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ABSTRACT

ON LINEAR COMPLEMENTARY PAIR OF CODES

SELCEN SAYICI

MATHEMATICS Ph.D DISSERTATION, JULY 2020

Dissertation Supervisor: Prof. CEM GÜNERİ

Keywords: Linear complementary pair of codes, abelian codes, group codes, code
equivalence, finite fields, finite chain rings

Linear complementary pair (C,D) of codes has drawn much attention recently due to
their applications to cryptography, in the context of side channel and fault injection
attacks. The security parameter of such a pair is defined to be the minimum of the
minimum distances d(C) and d(D⊥). Carlet et al. showed that if C and D are both
cyclic or both 2D cyclic over a finite field, then C and D⊥ are equivalent codes.
Hence d(C) = d(D⊥). We extend this result to all nD cyclic, or abelian, codes over
finite fields. Moreover, we prove the same result for all linear complementary pair
of 2-sided group codes over finite chain rings.
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ÖZET

DOĞRUSAL BÜTÜNLEYİCİ ÇİFT KODLARI ÜZERİNE

SELCEN SAYICI

MATEMATİK DOKTORA TEZİ, TEMMUZ 2020

Tez Danışmanı: Prof. Dr. CEM GÜNERİ

Anahtar Kelimeler: Doğrusal bütünleyici çift kodları, abelyen kodlar, grup kodları,
kod denkliği, sonlu cisimler, sonlu zincir halkaları

Doğrusal bütünleyici çift (C,D) kodları son zamanlarda, kriptografide yan kanal
ve sahte enjeksiyon atakları üzerine uygulamaları sebebiyle ilgi çekmişlerdir. Böyle
bir çiftin güvenlik parametresi, d(C) ve d(D⊥) minimum uzaklıklarının minimumu
olarak tanımlanır. C ve D her ikisi de devirsel, veya 2D devirsel, sonlu cisimler
üzerinde tanımlı kodlar ise, Carlet vd. C’nin D⊥’a denk olduğunu göstermişlerdir.
Dolayısıyla d(C) = d(D⊥) eşitliği doğrudur. Bu sonucu, sonlu cisimler üzerinde
tanımlı tüm nD, veya abelyen, kodlara genişletiyoruz. Ayrıca, aynı sonucu sonlu
zincir halkaları üzerinde tanımlı tüm 2-taraflı doğrusal bütünleyici çift kodları için
de ispatlıyoruz.

v



ACKNOWLEDGEMENTS

I would like to thank my supervisor Cem Güneri, for suggesting me this topic which
I like so much and for being a part of this thesis. I learned a lot from him.

I thank my progress jury members Erkay Savaş and Kağan Kurşungöz for help-
ful comments they provided in our progress meetings and other professors Ferruh
Özbudak and Alp Bassa for being jury members of this thesis. I also thank Edgar
Martinez-Moro for his valuable contribution particularly to Section 3.2 of this thesis.

I would like to thank my teachers Alev Topuzoğlu and Henning Stichtenoth. I also
learned a lot from them.

I should thank my dear family for being with me in every moment of my PhD period.

vi



TABLE OF CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKROUND AND MOTIVATION . . . . . . . . . . . . . . . . . . 4
2.1. LCD Codes and LCP of Codes . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Cyclic Codes to nD Cyclic Codes . . . . . . . . . . . . . . . . . . . . 7

3. LCP of Abelian Codes over Finite Fields . . . . . . . . . . . . . . . . 10
3.1. LCP of Abelian Codes over Finite Fields: Semisimple Case . . . . . . 10
3.2. LCP of Abelian Codes over Finite Fields: Non-Semisimple Case . . . 14
3.3. LCP of Abelian Codes: Generator Polynomials . . . . . . . . . . . . . 19

4. LCP of Group Codes over Finite Chain Rings . . . . . . . . . . . . 21
4.1. Finite Chain Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2. LCP of Group Codes over Chain Rings . . . . . . . . . . . . . . . . . 23

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



1. INTRODUCTION

Linear Complementary Dual (LCD) codes and Linear Complementary Pair (LCP)
of codes have been intensively studied in literature due to their cryptographic appli-
cations [1, 5, 6]. They are used in protection against side channel (SCA) and fault
injection (FIA) attacks. A pair of linear codes (C,D) over Fq of length n is called
LCP if C⊕D = Fnq . When D = C⊥, C is called an LCD code. In this context the
security parameter for LCP of codes (C,D) is defined to be the minimum of the
minimum distances of C and D⊥, i.e. it is min{d(C),d(D⊥)}. For the LCD case,
this parameter is simply d(C) since D⊥ = C. The aim is to construct LCP of codes
with big security parameter in order to strengthen the security of the system.

The notion of an LCD code was first introduced by James L. Massey in 1992 ([20]),
long before their recent cryptographic applications. These codes provided an op-
timum linear coding solution for the two-user binary adder channel. Massey gave
a characterization and some constructions of codes with complementary duals. He
also showed that LCD codes are asymptotically good. In 2004, Nicolas Sendrier
showed that LCD codes meet the Gilbert-Varshamov Bound as a corollary of the
main result of his paper, which shows that linear codes with prescribed hull dimen-
sion meet the GV Bound ([25]). Here we note that LCD codes have hull dimension
0. In the same paper he proved that the proportion of [n,k] LCD codes over Fq
among all linear [n,k] codes is approximately 1− 1/q. Recently in [9], Carlet et
al. showed that when q > 3, any linear code over Fq is equivalent to an Euclidean
LCD code. So when q > 3 , q-ary Euclidean LCD codes are as good as q-ary linear
codes. In 1994, X. Yang and James L. Massey gave a characterization for cyclic
LCD codes ([26]) and recently Carlet et al. have characterized LCP of cyclic codes
([7]). Moreover, equivalence of C and D⊥, for cyclic and 2D cyclic pairs, was also
proved in the same paper. All of these results have been proven over a finite field.
Although LCD and LCP of codes have been widely studied over finite fields, these
code classes have not been as well understood over rings, particularly over chain
rings. [18] and [19] study LCD codes over rings but there has not been any result
on LCP of codes over rings.
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In this thesis, we prove the following statement for abelian codes over a finite field
and then more generally for group codes over a finite chain ring seperately.

Theorem 1.1. Let (C,D) be an LCP of abelian (resp. 2-sided group) codes over a
finite field (resp. a finite chain ring). Then C and D⊥ are equivalent codes.

This result enables us to say that there is an LCP of abelian codes, which has as
good a security parameter as the abelian code with the best minumum distance. The
same also holds for LCP of 2-sided group codes over finite chain rings. Along the
way, we have also given some nice algebraic properties of abelian (resp. group codes)
and LCP of abelian codes (resp. group codes). Chronologically, we generalized the
result of Carlet et al. on LCP of cyclic and 2D cyclic codes to nD cyclic codes
over finite fields, in the semsimple case, in [13]. Later, Borello et al. generalized
this result to LCP of 2-sided group codes over finite fields for arbitrary length ([3]).
Finally, the result for LCP of 2-sided group codes over chain rings, in arbitrary
length, has been obtained in [11].

Let us note that we also provide a proof for LCP of abelian codes over finite fields
in the non-semisimple case in this thesis. Although Borello et al.’s result holds more
generally for group codes, the proof we give for non-semisimple abelian codes uses
a different approach.

The organization of the chapters is as follows:

In Chapter 2, we start by giving definitions of and brief backround on cyclic codes,
nD cyclic codes, LCD codes and LCP of codes. Then we introduce the cryptographic
motivation of studying these codes.

In Chapter 3, we first prove the theorem over a finite field in the semisimple case.
Theorem 1.1 is proven by Carlet et al. in [7] for cyclic codes under no restriction
and for 2D cyclic codes when the code length and the characteristic of the field
are relatively prime to each other (semisimple case). The proof of Carlet et al. for
cyclic codes is based on polynomial arguments in one variable. Their proof for 2D
cyclic case is based on the trace representation of the codes. Neither approach is
feasible for nD cyclic codes. Our proof for the generalization is based on the zero
sets of the ideals corresponding to nD cyclic codes in the semisimple case. Then
we give a proof for the non-semisimple case using a Chinese Remainder Theorem
type decomposition of the codes. In this chapter we also extend the results of Yang-
Massey and Carlet et al. on the generator polynomials of cyclic LCD and LCP of
codes to nD cyclic codes in the semisimple case.

