 29405 570624 603901 4630 28138 35713
8 Sparse 11x9 37710 729528 779201 3654 18438 23725
8 Medium 12x10 71076 1705155 1791195 6967 38663 50252
8 Dense 12x11 95013 2599611 2706500 10539 63501 81951
8 Complete 12x13 136409 4400832 4523528 16751 101679 132205
10 Sparse 13x11 106922 2769241 2903860 6259 37700 47345
10 Medium 14x12 156756 5004840 5193963 12635 81615 103578
10 Dense 14x13 200496 7215131 7440851 19518 134548 169883
10 Complete 14x15 276100 11537901 11790113 31048 211758 269671

79

Table 5.7 Effect of program improvement (i.e., defining connectedness in terms of reach-
ability rather than transitive closure) on computation time: Consistent instances over
Reg (Figure 5.1(b)).

Instance Original Program Improved Program
Objects Density Grid Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 3x3 0.02 0.02 0.02 0.02
6 Medium 8x8 0.31 0.64 0.04 0.05
6 Dense 8x9 0.42 0.81 0.06 0.07
6 Complete 8x10 0.55 1.69 0.06 0.07
8 Sparse 8x9 0.57 0.99 0.04 0.05
8 Medium 12x11 2.29 9.26 0.09 0.14
8 Dense 12x12 2.83 17.09 0.13 0.29
8 Complete 12x13 3.33 20.00 0.17 0.43

10 Sparse 12x13 4.14 7.61 0.10 0.11
10 Medium 14x13 5.78 43.98 0.16 0.33
10 Dense 14x14 6.82 77.91 0.25 0.66
10 Complete 14x15 7.99 120.93 0.37 1.57

Table 5.8 Effect of program improvement (i.e., defining connectedness in terms of reach-
ability rather than transitive closure) on computation time: Inconsistent instances over
Reg (Figure 5.1(b)).

Instance Original Program Improved Program
Objects Density Grid Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 3x3 0.02 0.02 0.02 0.02
6 Medium 8x7 0.22 0.37 0.04 0.04
6 Dense 8x8 0.32 0.58 0.05 0.06
6 Complete 8x10 0.54 1.23 0.07 0.08
8 Sparse 8x8 0.43 0.65 0.04 0.04
8 Medium 12x10 1.87 7.77 0.08 0.12
8 Dense 12x11 2.31 7.72 0.12 0.15
8 Complete 12x13 3.37 14.80 0.18 0.29

10 Sparse 12x12 3.48 6.29 0.08 0.09
10 Medium 14x12 4.86 36.41 0.14 0.35
10 Dense 14x13 5.83 62.10 0.23 0.45
10 Complete 14x15 8.09 72.75 0.36 1.11

80

Table 5.9 Effect of program improvement (i.e., defining connectedness in terms of
reachability rather than transitive closure) on program size: Consistent instances over
Reg (Figure 5.1(b)).

Instance Original Program Improved Program
Objects Density Grid Atoms Rules Constraints Atoms Rules Constraints

6 Sparse 3x3 1104 3137 7729 609 1512 2493
6 Medium 8x8 28280 124238 410825 3272 15104 25937
6 Dense 8x9 35901 161955 527995 4299 22791 36415
6 Complete 8x10 44810 205118 661052 5846 32282 49754
8 Sparse 8x9 46185 203257 688182 3878 17101 30699
8 Medium 12x11 150640 695732 2376370 9768 51212 84218
8 Dense 12x12 181312 848900 2861367 13792 79020 121511
8 Complete 12x13 215581 1018109 3393790 19109 111741 166334

10 Sparse 12x13 255585 1187039 4129566 9644 52765 90813
10 Medium 14x13 351303 1654873 5692739 17353 103573 162539
10 Dense 14x14 412068 1965458 6671360 24968 161618 237930
10 Complete 14x15 479457 2304467 7733078 35287 229057 328148

Table 5.10 Effect of program improvement (i.e., defining connectedness in terms of
reachability rather than transitive closure) on program size: Inconsistent instances over
Reg (Figure 5.1(b)).

Instance Original Program Improved Program
Objects Density Grid Atoms Rules Constraints Atoms Rules Constraints

6 Sparse 3x3 1104 3137 7729 609 1512 2493
6 Medium 8x7 22090 95866 313670 2908 13120 22448
6 Dense 8x8 28864 129178 416851 3856 20044 31963
6 Complete 8x10 44808 205116 661046 5844 32280 49748
8 Sparse 8x8 36997 161069 541893 3501 15026 26921
8 Medium 12x10 125455 576671 1960494 8927 46383 76150
8 Dense 12x11 153544 716554 2402824 12672 72034 110672
8 Complete 12x13 215580 1018108 3393787 19108 111740 166331

10 Sparse 12x12 218686 1011844 3511976 8962 48289 83102
10 Medium 14x12 300787 1413047 4844584 16067 95257 149344
10 Dense 14x13 357159 1700689 5750006 23209 149389 219806
10 Complete 14x15 479456 2304466 7733075 35286 229056 328145

81

Table 5.11 Effect of the number of objects and the network density: Consistent instances
over Reg* (Figure 5.1(a)).

Instance Improved Program (Reg*)
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

Time (s) Time (s)
6 Sparse 5 6x5 0.02 0.02 973 3867 4753
6 Medium 12 8x8 0.04 0.04 2302 11860 15040
6 Dense 21 8x9 0.04 0.05 3207 19101 23964
6 Complete 30 8x10 0.06 0.07 4632 28140 35719
10 Sparse 13 13x12 0.06 0.07 6754 41208 51710
10 Medium 36 14x13 0.12 0.19 13638 88708 112544
10 Dense 63 14x14 0.21 0.33 20996 145546 183734
10 Complete 90 14x15 0.32 0.78 31049 211759 269674
14 Sparse 27 17x16 0.17 0.19 18093 128679 159642
14 Medium 72 19x17 0.42 0.76 39664 295542 368893
14 Dense 126 19x18 0.76 2.07 63960 493106 614349
14 Complete 182 19x21 1.35 8.65 107260 798132 1005067
18 Sparse 46 21x20 0.43 0.49 41310 313462 388041
18 Medium 122 23x22 1.20 8.06 96997 758283 942873
18 Dense 214 24x25 2.55 18.86 186512 1456450 1818532
18 Complete 306 27x29 4.92 86.38 351015 2646951 3336035

Table 5.12 Effect of the number of objects and the network density: Inconsistent instances
over Reg* (Figure 5.1(a)).

Instance Improved Program (Reg*)
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

Time (s) Time (s)
6 Sparse 5 6x4 0.02 0.02 844 3180 3889
6 Medium 12 8x7 0.03 0.03 2060 10316 13075
6 Dense 21 8x8 0.04 0.04 2886 16800 21066
6 Complete 30 8x10 0.05 0.06 4630 28138 35713
10 Sparse 13 13x11 0.07 0.07 6259 37700 47345
10 Medium 36 14x12 0.12 0.18 12635 81615 103578
10 Dense 63 14x13 0.19 0.23 19518 134548 169883
10 Complete 90 14x15 0.32 0.38 31048 211758 269671
14 Sparse 27 17x15 0.15 0.17 17046 120261 149315
14 Medium 72 19x16 0.39 0.79 37376 277608 346610
14 Dense 126 19x17 0.71 1.32 60404 464507 578823
14 Complete 182 19x21 1.35 2.44 107258 798130 1005061
18 Sparse 46 21x20 0.42 0.51 41311 313463 388044
18 Medium 122 23x22 1.21 3.56 96998 758284 942876
18 Dense 214 24x25 2.55 7.15 186511 1456449 1818529
18 Complete 306 27x29 4.93 10.84 351013 2646949 3336029

82

Table 5.13 Effect of the number of objects and the network density: Consistent instances
over Reg (Figure 5.1(b)).

Instance Improved Program (Reg)
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

Time (s) Time (s)
6 Sparse 5 3x3 0.02 0.02 609 1512 2493
6 Medium 12 8x8 0.04 0.05 3272 15104 25937
6 Dense 21 8x9 0.06 0.07 4299 22791 36415
6 Complete 30 8x10 0.06 0.07 5846 32282 49754
10 Sparse 13 12x13 0.1 0.11 9644 52765 90813
10 Medium 36 14x13 0.16 0.33 17353 103573 162539
10 Dense 63 14x14 0.25 0.66 24968 161618 237930
10 Complete 90 14x15 0.37 1.57 35287 229057 328148
14 Sparse 27 16x17 0.23 0.33 25576 158275 259449
14 Medium 72 18x17 0.50 0.96 46030 313570 465709
14 Dense 126 18x18 0.84 4.02 68859 502133 703762
14 Complete 182 18x20 1.34 10.9 104765 756171 1037990
18 Sparse 46 20x21 0.60 1.57 55403 372554 587418
18 Medium 122 22x21 1.28 5.31 103205 754849 1081244
18 Dense 214 22x24 2.48 18.67 178504 1348398 1845494
18 Complete 306 26x28 4.90 295.00 344300 2554502 3438271

Table 5.14 Effect of the number of objects and the network density: Inconsistent instances
over Reg (Figure 5.1(b)).

Instance Improved Program (Reg)
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

Time (s) Time (s)
6 Sparse 5 3x3 0.02 0.02 609 1512 2493
6 Medium 12 8x7 0.04 0.04 2908 13120 22448
6 Dense 21 8x8 0.05 0.06 3856 20044 31963
6 Complete 30 8x10 0.07 0.08 5844 32280 49748
10 Sparse 13 12x12 0.08 0.09 8962 48289 83102
10 Medium 36 14x12 0.14 0.35 16067 95257 149344
10 Dense 63 14x13 0.23 0.45 23209 149389 219806
10 Complete 90 14x15 0.36 1.11 35286 229056 328145
14 Sparse 27 16x16 0.22 0.25 24147 148008 242681
14 Medium 72 18x16 0.44 0.89 43370 294232 436812
14 Dense 126 18x17 0.77 1.02 65037 472717 662365
14 Complete 182 18x20 1.33 2.08 104763 756169 1037984
18 Sparse 46 20x21 0.61 0.72 55402 372553 587415
18 Medium 122 22x21 1.27 8.13 103206 754850 1081247
18 Dense 214 22x24 2.46 3.27 178502 1348396 1845488
18 Complete 306 26x28 4.89 17.19 344298 2554500 3438265

83

Table 5.15 Impact of defining the grid size with respect to Theorem 8 compared to
Theorem 1 on computational performance, with consistent instances generated over
Reg* (Figure 5.1(a))

Instance Improved Program (Reg*)
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

(Thm.1) Time (s) Time (s)
6 Sparse 5 11x11 0.04 0.04 2839 15618 19633
6 Medium 12 11x11 0.05 0.05 4021 23527 29821
6 Dense 21 11x11 0.06 0.07 5172 33327 41841
6 Complete 30 11x11 0.07 0.09 6883 43687 55516

10 Sparse 13 19x19 0.14 0.15 14469 104044 128817
10 Medium 36 19x19 0.26 0.36 26483 185633 234176
10 Dense 63 19x19 0.41 0.59 38481 279306 351584
10 Complete 90 19x19 0.60 1.54 53539 376039 478127
14 Sparse 27 27x27 0.48 0.55 46102 385087 469485
14 Medium 72 27x27 1.14 1.29 88758 708588 877847
14 Dense 126 27x27 1.78 3.93 136846 1099931 1364851
14 Complete 182 27x27 2.62 28.59 197556 1503896 1889631
18 Sparse 46 35x35 1.48 2.11 116858 1033434 1254558
18 Medium 122 35x35 3.26 39.90 234881 1957741 2414172
18 Dense 214 35x35 5.48 54.17 383608 3093105 3846076
18 Complete 306 35x35 7.64 117.17 552631 4227547 5317571

Table 5.16 Impact of defining the grid size with respect to Theorem 8 compared to
Theorem 1 on computational performance, with inconsistent instances generated over
Reg* (Figure 5.1(a))

Instance Improved Program (Reg*)
Objects Density Constraints Grid Grounding Total Atoms Rules Constraints

(Thm.1) Time (s) Time (s)
6 Sparse 5 11x11 0.04 0.04 2839 15618 19633
6 Medium 12 11x11 0.04 0.05 4021 23527 29821
6 Dense 21 11x11 0.06 0.07 5172 33327 41841
6 Complete 30 11x11 0.08 0.10 6883 43687 55516

10 Sparse 13 19x19 0.13 0.15 14469 104044 128817
10 Medium 36 19x19 0.26 0.36 26483 185633 234176
10 Dense 63 19x19 0.41 0.53 38481 279306 351584
10 Complete 90 19x19 0.59 0.81 53539 376039 478127
14 Sparse 27 27x27 0.49 0.57 46102 385087 469485
14 Medium 72 27x27 1.14 1.48 88758 708588 877847
14 Dense 126 27x27 1.78 2.71 136846 1099931 1364851
14 Complete 182 27x27 2.63 4.25 197556 1503896 1889631
18 Sparse 46 35x35 1.48 2.31 116858 1033434 1254558
18 Medium 122 35x35 3.26 10.70 234881 1957741 2414172
18 Dense 214 35x35 5.47 11.38 383608 3093105 3846076
18 Complete 306 35x35 7.64 10.60 552631 4227547 5317571

84

Table 5.17 Impact of the disjunctive constraints on computation time: Consistent in-
stances with l = 14, Dense networks

Improved Program (Reg*) Improved Program (Reg)
Instance Grid Grounding Total Grid Grounding Total

(Thm.4) Time (s) Time (s) (Thm.4) Time (s) Time (s)
Basic 19x18 0.78 2.13 18x18 0.84 4.01

4x disj2 19x19 0.85 1.86 18x19 0.90 3.67
4x disj4 19x20 0.91 2.17 18x20 0.96 3.63
4x disj8 22x20 1.09 4.73 21x20 1.16 6.10
8x disj2 19x19 0.86 2.12 18x19 0.92 4.09
8x disj4 20x21 1.10 1.94 19x21 1.17 6.52
8x disj8 23x22 1.34 3.32 22x22 1.46 8.11
16x disj2 20x19 0.91 1.10 19x19 1.06 3.73
16x disj4 23x25 1.58 4.03 22x25 1.69 22.90
16x disj8 26x26 2.04 9.16 26x26 2.39 35.60
32x disj2 21x21 1.21 3.22 20x21 1.28 2.01
32x disj4 25x26 2.11 18.08 25x26 2.42 16.09
32x disj8 28x28 3.03 9.04 28x28 3.24 33.09

Table 5.18 Impact of the disjunctive constraints on computation time: Inconsistent in-
stances with l = 14, Dense networks

Improved Program (Reg*) Improved Program (Reg)
Instance Grid Grounding Total Grid Grounding Total

(Thm.4) Time (s) Time (s) (Thm.4) Time (s) Time (s)
Basic 19x17 0.71 1.35 18x17 0.75 1.00

4x disj2 19x18 0.77 1.61 18x18 0.84 1.73
4x disj4 19x19 0.86 2.26 18x19 0.91 2.25
4x disj8 22x19 1.04 1.39 21x19 1.10 2.14
8x disj2 19x19 0.87 3.09 18x19 0.91 9.59
8x disj4 20x21 1.10 11.71 19x21 1.16 17.17
8x disj8 23x22 1.33 18.56 22x22 1.44 67.05
16x disj2 20x19 0.91 6.08 19x19 1.05 13.08
16x disj4 23x25 1.59 29.93 22x25 1.69 40.09
16x disj8 26x26 2.04 70.33 26x26 2.39 153.66
32x disj2 21x21 1.21 12.54 20x21 1.28 18.67
32x disj4 25x26 2.09 45.16 25x26 2.42 112.71
32x disj8 28x28 3.04 160.46 28x28 3.26 311.95

85

Table 5.19 Default CDC constraints: Computation time for problem instances over
Reg* (Figure 5.1(a)).

