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Brain-computer interface (BCI) systems aim to establish direct communication channels
between the brain and external devices. The primary motivation is to enable patients
with limited or no muscular control, including amyotrophic lateral sclerosis (ALS) and
stroke patients, to use computers or other devices by automatically interpreting their intent
based on the measured brain electrical activity. Furthermore, enabling healthy individuals
to use BCI systems as an additional communication channel in certain human computer
interaction systems is also a current topic of interest.
Current experimental BCI systems are trained in a supervised fashion and then evaluated
during test sessions. With increasing demands for daily and long-term use of BCIs in
real-life applications such as in semi-autonomous cars, BCIs have been tested on longer
sessions in which researchers have observed considerably lower performance of trained
systems. This is believed to be caused by the nonstationary nature of the electroen-
cephalographic (EEG) signals. As a result, semi-supervised adaptation of BCI systems
based on test data has emerged as a new research domain. One of the main reasons under-
lying the nonstationarity of signals involves changes in the users’ cognitive states such as
the cognitive load, alertness, attention, fatigue, boredom, and motivation. However, dy-
namically extracting information about such cognitive states from EEG signals and using
that to improve the performance of BCI systems is currently an open research problem.
In this thesis, we tackle the highly complex problem of estimating the level of alertness
and vigilance of users during execution of cognitive tasks. To identify the neural, EEG-
based correlates of long-term task and response time consistency, we devise a series of
experiments running the sustained attention to response task (SART). After proposing
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a novel adaptive scoring scheme for vigilance, we provide new evidence on the close
relationship between intrinsic resting and task-related brain networks and develop mod-
els to predict consistency in tonic performance and response time using neural networks
and feature relevance analysis from spatio-spectral features of resting-state EEG signals.
Next, focusing on the imminent goal of predicting low and high vigilance intervals, we
propose fully automated systems based on convolutional neural networks (CNNs) using
phase locking value features as successful pre-trial predictors of phasic vigilance and per-
formance consistency. In all of these contributions, we consider the personal vigilance
traits and individual psychophysiological differences for modeling and detecting the ex-
tremely alert and drowsy trials in long and monotonous experiments, and enrich the lit-
erature with the evidence on spatio-spectro-temporal correlates of vigilant and consistent
behavior.
We then utilize Bayesian changepoint models for sequential inference and detection of
instants at which continuous vigilance levels of users enter a new phase. We demonstrate
the success of our online and offline vigilance models in detecting changepoints from both
the SART datasets collected in our lab and driving datasets that contain vigilance labels.
Finally and as the highlight of this thesis, we hypothesize that the underlying vigilance
levels affect users’ reaction time and thus the ability to focus and engage in motor imagery
BCI paradigms. We then introduce an adaptive alertness-aware MI classification system
for motor imagery BCI that uses a series of novel unsupervised learning schemes for
labeling trial vigilance levels during training and test sessions, and leads to a method with
full adaptation in both feature extraction and training of its classifier parameters. Three
different versions of this adaptive classification approach are introduced that are trained
differently on trials labeled with low vigilance levels by our various vigilance clustering
schemes. We report improvements in the overall test accuracy of adaptive versions with
respect to the original, non-adaptive baseline for our own SPIS MI-BCI dataset and the
BCI Competition IV Dataset 2a. A number of datasets collected in our BCI laboratory
are uploaded to a public repository at https://github.com/mastaneht.
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ÖZET

UYARLANABILIR BEYIN-BILGISAYAR ARAYÜZLERINE DOĞRU:
ZIHINSEL DURUM TANIMA IÇIN İSTATISTIKSEL ÇIKARIM

MASTANEH TORKAMANI AZAR

Elektronik Mühendisliği, Doktora Tezi, Ağustos 2020

Tez Danışmanı: Assoc. Prof. Müjdat ÇETİN

Tez Eş-danışmanı: Prof. Selim BALCISOY

Anahtar Kelimeler: Beyin-bilgisayar arayüzleri, uyarlanabilir sistemler,
elektroensefalografi, sensorimotor ritimler, motor hareketlerin zihinde canlandirilmasi,
uzamsal-izgesel öznitelikler, faz baglantisalligi, zihinsel durum tanima, bilis, sürekli

dikkat, uyaniklik, SART, istatistiksel sinyal isleme, istatistiksel çikarim, derin ögrenme,
evrisimli sinir aglari, Bayes modelleri, degisim noktasi tespiti.

Beyin-bilgisayar arayüzü (BBA) sistemleri, beyin ile harici cihazlar arasında doğrudan
iletişim kanalları kurmayı amaçlamaktadır. Bu arayüzleri inşa etmek için birincil mo-
tivasyon inme ve amyotrofik lateral skleroz (ALS) gibi, kas kontrolü sınırlı olan veya
hiç olmayan hastaların, ölçülen beyin elektriksel aktivitelerine dayalı biçimde, niyetlerini
otomatik olarak yorumlayarak, bilgisayarları veya diğer cihazları kullanmalarını sağla-
maktır. Ayrıca, günümüzde sağlıklı bireylerin BBA sistemlerini ek bir iletişim kanalı
olarak, belirli insan bilgisayar etkileşim sistemlerinde, kullanmalarını sağlamak da büyük
bir ilgi çekmektedir.
Mevcut deneysel BBA sistemleri gözetimli bir şekilde eğitilip daha sonra test oturumu
verilerinde değerlendirmektedir. BBA’ların günlük ve uzun vadeli, örneğin yarı otonom
arabalarda, kullanımına yönelik artan taleplerle, bu tür sistemler daha uzun zamanlı otu-
rumlarda test edilmiştir, ve bu bağlamda araştırmacılar eğitimli sistemlerin başarımlarının
önemli ölçüde düştüğünü gözlemlemişler. Bunun elektroensefalografik (EEG) sinyal-
lerin durağan olmayan doğasından kaynaklandığına inanılmaktadır. Bunun sonucunda,
test oturumları sırasında bu tür değişikliklere uyum sağlayan, yarı gözetimli öğrenme
ile uyarlanabilir BBA’ların tasarlanması yeni bir araştırma alanı olarak ortaya çıkmıştır.
Bu sinyallerin durağan olmamasının temel nedenlerinden biri, kullanıcıların bilişsel yük,
uyanıklık, dikkat, yorgunluk, can sıkıntısı ve motivasyon gibi bilişsel durumlarındaki
değişikliklerdir. Ancak, EEG sinyallerinden bu tür bilişsel durumlar hakkındaki bilgi-
leri dinamik olarak çıkarmak ve bunu BBA sistemlerinin başarımlarını iyileştirmek için
kullanmak önemli ve hâlâ çözülememiş zor bir araştırma sorunudur.
Biz bu tezde çok karmaşık bir sorun olan, bilişsel görevlerin yürütülmesi sırasında kul-
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lanıcıların uyanıklık ve dikkat düzeyini tahmin etmeyi ele alıyoruz. Uzun vadeli görev ve
tepki süresi tutarlılıklarının nöral, EEG tabanlı ilintilerini belirlemek için tepki görevine
sürekli dikkat (SART) testine dayalı bir dizi deney tasarlıyoruz. Uyanıklık için yeni bir
uyarlanabilir puanlama şeması önerdikten sonra, içsel dinlenme ve görevle ilgili beyin
ağları arasındaki yakın ilişki hakkında yeni kanıtlar sağlıyor ve sinir ağları ve dinlenme
durumu EEG sinyallerinin uzamsal-izgesel öznitelikleri üzerinde alaka analizi kullanarak
tonsal başarım ve tepki süresindeki tutarlılığı öngörmek için modeller geliştiriyoruz. Daha
sonra, düşük ve yüksek uyanıklık aralıklarını öngörmek hedefine odaklanıp, evresel uyanık-
lığın ve başarım tutarlılığının başarılı öngörücüleri olarak evre kilitleme değeri öznitelik-
lerini kullanan, evrişimli sinir ağlarına (CNN’ler) dayalı tam otomatik sistemler öneriy-
oruz. Bu katkılarımızın tümünde, uzun ve monoton deneylerdeki aşırı uyanık ve uykulu
aralıkları modellemek ve tespit etmek için kişisel uyanıklık özniteliklerini ve bireysel
psikofizyolojik farklılıkları dikkate alıyoruz, ve literatürü, uyanık ve tutarlı davranışın
uzamsal-izgesel-zamansal ilintilerine dair kanıtlarla zenginleştiriyoruz.
Ardından, kullanıcıların sürekli uyanıklık seviyelerinin yeni bir aşamaya girdiği anların
sıralı çıkarımı ve tespiti için değişim noktası modellerini kullaniyoruz. Çevrimiçi ve
çevrimdışı uyanıklık modellerimizin, hem laboratuvarımızda toplanan SART veri kümele-
rinde hem de uyanıklık etiketleri içeren sürüş veri kümelerinde değişim noktalarını başarılı
olarak tespit etmesini gösteriyoruz. Sonunda, bu tezin en öne çıkan katkısı olarak, altta
yatan uyanıklık seviyelerinin kullanıcıların tepki verme süresini ve dolayısıyla BBA mo-
tor hareketlerini zihinde canlandırmaya odaklanma kabiliyetini etkilediğini varsayıyoruz.
Daha sonra, eğitim ve test oturumları sırasında aralıkların uyanıklık seviyelerini etiketle-
mek için bir dizi yeni gözetimsiz öğrenme şeması kullanan ve hem öznitelik çıkarımı hem
de sınıflandırıcı parametrelerinin eğitiminde tam uyarlanma özelliğine sahip bir yönteme
yol açan Hayali Motor Hareketleri Tabanlı BBA için bir Uyarlanabilir Uyarılılığa dayalı
Sınıflandırmayı sunuyoruz. Bu uyarlanabilir sınıflandırma yaklaşımının, çeşitli uyanıklık
kümeleme şemalarımız tarafından düşük uyanıklık seviyeleriyle etiketlenmiş aralıklarda
farklı şekilde eğitilmiş üç farklı versiyonu tanıtılıyor. Sonuç olarak, kendi SPIS MI-BCI
veri kümemiz ve BCI Competitıon IV 2a veri kümesi için orijinal, uyarlanabilir olmayan
temele göre uyarlanabilir versiyonların genel test doğruluğundaki gelişmeleri rapor ediy-
oruz. BBA laboratuvarımızda toplanan birkaç veri kümesi, şu adreste halka açık bir de-
poya yüklenmiştir https://github.com/mastaneht.
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1 Introduction

The last three decades have seen a considerable amount of research on enabling individu-
als suffering from stroke, Parkinson’s disease, and Amyotrophic Lateral Sclerosis (ALS)
with the power to gain control of external devices. In this context, systems known as
brain-computer interfaces (BCIs) have been developed to provide these users with the
means for non-muscular communication and control through interpretation of their brain
electrical activity. As shown in Figure 1.1, BCIs are generally designed to record brain
signals and extract correlates of intentional control from the central nervous system, and
to provide real-time feedback in the form of detected mental actions to patients, their
caregivers, and their medical teams. A common BCI specially has to include signal pro-
cessing and machine learning components to classify features that distinguish between
brain rhythms activated during the tasks of interest.
Historically, BCIs have been meant to accomplish one of the following goals: (a) to re-
place lost functions and skills, as in the case of automatic spellers and word decoders,
(b) to restore impaired skills, as in the case of stimulating neural pathways for brain-
controlled orthopedics assisting patients with walking or grasping objects, (c) to speed up
the rehabilitation process by, for example, stimulating motor cortex through execution of
motor imagery tasks, and (d) to enhance the quality of user’s experience during interac-
tion with brain-computer and human-computer interfaces by brain/mental state monitor-
ing for detecting correlations of mental workload variations, onset of fatigue, decline of
motivation, and lapses of attention or vigilance [1].

Figure 1.1: The major blocks of a Brain-Computer Interface.

1



2

Figure 1.2: A user attending a motor imagery session in the SPIS BCI laboratory.

The last goal, i.e., detecting the underlying mental state has important implications for
both patients and healthy subjects. One of the highly used BCI paradigms is motor im-
agery (MI) in which users have to imagine the movement of a limb when prompted by
a cue – in the case of synchronous BCIs – or at arbitrary time points and at their own
will in asynchronous BCIs. Common instructions include imagining movements (quick
rotation or flexion/extension) of the left hand versus right hand in two-class MI, or to
imagine movements of the left and right hands, feet, and tongue in four-class MI. Such
imaginations, even when not accompanied by a physical movement, activate brain re-
gions related to motor execution and speed up the recovery of gait and lost movements
in a number of neuromuscular disorders [2]. Furthermore, healthy athletes use MI as
an assistive and complementary mode for training prior to competitions to improve their
ability for modulation of sensorimotor rhythms (SMR) [3]. Interestingly, practicing mo-
tor skills through motor imagination is reported as an effective learning tool that improves
the surgical performance of medical and surgical trainees [4].
In terms of signal acquisition, BCIs may acquire data invasively through electrodes im-
planted in the cerebral cortex using the electro-corticography (ECoG) from extremely
locked-in patients, or noninvasively and through scalp sensors using electroencephalog-
raphy (EEG), magnetoencephalography (MEG), functional magnetic resonance imaging
(fMRI), functional near-infrared spectroscopy (fNIRS), or positron emission tomography
(PET) technologies. Among these different modalities, EEG recordings provide a rela-
tively less expensive, more reliable, and more robust basis for information extraction and
command execution. In this context, each user attends a number of calibration sessions
for supervised training of systems’ classifiers, and then participates in test sessions where
the trained classifier should detect the user’s intentions such as the spelled words or di-
rection of imagined movements without any further instruction. Figure 1.2 demonstrates
a user with a wired EEG headset attending to a motor imagery visual interface inside the
Faraday’s case of the Signal Processing and Information Systems (SPIS) BCI laboratory
at Sabanci University.
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To increase the robustness of BCI systems for long-term use, as needed for locked-in
patients or those undergoing long rehabilitation sessions, participants of clinical trials
and cognitive studies are invited to attend multiple test sessions or report their experience
during daily BCI use. However, classical classifiers show a decline in performance as the
duration of the test session increases. Such reductions in correct classification rates are
caused by several factors, including high nonstationarity in the brain electrical activity
which changes or shifts the learned statistical distributions of EEG signals between trials
or across sessions [5], and results in ambiguity in perception of user’s intended tasks [6].
Designing traditional or deep learning-based semi-supervised BCIs that adapt to such
variations during the test sessions is still an open challenge [7]–[9].
The inherent nonstationarity in cortical activities is likely to be caused by three main
factors: (a) Occurrence of physiological events, such as sleep spindles, epileptic spikes,
and high frequency activities due to psychological disorders that affect the spatio-spectro-
temporal features and statistical distributions of EEG signals [10], (b) Non-cortical sources
of disturbance and artifacts such as ocular and muscular movements, cardiac activity, and
instrumentation noise [11], and (c) Variations in the users’ cognitive states such as the
loss of motivation, increase in fatigue and boredom, fluctuations in the cognitive work-
load due to varying task difficulties, and lapses in sustained attention or reduction in
alertness during execution of daily tasks demanding a certain level of engagement [12],
[13]. Losing interest and feeling drowsy during long BCI sessions in unstimulating lab
settings in a common problem that affects the perception of visual stimuli, results in ask-
ing oneself “Did a cue occur?” or “Was the cue pointing to the left or right?”, and deters
the ability to concentrate on the actual imagination of moving or rotating the limbs. To
be more precise, a drowsy user either takes longer to start imagining the limb movement
and feels unable to decrease their SMR to the degree that the classifier can distinguish
it from a different class or resting state, or completely misses the cue and the upcom-
ing trial. Therefore, dynamically extracting information about such cognitive states from
EEG data and using this information to improve the performance of BCI systems is cur-
rently an open and extremely challenging research problem to which this dissertation has
attempted to answer.
Interested in the ability to maintain attention over a long period of time in response to
infrequent but important stimuli, we focus on sustained attention or vigilance as the cog-
nitive variable of choice to explore in this dissertation. We first discuss inferential meth-
ods for estimation of attention levels during the execution of a long Sustained Attention
to Response Task (SART) using a variety of spatio-spectral features from EEG signals
recorded before the task execution during the resting state of the brain, and during the
actual execution but before observation of visual stimuli. The flow of one trial of SART
can be seen in Figure 3.2 in which digit 3 is the infrequent target and the rest of dig-
its constitute the frequent non-target distractors. Next, we present a novel BCI system
that extracts information about the current vigilance level during test sessions, extracts
the corresponding MI features from EEG signals adapted to that vigilance level, and
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performs MI classification. In this context, our proposed Adaptive Alertness-Aware MI
Classification falls in the area of cognitive computing in which systems learn to interact
with humans and adapt to the context and environmental variations through learning from
huge amount of data and acting upon their predictions and inferences. Adaptation of BCI
systems to changes in personal or environmental factors is one of the topics on the agenda
of BCI research, also foreseen in the 2020 Horizon roadmap for Brain/Neural-Computer
Interaction Horizon [1]. However, making this update based on the users’ sustained atten-
tion level has not yet been fully achieved, and the development of such "neuro-adaptive"
systems based on continuous assessment of attention level is an important contribution of
this dissertation.
In this thesis we have aimed to develop new collective and sequential inference techniques
based on deep learning architectures to estimate the level of sustained attention from EEG
data during SART tests as our ground truth, labeled data. Second, we aimed to implement
a system for estimating the sustained attention level during a complex BCI task such as
the motor imagery paradigm. This inferential model combines the perceived intention
from the users’ EEG data – similar to active BCIs – and the neural correlates of reduced
attention – as in passive BCIs – from the aforementioned learned features. Finally, we
incorporated the machine learning and inference algorithms developed in the previous
phases to develop a neuro-adaptive BCI classification system that tackles the challenging
task of updating the BCI classifier based on the estimated level of attention lapses. To
the best of our knowledge, adaptive BCIs based on objective and unsupervised inference
of sustained attention and other cognitive states as side variables of BCIs that report
improved classification accuracy do not currently exist in the literature.

1.1 Recent Work on Adaptive Brain-Computer Interfaces

EEG-based BCIs enable communication by interpreting the user’s intent based on mea-
sured brain electrical activity. Such interpretation is usually performed by supervised
classifiers constructed during training sessions. However, the fact that static classifiers
are not robust to shifts in the EEG feature space from one session to the next [5], from the
training/calibration session to the test/evaluation/feedback session, and to the changes in
cognitive states of users, has generated interest in adapting BCI classifiers in supervised,
semi-supervised, and unsupervised manners [7], [14]. The first two options, however,
require access to additional labeled data that is hard to obtain objectively. In the past two
decades, the BCI community has recognized this need and attempted to develop online
learning and classifier adaptation methods [14]–[17]. In one of the major works on BCI
adaptation, Vidaurre and Blankertz [18] divided BCI users to three categories: Users for
whom a classifier can be trained and run in real-time to provide feedback with acceptable
accuracy, those for whom the trained classifier needs to be updated to be successfully
used in feedback sessions due to changes in learned features because of various sources
of nonstationarity, and people for whom even the training phase fails and results in the
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chance level accuracy. For the third group, the classifier cannot either detect any sensori-
motor rhythms over the motor region, or no distinguishable activity is detected in the left
and right cortices. Updating of classifiers and co-adaptation learning have been proposed
as a possible solution for users in the second and third groups [18], [19].
In the context of covert adaptation for BCIs, classifiers can be updated with supervised
methods using only the labeled data, in a semi-supervised manner with both labeled and
unlabeled data, and in an unsupervised approach with only unlabeled data. Supervised
methods for updating the covariance matrix based on subject-independent and subject-
specific as well as unsupervised adaptation with subject-specific features were utilized by
the Berlin group on the three aforementioned types of users [18]. Semi-supervised ver-
sions of linear discriminant analysis (LDA) are frequently utilized, assuming that class
conditional attributes are variables with normal distribution [7], [20]. Online experi-
ments have shown that these approaches, through adaptation to the sensorimotor modu-
lation patterns, perform better than non-adaptive methods by reducing the training time
and resulting in classifiers that can be applied to more than one user [18], [20]. Semi-
supervised learning with self-labeled data has been studied by our group in the context
of P300 spellers and motor imagery experiments as well [7]. These methods are easier in
the context of synchronous BCIs compared to self-paced, asynchronous BCIs [21]. Uti-
lized methods involve rotating the LDA hyperplane through adapting to EEG features, or
shifting this hyperplane in parallel to the initial plane to minimize the classifier’s time-
normalized false positive rate. Error-related potentials (ErrP) have been also used to adapt
the BCI systems [22]. Efforts to increase the reliability of MI-based BCIs usually focus
on three main approaches:

1. Improving the machine learning and signal processing algorithms for increasing the
classification accuracy. These efforts include but are not limited to, common spa-
tial pattern (CSP) filtering, filter bank CSP (FBCSP) [23], Laplacian filtering [24],
Riemannian geometry-based classifiers [25] and their variations, deep and shal-
low CNN-based architectures [26], [27], transfer learning and domain adaptation
methods for reducing the calibration time [17], and FBCSP followed by adaptive
ensemble learning [5] or neuro-fuzzy classifiers [28].

2. Training the users to better control their sensorimotor rhythms (SMR) while pre-
senting feedback through visual, audio, or tactile modalities or even learning com-
panions [29]. This training should also focus on a combination of personal traits and
habits since a variety of psychological, cognitive, physiological, and technology-
related factors as well as spatial and attention-related abilities affect the usability
and reliability of BCIs in general and MI-based BCIs in particular [30], [31].

3. Co-adaptation of users and machines/BCIs: Recent studies have shown that ex-
treme rates of machine/classifier adaptation slow down human learning [32], so a
balance or personalization has to be reached between the adaptation and re-training
of algorithms based on users’ individual traits. [19].
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1.2 Machine Learning for Mental State Recognition in BCIs: A Chal-
lenging Problem

In this thesis, we pay special attention to the fact that changes in cognitive states such as
alertness and vigilance during test sessions lead to variations in EEG patterns of the user
and deteriorate the calibrated classification and interpretation rates of BCI systems [33].
It has been shown that increased cognitive load, induced by presenting visual distractors
during the execution of MI BCI, could significantly predict reduction in BCI performance
of users whose undisturbed accuracy was below 75% [34]. This finding further supports
our work that was started by a long experiment of Go/NoGo or target/non-target selection
demonstrated in SART. A wide variety of studies, including those published by the au-
thor of this thesis and her co-authors, have been concerned with psychological tests and
assessments of drivers’ and operators’ vigilance, fatigue, and drowsiness and have intro-
duced features to characterize those states under different experimental protocols [35],
[36]. For these reasons, a large body of literature supporting our mindset arises from
studies on driver vigilance assessment and sleep state classifications. However, although
there have been advertisements on use of cognitive computing outside lab settings, many
of these studies continue to be conducted inside the controlled lab environments. In this
section, we present the most important arguments for the challenging nature of mental
state recognition using BCIs in these confined conditions. Some of these challenges may
apply to classification and regression tasks in the context of other medical imaging and
signal processing tasks as well. Still, these arguments are supported by our own experi-
ence during data acquisition and data analysis stages of this work.

1. Small datasets due to the limited number of participants: Without having access
to medical/clinical data in a hospital setting which requires completion of cer-
tain guidelines, collecting neurophysiological and BCI datasets in a lab setting
using healthy participants is a challenging task that requires carefully designed
approaches for participant recruitment. Before consent forms are signed, exper-
imenters need to attract the volunteers’ trusts and assure them of the safety and
privacy of collected data. The duration of headset setup in the case of traditional
and gel-based electrodes and the need for cleaning the hair after the experiment
further complicates the procedure of participant recruitment.

2. Limited number of trials in each experimental session: In motor imagery datasets
of BCI Competition IV organized by the Graz BCI group [37], each trial lasts for
8 seconds. As described in the experimental setup of Chapter 6, we reimplemented
the visual paradigm of this dataset and reduced it to 6 seconds; thus, a 30-minute
session only provides 300 trials which are 1) scarce when compared to an image
classification task that could contain millions of images, and 2) highly variable in
terms of alertness levels as comprehended through facial video recordings of par-
ticipants and their post-experiment narrations. The temporal inconsistencies and
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non-stationarity prohibits common data permutation schemes, and can be resolved
considering the solutions proposed for cross-validation of block-wise neuroimaging
data [38].