In Chapter 4, we start with a brief backround on chain rings and give well-known

2



facts on finite chain rings. Then we prove our theorem on LCP of 2-sided group
codes over finite chain rings. For this we start with an LCP (C,D) over a chain
ring, consider their projection to the residue field, where the images are shown to
be LCP again. The pair over a finite field has the desired equivalence map, which
we lift to codes C and D⊥ over the chain ring.
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2. BACKROUND AND MOTIVATION

2.1 LCD Codes and LCP of Codes

We begin this section with basic definitions and facts.

Let Fq be a finite field with characteristic p. A q-ary linear code C of length n is
a linear subspace of the vector space Fnq . If C has dimension k then C is called an
[n,k] code. The minimum distance of a nontrivial code C is min{d(x,y)|x ∈ C,y ∈
C,x 6= y}, where d(x,y) denotes the Hamming distance. An [n,k,d] code C denotes
a code of length n, dimension k with minimum distance d. A generator matrix G
for an [n,k] linear code C is a k×n matrix for which the rows are a basis of C. If
C is an [n,k] code we define the dual code C⊥ by

C⊥ = {y ∈ Fnq |< x,y >= 0 ∀x ∈ C}.

The dual code C⊥ is an [n,n−k] code. Throughout this thesis, unless stated oth-
erwise, the dual will be relative to the Euclidean inner product.

Definition 2.1. A linear code C of length n over Fq is called cyclic if(
cn−1, c0, . . . , cn−2

)
∈ C whenever

(
c0, c1, . . . , cn−1

)
∈ C .

There is an Fq-linear isomorphism (considered only as an additive group) between
Fnq and Fq[x]/〈xn−1〉. By using this fact it is well known that there is a one to one
correspondence between cyclic codes in Fnq and ideals in the quotient polynomial
ring Fq[x]/〈xn−1〉.

Theorem 2.2. A linear code C in Fnq is cyclic if and only if C is an ideal in
Fq[x]/〈xn−1〉.

Consider cyclic codes of length n over Fq with (n,q) = 1. Since Fq[x]/〈xn− 1〉 is
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a principal ideal ring, every cyclic code C consists of the multiples of a uniquely
determined polynomial g(x) which is the monic polynomial of lowest degree in the
ideal. This polynomial g(x) is called the generator polynomial of the cyclic code and
this generator polynomial is a divisor of xn−1.

The polynomial g∗(x) = xkg(x−1) is called the reciprocal polynomial of g(x) where
deg g = k. We have that the dual code of a cyclic code is also cyclic and moreover if
C = 〈g(x)〉 is cyclic, then for h(x) = (xn−1)/g(x), the dual cyclic code C⊥ has the
generator polynomial h∗(x).

From now on we focus on giving cryptographic motivation on LCD and LCP of
codes. We also provide some important results on these codes accordingly for the
rest of this section.

Definition 2.3. A pair of linear codes (C,D) over Fq of length n is called a linear
complementary pair (LCP) of codes if C⊕D = Fnq .

In the case C =D⊥, C is referred to as a linear complementary dual (LCD) code.

Recent studies have shown that LCD and LCP of codes help to improve the security
of the information (processed by sensitive devices), especially against side-channel
attacks (SCA) and fault injection attacks (FIA). The aim is to produce an LCP of
codes (C,D) which has a security parameter as high as possible. Let us explain how
LCD codes are used in the FIA.

Let x ∈ Fk2 be our sensitive data. For a k× n matrix G of rank k, we code our
information to xG ∈ Fn2 . Then we add an (n−k) bit “mask” y via encoding it with
a (n− k)×n matrix H of rank (n− k): yH - encoded mask. So, we work with
z = xG+yH and try not to reveal x at any point. Let C and D be length n codes
with generating matrices G and H, respectively.

Assume that D = C⊥ and the two codes satisfy C⊕C⊥ = Fn2 (i.e. C ∩C⊥ = {0}).
i.e a code C is an LCD code.

Here we need the following characterization by Massey in [20].

Theorem 2.4. Let C be a linear code with a generator matrix G and a parity-check
matrix H. Then C is an LCD code iff GGT is non-singular iff HHT is non-singular.

Note that one can recover both the sensitive info x and the mask y from z as follows:
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zGt(GGt)−1 = (xG+yH)Gt(GGt)−1

= xGGt(GGt)−1 +yHGt(GGt)−1 = x

zHt(HHt)−1 = y similarly.

Suppose one inserts an error ε into z to observe the system statistically, with the
hope of reaching x. This is called FIA. Since C⊕C⊥ = Fn2 , we have ε= eG+fH for
some e and f . So, the corrupted word is z+ ε. We want to detect if there is such
an attack but we do not want to reveal x. Check y during the process:

(z+ ε)Ht(HHt)−1 = y+f = y ⇐⇒ f = 0.

So the attack may be undetected if f = 0 in ε. In this case ε = eG ∈ C. Therefore,
set d(C) (security parameter) as high as possible so that FIA is only successful when
a high weight codeword is inserted.

The definition of the security parameter for LCP of codes is as follows:

Definition 2.5. The security parameter of an LCP (C,D) is defined to be
min{d(C),d(D⊥)}. For the LCD case, this parameter is simply d(C), since D⊥ =C.

The followings are the characterizations of cyclic LCD and cyclic LCP of codes by
Yang-Massey and Carlet et al., respectively.

Theorem 2.6. ([26, Theorem]) If g(x) is the generator polynomial of a q-ary (n,k)
cyclic code C of length n, then C is an LCD code if and only if g(x) is self-reciprocal
and all the monic irreducible factors of g(x) have the same multiplicity in g(x) and
in xn−1.

Theorem 2.7. ([7, Theorem 2.1]) Let C and D be q-ary cyclic codes of length n
with the generating polynomials g(x) and u(x), respectively. Then (C,D) is LCP if
and only if u(x) = (xn−1)/g(x) and gcd(u(x),g(x)) = 1.

Proof. {0}= C ∩D = lcm {g(x),u(x)}. This means that lcm {g(x),u(x)}= xn−1.
Since C +D = Fnq = Fq[x]/〈xn− 1〉, then 1 ≡ a(x)g(x) + b(x)u(x) mod (xn− 1) for
some a(x), b(x) ∈ Fq[x]. So gcd (g(x),u(x)) = 1. Conversely, since g and u are
coprime then C+D = Fq[x]/〈xn−1〉. By assumption u(x) = (xn−1)/g(x). Hence
C ∩D = {0}.
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Corresponding scheme of cyclic codes in terms of generator polynomials when (C,D)
is LCP of codes would be as follows :

(2.1)
C⊥ ←→ C ←→ D ←→ D⊥

u∗(x) ←→ g(x) ←→ u(x) ←→ g∗(x)

where u(x) = (xn−1)/g(x).

Remark 2.8. Theorem 2.7 generalizes Theorem 2.6 of Yang-Massey. A cyclic code
C being LCD means (C,C⊥) is LCP. Since C = 〈g(x)〉 then C⊥ = 〈u∗(x)〉 where
u(x) = (xn− 1)/g(x). Theorem 2.7 yields

(
(xn− 1)/g(x)

)∗
= (xn− 1)/g(x). This

means that g is self-reciprocal which is what Theorem 2.6 says.

2.2 Cyclic Codes to nD Cyclic Codes

In this section, we give an overview on n dimensional cyclic codes and their zero
sets.

A k-dimensional subspace C of Fm1×m2×···×mn
q is called an nD linear code of area

m1×m2×·· ·×mn over Fq and denoted as an [m1×m2×·· ·×mn, k] code.

Definition 2.9. For an nD linear code C ⊂ Fm1×m2×···×mn
q if (ai1,i2,...,in) is in C

implies that (ai1+s1,i2+s2,...,in+sn) is also in C for all sk , where all ik +sk are taken
in mod mk, 1 ≤ k ≤ n, then C is called an nD cyclic code of area m1×m2×·· ·×mn.
When n = 1 they are cyclic codes. In other words as we recall, C ⊂ Fmq is a cyclic
code when (a0, . . . ,am−1) ∈ C =⇒ (am−1,a0, . . . ,am−2) ∈ C.

Remark 2.10. Consider a 2D cyclic code C ⊂ Fm1×m2
q of length m1×m2 and

a codeword c = (ci1,i2) ∈ C. One can see this codeword c as an m1×m2 matrix
where by Definition 2.9 this matrix is closed under row shift and column shift. So
in polynomial space Fq[x1,x2]/〈xm1

1 − 1,xm2
2 − 1〉, this means that an Fq-subspace

corresponding to a code C is closed under multiplication by x1 and x2. So it is an
ideal of this polynomial ring which is analogous result of Theorem 2.2. In general
an nD cyclic code can be viewed as an ideal in the quotient ring of polynomials in
n variables Fq[x1, . . . ,xn]/〈xm1

1 −1, . . . ,xmn
n −1〉, which we denote by Rn.