Instance Consistent Inconsistent
Objects Default Grid Grounding Total Grid Grounding Total

Time (s) Time (s) Time (s) Time (s)
14 No Default 19x17 2.77 7.79 20x16 2.74 3.47
14 Default v1 19x17 3.30 17.20 20x16 3.27 4.55
14 Default v2 19x17 3.62 16.33 20x16 3.55 4.57
14 Default v3 19x18 3.28 6.08 20x17 3.14 6.89
14 Default v4 20x18 3.33 11.41 21x17 3.29 4.60
14 Default v5 19x18 3.62 7.79 20x17 3.46 5.53
14 Default v6 20x18 4.01 70.37 21x17 3.97 4.42
16 No Default 21x20 4.76 32.92 22x19 4.63 7.37
16 Default v1 21x20 6.06 16.52 22x19 5.82 10.41
16 Default v2 21x20 6.67 53.34 22x19 6.37 7.71
16 Default v3 21x20 5.22 11.26 22x19 5.01 16.43
16 Default v4 22x21 6.05 54.06 23x20 5.76 14.01
16 Default v5 21x20 6.04 42.04 22x19 5.83 17.48
16 Default v6 22x21 7.25 635.38 23x20 6.91 8.07

Table 5.20 Default CDC constraints: Computation time for problem instances over
Reg (Figure 5.1(b)).

Instance Consistent Inconsistent
Objects Default Grid Grounding Total Grid Grounding Total

Time (s) Time (s) Time (s) Time (s)
14 No Default 18x17 2.79 6.69 18x16 2.55 16.09
14 Default v1 18x17 3.31 11.76 18x16 3.06 4.35
14 Default v2 18x17 3.66 16.09 18x16 3.32 4.17
14 Default v3 18x18 3.42 20.03 18x17 3.06 3.65
14 Default v4 18x18 3.40 11.23 18x17 3.06 3.53
14 Default v5 18x18 3.80 18.12 18x17 3.36 4.95
14 Default v6 18x18 4.11 51.90 18x17 3.64 4.85
16 No Default 20x19 4.30 34.58 20x18 4.03 26.19
16 Default v1 20x19 5.70 72.36 20x18 4.91 6.85
16 Default v2 20x19 6.19 45.17 20x18 5.69 7.93
16 Default v3 20x19 4.81 48.61 20x18 4.33 9.27
16 Default v4 20x20 5.42 71.15 20x20 5.43 21.63
16 Default v5 20x19 5.69 53.06 20x18 4.93 12.87
16 Default v6 20x20 6.88 347.03 20x20 6.88 8.67

86

Table 5.21 Experimental results for random benchmark instances over Reg*

Instance Consistent Inconsistent
Objects Density Constraints Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 5 0.03 0.04 0.03 0.03
6 Medium 12 - - 0.06 0.07
6 Dense 21 - - 0.09 0.10
6 Complete 30 - - 0.11 0.12
10 Sparse 13 - - 0.14 0.22
10 Medium 36 - - 0.40 0.48
10 Dense 63 - - 0.72 0.87
10 Complete 90 - - 0.99 1.17
14 Sparse 27 - - 0.60 1.02
14 Medium 72 - - 1.82 2.52
14 Dense 126 - - 3.10 4.01
14 Complete 182 - - 4.33 5.67
18 Sparse 46 - - 1.91 6.18
18 Medium 122 - - 5.42 7.85
18 Dense 214 - - 9.25 13.01
18 Complete 306 - - 13.25 19.63

Table 5.22 Experimental results for random benchmark instances over Reg

Instance Consistent Inconsistent
Objects Density Constraints Grounding Total Grounding Total

Time (s) Time (s) Time (s) Time (s)
6 Sparse 5 0.03 0.04 0.03 0.03
6 Medium 12 - - 0.07 0.08
6 Dense 21 - - 0.10 0.12
6 Complete 30 - - 0.13 0.14
10 Sparse 13 - - 0.17 0.24
10 Medium 36 - - 0.50 0.61
10 Dense 63 - - 0.85 0.99
10 Complete 90 - - 1.14 1.39
14 Sparse 27 - - 0.75 1.94
14 Medium 72 - - 2.13 3.04
14 Dense 126 - - 3.51 4.91
14 Complete 182 - - 4.82 6.85
18 Sparse 46 - - 2.36 5.92
18 Medium 122 - - 6.42 10.63
18 Dense 214 - - 10.34 18.62
18 Complete 306 - - 14.48 24.40

87

5.5 Experiments with 3D-NCDC-ASP

We have presented three scenarios from different real-world applications. In each sce-
nario, the 3D-nCDC constraints are obtained from the qualitative directional constraints
specified by the agents. The number of objects and the constraints are reasonable from the
perspectives of the relevant real-world applications. Yet, for the purpose of investigating
the scalability of our method, we have constructed larger scenarios with greater number
of objects and constraints by “replicating” the scenarios multiple times. Instance M1 de-
notes the marine exploration scenario presented in Section 4.7.1, with 5 spatial objects
and 7 3D-nCDC constraints. Instances M2–M4 replicate this instance twice, three times,
and four times, respectively.

We have also constructed some instances to investigate how the computational perfor-
mance changes when the instance becomes inconsistent. Instance B1 denotes the build-
ing design scenario presented in Section 4.7.2, with 6 spatial objects and 6 3D-nCDC
constraints; it is inconsistent. Instance B1′ is a consistent instance obtained from B1 by
dropping the violated 3D-nCDC constraint. Instances B2 and B2′ replicate instances B1
and B1′ twice, respectively. In addition, we have considered instances D1 and D2, that
describe the digital forensics scenarios presented in Section 4.7.3, where the consistency
of the statements of Suspect 1 and 2 are checked, respectively.

We have measured the time and memory consumption for these consistency checking
problem instances, on a workstation with 3.3GHz Intel Xeon W-2155 CPU and 32GB
memory, using CLINGO 5.3.0. The results are shown in Table 5.23.

We can observe from these results that, as the number of objects and the constraints
increase, the computation time and the memory consumption increase.

For example, when the number of spatial variables and the number of 3D-nCDC con-
straints double, and the grid size increases more than 23 times (from M1 to M2, B1
to B2, B1′ to B2′), the number of rules in the ground ASP program (as reported by
CLINGO) increases by almost 20 times. This is not surprising as the number of some
rules (like (4.5)) increases as many as 23×2=16 times. Similarly, when the number of
spatial variables and the number of 3D-nCDC constraints increase three times, and the
grid size increases by at least 33 times (from M1 to M3), the number of rules increases
by almost 115 times. Such increase in the program size also causes an increase in the
computation time and the memory consumption.

We also observe from instances B1, B2 and D2 that the inconsistency of a network is

88

Table 5.23 Experimental evaluations for 3D-nCDC

Instance |V | |C| Grid Size Grounding&Total Time (sec) Memory (GB) #Rules
M1 5 7 9×9×9 0.30 0.34 <0.01 241853
M2 10 14 19×19×19 7.98 10.71 0.77 5050676
M3 15 21 29×29×29 48.82 68.11 4.18 27826869
M4 20 28 39×39×39 175.33 227.19 13.79 91678832
B1 6 6 11×11×11 0.66 477.48 0.13 796379
B1′ 6 5 11×11×11 0.55 3.30 0.07 714772
B2 12 12 23×23×23 16.27 >10000 2.57 15445966
B2′ 12 10 23×23×23 13.85 2174.47 1.48 13884200
D1 16 15 31×31×31 282.64 4401.02 3.87 30577147
D2 13 13 25×25×25 82.40 >10000 1.71 13253185

determined in a longer time. This is not surprising either, since the search space is larger
for these instances.

Note that due to Corollary 4 (obtained from Theorem 10 and 11), our ASP method for
consistency checking in 3D-nCDC is sound and complete. Therefore, in Table 5.23, the
solutions computed by 3D-NCDC-ASP for the benchmark instances are correct.

89

6. RELATED LITERATURE

We discuss the related literature on qualitative reasoning about cardinal directions be-
tween spatial objects in two parts, considering 2D space and 3D space.

6.1 Work Related to NCDC-ASP

Beginning with the seminal work of Allen on Interval Algebra (IA) (Allen, 1983), a mul-
titude of qualitative calculi have been proposed in the literature focusing on different
aspects of space, such as topology (DIR9 (Egenhofer & Herring, 1994), RCC8 (Cohn,
Bennett, Gooday & Gotts, 1997)), direction (cone and projection based (Frank, 1991),
LR (Ligozat, 1993), Double-cross (Freksa, 1992), Dipole (Moratz, Renz & Wolter, 2000),
SV (Lee, Renz & Wolter, 2013), OPRA (Moratz, Dylla & Frommberger, 2005), Rect-
angle Algebra (RA) (Balbiani, Condotta & del Cerro, 1998,1999), Cardinal Directional
Calculus (CDC) (Goyal & Egenhofer, 1997; Skiadopoulos & Koubarakis, 2004)), dis-
tance (Falomir, Museros, Castelló & Gonzalez-Abril, 2013; Guesgen, 2002; Monferrer
& Lobo, 1996; Zimmermann & Freksa, 1996), size (Frank, 1991), and shape (Dorr &
Moratz, 2014; Dugat, Gambarotto & Larvor, 1999; Gottfried, 2005; Museros & Escrig,
2004; Van de Weghe, De Tré, Kuijpers & De Maeyer, 2005). An overview of qualita-
tive spatial and temporal calculus can be found in the surveys (Chen, Cohn, Liu, Wang,
Ouyang & Yu, 2015; Cohn & Renz, 2008; Dylla, Lee, Mossakowski, Schneider, Delden,
Ven & Wolter, 2017). In this thesis, we are concerned with qualitative reasoning about

cardinal directions.

Regarding cardinal directions, researchers have considered various types of spatial ob-
jects, such as

• point objects (Frank, 1991; Lee et al., 2013; Moratz et al., 2005),

• line segments and ternary relations (Freksa, 1992; Moratz, Nebel & Freksa, 2002),

90

and

• extended regions on the plane (Balbiani, Condotta & del Cerro, 1999; Goyal &
Egenhofer, 1997).

In this thesis, we consider spatial objects that are extended regions on the plane.

For qualitative reasoning about directions between extended regions on the plane, two
well-studied calculi are Rectangle Algebra (RA) (Balbiani et al., 1999) and Cardinal Di-
rectional Calculus (Goyal & Egenhofer, 1997; Skiadopoulos & Koubarakis, 2004,2005).
Rectangle Algebra is an extension of Allen’s Interval Algebra to 2-dimension. Objects are
rectangles whose sides are parallel to axes of reference frame. An RA relation is identified
by a pair of interval relation between sides of rectangles in horizontal and vertical axis. In
Direction Relation Matrix (DRM) (Goyal & Egenhofer, 1997), spatial objects are simple
regions; the plane is divided into 9 tiles based on the minimum bounding rectangle of the
reference object, and the direction of the target object relative to the reference object is
represented by its intersection with the tiles in a 3x3 matrix. Based on DRM, a formal
model was adapted for extended objects that may have holes or may be disconnected, by
Skiadopoulos and Koubarakis (Skiadopoulos & Koubarakis, 2004,2005); this extended
model is called Cardinal Directional Calculus. In the thesis, our studies regarding direc-

tions is based on CDC.

In CDC literature, mainly three reasoning tasks have been studied: consistency check-
ing of CDC constraints, inferring the composition of CDC relations, and inferring the
inversion of CDC relations. The most widely studied problem is CDC consistency check-
ing, in particular, to understand the complexity of this problem under different circum-
stances (Liu, 2013; Liu & Li, 2011; Liu et al., 2010; Navarrete, Morales & Sciavicco,
2007; Skiadopoulos & Koubarakis, 2004,2005; Zhang, Liu, Li & Ying, 2008). Although
polynomial time complexity fragments of the problem have been identified (Liu, 2013;
Liu et al., 2010; Navarrete, Morales & Sciavicco, 2007; Zhang, Liu, Li & Ying, 2008)
and algorithms have been presented for them, in general, consistency checking problem
is proven to be NP-complete (Liu, 2013; Liu & Li, 2011; Liu et al., 2010; Skiadopou-
los & Koubarakis, 2005). To study the NP-completeness of CDC consistency checking
problems, the researchers have investigated the use of constraint programming and model
checking. A summary of these complexity results is provided in Table 2.1. Cohn, Li, Liu
& Renz (2014) examine joint satisfaction problem of different calculi. The authors show
that even with basic constraints, joint satisfaction of RCC8 and CDC constraints is NP-
complete. On the other side, joint satisfaction of basic RA and CDC constraints remains
in P. In this thesis, we investigate a general formal framework (called NCDC-ASP) to

solve all variations of CDC consistency checking, with a different approach based on An-

swer Set Programming. We also study inference of missing CDC relations and default

91

reasoning about CDC relations. Note that inference of missing CDC relations provides

solutions to inference of composition/inversion of CDC relations.