3. Curse of dimensionality in neurophysiological datasets [39]: In the case of classi-
fying imagination of left or right hands, up to 10 electrodes placed over the sen-
sorimotor cortex have deemed essential for classifying the motor imagery activity.
When it comes to characterization of sustained attention and vigilance through spa-
tial networks and connectivity analysis, fMRI has been a tool of choice in clinical
settings that has helped to identify attention networks in the frontal and parietal
lobes as well as their bidirectional interactions in improved levels of sustained at-
tention [40]. Studies wishing to reproduce those spatial links using surface EEG
electrodes thus naturally employ larger number of electrodes across the whole scalp
to utilize source separation methods and characterize spatially-wide electrical neu-
ronal networks in the cortex. Thus, extracting multiple spectral, temporal, and spa-
tial features from collections of at least 64 electrodes has been a common practice.
Regardless of the classification or regression algorithm of choice, any dataset with
high dimensions and low number of trials is susceptible to overfitting. Thus, learn-
ing the key spatio-spectral features to obtain acceptable detection rates in intra- and
inter-subject classification schemes is an ongoing challenge.

4. Artifact contamination: The amplitude of noninvasively recorded EEG signals is
in the order of microvolts and results in a poor signal-to-noise ratio (SNR) due to
their contamination with power line noise, weak electrode contact with the head,
and current drifts [41] which all have non-cortical sources. Furthermore, artifacts
induced by muscle movements that are divided into electromyograms (EMG) from
face and neck muscles, electrocardiogram (ECG) from cardiac activities, and elec-
trooculogram (EOG) from horizontal and vertical eye movements are highly visible
in raw EEG recordings if the data acquisition system does not apply any artifact
rejection technique. Studies utilize online and offline solutions to monitor tempo-
ral features and omit trials contaminated with heavy artifacts. However, due to our
already small number of trials, we do not have the liberty of discarding those trials
and prefer to utilize artifact reduction techniques that span simple temporal and sta-
tistical features as well as more complicated techniques such as spectral-filtering,
source separation, adaptive fuzzy networks, and the like [42].

5. Ground truths for cognitive states: Obtaining the ground truth for vigilance levels
and other invisible cognitive states – thoughts and affective events that do not neces-
sarily result in actions and movements [43] is a challenging task [44]. Unlike image,
video, and emotion classification datasets that are widely annotated, tagging neu-
rophysiological datasets in terms of alertness, frustration, or boredom is extremely
challenging. Pausing the experiments to collect subjective answers for such states,
although practiced by a few groups [33], [45], severely disrupts the natural flow of
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cognitive tasks [46] while resulting in highly subjective and biased evaluations [47]
that ignore the immediate cognitive reactions to the stimuli [48]. Lack of objective
ground truth results in an unfair disadvantage in cognitive monitoring since datasets
on epileptic seizures or sleep stages are generally annotated by clinicians [49], [50].
For these reasons, a scheme was suggested for scoring vigilance levels based on
the occurrence of sleep spindles in resting-state EEG recordings [51] which is not
completely useful during demanding cognitive tasks due to increase in similar brain
activities.

6. Noisy labels: In machine learning, noise refers to the mislabeling of trials and sam-
ples. Besides difficulties in obtaining valid ground truth for cognitive states in the
first phase of this work, we were facing a more critical problem in the second phase
when we turned to identifying changes in vigilance levels in the background while
the participants were focused on motor imaginary tasks. Was the classifier unsuc-
cessful because the user was fighting drowsiness despite trying hard to execute the
instructed task? Was the user alert but merely unable or not trained enough to con-
trol and desynchronize their brain rhythms in the left (right) cortex while imagining
their right (left) hand movements? Were they even concentrated enough on the task
or were they day dreaming or frustrated because of the long duration of the task and
being confined in their seat?

These limitations and challenges necessitate the need for introducing new solutions that
are valid across the datasets of the majority, if not all, of participants considering their
personal patterns of attention and concentration maintenance during cognitive tasks exe-
cution. Most importantly, the proposed methods should be able to decode the obscured
and intended mental command from these small, high-dimensional datasets with noisy
labels. In Section 1.3, we briefly introduce the contributions of this thesis and invite the
reader to respective methods in each chapter for a detailed description of our proposed
solutions for the aforementioned challenges on mental state recognition for BCIs.

1.3 Thesis Contributions

The contributions of this thesis can be described as follows:

1. We present a summary of findings on neural and behavioral correlates of task execu-
tion and attention decline during a series of SART, a standardized test battery used
by the behavioral neuroscience community. We introduce a novel and adaptive cu-
mulative vigilance score (CVS), shown in Figure 1.3 for two different participants
of our 105-minute experimental sessions. Interested in explaining the neural and
behavioral correlates of such diverse personal differences in maintaining a consis-
tent performance or falling asleep and regaining alertness, we demonstrate how the
intrinsic activity of the brain while the user is still at rest and completely disen-
gaged from demanding cognitive loads of visual perception and memory tasks can
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Figure 1.3: CVS curves of two different SART participants demonstrate highly different individual
vigilance patterns.

predict the average and variability of performance scores and response time in a
long task with infrequent targets and frequent visual distractors. The first part of
this work exploits models used from 168-dimensional band-power features. Be-
sides the multivariate regression approach and use of deep networks, we add to the
literature by findings on the roles of beta and gamma oscillations in human attention
and impulsiveness. To the best of our knowledge, deep architectures using resting-
state features for regression of sustained attention objective measures either during
SART execution or as side variables of BCIs do not currently exist in the literature.
This study has been published in [52].

2. In the second part of this work, we focus on brain connectivity and interactions
among pre-frontal regions involved in high-level cognitive tasks, with attention net-
works distributed across the frontal and parietal cortex, and visual cortex in the
occipital region. Using multivariate pattern analysis, this work demonstrates more
accurate prediction models built from intrinsic resting-state networks of the brain
computed using multi-spectral matrices of pairwise phase synchrony indices. This
work builds on and extends our results in [52] with the use of more advanced fea-
tures capturing spatial interaction patterns.

3. We develop an inference technique based on deep neural networks to estimate the
level of sustained attention from EEG data during SART sessions. We determine
which spatial and spectral features of EEG signals, when recorded up to one second
before occurrence of visual stimuli, are best regressors of cross-correlated models
that predict the average block-wise CVS and response time for all users from phase
synchrony indices of participants. This work has been published in [36].

4. Using pre-trial band-power and phase locking values (PLV), we investigate which
spatial, spectral, and temporal features correlate with and distinguish between pe-
riods of low and high vigilance for each participant alone. Unlike several studies
that claim classification of attention versus no-attention states, these periods are
based on objective performance measures and not intentionally pre-designed to in-
clude periods of high and low cognitive loads. We demonstrate the superiority of
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PLV features when paired with a customized convolutional neural network (CNN)
architecture for our task.

5. Focusing on changepoint detection as a sequential inference technique in the context
of time-series modeling, we demonstrate that online and offline Bayesian change-
point algorithms can detect onsets of vigilance variations from both the objective
performance curves as well as the EEG-based neural correlates of attention varia-
tions identified in the previous chapters. The novel fusion of band-power vigilance
predictors with Bayesian changepoint detection (BCPD) methods demonstrates the
success of unsupervised inference models in cognitive state monitoring and has ut-
most potential for alarming clinicians, educators, BCI experimenters, and operators
of critical systems about onsets of attention decline.

6. Proposing that the vigilance level affects reaction time and thus the performance
in an MI task, we present applicability of predicting high and low vigilance levels,
obtained from a cumulative MI classification accuracy, using a series of pre-trial
band-power features. This work provides a solution to the problem of estimating
the sustained attention level during a complex MI BCI task that combines the per-
ceived intention from the users’ EEG data –similar to active BCIs– and the neural
correlates of reduced attention –as in passive BCIs. This study has been published
in [53].

7. Finally, utilizing the machine learning and inference algorithms developed in the
previous chapters, we present a neuro-adaptive BCI classification system that, dur-
ing continuous estimation of attention levels of BCI users, performs covert adap-
tation by updating the classifiers’ parameters. This latest contribution involves a
fully adaptive BCI classification framework that infers vigilance-related EEG fea-
tures from a continuous time-series and applies an unsupervised scheme to report a
discrete-valued vigilance level which will then be used by the CSP and LDA classi-
fier to adaptively extract motor imagery features and perform classification tailored
to that vigilance level.

1.4 Thesis Organization

In this section, we present a brief overview of the topics and organizations of the rest of
this thesis.

1.4.1 Chapter 2: Background

Chapter 2 presents an overview of electroencephalography and its related modalities most
commonly used in the context of EEG-based BCI systems, lays the neurological founda-
tions for sustained attention and motor imagination, and presents an overview of state-of-
the-art techniques for cognitive state inference and adaptation in BCI systems.
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1.4.2 Chapter 3: Multivariate Regression Models for Vigilance Prediction from
Resting-State Spatio-Spectral Features

Chapter 3 introduces sustained attention to response task (SART) as our fundamental
paradigm for objective evaluations of within- and between-subject vigilance variations.
It then presents details of calculating a novel and objective cumulative vigilance score
(CVS), calculated from error counts and response time, which is adapted to the users’ per-
sonal reaction patterns. Finally, two proposed cross-validated multivariate regression and
neural network models are presented that predict the mean and variability of performance
score and response time during the long, 105-minute experiments from spatio-spectral
features of resting-state EEG networks.

1.4.3 Chapter 4: Deep Neural Networks for Vigilance Prediction from Pre-Trial
Spatio-Spectral Features

Chapter 4 presents two pieces of work for (a) regression for block-wise, continuous-
valued performance scores and (b) classification for trial-wise, discrete-valued vigilance
levels using the band-power and phase synchrony features obtained from pre-trial EEG
signals during the execution of long SART. Conducted using deep and convolutional neu-
ral networks with traditional classifiers serving as their baseline models, these experi-
ments put special emphasis on predicting highly different behavioral traits of vigilance
and alertness habits, as reflected in individual CVS curves, from customized temporal
and spatio-spectral features collected in immediate short time periods.

1.4.4 Chapter 5: Bayesian Models for Changepoint Detection in Vigilance Time-
Series

Focusing on the sequential inference methodologies from time-series data, Chapter 5
presents details of online and offline Bayesian changepoint detection (BCPD) algorithms
that are validated with a vigilance dataset labeled with eye-closure curves. We demon-
strate the superiority of online changepoint detection from band-power EEG features
which is very promising for detection of transitions in datasets without vigilance or
drowsiness labels. In the context of EEG datasets, changepoint models have been ei-
ther applied on sleep recordings or epileptic seizure detection, and this novel application
provides a promising result for real-time detection of vigilance transitions in an unsuper-
vised approach.

1.4.5 Chapter 6: Adaptive Alertness-Aware Classification for Motor Imagery-based
Brain-Computer Interfaces

Building on behavioral and neural correlates of vigilance variations developed and dis-
cussed in the previous chapters, Chapter 6 presents two novel pieces of work that evaluate
the effects of users’ vigilance on the tonic performance of MI-based BCIs. Concerned
with detecting signs of attention decline, the first work proposes and demonstrates the
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effectiveness of a variety of pre-trial spatio-spectral alertness features in predicting MI
classification performance with vigilance information inferred from a newly constructed
cumulative classification score. In the second work, focusing on the pre-trial EEG cor-
relates of attention variations, an unsupervised scheme is proposed to cluster trial-wise
vigilance features in the training and test sessions. This new information is used in the
context of a novel alertness-aware adaptive classification approach. Results indicate the
improved inference of the two-class motor imagery performance in our own dataset as
well as a commonly used public dataset from BCI Competition IV.

1.4.6 Chapter 7: Contributions and Future Work

Chapter 7 summarizes the contributions of the previous chapters and discusses planned
extensions. Suggestions are also presented for future work on mathematical models of
cognitive inference and alertness-aware adaptive BCIs considering the limitations of and
ideas inspired by the conducted studies.



2 Background

In this chapter, we set the foundation for introducing neuro-adaptive brain-computer in-
terface (BCI) systems that continuously detect lapses in sustained attention during the
execution of psychological tasks and active BCI experiments and adapt the system to
variations in the user’s cognitive states. Performing the aforementioned updates for BCI
systems considering the level of sustained attention and through inferential techniques
has not been fully comprehended or studied yet. The visions behind this approach and
proposed methods rely on findings and theories developed in behavioral and neurophys-
iological studies on working memory and cognitive workload during goal-directed task
execution, spectro-temporal features of perception and attention lapses, arguments on
impulsivity and inattentiveness in attention deficit/hyperactivity disorder, event-related
potentials in response to visual stimuli, vigilance and maintenance of sustained atten-
tion in simulated driving environments, feature selection, feature extraction, and pattern
recognition procedures for brain imaging and EEG signals, and statistical and inferential
methods utilized for brain state estimation in active BCI systems – especially the P300
spellers and motor imagery decoders. These topics will be gradually discussed in this and
subsequent chapters based on their use in our ongoing and future work.
This chapter starts with a brief presentation of neurophysiological signals and their spec-
tral, temporal, and spatial correlates before briefly discussing the EEG-based BCIs. It
will then continue with definitions of sustained attention and vigilance. This chapter will
concluded by a literature review on assessment and inference of cognitive states in gen-
eral and attention and vigilance in the context of active and passive BCIs and methods
used in development of adaptive BCI systems.

2.1 Neurophysiological Signals for Brain-Computer Interfacing

BCI systems communicate with the outside world using brain commands generated in
response to external and internal stimuli. External stimuli such as sound, vision, heat,
pressure, and smell stimulate sensory pathways used to make high-level decisions in the
cortical area. These decision-making processes are then converted into brain signals with
the intentional, voluntary control or the motivation to perform motor activities. Online
and offline BCI systems measure, record, process and transmit these signals to computer
applications, electromechanical devices, and intelligent systems. Experiments are usually
carried out in a controlled environment where users are instructed to focus on audiovi-
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sual cues and respond to certain alphanumeric elements, graphical templates in various
forms, or to be unresponsive but alert. Data obtained in offline experiments are labeled
with intended activities, and acquired signals are used to construct probabilistic models
or train classifiers with machine learning algorithms so that the trained models can be
used to classify test signals. These systems are evaluated in the active and passive BCI
categories. Imaginary motor movement experiments, P300 spellers [10], [54]–[56], and
wheelchair control for disabled patients are examples of active BCIs, generally focusing
on rehabilitation of people with neuromuscular disorders such as the stroke, ALS, and
Parkinson. These systems are in contrast to passive BCIs that are based on involuntary
and arbitrary brain signals [57]. Passive BCIs aim for modeling background brain ac-
tivities, recognizing mental states [58], performing daily volunteer activities in a specific
way, and increasing the quality of brain-computer interaction for patients and healthy
users alike [1], [59].
A challenging aspect of these experiments is their long duration. While traditional psy-
chology tests are usually conducted for a short time interval and in a controlled envi-
ronment, BCI tests are carried out for long hours or multiple number of short sessions
and relatively uncomfortable conditions [60]. The experiment duration, number of tri-
als, attractiveness of experiments, and the degree of individuals’ engagement influence
the quality of the recorded signals and the accuracy of the classifier, and there are large
experimental evidence that accuracy declines are caused by variations in the learned un-
derlying statistical distributions of each class features. Repeated experiments, particularly
where the stimulus is presented at a certain level, can lead to users’ habituation. What’s
more, long breaks in tests with target and non-target stimuli can cause a person’s attention
to diminish. For these reasons, developing passive BCIs and neuro-adaptive systems have
gained considerable attention from the BCI community.

2.1.1 Electroencephalography in Brain-Computer Interfacing

Neural oscillations are defined as the rhythmic fluctuations of electrical activity generated
by tissues in the central nervous system. Having a spatially multi-scale nature, these
spikes occur at the synaptic and transmembrane potentials at frequencies in the order
of Gigahertz before their distributed activities are sensed at the intracellular and local
extracellular fields. At an even higher spatial level, the electrical activity in the cerebral
cortex is known as the electrocorticogram (ECoG) or intracranial electroencephalogram
(iEEG). In this level, each location’s cortical activities represent local synchrony while
different cortical sources are relatively independent. However, when signals pass the
scalp and reach the skin, EEG signals are projected as point processes, with temporal
resolutions in the order of milliseconds. A general assumption is that multi-channel EEG
sensors (electrodes) record a linear combination of EEG source signals with negligible
propagation delays which could be decomposed through blind source separation (BSS)
algorithms. Independent component analysis (ICA) is one of these methods that attempts
to reconstruct statistically independent source signals by minimizing their redundancy or
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Figure 2.1: (Left) Sample EEG oscillations [61], (right) brain lobes and functions of main cortical
regions, picture from Headway Thames Valley.

mutual information.
In the spectral domain, many studies utilize the fixed-brain rhythms known as the delta (0
– 4 Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz), beta (12 – 30 Hz), and gamma (30 – 70 Hz)
bands. The left plot in Figure 2.1 demonstrates general shapes of these oscillations while
the right plot shows the main brain lobes and high-level cognitive functions with which
they are associated. Delta rhythms are slow, high-amplitude waves and, in adults, they are
mostly visible over the frontal cortex during sleep. Cortical locations for theta frequency
can be quite distributed, but frontal theta is known to be a sign of drowsiness and idling
during resting states and a correlate of high engagement during task performance. Alpha
activity, usually divided into lower and upper sub-bands, is mostly visible in the occipital
lobe during relaxed states and eyes closed, but spreads towards the parietal, temporal, and
frontal cortex as the relaxation level increases. The mu rhythm shares the same spectral
band as alpha and is visible over the sensorimotor cortex and modulated by movements,
intentions, and imagery activities. Beta band is more observed over frontal and senso-
rimotor cortex and is a correlate of alertness, active concentration, and tension. Finally,
high frequency gamma activity is generally focused over the somatosensory cortical ar-
eas.
A number of EEG oscillations used in BCI research are the sensorimotor rhythms (SMRs),
event-related potentials (ERPs), steady state visual evoked potentials (SSVEP), and slow
cortical potentials (SCPs). Here, we introduce the first two oscillations. SMRs are a group
of EEG waves including the mu rhythms generally observed over the motor cortex. It is
long established that imagining limb movements, also known as motor imagery, reduces
the power of mu rhythms. This fact is largely used in BCI experiments as a correlate
of intentional control and for rehabilitation of individuals suffering from motor disor-
ders in stroke and other neuromuscular damages to the central nervous system [62]. In
these paradigms utilizing the motor imagery concept, participants are instructed to imag-
ine moving or pushing their left and right hands or feet, to which a reduction in the mu
power will take place in the opposite brain hemisphere during movement preparation and
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increase after the movement has taken place. A screenshot of the online motor imagery
interface developed by the SPIS BCI group is presented in Figure 2.2. Participants have
to imagine rotating their hands or performing flexion/extension movements according to
the demonstrated arrow, and after a real-time acquisition and feature extraction of EEG
signals, the trained classifier should (1) detect the intended movement, and (2) provide
visual feedback to the user by moving the ball one position to the left or right according
to the detected movement.

Figure 2.2: The ball-and-arrow paradigm developed by the SPIS BCI group for online motor
imagery experiments.

In the temporal domain, ERPs are known to be a class of potentials displaying stable time
relationships to a definable reference event. In order to extract ERPs, the experiment in-
terface saves time stamps corresponding to occurrence of stimuli in a trigger signal which
is then saved together with the EEG channel data. Once EEG signals are preprocessed and
filtered, specific segments before and after the stimuli (event) onset are extracted. The ex-
tracted, event-locked waveform is known as an epoch. ERP components are labeled with
respect to their polarity – positive or negative – and position (delay) with respect to the
stimuli onset within the waveform. However, different experimental modalities can stim-
ulate similarly labeled components that bear no functional relationships with each other
[63].
The most famous EPR component is P300 or P3b occurring around 300 ms post-stimuli
onset in the parietal cortex following a frontally maximal component called P3a. P300
is generally evoked as a result of attending to an unexpected, surprising, and infrequent
target within a flow of more frequent and non-target stimuli. In our BCI experiments, this
component is mostly utilized in letter/word speller paradigms highly useful for individu-
als suffering from post-stroke or age-related aphasia, i.e., disability in speech production
because of damage to the language-related tissues in the left brain hemisphere. Known
as the P300 Speller and shown in Figure 2.3, the interface for this paradigm consists of a
matrix of alpha-numeric characters whose rows and columns flash continuously. The par-
ticipant is instructed to focus on the character s/he intends to spell by counting or keeping
track of flashes in the row and column containing that character. Since the interface re-
peats these flashes, averaging the waveforms in the post-stimuli onset and in the window
between 250 ms to 450 ms can lead to the detection of P300 components.
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Figure 2.3: The alpha-numetric matrix of the P300 speller interface used in the SPIS BCI experi-
ments.

2.1.2 EEG Signal Acquisition

Due to the location and size of their tissues of origin, ECoG signals are recorded through
surgically-mounted, invasive microelectrodes. However, EEG signals can be acquired
non-invasively using electrodes mounted on the skin. Although such recordings are af-
fected by low signal-to-noise ratios (SNR) compared to invasive recordings, their elec-
trodes are easier to mount and less expensive for clinical and experimental use. The high
input impedance caused by skin and hair can be further reduced if active electrodes with
pre-amplifiers are utilized and a conductive gel is applied between the sensors and the
scalp. In medical settings that use EEG recordings for diagnosis of sleep disorders and
localization of epileptic spikes, a dry gel is applied to the electrodes before directly plac-
ing them over the scalp. In our wired BCI setup based on Biosemi devices (Biosemi Inc.,
Amsterdam, The Netherlands), electrodes are mounted inside caps worn over the head
and are connected to an amplifier which delivers the signals to the recording station.
In our experiments with the Biosemi EEG acquisition system, 64 electrodes are set up
according to the International 10-10 Electrode Placement System demonstrated in Fig-
ure 2.4. This systems labels each electrode with respect to its underlying cerebral cortex
area. Number 10 in its name imply that distances between adjacent sensors are 10% of
the distance from right to left or front to back of the skull.

2.1.3 Signal Processing for EEG-based Feature Extraction

In general, the majority of machine learning and pattern recognition studies use the fol-
lowing list of features acquired from EEG signals: absolute and relative power ratios
from the Fast Fourier Transform (FFT) and Power Spectral Density (PSD), short-time
Fourier transform (STFT) spectral images, event-locked measures such as ERPs, event-
related spectral perturbations (ERSP) where an event could be the onset of a cue, stimuli,
or response/click, decomposition coefficients from multi-scale analysis such as wavelets,
filter banks, clustering measures, distance metrics between spatio-spectral maps, Com-
mon Spatial Patter (CSP) filtering where after band-pass filtering, simultaneous diago-
nalization of sample spatial covariance matrices for two classes is performed, entropy
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Figure 2.4: Biosemi’s 64-electrode montage following the International 10-10 Electrode Place-
ment System.

measures, cross-correlation and autocorrelation measures, and functional connectivity
measures such as the phase locking value (PLV).

2.1.3.1 Individual Alpha Frequency

Although the majority of BCI experiments utilize the fixed-interval brain rhythms, papers
focusing on attention and cognition emphasize the importance of defining these bands
individually for each participant for several reasons [64]–[67]. First, the alpha wave’s
frequency increases from early childhood to adulthood and decreases afterwards with age
or age-related neurological disorders; thus, it is considered a stable neurophysiological
trait in adults. Second, analysis of resting-state recordings has shown that the individual
alpha frequency (IAF) does not change after cognitive training interventions. Further-
more, the dominant alpha frequency is higher in individuals with better memory per-
formance compared to age-matched controls and positively correlated with the speed of
information processing. Females also seem to have higher mean alpha frequencies than
males. In some individuals, the lower alpha band shifts towards the theta frequencies
which necessitates customization of frequency intervals. More importantly, the narrow-
band analyses of frequencies within 7 – 12 Hz have revealed their different responses to
attentional demands during increasing and decreasing mental engagement and transition
between sleeping and waking states.
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Figure 2.5: The timing flow of 8-second trials in BCI Competition IV - Dataset 2a [71].

2.1.3.2 Common Spatial Pattern Filtering

Common spatial pattern (CSP) filtering is a highly utilized method for feature extrac-
tion specially in two-class motor imagery BCI systems. CSP designs spatial filters to
maximize the difference between two class variances of the filtered data [28]. Consider
the bandpass filtered EEG data for class labels i = 1,2 as matrix Ui ∈ RC×N where C
indicates the number of channels and N is the number of data samples after downsam-
pling per channel. CSP applies simultaneous diagonalization of the average class covari-
ance matrices to design the transmission matrix W . The EEG data are thus projected as
Z = W U . The first and last rows of Z yield the maximum variances for one class and
the minimum for the other one, respectively. Log-variance of the projected EEG signals,
S = log(Var(Z)), are utilized to calculate the MI class discriminating features. Experi-
menters often choose the first and last three or five rows of Z for feature extraction. CSP
is usually followed by Linear Discriminant Analysis (LDA) or other binary classifiers.
In motor imagery experiments where a cue or arrow is shown on the screen in the begin-
ning of each trial as shown in Figure 2.5, participants are instructed to start imagination
of a hand or foot movement at a certain time. However, the exact timing at which the
SMR decreases and desynchronizes with respect to the resting state and can be used for
extraction of best and most representative EEG-based MI features by a usually binary
classifier is an and challenging topic [68]–[70]. In 6.4.1.5, we propose a flexible time
interval feature extraction approach for adaptive MI classification.