Let I be an ideal of Fq[x]/〈xn− 1〉 corresponding a cyclic code C ⊂ Fnq generated
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by g(x). Then the set { zeros of g(x)} ⊂ {nth roots of unity } is the zero set of C.

Let m1, . . . ,mn be positive integers all of which are relatively prime to q. Let us
denote an m1×·· ·×mn array over Fq by (ai1,i2,...,in). Here, we understand that the
index ij runs over the set {0,1, . . . ,mj−1} for all 1≤ j ≤ n. In other words, such an
array is simply a vector over Fq of length m1 · · ·mn. One can identify the Fq-space
Fm1×···×mn
q of all m1×·· ·×mn arrays with Rn via the map

Fm1×···×mn
q −→ Rn

(ai1,i2,...,in) 7−→
n∑
j=1

mj−1∑
ij=0

ai1,i2,...,inx1
i1x2

i2 . . .xn
in .(2.2)

Note that, for simplicity, we denote the element of Rn not as a coset but just as
a polynomial representing the coset in Rn. Under this identification, an nD cyclic
code C becomes an Fq-linear code of size (length) m1×·· ·×mn which satisfies the
condition

(ai1,i2,...,in) ∈ C =⇒ (ai1+s1,i2+s2,...,in+sn) ∈ C,

for all s1, . . . , sn, where ij + sj is computed modulo mj for each j. Let us also note
that the dual C⊥ of an nD cyclic code of size m1×·· ·×mn is also an nD cyclic code
of the same size.

Let αj be a primitive mth
j root of unity for 1≤ j ≤ n. Note that all αj ’s lie in a field

Fqs with the property that every mj divides qs−1. Define the set

Ω =
{

(α1
i1 , . . . ,αn

in) : 0≤ ij ≤mj−1, 1≤ j ≤ n
}
.

The Fq-conjugacy class containing (α1i1 , . . . ,αnin) in Ω is defined as

[
(α1

i1 , . . . ,αn
in)
]

=
{

(α1
i1 , . . . ,αn

in),(α1
i1q, . . . ,αn

inq), . . . ,(α1
i1q

δ−1
, . . . ,αn

inq
δ−1

)
}
,

where
δ = lcm

{[
Fq(αjij ) : Fq

]
,1≤ j ≤ n

}
.

Ω is a disjoint union of such Fq-conjugacy classes.

Note that an ideal C of Rn (nD cyclic code) is of the form J +〈xm1
1 −1, . . . ,xmn

n −1〉
for an ideal J of the polynomial ring Fq[x1, . . . ,xn] with J ⊃ 〈xm1

1 −1, . . . ,xmn
n −1〉.

We define the zero set Z(C) of an nD cyclic code C as the common zeros of all
of the polynomials in J and observe that Z(C) ⊂ Ω. In fact, Z(C) is a union of
Fq-conjugacy classes.
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Conversely for a subset U ⊂ Ω, the nD cyclic code CU in Rn corresponding to U is
defined to be IU + 〈xm1

1 −1, . . . ,xmn
n −1〉, where

IU = {f(x1,x2, . . . ,xn) ∈ Fq[x1,x2, . . . ,xn] : f(a1, . . . ,an) = 0,∀(a1, . . . ,an) ∈ U} .

If Ū denotes the smallest union of Fq-conjugacy classes in Ω that contains U , then it
can be seen that CU =CŪ . Moreover, there is a one-to-one correspondence between
subsets of Ω which are unions of Fq-conjugacy classes and nD cyclic codes in Rn,
given via the assignment U ↔ CU . In other words, we have Z(CU ) = U for any
U ⊂ Ω, which is a union of Fq-conjugacy classes, and CZ(C) = C for any ideal (nD
cyclic code) C of Rn.

Hence, the zero set Z(C) uniquely determines an nD cyclic code C and working on
Z(C) is identical with working on C which will be effectively used in proof of the
main result, Theorem 3.8, of Section 3.1.
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3. LCP of Abelian Codes over Finite Fields

3.1 LCP of Abelian Codes over Finite Fields: Semisimple Case

Carlet et al. showed that if (C,D) is an LCP of codes where C and D are both
cyclic or both 2D cyclic, then C and D⊥ are equivalent ([7, Theorems 2.4 and 3.4]).
We extend this result to nD cyclic codes (for any n) in this section. As in Section
2.2, we let Rn = Fq[x1, . . . ,xn]/〈xm1

1 −1, . . . ,xmn
n −1〉 and assume that gcd(q,mi) = 1

for all 1≤ i≤ n.

The following important facts will be used throughout, so we collect them in the
next result. Let us note that these results are stated for 2D cyclic codes in [10,
Theorem 3.4, Proposition 3.5] and for general nD cyclic codes in [12, Proposition
2.2].

Proposition 3.1. Let U =Z(C) be the zero set of the nD cyclic code C ⊂Rn. Then,

i. dimFq(C) = |Ω−U |,

ii. Z(C⊥) = Ω−U−1,

where U−1 =
{

(a−1
1 , . . . ,a−1

n ) : (a1, . . . ,an) ∈ U
}
.

Example 3.2. The class of nD cyclic codes contains some good code examples. We
give an example of a good 2D cyclic code here. Consider the extension F9 over F3

and let α be a primitive element of F9 satisfying α2 +α− 1 = 0. Let C be the 2D
cyclic code over F3 of size 8×8 (i.e. length 64) whose dual C⊥ has the zero set

Z(C⊥) = [(α,α)]∪ [(α,α2)].

In other words, C and C⊥ are ideals of F3[x1,x2]/〈x8
1− 1,x8

2− 1〉. It is easy to
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observe that the F3-conjugacy classes of (α,α) and (α,α2) both have two elements.
Hence, by Proposition 3.1, dimF3(C⊥) = 64−4 = 60 and dimF3(C) = 4. It is shown
in [10, Example 6.2] that the minimum distance of C is 42. This is the best minimum
distance for a code of length 64 and dimension 4 over F3 according to [14].

We recall a basic ring theoretic fact. For the sake of completeness, a short proof is
provided.

Proposition 3.3. If I and J are ideals in a commutative ring R with identity such
that I+J =R, then I ∩J = IJ .

Proof. In general IJ ⊂ I ∩J , so we just need to show the opposite implication. Let
a be an element of the intersection and write 1 = u+ v for some u ∈ I and v ∈ J .
Then, a= a(u+v) = au+av. Since R is commutative, both au and av are elements
of the ideal IJ . Hence a ∈ IJ .

The next result collects important information on the zero sets of complementary
nD cyclic codes and it will be essential in the proof of the main result.

Proposition 3.4. Let (C,D) be an nD cyclic LCP of codes in Rn. Then,

i. Z(C)∪Z(D) = Z(C ∩D) = Ω.

ii. Z(C)∩Z(D) = ∅.

Proof. Since (C,D) is LCP, we have C ∩D = CD in Rn by Proposition 3.3. So it
suffices to show that Z(C)∪Z(D) = Z(CD).

i. Let a be in ∈ Z(C)∪Z(D) and assume without loss of generality that a ∈ Z(C).
So f(a) = 0 for all f ∈C, and hence f(a)g(a) = 0 for any g ∈D. Therefore, a is also
a root of summation of such products, which implies that a ∈ Z(CD).

Conversely, let a be an element of Z(CD). If a does not belong to Z(C)∪Z(D),
then there exist f ∈ C and g ∈D such that f(a) 6= 0 and g(a) 6= 0. So h(a) 6= 0 for
h= fg ∈ CD, which is a contradiction.

So we proved that Z(C)∪Z(D) = Z(CD) = Z(C ∩D). Since C ∩D = {0}, the
corresponding zero set is Ω.

ii. Note that |Ω|=m1 · · ·mn = dimFq(Rn). Since C⊕D =Rn, we obtain

|Ω|= dimFq(C) + dimFq(D).
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Then by Proposition 3.1, we have

|Ω|= (|Ω|− |Z(C)|) + (|Ω|− |Z(D)|),

and hence

(3.1) |Ω|= |Z(C)|+ |Z(D)|.

By part i, we also have

(3.2) |Ω|= |Z(C)∪Z(D)|= |Z(C)|+ |Z(D)|− |Z(C)∩Z(D)|.