Answer Set Programming has been applied to different types of qualitative spatial rea-
soning. For instance, using ASP, the following consistency checking problems are inves-
tigated: consistency checking of constraint networks in IA and RCC8 (Brenton, Faber &
Batsakis, 2016; Li, 2012), path consistency of a network in Trajectory Calculus (Baryan-
nis, Tachmazidis, Batsakis, Antoniou, Alviano, Sellis & Tsai, 2018), consistency check-
ing of constraint networks in RCC5 (Walega, Bhatt & Schultz, 2015; Walega, Schultz
& Bhatt, 2017). Like Brenton et al. (2016) and Baryannis et al. (2018), we utilize the
ASP language ASP-Core-2 and the ASP solver CLINGO ; Walega et al. (2017) utilizes
ASPMT language, and the SMT solver Z3 (de Moura & Bjørner, 2008). Different from

these studies, we consider a qualitative calculus, and extend it with new types of default

constraints whose semantics is provided by means of the nonmonotonic constructs of ASP.

Furthermore, we consider not only consistency checking but also other reasoning prob-

lems mentioned above.

Note that Walega et al (Walega et al., 2015,2017) suggest (in Proposition 5) that “Each
relation of Cardinal Directional Calculus (Frank, 1991) may be defined in ASPMT(QS).”
First of all, recall that CDC as in Frank (1991); Ligozat (1998) is point-based and may
lead to confusions. Consider the following example by Skiadopoulos & Koubarakis
(2004,2005): if we consider the center of Portugal and Spain, then according to the point-
based semantics of CDC “Spain is to the northeast of Portugal”; however, many people
would agree that “northeast” does not accurately describe the relation between Portugal
and Spain. According to Skiadopoulos & Koubarakis (2004,2005), Spain is partially to
the northwest, to the north, to the northeast, to the east, and to the southeast of Portugal.
In this thesis, we consider CDC as in Skiadopoulos & Koubarakis (2004,2005). Second,
Proposition 5 of Walega et al. (2015,2017) is not precise: the authors do not show how
CDC can be defined correctly in ASP. We do present the ASP encodings for every CDC

constraint and prove their correctness.

Another difference of our approach from the ASP-based studies is the use of nonmono-
tonicity to express defaults about directional relations. In the related studies (Schultz,
Bhatt, Suchan & Wałega, 2018; Walega et al., 2017), the authors motivate their use of
ASP based on nonmonotonicity for qualitative spatial reasoning, but in connection with
temporal reasoning, in particular, for the commonsense law of inertia. For instance, due to
the commonsense law of inertia, “typically the trailer remains attached to the car.” Such
a use of nonmonotonicity is widely used in temporal reasoning in ASP. In our studies, we

do not consider temporal reasoning, we focus on qualitative spatial reasoning only, and

thus the type of defaults we use in constraints are about spatial relations, e.g., “the ice

92

cream truck is by default to the north of the playground”. Such constraints have not been

studied in the qualitative calculi mentioned above, and thus they are novel. We call them

default CDC constraints.

Regarding nonmonotonicity in qualitative spatial reasoning in connection with reasoning
about actions, we should also add a remark on Shanahan’s (Shanahan, 1995) use of non-
monotonicity in a setting with incomplete information: when moving an object in a real
valued coordinate system, it is assumed that by default the destination location is empty.
To achieve this, a circumscription policy is used.

6.2 Work Related to 3D-NCDC-ASP

Cardinal directions in 3D have been studied in the literature for blocks, by directly ex-
tending CDC to 3D space (3D CDC) (Chen et al., 2007; Hou et al., 2016), by utilizing
projections of objects into 1D (Pais & Pinto-Ferreira, 2000) or 2D (Li, Lu, Yin & Ma,
2009), or in terms of the 13 relations of Interval Algebra (Allen, 1983) as in the block
algebra (Balbiani, Condotta & del Cerro, 2002). We understand 3D cardinal directions

as in 3D CDC, instead of combinations of lower-dimensional relations that may not be

directional. Different from these studies: (i) instead of blocks, we consider 3D objects of

arbitrary shapes, that may be disconnected, (ii) to incorporate commonsense knowledge

into reasoning, we introduce default 3D constraints to represent default relations. Here
is an example that illustrates the strengths of adopting directly a 3D calculus instead of
projecting it to lower dimensions.

Li et al. (2009) propose to check the consistency of a set of 3D CDC constraints, by
projecting each 3D directional relation onto xy, yz, xz planes, and by expressing each
3D directional relation in terms of three 2D directional relations. With this method, a
basic 3D-nCDC network C can be transformed into three nCDC constraint networks Cxy,
Cyz, Cxz by projecting every basic 3D-nCDC constraint onto the respective plane. If C
is consistent on Reg* , then Cxy, Cyz, Cxz are all consistent. However, the reverse is not
necessarily true.

93

Consider a 3D-nCDC network

C = {u NEA :NWA : SWB : SEB t, v SWA : SEA :NEB :NWB t,

u NEA :NWA : SWA : SEA :NEB :NWB : SWB : SEB v}.

This network is inconsistent on Reg* because u and v occupy 4 tiles of t according to the
first two constraints but the last constraint imposes u to occupy 8 tiles of v.

Figure 6.1 Solution for projected 2D networks

However, the projected 2D networks Cxy, Cyz, Cxz are all consistent. The projection of
C on xy, yz, xz planes are the same:
Cxy=Cyz=Cxz={u NE :NW : SW : SE t, v NE :NW : SW : SE t,

u NE :NW : SW : SE v.
Note that Cxy, Cyz, Cxz are consistent since the instantiation of objects in Figure 6.1 is a
solution to each of the three networks.

Therefore, projection of 3D-nCDC constraints on 2D space causes a loss of information.
This example illustrates why we consider consistency checking directly in 3D, instead of
combining 2D consistency checking on projections of the network on xy, yz, xz planes.

One of the central problems studied in 3D CDC is the consistency checking of a set of 3D
CDC constraints. Polynomial time algorithms have been introduced by Chen et al. (2007)
and Hou et al. (2016) for consistency checking in 3D CDC under the condition that con-
straints are basic (i.e., not disjunctive). Different from these studies: (iii) we study the

consistency checking problem in 3D-nCDC and provide a general solution, but without

restricting it to the tractable cases, (iv) we also consider other forms of reasoning impor-

tant for various real-world applications: nonmonotonic reasoning, explaining inconsis-

tencies, and inferring missing 3D-nCDC relations between objects, and (v) we propose

a formal framework (called 3D-NCDC-ASP) to represent 3D-nCDC constraints and to

reason about these constraints, using ASP.

3D-NCDC-ASP extends our work NCDC-ASP (Izmirlioglu & Erdem, 2018), which
investigates nonmonotonic CDC in 2D using ASP, to 3D. We represent 3D cardinal di-
rections between 3D extended objects, perform consistency checking of 3D-nCDC con-
straints, and generate missing 3D cardinal directional relations between objects. Our

94

Figure 6.2 Another example: The projection of objects A and B on xz plane.

representation of 3D-nCDC constraints is (a) methodologically different, (b) enables gen-
eration of explanations for inconsistencies, and (c) enables a more general definition of
default CDC constraints.

Qualitative directional relations in 3D are used in robotics. For instance, Zampogian-
nis, Yang, Fermüller & Aloimonos (2015) define six directional relations (i.e., left , right ,
front , behind , below, above) between point clouds in 3D by utilizing cones, for the pur-
pose of grounding. However, such related work in robotics do not study reasoning prob-
lems, like consistency checking or inference of (missing) relations (e.g., compositions or
inverses), in the spirit of the well-studied qualitative spatial calculi. The lack of formal
studies on such reasoning problems might lead to incorrect conclusions. For instance,
based on Zampogiannis et al. (2015)’s directional relations, Mota & Sridharan (2018)
further define above as an inverse of below by an ASP rule and rely on it for further in-
ferences. However, according to the definitions of directional relations in these studies, it
is not always correct that, for every two objects A and B, A is below B if and only if B
is above A. Here is a counter example.

Consider two point clouds A and B. Consider also directional relations as defined by
Mota & Sridharan (2018). Suppose that we are given that B is below A, and A is to the
right of B. For simplicity of presentation, the projection of these relations on xz plane
are shown in Figure 6.2. In this example, it will be incorrect to infer that A is above B
according to Mota & Sridharan (2018)’s ASP rule:

holds(above(A,B), I)← holds(below(B,A), I).

This ASP rule (and the ASP program that includes this rule) is not correct from the qual-
itative spatial reasoning point of view, with respect to the definitions of directional rela-
tions (Mota & Sridharan, 2018).

95

This example illustrates that, although introducing qualitative spatial relations may be suf-
ficient for low-level tasks in robotics like grounding, further formal studies are required
about reasoning problems, like consistency checking or inference of relations, for correct
high-level reasoning in robotics. Furthermore, the correctness of formulations over quali-
tative spatial relations also needs to be investigated to prevent unsound inferences. In that
sense, 3D-NCDC-ASP provides a provably correct method and tool for reasoning about
3D cardinal directions, that robotics studies can benefit from.

On the other hand, unlike such related studies in robotics, 3D-NCDC-ASP (1) stems
from a qualitative spatial calculus of 3D CDC, where computational aspects are well-
studied, (2) extends 3D CDC further to 3D-nCDC with nonmonotonic constructs and
considering other automated reasoning problems (like inferring missing relations and ex-
planation generation), (3) is sound and complete (Corollary 4), and (4) provides a com-
putational tool to automate reasoning about 3D cardinal directions. In that sense, 3D-
NCDC-ASP provides a provably correct method and tool that robotics studies can benefit
from.

We have summarized the similarities and differences of our contributions above in com-
parison with the closely related work in qualitative spatial reasoning about 3D cardinal
directional relations (i)–(v), and in applications of ASP to qualitative spatial reasoning,
including our studies about NCDC-ASP (a)–(c). We have also discussed related studies
about qualitative spatial relations in robotics, and the further needs in robotics for quali-
tative spatial reasoning by emphasizing the significance of our contributions (1)–(4).

96

7. PROOFS

We present the proof of the theorems in the following sections.

7.1 Proof of Theorem 1

If Im,n has an answer Yes so does I: Every solution for C over Λm,n is trivially a solution
in Reg* . Suppose that I is has an answer Yes. We show that Im,n has an answer Yes as
well, as follows.

Take any solution (a1,a2, ...,al) ∈Dl of C. We first show that C has a solution (relative
to I) where regions are composed of finite number of closed squares. By definition of
regions in CDC, ai are compact and therefore they are totally bounded. According to
Theorem A.4 of Rudin (Rudin, 1991, page 393), given any η > 0, every ai has a finite
cover Ai={aji}

h(i)
j=1 ∈ D where h(i) ∈ N, aji ∈ D are closed squares of side η and ai ⊆⋃

σ∈Ai
σ. We insert a sequence of closed squares into each Ai whose sides are tending

to zero, in order to obtain a Vitali cover Âi. Namely, for any x ∈ ai and η > 0, there is
a square in Âi containing x whose diameter is less than η. Then according to Corollary
7.18 of of Wheeden and Zygmund (Wheeden, 2015, page 143), for an arbitrary ε > 0, a
finite collection of disjoint squares {s1, ..., st(i)} from Âi can be found which satisfy the
outer measure |ai \∪sj |e < ε for each i. Hence, the measure approaches to 0 and we can
cover almost all points in ai with a finite union of non-overlapping closed squares in R2.
Since regions with zero measure do not change CDC relations, the approximated regions
āi=

⋃
sj satisfy constraints in C as well.

Now we prove that I attains a solution on a grid of size (2|V | − 1)× (2|V | − 1). Note
that we allow regions to be disconnected. Since C is consistent, there exists order-
ing of bounds of regions on x and y axis which obeys CDC constraints in C. Let
Ox={infx(ai),supx(ai) | 1≤ i≤ l} and Oy={infy(ai),supy(ai) | 1≤ i≤ l} be such or-
dered lists of infimum and supremums over respective axes. We construct a grid in a way

97

that each index on its vertical axis corresponds to a distinct element in Oy and indices are
in the same order as elements in Oy. In case some elements in Oy coincide, same index
on the grid is allocated for them. Horizontal axis of the grid is organized in an analogous
fashion.

We show that (a1,a2, ...,al) can be instituted on this grid as follows. Let us first examine
Oy and the assignment of cells to spatial variables over vertical axis. If a constraint in C
impose a spatial object ai to occupy some parts of the top tile (i.e., {NW, N, NE}) of
another object aj , we assign the grid cells along the row located above supy(aj) to ai.
Likewise, for a constraint in C imposing ai to occupy some parts of the bottom tile (i.e.,
{SW, S, SE}) of another object aj , we assign the grid cells along the row located below
infy(aj) to ai. In case a constraint in C imposes ai to occupy vertically some parts of the
middle tile (i.e., {W, O, E}) of another object aj , then the object ai will be located on
the grid in a manner that its lower bound is the maximum of {infy(ai), infy(aj)}, and its
upper bound is the minimum of {supy(ai), supy(aj)}. A similar argument can be done
for the horizontal axis. Then, for a solution (a1,a2, ...,al): Since there can be at most 2|V |
distinct elements in Ox and Oy, the grid has maximum 2|V |−1 rows and columns.

Remark 1. In our paper (Izmirlioglu & Erdem, 2018), our proof consists of two parts:
We first show that each region can be written as countably infinite number of closed
squares, then we take finite number of closed squares and show that each region can be
approximated by finite number of closed squares. Based on the feedback provided to us
by mathematician Prof. Nihat Gökhan Göğüş, the proof is simplified as presented above:
The proof above directly shows that every region can be approximated by a finite union
of closed squares, using totally boundedness and covering.

Remark 2. Note that Theorem 1 is dependent on the number of variables, therefore,
it is applicable to CDC networks that include not only basic CDC constraints but also
disjunctive CDC constraints.

98

7.2 Proof of Theorem 2

The proof of Theorem 2 follows from Lemmas 1 and 2 below.

Let Z be an answer set for Πm,n. For every variable v ∈ V , let us denote by Z(v) the
assignment of grid cells (x,y) to v obtained from occ(v,x,y) in Z.

Lemma 1 For a discretized version Im,n=(C,V,Dm,n,Q) of a consistency checking

problem with V ={v1, ...,vl}, where C consists of basic CDC constraints and may

be incomplete, let Z be an answer set for the ASP program Πm,n. Then the l-tuple

(Z(v1),Z(v2), ...,Z(vl)) is a solution for Im,n.

Let (a1,a2, ...,al) ∈ Dl
m,n be a solution for Im,n=(C,V,Dm,n,Q). We denote by

Occm,n(ai) the set of atoms of the form occ(ai,x,y) where (x,y) ∈ Λm,n is in ai. Re-
call that Om,n denotes the set of all atoms of the form occ(u,x,y) where u ∈ V and
(x,y) ∈ Λm,n.