2.2 Sustained Attention

In its most general form, attention is defined as "a mental process that deals with the
distribution of one’s limited capacity among many stimuli in the environment" [72], and
attentional processes are defined as processes that control allocation of human cognitive
resources. This allocation directly affects the quality of learning and communicating
when a large amount of information is available in the environment [60]. As shown in
Figure 2.1, attention is one of high level cognitive functions administered by the frontal
cortex.
Psychological studies usually focus on the following forms of attention: a) selective atten-
tion, or the ability to direct sensory processes to a specific stimulus despite the presence
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of distracting information, b) divided attention, or the ability to concentrate on and ana-
lyze more than one stimulus in one modality or various stimuli in different modalities at a
given time, and c) visual attention, or the mechanism that determines which information
can be extracted from inside the visual field.
In the context of studies on selective and divided attention, the use of visual, visuospatial,
and auditory stimuli has raised questions on the role of modalities and specific chan-
nel pathways [73], [74]. However, when considering alertness during brain-computer
and human-computer interaction, an important question is whether attention, or better to
put, inattentiveness and mental fatigue can be characterized as mental processes inde-
pendent of the task modality and stimuli type. An answer indeed exists for this question
based on the concept of sustained attention: "The state of maintaining attention over time
to continuously monitor a situation for detecting usually infrequent but still significant
events" [75], [76], or “the state of being alert or wakeful over time” [77]. The key idea
in these definitions is that although the focus of attention could lapse momentarily, sus-
tained attention enables the individual to “re-focus” on the stimuli or task in hand after
the distraction. Sustained attention performance is closely linked to the activation of the
prefrontal and parietal cortex regions, and is thought to be a component of the top-down
attentional process [78]. During this procedure, cortical sensory and related information
processing mechanisms such as distractor attenuation are improved.
Several studies of our interest, especially in psychology and neuroscience use the term
“vigilance” to describe the same phenomena. In psychiatry, however, vigilance may be
referred to attention to potential dangers or the state of being alertly watchful. And,
in clinical neuropsychology, vigilance is interpreted as the arousal levels on the sleep-
awake spectrum [79]. In this work, we use the first interpretation of vigilance and assume
it is similar to sustained attention and tonic alertness. Vigilance has been shown to be a
resource-demanding task as it requires constant attention and resource utilization [80]. It
is also known to be affected by psychophysics [79], motivation [81], [82], drowsiness,
rest, and sleep deprivation [83]–[85], impairment of sleep-wake cycles [79], and brain
injury [86].
Some of the task-oriented tests for assessment of sustained attention can be listed as
follows: Conners continuous performance tests (CPT and CPT 3) [87]–[89] and their
variations with visual and audio stimuli [72], Flanker Inhibitory Control & Attention task
[77], Macworth Clock Test [90], and the Sustained Attention to Response Task [66],
[86], [91]–[93]. These experiments and many others in cognitive psychology are gener-
ally used with EEG and fMRI recordings [92], [94], [95] as well as eye movements and
psychophysiological measures such as cerebral blood flow velocity (CBFV) [96].

2.3 Mental State Inference and Neuro-Adaptive BCIs

Fatigue, stress, task engagement, distractibility, and similar variables used to measure the
cognitive state of a person are called side variables of the BCI systems as they are not
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outputs of a traditional BCI experiment. In this context, passive BCIs aim to measure
and predict levels of motivation, task involvement, attention, and mental workload while
the user is attending to resource-demanding tasks such as spelling words by counting the
number of flashes, generating motor imagery commands, performing mental arithmetic
operations, and the like [97]. When the goal is to improve the quality of human-machine
interaction, these systems can reply on signals involuntarily generated by the brain in-
stead of waiting for the user to generate signals based on voluntary commands [98]. In
this section, we first present a summary of studies concerned with the role of attention –
but not necessarily sustained attention – on the users’ performance in BCI sessions, and
review a number of methods using probabilistic graphical models for detection of mental
states in general and vigilance in particular. Finally, we look at attempts for develop-
ing systems that utilize incoming, real-time information about the user’s performance to
update their predicting models.

2.3.1 Attention Measurement in the Context of Active BCIs

When performance decline for a trained/calibrated model is observed in an online session
or during data analysis, it is important to understand the cause for the model’s failure in
correctly predicting the class of user generated signals. This shortcoming could be due to
the participant’s inability in performing the instructed spatial or imaginary movements,
for example, the need for re-updating the classifier due to variations in signals’ underlying
statistics, the increasing fatigue and boredom and lack of motivation due to long recording
sessions, or poor interface design and bad relationship or fear of the BCI technology in
the participant [18], [31].
A number of research groups have studied the relationships mental states and psycholog-
ical traits between mood, motivation, mastery confidence, control beliefs or optimism in
the experiment’s outcome, self-efficacy, fear of the BCI technology, attention and mem-
ory span, learning styles (active versus reflective), and imagination abilities on the per-
formance in BCI sessions. Lotte et al from Inria have investigated the neural correlates of
cognitive and psychological factors and their roles on motor imagery and mental rotation
BCI performance [30]. Based on evidence from studies on changes in attention focus
and the resource-model theory, they suggested monitoring variations in band powers and
attention networks as predictors of SMR-based BCI performance [31].
A few studies have looked at the predictive power of gamma band on motor-imagery BCI
outcome [99], [100]. One study by Myrden and Chau on BCI performance and mental
states focused on attention, frustration, and fatigue during execution of user-specific tasks,
and reported no effect of attention on performance [33]. Although their work was inter-
esting in terms of task selection due to fusing the participants’ choices with calibration
classification accuracies, their method of asking participants to use sliders for reporting
their mental states during the task seemed to be at fault. This issue is discussed more on
the following section.
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2.3.2 Passive BCIs and Probabilistic Models for Mental State Recognition

The attractive aspect of probabilistic graphical models (PGM) is that they enable efficient
modeling and integration of complex temporal and spatial relationships that can be used
for implementation of efficient learning and inference algorithms. In the EEG-based BCI
problems, labels can be letters to be written through a P300 speller, motor imagery left
or right movements, or levels of vigilance and fatigue that are encountered in the process
of making such movements. In this way, the extrinsic dynamics of the sequential EEG
data are nicely captured. Hierarchical hidden Markov models (HMMs), usually with two
layers, have been proposed for learning intermediate states of the mental states inferred
from EEG sequences [101]. In these models, the EEG features are assumed to be inde-
pendent at each time point conditioned on the underlying states. It was also shown that
latent-dynamic conditional random fields (LDCRFs) better represent the asynchronous
BCI data for execution of motor imagery tasks [102]. In our own group, algorithms based
on HMMs and hidden conditional random field (HCRF) have been developed for the BCI
experiments on imaginary motor movements [102]–[105] and P300 speller based systems
[56], [106].
One of the contributions of this thesis is to use dynamic modeling for inferring sustained
attention levels from EEG signals. Dynamic models of of sustained attention and other
cognitive states either during long sustained attention execution or as side variables of
BCIs are very rarely used in the literature. However, several studies on fatigue and vig-
ilance recognition for drive or flight simulators have developed time-series models and
HMMs to detect and estimate nonstationarities in the EEG data. These studies use the
correlates of vigilance loss such as reduction in the number of eye blinks, ratio of eye
closure during a specific interval (PERCLOS), variations in the speech signal features,
slowness of response and reaction time, or a fusion of these features to label the elec-
trophysiological recordings [107], [108]. Fusion-based classifiers utilizing features from
EEG recording as well as from physiological markers such as ECG signals were shown to
increase the classification accuracy and detection speed in mental workload assessment
with flight simulators [109]. Similar features were also used for driver fatigue estima-
tion through a dynamic Bayesian network [107]. Interestingly, similar to observation
regarding SART correlates, such extracted features have been stable during one week
after initial assessment.
Besides these objective metrics, experimenters may ask users to provide subjective as-
sessments of their own sleepiness levels before and after the task [110] or rate the fatigue
and sleepiness levels throughout the experiment [33]. Others may divide the experimental
sessions into high vigilance, sleepy, and low alertness intervals based on subjectively as-
signed thresholds of the aforementioned labeling parameters. A number of other studies
have used the averaged error rates to obtain a measure for categorization of vigilance or
fatigue levels [111], [112]
More recently, Zheng et al. developed a multimodal approach for vigilance estimation
using EEG and forehead oculogram (EOC) [35]. They applied ICA to obtain the com-
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ponents for eye blink activities and computed differential entropy from the temporal and
posterior EEG channels band-passed from 1 to 50 Hz. They manually thresholded the
PERCLOS values for data annotation to obtain three levels of awake, tired, and drowsy,
and developed support vector regression models. To characterize temporal variations of
vigilance estimation, they applied continuous CRF (CCRF) and continuous conditional
neural field (CCNF) models [113]. Their results indicated higher theta and alpha and
lower gamma activities at temporal and parietal locations during the drowsy-labeled tri-
als compared to the awake state.

2.3.3 Adaptive BCI Systems in the Literature

As mentioned earlier, long experiments with monotonic and steady audiovisual stimuli
increase the boredom in participants and creates idle phases in the cortical networks and
reduces alertness. The fact that the static classifiers are not robust to changes in the EEG
feature space from one session to the next, from the training/calibration session to the
test/feedback session, and to the changes in cognitive states of users, has raised the is-
sue of adapting BCI classifiers in various ways. In the past decade, the BCI community
has noticed and attempted to address online learning and classifier adaptation methods
[16]. Such methods are called covert adaptation techniques. BCI classifiers can be up-
dated with supervised methods using only the labeled data, in a semi-supervised manner
with both labeled and unlabeled data, and in an unsupervised approach with only un-
labeled data. Supervised methods for updating the covariance matrix based on subject-
independent and subject-specific as well as unsupervised adaptation with subject-specific
features were utilized by the Berlin group on the three aforementioned types of users
[18]. Semi-supervised versions of LDA are frequently utilized, assuming that class con-
ditional attributes are variables with normal distribution [20]. Online experiments have
shown that these approaches, through adaptation to the sensorimotor modulation patterns,
perform better than non-adaptive methods by reducing the training time and resulting in
classifiers that can be applied to more than one user [18], [20]. Semi-supervised learn-
ing with self-labeled data has been studied by our group in the context of P300 spellers
and motor imagery experiments as well [7]. These methods are easier in the context of
synchronous BCIs compared to self-paced, asynchronous BCIs [21]. Utilized methods
comprised of rotating the LDA hyperplane through adapting to EEG features, or shifting
this hyperplane in parallel to the initial plane to minimize the classifier’s time-normalized
false positive rate. Error-based potentials (ErrP) have been also used to adapt the BCI
systems [22].
Overt adaptation techniques, on the other hand, attempt to update the experiment inter-
face and experiment flow to decrease the participant’s boredom and enhance the interac-
tion outcome. In a study measuring the level of participation while reading a paragraph,
whenever a reduction in the engagement level was measured through a wireless EEG de-
vice, a video was shown about the same paragraph [114]. In another work on designing
adaptive agents for education, participants were monitored while listening to a story, and
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different types of cues were offered by the robotic agent when low attention levels were
detected. It has been shown that with training sessions that use wakeful alertness lev-
els, the classifiers’ accuracy significantly increases in experiments focusing on attention,
concentration, and control [115]. More recently, Zander and his colleagues presented an
EEG-based cognitive agent that determines uncertainty in a pilots’s path and provides
assistance to when the uncertainty arises [116].



3 Multivariate Regression Models for Vigilance Predic-
tion from Resting-State Spatio-Spectral Features

In recent years, analyzing dynamics of the brain during its resting states has gained mo-
mentum as earlier studies have demonstrated that these ‘intrinsic’ activities are shared
between the resting oscillations and task-activated networks and could be used as the
baseline for assessment of cognitive and sensory functions during task engagement [117]–
[119]. Functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG)
measurements have been used to gain more knowledge about the dynamics of connections
among the sensorimotor, auditory, visual, and attentional networks while the person is at
rest [120]. Entropy-based measures from the resting brain activity have helped to char-
acterize different levels of cognitive impairment in neurodegenerative diseases [121]. A
variety of spatio-spectral, temporal, statistical, and connectivity-based models have been
proposed to predict the ability to regulate sensorimotor rhythms (SMRs) [122], identify
correlates of motor adaptation learning [123], predict response latency in an attention
task for Parkinson’s patients and healthy controls [124], characterize the correlates of
improved engagement in short Go/NoGo and visual selection tasks [125], [126], predict
the users’ performance in decision-making situations [127], and, in a work by the au-
thor of thesis, develop regression models to identify inter-subject predictors of speed and
performance maintenance in long sustained attention tasks [52].
The aforementioned applications of resting-state characterization for predicting perfor-
mance, task engagement, and response latency have important implications for BCIs that
rely on mental selection of target stimuli or repetitive mental imagery and arithmetic cal-
culations, monitoring safety and precision of critical operators and long-haul drivers, and
simulations of drivers’ vigilance. Vigilance or sustained attention is defined as the ability
to maintain alertness in detecting infrequent but important stimuli over long periods of
time while blocking the distracting events [78]. In this chapter, we report the results of
a work published in the IEEE Journal of Biomedical and Health Informatics (JBHI) in
which common predictors of cumulative vigilance scores, response time, and their vari-
abilities for participants of a long attention task are characterized through a multivariate
pattern analysis (MVPA) and deep neural networks using band-power features of resting-
state EEG [52]. To simulate a scenario in which participants have to tend to a repetitive
task while paying attention to the occurrence of less frequent targets, this study conducts
a session of fixed-sequence Sustained Attention to Response Task (SART) that lasts up to
105 minutes [93]. While some participants exhibit long periods of sleepiness, others are
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able to maintain their performance levels and overcome extreme fatigue while attending
to the repetitive and idling conditions of the experiment. This study shows the potential
of modeling non-stationarity of resting-state brain dynamics in decoding changes in the
underlying mental states such as fatigue, drowsiness, and vigilance that would improve
the reliability of neurorehabilitation systems and assessment of operators’ performance
in critical control tasks [59].
Subsequently, we use a similar MVPA on the phase domain, functional brain connectiv-
ity of resting-state EEG to obtain correlates of long-term task engagement. A synchrony
measure called the phase-locking value (PLV) [128], [129] is used to extract symmetric,
inter-trial phase variability between paired channel signals from seven different frequency
bands. For each band and each resting condition with eyes open and closed, PLV is av-
eraged to extract the phase synchorny index (PSI) or phase lag index (PLI) [130] as a
potential predictor for the corresponding condition. PLV is robust to fluctuations in signal
amplitudes and presence of common sources such as the reference electrode and volume
conduction [131], [132], and is known to have low computational cost and high accuracy
in representing the connectivity networks from resting EEG and fMRI data [133]. By
using the averaged PLV from each of the eyes-open and closed resting-state conditions,
this study identifies the common predictors of errors in target and non-target detection,
long-term task performance, response time, and their variabilities from resting-state EEG
dynamics in a group of participants. Regression results demonstrate that reductions in
short-range and regional synchronizations within the posterior cortex predict higher vig-
ilance scores and faster responses while the variability of CVS and response time are
generally predicted by frontal inter-hemispheric or fronto-parietal connections. To the
best of our knowledge, this is the first time that phase correlates of all discrete and con-
tinuous performance measures of long-term SART are discussed in a unified manner.

3.1 Motivation

Cognitive and affective state monitoring has found numerous applications in evaluating
memory functions and learning abilities [114], [134], assessing operators’ performance
in critical environments [135], and providing information to users after evaluation of
their controlled and automatic cognitive processes [136], [137]. More recently, it has
become a subject of interest in the development of BCIs with neurfeedback to improve
symptoms of attention-deficit hyperactivity disorder (ADHD) [138]. Such monitoring
can involve the utilization of a variety of neurophysiological biomarkers to determine
lapses in attention or vigilance, onset of drowsiness and sleep spindles, or changes in
the mental workload under different task difficulty levels [44]. Detecting these mental
states can increase the accuracy of human-computer interactions since changes in these
cognitive and affective states lead to nonstationarities in the brain electrical activity and
cause challenges for automated intent inference [6]. Specifically, the inability to maintain
attention and inhibit distracting mental processes is one of the important factors behind
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lower-than-expected accuracy of BCI systems [31]. Monitoring the attention level is,
among other uses, critical in development of adaptive and assistive BCI technologies for
neuromuscular rehabilitation and performance assessment of operators in monotonous
and critical tasks such as air traffic control and long-haul driving [44].
Building on well-established assumptions on the close relationship between brain net-
works during rest and task execution, we propose that the high resolution EEG features
recorded while the brain is in the wakeful and alert state can be indicators of task sustain-
ability in a long fixed-sequence SART session. This is especially valuable since few re-
lated studies on vigilance estimation, except for the driving simulator experiments, record
data for over an hour [139], [140], and fewer studies have presented concise predictors
of task-induced vigilance variability from spectro-spatial and specially brain connectivity
features of the resting-state EEG. This analysis can be used to predict the stability of an
operator’s performance prior to task execution and to adjust the interface environment and
the frequency and type of stimuli parameters in P300 word spellers or motor imagery ex-
periments [56], [105] during calibration sessions. To evaluate the readiness of the resting
brain, i.e., its ability to monitor sources of information and to detect, process, discrim-
inate, and respond effectively to them [78], [141], we use multivariate pattern analysis
(MVPA), a method mainly applied on fMRI to study the connectivity of distributed brain
networks involved in task-related activities [142]. MPVA has been previously used to
identify the intrinsic and pre-trial correlates of motor learning in an EEG-based experi-
ment [123].
In this study, we analyze the statistical relationships between objective task performance
measures for attention, obtained during a long SART session, and resting state EEG data
recorded immediately before the session. Our technical contributions are multi-fold:

1. A novel cumulative vigilance score (CVS) is calculated from error counts and re-
sponse time (RT) of correct non-target trials, and is adapted to the users’ reaction
time from the initial 50 seconds when they are still highly attentive. We emphasize
modeling of RT and CVS variability in addition to their average values as indi-
cators of performance consistency or stability for sustaining attention and motor
execution.

2. Various neural networks are trained and cross-validated with EO and EC band-
power ratio and pairwise phase synchrony indices. The relative rankings of obtained
weights uncover associations between the performance measures and narrow-band,
resting-state spatio-spectral features.

3. Multivariate regression models are developed using a thorough feature relevance
analysis that demonstrates the effectiveness of small feature subsets from resting-
state networks in predicting the overall task-related performance measures.

The rest of this chapter is organized as follows. Section 3.2 introduces SART as our
fundamental paradigm for objective evaluations of within- and between-subject vigilance
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variations, and discusses recent studies on prediction of cognitive and SMR function from
the resting-state network. Sections 3.3 and 3.4 then present methods and results of calcu-
lating a novel and objective cumulative vigilance score (CVS) and two proposed cross-
validated multivariate regression and neural network models for prediction of mean and
variability of performance measures. Finally, a detailed discussion on implications of our
findings and comparisons with the state- of-the-art method are presented in Section .

3.2 Related Work

3.2.1 Sustained Attention to Response Task

Sustained attention, also known as vigilance or tonic alertness in psychology, is the abil-
ity to maintain attention to detect infrequent but important stimuli – signals – over a long
period of time while blocking the distracting events – noise, and is characterized by the
activation of right prefrontal and parietal regions [78], [143]. In clinical settings, sus-
tained attention is generally quantified by the number of errors and reaction delays while
participants are attending to monotonic paradigms such as the Continuous Performance
Test (CPT) or Sustained Attention to Response Task (SART) [144], [145]. SART consists
of multiple instances of digits from 1 to 9 shown on the screen. These digits could appear
consecutively and in a predictable order – thus the fixed-SART paradigm or SARTf ixed , or
in a random and unpredictable sequence – hence the term random-SART or SARTrandom.
The user has to respond to the occurrence of the more frequent, non-target digits by
clicking with a mouse or pressing a button while inhibiting their responses to the less
frequently observed target, usually digit 3. In clinical assessment of ADHD in children
and adults where tests of sustained attention are administered, balanced, conservative, or
liberal response styles are also taken into consideration. Furthermore, the variabilities of
error and response time, defined as the ratios of standard deviation to the mean, are com-
puted to analyze the ability to maintain executive attention levels needed for information
processing [88].
Running either in multiple short blocks or in a long session until signs of fatigue and
lapses of attention occur, SART is a type of Go/NoGo experiment assumed to measure the
failures of sustained attention through number of errors and response time by demanding
automatic and habitual responses to highly frequent distractors in Go trials while inhibit-
ing responses to the infrequent target stimuli. Robertson et al. demonstrated the indi-
vidual performance in SART is stable over time [91]. This experiment was subsequently
modified and used by others in neuroscience as it was shown to have a good sensitivity
for discriminating error rates between healthy participants and patients suffering from
traumatic brain injury (TBI) [86], [146].
Considering the specific instructions given prior to the experiment and the fact that all
trials – digits – occur similarly and without any specific cue, performing SART requires
an endogenous task control. This is in contrast with exogenous tasks, such as in super-
vised motor imagery or P300 speller experiments, in which a visual or auditory cue is



3.2. RELATED WORK 29

given to alert the user. Endogenous tasks are considered to be more challenging since
the users themselves need to notice and keep track of the stimuli sequence [147]. For
this reason, remembering to act as initially instructed could be correlated with higher
‘prospective’ memory performance, especially in the random-SART paradigm. Still, it
has been also suggested that the sequence of 9-1-2 in fixed-SART paradigms behaves as
a cue for occurrence of the target trial and enables the brain to re-focus on the instructed
action, thus making the task more similar to the common supervised experiments tested
in BCI settings.

3.2.2 Resting-State Networks and Brain Connectivity

The resting-state brain activity has been often used as the baseline for activations occur-
ring during subsequent cognitive and sensorimotor functions. Barry et al. [117] suggested
to consider the eyes-closed (EC) resting-state EEG as the arousal baseline for tasks not
involving any visual stimuli, and the eyes-open (EO) recordings as the activation baseline
for other experiments with a visual fixation. It has also been shown that functional brain
networks used during cognitive tasks are continuously active during the resting state as
well [148]. In addition, resting-state oscillatory dynamics reflecting the intrinsic activity
of the brain are shared by task activated networks [118] and associated with performance
measures in experiments on sensorimotor rhythms (SMR), motor adaptation learning, and
attention-related tasks [122], [123], [125], [126]. Cole et al. [119] also showed the infor-
mation flow in resting networks, estimated from functional magnetic resonance imaging
(fMRI), could predict the cognitive task-evoked activations.
In the context of attentional networks, it has been shown that right fronto-parietal re-
gions are stimulated in simple sustained attention tasks with activations associated with
increased engagement [149], [150] and deactivations associated with increased mental fa-
tigue and declining performance [151]. Such inter-regional connections as well as alpha
desynchronization over parietal channels are critical for coordination of brain subregions
related to the attentional processes [152], [153]. However, only a few studies have charac-
terized changes in the EEG-based functional connectivity and phase coherence measures
during the alert states prior to long task engagement sessions. Extracting such correlates
is challenging due to the lower spatial resolution of surface EEG signals compared to
functional neuroimaging recordings. Furthermore, several high-level cognitive and motor
functions such as target/non-target recognition, motor execution and inhibition, hyperac-
tivity, variations in allocations of attentional processes, and transitions in alert-fatigued
states are likely to be observed in a long experiment, just like the uni-modal paradigm
to be described later in this paper [66], [154], [155]. Studies with similar purpose, often
in the context of long simulated driving experiments, look into task-related recordings
rather than the pre-task resting-state sessions. Sun et al. [151] used the first and last
5 minutes of a 20-minute recording during execution of the psychomotor vigilance test
(PVT) to identify correlates of alert and fatigued execution from low alpha activity of 26
regions of interest. Kong et al. [156] administered two driving simulation sessions con-
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sisting of conditions with and without external stimuli which could challenge participants
or drive them into drowsiness, and obtained intra- and inter-region coherence from the
computed mean phase coherence (MPC) for each electrode pair. More recently, Wang et
al. obtained a 96.76% accuracy using beta-band phase lag index (PLI) for classification
of extremely alert versus fatigue states from the first and last 5 minutes of a 90 minute
driving task [157].