Equations 3.1 and 3.2 imply that |Z(C)∩Z(D)|= 0, which proves the result.

Remark 3.5. Proposition 3.4 implies that Ω is a disjoint union of Z(C) and Z(D).
Carlet et al. showed in [7, Theorem 2.1] that if C and D are complementary cyclic
codes with the generating polynomials g(x) and u(x) (in R1 = Fq[x]/〈xm1−1〉), then
u(x) = (xm1 − 1)/g(x) (this is their statement in the case gcd(q,m1) = 1). Hence,
the zero sets (or the defining sets in the terminology of cyclic codes) of C and D

partition {0,1, . . . ,m1− 1}. Therefore, Proposition 3.1 extends their result to nD
cyclic codes for all n.

The next observation is on the relation between Z(C) and Z(D⊥) for an LCP (C,D)
of nD cyclic codes.

Proposition 3.6. If (C,D) is an LCP of nD cyclic codes in Rn, then Z(D⊥) =
Z(C)−1.

Proof. Since Ω is a disjoint union of Z(C) and Z(D) (cf. Remark 3.5), and Ω−1 =
Ω, the same is true for Z(C)−1 and Z(D)−1. We have Z(D⊥) = Ω−Z(D)−1 by
Proposition 3.1. By the preceding observation, this set is simply Z(C)−1.

Remark 3.7. Note that Proposition 3.6 also extends the analogous result for LCP
of cyclic codes to LCP of nD cyclic codes.

We are ready to prove the main result.

Theorem 3.8. Let (C,D) be an nD cyclic LCP of codes in Rn. Then C and D⊥

are equivalent.
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Proof. Consider the following map:

ψ : C −→ D⊥

f(x1, . . . ,xn) 7−→ xm1−1
1 ...xmn−1

n f(x−1
1 , . . . ,x−1

n ).

Note that ψ(f) is a polynomial for any f whose degree in xj is less than mj (for
all j = 1, . . . ,n). For f ∈ C, we have f(a1, . . . ,an) = 0 for all (a1, . . . ,an) ∈ Z(C).
Therefore ψ(f)(a−1

1 , . . . ,a−1
n ) = 0 for any such n-tuple, meaning that ψ(f) vanishes

on Z(C)−1 = Z(D⊥) (cf. Proposition 3.6). Hence, ψ indeed takes values in D⊥.

The map is clearly one-to-one. Since the dimensions of C and D⊥ are equal (by
Propositions 3.1 and 3.6), ψ is a bijection between C and D⊥.

More explicitly, if

f(x1, . . . ,xn) =
n∑
j=1

mj−1∑
ij=0

ai1,...,inx
i1
1 . . .x

in
n ,

then

ψ(f) =
n∑
j=1

mj−1∑
ij=0

ai1,...,inx
m1−1−i1
1 . . .xmn−1−in

n

=
n∑
j=1

mj−1∑
ij=0

am1−1−i1,...,mn−1−inx
i1
1 . . .x

in
n .

Under the correspondence (2.2) between Fm1×···×mn
q and Rn, the map ψ sends the

array (codeword) (ai1,...,in) to (am1−1−i1,...,mn−1−in). In other words, if we set a
permutation

σj : {0,1, . . . ,mj−1} −→ {0,1, . . . ,mj−1}

ij −→ mj−1− ij

for each j = 1, . . . ,n, then

σ : {0,1, . . . ,m1−1}× · · ·×{0,1, . . . ,mn−1} −→ {0,1, . . . ,m1−1}× · · ·×{0,1, . . . ,mn−1}

(i1, . . . , in) −→ (σ1(i1), . . . ,σn(in))

yields the explicit equivalence between the codewords (as arrays or vectors) of C
and D⊥ via (aσ(i1,...,in)) = (aσ1(i1),...,σn(in)).

13



3.2 LCP of Abelian Codes over Finite Fields: Non-Semisimple Case

The goal in this section is to extend the result, Theorem 3.8, to all abelian codes by
proving it when the length and the characteristic are arbitrarily chosen.

Let R be a finite commutative ring with identity and G be a finite abelian group.
We denote by R[G] be the group ring of G over R thus the elements of R[G] are of
the form ∑

g∈Gαgg, where αg ∈ R and nonzero for finitely many g ∈G. An abelian
code over R is defined to be an ideal in R[G].

The Jacobson Radical of R, Jac(R), is defined to be the intersection of all maximal
ideals of R. The ring R is local if it has a unique maximal ideal.

There is a characterization for a local group ring which is in the following:

Proposition 3.9 (Theorem, [22]). Let R be a commutative ring with identity and
let G be a finite abelian group. Then R[G] is local iff R is local, G is a p-group and
p ∈ Jac(R).

Remark 3.10. Since Fq has characteristic p this yields p ∈ Jac(Fq) = {0}. Also
clearly Fq is local. So by using this characterization, we have that Fq[P ] is a local
group algebra for all p-groups P .

Denote the cyclic group of order mi by Cmi and consider the abelian group

G= Cm1×·· ·×Cmn .

Then there is a natural isomorphism between the group algebra Fq[G] and the
quotient ring

Rn = Fq[x1, . . . ,xn]/〈xm1
1 −1, . . . ,xmn

n −1〉.

We can extend the Fq-linear isomorphism in (2.2) via the following mappings
(3.3)
Fm1×···×mn
q ←→ Rn ←→ Fq[G](
ai1,i2,...,in

)
←→

n∑
j=1

mj−1∑
ij=0

ai1,i2,...,inx
i1
1 · · ·xinn ←→

n∑
j=1

mj−1∑
ij=0

ai1,i2,...,in(gi11 , . . . , ginn )

Moreover, Rn and Fq[G] are isomorphic as rings. Hence an abelian (nD cyclic) code
C can be viewed as an ideal in Fq[G] or in Rn ([12, 15]). When viewed in Fm1×···×mn

q ,
C is a linear code with symmetries induced from the ideal structure.
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One has that the abelian group G can be decomposed as

(3.4) G= A⊕P,

where |G| = N = mpt with |A| = m, |P | = pt and gcd(m,p) = 1. In other words, P
is the unique p-Sylow subgroup of G. Moreover, the group algebra Fq[A] can be
decomposed using Discrete Fourier Transform as

(3.5) Fq[A]'
a∏
i=1

Fq×
b∏

j=1
Kj×

c∏
`=1

(L`×L`) ,

where Kj ,L` are finite proper extensions of Fq for each 1 ≤ j ≤ b and 1 ≤ ` ≤ c,
for some nonnegative integers a,b,c (see [16]). Hence, Fq[G] = Fq[A][P ] can be
decomposed as

Fq[G] = Fq[A][P ]'
a∏
i=1

Fq[P ]×
b∏

j=1
Kj [P ]×

c∏
`=1

(L`[P ]×L`[P ]) .

Therefore abelian codes C,D in Fq[G] decompose as

C =
a∏
i=1

C1,i×
b∏

j=1
C2,j×

c∏
`=1

(
C3,`×C ′3,`

)
,

(3.6)

D =
a∏
i=1

D1,i×
b∏

j=1
D2,j×

c∏
`=1

(
D3,`×D′3,`

)
,

where C1,i,D1,i ⊆ Fq[P ], C2,j ,D2,j ⊆ Kj [P ] and C3,`,C
′
3,`,D3,`,D

′
3,` ⊆ L`[P ] are

abelian codes in respective group algebras, for all i, j, `.

The following result is not difficult to prove using the fact that F[P ] is a local group
algebra for a finite field F of characteristic p and any finite abelian p-group P (see
[22]).

Proposition 3.11. ([4, Theorem 2]) Let F be a finite field of characteristic p and
P be a finite abelian p-group. Then the ideals {0} and F[P ] are the only direct
summands of the group algebra F[P ].

Proof. It is clear that {0} and F[P ] are direct summands in F[P ]. Assume that an
ideal (abelian code) C in F[P ] is another direct summand. i.e. there exists an ideal
D such that C ∩D = {0} (and C +D = F[P ]) for {0} ( C,D ( F[P ]. Since F[P ]
is local, it has a unique maximal ideal M . So C,D ⊆M which yields C ∩D ⊆M .
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If we take the dual of both side we have M⊥ ⊆ (C ∩D)⊥ ⊆M . It follows that
M⊥ ⊆ (C ∩D) ⊆ M . But M 6= F[P ] (So M⊥ 6= {0}). So (C,D) can not be a
complementary pair of abelian codes.