Lemma 2 For a discretized version Im,n=(C,V,Dm,n,Q) of a consistency checking

problem with V ={v1, ...,vl}, where C consists of basic CDC constraints and may be

incomplete, let X = (a1,a2, ...,al) ∈Dl
m,n be a solution for Im,n. Then the ASP program

Πm,n has a unique answer set Z where Z ∩Om,n = ∪li=1Occm,n(ai).

Proof of Theorem 2. Let Im,n=(C,V,Dm,n,Q) be a discretized consistency checking
problem, where C consists of basic CDC constraints and may be incomplete.

Let Z be an answer set for the ASP program Πm,n. Recall that, for every variable v ∈ V ,
let us denote by Z(v) the assignment of grid cells (x,y) to v obtained from occ(v,x,y) in
Z. Then by Lemma 1, the l-tuple (Z(v1),Z(v2), ...,Z(vl)) is a solution for Im,n.

Let X be an assignment X = (a1,a2, ...,al) of spatial objects in Dm,n to variables u in
V . Recall that we denote by Occm,n(ai) the set of atoms of the form occ(ai,x,y) where
(x,y)∈Λm,n is in ai. IfX is a solution of Im,n then by Lemma 2, the ASP program Πm,n

has a unique answer set Z where Z ∩Om,n = ∪li=1Occm,n(ai).

The proofs of Lemmas 1 and 2 use the following theorems.

Splitting Set Theorem (Erdogan & Lifschitz, 2004). Let U be a splitting set for a
program Π. A consistent set of literals is an answer set for Π if it can be written as X ∪Y
where X is an answer set for bU (Π) and Y is an answer set for eU (Π\ bU (Π),X).

Intuitively, the bottom part bU (Π) of a program Π consists of the rules whose literals are
99

contained in the splitting set U . Once an answer set X for the bottom part is computed,
it is “propagated” to the rest of the program (called the top part) and the answer set Y is
computed for the top part. The theorem ensures that X ∪Y is an answer set for the whole
program.

Proposition 2 of Erdogan & Lifschitz (2004). For any program Π and formula F , a set
Z of literals is an answer set for Π∪{← F} if Z is an answer set for Π and does not
satisfy F .

Intuitively, Proposition 2 of Erdogan & Lifschitz (2004) expresses that adding constraints
to an ASP program eliminates its answer sets that violate these constraints.

Proof of Lemma 1. Let Π′m,n be the program obtained from Πm,n by dropping the
constraints like (3.7) and (3.8). We apply the splitting set theorem (Erdogan & Lifschitz,
2004) to Π′m,n. Take the splitting set U as the set of atoms of the form rel(u,v,R) where
R ∈ δ for u δ v ∈ C, and of the form occ(u,x,y) where u ∈ V and (x,y) ∈ Λm,n. Then
an answer set Y1 for the bottom part (3.3)∪ (3.4)∪ (3.5) describes the CDC constraints in
C and possible assignments grid cells in Λm,n to variables u ∈ V . The answer set Y2 for
the top part (i.e., the rules (3.6) evaluated with respect to Y1) defines mbrm,n(u) for these
variables. Then Y1∪Y2 is an answer set for Π′m,n.

With Proposition 2 of Erdogan & Lifschitz (2004), by adding constraints like (3.7)
and (3.8) for each CDC relation δ, the answer sets for Π′m,n that do not satisfy (C1)
and (C2) are eliminated. Then the answer sets Z for Πm,n characterize assignments
Z(v) of regions to every variable in v∈V that satisfy (C1) and (C2). Thus the l-tuples
(Z(v1),Z(v2), ...,Z(vl)) are solutions for Im,n.

Proof of Lemma 2. Every solution X = (a1,a2, ...,al) for Im,n=(C,V,Dm,n,Q)
describes possible assignments of grid cells of Λm,n to variables vi ∈ V . Then
∪li=1Occm,n(ai) is included in some answer set Z for the program Π′m,n obtained from
Πm,n by dropping constraints like (3.7) and (3.8).

Every pair (ai,aj) in X satisfies conditions (C1) and (C2). Then, the union of atoms
Occm,n(ai) also satisfy the constraints like (3.7) and (3.8). Then, by Proposition 2 of Er-
dogan & Lifschitz (2004), Z is an answer set for Πm,n as well.

To prove uniqueness of representation, suppose that another answer set Z ′ 6= Z for Πm,n

also characterizes X . Then, ∪li=1Occm,n(ai) is included in Z ′ as well. Since Z ′ 6= Z,
there exists an atom of the form occ(u,x,y) in Z ′ \Z or in Z \Z ′. Without loss of
generality, assume the former. Then, there is a grid cell (x,y) assigned to a variable
u ∈ V according to Z ′ but not to Z. But then Z ′ do not characterize X .

100

7.3 Proof of Theorem 3

The proof of Theorem 3 uses Proposition 4 of Erdem & Lifschitz (2003) to show that
the definition of connectedness i.e., rules (3.9) is correct, and Proposition 3 of Erdogan
& Lifschitz (2004) to show that adding definition of connectedness to the program Πm,n

extends its answer sets conservatively.

Let Def be the recursive definition of the transitive closure tc of a binary relation p in
ASP:

tc(x,y)← p(x,y)
tc(x,y)← p(x,v), tc(v,y)

Proposition 4 of Erdem & Lifschitz (2003). Let Π be a program that does not contain
atoms of the form tc(x,y) in the heads of rules. If X is an answer set for Π∪Def then
{〈x,y〉 : tc(x,y) ∈X} is the transitive closure of {〈x,y〉 : p(x,y) ∈X}.

Proposition 3 of Erdogan & Lifschitz (2004). Let Π1 be a program and Q be a set of
atoms that do not occur in Π1. Let Π2 be a program that consists of the rules of the form

q← F

where q ∈Q and F does not contain any element of Q in the scope of negation as failure.
Then Z 7→ Z \Q is a 1-1 correspondence between the answer sets for Π1 ∪Π2 and the
answer sets for Π1.

Proof of Theorem 3. Recall that the answer sets for Πm,n correctly characterize the
solutions for Im,n by Theorem 2. Due to Proposition 4 of Erdem & Lifschitz (2003), for
every variable u ∈ V , the rules (3.9) that define the transitive closure of the adjacency
relation of the grid cells in region u is correct. Therefore, the rules (3.9) correctly define
the connectedness of u in these solutions.

By Proposition 3 of Erdogan & Lifschitz (2004), adding the rules (3.9) (for every variable
u ∈ V) to Πm,n conservatively extends the answer sets for Πm,n by a correct definition of
connectedness.

Then, by Proposition 2 of Erdogan & Lifschitz (2004), for every variable u ∈ V , adding
the constraints (3.10) to Πm,n ∪ (3.9) ensures the connectedness of cells occupied by the
same object u.

101

7.4 Proof of Theorem 4

Consider a CDC consistency checking problem I=(Cd∪Cb,V,D,Q) where D ⊆ Reg* ,
Cd is a set of disjunctive CDC constraints, and Cb is a set of basic CDC constraints.
Furthermore, C=Cd∪Cb may be incomplete. Recall that, in the presence of disjunctive
CDC constraints, consistency of a CDC constraint networkC is defined as follows. Let Ĉd
be a basic CDC network obtained from Cd by replacing every disjunctive CDC constraint
vi δij vj in Cd by some basic CDC constraint vi δ′ij vj where δ′ij ∈ δij . Then, a CDC
network C is consistent if there exists a basic CDC network Ĉd obtained from Cd such
that Ĉd∪Cb is consistent.

Thanks to Theorem 1, the consistency checking problem I has the same answer as the
discretized consistency checking problem Im,n where m,n≥2|V |−1. On the other hand,
the program Πm,n (described in Section 3.3) contains rules (3.3), (3.4) that describe the
basic CDC constraints in Cb but not the constraints in Ĉd.

Based on this observation, we define the given disjunctive CDC constraints in Cd and
then construct the basic CDC constraints in Ĉd. The following lemma shows that the
rules (3.11)∪ (3.12)∪ (3.13) correctly describe Ĉd.

Lemma 3 For every answer set for (3.11)∪(3.12)∪(3.13), atoms of the form rel(u,v,R)
describe the basic CDC constraints u δi v obtained from the disjunctive CDC constraints

u {δ1, δ2, ..., δo} v in Cd according to the definition for consistency checking of disjunctive

CDC constraints.

Proof of Theorem 4. Let m,n≥2|V |−1 and let Im,n=(Cd ∪Cb,V,Dm,n,Q) be a dis-
cretized consistency checking problem where D ⊆ Reg* , Cd is a set of disjunctive CDC
constraints, and Cb is a set of basic CDC constraints. Furthermore, C=Cd∪Cb may be
incomplete.

Due to the definition of consistency of disjunctive CDC constraints, I=(Cd∪Cb,V,D,Q)
returns Yes if and only if Î=(Ĉd∪Cb,V,D,Q) returns Yes for some basic CDC constraints
Ĉd obtained from Cd. Thanks to Theorem 1, the consistency checking problem I has the
same answer as the discretized consistency checking problem Im,n. Also, for some basic
CDC network Ĉd ∪Cb, the consistency checking problem Î has the same answer as the
discretized consistency checking problem Îm,n=(Ĉd ∪Cb,V,Dm,n,Q). Therefore, for
some Ĉd obtained from Cd, the problems Im,n=(Cd∪Cb,V,Dm,n,Q) and Îm,n=(Ĉd∪
Cb,V,Dm,n,Q) have the same answers.

102

By Lemma 3, the rules (3.11)∪ (3.12)∪ (3.13) describe the new basic CDC constraints in
Ĉd. Note that the basic constraints in Cb are described by the rules (3.3). By Proposition 3
of Erdogan & Lifschitz (2004), the rules (3.11)∪ (3.12)∪ (3.13)∪ (3.3) describe the the
basic CDC constraints in Ĉd∪Cb.

The program Πm,n is described in Section 3.3 and includes rules (3.3). The program Πv
m,n

is obtained from Πm,n by augmenting it with the rules (3.11), (3.12) and (3.13). Then
the program Πv

m,n essentially constructs some set Ĉd of basic CDC constraints from Cd,
unites these constraints with Cb described by rules (3.3), and then checks the consistency
of all these basic CDC constraints.

Indeed, let us apply the Splitting Set theorem on Πv
m,n with a splitting set that consists of

atoms of the form disjrel(u,v, i,R),chosen(u,v, i), rel(u,v,R). By Lemma 3 and Propo-
sition 3 of Erdogan & Lifschitz (2004), the bottom part (3.11)∪ (3.12)∪ (3.13)∪ (3.3)
describes the basic CDC network Ĉd∪Cb. Then, the top part Πm,n\(3.3) correctly checks
for the consistency of the basic CDC constraints Ĉd∪Cb, thanks to Theorem 2.

Proof of Lemma 3. We apply the Splitting Set theorem to Π=(3.11) ∪ (3.12) ∪
(3.13), with a splitting set U that consists of atoms of the form disjrel(u,v, i,R) and
chosen(u,v, i). Then, bU (Π)=(3.11)∪ (3.12).

For every answer set X for bU (Π) the following hold:

• For every pair of spatial objects u,v ∈ V , there is a disjunctive CDC constraint
u {δ1, δ2, ..., δo} v in C if and only if {disjrel(u,v, i,R) :R ∈ δi,1≤ i≤o} ⊂X .

• For every disjunctive CDC constraint u {δ1, δ2, ..., δo} v in C, there exists exactly
one atom of the form chosen(u,v, i) in X describing the basic CDC relation δi is
chosen for u and v.

Furthermore, for every answer set Y of eU (Π\ bU (Π),X) the following holds:

• The set {rel(u,v,R) | chosen(u,v, i) ∈ X, disjrel(u,v, i,R) ∈
X, u {δ1, δ2, ..., δo} v ∈ C, R ∈ δi} describes the basic CDC constraint
u δi v.

103

7.5 Proof of Theorem 5

Let m,n≥2|V |−1, let Im,n=(C,V,Dm,n,Q) be a discretized CDC checking problem
where D ⊆ Reg* and C is the union of a set of disjunctive CDC constraints and a set of
basic CDC constraints. Furthermore, C may be incomplete.

Recall that Πv,+
m,n is the program obtained from Πv

m,n by adding the rules (3.14), by delet-
ing the constraints (3.8) and similar constraints for other single-tile relations, and by
adding the constraints (3.15)∪ (3.16) and similar constraints for other single-tile rela-
tions. The added rules infer missing CDC relations.

Atoms of the form inferrel(u,v,R) do not occur in the program Πv′
m,n obtained from Πv

m,n

by deleting the constraints (3.8) for the relationN and similar constraints for other single-
tile relations. Let U be the splitting set that consists of all atoms that occur in Πv′

m,n. When
the Splitting Set Theorem is applied to Πv,+

m,n, the bottom part bU (Πv,+
m,n) is the program

Πv′
m,n.

Note that the program Πv′
m,n includes the constraints (3.7) for the relation N and similar

constraints for the other single-tile relations, and does ensure the condition (C1) for every
CDC constraint in C. Therefore, answer sets for the bottom part Πv′

m,n

(a) describe assignments of spatial objects in Dm,n to variables u in V , and

(b) ensure that these assignments satisfy condition (C1) for every CDC constraint given
in C.

The top part Πv,+
m,n \ bU (Πv,+

m,n) is the program that consists of the rules (3.14), the con-
straints (3.15)∪ (3.16) for the single-tile relation N , and similar constraints for other
single-tile relations. For an answer set Z ′ for the bottom part, the answer sets for the top
part evaluated with respect to Z ′

(c) describe the inferred CDC relations for spatial objects for u and v for which there
is no CDC constraint u δ v in C, i.e., there is no atom of the form rel(u,v,R) in Z ′

(due to rules (3.14)),

(d) ensure condition (C1) for the inferred CDC constraints (due to constraints (3.15)
for relation N , and similar constraints for the other single-tile relations),

(e) ensure condition (C2) for all CDC constraints (due to constraints (3.16) for relation
N , and similar constraints for the other single-tile relations).

By the Splitting Set Theorem, every answer set for Πv,+
m,n is the union of an answer set Z ′

104

Figure 7.1 Cases 1–4 in the proof of Theorem 6.

for the bottom part and an answer set Z for the top part evaluated relative to Z ′. Therefore,
Z ∪Z ′ satisfies (a)–(e).