3.2.3 Regression Models and Importance of Objective Labeling

Developing regression models for such scenarios requires ground truth labels correspond-
ing to several attention states. However, it is challenging to obtain the ground truth for
vigilance levels and other invisible cognitive states – thoughts and affective events that do
not necessarily result in actions and movements [43], [44]. Several studies on vigilance
assessment from simulated driving sessions label trials by visually inspecting the partici-
pants’ facial features or assuming they are maximally awake and alert in the beginning of
a given task and sleepy towards the end [140], [157]. However, our experimental results
show that humans exhibit large differences in temporal transitions between their alert
and sleepy states [36]. Other protocols pause the experiment flow and ask participants
to rate their own cognitive and physiological states using discrete or continuous scales
[33]. These subjective evaluations are prone to high bias and experimental errors [47].
Furthermore, momentary pauses disrupt the natural tonic levels of sustained attention in
otherwise fatigued individuals [46]. Finally, self-reported ratings ignore the immediate
reactions to the stimuli and require reflective thinking and decision making [48] while the
parameters used to assess these cognitive variables should not be affected by delay and
consequent memory lapses. In more objective assessments, the average number of errors
provides a continuous measure for classification of vigilance patterns [111]. A number
of other studies on fatigue and vigilance recognition rely on a fusion of EEG and elec-
trooculogram (EOG) and variations in physiological events such as eye closure intervals,
circadian rhythm, speech signal features, and face orientation [35], [107], [108], [158]
which require extra processing modules. Thus, an automatic method for quantifying the
ground truth of vigilance levels through objective measures, such as the error rates and

Figure 3.1: A user wearing the 64-channel Biosemi headset (Biosemi Inc., Amsterdam, the
Netherlands) and 3 surface EOG electrodes.
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Figure 3.2: One sequence of fixed-SART-varying-ISI. Digit display: 250 ms, response interval:
300 ms, ISI ∼ U(400,1000) ms.

response time, deems essential.

3.3 Methods

Ten healthy volunteers, six females and four males, with the average age of 30.25 ± 6.95
(min: 22, max: 45.5) attended the fixed-sequence SART sessions. Participants were right-
handed, had normal or corrected-to-normal vision, and were not under any drowsiness-
inducing medications. All participants were naïve to BCI experiments in general and
all but two to the SART protocol in particular. Participants provided signed informed
consents in accordance with the Sabanci University Research Ethics Council guidelines,
and received monetary compensation upon experiment completion.

3.3.1 EEG Acquisition and SART Procedure

Data collection was performed in a dimly lit EEG room within a Faraday cage. Par-
ticipants were comfortably seated in a chair 20 cm away from a 17-inch LCD monitor.
Monopolar EEG activity was collected via 64 Ag/AgCl active electrodes mounted ac-
cording to the 10-10 International Electrode Placement System as shown in Figure 3.1.
Experiments were conducted in the early afternoon hours to induce drowsiness in the
already idled brain networks [35].
Participants completed a 2.5-minute resting session with eyes open followed by a 2.5-
minute resting session with eyes closed. Before each resting-state session, the interface
prompted participants to perform a specific mental multiplication to ensure they were in
alert and wakeful states prior to the task. After a practice session with one sequence of
random-SART paradigm [92], 12 blocks of fixed-SART with varying inter-stimulus inter-
vals (ISI) were executed. Randomized ISIs eliminate any chance of participants becom-
ing habituated by the stimulus timing and reduce the occurrence probability of automatic
clicks [93]. Each block lasted for 8:04-8:20 minutes and consisted of 25 sequences of
digits 1 to 9 appearing sequentially on the screen [93] with different font sizes to remove
the chance of habitualization. Blocks were separated by a 5-s relaxation period. The goal
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Figure 3.3: Automated pipeline for preprocessing and feature extraction from resting-state EEG.
Signals are band-pass filtered in 1-70 Hz. Ocular artifacts are removed with the linear method
of [104]. Independent components of logistic Infomax [161] from EEGLAB [162] are z-score
standardized before artifact rejection. The heat map demonstrates ratios of BP features from the
EO session of participant S10 for the left, midline, and right pre-frontal (LPF, MPF, and RPF),
frontal (LF, MF, and RF), central (LC, MC, and RC), parietal (LP, MP, and RP), and left and right
temporal (LT and RT) ROIs.

was to press the left mouse button once and as soon as any digit appeared on the screen
except for the digit 3, in which case responses should be withheld. Digit 3 was thus the
target – NoGo trial – while the other eight digits were non targets or Go trials. Figure 3.2
shows one sequence of this experiment. A full session of this SART paradigm would last
for 2,700 trials and between 100 to 105 minutes.

3.3.2 Band-Power Feature Extraction

The automated preprocessing and feature extraction steps applied offline on the EO and
EC signals are described in Figure 3.3. Since our preliminary analysis showed partici-
pants had different levels of band-powers (BP) in the EO and EC states and the actual
SART sessions, the ratios of the 12 non-overlapping band powers up to 48 Hz are com-
puted from the magnitudes of fast Fourier transform (FFT) coefficients for each trial.
To efficiently study spatial variations in cortical activities, EEG electrodes are grouped
into 14 regions of interest (ROIs) as mentioned in Figure 3.3. These 14×12 features are
hereinafter referred to as the BP-ROI feature set.
Defining the BP-ROI feature set has a few advantages. First, comparing these ratios
across participants enables us to analyze individual differences in a unified manner. Sec-
ond, considering narrow bands especially for beta oscillations used in the upcoming re-
gression models allows us to account for individual traits in the modulation of different
frequencies and to better analyze the opposite roles of lower beta frequencies as indica-
tors of fast idleness, middle beta oscillations which appear during high engagement and
alertness [159], and faster beta activities which reflect signs of existing anxiety [160].

3.3.3 Phase Synchrony Feature Extraction

To compare differences in phase synchronization, resting-state signals are divided into
epochs downsampled to 512 Hz with 923 samples. This specific length is selected since
the digit-locked epochs of this experiment analyzed in a different study on pre-trial PLV
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analysis had a length of 1.90 ms equivalent to 923 samples [36], also see Section 4.3.1.1.
Epoched data, hereafter known as the resting-state trials, are then band-pass filtered in
the following frequency ranges: alpha (8-12 Hz), lower beta-1 (12-16 Hz), lower beta-2
(16-20 Hz), mid-beta (20-24 Hz), upper beta (24-28 Hz), wide-band beta (12-28 Hz),
and wide-band gamma (31-60 Hz). For each epoch, the Hilbert transform of band-passed
signals is computed [163] using the following formula

xHT (t) =
1
π

∫ +∞

−∞

x(t ′)
t− t ′

dt ′ (3.1)

where xHT (t) is the convolution of the real-valued x(t) with 1/πt. Φi(t,n), the inverse
tangent of xHT (t)/x(t) for electrode i, is then extracted as the instantaneous phase of
transformed signals for electrode i at time t and trial n,n ∈ 1,2, ...,N.
Next, the instantaneous phase difference for each electrode pair (i, j) is computed at each
time bin from

Φi j(t,n) = Φi(t,n)−Φ j(t,n), (3.2)

where i = 1,2, ...,63 and j = 2,3, ...,64 in our 64-channel setup. Finally, PLV matrices
are computed for all the unique electrode pairs by averaging phase differences across all
epochs of similar conditions, i.e.,

PLVi j(t) =
1
N

∣∣∣∣∣ N

∑
n=1

e jΦi j(t,n)

∣∣∣∣∣ . (3.3)

Thus, if the signals measured at electrodes i and j have a small phase difference at each
time bin t and all trials, or are in maximal synchrony with each other, their PLV is close
to 1. But if their signals have large difference in instantaneous phases or show random
pairwise phase variations, their PLV will be closer to 0.
In epoch-based analysis, PLV values are usually locked and computed to the stimuli on-
sets; however, since the resting-state signals are not locked to any event onset, we average
PLV EO

i j (t) and PLV EC
i j (t) across all the time bins of our downsampled epochs to obtain

the phase synchrony index (PSI) for EO and EC conditions. The PSI values from the
2,016 unique electrode pairs of the aforementioned seven frequency bands are collec-
tively called the PSI features.

3.3.4 Cumulative Vigilance Score

Figure 3.4 presents the pipeline for trial-based and cumulative measure calculations. The
experimental interface detects the occurrence of commission errors (CE) during NoGo
trials, omission errors (OE) during Go trials, and double clicks. Trial RT is defined as
the latency of each click with respect to the digit onset, and hit response time (HRT)
is defined as the RT for correctly performed Go trials. Since RT variations indicate the
inability to maintain vigilance during long attention tasks and tests of attention deficits
[88], variability of the overall HRT is calculated as the ratio of the standard deviation
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Figure 3.4: Pipeline for detection of trial-wise events and calculating the adaptive and objective
Trial Vigilance Score (TVS) and Cumulative Vigilance Score (CVS). RT at each trial is compared
with RTL = 250 ms and RTU = mean + 2 SD of RT from the first 27 trials.

(SD) to the averaged HRT [36]. This pipeline does not omit trials with RT below a certain
threshold as done in [126] to enable the analysis of fast reactions as a natural occurrence
in the response traits.

3.3.4.1 Adaptive Vigilance Labels

As shown in Figure 3.4, the adaptive 5-level Trial Vigilance Score (TVS) is proposed as
an objective measure for labeling sustained attention without interrupting the users. To
avoid penalizing participants with conservative and slow responses, the upper threshold is
adjusted to accommodate for each person’s response style assuming fast reactions in the
first 27 trials (or 50 s) before occurrence of fatigue signs. TVS considers correct response
commission and inhibition while rewarding consistency in correct and fast performance
(levels 2 to 4), and penalizing inconsistencies when double clicks are performed and sub-
sequent trials are missed (level 1). Double click events usually occur prior to OEs when a
participant misses the natural flow of trials and automatically clicks due to being in a low
vigilant state. Less frequently, these events take place when a user is in a high vigilant
state and expects the next digit, but mistakenly clicks due to the varying duration of the
ISI while still managing to respond correctly to the next digit. This novel labeling strategy
thus provides a useful and adaptive measure for assessment of vigilance maintenance.
To reflect the tonic user performance, Cumulative Vigilance Score (CVS) at each trial
is obtained by calculating the average TVS from 36 preceding trials – lasting for 4 se-
quences or 73 seconds, and normalizing the result between 0 and 1. Subsequently, the
averaged CVS (CVSmean) and reaction time (HRTmean), and their variabilities (CVSvar
and HRTvar) as indicators of failure in performance stability and attention sustainability
are extracted.

3.3.5 Feature Selection and Visualization with Neural Networks

The literature contains several discussions on correlations among the performance mea-
sures with channel-wise BP features. Due to the small size of our dataset and sensitivity
to the data of individual participants, we investigate the use of neural networks (NNs)
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with multiple hidden units for developing the aforementioned regression models. Zheng
et al. [164] had investigated the critical frequencies and electrodes from trained deep be-
lief networks (DBNs) for emotion classification. They noticed beta and gamma features
had received higher average weights in the trained networks across all participants, and
saw an improvement in classification accuracy using the differential entropy of all bands
with reduced electrode sets. Our analysis will open the path for analyzing learned weights
for feature reduction during BCI-based vigilance estimation.
Focusing on the BP-ROI features with 14 (ROIs)×12 (bands), eight schemes are ana-
lyzed to predict the four continuous performance measures separately from the EO and
EC states. Feature matrices XEO and XEC ∈ R168×N , N being the number of participants,
are separately fed to NNs. Ten dataset permutations are executed, each consisting of
leave-one-subject-out cross-validations (LOO-CV) among 10 participants for the CVS-
mean, HRTmean, and HRTvar measures, and 9 participants for CVSvar. S04 is removed
from the CVSvar experiments since their score is more than 2 standard deviations larger
than the average CVS variability. Feature matrices are standardized before being fed to
the NNs that consisted of an input layer, one fully connected (FC) layer with hidden per-
ceptrons, a rectified linear unit (ReLU) activation layer, and an output regression layer
with the mean-squared-error loss function.
Experiments are run with different numbers of hidden units in the FC layer. Each network
is initially tested with 40 hidden units with 1,000 epochs and a mini-batch size of 8. To
tackle the overfitting problem, a validation patience scheme is utilized to stop the training
if the validation loss did not improve after one epoch. Using Adam [165], a method for
adaptive moment estimation as the optimization algorithm, a grid search is performed
to optimize each loss function for 15 learning rates and 15 `2 regularization coefficients
logarithmically increased within the [10−5,10−1] and [0.01,10] intervals, respectively.
For each combination of the learning rate and `2 parameters, the network performance
is assessed in each fold with the root-mean-squared error (RMSE) between the true and
predicted outputs. The LOO-CV estimator is obtained by minimizing the average error
across all folds and permutations [38], i.e.,

errLOO−CV (lr,λ ) =
1

MN

M

∑
m=1

N

∑
n=1

(yn− f (Xn|D\Dn))
2 (3.4)

Here, M is the number of permutations, N is the number of validation folds, D and Dn

denote the original sample set and the validation set from the n-th run, yn and Xn ∈ R168×1

represent the true label and feature vector for sample n, f (Xn|D\Dn) is the estimated
output by the neural network, and lr and λ are the learning rate and the `2 regularization
coefficients, respectively.
To study which features are given higher priority during the training and, subsequently,
to perform supervised feature selection, the input weights of the first FC layer obtained
during validation from the optimal pair of our hyperparameters are summed over all the
U hidden units and averaged for all the N folds and M permutations. In other words,
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W̄j(lr∗,λ ∗) =
1
M

.
1
N

M

∑
m=1

N

∑
n=1

U

∑
i=1

Wi j(lr∗,λ ∗), (3.5)

where (lr∗,λ ∗) represents the hyperparameters that minimized errLOO−CV , and Wi j is the
weight associated with unit i on the first hidden layer and feature j of the input vector.
The averaged weight vector W̄j ∈ R168×1 is subsequently visualized for feature selection.

3.3.6 Feature Relevance Analysis for Multivariate Prediction of SART Performance
Measures

Sixteen prediction schemes are designed to predict the four continuous dependent vari-
ables from the BP-ROI and PSI datasets from EO and EC states. Single linear regression
(SLR) models are developed for the initial feature selection: Each of the 168 BP-ROI
features are standardized and individually entered in the model as an independent vari-
able. Similarly, PSIs from each of the 2,016 unique electrode pairs from alpha, four beta
sub-bands, wide-band beta, and wide-band gamma are individually entered in the model
as the independent variables. After performing a leave-one-subject-out cross-validation
(LOO-CV) across all participants, the R2, adjusted R2, RMSE, Pearson’s linear correla-
tion coefficient (r), and its corresponding p-value are calculated from the true and pre-
dicted outputs of these SLR models. Prior to these analyses, participant S04 was detected
as an outlier and removed from the CVSvar experiments since the variability of their CVS
scores was more than 2 standard deviations (SD) larger than the average CVS variability
of all participants.
Once the n features whose individual regression models resulted in prediction correlations
significant at the 0.1 level for each performance measure and feature set were detected,
the possibility of predicting these measure from a group of such significant features is
investigated. The MVPA is utilized to identify the most predictive feature subset, and
multivariate linear regression (MLR) models are trained from all the 2n-1 non-empty
subsets [123]. To test the significance of each model, a null hypothesis of having no
correlation between the true and predicted outputs is defined, and features are permuted
500 times across all participants. This results in obtaining the p-value for each prediction
model having achieved a correlation higher than the original feature assignment. Finally,
for each feature modality, subset, and performance measure, models with the most out-
standing goodness-of-fit metrics are reported in Sections 3.4.3 and 3.4.5

3.4 Results

3.4.1 Behavioral Results

To visualize inter-individual differences in attention maintenance using a single a single
time-series, Figure 3.5 shows the CVS curves for four participants: S03 with their bal-
anced response style and consistent performance (CVsmean=0.48, CVSvar=0.05), S04
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Figure 3.5: CVS curves for four participants (S03, S04, S06, and S10) demonstrating different
patterns of maintaining tonic attention.

Table 3.1: Correlations among the overall behavioral measures of the fixed-sequence SART.
N=10. *: p<0.05.

CE% OE% CVSmean CVSvar HRTmean

OE% 0.80*

CVSmean -0.47 -0.68*

CVSvar 0.90* 0.91* -0.69*

HRTmean 0.38 0.34 -0.88* 0.51

HRTvar 0.80* 0.46 -0.17 0.61 0.24

who fell asleep very early in the experiment and recovered later (CEmean=0.30, CVS-
var=0.33), S06 with their slow and conservative responses and a gradual attention decline
in the second half of the experiment (HRTmean=583 ms), and S10 with an excellent per-
formance in the beginning but the highest HRTvar (0.90) due to the extreme fatigue and
drowsiness in blocks 9 and 10 before slightly recovering. Thus, contrary to a number of
long experiments on vigilance estimation that divide the experiment intervals into three
periods of high, middle, and low vigilance [140], these plots demonstrate vigilance levels
can decline at any point during the experiment and be followed by a relative recovery. In
fact, the majority of participants reported their alertness increased after a short, involun-
tary nap, indicating the brain’s ability to regain its alertness after a period of idling.
Table 3.1 demonstrates correlations among the objective behavioral measures. Obtained
p-values are corrected at the 0.05 level using the False Discovery Rate (FDR) method
[166]. The number of CEs and OEs had a strong, positive linear association at 0.80. Fur-
thermore, the average of overall CVS had a significant correlation with the number of
missed trials while its variability was equally correlated with the percentage of both er-
rors. Although HRTmean did not demonstrate any significant association with the number
of errors, meaning that fast or slow responses did not necessarily imply wrong responses,
it did have a strong and negative correlation with the average CVS. The variability of HRT
was strongly associated with CE% while the variability of CVS and HRT fell short of be-
ing significantly at p<0.05. Therefore, it seems informative to analyze the variabilities of
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(a) CVSmean, EO, 110 units (b) CVSmean, EC, 130 units (c) CVSvar, EO, 90 units (d) CVSvar, EC, 110 units

(e) HRTmean, EO, 40 units (f) HRTmean, EC, 40 units (g) HRTvar, EO, 110 units (h) HRTvar, EC, 110 units

Fig. 5: The 168-d weight vectors averaged across 10 runs of one-fully-connected layer NNs with various numbers of hidden
units resulting in the minimum CV error. Captions indicate the resting state and number of hidden units. See Section III-B.

Heat maps also show beta-1 oscillations (12-16 Hz) are
generally similar to alpha in predicting slower responses and
lower average CVS scores. But for predicting lower variability
(more consistency) in HRT and CVS, they are similar to the
16-24 Hz oscillations from the frontal region. During EO and
EC, larger ratios of gamma from right and especially midline
parietal regions are predictors of faster responses and higher
CVSmean, and during the EC, predictors of shorter response
time in average. The left temporal (upper) gamma, on the other
hand, is similar to the central gamma in predicting lower scores
and less performance consistency from both EO and EC, and
slower responses and HRT variability from EO features.

C. Resting-state Feature Relevance Analysis and Regression

Table II presents the goodness-of-fits from cross-validated
predictions for the best subsets in each performance measure-
resting state scheme. Figure 6 shows scatter plots of the
true and predicted values for these best models as well as
the topographic plots of significant predictors. MVPA results
indicate that feature relevance analysis is efficient in obtaining
a small number of features for highly significant prediction
models, and that their signs are consistent with those from the
averaged NN weights in Figure 5.

IV. DISCUSSION AND CONCLUSION

The current study investigates the resting-state neural corre-
lates of vigilance score, response time, and their variabilities in
a long and monotonous experiment. Preprocessing and artifact
rejection are performed without subjective manipulations in
the selection of independent components. The fixed-sequence
nature of SART ensures to create a monotonic environment
while varying ISIs reduce the chance of receiving repetitive.
Our experiment design managed to drive several participants to
complete drowsiness while challenging others to demonstrate
their superior skills in maintaining consistent performance
and reaction time. This is while most Go/NoGo studies on

sustained attention are either administered for shorter intervals
or do not develop regression models for predicting vigilance
variability [22], [53]. Shallow NNs cross-validated with BP-
ROI features help to visualize the polarity and ranking of
hidden unit weights in the MLRs, and feature relevance
analysis efficiently obtains the most concise and powerful
subsets. In the rest of this section, we discuss the validation of
proposed CVS and physiological importance of our findings.

A. CVS Validation

The proposed CVS is based on several well-established
observations regarding the type and number of errors, length of
RT, and their variability. CE, OE, and RT parameters have been
used as the quantitative measures of sustained attention and
response inhibition failure for healthy and patient groups [14],
[45], [46], [54], [55]. In [53], SART accuracy in the proposed
Gaussian linear mixture model (GLMM) is built as a function
of RT mean and variance and a variety of psychological and
physiological factors. The labeling strategy in [37] is based on
the number of mistakes during a driving experiment. Finally,
in [56], good and poor driving performance are determined
based on RT thresholding.

In our paradigm, recorded videos were carefully assessed to
validate the proposed CVS, and it was observed that intervals
representing slow and sharp declines in the CVS curves
indeed matched video frames with increased eye closures.
Furthermore, the periods corresponding to global minima in
the CVS curves for two participants (S04 and S10) matched
their extreme head tilts and deep sleep intervals.

B. Roles of Delta and Theta Ratios

Higher ratios of EO delta from the left frontal and temporal
regions predict faster responses and less RT variability, and
point to the role of delta oscillations in improving the “Go
stimulus-responses” [22] and suppression of the irrelevant
stimuli. In a much shorter task of auditory Go/NoGo and after

Figure 3.6: Heatmaps for 168-d weight vectors averaged across 10 runs of one-fully-connected
layer NNs with various numbers of hidden units resulting in the minimum CV error. Captions
indicate the resting state and number of hidden units.

CVS and response time in more depth due to their large correlations with the number of
errors.

3.4.2 Band-Power Feature Detection using Neural Networks

LOO-CV was performed to train one-layer NNs with normalized BP-ROI features for
prediction of the four overall performance measures. The pair of best regularization co-
efficient and learning rate for each network was obtained and Wi j, the weight associated
with unit i and feature j, was averaged over all the units to obtain W̄j. Figure 3.6 presents
heat maps for these weights averaged for all the folds and runs. The light and dark cells,
respectively, denote positive and negative signs of these spatiospectral features in the CV
MLR models.
The obtained weights demonstrate pre-frontal delta predicts lower CVS mean – due to
higher CEs and OEs – and more inconsistent CVS during EO while increase in the left
temporal delta has the opposite effect. Pre-frontal delta predicts faster responses and
more RT variability during EC – a sign of hyperactivity and impulsivity observed due
to keeping extremely fast responses in the analysis. Frontal and central alpha from EO
are correlates of more variability in both scores and response time while pre-frontal and
frontal theta predicts slower responses as well as better and more consistent CVS.
Heat maps also show beta-1 oscillations (12-16 Hz) are generally similar to alpha in pre-
dicting slower responses and lower average CVS scores. But for predicting lower vari-
ability (more consistency) in HRT and CVS, they are similar to the 16-24 Hz oscillations
from the frontal region. During EO and EC, larger ratios of gamma from right and es-
pecially midline parietal regions are predictors of faster responses and higher CVSmean,
and during the EC, predictors of shorter response time in average. The left temporal (up-
per) gamma, on the other hand, is similar to the central gamma in predicting lower scores
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Table 3.2: LOO-CV-based feature relevance analysis for MLR to predict the mean and variability
of CVS and HRT from EO and EC BP-ROI features. Statistical measures are reported for the
best models of subset sizes with the highest adjusted R2, highest r, or lowest RMSE. If more than
one subset satisfied these conditions, all of the best subsets are displayed. ***: p <0.001, **:
p <0.01, *: p <0.05.

BP-ROI Features, EO BP-ROI Features, EC

No. No. R2 Adj. R2 RMSE Corr. No. No. R2 Adj. R2 RMSE Corr.
Measure Features Subsets Rho Features Subsets Rho

CVSmean 3 20 0.91 0.87 0.02 0.96*** 2 10 0.83 0.78 0.03 0.92***

CVSvar 1 4 0.35 0.25 0.06 0.62**
2 6 0.42 0.23 0.05 0.69** 2 21 0.68 0.57 0.04 0.83***

HRTmean 8 495 1.00 1.00 0.39 ms 1.00*** 3 20 0.83 0.74 37.77 ms 0.92***

HRTvar 2 28 0.36 0.18 0.15 0.64* 2 3 0.14 -0.11 0.17 0.49*

and less performance consistency from both EO and EC, and slower responses and HRT
variability from EO features.

3.4.3 Band-Power Feature Relevance Analysis and Regression

Table 3.2 presents the goodness-of-fits from cross-validated predictions for the best sub-
sets in each performance measure-resting state scheme. Figure 3.7 shows scatter plots
of the true and predicted values for these best models as well as the topographic plots of
significant predictors. MVPA results indicate that feature relevance analysis is efficient
in obtaining a small number of features for highly significant prediction models, and that
their signs are consistent with those from the averaged NN weights in Figure 3.6.