A straightforward consequence of Proposition 3.11 is the following characterization:

Proposition 3.12. For a finite abelian group G as in (3.4), let C and D be abelian
codes in Fq[G] with the decompositions as in (3.6). Then, (C,D) is an LCP of
abelian codes if and only if

2.1 (C1,i,D1,i) ∈
{

({0},Fq[P ]),(Fq[P ],{0})
}
for all i= 1, . . . ,a,

2.2 (C2,j ,D2,j) ∈
{

({0},Kj [P ]),(Kj [P ],{0})
}
for all j = 1, . . . , b,

2.3 (C3,`,D3,`),(C ′3,`,D′3,`) ∈
{

({0},L`[P ]),(L`[P ],{0})
}
for all `= 1, . . . , c.

Hence, given an abelian code C in Fq[G], the complementary abelian code D is
uniquely determined by C.

Proof. By (3.6) it is easy to see that a pair of abelian codes (C,D) is an LCP
of codes in Fq[A×P ] iff (C1,i,D1,i) is LCP of abelian codes in Fq[P ] for all i =
1,2, . . . ,a and (C2,j ,D2,j) is LCP of abelian codes in Kj [P ] for all j = 1,2, . . . , b
and (C3,`,D3,`),(C ′3,`,D′3,`) are LCP of abelian codes in L`[P ] for all ` = 1,2, . . . , c
iff C1,i⊕D1,i = Fq[P ], C2,j ⊕D2,j = Kj [P ], C3,`⊕D3,` = L`[P ] and C ′3,`⊕D′3,` =
L`[P ] where C1,i,D1,i ⊆ Fq[P ], C2,j ,D2,j ⊆ Kj [P ] and C3,`,C

′
3,`,D3,`,D

′
3,` ⊆ L`[P ]

are abelian codes in respective group algebras, for all i, j, `. Then the result follows
from Proposition 3.11.

Remark 3.13. By Proposition 3.12, we have that any linear complementary pair
of abelian codes (C,D) in Fq[A×P ] is independent of the sylow p-subgroup P . In
other words, since in the decomposition of C and D, components are Kj [P ], L`[P ],
{0} or Fq, this allows us to write C and D as C̃[P ] and D̃[P ] respectively where C̃
and D̃ are linear complementary pair of abelian codes in Fq[A] (See also 3.5). Note
that p - |A|, so by using Theorem 3.8 we have that C̃ and D̃⊥ are equivalent.

For each i, j, `, set

C̃1,i :=

 {0}, if C1,i = {0}
Fq, if C1,i = Fq[P ]

,
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C̃2,j :=

 {0}, if C2,j = {0}
Kj , if C2,j = Kj [P ]

,

C̃3,` (C̃ ′3,`) :=

 {0}, if C3,` = {0} (if C ′3,` = {0})
L`, if C3,` = L`[P ] (if C ′3,` = L`[P ])

.

Define D̃1,i, D̃2,j , D̃3,`, D̃′3,` analogously. Let

C̃ =
a∏
i=1

C̃1,i×
b∏

j=1
C̃2,j×

c∏
`=1

(
C̃3,`× C̃ ′3,`

)
,

(3.7)

D̃ =
a∏
i=1

D̃1,i×
b∏

j=1
D̃2,j×

c∏
`=1

(
D̃3,`× D̃′3,`

)
.

Then (C̃, D̃) is an LCP of abelian codes in Fq[A]. Moreover, C = C̃[P ] and D= D̃[P ]
in Fq[A][P ] = Fq[G].

Proposition 3.14. With the above notation, let (C,D) = (C̃[P ], D̃[P ]) be LCP of
abelian codes in Fq[G]. Then C̃[P ] and D̃⊥[P ] are equivalent codes.

Proof. We observed that (C̃, D̃) is an LCP of codes in Fq[A]. In the semisimple case,
it was proved that there is an equivalence σ between C̃ and D̃⊥ ([13, Theorem 8]).
Then the following bijection is the equivalence desired:

π : C̃[P ] −→ D̃⊥[P ]∑
h∈P

chh 7−→
∑
h∈P

σ(ch)h.

Remark 3.15. The equivalence σ between C̃ and D̃⊥ is explicitly given in the
proof of Theorem 8 in [13]. Since the map π simply applies this permutation on
each coefficient ch ∈ C̃, we also have an explicit permutation equivalence established
between C̃[P ] and D̃⊥[P ]. It is also helpful to visualize elements of the group
algebra Fq[A][P ] as |P | = pt-tuple of elements of Fq[A] by ordering the elements in
P as (h1, . . . ,hpt). Then we can view elements of C = C̃[P ] as

pt∑
i=1

cihi←→ (c1, . . . , cpt) ∈ Fq[A]p
t

,

where each ci belongs to C̃.
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We are ready to prove the main result of this section, which extends [13, Theorem
8] from abelian codes in Fq[A] to those in Fq[G] (i.e. all abelian codes over finite
fields).

Theorem 3.16. Let (C,D) be an LCP of abelian codes in Fq[G]. Then C and D⊥

are equivalent codes.

Proof. We need to show that D̃⊥[P ] and (D̃[P ])⊥ are equal. Note that if dimFq D̃ =
k, then dimFq D̃

⊥[P ] = dimFq(D̃[P ])⊥ = (m−k)pt (recall that m= |A| and pt = |P |).
Hence it is enough to show that one of these codes is contained in the other. By
Remark 3.15, an element of D̃⊥[P ] can be viewed as a pt-tuple (d⊥1 , . . . ,d⊥pt) of
elements of D̃⊥. Same also holds for the elements of D̃[P ] for which the elements
can be viewed as pt-tuples of elements of D̃. Since the Euclidean inner product on
Fq[A] is “coordinate-wise”, (d⊥1 , . . . ,d⊥pt) is orthogonal to all elements in D̃[P ]. Hence
D̃⊥[P ]⊆ (D̃[P ])⊥ and the result follows.

Remark 3.17. Recall that the matrix product (MP) code C = [C1, . . . ,Cs]A is the
set of all matrix products [c1, . . . , cs]A where C1, . . . ,Cs are linear codes of length m
over Fq, ci ∈ Ci is an m× 1 column vector ci = (c1,i, . . . , cm,i)T for i = 1, . . . , s and
A = (aij) is an s× l matrix over Fq with s ≤ l. It is known that if (Ci)1≤i≤s are
linear codes over Fq with parameters [m,ki] and A is an s× l full row rank matrix,
then C = [C1, . . . ,Cs]A is an [ml,∑s

i=1ki] code.

By using the following lemma, the equality D̃⊥[P ] = (D̃[P ])⊥ can also be proven via
MP codes.

Lemma 3.18 (Proposition 6.2, [2]). Let (Ci)1≤i≤s be linear codes over Fq with
parameters [m,ki] and A be a non-singular matrix. If C = [C1, . . . ,Cs]A, then
([C1, . . . ,Cs]A)⊥ = [C⊥1 , . . . ,C⊥s ](A−1)T .

Corollary 3.19. Let D = D̃[P ] be as in Proposition 3.14. Then D̃⊥[P ] = (D̃[P ])⊥.

Proof. We can see a linear code D = D̃[P ] as an MP code as follows. Let A= (I)b×b
be an identity matrix where |P |= pt = b for some t. Then,

D̃[P ] = [D̃, . . . , D̃]A= [D̃, . . . , D̃] = {(d1, . . . ,db),di ∈ D̃)}

is a matrix-product code. Since (I)b×b = A= (A−1)T by using Lemma 3.18,

(D̃[P ])⊥ = [D̃⊥, . . . , D̃⊥] = D̃⊥[P ].
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3.3 LCP of Abelian Codes: Generator Polynomials

Recall that, Yang and Massey characterized LCD cyclic codes in terms of the gen-
erator polynomial ([26]). This result was extended to LCP of cyclic codes by Carlet
et al. ([7, Theorem 2.1]). Our goal in this section is to extend the same result to
abelian codes.

Consider a finite abelian group G=A⊕P as in (3.4). It is noted in [16] that if P is a
cyclic p-group, then Fq[G] is a principal ideal group algebra (PIGA). Clearly, Fq[G]
is also a PIGA when P is trivial (i.e. when Fq[G] is semisimple). Hence an abelian
code C in a PIGA Fq[G] can be generated by one element, though not uniquely, as
in the case of cyclic codes. Let u,v ∈ Fq[G] such that

C = Fq[G]u= {x ∈ Fq[G] : xv = 0}=: Ann(v) (cf. [16, Proposition 3.1]).