7.6 Proof of Theorem 6

It suffices to show that if the answer of I is Yes, then the answer of Im,n is also Yes.
Assume that C is consistent and the answer of I is Yes. We can construct a solution on
a grid whose size is m× n, where m≥∑

u∈V Slotx(u,C) and n≥∑
u∈V Sloty(u,C).

Intuitively, the extent of the grid on an axis that allows feasible instantiation of objects, is
greater than or equal to the sum of the grid cells required for each object on that axis.

Let us show that the extent of the grid on y axis is bounded from below by
n≥∑

u∈V Sloty(u,C). A similar proof applies for the x axis.

Part 1: Consider the following cases for every spatial object u, with respect to the CDC
constraints in C. In each case, we identify the minimum number of grid cells required
vertically (i.e., in different rows), for an instantiation of u (with a region in these grid
cells) to satisfy the relevant constraints in C.

Case 1: If there exists a CDC constraint in C that imposes an object u to occupy
parts of a top-tile (i.e., NW, N, NE) and a bottom-tile (i.e., SW, S, SE) of another
object v, then u requires at least 2 non-adjacent vertically-oriented grid cells (i.e.,
two rows) as depicted in Figure 7.1.

Note that if u is also a reference object in another CDC constraint inC, an additional
vertically-oriented grid cell is not needed for u for the following reason: The grid
cells allocated for u as a target object also serve as a reference object.

Case 2: If there exists a CDC constraint in C that imposes (i) an object u to occupy
parts of a top-tile (i.e., NW, N, NE) and a vertically middle-tile (i.e., E, W, O) of
another object v, and (ii) the object v to occupy parts of a bottom-tile (i.e., SW, S,

105

SE) and a vertically middle-tile (i.e., E, W, O) of u, then at least 3 vertically-oriented
grid cells are compulsory to instantiate u and v: each object occupies two of these
3 vertically-oriented grid cells as depicted in Figure 7.1. Therefore, without loss of
generality, we can say that u requires at least 2 vertically-oriented grid cells (i.e.,
two rows).

Note that if u is also a reference object in another CDC constraint inC, an additional
vertically-oriented grid cell is not needed for u due to the following reason: The grid
cells allocated for u as a target object also serve as a reference object.

Case 3: If there does not exist a constraint in C that imposes the conditions in
Cases 1 and 2, and if there exists a CDC constraint in C that imposes an object u
to occupy parts of either a top-tile (i.e., NW, N, NE) or a bottom-tile (i.e., SW, S,
SE) of another object, then 1 vertically-oriented grid cell (i.e., one row) is required
to realize u as depicted in Figure 7.1.

Note that if u is also a reference object in another CDC constraint inC, an additional
vertically-oriented grid cell is not needed for u due to the following reason: The grid
cells allocated for u as a target object also serve as a reference object.

Case 4: If there does not exist a constraint in C that imposes the conditions in
Cases 1–3, and constraints in C impose u to be in a solely vertically middle-tile of
other objects, and u is not a reference object in any constraint in C, then u does not
demand a dedicated cell for itself (Figure 7.1).

Case 5: If the Cases 1–4 do not hold, and if u acts as a reference object in one or
more constraint in C, i.e., u ∈ Ref(C), then it requires 1 vertically-oriented grid
cell (i.e., one row) so that the target objects can position themselves accordingly.

Case 6: If u is neither a target nor a reference object of any CDC constraint in C,
then u does not have to be instantiated.

Note that Cases 1–4 describe the cases where u is a target object; and in Case 5, u is a
reference object.

Note also that Cases 1–6 are covered by the cases of the definition of Sloty(u,C): Case 1
is the first case of Sloty(u,C), Case 2 is the second case of Sloty(u,C), Cases 4 and 6 are
the third case of Sloty(u,C), and Cases 3 and 5 are the fourth case of Sloty(u,C). Then
ly(u) = Sloty(u,C). Then, the extent n of y axis is the sum of the lower bounds ly(u) for
all spatial objects u that appear in some constraint in C, i.e., n≥∑

u∈V Sloty(u,C).

Part 2: With respect to Cases 1–6 above, for each spatial variable u, we can identify a
lower bound ly(u) on the number of vertically-oriented grid cells that are required to in-

106

stantiate u to satisfy all the constraints that mention u: for each constraint c inC that men-
tions u, identify the minimum number my(c,u) of vertically-oriented grid cells that are
required to instantiate u to satisfy c as described in each case; then ly(u) is the maximum
of my(c,u) for all such c. Note that the largest value my(c,u) can take is 2. Therefore,
for every spatial variable u, if there exist different constraints in C that mention u and
where distinct cases of Part 1 apply, u does not necessitate more than 2 vertical grid cells
to instantiate, to satisfy all the constraints that mention u. Let’s prove this claim.

For every spatial variable u, let us form three sets of variables w with respect to y-axis
that appear in a CDC constraint in C as a reference object for u:

(i) u occupies top-tile(s) of another object w:

Top(u)={w ∈ V | (uδw) ∈ C, δ∩{NW, N, NE} 6= φ}

• (ii) u occupies vertically middle tile(s) of object w:

Middlev(u)={w ∈ V | (uδw) ∈ C, δ∩{W, O, E} 6= φ}

• (iii) u occupies bottom tile(s) of object w:

Bottom(u)={w ∈ V | (uδw) ∈ C, δ∩{SW, S, SE} 6= φ}

The first set of variables represents objects w, relative to which u occupies some grid cells
in their top tile(s) according to constraints inC. The second set represents objects, relative
to which u occupies some grid cells that are aligned in the same row as their middle tile(s)
according to constraints in C. The third set of variables represents objects w, relative to
which u occupies some grid cells in their bottom tile(s) according to constraints in C.

Suppose that u requires at least 2 non-adjacent vertically-oriented grid cells (according to
Cases 1 and 2). Then, u can be assigned to some cells in a row that is immediately above
all the cells assigned to its reference objects in Top(u), and u can be assigned to some
cells in a row that is immediately below all the cells assigned to its reference objects in
Bottom(u).

Suppose that u demands at least 1 non-adjacent vertically-oriented grid cells (according to
Cases 3 and 5). Then, u can be assigned to some cells in a single row at a position that is
both above its reference objects in Top(u) and below its reference objects in Bottom(u).

Therefore, maximum 2 vertically-oriented grid cells are sufficient to instantiate the object
u.

107

7.7 Proof of Theorem 7

Let {V1, ...,Vp} be a partition of V subject to C.

Left-to-Right. Suppose that the answer of I=(C,V,D,Q) is Yes. Then there exists an
instantiation of regions on the plane to the variables that appear in C, such that all con-
straints in C hold. Then, for every Vi, the relevant constraints Ci are satisfied by this
instantiation restricted to Vi.

Right-to-Left. Suppose that, every Ii has an affirmative answer Yes. Take any Ii. Then
there exists an instantiation Ai of regions on the plane to the variables in Vi, such that all
constraints in Ci hold. Since every Vi is distinct, then the combination of Ai will give an
instantiation for all the variables in V . Moreover, since each constraint of C is involved
in a unique Ci, all the constraints in C hold with respect to the combined instantiation.

7.8 Proof of Theorem 8

Thanks to Theorem 7, the lower bound on the size m×n of a grid required to solve the
largest subproblem Ii of consistency checking gets as small as

m≥maxVi

∑
u∈Vi

Slotx(u,Ci)

and
n≥maxVi

∑
u∈Vi

Sloty(u,Ci).

Thanks to Theorem 7, the consistency checking of eachCi is independent from the others.
Then, the lower bounds on the grid size for C also reduces to the same value.

108

7.9 Proof of Theorem 9

Consider two cases: C is an incomplete basic 3D-nCDC network, or C includes disjunc-
tive 3D-nCDC constraints.

Case 1: C is an incomplete basic 3D-nCDC network. We prove NP-membership and
NP-hardness of I=(C,V,D,Q) as follows.

NP-membership: C includes at most |V |(|V | − 1) constraints. Testing a 3D-nCDC
constraint between a pair of objects takes O(1) time. So, given a candidate solution
A= (ai)li=1 of I , it takes O(|V |2) time to verify all constraints in C. Hence, I∈NP .

NP-hardness: We reduce the 2D CDC consistency checking problem to the 3D CDC
consistency checking problem.

Note that, according to Theorem 5.8 of Liu (2013), consistency checking of an incomplete
basic network of 2D CDC constraints over the set of (possibly) disconnected objects in
R2 is NP-complete.

Take an arbitrary instance I ′=(C ′,V,D′,Q′) of 2D CDC consistency checking problem,
where the network C ′ consists of basic 2D CDC constraints, D′ is the set of (possibly)
disconnected objects in R2, and Q′ is the set of all basic 2D CDC relations. We reduce
I ′ to the following specific instance I=(C,V,D,Q) of 3D CDC consistency checking
problem. The set V of spatial variables stays the same. For every basic 2D CDC constraint
u R1 : ... :Rk v in C ′, we insert the corresponding basic 3D-nCDC constraint u RM1 : ... :
RMk v into C. Namely, the 2D constraints are assumed to be on the middle level of z axis
and thereby transformed into 3D constraints. Since a basic constraint in C ′ can have at
most 9 tiles, this reduction takes O(|C ′|) time, which is polynomial in the input size.

Next, we prove that this reduction is correct. For this, we show that the answer of I ′

is Yes if and only if the answer of I is Yes. First, suppose the answer of I ′ is Yes and
there exists a solution A′ = (a′i)li=1 of I ′. That is, a′i,a

′
j∈A′ satisfies the basic 2D CDC

constraint ui Rij,1 : ... : Rij,k uj in C ′. Using A′, we construct another instantiation
A=(ai)li=1 which is a solution of I: We stretch every planar object a′i∈A′ along the
z dimension by an amount κ>0 in a manner that all objects accommodate the range [0,κ]
on z axis. With this method, we create 3D objects A=(ai)li=1 from 2D objects (a′i)li=1
such that the projection of each ai on the xy plane is equal to a′i, (1≤ i≤ l). Since all
objects in A are aligned on the z axis, a pair (ai,aj) in A satisfies the 3D CDC constraint
ui R

M
ij,1 : ... :RMij,k uj in C. Thus, A satisfies C and the answer of I is Yes. For the reverse

109

direction, suppose that the answer of I is Yes and there exists a solution A = (ai)li=1 of
I . Then A satisfies every 3D CDC constraint ui RMij,1 : ... : RMij,k uj in C. We construct
a solution A′=(a′i)li=1 of I ′ using A: we project each ai∈A, 1≤ i≤ l onto xy plane and
designate the projection as a planar object a′i. This way, a 2D instantiation A′ = (a′i)li=1
is formed. Note that A′ satisfies every 2D CDC constraint ui Rij,1 : ... : Rij,k uj in C ′ by
construction. Consequently, A′ is a solution of I ′ and the answer of I ′ is Yes. This means
I ′ and I have the same answers, and thus concludes the proof of NP-hardness of I .

Case 2: C includes disjunctive 3D-nCDC constraints. The proof of NP-membership of I
is the same as the first case. To prove NP-hardness, we reduce the 2D CDC consistency
checking problem to the 3D CDC consistency checking problem.

Note that consistency checking of a network of (possibly disjunctive) 2D CDC constraints
over the set of (possibly) disconnected objects in R2 is NP-complete by Theorem 6 of
Skiadopoulos & Koubarakis (2005).

Take an arbitrary instance I ′=(C ′,V,D′,Q′) of 2D CDC consistency checking problem,
where C ′ consists of basic and disjunctive 2D CDC constraints, D′ is the set of (possibly)
disconnected objects in R2, and Q′ is the set of all 2D CDC relations. We reduce I ′ to the
following specific instance I=(C,V,D,Q) of 3D CDC consistency checking problem.
For a basic 2D CDC constraint u R1 : ... : Rk v in C ′, we insert the basic 3D-nCDC
constraint u RM1 : ... :RMk v into C. For a disjunctive 2D CDC constraint u {δ1, ..., δk} v,
we mark the tiles of every disjunct (basic relation) δi on the middle level of z axis and
insert the new disjunctive 3D-nCDC constraint into C. Since a disjunctive constraint in
C ′ can have at most 29−1 disjuncts and a basic 2D CDC relation can have at most 9 tiles,
running time of this reduction is O(|C ′|), which is polynomial in the input size.

Next, we prove the correctness of this reduction. Suppose that the answer of I ′ is Yes
and there exists a solution A′ = (a′i)li=1 of I ′. The instantiation A′ satisfies every basic
or disjunctive 2D CDC constraint in C ′. We construct an instantiation A=(ai)li=1 of 3D
objects, similar to the construction in the first part of the theorem. Each planar object
a′i∈A′ is elongated along the z dimension by an amount κ>0 to form a 3D object ai
which accommodates the range [0,κ] on z axis. Note that a′i,a

′
j∈A′ satisfies a basic

2D CDC constraint or a disjunct of a disjunctive constraint ui Rij,1 : ... : Rij,k uj in C ′.
Therefore, the pair ai,aj in A satisfies the corresponding basic 3D-nCDC constraint or a
disjunct ui RMij,1 : ... :RMij,k uj in C. Thus A satisfies C and the answer of I is Yes.

For the reverse direction, suppose that the answer of I is Yes and there exists a solution
A= (ai)li=1 of I . Note that A satisfies every basic or disjunctive 3D CDC constraint in C.
A solution A′=(a′i)li=1 of I ′ is formed using A as follows. Each object ai∈A, 1≤ i≤ l
is projected onto xy plane and the projection is designated as a planar object a′i, similar

110

to the first part. Since ai,aj∈A satisfies a basic 3D-nCDC constraint or a disjunct of
a disjunctive constraint ui RMij,1 : ... : RMij,k uj in C, the pair (a′i,a′j) in A′ satisfies the
corresponding basic 2D CDC constraint or a disjunct ui Rij,1 : ... : Rij,k uj in C ′. This
way, a 2D instantiation A′ = (a′i)li=1 that satisfies C ′ is constructed. Hence, the answer
of I ′ is Yes. We conclude that answers of I ′ and I are the same, and thus the proof of
NP-hardness of I .

7.10 Proof of Theorem 10

We show that the answer of I=(C,V,D,Q) is Yes if and only if the answer of
Im,n,p=(C,V,Dm,n,p,Q), m,n,p≥2|V |−1 is Yes.