3.4.4 Phase Synchrony Correlates of Performance Measures

Topographic plots of Figures 3.8 and 3.9 demonstrate statistically significant linear corre-
lations between the overall performance measures and the resting-state PSIs from differ-
ent frequency bands during the EO and EC sessions, respectively, with red and blue lines
indicating significantly positive and negative correlations at the 0.05 level. CEs and OEs
are also analyzed here to enable better differentiation between the correlates of commis-
sion and inhibition errors. A two-way analysis of variance (ANOVA) reveals significant
effects of frequency bands and electrode pairs on the correlations of EO and EC PSIs with
all the six performance measures, p < 0.001. Two-sample t-tests show that, except for
the omission error correlations in which significant differences exist between the average
values –and not patterns– of correlations with lower-beta bands, p < 0.05, no significant
differences are found among the mean correlations of lower-beta sub-bands with mid-
beta, p > 0.2, and with mid-beta and upper beta, p > 0.5, during the EO sessions. For
the EC condition, two-sample t-tests show no significant differences between the mean
correlations of lower beta bands, p > 0.3. However, significant differences are observed
between correlations of the mid-beta and upper beta bands, p < 0.05, except for the HRT
mean and HRT variability. We thus group similar beta sub-bands together, calculate their
average PSIs, and obtain their correlations with the overall performance measures.
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TABLE II: LOO-CV-based feature relevance analysis for MLR to predict the mean and variability of CVS and HRT from
EO and EC BP-ROI features. Statistical measures are reported for the best models of subset sizes with the highest adjusted
R2, highest r, or lowest RMSE. If more than one subset satisfied these conditions, all of the best subsets are displayed. ***:
p<0.001, **: p<0.01, *: p<0.05.

Measure BP-ROI Features, EO BP-ROI Features, EC

# Features # Subsets R2 Adj. R2 RMSE Corr. Rho # Features # Subsets R2 Adj. R2 RMSE Corr. Rho

CVSmean 3 20 0.91 0.87 0.02 0.96*** 2 10 0.83 0.78 0.03 0.92***

CVSvar 1 4 0.35 0.25 0.06 0.62**
2 6 0.42 0.23 0.05 0.69** 2 21 0.68 0.57 0.04 0.83***

HRTmean 8 495 1.00 1.00 0.39 ms 1.00*** 3 20 0.83 0.74 37.77 ms 0.92***

HRTvar 2 28 0.36 0.18 0.15 0.64* 2 3 0.14 -0.11 0.17 0.49*

CVSmean, EO, r = 0.96 *** Alpha Mid-Beta Upper Gamma

CVSmean, EC, r = 0.92 *** Theta Lower Gamma

CVSvar, EO, r = 0.62 ** Upper Beta

CVSvar, EC, r = 0.83 *** Delta Upper Beta

HRTmean, EO, r = 1.00 *** Delta Alpha Upper Gamma

HRTmean, EC, r = 0.92 *** Upper Beta Upper Gamma

HRTvar, EO, r = 0.64 * Alpha

HRTvar, EC, r = 0.49 * Delta Alpha

CVSmean, EO, r = 0.96 *** Alpha Mid-Beta Upper Gamma

CVSmean, EC, r = 0.92 *** Theta Lower Gamma

CVSvar, EO, r = 0.62 ** Upper Beta

CVSvar, EC, r = 0.83 *** Delta Upper Beta

HRTmean, EO, r = 1.00 *** Delta Alpha Upper Gamma

HRTmean, EC, r = 0.92 *** Upper Beta Upper Gamma

HRTvar, EO, r = 0.64 * Alpha

HRTvar, EC, r = 0.49 * Delta Alpha

CVSmean, EO, r = 0.96 *** Alpha Mid-Beta Upper Gamma

CVSmean, EC, r = 0.92 *** Theta Lower Gamma

CVSvar, EO, r = 0.62 ** Upper Beta

CVSvar, EC, r = 0.83 *** Delta Upper Beta

HRTmean, EO, r = 1.00 *** Delta Alpha Upper Gamma

HRTmean, EC, r = 0.92 *** Upper Beta Upper Gamma

HRTvar, EO, r = 0.64 * Alpha

HRTvar, EC, r = 0.49 * Delta Alpha

CVSmean, EO, r = 0.96 *** Alpha Mid-Beta Upper Gamma

CVSmean, EC, r = 0.92 *** Theta Lower Gamma

CVSvar, EO, r = 0.62 ** Upper Beta

CVSvar, EC, r = 0.83 *** Delta Upper Beta

HRTmean, EO, r = 1.00 *** Delta Alpha Upper Gamma

HRTmean, EC, r = 0.92 *** Upper Beta Upper Gamma

HRTvar, EO, r = 0.64 * Alpha

HRTvar, EC, r = 0.49 * Delta Alpha

CVSmean, EO, r = 0.96 *** Alpha Mid-Beta Upper Gamma

CVSmean, EC, r = 0.92 *** Theta Lower Gamma
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Fig. 6: Scatter plots for predicted-vs-true performance measures from LOO-CV MLR models of Table II with the highest
adjusted R2. Polar map distributions show weights of significant BP-ROI predictors.

rejection of erroneous and extremely fast trials, increase in
task-related delta (1-3 Hz) with respect to the EO condition
was correlated with higher OEs and more standard deviation
of RT [22]. The latter finding should not be interpreted as
being different from our prediction results as we wanted to
model such impulsivities through HRT and CVS.

NN heat maps show that more theta activity from pre-
frontal to central regions is correlated with more consistency
in CVS and HRT and, in the case of EO theta, with better
CVSmean. However, none of these correlates appear in the
best LOO-CV models of Figure 6. Interestingly, higher frontal
and right parietal theta during EO are positively associated
with slower RT. Similarly, in a study on teenage ADHD and
control groups, higher theta power from the posterior and left
frontal cortex had positive correlations with longer reaction
time in the control group [57].

C. Roles of Frontal and Parietal Alpha

Increase in alpha ratios – more synchronization – in frontal
and central regions is a correlate of lower CVS and higher
variabilities in CVS and HRT. This is in line with the effect of

smaller midline alpha during a visual conjunctive continuous
performance task [58]. We also observe a close relationship
between impaired visual attention and long-duration task-
induced mental fatigue. Increase in alpha powers in both oc-
cipital and parietal regions –Brodmann’s areas 18, 19, and 37–
are linked with longer RT and lower CVSmean in this study
and a simulated driving experiment [59]. Thus, participants
who demonstrate clear patterns of maintaining their vigilance
scores are able to regulate and desynchronize their parietal
alpha powers to block attentional drifts and stay on the task
despite its monotonous nature [40], [54].

D. Opposite Roles of Beta Sub-bands in Task Consistency

Temporal and parietal beta show differential hemispheric ac-
tivities during emotional and cognitive processes [60]. Figure 5
shows beta-1 (12-16 Hz) is more similar to lower frequencies
in being associated with slower responses while beta-2 and
mid-beta (16-24 Hz) are correlates of improved and consistent
performance and faster HRT. The latter is consistent with
increased frontal beta being associated with lower CPT score
variability of the ADHD group [61]. However, to the best of

Figure 3.7: Scatter plots for predicted-vs-true performance measures from LOO-CV MLR models
of Table 3.2 with the highest adjusted R2. Polar map distributions show weights of significant BP-
ROI predictors.

As can be seen from these plots, clear differences exist in the correlation patterns involv-
ing channels from the right and left posterior regions. Increase in the synchrony of right
parieto-occipital channels with left frontal, central, and temporal regions are significant
correlates of fewer commission errors in all bands of EO and EC states, fewer errors of
omission –scarce in EO, all but the upper beta in the EC state, and less variability of re-
sponse time from mid-beta to upper gamma during the EC recordings. Thus, long-range
connections should be established between the fronto-parietal networks for information
to effectively flow between the visual cortex and regions controlling the attentional pro-
cesses. This pattern could be linked to the right lateralization of sustained attention pro-
cesses during modulation of selective responses to target stimuli [150]–[153]. This is
while an increase in synchrony within the right parietal-occipital cortex and long-range
synchronization between the left posterior with frontal channels are significant correlates
of more commission and omission errors.
Furthermore, an increase in the inter-hemispheric synchrony in the frontal and pre-frontal
regions and decrease in phase coherency of parieto-occipital with midline and opposite
frontal (as well as fronto-central and centro-temporal) during EO sessions are correlated
with more commission and omission errors. The former can be linked to the deactivation
and idling of cortical networks in the frontal lobe while the latter is a sign of decreased
information flow between the visual cortex and attention regions in the front. The patterns
of increased inter-hemispheric synchrony are very dense in EO recordings.
Consequently, reductions in synchrony of interhemispheric frontal alpha to mid-beta and
reductions in their synchrony within the right and midline parietal to occipital are asso-
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3.2 Resting-State Phase Synchrony Correlates of Performance Measures 6

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4.2 Resting-state Spatiospectral Correlates of Performance Measures 18
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Figure 7 Significant correlations of PSIs during the pre-task EO state with six overall performance measures, p < 0.05. Red and blue lines
demonstrate the significantly positive and negative correlations, respectively. Line widths are proportional to the absolute value of correlation
coefficients. Rows from top to bottom: Alpha (8 - 12 Hz), Lower Beta (12 - 20 Hz), Mid-Beta and Upper Beta (20 - 28 Hz), and Gamma (31 - 60
Hz). Columns: CE%, OE%, average CVS, variability of CVS, average HRT, and variability of HRT.
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Figure 1 Signi�cant correlations of PSIs during the EO resting-state with six overall performance measures,
p < 0.05. Red and blue lines demonstrate the signi�cantly positive and negative correlations, respectively. Line
widths are proportional to the absolute value of correlation coe�cients. Rows from top to bottom: Alpha (8-12
Hz), lower beta (12-20 Hz), mid- and upper beta (20-28 Hz), and gamma (31-60 Hz). Columns: CE%, OE%,
average CVS, variability of CVS, average HRT, and variability of HRT.

to occipital are associated with better average CVS.
Connectivity plots of EC PSIs with CVSmean are more
dense and signi�cant that the ones from EO. For the
upper beta during EC, reductions in the synchrony
of midline parietal with frontal and central channels
show signi�cant associations as well. For EO gamma
band, increase in the synchrony of left parietal with left
fronto-central also correlates with higher mean CVS.
When considering the synchrony measures in corre-
lation with CVS variability, almost opposite patterns
of those mentioned for average CVS are found to be
signi�cant. However, especially during the EC condi-
tions, higher synchrony between the left parietal chan-
nels with the frontal cortex is a signi�cant correlate of
more vigilance inconsistency.

Faster responses are correlated with smaller
synchrony of 8 to 28 Hz sub-bands within the right

and midline occipital and parietal cortex, between two
hemispheres' centro-parietal channels, and between
midline occipital with right central and parietal cortex
during the EC sessions. For the pre-task EO
recordings, smaller alpha and lower beta synchrony
between POz with right and left frontal cortex, and
higher gamma synchrony between the left centro-
parietal channels with right and left frontal and fronto-
central cortex are signi�cant correlates of shorter
response time.

Finally, correlation patterns of PSIs with response
time variability are much more scattered than other
performance measures: For the alpha to mid-beta
bands, reduction in the frontal inter-hemispheric
synchrony during both eyes open and closed sessions,
reduction in their synchrony from PO3 and CPz with
the right and left frontal and central cortex, and

Figure 3.8: Significant correlations of PSIs during the EO resting-state with six overall perfor-
mance measures, p < 0.05. Red and blue lines demonstrate the significantly positive and negative
correlations, respectively. Line widths are proportional to the absolute value of correlation coef-
ficients. Rows from top to bottom: Alpha (8-12 Hz), lower beta (12-20 Hz), mid- and upper beta
(20-28 Hz), and gamma (31-60 Hz). Columns: CE%, OE%, average CVS, variability of CVS,
average HRT, and variability of HRT.
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4.2 Resting-state Spatiospectral Correlates of Performance Measures 19

(a) CE: alpha (b) OE: alpha (c) CVSmean: alpha (d) CVSvar: alpha (e) HRTmean: alpha (f) HRTvar: alpha

(g) CE: lower beta (h) OE: lower beta (i) CVSmean: lower beta (j) CVSvar: lower beta (k) HRTmean: lower beta (l) HRTvar: lower beta

(m) CE: mid-beta (n) OE: mid-beta (o) CVSmean: mid-beta (p) CVSvar: mid-beta (q) HRTmean: mid-beta (r) HRTvar: mid-beta

(s) CE: upper beta (t) OE: upper beta (u) CVSmean: upper beta (v) CVSvar: upper beta (w) HRTmean: upper beta (x) HRTvar: upper beta

(y) CE: gamma (z) OE: gamma (aa) CVSmean: gamma (ab) CVSvar: gamma (ac) HRTmean: gamma (ad) HRTvar: gamma

Figure 8 Significant correlations of PSIs during the pre-task EC state with six overall performance measures, p < 0.05. Red and blue lines
demonstrate the significantly positive and negative correlations, respectively. Line widths are proportional to the absolute value of correlation
coefficients. Rows from top to bottom: Alpha (8 - 12 Hz), Lower Beta (12 - 20 Hz), Mid-Beta (20 - 24 Hz), Upper Beta (24 - 28 Hz), and Gamma
(31 - 60 Hz). Columns: CE%, OE%, average CVS, variability of CVS, average HRT, and variability of HRT.
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Figure 8 Significant correlations of PSIs during the pre-task EC state with six overall performance measures, p < 0.05. Red and blue lines
demonstrate the significantly positive and negative correlations, respectively. Line widths are proportional to the absolute value of correlation
coefficients. Rows from top to bottom: Alpha (8 - 12 Hz), Lower Beta (12 - 20 Hz), Mid-Beta (20 - 24 Hz), Upper Beta (24 - 28 Hz), and Gamma
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Figure 8 Significant correlations of PSIs during the pre-task EC state with six overall performance measures, p < 0.05. Red and blue lines
demonstrate the significantly positive and negative correlations, respectively. Line widths are proportional to the absolute value of correlation
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Figure 8 Significant correlations of PSIs during the pre-task EC state with six overall performance measures, p < 0.05. Red and blue lines
demonstrate the significantly positive and negative correlations, respectively. Line widths are proportional to the absolute value of correlation
coefficients. Rows from top to bottom: Alpha (8 - 12 Hz), Lower Beta (12 - 20 Hz), Mid-Beta (20 - 24 Hz), Upper Beta (24 - 28 Hz), and Gamma
(31 - 60 Hz). Columns: CE%, OE%, average CVS, variability of CVS, average HRT, and variability of HRT.
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Figure 8 Significant correlations of PSIs during the pre-task EC state with six overall performance measures, p < 0.05. Red and blue lines
demonstrate the significantly positive and negative correlations, respectively. Line widths are proportional to the absolute value of correlation
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Figure 2 Signi�cant correlations of PSIs during the EC resting-state with six overall performance measures,
p < 0.05. Red and blue lines demonstrate the signi�cantly positive and negative correlations, respectively. Line
widths are proportional to the absolute value of correlation coe�cients. Rows from top to bottom: Alpha (8-12
Hz), lower beta (12-20 Hz), mid-beta (20-24 Hz), upper beta (24-8 Hz), and gamma (31-60 Hz). Columns: CE%,
OE%, average CVS, variability of CVS, average HRT, and variability of HRT.

increase in their mid-beta and upper beta synchrony
from right parieto-occipital (PO8) with the left frontal
channels during the EC sessions are correlates of more
consistent response speeds.

3.3. Multivariate Regression of Overall SART

Performance using Resting Spatiospectral Features

Considering these linear associations, the resting-
state phase synchrony features are used to predict

the mean and variation of the cumulative vigilance
score and response time in long SART. As explained
in Section 2.3, single linear LOO-CV models are
developed and, based on the statistical signi�cance of
the obtained models, all the non-empty subsets of the
selected features are used for developing multivariate
linear regression models. All features are standardized
before entering the models. For each of the eight pairs
of performance measure and resting-state conditions,
Table 1 demonstrates the goodness-of-�t measures �

Figure 3.9: Significant correlations of PSIs during the EC resting-state with six overall perfor-
mance measures, p < 0.05. Red and blue lines demonstrate the significantly positive and negative
correlations, respectively. Line widths are proportional to the absolute value of correlation coeffi-
cients. Rows from top to bottom: Alpha (8-12 Hz), lower beta (12-20 Hz), mid-beta (20-24 Hz),
upper beta (24-8 Hz), and gamma (31-60 Hz). Columns: CE%, OE%, average CVS, variability
of CVS, average HRT, and variability of HRT.
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Table 3.3: LOO-CV-based feature relevance analysis for MLR to predict the mean and variability
of CVS and HRT from EO and EC PSI features. For the n initially selected features for each per-
formance measure and each feature set, all the 2n-1 non-empty subsets were individually analyzed.
Statistical measures are reported for the best models of subset sizes with the highest adjusted R2,
highest correlation r, or lowest RMSE (ms for HRTmean). If more than one subset satisfied these
conditions, all of the best subsets are displayed. **: p <0.001, *: p <0.01.

Measure PSI Features, EO PSI Features, EC

No. No. R2 Adj. R2 RMSE Corr. No. No. R2 Adj. R2 RMSE Corr.
Measure Features Subsets Rho Features Subsets Rho

CVSmean 2 36 0.90 0.87 0.02 0.95** 8 45 1.00 0.97 0.00 1.00*

5 126 0.92 0.83 0.02 0.97**

CVSvar 3 84 0.99 0.99 0.01 1.00** 1 8 0.93 0.92 0.02 0.96**
7 8 0.98 0.87 0.01 0.99*

HRTmean 4 126 0.95 0.92 19.48 0.98** 7 120 0.99 0.97 7.88 1.00*

HRTvar 8 165 1.00 1.00 0.00 1.00** 2 45 0.92 0.89 0.05 0.96
6 210 0.96 0.87 0.04 0.98**

ciated with better average CVS. Connectivity plots of EC PSIs with CVSmean are more
dense and significant that the ones from EO. For the upper beta during EC, reductions
in the synchrony of midline parietal with frontal and central channels show significant
associations as well. For EO gamma band, increase in the synchrony of left parietal
with left fronto-central also correlates with higher mean CVS. When considering the syn-
chrony measures in correlation with CVS variability, almost opposite patterns of those
mentioned for average CVS are found to be significant. However, especially during the
EC conditions, higher synchrony between the left parietal channels with the frontal cortex
is a significant correlate of more vigilance inconsistency.
Faster responses are correlated with smaller synchrony of 8 to 28 Hz sub-bands within the
right and midline occipital and parietal cortex, between two hemispheres’ centro-parietal
channels, and between midline occipital with right central and parietal cortex during the
EC sessions. For the pre-task EO recordings, smaller alpha and lower beta synchrony
between POz with right and left frontal cortex, and higher gamma synchrony between
the left centro-parietal channels with right and left frontal and fronto-central cortex are
significant correlates of shorter response time.
Finally, correlation patterns of PSIs with response time variability are much more scat-
tered than other performance measures: For the alpha to mid-beta bands, reduction in the
frontal inter-hemispheric synchrony during both eyes open and closed sessions, reduction
in their synchrony from PO3 and CPz with the right and left frontal and central cor-
tex, and increase in their mid-beta and upper beta synchrony from right parieto-occipital
(PO8) with the left frontal channels during the EC sessions are correlates of more consis-
tent response speeds.

3.4.5 Phase Synchrony Feature Relevance Analysis and Regression

Considering these linear associations, the resting-state phase synchrony features are used
to predict the mean and variation of the cumulative vigilance score and response time in
long SART. As explained in Section 3.3.6, single linear LOO-CV models are developed
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Figure 11 Scatter plots for predicted versus true performance measures from the LOO-CV multivariate linear regression models reported in Table 3
with the highest adjusted R2. The connectivity plots demonstrate the significant PSI features decomposed in electrode pairs from different frequency
bands. Red and blue links denote the positive and negative estimated weights (increased synchrony and asynchorny, respectively) in the cross-
validated regression models.
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validated regression models.
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Figure 3 Scatter plots for predicted versus true performance measures from the LOO-CV multivariate linear
regression models reported in Table 1 with the highest adjusted R2. The connectivity plots demonstrate the
signi�cant PSI features decomposed in electrode pairs from di�erent frequency bands. Red and blue links denote
the positive and negative estimated weights, respectively, in the cross-validated regression models.

mance is especially of interest since, in the case of HRT
variability, the EO and EC band-power features failed
to result in signi�cant regression models. Furthermore,
from signi�cant predictors shown in Figure 3, it can be
understood that PSIs from a maximum of four chan-
nel pairs can accurately predict the average CVS and
response time from EO recordings, variability of re-
sponse time from EC measurements, and variability of
CVS from either state.

4.2. Roles of Short- and Long-range Connectivity

Studies on neural correlates of fatigue and drowsiness
generally focus on the functional connectivity measures
such as the directed (transfer) entropy or partial
directed coherence from MRI and EEG recordings, and
use these features as well as the direction of information
�ow and increase in the oxygenation levels to classify
the alert or wakeful versus fatigued states [40, 17, 41,
23]. Few studies have looked at the correlations of pre-

task resting states dynamics with performance in an
attention task [8] and a learning task [42]. One study
has also identi�ed the resting networks responsible for
information transfer during three di�erent cognitive
tasks [43]. They discovered that regions within the
pre-frontal cortex and the left-lateralized default model
network (DMN) were responsible for logic-rule task
while successful sensory-rule mappings were related
to information transfer between the visual and dorsal
attention regions.

In this study, we have, for the �rst time, identi�ed
the resting-state correlates and predictors of target
and non-target detection, long-term task performance,
response time, and their variabilities from averaged
phase-locking values obtained from EO and EC states.
From our regression results, reductions in short-range
and regional synchronization within the posterior
cortex predicted higher scores and faster responses.
But the variability of CVS and response time were
generally predicted by frontal inter-hemispheric or

Figure 3.10: Scatter plots for predicted versus true performance measures from the LOO-CV
multivariate linear regression models reported in Table 3.3 with the highest adjusted R2. The
connectivity plots demonstrate the significant PSI features decomposed in electrode pairs from
different frequency bands. Red and blue links denote the positive and negative estimated weights,
respectively, in the cross-validated regression models.

and, based on the statistical significance of the obtained models, all the non-empty subsets
of the selected features are used for developing multivariate linear regression models.
All features are standardized before entering the models. For each of the eight pairs of
performance measure and resting-state conditions, Table 3.3 demonstrates the goodness-
of-fit measures –from the cross-validation predictions versus true values – for the best
subsets of the entire subset sizes.
Figure 3.10 visualizes the significant channel pairs whose phase synchrony results in sig-
nificant predictors for the continuous performance measures. Red and blue links indicate
the positive and negative estimated weights in the cross-validated regression models, re-
spectively. Also demonstrated are the scatter plots of the true and predicted values for the
best PSI-based models in Table 3.3 which demonstrate the superiority of phase synchrony
features in predicting the overall performance measures in comparison to the performance
of BP-ROI features reported in Table 3.2. In other words, models built using the pairwise
synchrony features result in improved adjusted R2 and lower RMSEs compared to the
ones built from BP-ROI features. The only exception is the model of average response
time from eyes-open BP-ROI features which resulted in a surprisingly low RMSE of 0.39
ms compared to the 19.48 ms of the EO PSI set. This performance is especially of in-
terest since, in the case of HRT variability, the EO and EC band-power features failed to
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result in significant regression models. Furthermore, from significant predictors shown
in Figure 3.10, it can be understood that PSIs from a maximum of four channel pairs can
accurately and significantly predict the CVSmean and HRTmean (from eyes-open PSIs),
CVSvar (from both eyes-open and closed PSIs), and HRTvar (from eyes-closed features).
Thus, it is safe to claim that reductions in short-range or regional synchronizations are
significant predictors of higher scores and faster responses, while inter-hemispheric and
long-range synchronies are better predictors for the variability or inconsistency in perfor-
mance and response time of this long, uni-mode SART paradigm.

3.5 Discussion

3.5.1 Labeling and CVS Validation

The proposed CVS is based on several well-established observations regarding the type
and number of errors, length of RT, and their variability. CE, OE, and RT parameters
have been used as the quantitative measures of sustained attention and response inhibi-
tion failure for healthy and patient groups [66], [92], [93], [144], [154]. In [167], SART
accuracy in the proposed Gaussian linear mixture model (GLMM) is built as a function
of RT mean and variance and a variety of psychological and physiological factors. The
labeling strategy in [111] is based on the number of mistakes during a driving experi-
ment. Finally, in [168], good and poor driving performance are determined based on RT
thresholding.
In our paradigm, recorded videos were carefully assessed to validate the proposed CVS,
and it was observed that intervals representing slow and sharp declines in the CVS curves
indeed matched video frames with increased eye closures. Furthermore, the periods corre-
sponding to global minima in the CVS curves for two participants (S04 and S10) matched
their extreme head tilts and deep sleep intervals.