Here, Ann(v) is the annihilator of v. Hence, one can define generator and check
elements for an abelian code in a PIGA (u and v in this case). Moreover, for
v =

∑
g∈G

vgg ∈ Fq[G], if we set

v̄ :=
∑
g∈G

v−gg,

then C⊥ = Fq[G]v̄, see [16, Proposition 3.1]. We will also need the following fact.

Proposition 3.20. ([16, Corollary 5.8]) For Fq[G]u = Ann(v) in a semisimple
algebra Fq[G], we have Fq[G]u∩Fq[G]v = {0}.

With generator and check elements defined as above for an abelian code in a PIGA,
we can now extend the relation between the generator polynomials of an LCP of
cyclic codes ([7, Theorem 2.1]) to the abelian codes in a semisimple PIGA.

Proposition 3.21. Assume that gcd(q, |G|) = 1 and let C = Fq[G]u = Ann(v) and
D = Fq[G]w be abelian codes, where u,v,w ∈ Fq[G]. Then, (C,D) is an LCP of
abelian codes if and only if D = Fq[G]v.
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Proof. Assume that Fq[G]u⊕Fq[G]w = Fq[G] (i.e. (C,D) is LCP). Then,

Fq[G]v = (Fq[G]u⊕Fq[G]w)∩Fq[G]v

= (Fq[G]u∩Fq[G]v)⊕ (Fq[G]w∩Fq[G]v)

= Fq[G]w∩Fq[G]v (Proposition 3.20).

Hence, Fq[G]v ⊆ Fq[G]w.

Note that |Fq[G]u||Fq[G]v̄| = |Fq[G]| = |Fq[G]u||Fq[G]w|. The first equality follows
since C⊥ = Fq[G]v̄, and the second follows since (C,D) is LCP. Hence, |Fq[G]v̄| =
|Fq[G]w|. It is easy to see that |Fq[G]v̄|= |Fq[G]v| (cf. [16, Corollary 3.2]). Therefore
|Fq[G]v|= |Fq[G]w|. Thus we obtain Fq[G]v = Fq[G]w.

For the converse statement, let us assume that Fq[G]w = Fq[G]v. Then Fq[G]u∩
Fq[G]w = {0} by Proposition 3.20. The fact that |Fq[G]|= |Fq[G]u||Fq[G]w| follows
using the same argument above. Hence, Fq[G] is the direct sum of Fq[G]u and
Fq[G]w.

Remark 3.22. Theorem 2.1 in [7] states in the semisimple case that a pair of cyclic
codes (C,D) of length n with generator polynomials g(x),h(x), respectively, is LCP
if and only if h(x) = (xn− 1)/g(x). Note that these are codes in Fq[Cn], or in
Fq[x]/〈xn− 1〉. Hence, g(x)h(x) = 0 in Fq[x]/〈xn− 1〉 and C = Ann(h(x)). Hence,
Proposition 3.21 indeed extends the result of Carlet et al. Let us also note that
[7, Theorem 2.1] extends the Yang-Massey characterization of cyclic LCD codes
(i.e. (C,C⊥) is LCP), which states that C is LCD if and only if g(x) is a self-
reciprocal polynomial. In the general semisimple abelian code case, since C⊥ =
Fq[G]v̄, Proposition 3.21 concludes that C is LCD if and only if C⊥ = Fq[G]v̄ =
Fq[G]v. This is analogous to the Yang-Massey result, since v̄ amounts to “reciprocal"
of v. Moreover, Fq[G]v̄ = Fq[G]v and Fq[G]ū= Fq[G]u are equivalent statements, as
shown in [16, Theorems 5.4 and 5.9], for LCD abelian codes in the semisimple case.
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4. LCP of Group Codes over Finite Chain Rings

4.1 Finite Chain Rings

We start with brief background on chain rings. Let us note that unless otherwise
specified, R will denote a finite chain ring in this section.

A finite commutative ring R with identity is called a chain ring if its lattice of ideals
is a chain under set-theoretic inclusion. For the class of finite commutative chain
rings, we have the following equivalent conditions:

Proposition 4.1. Let R be a finite commutative chain ring. The following are
equivalent:

i. R is a local ring and the maximal ideal M of R is principal.

ii. R is a local principal ideal ring.

iii. R is a chain ring.

So R is a local ring and a principal ideal ring. Let γ be a generator of the maximal
ideal and let the ideals of R be

R =Rγ0 ⊃Rγ ⊃ ·· · ⊃Rγv−1 ⊃Rγv = {0}.

The number v with γv = 0 is called the nilpotency index of γ. Note that since R is
a commutative ring, Rγi = γiR for all i.

It is clear that R/Rγ is a finite field, which we will denote by Fq. The natural
projection map ϕ : R→ Fq takes a ring element to its coset modulo Rγ. This map
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is a surjective ring homomorphism and it extends to Rn and takes values in Fnq via

(4.1) (ri) 7−→ ϕ(ri),

where (ri) denotes an n-tuple over R. We will denote the extended map by ϕ as well,
which is a surjective R-module homomorphism. The kernel of this map is the set of
all n tuples whose coordinates are multiples of γ (i.e. (γR)n). We will also denote
this set with γRn. Observe that ϕ maps an R-submodule of Rn to an Fq-subspace
of Fnq . An R-submodule of Rn is called a linear code over R. Hence, ϕ maps a linear
code over R to a linear code over Fq.

A well-known example of a finite chain ring is in the following (see [21], Theorem
XIV.8, Corollary XV.4):

Example 4.2. The Galois ring of characteristic pa and dimension m, denoted by
GR(pa,m), is the Galois extension of degree m of the ring Zpa . Equivalently,

GR(pa,m) = Zpa [x]/〈h(x)〉,

where h(x) is basic irreducible polynomial of degree m in Zpa [x]. Each ideal of
GR(pa,m) is of the form 〈pk〉= pkGR(pa,m) for 0≤ k ≤ a. In particular, GR(pa,m)
is a chain ring with maximal ideal 〈p〉= pGR(pa,m) and residue field GF(pm) = Fpm
via considering a natural projection map

ϕ : GR(pa,m) −→ GR(p,m)

f(x) + 〈h(x)〉 7−→ f(x)(mod p) + 〈h(x)〉.

Note that if a= 1, then GR(p,m) = GF(pm) = Fpm and if m= 1, then GR(pa,1) =
Zpa .

Now, let G be a finite group. If G has order n, then it is clear that R[G] and Rn

are isomorphic as R-modules, where an element ∑g∈Gαgg ∈R[G] is identified with
the n tuple (αg). We will use this identification throughout the Chapter. The group
rings will be specifically used when we have results which are valid for group codes
over R. A right ideal of R[G] is called a group code over R (see [3] for group codes
over finite fields). Our main result (Theorem 4.13) holds for 2-sided ideals in R[G].
Therefore, unless otherwise stated, ideals will be 2-sided throughout and they will
be referred to as group codes. If G is abelian, then a group code (ideal) in R[G] is
an abelian code over R.

Remark 4.3. If G and G′ are finite multiplicative groups which are isomorphic
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via a map ψ, and if R is any ring, then it is easy to see that ψ extends to a ring
isomorphism

ψ : R[G] −→ R[G′]∑
g∈G

rgg 7−→
∑
g∈G

rgψ(g)

Hence such a map takes a group code in R[G] to a group code in R[G′]. If G=G′, we
can consider an automorphism of G as a permutation on G. Note that an arbitrary
permutation of G does not necessarily preserve the ideal structure in R[G] but those
which are automorphisms do.

A pair of linear codes (C,D) in Rn is called a linear complementary pair (LCP) of
codes if C⊕D = Rn. When D = C⊥, C is said to be a linear complementary dual
(LCD) code over R. It is easy to see that the dual of a group code in R[G] is also a
group code.

For a finite field F and an arbitrary finite group G, consider LCP of (2-sided) group
codes (C,D) in F[G]. Borello et al. showed in [3] that C is permutation equivalent
to D⊥. The permutation yielding the equivalence, which we will later denote by τ ,
is the inversion automorphism that takes g to g−1, for all g ∈ G. We will extend
this equivalence result to LCP of group codes over finite chain rings.

4.2 LCP of Group Codes over Chain Rings

In [3], Borello et al. obtained the most general statement of Theorem 3.16 for any
finite group (also without a restriction on the order of the group) by showing that
if (C,D) is LCP of group codes (ideals) in Fq[G], then C and D⊥ are permutation
equivalent. Our goal in this section is to generalize this result to all group codes
over finite chain rings. We start with a simple observation on LCP of codes over a
chain ring.