Right to left. Suppose that the answer of the discretized problem Im,n,p is Yes. Using a
solution A′ = (a′i)li=1 of Im,n,p, we construct a solution A = (ai)li=1 of I as follows: The
origin of the prism (3-dimensional grid) is viewed as the origin of R3, grid cells will be
converted into closed cubes in R3 and the object ai on the Euclidean space is equal to
the union of the cubes occupied by a′i. By construction, A = (ai)li=1 satisfies C and the
answer of I is Yes.

Left to right. Suppose that the answer of I is Yes. Take any solution A = (ai)li=1 of I in
Reg* . Note that objects might be disconnected. A satisfies basic 3D-nCDC constraints
in C. Since objects are compact sets in R3, they are bounded.

We identify axes-aligned minimum bounding box of every object inA and then order their
bounds. Let Bx=(infx(ai),supx(ai) : 1≤ i≤ l), By=(infy(ai),supy(ai) : 1≤ i≤ l),
Bz=(infz(ai),supz(ai) : 1≤ i≤ l) be the ascending ordered list of infimum and supre-
mums of these objects over the respective axis. Note that the numbers in an ordered list
may not be all distinct because the infimum/supremum of an object might coincide with
the infimum/supremum of another object in A. These bounds in Bx, By, Bz partition the
Euclidean space into cubic zones.

We build a 3-dimensional grid (prism) of size m×n× p using the zones created by Bx,
By, Bz, as below. The cubic zones whose coordinates are less than the minimum element
or greater than the maximum element of the respective list (Bx, By or Bz) are omitted so
that we restrict attention to only the zones which might be occupied by some object in A.

We will construct an instantiation A′ = (a′i)li=1 on the prism which satisfies C. The in-

111

dices of the prism on x axis correspond to the respective element of Bx in ascending
order, namely ith index of the prism on x axis is the ith element of Bx. In case infimum/-
supremum of multiple objects coincide, they correspond to the same index on the prism.
An analogous indexing scheme is applied to the y and z axes. Observe that there is a 1-1
correspondence between the abovementioned cubic zones and the grid cells.

We form discrete objects (a′i)li=1 over the prism as follows: Objects on the prism are set
of cells and they can be disconnected. If an object ai occupies a positive volume on a
cubic zone, we assign the corresponding grid cell to a′i. The same cell can be allocated
to multiple objects. Recall that zero volume components (i.e. individual points, lines,
surfaces) do not alter 3D-nCDC relations. This manner the ordering of infimum and
supremums of objects (a′i)li=1 on the grid are the same of original objects (ai)li=1 on the
Euclidean space. Consequently, orientation of the minimum bounding box of the objects
and occupied tiles stay the same. Therefore 3D-nCDC relations between (a′i,a′j) are the
same as (ai,aj). Hence, A′ = (a′i)li=1 also satisfies C and the answer of Im,n,p is Yes.

The size of the prism (the number of cells) on each axis is equal to the number of indices
on that axis, less 1. Since there can be at most 2|V | distinct elements in Bx, By, Bz, the
prism can have a maximum of 2|V |−1 cells on each axes. Namely, a solution of I can be
constructed on a grid of size m=n=p=2|V |−1 or larger.

7.11 Proof of Theorem 11

The correctness proof for the whole program consists of three parts, considering the rules
for the input network, the rules for generating minimum bounding box and instantiation
of objects, and the rules for 3D-nCDC constraints. It is followed by the uniqueness proof.

Correctness proof.

Rules for the input network: Every answer set for the subprogram (4.1) character-

izes the basic 3D-nCDC constraints as the input of the consistency problem, and every
answer set for the subprogram (4.10) shows pairs of variables for which a constraint
exists in the network with existrel(u,v) atoms.

Rules for MBB and instantiation of objects: We first consider the subprogram Π1,a
m,n,p that

consists of the set FB of facts (4.1), the rules of the form (4.10), the rule (4.2), and rules

112

analogous to (4.2) that describe inf y(u,y), supy(u,y), inf z(u,z), supz(u,z). We apply
the splitting set theorem (Erdogan & Lifschitz, 2004) to Π1,a

m,n,p: The set of all infx(u,x),
supx(u,x), inf y(u,y), supy(u,y), inf z(u,z), supz(u,z) atoms is a splitting set for Π1,a

m,n,p.
The bottom part is the rule (4.2) and rules analogous to (4.2). An answer set Y1 for the
bottom part describes a possible choice of minimum bounding box of each spatial variable
in terms of infx(u,x), supx(u,x), inf y(u,y), supy(u,y), inf z(u,z), supz(u,z) atoms. An
answer set Y2 for the top part (4.1)∪ (4.10) evaluated with respect to Y1 describes 3D-
nCDC constraints in C, pair of objects which have a constraint in C; and Y1 ∪Y2 is an
answer set for Π1,a

m,n,p.

The rule (4.3) and analogous rules for inf y(u,y), supy(u,y), inf z(u,z), supz(u,z) insist
on the chosen infimum value to be less than or equal to supremum. Proposition 2 of Er-
dogan & Lifschitz (2004) implies that adding rule (4.3) and rules analogous to (4.3), the
answer sets for Π1,a

m,n,p that do not have a valid minimum bounding box of an object are
eliminated. Thereby, answer sets of subprogram Π1,b

m,n,p which consists of Π1,a
m,n,p, the rule

(4.3) and analogous rules to (4.3) represent 3D-nCDC constraints in C and a valid choice
of infx(u,x), supx(u,x), inf y(u,y), supy(u,y), inf z(u,z), supz(u,z) atoms.

Now we examine the subprogram Π1,c
m,n,p=Π1,b

m,n,p∪ (4.4). According to the splitting set
theorem, the set FB of facts in (4.1) and the set of all existrel(u,v), infx(u,x), supx(u,x),
inf y(u,y), supy(u,y), inf z(u,z), supz(u,z) atoms is a splitting set for Π1,c

m,n,p. The bot-
tom part of Π1,c

m,n,p is Π1,b
m,n,p and the top part is (4.4). An answer set Y3 for the bottom part

describes 3D-nCDC constraints in C and a valid choice of bounds infx(u,x), supx(u,x),
inf y(u,y), supy(u,y), inf z(u,z), supz(u,z) for every spatial variable. An answer set Y4

for the top part evaluated with respect to Y3 describes a possible instantiation A= (ai)li=1
of objects to variables in V and Y3∪Y4 is an answer set for Π1,c

m,n,p.

In the next step, we add rules of the form (4.5) and rules analogous to (4.5) for y, z
axes into Π1,c

m,n,p to form subprogram Π1,d
m,n,p. The set FB of facts in (4.1) and the set of

all occ(u,x,y,z), existrel(u,v), infx(u,x), supx(u,x), inf y(u,y), supy(u,y), inf z(u,z),
supz(u,z) atoms is a splitting set for Π1,d

m,n,p. The bottom part of Π1,d
m,n,p is Π1,c

m,n,p and
an answer set Y5 for the bottom part describes 3D-nCDC constraints in C, a valid choice
of bounds infx(u,x), supx(u,x), inf y(u,y), supy(u,y), inf z(u,z), supz(u,z) for every
variable u ∈ V and an instantiation of objects to every variable. The top part is the rule
(4.5) and rules analogous to (4.5) for yocc(u,y), zocc(u,z) atoms. An answer set Y6 for
the top part evaluated with respect to Y5 indicates the projection of each generated object
over x,y,z axes with xocc(u,x), yocc(u,y), zocc(u,z) atoms; and Y5∪Y6 is an answer
set for Π1,d

m,n,p.

The rules (4.6) and analogous rules for y,z axes impose cells of every object are generated
inside its minimum bounding box. Rule (4.7) and analogous rules impose at least one

113

cell has been generated on the infimum and the supremum on every axes to make sure
that correct values have been chosen. Inserting the rules (4.6) and (4.7), and analogous
rules for y, z axes into Π1,d

m,n,p eliminates answer sets of Π1,d
m,n,p that do not obey these

criteria. Thus, we form the subprogram Π1,e
m,n,p which is composed of Π1,d

m,n,p, the rules
(4.6), (4.7) and the rules analogous to (4.6), (4.7) for inf y(u,y), supy(u,y), inf z(u,z),
supz(u,z). An answer set Y7 of subprogram Π1,e

m,n,p represents 3D-nCDC constraints in
C, a possible instantiationA= (ai)li=1 of variables in V and the correct bounds infx(u,x),
supx(u,x), inf y(u,y), supy(u,y), inf z(u,z), supz(u,z) of objects.

Rules for 3D-nCDC constraints: Rules (4.8) and rules (4.9) find out whether the instanti-
ation of objects A violates 3D CDC tile constraints (C1) and (C2), respectively. We con-
sider the subprogram Π1,f

m,n,p=Π1,e
m,n,p∪ (4.8)∪ (4.9). A splitting set for Π1,f

m,n,p is the set
FB of facts in (4.1) and the set of all occ(u,x,y,z), existrel(u,v), infx(u,x), supx(u,x),
inf y(u,y), supy(u,y), inf z(u,z), supz(u,z), xocc(u,x), yocc(u,y), zocc(u,z) atoms.
The bottom part is Π1,e

m,n,p and the top part is (4.8)∪ (4.9). An answer set Y8 for the top
part evaluated with respect to an answer set Y7 of the bottom part indicates whether the
instantiation A violates conditions (C1), (C2) with violated(u,v) atoms and Y7∪Y8 is an
answer set for Π1,f

m,n,p.

The rule (4.11) prohibits 3D CDC constraints in (C1) and (C2) to be violated for any
tile rel(u,v,R). By adding the rule (4.11) into Π1,f

m,n,p, the answer sets of Π1,f
m,n,p that

do not satisfy 3D CDC constraints for rel(u,v,r) are eliminated. Answer sets of the
subprogram Π1,g

m,n,p=Π1,f
m,n,p ∪ (4.11) represent 3D-nCDC constraints in C, a possible

instantiation A = (ai)li=1 of variables in V that satisfy conditions (C1), (C2) and the
minimum bounding box of the instantiated objects.

Note that Π1
m,n,p=Π1,g

m,n,p=Π1,f
m,n,p∪ (4.11). If Z is an answer set for Π1

m,n,p, Z ∩Om,n,p
characterizes an instantiation A of objects in Dm,n,p to variables in V that satisfies 3D-
nCDC constraints in C. Then, X is a solution of Im,n,p if and only if X can be character-
ized as Z ∩Om,n,p for some answer set Z of Π1

m,n,p.

Uniqueness proof.

To prove uniqueness of representation, suppose that another answer set Z ′ for Π1
m,n,p also

characterizes X and Z ′ 6= Z. Z ′ must include precisely the same occ(u,x,y,z) atoms
as Z, otherwise Z ′ does not characterize X . Consequently, the projected coordinates
xocc(u,x), yocc(u,y), zocc(u,z) atoms are the same for Z ′ and Z. Because the mini-
mum bounding box of an object is unique, infx(u,x), supx(u,x), inf y(u,y), supy(u,y),
inf z(u,z), supz(u,z) atoms in Z and Z ′ are also identical. Since all atoms in the two sets
coincide, Z ′=Z.

114

7.12 Proof of Theorem 12

The proof is similar to the proof of Theorem 11 and consists of two parts: Correctness
proof (considering the rules for the input network, the rules for generating the minimum
bounding box and instantiation of objects, the rules for 3D-nCDC constraints) and the
uniqueness proof.

Correctness proof.

Rules for the Input Network: The answer set for the program (4.12) characterizes

the disjunctive 3D-nCDC constraints in C. Consider the subprogram Π2,a
m,n,p which

consists of the set FV of facts in (4.12) and the rules (4.13), (4.14) copied below:

1{chosen(u,v, i) : 1≤ i≤ o}1←

rel(u,v,R)← chosen(u,v, i), disjrel(u,v, i,R).

We apply the splitting set theorem (Erdogan & Lifschitz, 2004) to Π2,a
m,n,p: The set of all

possible chosen(u,v, i) atoms and the disjunctive 3D-nCDC constraints in C is a splitting
set for Π2,a

m,n,p. The bottom part is (4.12)∪ (4.13) and an answer set Y1 for the bottom part
consists of the set FV of facts (4.12) that describe the disjunctive 3D-nCDC constraints
in C and the index of the chosen disjunct from each disjunctive constraint. An answer set
Y2 for the top part (4.14) evaluated with respect to Y1 specifies the chosen basic relation
with rel(u,v,r) atoms; and Y1∪Y2 is an answer set for Π2,a

m,n,p.

The set FB∪FV of facts in (4.1)∪ (4.12) represents all 3D-nCDC constraints in the input
network C. Hence, an answer set of the subprogram Π2,b

m,n,p composed of Π2,a
m,n,p with the

facts in (4.1) and the rule (4.10) represents a basic 3D-nCDC network Ĉ formed by all
basic constraints in C and picking precisely one disjunct from each disjunctive constraint
in C. existrel(u,v) atoms in the answer set of Π2,b

m,n,p indicate the pair of variables for
which a constraint exists in Ĉ.

Rules for MBB and Instantiation of Objects: Next we examine the subprogram Π2,c
m,n,p

formed by combining Π2,b
m,n,p with the rule (4.2) and rules analogous to (4.2) that de-

scribe inf y(u,y), supy(u,y), inf z(u,z), supz(u,z). We apply the splitting set theorem to
Π2,c
m,n,p: The set of all possible chosen(u,v, i), rel(u,v,r), disjrel(u,v, i,r), existrel(u,v)

atoms is a splitting set for Π2,c
m,n,p. The bottom part of Π2,c

m,n,p is Π2,b
m,n,p and the top part is

the rule (4.2) and rules analogous to (4.2). An answer set Y3 for the bottom part specifies
a basic 3D-nCDC network Ĉ derived from C. An answer set Y4 for the top part evaluated

115

with respect to Y3 describes a possible choice of minimum bounding box of each spatial
variable in terms of infx(u,x), supx(u,x), inf y(u,y), supy(u,y), inf z(u,z), supz(u,z)
atoms; and Y3∪Y4 is an answer set for Π2,c

m,n,p.

The rule (4.3) and the rules analogous to (4.3) for inf y(u,y), supy(u,y), inf z(u,z),
supz(u,z) ensure the chosen infimum value to be less than or equal to the supremum
on each axis. Proposition 2 of Erdogan & Lifschitz (2004) implies that adding rule (4.3)
and analogous rules, the answer sets for Π2,c

m,n,p that do not have a valid minimum bound-
ing box of an object are eliminated. Thereby, an answer set of subprogram Π2,d

m,n,p which
is composed of Π2,c

m,n,p, the rule (4.3) and analogous rules to (4.3) represents a basic
3D-nCDC network Ĉ derived from C and a valid instantiation of infx(u,x), supx(u,x),
inf y(u,y), supy(u,y), inf z(u,z), supz(u,z) atoms.