3.5.2 Roles of Delta and Theta Ratios

Higher ratios of EO delta from the left frontal and temporal regions predict faster re-
sponses and less RT variability, and point to the role of delta oscillations in improving
the “Go stimulus-responses” [126] and suppression of the irrelevant stimuli. In a much
shorter task of auditory Go/NoGo and after rejection of erroneous and extremely fast tri-
als, increase in task-related delta (1-3 Hz) with respect to the EO condition was correlated
with higher OEs and more standard deviation of RT [126]. The latter finding should not
be interpreted as being different from our prediction results as we wanted to model such
impulsivities through HRT and CVS.
NN heat maps show that more theta activity from pre-frontal to central regions is corre-
lated with more consistency in CVS and HRT and, in the case of EO theta, with better
CVSmean. However, none of these correlates appear in the best LOO-CV models of
Figure 3.7. Interestingly, higher frontal and right parietal theta during EO are positively
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associated with slower RT. Similarly, in a study on teenage ADHD and control groups,
higher theta power from the posterior and left frontal cortex had positive correlations with
longer reaction time in the control group [169].

3.5.3 Roles of Frontal and Parietal Alpha

Increase in alpha ratios – more synchronization – in frontal and central regions is a cor-
relate of lower CVS and higher variabilities in CVS and HRT. This is in line with the
effect of smaller midline alpha during a visual conjunctive continuous performance task
[170]. We also observe a close relationship between impaired visual attention and long-
duration task-induced mental fatigue. Increase in alpha powers in both occipital and
parietal regions –Brodmann’s areas 18, 19, and 37– are linked with longer RT and lower
CVSmean in this study and a simulated driving experiment [171]. Thus, participants who
demonstrate clear patterns of maintaining their vigilance scores are able to regulate and
desynchronize their parietal alpha powers to block attentional drifts and stay on the task
despite its monotonous nature [35], [66].

3.5.4 Opposite Roles of Beta Sub-bands in Task Consistency

Temporal and parietal beta show differential hemispheric activities during emotional and
cognitive processes [172]. Figure 3.6 shows beta-1 (12-16 Hz) is more similar to lower
frequencies in being associated with slower responses while beta-2 and mid-beta (16-24
Hz) are correlates of improved and consistent performance and faster HRT. The latter is
consistent with increased frontal beta being associated with lower CPT score variability of
the ADHD group [173]. However, to the best of our knowledge, our finding on decreased
RT variability from parietal low beta (12-16 Hz) is not reported in the literature.

3.5.5 Fronto-parietal Gamma Predicts Better Task Consistency

Increase in midline parieto-occipital gamma during EO and EC is a predictor of higher
CVSmean and lower CVSvar and faster responses in the EC states. These findings fill
the gap in resting-state correlates of upper beta and gamma bands for Go/NoGo stimuli
selection and fatigue. Furthermore, our observations on higher pre-frontal gamma being
correlated with fewer CEs and lower performance variability is in line with increased
fronto-parietal gamma reported in experienced meditators [174]. Difference in gamma
powers of two fronto-parietal networks was used to predict performance variations in
an SMR-BCI task [99] and linked with the association of attentional shifts and gamma
oscillations [175].

3.5.6 Temporal Gamma Predicts Lower Task Consistency

Increase in the left central and temporal gamma and upper beta during rest predicts slower
RT, lower CVSmean, and more CVSvar. This disability in sustaining attention can be



3.5. DISCUSSION 47

explained by differences between the high- and low-attention networks at temporal re-
gions (Brodmann’s areas 35 and 36), and the function of default mode network (DMN).
DMN is active during wakeful resting states accompanied by daydreaming, and deac-
tivated while attending to specific events and tasks [176]. Abnormal DMN activation
is observed in individuals with depression, anxiety, schizophrenia, ADHD, Alzheimer’s
disease, and amyotrophic lateral sclerosis (ALS) [99], [176]. Controlling DMN activity
through practicing meditation can improve attention in motor-imagery BCI [177] and be
used in EEG-based assistive technologies [99].

3.5.7 Role of Short-Range and Long-range Connectivity

Studies on neural correlates of fatigue and drowsiness generally focus on the functional
connectivity measures such as the directed (transfer) entropy or partial directed coher-
ence from MRI and EEG recordings, and use these features as well as the direction of
information flow and increase in the oxygenation levels to classify the alert or wakeful
versus fatigued states [151], [156], [178], [179]. Few studies have looked at the correla-
tions of pre-task resting states dynamics with performance in an attention task [124] and
a learning task [180]. One study has also identified the resting networks responsible for
information transfer during three different cognitive tasks [181]. They discovered that re-
gions within the pre-frontal cortex and the left-lateralized default model network (DMN)
were responsible for logic-rule task while successful sensory-rule mappings were related
to information transfer between the visual and dorsal attention regions.
From our regression results, reductions in short-range and regional synchronization within
the posterior cortex predicted higher scores and faster responses. But the variability of
CVS and response time were generally predicted by frontal inter-hemispheric or fronto-
parietal connections.
The topographic plots of Figures 3.8 and 3.9 show that reduction in synchrony of the left
parietal channels with right and midline frontal cortex, lower synchronization within the
parietal cortex, and smaller long-range frontal-parietal synchrony in gamma oscillations
are correlates of fewer omission errors. The lower synchrony within the parietal cortex
was a significant predictor of improved CVS mean, faster responses, and more consistent
response time in the scatter plots of Figure 3.10. These observations regarding the im-
proved short-range and high frequency synchronization inside the posterior region can be
explained with the concept of promoted gamma oscillations inside the task-related areas
during sustained-attention experiments [153]. This is while the right and left tempo-
parietal channels during the EO state should be more synchronized with the opposite
frontal and central channels as correlates of fewer commission errors. The EC patterns
show that the smaller synchrony of left parietal channels with the pre-frontal cortex is a
correlate of more consistency in CVS while the EC signals in PO8 needs to have stronger
synchronies with the left frontal and central channels for more consistent response speeds
and smaller number of commission and omission errors or better target/non-target detec-
tion. This observation is in agreement with the findings of Choi et al. during an easy
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auditory oddball task who explained the enhancement of long-range gamma connectivity
was linked to “matching” of the working memory contents with the actual stimuli which
is meditated by attentional resources [182]. Similarly, in an experiment with monkeys
and during a pre-stimulus delay after a cue signal, long-range gamma (35-60 Hz) coher-
ence was enhanced between the posterior parietal cortex, visual cortex, and frontal eye
field while the 5 to 15 Hz coherence was suppressed between the poster pariteal and vi-
sual cortex [183]. Likewise, the EO connectivity plots of Figures 3.8 and 3.9 show that
increase in short-range alpha synchrony within the posterior region is a correlate of more
errors, higher CVS variability, and smaller CVSmean.
Finally, the regression results in Figure 3.10 indicate that increase in pre-task interhemi-
spheric synchrony in the alpha and beta-bands predict more variability of CVS and re-
sponse time. In an analysis of alertness and fatigue in a long-term cognitive task, it was
observed that beta-band coherence and PLVs decreased in the central and parietal cortex
had significantly decreased in the post-task, fatigued states with respect to the pre-task
recordings [184], suggesting the role of fatigue in reduction of cooperative processing
and functional coupling. In a more recent study on vigilance characterization during
an air traffic controller task, network parameters for dynamic partial directed coherence
(PDC) of the alpha band from the midline fronto-central, right fronto-central, and right
parieto-occipital regions could significantly distinguish between the positive and negative
vigilance levels [185]. Their results confirm the significant and undirected PSI weights of
alpha band from the fronto-central and parieto-occipital regions in Figure 3.10. Finally,
the beta band PLIs had the best performance in distinguishing the alert versus fatigue
states from the beginning and end of a long driving tasks [157]. This result agrees with
our findings where various beta band subsets were selected as predictors for all the four
measures of sustained attention task.

3.6 Conclusion

In this work we have, for the first time, established the phase synchrony correlates of
continuous-valued performance measures for average and variability of vigilance score
and response time from the resting-state EEG, and identified the multivariate predictors
of these measures from band-power and phase synchrony features. Our performance
measures are completely objective which improves the applicability of our work in reality
while several other studies look into classification of high versus low attention levels
merely based on their experimental design [157]. Our results indicate that higher inter-
hemispheric phase synchronies especially in the frontal and central regions are predictors
of more variability or inconsistency in the vigilance score and reaction time. This work
provides a clear picture on the role of resting-state dynamics in individual traits enabling
the maintenance of consistent performance in a highly repetitive and uniform task. This
study can be used to obtain markers before calibration sessions of BCI experiments to
indicate the need for subsequent adaptation in the interface environment and classifier
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parameters.
The flexible selection of information is served by attention in association with current be-
havioral goals. In the visual modality, this neuro-cortical function is a critical component
of cognition and a distinguishing feature of adaptive behavior. In psychological litera-
ture, ‘sustained attention’ has been characterized by individual readiness to detect sudden
and/or unanticipated stimuli throughout a time period [153]. Visual attention facilitates
processing of the visual inputs such as the stimuli that are physically more prominent (ex-
ogenous attention) and/or relevant to behavioral goals based on the specified motivation
(endogenous attention), whereas the irrelevant stimuli are filtered out as an intrinsic re-
sponse. In particular, endogenous attention is accomplished through top-down feedback
from frontal and parietal areas [181]. As well, neuro-imaging research studies show that
activation of frontal and parietal lobes (mostly in the right hemisphere) are relatively more
associated with sustained attention performance [186]. Our results are highly compatible
with those previous findings.



4 Deep Neural Networks for Vigilance Prediction from
Pre-Trial Spatio-Spectral Features

In the previous chapter, we used the collective spatio-spectral features and neural dynam-
ics of resting-state brain networks to predict the average and variability of vigilance scores
and response time in a subsequently executed long sustained attention task. The resting-
state networks are generally considered to reflect the intrinsic state of the brain and act as
the baseline for subsequent cognitive and sensorimotor tasks, and understanding their dy-
namics in participants undertaking BCI calibration provides a clear picture of the need for
assistive and adaptive technologies. However, the need for adaptation over time should be
evaluated in a continuous manner during the execution of mental tasks. In systems used
for monitoring of operators’ performance, cognitive computing, and physical rehabilita-
tion, detection of drowsy periods and intervals of low vigilance are of utmost interest for
subsequent adaptation of experimental paradigms to the users’ cognitive states. Focusing
on the little-explored world of pairwise phase connectivity in classification and detection
of drowsy states, in this chapter we provide an in-depth spatio-spectro-temporal analysis
followed by the classification of vigilance states from the band-power (BP) and phase-
locking value (PLV) features of EEG measurements during our long Sustained Attention
to Response Task (SART).
In the first part of this chapter, Experiment 1, we report the power of utilizing averaged
pre-trial phase synchrony indices (PSIs) and deep neural networks (DNNs) for estimating
the block-wise vigilance and response time of all participants in a cross-validated, regres-
sion setting. The aforementioned experiment blocks last for approximately 8 minutes.
Neural correlates of sustained performance and response time in these blocks represent
the collective correlates of tonic vigilance variations from alpha and lower beta bands.
This work has been presented in [36] and cited as one of the novel brain connectivity
studies for vigilance prediction in [187].
In the second part of this chapter, Experiment 2, with a shift of focus to the performance
of each individual separately, we analyze the phasic correlates of attention and classify
the highest and lowest scoring vigilance trials from their immediate PLV features in the
pre-trial and early onset intervals of the entire 105-minute experiments. A three-layer
convolutional neural network (CNN) is used to extract spatial information from visual
patterns of pairwise, symmetric PLV matrices. Classification results from BP features
assembled in 14 regions of interest (ROI) act as the baseline for CNN outcomes. Finally,
we present the most commonly distinguishing features of these phasic vigilance states
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across the entire participants. Unlike the work reported in [188], our labeling strategy
does not require a visual scanning of hit and miss intervals to detect unresponsiveness,
neither does it assume uniform alert and drowsiness states in the beginning and end of
the task sessions as done in [110], [151], [157]. This work demonstrates the importance
of considering individual psychophysiological differences for modeling and detecting the
extremely alert and drowsy trials in long and monotonous experiments.

4.1 Motivation

Monitoring human alertness has been a subject of interest with several applications in
driving simulations, operation of critical machinery, and tasks concerned with learning
and memory. Increase in mental fatigue can demonstrate itself as slower reaction time
while an occurrence of microsleep episodes, defined as the “complete and unintentional
sleep-related losses of consciousness” up to 30 seconds, can be potentially hazardous
during the operation of critical machinery [189], [190]. Detection of responsive ver-
sus microsleep events or long lapses of attention has attracted interest in recent years
[191]. However, traditional studies on sleep and drowsiness detection had not utilized
inter-channel or pairwise relationships of EEG features [192]. A few studies focused on
using variations of common spatial pattern (CSP) filtering such as the regularized spatio-
temporal filtering and classification (RSTFC) [193] to optimize temporal and spatial fil-
ters for maximizing the separability of microsleep and responsive classes. However, al-
though the structural and functional connectivity differences between the alert and drowsy
states are well documented in neuroimaging studies [156], [194], few studies have so far
attempted to predict and classify these states using connectivity and pairwise measures.
The widespread and successful application of DNNs in many fields including computer
vision and speech processing has brought a new generation of systems using EEG data for
sleep stage classification, epileptic seizure detection, affective computing, and the like. A
subset of these studies also focused on visualizing the nature of features that the CNNs
and deep belief networks (DBNs) learn from multi-class EEG-based BCI datasets [26],
[27]. In the context of DNNs, two-dimensional kernels of convolutional blocks could par-
tially extract spatial information from multi-channel raw inputs, but their receptive field
is limited to the nearby channels – sorted according to the EEG electrode numbering– due
to the usually small dimension of utilized kernels. Notable solutions to tackle this lim-
itation include using larger kernels in the shallow and deep ConvNet architectures [26],
applying a sequence of temporal and depthwise convolutions in EEGNet for learning the
frequency-specific spatial filters [27], designing spatial and temporal recurrent layers for
horizontal and vertical scanning of channels [195], and using convolutional layers after
meshes of scalp channels [196]. More recently, Zhang et al. used 20-frame sequences
from 3D EEG cubes as the inputs to a deep CNN followed by a deep recurrent neural
network (RNN) for classification of low versus high mental workload in a 70-minute
sessions of spatial n-back and arithmetic sessions [197].
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In this chapter, we address the interesting view points and shortcomings of both ap-
proaches, and predict the occurrence of alert and drowsy trials during a long Go/NoGo
task using phase synchrony values [128], [129] extracted from pre-stimulus EEG signals.
The novelties and contributions of our work can be listed as below.

1. We focus on extracting EEG-based features from pre-trial intervals since the alert-
ness during the expectation state is shown to be associated with performance in
visual oddball [64], motor imagery [198], and motor learning [123] tasks.

2. We identify the common pre-trial, band-power correlates of variations in vigilance
level among all participants, and use them in Chapters 5 and 6 for prediction of con-
tinuous and discrete vigilance levels in an unsupervised manner when an objective
and reliable ground truth does not exist.

3. We rely on the benefits of PLV in demonstrating different functional features be-
tween alert and drowsy states, and combine them with the learning power of DNNs
and CNNs in extracting spatial information from visual patterns of pairwise, sym-
metric matrices.

To the best of our knowledge, so far only one study has used deep neural networks
for attention/no-attention classification of EEG signals from a non-driving and non-
sleep scenario [199], and even they have used resting-state recordings for the no-
attention class. Furthermore, although the phase synchrony index has been used for
detection of microsleep versus response trials from a simulated driving task [191],
the utilized features did not involve matrices that show larger spatial regions for
synchronization or desynchronization. Our input matrices and proposed networks
are considerably simpler compared to the extremely deep solutions recently pro-
posed to tackle the limited receptive field of CNNs [26], [27], [195], [196] and
the 3D convolutional-recurrent network architecture of [197] that is applied to the
sequential frames of 3D EEG cubes.

4. Through our novel trial vigilance score (TVS), we appreciate and emphasize inter-
individual differences in execution of long and monotonous Go/NoGo tasks [52].
The ground truths for vigilance scores are individually customized according to the
fastest response time of initial trials, and then averaged over specific length win-
dows. Furthermore, trials belonging to the high and low alert classes are extracted
from the extreme tails of the score histograms and are not assumed to belong to the
immediately initial or final experimental blocks.

The rest of this chapter is organized as follows. Section 4.2 presents a summary of the
related work. Section 4.3 focuses on the calculation of adaptive vigilance scores as well
as cross-subject regression results for 8-min blocks using the PSI features. Section 4.4
then presents details of dataset construction using BP-ROI and PLV features, introduces
the proposed CNN architecture, and discusses common and individual correlates of high
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and low vigilance levels as well as the classification rates among different features. This
chapter is concluded in Section 4.5 with a summary of important findings and implica-
tions.

4.2 Related Work

As one of the most established studies on the role of alpha oscillations in memory and
cognitive capabilities, Klimesch et al. discussed that participants are at a state of ex-
pectancy between occurrence of a warning sign and appearance of a target or non-target
visual stimulus [64]. When participants are expecting a target, a significant reduction in
the lower alpha power – event-related desynchronization (ERD) – is observed that reflects
their high alertness level. Furthermore, the power of lower alpha-2 oscillations decreases
one second before the onset of any type of stimulus, thus reflecting a general expectancy
state. Later on and if targets do appear, participants demonstrate larger reduction in lower
alpha-2 power. Ozdenizci et al. [123] also reported large reduction in pre-trial fronto-
parietal beta (15-30 Hz) power in a motor learning experiment. Furthermore, Bamdadian
et al. reported that the ratio of theta to the total alpha and beta powers from the 2-second
pre-trial interval was correlated with the classification accuracy of performing motor im-
agery versus mental counting trials [198].
In addition to studies on sleep level classification, detection of mental fatigue and assess-
ment of drowsiness levels are usually carried out during simulated or real-world driving
experiments [13], [156], [168], [192], [200]–[202]. The ground truth in these experiments
is either obtained from averaging the number of errors or accidents, fixed thresholding on
the reaction time, or using correlates of sleepiness from facial features such as variations
in the eye blink rates and increase in the duration of eye closures. In the same context,
a growing number of papers have been published on regression methods for vigilance
or drowsiness estimation, usually from both electrooculography (EOG) and EEG record-
ings [111], [139], [203]–[206]. Less frequently, EEG signals from resting-state sessions
recorded immediately before and after a series of cognitive tasks are used for drowsy
versus alert state classification and regression [52], [110]. In another group of papers to
which this chapter’s studies belong, EEG activities recorded during the execution of men-
tal tasks, Go/NoGo experiments, or vigilance sessions have been used for drowsiness de-
tection with ground truths obtained in the form of hits and misses. Sun and Lu performed
a monotonous visual task, and averaged the number of errors committed within 2-minute
windows to label and classify fatigue levels with support vector machines (SVM) and
parallel hidden Markov models (HMM) [112]. The same group used the first and last five
minutes of a psychomotor vigilance test (PVT) and constructed partial directed coherence
(PDC) for connectivity matrices before classification [151]. Comsa et al. assigned the
first five minutes of an auditory semantic task to the responsive and another 5-minute long
interval from subsequent windows to the unresponsive states and performed classification
using the pre-stimulus EEG [188]. Fahimi et al. labeled all trials obtained from a Stroop
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color test [207] as attentive while the subsequent resting-state sessions were used for the
non-attentive state [199]. Finally, although Chavarriaga et al. characterized the evoked
potentials and spectral power during the anticipation period in a visual driving simulation
[208], few studies have focused on the importance of predicting low-vigilance trials from
intervals prior to the onset of visual stimuli to enable further intervention in the interface
or adaptation of the underlying classifications algorithms.
Besides the different experimental paradigms and labeling strategies mentioned above,
the nature of features extracted from EEG signals are highly diverse as well. Earlier
studies on sleep stage classification used (a) statistical moments, (b) peak-to-peak volt-
age and area under the EEG and EOG signals, (c) time-frequency features (fast Fourier
transform and power spectral density), (d) wavelet coefficients and entropy, (e) signals
constructed from blind source separation such as the principal and independent com-
ponent analyses, and (f) cross-correlation and autocorrelation of multi-channels signals
[209]. However, structural and functional connectivity differences between the alert and
drowsy states, although known in the literature, have been rarely used for classification of
these mental states in the literature. It is, for example, widely known that the right fronto-
parietal regions become activated in simple sustained attention tasks and with increased
time-on-task, and become deactivated with increase in mental fatigue and decrease in
task performance [149]–[151]. EEG-based phase synchronization and other connectivity
measures have been also analyzed in Go/NoGo tasks and motor execution/inhibition with
audio stimuli [152], [182], vigilance and working memory [210], [211], and transitions
and implications of alert versus fatigued task execution [178], [179]. With a shift in clas-
sic spectral features and in their work on sleep microstate classification versus responsive
trials, Buriro et al. extracted a combination of seven inter-channel features, namely, co-
variance, correlation, cross-spectral power, coherence, joint entropy, mutual information,
and phase synchronization index, from band-passed EEG signals. They found that joint
entropy, wavelet cross-spectral power, and covariance features outperformed the normal-
ized features in an cross-subject classification [191]. Feature selection was applied in
each fold of their leave-one-subject-out cross validation for a total of 8 participants, and
the area under the receiver-operator characteristic (ROC) and precision-recall (PR) curves
as well as the Matthew’s correlation coefficient (phi) [212] were used due to the class im-
balance in each cross-validation fold. Chen et al. used unweighted networks from phase
lag index (PLI) of EEG signals to characterize and classify the correlates of alert –first
three minutes– and drowsy –last three minutes– intervals in a one-hour simulated driv-
ing task [201]. In a different study on audio classification, the power spectral density
ratio and weighted phase lag index (WLPI) were used for detection of responsive versus
unresponsive state [188].
Almost simultaneously with [201] and [188], we presented and published our work on
continuous estimation of vigilance levels using the collective, cross-validated pre-trial
phase synchrony index of 8-min blocks of SART experiments at the EMBC 2019, and
focused on using the same features, this time from individual trials of each participant
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separately, to classify their most extreme attention levels.

4.3 Experiment 1: Cross-Subject Regression of Vigilance Score and
Response Time

In this section, we present the methods and results for prediction of continuous vigilance
levels using averaged pre-trial phase synchrony index (PSI) from experimental blocks in
a leave-one-subject-out cross-validation scheme.

4.3.1 Methods

Details of the experiment design, data acquisition, and labeling scheme are as described in
Section 3.3. Monopolar EEG signals were recorded using 64 Ag/AgCl active electrodes
mounted according to the 10-10 International Electrode Placement System and connected
to a BioSemi ActiveTwo amplifier (Biosemi Inc., Amsterdam, The Netherlands). The
common mode sense (CMS) active electrode and Driven Right Leg (DRL) passive elec-
trodes served as the reference and ground of the system. The sampling rate for the EEG
and 3-channel EOG signals was set to 2,048 Hz. Each 12-block SART session, equivalent
to 2,700 trials, lasted for approximately 105 minutes and resulted in over 13.5×106 time
samples. Two participants, S02 and S08, completed fewer than 12 blocks. The recordings
in each block were bandpassed between 1 and 70 Hz and the logistic Infomax Indepen-
dent Component Analysis (ICA) algorithm of Bell and Sejnowski [161] was applied to
the pre-processed signals. Independent components with peak activities exceeding 9 stan-
dard deviations from their mean were rejected as indicators of non-cortical activities from
muscular or ocular artifacts as well as abrupt and sharp movements. Finally, block-wise
signals were back-propagated and reconstructed.

4.3.1.1 Phase-locking Value Computation

From each trial in the artifact-free EEG signals, time intervals from -200 ms up to 1,600
ms with respect to the digit onsets were extracted and downsampled to 512 Hz, resulting
in intervals of 923 samples1. To demonstrate a measure of inter-trial variability [128],
the phase locking value (PLV) is computed for all unique electrode pairs of band-passed
signals in the α (8–12 Hz), lower β -1 (12–16 Hz), lower β -2 (16–20 Hz), mid-β (20–24
Hz), upper β (24–28 Hz), and wide-band γ (28–60 Hz) oscillations in all the time samples
and trials. Each real-valued and band-passed signal x(t) is convolved with 1/πt to obtain
xHT (t), the Hilbert transform of x(t) [163]. The inverse tangent of xHT (t)/x(t), Φi(t,n),
represents the instantaneous phase of transformed signals for electrode i at time bin t and
trial n = 1,2, ..., N. The phase difference for each electrode pair (i, j) is then obtained

1A note on the commonly used terms in this paper: Time interval actually refers to the term epoch used in neuro-
physiological studies for windows of specific length extracted with respect to each digit (stimulus) in an experimental
trial, and the term epoch refers to one full pass of training set in the deep learning terminology. Furthermore, a time
sample refers to an instantaneous electric potential in the EEG recordings [213].
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from the difference between their instantaneous phases at each time sample, i.e.,

Φi j(t,n) = Φi(t,n)−Φ j(t,n), (4.1)

where i = 1,2, ...,63, and j = 2,3, ...,64, and t = 1,2, ...,923 in our setup. In other words,
this phase difference is extracted for all the time bins, trials, and electrode pairs.
As a general rule, if signals measured at electrodes i and j are at the maximum synchrony
with each other or have a small phase difference at each time bin t and the majority of
trials inside a block, their PLV is close to 1. Otherwise, their PLV is closer to 0 in case
of large differences in instantaneous phase or random pairwise phase variations across
different trials.