Lemma 4.4. If (C,D) is LCP of codes in Rn, then both C and D are free modules
(codes).

Proof. Note that by definition (being direct summands of the free module Rn), both
C and D are projective modules over R. A chain ring is local and by [17, Theorem
2], a projective module over a local ring is free.
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Proposition 4.5. (i) If (C,D) is LCP of codes in Rn, then (ϕ(C),ϕ(D)) is LCP
of codes in Fnq .

(ii) If (C,D) is LCP of group codes in R[G], then (ϕ(C),ϕ(D)) is LCP of group
codes in Fq[G].

Proof. (i) Let x ∈ Fnq . Since Rn is the direct sum of C,D, and ϕ is surjective, there
exist c ∈ C,d ∈ D such that x = ϕ(c) +ϕ(d). Hence, Fnq is the sum of ϕ(C) and
ϕ(D).

Let x be in the intersection ϕ(C)∩ϕ(D). Then x= ϕ(c) = ϕ(d), for some c ∈C,d ∈
D. This gives ϕ(c−d) = 0, and hence (c−d) ∈ γRn. Therefore, γv−1(c−d) = 0. Set

z := γv−1c= γv−1d.

Note that z is in C ∩D, which is by assumption trivial. So, z = γv−1c = 0, which
yields c ∈ γRn. Hence, x= ϕ(c) = 0 and ϕ(C)∩ϕ(D) = {0}.

(ii) We need to show that a left ideal C ⊂R[G] is mapped to a left ideal ϕ(C)⊂Fq[G],
since the rest follows by part (i). For this, it suffices to show that ϕ(C) is closed
under left multiplication by an arbitrary element g′ ∈G, since being closed under left
multiplication by a general element in Fq[G] then follows by linearity. If ∑g cgg ∈C,
then

g′ϕ

∑
g
cgg

= g′
∑
g
ϕ(cg)g =

∑
g
ϕ(cg)g′g = ϕ

g′
∑

g
cgg

 .
Since C is a left ideal, g′∑g cgg ∈C. Hence, ϕ(C) is a left ideal in Fq[G]. The proof
for right ideal property is identical.

For an element r ∈ R and x ∈ Rn, rx denotes the scalar multiplication, where each
coordinate of x is multiplied by r. For a code C in R[G], we set rC := {rc : c ∈ C}.
We define the submodule quotient of C by r as

(C : r) := {x ∈Rn : rx ∈ C},

which is a linear code in Rn. It is clear that

C = (C : γ0)⊆ (C : γ)⊆ ·· · ⊆ (C : γv−1),

which implies

ϕ(C) = ϕ((C : γ0))⊆ ϕ((C : γ))⊆ ·· · ⊆ ϕ((C : γv−1)).
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We collect some facts which will be needed. Let us note that the dual code of C ⊂Rn

(with respect to the Euclidean product) is defined as in codes over finite fields, and
it is denoted by C⊥.

Proposition 4.6. ([23, Theorem 3.10]) Let C be a code in Rn. Then,

(i) |C⊥|= |Rn|/|C|.

(ii) ϕ((C : γv−1−i))⊥ = ϕ((C⊥ : γi)), for all i.

Proposition 4.7. ([23, Proposition 3.13], [24, Proposition 3.11 and Corollary
3.12]) The following holds for a free code C in Rn.

(i) C⊥ is free.

(ii) ϕ(C) = ϕ((C : γ)) = · · ·= ϕ((C : γv−1)).

(iii) C ∩γiRn = γiC, for all i.

(iv) For C̃ := C \γRn = C \γC, we have C = C̃ ∪γC̃ ∪·· ·∪γv−1C̃ ∪{0}.

We are ready to proceed with the steps of our proof.

Proposition 4.8. If (C,D) is LCP of codes in Rn, then (C⊥,D⊥) is also LCP.

Proof. Let x be an element of C⊥∩D⊥ and let u= uC +uD be an arbitrary element
in Rn, where uC ∈ C and uD ∈D. Then the Euclidean product of x and u is

x · (uC +uD) = x ·uC +x ·uD = 0,

since x is orthogonal to both C and D. So, x = 0 since its inner product with any
element in Rn is 0. Therefore C⊥∩D⊥ = {0}.

For c,c′ ∈C⊥ and d,d′ ∈D⊥, if c+d= c′+d′ then c−c′ = d′−d∈C⊥∩D⊥. But this
intersection is shown to be trivial, hence c= c′ and d= d′. Therefore the number of
elements in C⊥+D⊥ = {c′+d′ : c′ ∈C⊥,d′ ∈D⊥} is |C⊥||D⊥|. By Proposition 4.6,

|C⊥||D⊥|= |Rn|2

|C||D|
= |Rn|.

Hence, C⊥+D⊥ =Rn. The result follows since the two dual codes intersect only at
0.

Proposition 4.9. (i) For a free code C ⊂Rn, we have ϕ(C)⊥ = ϕ(C⊥).
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(ii) If (C,D) is LCP of group codes in R[G], then ϕ(C) and ϕ(D⊥) are equivalent
codes.

Proof. (i) We have ϕ(C)⊥ = ϕ((C⊥ : γv−1)) by Proposition 4.6. By Proposition 4.7
((i) and (ii)), ϕ((C⊥ : γv−1)) =ϕ(C⊥) for the free code C⊥. Hence the result follows.

(ii) By Proposition 4.5, (ϕ(C),ϕ(D)) is LCP of group codes in Fq[G]. Then by [3]
(cf. Section 4.1), ϕ(C) and ϕ(D)⊥ are equivalent group codes. The result follows
since D is a free code and we have ϕ(D)⊥ = ϕ(D⊥) by part (i).

Remark 4.10. When we take an LCP of group codes (C,D) over R, by using
ϕ projection map we go below over Fq where we showed in Proposition 4.9 that
ϕ(C) and ϕ(D⊥) are equivalent group codes. Therefore τ(ϕ(C)) = ϕ(D⊥) for some
permutation τ .

Consider an isomorphism f via

R[G]/Ker(ϕ) −→ Fq[G],

x+Ker(ϕ) 7−→ ϕ(x).

Then, f(C+Ker(ϕ)) = ϕ(C) and f(D⊥+Ker(ϕ)) = ϕ(D⊥).
So C+Ker(ϕ) = f−1(ϕ(C)) and D⊥+Ker(ϕ) = f−1(ϕ(D⊥)).

Hence we get,

D⊥+Ker(ϕ) = f−1(ϕ(D⊥)) = f−1(τ(ϕ(C))) = τ(f−1(ϕ(C))).

So, D⊥+Ker(ϕ) = τ(C+Ker(ϕ)) which gives that τ(C)−D⊥ ∈Ker(ϕ) (over R).

In order to prove that C and D⊥ are equivalent codes in R[G], we will prove τ(C) =
D⊥ where we have that τ(C)−D⊥ ∈ Ker(ϕ). This says that when we take two
codewords of C and D⊥ above, which are τ -equivalent below, their difference may
not be 0 but they will be in the same coset of Ker(ϕ) = γR[G] with respect to R[G].
At this point related results of Norton and Salagean will be important in order to
prove the equivalence between C and D⊥.

Remark 4.11. Note that for an LCP of group codes (C,D) in R[G], we have

|D⊥| = |R[G]|
|D|

(by Proposition 4.6(i))

= |C||D|
|D|

(since C⊕D =R[G])

= |C|.
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Let τ denote the permutation between ϕ(C) and ϕ(D⊥) ([3]). Then,

ϕ(τ(C)) = τ(ϕ(C)) = ϕ(D⊥).

For a free code over R, the minimum distance is equal to the minimum distance of its
image under ϕ ([24, Corollary 4.3]). A permutation clearly preserves the minimum
distance. Hence, we have

d(C) = d(τ(C)) = d(ϕ(τ(C))) = d(ϕ(D⊥)) = d(D⊥).

Our aim is to lift the equivalence τ between ϕ(C) and ϕ(D⊥) to an equivalence
between C and D⊥, whose cardinalities and minimum distances have been shown
to be equal.

From this point on, we consider an LCP of group codes (C,D) in R[G], since we
will build up a proof for the main result (Theorem 4.13) from the permutation
equivalence between ϕ(C) and ϕ(D⊥) (cf. Proposition 4.9, Remark 4.11). However,
note that Proposition 4.12 is true more generally (for free codes in Rn).