Now we examine the subprogram Π2,e
m,n,p=Π2,d

m,n,p ∪ (4.4). According to the splitting
set theorem, 3D-nCDC constraints in C and the set of all chosen(u,v, i), rel(u,v,r),
disjrel(u,v, i,r), existrel(u,v), infx(u,x), supx(u,x), inf y(u,y), supy(u,y), inf z(u,z),
supz(u,z) atoms is a splitting set for Π2,e

m,n,p. The bottom part of Π2,e
m,n,p is Π2,d

m,n,p and
an answer set Y5 for the bottom part describes a basic 3D-nCDC network Ĉ derived from
C and a valid choice of minimum bounding box for every spatial variable. An answer
set Y6 for the top part (4.4) evaluated with respect to Y5 describes a possible instantiation
A= (ai)li=1 of objects to variables in V and Y5∪Y6 is an answer set for Π2,e

m,n,p.

In the next step, we add rules of the form (4.5) and rules analogous to (4.5) for y,z axes
into Π2,e

m,n,p to form subprogram Π2,f
m,n,p. The set of all occ(u,x,y,z), chosen(u,v, i),

rel(u,v,r), disjrel(u,v, i,r), existrel(u,v), infx(u,x), supx(u,x), inf y(u,y), supy(u,y),
inf z(u,z), supz(u,z) atoms and 3D-nCDC constraints in C is a splitting set for Π2,f

m,n,p.
The bottom part of Π2,f

m,n,p is Π2,e
m,n,p and an answer set Y7 for the bottom part describes

a basic 3D-nCDC network Ĉ derived from C, a valid choice of minimum bounding box
for every variable u ∈ V and an instantiation of objects to every variable. The top part
of Π2,f

m,n,p is the rule (4.5) and rules analogous to (4.5) for yocc(u,y), zocc(u,z) atoms.
An answer set Y8 for the top part evaluated with respect to Y7 indicates the projection of
each generated object over x,y,z axes with xocc(u,x), yocc(u,y), zocc(u,z) atoms; and
Y7∪Y8 is an answer set for Π2,f

m,n,p.

The rule (4.6) and analogous rules for y,z axes insist that cells of every object are gen-
erated inside its minimum bounding box. The rule (4.7) and analogous rules insist that
at least one cell has been generated on the infimum and the supremum over every axes to
make sure that correct values have been chosen. Adding rules (4.6),(4.7) and analogous
rules for y,z axes into Π2,f

m,n,p eliminates answer sets of Π2,f
m,n,p that do not obey these

criteria. Thus, we form the subprogram Π2,g
m,n,p which consists of Π2,f

m,n,p, the rules (4.6),
(4.7) and rules analogous to (4.6), (4.7) for inf y(u,y), supy(u,y), inf z(u,z), supz(u,z).

116

An answer set Y9 of subprogram Π2,g
m,n,p represents a basic 3D-nCDC network Ĉ derived

from C, a possible instantiation A = (ai)li=1 of objects to variables in V and correct
bounds infx(u,x), supx(u,x), inf y(u,y), supy(u,y), inf z(u,z), supz(u,z) for objects.

Rules for 3D-nCDC Constraints: Rules (4.8),(4.9) find out whether the instantiation of
objects A violates 3D CDC tile constraints (C1), (C2) respectively. We consider the
subprogram Π2,h

m,n,p=Π2,g
m,n,p ∪ (4.8) ∪ (4.9). A splitting set for Π2,h

m,n,p is the set of
all occ(u,x,y,z), chosen(u,v, i), rel(u,v,r), disjrel(u,v, i,r), existrel(u,v), infx(u,x),
supx(u,x), inf y(u,y), supy(u,y), inf z(u,z), supz(u,z), xocc(u,x), yocc(u,y),
zocc(u,z) atoms. The bottom part is Π2,g

m,n,p and the top part is (4.8)∪ (4.9). An an-
swer set Y10 for the top part evaluated with respect to an answer set Y9 for the bottom part
indicates whether the instantiation A violates conditions (C1), (C2) with violated(u,v)
atoms and Y9∪Y10 is an answer set for Π2,h

m,n,p.

The rule (4.11) prohibits 3D CDC constraints in (C1), (C2) to be violated for any tile
rel(u,v,r). By inserting rule (4.11) into Π2,h

m,n,p, the answer sets of Π2,h
m,n,p that do

not satisfy conditions (C1), (C2) are eliminated. An answer set of the subprogram
Π2,i
m,n,p=Π2,h

m,n,p∪ (4.11) represents a basic 3D-nCDC network Ĉ derived from C, a pos-
sible instantiation A = (ai)li=1 of variables in V that satisfy conditions (C1), (C2) for Ĉ
and the minimum bounding box of the instantiated objects.

Note that Π2
m,n,p=Π2,i

m,n,p=Π2,h
m,n,p∪ (4.11). If Z is an answer set for Π2

m,n,p, Z∩Om,n,p
characterizes an instantiation A of objects in Dm,n,p to variables in V that satisfies the ba-
sic 3D-nCDC constraints in Ĉ. This meansA satisfies the basic and disjunctive 3D-nCDC
constraints in C. Then, X is a solution of Im,n,p if and only if X can be characterized as
Z ∩Om,n,p for some answer set Z of Π2

m,n,p.

Uniqueness proof.

To prove second part of the theorem, suppose that another answer set Z ′ for Π2
m,n,p

also characterizes X and Z ′ 6= Z. By assumption Z ′ includes the same occ(u,x,y,z)
atoms as Z. Consequently, the projected coordinates xocc(u,x), yocc(u,y), zocc(u,z)
atoms are the same for Z ′ and Z. The minimum bounding box of an object is unique
hence infx(u,x), supx(u,x), inf y(u,y), supy(u,y), inf z(u,z), supz(u,z) atoms are
also identical. A pair of objects satisfies only one basic 3D-nCDC relation so the
chosen disjuncts from every disjunctive constraints in C must be the same in Z and Z ′.
Consequently, chosen(u,v, i) atoms coincide in Z and Z ′. Since all atoms in the two sets
are identical, we obtain Z ′=Z.

117

8. CONCLUSION

In this thesis, we have investigated qualitative spatial reasoning problems considering
cardinal directions between extended objects in 2D and 3D. Let us summarize and discuss
our contributions in the following sections.

8.1 Contributions of Our Thesis: NCDC-ASP

Considering Cardinal Directional Calculus (CDC) of Skiadopoulos & Koubarakis
(2004,2005), we have introduced a provably correct and generic method (called NCDC-
ASP) for representing constraints about basic/disjunctive qualitative directional relations
over connected/disconnected regions on a plane, by discretizing CDC consistency check-
ing and then using Answer Set Programming. The idea is then to use existing state-of-
the-art ASP solvers to check the consistency of these constraints and infer new qualitative
directional relations when the constraints are incomplete. No existing CDC reasoner can
handle uncertainty (represented by disjunctive constraints) or incomplete knowledge.

Note that, in most of the cases, consistency checking of CDC constraints is NP-complete
(Table 2.1), and our method is general enough to provide solutions for all of them.

In NCDC-ASP , for efficient use of ASP for CDC consistency checking, we have intro-
duced lower bounds on the size of the discretized CDC consistency checking by utilizing
theoretical results from real analysis, and presented various improvements on ASP formu-
lations. The lower bounds are not specific to ASP so they can be utilized by other discrete
methods for CDC consistency checking. The proposed ASP modifications are also based
on general ideas, so they can be useful for other ASP applications.

Furthermore, for NCDC-ASP , we have extended CDC (called nCDC) with a new sort of
constraints, called default qualitative directional constraints, that allow us to utilize com-
monsense knowledge (e.g., children normally like playgrounds) and assumptions (e.g.,

118

the food truck is normally to the north or northeast of the movie theater) about directional
relations between spatial objects. These constraints can be formalized in ASP, thanks to
the nonmonotonic negation and aggregates.

For experimental evaluations of NCDC-ASP , since there is no available benchmarks for
CDC consistency checking, we have carefully handcrafted some benchmark instances to
be able to analyze CDC consistency checking from different perspectives. While con-
structing these instances, we have paid attention to their informativeness, considering
redundancies due to composition of CDC relations and inconsistencies due to the inverse
of CDC relations. We have also introduced novel methods to generate further benchmark
instances to investigate variations of CDC consistency checking. These benchmarks are
available online to benefit other researchers.

With experimental evaluations of NCDC-ASP , we have observed the usefulness of the
improvements for ASP formulations, with significant decreases in program sizes and com-
putation times: e.g., for a consistent instance with 8 spatial objects in a Dense network,
the ground program size decreases from 3313384 rules to 89873 rules, and the total CPU
time decreases from 14.16 seconds to 0.17 seconds (Tables 5.3, 5.4, 5.5 and 5.6).

We have observed the usefulness of the theorems that provide lower bounds on the size of
the grid used for discretizing the CDC consistency checking problem: e.g., for a consistent
instance with 18 spatial objects in a Dense network, the total CPU time decreases from
54.17 seconds (with Theorem 1) to 18.86 seconds when Theorem 8 is used (Table 5.15
and 5.11).

Meanwhile, we have observed an exponential behaviour on the increase of total CPU time
as the input size and the degree of completeness increase, as suggested by the computa-
tional complexity of the problem (Table 2.1): e.g., increasing the number of spatial objects
from 6 to 18 in a consistent, Sparse network over Reg* increases the computation time
from 0.02 seconds to 0.49 seconds, whereas increasing the density of the network from
Sparse to Complete for 18 spatial objects raises the computation time from 0.49 seconds
to 86.38 seconds.

On the other hand, despite the complexity results, we have observed that for instances with
Complete networks, the computation time increases significantly. This can be due to the
use of ASP, which is oriented towards solving intractable problems. For these problems,
the solver of Liu et al. based on a polytime algorithm (Liu et al., 2010) is more appropriate
(Table 5.1). Nevertheless exhaustive search using this algorithm is not a viable method
for incomplete networks.

We have illustrated possible uses and usefulness of NCDC-ASP by sample scenarios in
a dynamic environment that involve incomplete knowledge, disjunctive CDC relations,

119

and default CDC constraints. These methods can be applied to various applications, like
exploration of an unknown environment, without having to change the ASP formulation
for consistency checking. Possibility of reasoning over CDC constraints in such envi-
ronments is important, e.g., for human-robot interactions as well, so that a robot can un-
derstand qualitative descriptions of directional relations provided by humans, can reason
about these possibly incomplete qualitative knowledge, and provide guidance to humans
by means of qualitative descriptions.

8.2 Contributions of Our Thesis: 3D-NCDC-ASP

We have extended nCDC to 3-dimension and introduced a general and provably cor-
rect framework (3D-NCDC-ASP) for representing the cardinal directions between
(dis)connected extended objects in 3D space, by means of 3D-nCDC constraints (includ-
ing default 3D-nCDC constraints), and for reasoning about these relations using Answer
Set Programming, based on a discretization of the space (preserving the meaning of car-
dinal directions in continuous space).

3D-NCDC-ASP can be used to check the consistency of a set of 3D-nCDC constraints,
infer unknown cardinal directional relations, and explain the source of inconsistency. It
can deal with the challenges of incomplete or uncertain knowledge as well as defaults
about cardinal directions between objects, as often encountered in applications.

Allowing combinations of reasoning capabilities, 3D-NCDC-ASP provides a flexible
environment and a computational tool for various real-world applications, as illustrated
by some realistic scenarios in marine explorations with an underwater human-robot team,
building design and regulation in architecture, and evidence-based digital forensics.

The ASP programs, NCDC-ASP , 3D-NCDC-ASP software, benchmark problem in-
stances and the scenarios in the thesis can be accessed via the web repository https://
github.com/yizmirlioglu/.

120

https://github.com/yizmirlioglu/
https://github.com/yizmirlioglu/

8.3 Future Work

As part of our ongoing/future work, we have been investigating extending nCDC and 3D-
nCDC by a new type of constraints: soft CDC constraints. For instance, the fan should be
located to the left-back or right-back of the monitor.

We have also been investigating combining nCDC and 3D-nCDC with other types of
qualitative spatial reasoning, for instance, considering distance and size.

We have studied various applications of NCDC-ASP and 3D-NCDC-ASP , as part of
our thesis. Applying these ideas in the real world is part of our future work.

121

BIBLIOGRAPHY

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11), (pp. 832–843).

Balbiani, P., Condotta, J., & del Cerro, L. F. (1999). A new tractable subclass of the
rectangle algebra. In Proc. of IJCAI, (pp. 442–447).

Balbiani, P., Condotta, J., & del Cerro, L. F. (2002). Tractability results in the block
algebra. J. Logic and Computation, 12(5), (pp. 885–909).

Balbiani, P., Condotta, J.-F., & del Cerro, L. F. (1998). A model for reasoning about
bidimensional temporal relations. In Proc. of the Sixth International Conference on
Principles of Knowledge Representation and Reasoning, (pp. 124–130). Morgan
Kaufmann Publishers Inc.

Baral, C. (2003). Knowledge Representation, Reasoning, and Declarative Problem Solv-
ing. New York, NY, USA: Cambridge University Press.

Baryannis, G., Tachmazidis, I., Batsakis, S., Antoniou, G., Alviano, M., Sellis, T., & Tsai,
P. W. (2018). A trajectory calculus for qualitative spatial reasoning using answer set
programming. Theory and Practice of Logic Programming, 18(3-4), (pp. 355–371).

Borrmann, A. & Beetz, J. (2010). Towards spatial reasoning on building information
models. In Proc. of the 8th European Conference on Product and Process Modeling
(ECPPM), Taylor & Francis Group, Cork, Ireland, (pp. 61–67).

Brenton, C., Faber, W., & Batsakis, S. (2016). Answer set programming for qualitative
spatio-temporal reasoning: Methods and experiments. In OASICS-OpenAccess Se-
ries in Informatics, volume 52. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Brewka, G., Eiter, T., & Truszczynski, M. (2016). Answer set programming: An intro-
duction to the special issue. AI Magazine, 37(3), (pp. 5–6).

Chen, J., Cohn, A. G., Liu, D., Wang, S., Ouyang, J., & Yu, Q. (2015). A survey of
qualitative spatial representations. The Knowledge Engineering Review, 30(1), (pp.
106–136).