4.3.1.2 Phase-Synchrony Index Computation

For each block, PLV at time t is calculated by dividing the magnitude of sum of complex
exponentials with the phase differences computed in Eq. 4.1 by the total number of trials
in that block:

PLVbk(t) =
1
N

∣∣∣∣∣ N

∑
n=1

e jΦi j(t,n)

∣∣∣∣∣ , (4.2)

where bk denotes the block number, N is equal to 225 for each block, and t ∈{1,2, ...,923}.
Next, to analyze the entire pre-trial connectivity patterns for each block, PLVs from the
downsampled intervals of 200 ms before the digit onsets were averaged for all trials re-
gardless of their labels. This resulted in obtaining a 64 × 64 matrix for each block that
represented the phase-synchrony index (PSI) for each electrode pair. In other words,

PSIbk =
1
T

T

∑
t=1

PLVbk(t), (4.3)

where T = 103 for the downsampled time intervals. The final feature set for each fre-
quency band, X ∈ R2016×113, consisted of PSI values for 2,016 unique electrode pairs and
all the 113 blocks of the whole 10 SART participants.

4.3.1.3 Adaptive Vigilance Labels

In this study, to design an objective measure for labeling sustained attention without in-
terrupting the users to carry on their experimental tasks, we rely only on the response
time and number of erroneous and correct events – unlike the percentage of eye closure
(PERCLOS) obtained from EOG measures in simulated driving experiments [139]. Ex-
periment trials were automatically labeled by the interface according to the type of the
digit –target or non-target– and whether a click was executed or not. To come up with a
multi-level measure purely dependent on the task performance, we calculate the 5-level
Trial Vigilance Score (TVS) measurement system [52]. Next, the Cumulative Vigilance
Score (CVS) at each trial is calculated with a moving average window from the TVS of
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Figure 4.1: Heatmaps showing correlation patterns for the block-wise pre-trial PSIs with perfor-
mance measures from 113 blocks of all participants. (Top) Mean CVS, lower beta-2, and (Bottom)
Mean HRT (ms), alpha oscillations. Color bars denote the Pearson’s coefficients, p < 0.001 when
|r|> 0.32.

36 preceding trials that lasted for 4 sequences or 73 seconds, and subsequently divided
by four to keep the range between 0 and 1. This measure allows us to characterize the
long-term, tonic nature of attention and performance variations rather than the momen-
tary, phasic correlates of missed clicks, and works similarly to the cumulative scores in
sleep stage classifications [111].

4.3.1.4 Deep Neural Networks for Block-wise Regression

A total of 12 experiments were conducted to predict all the block-wise CVS mean and
HRT mean values from five narrow-band and one wide-band pre-trial PSI feature sets.
Feature vectors were fed to the designed deep networks consisting of an input layer, a
dropout layer to prevent overfitting, a rectified linear unit (ReLU) activation layer fol-
lowed by a fully-connected layer with 800 units, a drop-out layer and ReLU layer, a sec-
ond fully-connected layer with 300 units, and a ReLU layer followed by the output layer
with one unit. Two networks were trained with two different loss functions commonly
used in regression problems, the Mean-Squared-Error (MSE) and Mean-Absolute-Error
(MAE).
By observing the value of loss functions after each epoch, we found that, for this small
dataset, 150 epochs were sufficient for the stochastic gradient descent (SGD) to reach
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Table 4.1: The best RMSE, MAE, and Pearson’s correlation coefficients for prediction of CVS
Mean (min: 0.1768, max: 0.6110, median: 0.4818) using DNNs trained with MSE and MAE loss
functions in their regression layers for 5 permutations of 4-fold cross-validation. Numbers in the
parentheses denote the pair of mini-batch sizes and learning rates obtained through grid search for
the best output of each network evaluated by the designated performance metric.

Perf. Metric Root-Mean-Squared-Error Pearson’s Correlation

Loss Function MSE Loss MAE Loss MSE Loss MAE Loss

Alpha 0.0465 (64, 0.044) 0.0464 (128, 0.078) 0.760 (16, 0.044) 0.770 (128, 0.023)

Lower Beta-1 0.0457 (16, 0.062) 0.0459 (16, 0.048) 0.772 (16, 0.062) 0.771 (16, 0.038)

Lower Beta-2 0.0430 (16, 0.011) 0.0440 (16, 0.030) 0.806 (16, 0.014) 0.802 (128, 0.100)

Mid-Beta 0.0457 (16, 0.062) 0.0466 (128, 0.048) 0.768 (16, 0.078) 0.762 (16, 0.018)

Upper Beta 0.0443 (16, 0.011) 0.0447 (16, 0.018) 0.786 (16, 0.048) 0.790 (128, 0.078)

Gamma 0.0461 (16, 0.048) 0.0461 (16, 0.030) 0.777 (16, 0.048) 0.781 (16, 0.018)

the minima. A grid search was then performed to optimize each loss function for 20
learning rates logarithmically increasing from 0.001 to 0.1 and four mini-batch sizes of
16, 32, 64, and 128. To assure fair evaluations were being conducted, we ran 5 dataset
permutations, each consisting of 4-fold cross validations. For each combination of the
learning rate and mini-batch size, the network performance was assessed using the root-
mean-squared-error (RMSE) and the Pearson’s correlation coefficient between the true
and predicted labels.

4.3.2 Results

Figure 4.1 demonstrates the correlation patterns between the block-wise CVS mean with
the pre-trial PSI features of the lower beta-2, and the block-wise HRT mean with the pre-
trial PSIs of alpha oscillations which showed the most wide-spread and highest number
of significant correlations. Two-way analysis of variance (ANOVA) revealed significant
factors of frequency bands and electrode pairs on the obtained correlation coefficients for
both performance measures, p < 0.001. Stronger desynchronization within the frontal
network and from left centro-temporal channels with the midline parieto-occipital, and
synchronies within the right centro-tempo-parietal cortex are correlates of improved CVS.
The strongest correlates of delayed responses are observed from the alpha oscillations
from synchronies within the left fronto-central and from there with the right parietal and
occipital channels, and within the right parieto-occipital cortex.
Tables 4.1 and 4.2 show the lowest errors and highest correlations obtained for predic-
tion of CVS mean and HRT mean after grid search on the learning rates and mini-batch
sizes for all feature sets. Among the 6 tested feature sets, the lower beta-2 PSIs out-
performed other bands in predicting the block-wise CVS mean with the lowest errors of
0.0430 and 0.0440 in networks with the MSE and MAE loss functions, respectively, both
obtained with mini-batches of 16 samples. With a range of 0.1768 to 0.6110 and median
of 0.4818, the error to median ratio is equal to 0.0892 for this regression problem. Linear
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Table 4.2: The best RMSE, MAE, and Pearson’s correlation coefficients for prediction of HRT
Mean (min: 261.81 ms, max: 840.66 ms, median: 433.00 ms) using DNNs trained with MSE
and MAE loss functions in their regression layers for 5 permutations of 4-fold cross-validation.
Numbers in the parentheses denote the pair of mini-batch sizes and learning rates obtained through
grid search for the best output of each network evaluated by the designated performance metric.

Perf. Metric Root-Mean-Squared-Error Pearson’s Correlation

Loss Function MSE Loss MAE Loss MSE Loss MAE Loss

Alpha 51.91 (32, 0.030) 54.75 (16, 0.009) 0.903 (16, 0.018) 0.896 (16, 0.023)

Lower Beta-1 53.21 (16, 0.018) 55.86 (16, 0.018) 0.903 (16, 0.018) 0.899 (16, 0.023)

Lower Beta-2 52.22 (32, 0.038) 55.28 (16, 0.023) 0.899 (32, 0.038) 0.893 (16, 0.023)

Mid-Beta 53.28 (16, 0.030) 55.39 (32, 0.078) 0.902 (16, 0.030) 0.904 (16, 0.023)

Upper Beta 55.33 (32, 0.062) 58.91 (32, 0.062) 0.892 (16, 0.048) 0.889 (16, 0.030)

Gamma 56.85 (16, 0.018) 60.32(16, 0.038) 0.890 (64, 0.078) 0.883 (16, 0.048)

correlations obtained from these networks were equal to 0.806 and 0.802.
The pre-trial PSIs of alpha band returned the lowest errors of 51.91 ms and 54.75 ms, and
the correlations of 0.903 and 0.896 from the MSE and MAE loss functions for predicting
the average HRT, respectively, closely followed by the lower beta-1 and mid-beta fea-
tures. With a range of 261.81 to 840.66 ms and a median of 433.00 ms, this performance
translates to an error/median of 0.12. Figure 4.2 demonstrates the performance curves
versus learning rates of the best feature sets for predicting the block-wise CVS mean and
HRT mean, obtained from four mini-batch sizes in networks with the MSE and MAE loss
functions.

4.3.3 Discussion

In this study, we trained DNNs to assess the average and objective performance in a long
SART experiment using phasic synchrony features of pre-trial EEG as a novel integration
of functional connectivity into deep learning architectures. Contributions are multi-fold,
starting with a labeling strategy independent of the participant’s facial and ocular artifacts
that does not require a built-in camera or a constant interruption of the natural variation
of individuals’ vigilance patterns. Second, the proposed system uses phasic PSIs of pre-
trial intervals to assess the tonic performance of individuals in the order of minutes, thus
reducing the need for fast updating any alarm system and providing a suitable approach
for performance monitoring for users susceptible to hypo- or hyper-vigilance disorders
and subsequent system tuning. Our findings are in line with the roles of alpha and beta
coherence values in transition from awake to fatigue states [151], [156], the role of al-
pha desynchronization in attentional processes [152] and task learning [180], and role of
beta synchronization over the sensorimotor cortex in motor learning. This work can be
extended by using CNNs to assess the learned weights of hidden layers as shown in the
next section.
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Figure 4.2: The RMSEs and correlation coefficients versus learning rates in predicting the (top)
block-wise mean CVS from lower beta-2 pre-trial PSIs and (bottom) mean HRT from alpha-band
pre-trial PSIs. Curves represent the validation metrics from experiments conducted on different
mini-batch sizes by networks with the MSE and MAE loss functions.
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4.4 Experiment 2: Classification of Drowsy and Alert Vigilance States

In this section, we present the methods and results for prediction of discrete drowsy and
alert vigilance levels using pre-trial phase locking values of individual trials for each
participant in the SART scheme.

4.4.1 Methods

In this part, the method of obtaining ground truth labels for the drowsy and alert classes
are explained and two datasets generated from the band-power (BP) ratios and phase syn-
chrony values (PLV) of each trial are introduced. Results of vigilance classification using
the BP ratio features are treated as the baseline for the second group of features. We dis-
cuss the experiments conducted with classical machine learning schemes applied to the
BP datasets and with a deep CNN architecture on the PLV datasets. For the first group, we
aim to compare our findings with the literature on emotion recognition, BCI applications,
and sleep or microsleep detection in which the classical learners are traditionally applied
on Fourier transform coefficients and band-power features. For PLV features constructed
as images in our datasets, we are interested in exploring the usability of CNNs in classi-
fication and visualization of learned features through inter- and intra-region connections.

4.4.1.1 Construction of Drowsy and Alert Classes

Table 4.3 includes the variability of CVS, defined as the ratio of its standard deviation to
its average value, for each participant. Results of performance stability from CVS curves
demonstrate that participants S02, S03, S05, S08, S09, and S11 were able to maintain
relatively stable vigilance scores during the long SART experiment while S04, S06, S07,
and S10 experienced extreme transitions between high alertness and full sleepiness and
were labeled as having unstable CVS curves.
To construct the two discrete vigilance levels, Next, a CVS histogram was plotted for each
participant and two thresholds were applied to obtain three vigilance states of drowsy,
alert, and normal, so that either each extreme had less than 9% of the total samples or one
of them had at least 200 samples. Table 4.3 shows the range of these custom thresholds
for drowsy (low-CVS) and alert (high-CVS) classes and the number of trials in each class.

4.4.1.2 Analyzing Performance Stability from CVS Curves

A number of parametric curves including the linear, quadratic, and cubic polynomial
functions, exponential functions, Fourier representations with one and two frequencies,
and Gaussian functions with one and two terms were fitted to the CVS curve of each
participant from the entire experiment. The best fit was determined based on the largest
adjusted R2 and smallest values of Akaike’s information criterion (AIC) and Bayesian
information criterion (BIC). These curves visualize the participants’ abilities in sustain-
ing their attention levels throughout this long experiment, and the sharp slopes in the
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Table 4.3: CVS variability, threshold range (the difference between low-CVS and high-CVS
thresholds), and the number of trials in the drowsy and alert classes of each participant. Num-
bers in the parentheses denote the ratio of drowsy trials in each dataset.

Participant CVS Threshold # Drowsy # Alert

Variability Range Samples Samples

S02 0.057 0.064 284 (53.69%) 245

S03 0.047 0.073 241 (44.88%) 296

S04 0.335 0.300 256 (49.71%) 259

S05 0.062 0.085 198 (54.10%) 168

S06 0.115 0.120 244 (49.39%) 250

S07 0.234 0.260 244 (50.00%) 244

S08 0.056 0.090 192 (48.85%) 201

S09 0.112 0.170 206 (50.49%) 202

S10 0.228 0.300 226 (53.94%) 193

S11 0.096 0.120 245 (52.01%) 226

fitted curves are indicators of fast improvements or sudden declines in sustained attention
levels.

4.4.1.3 Construction of BP-ROI Datasets

Fast Fourier Transform (FFT) was applied to compute the pre-trial band powers, and FFT
coefficients inside the following non-overlapping frequency bands were obtained: 0.5
– 3.5 Hz (δ ), 4 – 7.5 Hz (θ ), 8 – 11.5 Hz (α), 12 – 15.5 (lower β - 1), 16 – 19.5 Hz
(lower β -2), 20 – 23.5 Hz, ..., and 44 – 48 Hz (upper γ). These spectral powers, when
extracted from various cortical regions during the pre-trial or in-trial interval in a num-
ber of sensory-motor and motor-imagery paradigms, were shown to be associated with
attentional levels [30]. Since our earlier analysis had shown participants had different
levels of base-band powers in the eyes-open and eyes-closed resting states and the actual
task sessions, we computed the ratios of non-overlapping band powers with respect to
the sum of coefficients from 0.5 Hz to 48 Hz for each trial from the magnitudes of the
FFT coefficients. We also extracted the following mixed-band features from pre-stimuli
intervals: (θ +α)/β , the reciprocal of an attention or engagement index used in neuro-
feedback experiments [214], (θ +α)/(α +β ), α/β , a sign of mental inattentiveness and
decreased arousal [214]–[216], and θ/β or TBR, an indicator of decreased attention in
a number of ADHD subgroups [217]. For these mixed-band features, wide-band β was
calculated from 12 to 28 Hz.
Next, for each participant, 10 BP features were extracted from the pre-trial intervals of all
the low-CVS and high-CVS trials. These features included the narrow-band δ , θ , α , β -1,
and β -2, wide-band γ , and the four mixed-band features mentioned above. To summarize
the role of spatial variations in cortical activities, the 64 electrodes were grouped into
the following 14 regions of interest (ROI): left, midline, and right pre-frontal (LPF, MPF,
and RPF), frontal (LF, MF, and RF), central (LC, MC, and RC), parietal (LP, MP, and
RP), and left and right temporal (LT and RT) regions. Thus, the BP-ROI dataset of each
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participant had a total of 140 spatial-spectral features.

4.4.1.4 Baseline Experiment: Classification of BP-ROI Datasets

For each participant, the BP-ROI datasets were permuted and split in a 0.8:0.2 ratio
to obtain the training and test sets. Six classic learners including SVM with linear,
quadratic, and Gaussian kernels, decision tree (DT), k-nearest neighbor (kNN), and Naive
Bayes (NB), as well as four ensemble techniques (DT with bootstrap aggregation or bag-
ging, adaptive boosting (AdaBoostM1), random undersampling boosting (RUSboost),
and kNN with subspace learners) were utilized. A 5-fold cross-validation was applied
on the training set to train each of these classification approaches and perform hyperpa-
rameter tuning on the remaining fold.
For each learner and validation fold, the best set of hyperparameters was obtained from
the "best estimated feasible point" after 30 iterations in MATLABr 2018b. This training-
test split and subsequent cross-validation and testing operations were repeated five times
for each frequency feature and the entire features in the BP-ROI dataset. The tuned hy-
perparameters consisted of the box constraint and kernel scale for SVM learners, number
of neighbors and distance metric for k-nearest neighbor (kNN) learners and the number
of learning cycles for kNN ensembles, the width for Naive Bayes, minimum leaf size
for decision trees, and the number of learning cycles, learning rate, maximum number
of splits, and minimum leaf size for ensemble decision trees with bootstrap aggregation
(bagging), adaptive boosting (AdaBoostM1), and random undersampling boosting (RUS-
boost) algorithms.

4.4.1.5 Construction of PLV-abs Datasets

The usual method of averaging Φi j(t,n) computed in Eq. 4.1 involves dividing the aver-
age values of sum of complex exponentials with the aforementioned phase difference by
the total number of trials from the same class or state, resulting in only one 64×64 matrix
for each time bin of the entire trials. This method was utilized in Eq. 4.2 for Experiment 1
since we were interested in obtaining only one feature matrix from each block. Since this
method would not allow us to populate an observation for each individual trial, we fol-
lowed a different approach for within-subject classification of alert and drowsy states in
Experiment 2. After obtaining Φi j(t,n) from Equation 4.1 for each trial of the drowsy and
alert classes, we segmented the [−200,1600] ms windows into shorter time intervals to
analyze the effect of pre-digit, early onset, and late onset time intervals on the detection
rates. As shown in Equation 4.4, the sum of complex exponentials with the calculated
phase difference for each intervals was divided by the total number of time samples in
that interval. In other words,

PLV[tb:te](n) =
1

|{tb, tb +1, ..., te}|

te

∑
t=tb

e jΦi j(t,n), (4.4)
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Figure 4.3: The CNN-based deep neural network architecture proposed for classification of
drowsy versus alert states from 64-by-64, symmetric PLV matrices.

where tb and te represent the beginning and end of the desired temporal interval with
respect to the digit onset.
The magnitudes of these complex numbers were separately saved for each trial in sym-
metrical square matrices that contained 2,016 unique channel pairs, resulting in one
64×64 PLV[tb:te] matrix for each trial among the drowsy and alert trials. We calculated
PLV-abs matrices from the following intervals: [−200,0] ms (pre-trial), [−200,100] ms
(pre-trial and early onset), [−100,100] ms (early onset), [100,300] ms (medium onset),
and [300,500] ms (late onset). We thus obtained a total of 35 different datasets for
each participant with Xlow ∈ RNlow×64×64 and Xhigh ∈ RNhigh×64×64 to represent the low-
vigilance and high-vigilance trials from 7 different frequency bands of 5 different inter-
vals.

4.4.1.6 The Proposed Convolutional Neural Network

For each time interval and frequency band, PLV-abs matrices were fed to a CNN with the
architecture shown in Figure 4.3 that was implemented in TensorFlow with a Keras back-
end. The designed network consists of 3 blocks, each with one 2D convolutional layer
with 3×3 kernels, a batch normalization layer, a Leaky Rectified Linear Unit (leakyReLU)
activation function [218], and a max-pooling layer. The number of kernels in each con-
volutional layer is set to 8, 16, and 32, respectively. Outputs of the last max-pooling
layer are flattened and fed to a fully-connected layer with 64 neurons followed by a batch
normalization layer and another leakyReLU non-linearity. The output of leakyReLU is
connected to the last fully connected layer with 2 neurons where the half of these con-
nections are randomly dropped by the Dropout block during training for regularization.
Weights in all the convolutional and dense layers are initiated with a random normal func-
tion, and a `2 kernel regularizer with a decay rate of 0.01 is used to avoid overfitting. The
Adam algorithm, a method for adaptive moment estimation, is used for optimization with
a learning rate of 1× 10−4, β1 = 0.9, and β2 = 0.999 [165]. Binary cross-entropy is set
as the loss function. Due to small levels of imbalance between the number of drowsy and
alert samples in the datasets of Table 4.3, two objective functions are utilized: classifica-
tion accuracy, defined as the number of correctly classified samples divided by the total
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number of samples in each batch, and a custom F1-mean, defined as the average of F1
scores for correct classification of the drowsy and alert samples.
For each frequency band, Xhigh and Xlow trials were concatenated and randomly permuted,
and split into a 0.8:0.1:0.1 ratio to construct the training, validation, and test sets. The
network was trained for 300 epochs with a mini-batch size equal to 16. At the end of
each epoch, network weights were saved if the F1-mean obtained from validation had
increased with respect to the F1-mean of all the previous epochs. The “best model” with
the highest F1-mean was retrieved at the end of training and used for predicting the test
labels. The whole operation was repeated for five runs.

4.4.2 Results

In this section, experimental results for within-subject classification of drowsy (low-CVS)
and alert (high-CVS) trials are presented. Special care is given to the success of each
feature from the perspective of individual behavior styles and roles of these measurements
in observing specific oscillations and synchronization patterns. PR-AUC is reported as the
performance metric since it is more sensitive to the poor performance of a given classifier
in an imbalanced dataset [219]. The effects of features, learners, and time intervals are
assessed with the ANOVA, and the Wilcoxon signed rank test [220] is used to compare the
medians of PR-AUC from conducted experiments. This section concludes by visualizing
the activations of a trained CNN for a participant with the highest PR-AUC to explore
the usability of CNNs in classification and visualization of learned features through inter-
and intra-region connections.

4.4.2.1 BP-ROI Features and CVS Variability

Before obtaining the classification results using BP-ROI features, a correlation analysis
was performed between the features and continuous-valued CVS vectors to identify the
most informative features for the upcoming classification task. These features can poten-
tially be used for assessment of vigilance levels in unsupervised studies from real-time
recordings (ref. Chapters 5 and 6).
The blue curves in Figure 4.4 show the CVS obtained from 36-trial windows plotted ver-
sus the trial index for each participant. The red curves represent the parametric functions
fitted to these CVS curves using the method described in Section 4.4.1.2. CVS variability,
defined as the standard deviation of CVS divided by the its mean, was computed for all
participants. We calculated Pearson’s correlation coefficients between the CVS curves
and cumulative versions of all features in the pre-trial BP-ROI dataset, and obtained heat
maps with 10 × 14 cells for each participant as shown in Figure 4.4.
The dark red and dark blue cells, respectively, indicate the large positive and negative
correlations. These correlation patterns, together with the specified CVS variability and
range of low- and high-CVS thresholds, demonstrate the individual physiological and be-
havioral differences especially between the group who could maintain relatively stable
vigilance scores with those who experienced extreme transitions between high alertness
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Figure 4.4: Behavioral differences in maintaining stable vigilance scores and electrophysiological
differences in correlations between CVS and pre-trial BP ratios for 10 SART participants. The
blue and red curves, respectively, represent the 36-trial averaged CVS curves and the parametric
functions fitted to them. The heat map cells demonstrate the Pearson’s correlation coefficients
between the CVS scores and each of the 10 BP features obtained from 14 regions of interest from
the entire SART experiment.
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Figure 4.5: Total number of participants for whom the linear correlations between the cumula-
tive vigilance scores and pre-trial BO-ROI features, averaged over 36-trial windows as shown in
Figure 4.4, were significantly (a) positive and (b) negative at the 0.05 level.

and full sleepiness. S04, with the largest CVS variability of 0.335, slept during most
of the second and third blocks and regained their alertness later. Increase in the ratio of
lower β -1 especially from the frontal, parietal, and occipital regions, increase in β -2 from
temporal and right central channels, overall decrease of θ ratios, and reduction in δ and
the mixed-band ratios from parietal, temporal, and midline central regions were highly
correlated with increase in the cumulative vigilance scores. S07, with a CVS variability
of 0.234, slept during the fourth and fifth blocks and demonstrated similar correlations
patterns but in smaller scales. S10, with a variability of 0.228, had no errors in the initial
blocks and only experienced heavy sleepiness towards the end. An interesting case was
S06 who had a smaller variability equal to 0.115 and showed a gradually deteriorating
performance. Despite having no large peaks or falls in the CVS curve, S06’s correla-
tion patterns from the central, parietal, and temporal regions were similar to that of S10.
Finally, the CVS patterns of S02 and S03 appeared to be very similar.
To summarize the common patterns, Figure 4.5 shows the total number of participants
for whom these linear correlations were statistically significant at the 0.05 level. Increase
in γ ratios from the left central and the whole parietal regions, and increase in β -2 from
the left central and parietal channels was correlated with higher CVS in at least 80%
of participants. Reductions in slower oscillations and their combined ratios from mid-
line frontal, the whole central cortex, and the left parietal region generally demonstrated
negative correlations with increased CVS during the experiment.