If we restrict the map ϕ : R[G]→ Fq[G] to the (free) group codes C and D⊥, and
use Proposition 4.7(iii), we obtain the isomorphisms
(4.2)
C/(C ∩γR[G]) = C/γC ' ϕ(C) and D⊥/(D⊥∩γR[G]) =D⊥/γD⊥ ' ϕ(D⊥).

Let t := |ϕ(C)|= |ϕ(D⊥)| and set the elements of the cosets C/γC and D⊥/γD⊥ as
follows:

C/γC := {c1 +γC = γC,c2 +γC, . . . , ct+γC} ,

D⊥/γD⊥ :=
{
d1 +γD⊥ = γD⊥,d2 +γD⊥, . . . ,dt+γD⊥

}
.

(i.e. c1 = 0 = d1 in R[G]). Clearly, cosets partition the codes C and D⊥:

(4.3) C =
⋃̇

1≤i≤t
(ci+γC) and D⊥ =

⋃̇
1≤i≤t

(di+γD⊥)

Note that ϕ is constant on cosets, since a multiple of γ is mapped to 0. Namely for
all i= 1, . . . , t, we have

ϕ(ci+γc) = ϕ(ci) +ϕ(γc) = ϕ(ci) for all c ∈ C,
ϕ(di+γd) = ϕ(di) +ϕ(γd) = ϕ(di) for all d ∈D⊥.

Moreover ϕ(ci) 6= ϕ(cj) (for i 6= j), since otherwise ci and cj would be in the same

27



coset modulo γC. The same holds for representatives of cosets of D⊥ modulo γD⊥.
Hence, we have

ϕ(C) = {ϕ(c1) = 0,ϕ(c2), . . . ,ϕ(ct)} ,

ϕ(D⊥) = {ϕ(d1) = 0,ϕ(d2), . . . ,ϕ(dt)} .

Without loss of generality, we assume that the coset representatives are indexed so
that the permutation τ between the equivalent codes ϕ(C) and ϕ(D⊥) (cf. Remark
4.11) satisfies

(4.4) τ(ϕ(ci)) = ϕ(τ(ci)) = ϕ(di), for all i= 1, . . . , t.

Note that this implies

(4.5) τ(ci)−di ∈ γR[G] for all i= 1, . . . , t.

Before the proof of the main result, let us state the following which gives a generating
set as an R-module for a free code C in R[G].

Proposition 4.12. Let C be a free code in R[G] with the following representation
(cf. (4.3)):

C =
⋃̇

1≤i≤t
(ci+γC).

Let S := {c2, . . . , ct}. Then any element of C can be represented as sum of the
elements in

S∪γS∪·· ·∪γv−1S.

Proof. By Proposition 4.7, we have

C = C̃ ∪γC̃ ∪·· ·∪γv−1C̃ ∪{0},

where C̃ = C \γC. Since cosets modulo γC partition C, and recalling that c1 = 0,
we have

C̃ = (c2 +γC) ∪̇ · · · ∪̇ (ct+γC),

γC = γC̃ ∪·· ·∪γv−1C̃ ∪{0}.

Hence,
C̃ =

⋃̇
2≤i≤t

(ci+γC) =
⋃̇

2≤i≤t

(
ci+ (γC̃ ∪·· ·∪γv−1C̃ ∪{0})

)
.
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Since γv = 0, we have

γv−1C̃ =
t⋃
i=2

{
γv−1ci

}
,

γv−2C̃ =
t⋃
i=2

(
γv−2ci+ (γv−1C̃)

)
=

t⋃
i=2

(
γv−2ci+

(
t⋃
i=2

{
γv−1ci

}))
.

Continuing in the same manner until γC̃, we obtain the desired result.

We are ready to prove the main result for LCP of group codes (2-sided ideals) over
a chain ring.

Theorem 4.13. Let (C,D) be an LCP of group codes in R[G], where R is a finite
chain ring and G is a finite group. Then C and D⊥ are equivalent codes.

Proof. By Proposition 4.9, ϕ(C) and ϕ(D⊥) are equivalent codes. Let τ be the
permutation between them (i.e. ϕ(τ(C)) = ϕ(D⊥)). Note that (C⊥,D⊥) is also
an LCP of codes in R[G] by Proposition 4.8, and hence (ϕ(C⊥),ϕ(D⊥)) is LCP in
Fq[G] (Proposition 4.5). If {c′1 = 0, c′2, . . . , c′s} denotes the coset representatives of
C⊥ modulo γC⊥ and {d1 = 0,d2, . . . ,dt}, as before, denotes the coset representatives
of D⊥ modulo γD⊥, we have

(4.6) Fq[G] = ϕ(C⊥)⊕ϕ(D⊥) = {ϕ(c′i) +ϕ(dj) : 1≤ i≤ s, 1≤ j ≤ t}.

Since C is free, τ(C) is also a free code in R[G] and partitions as

τ(C) =
⋃̇

1≤i≤t
(τ(ci) +γτ(C)) (cf. (4.3)),

where {c1 = 0, c2, . . . , ct} is the set of coset representatives of C modulo γC.

If τ(C)∩C⊥ contains an element x in a coset c′i+γC⊥ for some i ∈ {2, . . . , s}, then

ϕ(x) = ϕ(c′i) 6∈ ϕ(τ(C)) = ϕ(D⊥) = {ϕ(d1) = 0,ϕ(d2), . . . ,ϕ(dt)} (cf. (4.6)).

Therefore τ(C)∩C⊥ is contained in γC⊥, hence in γτ(C) (cf. Proposition 4.7 (iii)).
Let x ∈ τ(C)∩C⊥ be x = γτ(c(1)) = γc′(1), where c(1) ∈ C and c′(1) ∈ C⊥. Then
γ(τ(c(1))− c′(1)) = 0 and hence the difference τ(c(1))− c′(1) is a multiple of γv−1:

i.e. τ(c(1)) = c′(1) +γv−1y1, for some y1 ∈R[G].
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If c′(1)∈C⊥\γC⊥, then ϕ(τ(c(1))) =ϕ(c′(1)) 6∈ϕ(τ(C)) again. Hence, c′(1) = γc′(2)
for some c′(2) ∈ C⊥ and

x= γ2c′(2) = γ2τ(c(2)),

where c(2)∈C. This yields γ2(τ(c(2))−c′(2)) = 0 and hence the difference τ(c(2))−
c′(2) is a multiple of γv−2. In other words, τ(c(2)) = c′(2) + γv−2y2 for some y2 ∈
R[G]. By the same reasoning, c′(2) ∈ γC⊥ and hence

x= γ3τ(c(3)) = γ3c′(3) for some c(3) ∈ C and c′(3) ∈ C⊥.

Continuing in this manner, we conclude that the element x in τ(C)∩C⊥ must be
{0}.

Note that any permutation does not necessarily take an ideal of R[G] to an ideal
of R[G]. However τ does, as noted in Remark 4.3, since it is induced from an
automporhism of G. So, τ(C) is an ideal of R[G]. By (4.5), we have (for all
1≤ i≤ t)

τ(ci) = di+γx+γy,

for uniquely determined x ∈D⊥ and y ∈ C⊥, since R[G] = C⊥⊕D⊥. Let 1 = a+ b

for a ∈ C⊥, b ∈ D⊥. Then, τ(ci) = τ(ci)a+ τ(ci)b. Since τ(C) is an ideal, τ(ci)a
belongs to both τ(C) and C⊥, whose intersection is {0} (observe that we use the
fact that τ(C) and C⊥ are 2-sided ideals). Hence,

τ(ci) = (di+γx+γy)b= (di+γx)b+γyb.

Note that yb = 0 since it belongs to C⊥∩D⊥ = {0} (again, both codes are 2-sided
ideals). Hence, τ(ci) ∈ D⊥ for each i. This implies, by Proposition 4.12, that
τ(C)⊂D⊥. Since τ(C) and D⊥ have the same cardinalities (cf. Remark 4.11), we
have τ(C) =D⊥. This concludes the proof.

Remark 4.14. Since τ(C), C⊥ and D⊥ are 2-sided ideals in R[G], one can also
observe that

τ(C) = τ(C)R[G]

= τ(C)
(
C⊥⊕D⊥

)
=

(
τ(C)C⊥

)
⊕
(
τ(C)D⊥

)
where we have τ(C)C⊥ ⊂ τ(C)∩C⊥ = {0} . So τ(C)C⊥ = {0}, which gives that
τ(C) = τ(C)D⊥. Hence τ(C)⊂D⊥.
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