Chen, J., Liu, D., Jia, H., & Zhang, C. (2007). Cardinal direction relations in 3d space.
In International Conference on Knowledge Science, Engineering and Management,
(pp. 623–629). Springer.

Cohn, A. G., Bennett, B., Gooday, J., & Gotts, N. M. (1997). Qualitative spatial repre-
sentation and reasoning with the region connection calculus. GeoInformatica, 1(3),
(pp. 275–316).

Cohn, A. G., Li, S., Liu, W., & Renz, J. (2014). Reasoning about topological and cardi-
nal direction relations between 2-dimensional spatial objects. Journal of Artificial
Intelligence Research, 51, (pp. 493–532).

Cohn, A. G. & Renz, J. (2008). Qualitative spatial representation and reasoning. Hand-
book of Knowledge Representation, (pp. 551–596).

Costantini, S., Gasperis, G. D., & Olivieri, R. (2019). Digital forensics and investigations
meet artificial intelligence. Annals of Mathematics and Artificial Intelligence, 86(1-
3), (pp. 193–229).

de Moura, L. & Bjørner, N. (2008). Z3: An efficient smt solver. In International con-
ference on Tools and Algorithms for the Construction and Analysis of Systems, (pp.
337–340). Springer.

Dorr, C. H. & Moratz, R. (2014). Qualitative shape representation based on the qualitative
122

relative direction and distance calculus eopram. arXiv preprint arXiv:1412.6649.
Dugat, V., Gambarotto, P., & Larvor, Y. (1999). Qualitative theory of shape and orienta-

tion. In Proc. of the 16th Int. Joint Conference on Artificial Intelligence (IJCAI’99),
Stockolm, Sweden, (pp. 45–53).

Dylla, F., Lee, J. H., Mossakowski, T., Schneider, T., Delden, A. V., Ven, J. V. D., &
Wolter, D. (2017). A survey of qualitative spatial and temporal calculi: algebraic
and computational properties. ACM Computing Surveys (CSUR), 50(1), 7.

Egenhofer, M. J. & Herring, J. (1994). Categorizing binary topological relations between
regions, lines and points in geographic databases, the 9-intersection: Formalism and
its use for natural language spatial predicates. Santa Barbara CA National Center
for Geographic Information and Analysis Technical Report, 1(1), 94–1.

Erdem, E. & Lifschitz, V. (2003). Tight logic programs. Theory and Practice of Logic
Programming, 3(4-5), (pp. 499–518).

Erdogan, S. T. & Lifschitz, V. (2004). Definitions in answer set programming. In Proc.
of Logic Programming and Nonmonotonic Reasoning, (pp. 114–126).

Falomir, Z., Museros, L., Castelló, V., & Gonzalez-Abril, L. (2013). Qualitative distances
and qualitative image descriptions for representing indoor scenes in robotics. Pat-
tern Recognition Letters, 34(7), (pp. 731–743).

Frank, A. U. (1991). Qualitative spatial reasoning about cardinal directions. In Proc. of
Auto-Carto 10.

Freksa, C. (1992). Using orientation information for qualitative spatial reasoning. In
Theories and methods of spatio-temporal reasoning in geographic space (pp. 162–
178). Springer.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer Set Solving
in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., & Schneider, M. T.
(2011). Potassco: The potsdam answer set solving collection. AI Communications,
24(2), (pp. 107–124).

Gelfond, M. & Kahl, Y. (2014). Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. New York, NY, USA:
Cambridge University Press.

Gelfond, M. & Lifschitz, V. (1988). The stable model semantics for logic programming.
In Proc. of International Conference on Logic Programming, (pp. 1070–1080). MIT
Press.

Gelfond, M. & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive
databases. New generation computing, 9(3-4), (pp. 365–385).

Gottfried, B. (2005). Global feature schemes for qualitative shape descriptions. IJCAI-05
Workshop on Spatial and Temporal Reasoning.

Goyal, R. & Egenhofer, M. J. (1997). The direction-relation matrix: A representation
for directions relations between extended spatial objects. The annual assembly and
the summer retreat of University Consortium for Geographic Information Systems
Science, 3, (pp. 95–102).

Guesgen, H. W. (2002). Reasoning about distance based on fuzzy sets. Applied Intelli-
gence, 17(3), (pp. 265–270).

Hou, R., Wu, T., & Yang, J. (2016). Reasoning with cardinal directions in 3d space based
on block algebra. DEStech Transactions on Computer Science and Engineering,
(ICEITI 2016).

123

Izmirlioglu, Y. & Erdem, E. (2018). Qualitative reasoning about cardinal directions using
answer set programming. In Proc. of the AAAI 2018 Conference.

Kuipers, B. (1983). The Cognitive Map: Could It Have Been Any Other Way?, (pp.
345–359). Springer US.

Lee, J. H., Renz, J., & Wolter, D. (2013). Starvars - effective reasoning about relative
directions. In Proc. of IJCAI, (pp. 976–982).

Li, C., Lu, J., Yin, C., & Ma, L. (2009). Qualitative spatial representation and reasoning
in 3d space. In 2009 Second International Conference on Intelligent Computation
Technology and Automation, volume 1, (pp. 653–657). IEEE.

Li, J. J. (2012). Qualitative spatial and temporal reasoning with answer set program-
ming. In Tools with Artificial Intelligence (ICTAI), 2012 IEEE 24th International
Conference on, volume 1, (pp. 603–609). IEEE.

Lifschitz, V. (2002). Answer set programming and plan generation. Artificial Intelligence,
138, (pp. 39–54).

Lifschitz, V. (2019). Answer Set Programming. Springer.
Ligozat, G. (1998). Reasoning about cardinal directions. Journal of Visual Languages &

Computing, 9(1), (pp. 23–44).
Ligozat, G. F. (1993). Qualitative triangulation for spatial reasoning. In European Con-

ference on Spatial Information Theory, (pp. 54–68). Springer.
Liu, W. (2013). Qualitative constraint satisfaction problems: algorithms, computational

complexity, and extended framework. PhD thesis, University of Technology, Syd-
ney.

Liu, W. & Li, S. (2011). Reasoning about cardinal directions between extended objects:
The np-hardness result. Artificial Intelligence, 175(18), (pp. 2155–2169).

Liu, W., Zhang, X., Li, S., & Ying, M. (2010). Reasoning about cardinal directions
between extended objects. Artificial Intelligence, 174(12-13), (pp. 951–983).

Marek, V. & Truszczyński, M. (1999). Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective (pp.
375–398). Springer Verlag.

Monferrer, M. T. E. & Lobo, F. T. (1996). Enhancing qualitative relative orientation with
qualitative distance for robot path planning. In Tools with Artificial Intelligence,
1996., Proc. of Eighth IEEE International Conference, (pp. 174–182). IEEE.

Moratz, R., Dylla, F., & Frommberger, L. (2005). A relative orientation algebra with ad-
justable granularity. In Proc. of the Workshop on Agents in Real-Time and Dynamic
Environments (IJCAI 05), volume 21, (pp. 22–31).

Moratz, R., Nebel, B., & Freksa, C. (2002). Qualitative spatial reasoning about rela-
tive position. In International Conference on Spatial Cognition, (pp. 385–400).
Springer.

Moratz, R., Renz, J., & Wolter, D. (2000). Qualitative spatial reasoning about line seg-
ments. In European Conference on Artificial Intelligence, (pp. 234–238).

Mota, T. & Sridharan, M. (2018). Incrementally grounding expressions for spatial rela-
tions between objects. In IJCAI, (pp. 1928–1934).

Museros, L. & Escrig, M. T. (2004). A qualitative theory for shape representation and
matching for design. In Proc. of the 16th European Conference on Artificial Intel-
ligence, (pp. 858–862). IOS Press.

Navarrete, I., Morales, A., & Sciavicco, G. (2007). Consistency checking of basic cardinal
constraints over connected regions. In Proc. of IJCAI, (pp. 495–500).

Niemelä, I. (1999). Logic programs with stable model semantics as a constraint pro-

124

gramming paradigm. Annals of Mathematics and Artificial Intelligence, 25, (pp.
241–273).

Pais, J. & Pinto-Ferreira, C. (2000). Spatial representation and reasoning using the n-
dimensional projective approach. In Technical Report WS-00-08 of the AAAI 2000
Workshop on Spatial and Temporal Granularity, (pp. 79–82).

Rudin, W. (1991). Functional analysis 2nd ed. International Series in Pure and Applied
Mathematics. McGraw-Hill, Inc., New York, 10.

Schultz, C., Bhatt, M., Suchan, J., & Wałega, P. (2018). Answer set programming modulo
space-time’. arXiv preprint arXiv:1805.06861.

Shanahan, M. (1995). Default reasoning about spatial occupancy. Artificial Intelligence,
74(1), (pp. 147–163).

Simons, P., Niemelae, I., & Soininen, T. (2002). Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1), (pp. 181–234).

Skiadopoulos, S. & Koubarakis, M. (2004). Composing cardinal direction relations. Ar-
tificial Intelligence, 152(2), (pp. 143–171).

Skiadopoulos, S. & Koubarakis, M. (2005). On the consistency of cardinal direction
constraints. Artificial Intelligence, 163(1), (pp. 91–135).

Van de Weghe, N., De Tré, G., Kuijpers, B., & De Maeyer, P. (2005). The double-cross
and the generalization concept as a basis for representing and comparing shapes
of polylines. In OTM Confederated International Conferences" On the Move to
Meaningful Internet Systems", (pp. 1087–1096). Springer.

Walega, P. A., Bhatt, M., & Schultz, C. P. L. (2015). ASPMT(QS): non-monotonic spa-
tial reasoning with answer set programming modulo theories. In Proc. of Logic
Programming and Nonmonotonic Reasoning, (pp. 488–501).

Walega, P. A., Schultz, C., & Bhatt, M. (2017). Non-monotonic spatial reasoning with
answer set programming modulo theories. Theory and Practice of Logic Program-
ming, 17(2), (pp. 205–225).

Wheeden, R. L. (2015). Measure and integral: an introduction to real analysis, volume
308. CRC Press.

Zampogiannis, K., Yang, Y., Fermüller, C., & Aloimonos, Y. (2015). Learning the spatial
semantics of manipulation actions through preposition grounding. In 2015 IEEE
International Conference on Robotics and Automation (ICRA 2015), (pp. 1389–
1396). IEEE.

Zereik, E., Bibuli, M., Miskovic, N., Ridao, P., & Pascoal, A. (2018). Challenges and
future trends in marine robotics. Annual Reviews in Control, 46, (pp. 350–368).

Zhang, X., Liu, W., Li, S., & Ying, M. (2008). Reasoning with cardinal directions: An
efficient algorithm. In Proc. of the AAAI 2008 Conference, (pp. 387–392).

Zimmermann, K. & Freksa, C. (1996). Qualitative spatial reasoning using orientation,
distance, and path knowledge. Applied intelligence, 6(1), (pp. 49–58).

125

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	PRELIMINARIES
	Answer Set Programming
	Cardinal Directional Calculus
	Regions
	Basic CDC Relations Between Spatial Objects
	Disjointness of Tiles and Relations
	Disjunctive CDC Relations
	CDC Constraints and Networks
	Complexity of CDC Consistency Checking

	NCDC-ASP: NONMONOTONIC QUALITATIVE REASONING ABOUT CARDINAL DIRECTIONS BETWEEN 2-DIMENSIONAL EXTENDED OBJECTS USING ANSWER SET PROGRAMMING
	nCDC: Nonmonotononic 2D Cardinal Directional Calculus
	Inferences over CDC Constraints
	Default Reasoning over CDC Constraints
	nCDC Constraints

	Discretized Consistency Checking in 2D
	Basic CDC Consistency Checking in 2D Using ASP
	Regions in Reg*: Spatial Objects May Be Disconnected
	Represent the Input.
	Generate Assignments of Spatial Objects to Variables.
	Eliminate the Assignments that Violate the Constraints.
	Correctness.

	Regions in Reg: Spatial Objects Must Be Connected

	Disjunctive CDC Constraints
	Inferring Cardinal Directions Using ASP
	Default CDC Constraints
	Further Improvements
	Improving the Lower Bound on the Grid Size
	A Divide-and-Conquer Approach for Basic CDC Consistency Checking
	Improving the ASP Formulation
	Defining vs. Generating the Minimum Bounding Rectangles
	Connectedness: Transitive Closure vs. Reachability

	Applications of NCDC-ASP
	Scenario 1: Meeting
	Scenario 2: Missing Child
	Scenario 3: Tabletop Placement

	3D-NCDC-ASP: NONMONOTONIC QUALITATIVE REASONING ABOUT CARDINAL DIRECTIONS BETWEEN 3-DIMENSIONAL EXTENDED OBJECTS USING ANSWER SET PROGRAMMING
	3D-nCDC: Nonmonotonic 3D Cardinal Directional Calculus
	Discretized Consistency Checking in 3D-nCDC
	Discretized Consistency Checking in 3D-nCDC Using ASP
	Basic 3D-nCDC Networks
	Disjunctive 3D-nCDC Constraints
	Default 3D-nCDC Constraints

	Connected Spatial Objects
	Inferring Missing 3D-nCDC Relations
	Explaining Inconsistencies in 3D-nCDC
	Applications of 3D-NCDC-ASP
	Marine Exploration with Underwater Robots
	Building Design and Regulation
	Evidence-Based Digital Forensics

	EXPERIMENTAL EVALUATIONS
	Experimental Setup for Evaluations of NCDC-ASP
	Benchmark Generation in 2D
	Benchmarks: Basic CDC Networks
	Benchmarks: Disjunctive CDC Constraints
	Benchmarks: Default CDC Constraints
	Randomly Generated Benchmarks

	Experimental Evaluations of NCDC-ASP
	Experimental Evaluations of the ASP Improvements
	Evaluating the Scalability: Input Size and Degree of Incompleteness
	Evaluating the Usefulness of Theorem 8
	Experiments with Disjunctive CDC Constraints
	Experiments with Default CDC Constraints
	Experimental Evaluations with Random Benchmark Instances
	Experimental Comparisons with the Existing Solver

	Detailed Results of the NCDC-ASP Experiments
	Experiments with 3D-NCDC-ASP

	RELATED LITERATURE
	Work Related to NCDC-ASP
	Work Related to 3D-NCDC-ASP

	PROOFS
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11
	Proof of Theorem 12

	CONCLUSION
	Contributions of Our Thesis: NCDC-ASP
	Contributions of Our Thesis: 3D-NCDC-ASP
	Future Work

	BIBLIOGRAPHY