4.4.2.2 Classification Results from BP-ROI Features

Ten classical learners were used for drowsy versus alert state detection with 10 individual
features as well as the whole BP-ROI dataset as described in Section 4.4.1.4. We noticed
that a number of feature-learner pairs would result in unequal F1 scores for the drowsy
and alert classes, and this difference could easily exceed 0.4 in the case of S02, S03, and
S05 where Naive Bayes models resulted in the most imbalanced classifications. We thus
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only report the PR-AUC values in Figure 4.6, choosing the drowsy state as the positive
class. For easier interpretation of individual results and between-subject differences, CVS
variability and the difference between the alert and drowsy thresholds are specified.
For S10, the set of all BP features from all learners exceeded the 90% classification
accuracy. Using all the BP features as well as θ for S04 and α and mixed-band ratio
features for S06, these two participants could also achieve detection rates higher than
80%. The set of all features generally worked well for all participants except for S02,
S09, and S11. Finally, the SVM classifiers and decision tree ensembles outperformed the
rest of models for most participants.
The top bar plot of Figure 4.8 shows the PR-AUC from BP-ROI datasets averaged among
all participants. Using SVM with Gaussian kernels on the set of all features results in the
best averaged PR-AUC of 0.7251 while accuracy is maximized using the Bagged decision
trees with a detection rate of 0.7011. One-way ANOVA demonstrated a significant effect
of Learner type on the average of test accuracy from different features, F(9,90) = 35.21,
p < 0.001. Signed rank test revealed that SVM learners with Gaussian kernels out-
performed SVMs with linear kernels and bagged decision trees, p < 0.05, while
the Naive Bayes models returned the lowest PR-AUCs. A similar ANOVA demon-
strated an even stronger effect of Features among different learners, F(10,90) = 74.07,
p < 0.001. Using all BP-ROI features resulted in the best detection rates while β -1 by
itself performed the worst. When averaged across all participants, Wilcoxon signed rank
test showed that using the set of all features resulted in the highest PR-AUC medians from
different classifiers, followed by (θ +α)/(α +β ) and α/β which significantly outper-
formed models trained by α , γ , and (θ +α)/β , p < 0.1.

4.4.2.3 PLV Features and CVS Variability

To determine the frequency bands and time intervals from which phase synchronization
was potentially helpful for distinguishing the drowsy and alert states, two one-sided, two-
sample t-tests were performed with the 0.001 significance level, and the number of elec-
trode pairs for which the magnitudes of PLV values were significantly larger in each
class were computed. Two-way tests of ANOVA applied to these results for separate
frequency bands revealed a significant effect of Time Interval on the number of signifi-
cantly larger PLVs in the alert samples with respect to the drowsy samples for mid-β -3
(p < 0.1), upper β (p < 0.01), wide-band β (p < 0.1), and wide-band γ (p < 0.001)
PLVs, with the [−200,100] ms interval having more number of significantly different
pairs in these bands. When focusing on the drowsy class, only for the upper β (p < 0.1)
and γ (p < 0.001) bands a significant effect of Time Interval from the [−200,100] ms
interval existed on significantly larger PLVs in the drowsy class. Thus, the effect of
temporal transitions on differences between the drowsy and alert states is most
clearly observed in the upper β and wide-band γ phase synchrony features. Sim-
ilar tests of ANOVA showed a significant effect of Frequency Band for the [−200,0] ms
(p < 0.1), [−200,100] ms (p < 0.01), [−100,100] ms (p < 0.1), [100,300] ms (p < 0.1),
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Figure 4.6: AUC of precision-recall curves for within-subject drowsy-vs-alert state detection using
10 learners and 11 BP-ROI features.



4.4. EXPERIMENT 2: CLASSIFICATION OF DROWSY AND ALERT STATES 70

and [300,500] ms (p > 0.1) intervals with γ band always having the most significantly
different features between the two classes. Therefore, the effect of spectro-spatial fea-
tures on differences between the drowsy and alert classes is most clearly observed in
the pre-trial and early onset phase synchrony features.

4.4.2.4 Classification Results from PLV Features

For each frequency band, symmetric PLV matrices for five different time intervals were
separately fed to the CNN architecture described in Section 4.4.1.6. The PR-AUC values
of these experiments are displayed in Figure 4.7, choosing the drowsy state as the positive
class. Gamma-band PLVs resulted in detection rates of at least 0.9 in S04, S06, S07,
and S10, and at least 0.8 in 60% of total participants. Considering the results of
participants separately for each time interval, the two-way ANOVA and Wilcoxon signed
rank tests found that γ-band PLVs outperformed all the lower frequencies, p < 0.05.
The bottom bar plot of Figure 4.8 demonstrate the averaged PR-AUC from PLV fea-
tures. While all features from all time intervals achieved higher than chance level clas-
sification results, the pre-trial to early onset γ PLVs outperformed the rest and obtained
an average PR-AUC of 0.79 with the deep CNN architecture. A two-way ANOVA re-
vealed a strong effect of Frequency Band with F(6,24) = 89.33, p < 0.001, on the PR-
AUC averaged across all participants. S04 and S09 showed a difference of 0.2385 and
0.2381, respectively, between the best test accuracies of their respective γ and α PLVs,
but S07 surpassed this difference at 0.2979. For this participant, strong γ synchrony of
the left tempo-parietal channels with left and right frontal cortex, within the pre-frontal
regions, and between the right parietal channels with the rest of the brain account to
over 1,200 channel pairs with significantly larger synchronization. For the same subject,
strong desynchronization between the left (right) central channels with the midline and
left (right) pre-frontal cortex was observed.
Another two-way ANOVA also showed a significant factor of Time Interval with F(4,24)=
10.36, p < 0.001, on the PR-AUC averaged across all participants. ANOVA and Wilconx
tests revealed that, although the effect of time interval was negligible for γ-band PLVs,
for all the other frequency bands, the -200 ms to 100 ms features resulted in the
highest PR-AUCs especially in comparison to the [−100,100] ms interval, p < 0.05.
Individually, this pattern was verified for all participants except for S02 and S11. For
S02, most PLV pairs from different bands and intervals had AUCs just below 0.6 except
for the upper β synchronies of the [−100,100] ms interval. The same applies for S11
with only pre-trial and early onset PLVs of γ band exceeding 0.6 in the AUC metrics. For
S05, features from all the frequency bands and intervals resulted in higher-than-chance
classification except for the mid-β oscillations from the late 300 ms to 500 ms interval.

4.4.2.5 Performance of BP-ROI and PLV Datasets

Gamma-band PLVs surpassed the best PR-AUCs obtained by BP-ROI features for
60% of our participants (mean = 0.122, SD = 0.077, min = 0.046 for S08, and max =
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Figure 4.7: AUC of precision-recall curves for within-subject drowsy-vs-alert state detection using
5 time intervals and 7 PLV bands.
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Figure 4.8: Grand-average of within-subject PR-AUC for drowsy-vs-alert state detection using
(top) BP-ROI and (bottom) PLV features.
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Figure 4.9: Output activations for eight kernels of the first Leaky ReLU layer in the proposed
deep CNN measured between the average of alert and drowsy trials of S06. The depicted kernels
belong to the α and γ PLVs from the [−200,+100] ms time intervals. For improved readability,
only one third of channel names have been included.

0.244 for S07). For others, the best PR-AUC from PLVs had slightly reduced in compari-
son to the best BP-ROI results with an average of 0.066±0.051, min = 0.003 for S10 and
max = 0.129 for S02.
After averaging the classification metrics across all participants, one-sided, two-way Stu-
dent’s t-tests were applied to the classification metrics of the two feature sets. PLV models
of β -1, β -2, and γ oscillations outperformed the BP-ROI features from similar bands and
and the set of all BP features in terms of F1 scores of each class, accuracy, and PR-AUC,
p < 0.001. With an averaged PR-AUC in the range of [0.63-0.69], pre-trial α ratios
outperformed alpha synchrony features in all the classification metrics, p < 0.01.

4.4.2.6 Visualization of Learned PLV Features from Convolutional Layers

Recent studies on EEG-based emotion recognition and detection of mental tasks in multi-
class BCI datasets visualize and characterize activations of different layers to analyze the
spatial relationships of features learned by CNNs and deep belief networks (DBF) [26],
[27], [164]. In this work, as depicted in Figure 4.3, output matrices have the same dimen-
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Figure 4.10: Cluster validity: The sum-of-squares based (a) cohesion and (b) separation for the
drowsy and alert clusters constructed from the tails of the CVS histograms.

sions as the original input matrix up to the first max-pooling layer and their activations
can be mapped back to the original channel pairs. We chose one participant with the
highest detection rates to visualize the differences between the activations of hidden unit
outputs of their drowsy and alert trials: S06 with a classification accuracy of 88.98% and
97.55% from the α and γ PLVs in the [−200,100] ms interval. We obtained the outputs of
the first Leaky ReLU layer for all the drowsy and alert trials in the training set of one net-
work run, and calculated the average of these activations for each class separately divided
by the square root of number of samples in each class. This was done to accommodate
for the imbalanced number of trials in the training set. We then obtained the differences
between these averaged activations for each kernel for the alert class with respect to the
drowsy class.
Figure 4.9 demonstrates the 8 resulting 64×64 activation matrices for α and γ bands.
These heat maps demonstrate the network mostly responds to differences in phase syn-
chronization between the left centro-parieto-occipital channels with the rest of the brain,
and to a smaller degree, to the synchorny of inter-hemispheric frontal cortex and that of
right fronto-temporal with left pre-frontal channels as shown in kernels 1, 3, and 5. For
γ PLVs, the trained network is activated in response to differences in synchrony within
the left centro-parietal and within the right parietal regions. Here, the absolute value of γ

activations in this participant are less than 2 times stronger than those from α PLVs.

4.4.3 Discussion

In this study, we have, for the first time, reported the application of PLV features ex-
tracted from pre-trial and early onset time intervals in detecting low versus high vigilance
trials using a deep convolutional neural network. In the rest of this section, we present
evidence for the wellness of separation between the constructed low-CVS (drowsy) and
high-CVS (alert) clusters, demonstrate not all participants are necessarily extremely alert
in the very beginning and drowsy towards the session end, and discuss the implications
of our findings on PLV correlates of alert and vigilant task performance.
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4.4.3.1 Validation Analysis for Constructed Clusters

One common pitfall of trial labeling in Go/NoGo experiments is that individual trial vig-
ilance scores solely represent one’s momentary performance affected by phasic lapses of
attention, demonstrated as delayed clicks or missed responses. To overcome this issue,
we introduce the TVS as an objective, non-intrusive, and multi-level measure of vigilance
that is adapted to changes in the response time of each individual with respect to their own
initial reaction time [52]. In this study, the CVS, a cumulative measure to characterize
the tonic variations during 36-trial windows is utilized as the ground truth for vigilance
labeling over approximately 72-sec intervals. Dataset construction, feature analysis, and
classification presented in this work are based on the assumption that all participants
demonstrated two distinct alert and drowsy states. To test this assumption, we calcu-
lated the inter- and intra-cluster distance metrics for each individual. The Euclidean and
squared Euclidean values for the complete linkage, average linkage, and centroid linkage
distances were larger than the complete diameter, average diameter, and centroid diame-
ter distances for all participants, verifying the validity of constructed low-CVS and high-
CVS clusters. Figure 4.10 demonstrates the computed cohesion and separation values to
visualize the inter-individual differences in the mental states that participants experienced
during this long task. Cohesion here is equal to the total within-clusters’ sum-of-squared
(WSS) distance from the mean, and separation is computed from the between sum-of-
squared (BSS) distance of the clusters’ centroids from the overall mean. As can be seen
from this Figure, S10, S04, S07, and S09 outperform other participants in terms of well-
ness of their clusters’ separations and S10 shows the most centered drowsy and alert
samples. These rankings are in line with the values of low-high thresholds reported in
Table 4.3.

4.4.3.2 Temporal Distribution of Drowsy and Alert Samples

A number of studies on vigilance assessment in the context of BCI and simulated driving
assume all participants experience the fixed order of alert, medium, and drowsy states
linearly and uniformly [179]. To demonstrate inter-subject differences in mental state
transition during our long SART sessions, we obtained the number of trials labeled as
drowsy or alert in each of the 12 blocks, and calculated the cumulative sum of these
events divided by the total number of drowsy and alert trials for each participant. As
Figure 4.11 shows, although S06, S07, S08, S10, and S11 surpass 50% of their high-CVS
trials within the first four experimental blocks, participants S02, S04, and S05 exceed 50%
of their low-CVS trials during the same time period which implies they went through a
relatively more drowsy state in the beginning of the task and had a different temporal
pattern in their alertness.
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Figure 4.11: Individual differences in mental state transition during the long SART session: The
cumulative ratio of trials labeled as drowsy (top) and alert (bottom) to the total number of similar
trials plotted versus the SART blocks.

4.4.3.3 Role of Connectivity and Phase Synchronization Patterns

A number of studies have looked at the role of brain connectivity networks in the context
of attention and drowsiness characterization. In a 20-minute continuous target selection
task, α-band connections within the frontal regions had become stronger in the last block
- labeled as the fatigued state - while connections and communications with other brain
networks were disrupted [179]. However, introducing a break in the middle of the task
resulted in an increase in the last block’s connectivities among the temporal, parietal, and
frontal regions, an indicator of an improved mechanism for information transfer for task
execution. Disruptions in large-scale synchronization are known to be associated with
cognitive fatigue [178]. More importantly, the long-range coherence in α band has been
suggested to attenuate the noise caused by task-unrelated thoughts and neural activity
[66]. The heat maps of Figure 4.9 from activations of the first convolution blocks for par-
ticipant S06 with superior detection rates show a similar pattern: long-range synchronies
of alpha oscillations from pre-trial to early onset phase are improved between the left
posterior with the pre-frontal cortex, and inter-hemispheric, short-range γ connections
are also enhanced in the frontal cortex. The high number of channel pairs with PLVs
significantly larger in the drowsy state with respect to the drowsy state in this participant
could reflect the same associations.
The pairwise γ synchronization also outperformed the slower oscillations in detecting
drowsy versus alert states. It is know that γ synchronizations are enhanced inside the
task-related regions with selective excitation [153], and such synchronies over the visual,
auditory, or tactile regions can result in improved attention to the sensory stimuli. How-
ever, γ oscillations also require coupling with low-frequency and long-range connections
for superior sustained attention. For example, in a subject-dependent classification of
verbal versus quantitative tasks, δ and γ PLVs from within the pre-frontal and occipi-
tal regions and between the pre-frontal and occipital channels were selected as the most
distinctive features [221]. In an auditory oddball task, higher γ band phase synchrony
(GBPS) between frontal and posterior regions with increased task difficulty was inter-
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preted as showing active interactions [182]. The same study also analyzed the factor
of temporal evolution on the number of pairwise PLVs significantly different from the
pre-stimulus intervals: the largest increases in γ and θ , both happening more strongly in
the easy condition, belonged to the 300 to 400 ms interval in the midline frontal-parietal
channels and 250-350 ms in the midline frontal-parietal, frontal-temporal, and temporal-
parietal regions with respect to the stimulus onset. Hong et al. calculated matrices of
phase syncrhony indices in a modified visual Go/NoGo experiment and averaged them
for all the intervals in the baseline interval, from -500 to 0 ms, as well as the [200,700]
ms intervals of the Go and NoGo conditions [222]. They observed that frontal-central
θ synchronization was enhanced during response inhibition while the wide-band β syn-
chrony had improved over the central-parietal regions during response execution. In a
semantic auditory task, increased connectivity of frontal theta and disintegration of pos-
terior alpha were observed at the sleep onset and were associated with suppressing the
responsiveness [188].
Beta-band synchronization patterns are discussed less than the other frequency bands
in the literature. In a study of fatigue caused by a 2-hour driving task, for 13–30 Hz
oscillations, the interhemispheric central and parietal PLVs as well as the frontal-parietal,
central-parietal, and middle and left frontal-central PLVs all significantly decreased after
the task [201]. For S06, for example, the wide-band beta coherence was larger in the
alert states between the posterior sites with the rest of the brain, and smaller between
the left central/temporal with the right parieto-occipital region. These results are in line
with those of an inter-subject regression using pre-trial phase synchrony index (PSI) in
which lower β−2 features outperformed other features in predicting improved block-
wise CVS [36]. Stronger desynchronization of lower β−2 in the right frontal network
and between left centro-temporal channels with midline parieto-occipital channels, and
increased synchrony within the right centro-parietal cortex were correlates of higher CVS.

4.4.3.4 Comparison with Similar Classification Studies

Our work demonstrated that a 3-layer CNN architecture applied to 64×64 images of
gamma-band phase-locking values could achieve an average PR-AUC of 0.79 in 10 par-
ticipants while exceeding 90% for 40% of participants. We reported the PR-AUC as a fair
performance metric in imbalanced data sets and obtained our extreme alert and drowsy
classes based on the objective CVS score and not the experimental conditions, but not all
other studies have chosen to do so.
Figure 4.12 presents a number of state-of-the-art, EEG-based classification systems for
extreme drowsiness or low performance detection with the types of features and classi-
fiers, classification metrics, and major reported results. For a within-subject detection
of extremely alert versus drowsy driving conditions using preprocessed EEG signals,
EEG-Conv and EEG-Conv-R, a modified version of convolutional layers combined with
residual learning [223], obtained an average accuracy of 91.79% and 92.68% and outper-
formed SVM and simple LSTM networks with accuracies of 88.07% and 85.13% [224].
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The authors did not report their PR-AUC results. In a work on good and poor performance
detection based on fixed-threshold response time in simulated driving, DNNs and CNNs
obtained an average area under the curve (ROC-AUC) of 80% while CNNs applied on
channel-wise segments achieved a detection rate of 86% in within-subject classification
[168]. In another study on within-subject classification of drowsy versus states purely
based on adaptive RT thresholds in 10 participants, ICA sources achieved an ROC-AUC
of 0.745 while power-based features only gained an equivalent value of 0.671 [13]. Fi-
nally, for a cross-task mental workload assessment and using spatio-spectro-temporal
features, kNN had the lowest accuracy of just around 0.7 and the linear SVM and LDA
had performed better while still falling below the proposed model with a concatenated
RNN and 3D CNN architecture [197]. Their proposed R3DCNN model had an average
accuracy of 0.889 that was higher than the DEEP CNN model of [26].

4.5 Conclusion

We have demonstrated associations between response styles and distinctions among the
obtained spatio-spectro-temporal features. Participants with lower abilities to maintain
their attention levels also demonstrated improved detection rate using PLV features from
the pre-trial and early post-digit EEG markers. The implemented preprocessing and fea-
ture extraction steps are completely automated and do not rely on human expertise to
identify the nature of calculated independent components for artifact rejection. Further-
more, our multi-level scoring scheme only relies on each participant’s initial response
speed to determine the upper RT threshold. To sum up, combining these blocks with our
feature extraction techniques and the proposed deep CNN architecture for PLV classifi-
cations results in a successful end-to-end vigilance detection system.
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Figure 4.12: State-of-the-art, EEG-based classification systems for extreme drowsiness or low
performance detection.



5 Bayesian Models for Changepoint Detection in Vigi-
lance Time-Series

During the classification and regression approaches of the last two chapters, we paid
a special attention to inter-individual differences of maintaining consistent performance
that demonstrate themselves as highly different patterns of the CVS curves as shown in
Figure 4.4. An important question raised at this point is whether variations in vigilance
curves and their EEG-based predictors could be tracked and modeled across time, and
whether the exact moments at which a vigilance transition occurs can be detected or
predicted. A potential solution would help with building adaptive BCIs that detect the
onset of vigilance changes and, consequently, modify the classification parameters in
covert adaptation or the interface parameters in the overt adaptation schemes. For these
reasons, in this chapter we focus on the dynamic modeling of vigilance curves and their
EEG predictors in general and on changepoint detection (CPD) from those time-series in
particular.
Changepoints are defined as the onsets of abrupt changes in the underlying properties
of time-series data [225] and can be detected using supervised methods or a variety of
statistical, probabilistic, kernel-based, subspace-based, or clustering algorithms [226].
CPD from non-stationary data has been moderately explored in finance and stock mar-
kets [227], speech recognition for detecting temporal borders between speech, noise, and
silence [228], continuous patient monitoring through tracking of physiological signals
such as EEG and brain imaging data for seizure onset detection [229], [230], ECG for
heart rate monitoring [231] and workload detection [232], glucose data for miscarriage
risk detection [233], and human activity recognition from a variety of wearable sensors
[234]. However, to the best of our knowledge, CPD has been rarely used for drowsiness
detection in dynamic models of cognitive functions and even less frequently for continu-
ous vigilance modeling from the behavioral and neural/EEG signals. Similar to automatic
seizure onset prediction that prevents accidents and saves lives by alarming the users
about an upcoming intracranial seizure, changepoint detection from vigilance time-series
can notify the operators about the onset of drowsiness and enable autonomous or semi-
autonomous systems such as vehicles and radars as well as psychologists and clinicians,
BCI experimenters, educators, and parents to present manual or automatic adaptations
in response to attention variations in their users, patients, and learners. However, unlike
EEG-based epilepsy datasets in which onsets of various seizures as well as their time
intervals are annotated by clinicians for easier labeling of pre-ictal periods [49], [235],

80
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exact moments of vigilance decline are not readily clear in our calculated CVS curves
and their accompanying EEG datasets. This brings an additional challenge regarding the
ground truth annotation in physiological and cognitive datasets (Ref. Section 1.2).
In this chapter, we utilize two offline and online Bayesian changepoint detection (BCPD)
algorithms to locate transitions of vigilance curves and their EEG predictors. We vali-
date the performance of best features and models on SEED-VIG, a dataset labeled with
continuous-valued eye-closure events from driving simulations [35]. This novel fusion
of band-power vigilance predictors with the purely statistical CP detection is an indicator
of success of unsupervised inference models that will be subsequently used in Chapter 6
for designing an adaptive alertness-aware classification system. It should be noted that
we analyzed a variety of changepoint detection algorithms such as the Autoregressive
Moving-Average (ARMA), Metropolis-Hastings (MH) [236], [237], and Gibbs sampling
[238] based on pre-trial BP features and their distances with respect to the beginning
of experimental sessions; however, the Bayesian changepoint detection models reported
here outperform all of them in terms of the number of true changepoints (TCP) detected
from vigilance time-series and the insensitivity to the choice of initial parameters.

5.1 Motivation

We propose that a BCI that is to be adapted to transitions in sustained attention level of its
users has to be aware of the underlying vigilance level in real time or near real time, and
react to vigilance variations through updating the classification or environment param-
eters. The work presented in this chapter is motivated by the following methodological
questions and observations as a result of analyzing CVS curves and their correlations with
pre-trial EEG features in Figure 4.4.

1. Is it possible to track changes in the statistical distributions of behavioral vigilance
curves, vector y, and their EEG predictors, matrix X , in a dynamic setting to detect
when a person’s long-term, tonic attention starts to decline?

Here we distinguish between the short-term and phasic or event-related variations
caused by momentarily lapses of attention and tonic changes that are caused by
fatigue and drowsiness [64].

2. In an actual BCI experiment, vigilance scores or CVS curves may not be known
since the user does not provide a physically detectable response to the observed
stimuli. Therefore, relying mainly on the EEG features is preferable. Will the CPD
algorithms detect identical or close changepoints from the vector y and neural time-
series X? In other words, can changepoints obtained from EEG correlates analyzed
in the previous chapters point to correct transitions in vigilance performance curves,
and subsequently, be used to infer vigilance transitions even in unlabeled cognitive
and BCI datasets?
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3. The spatio-spectral properties of EEG features in matrix X impose strong corre-
lations among neighboring channels and frequency bands. Therefore, in the CPD
algorithm of choice, should we use single or multi-variate time series for learning
these change points? In [239], Xuan and Murphy propose two Gaussian-based so-
lutions, the Independent Features Model (IFM) and Full Covariance Model (FCM).
In both cases, the joint densities are obtained according to the method of conju-
gate priors. How can one deal with the multidimensionality of EEG features X for
finding the common changepoints of these time series?

4. Because of the final goal of “adapting” a BCI classifier to the underlying cognitive
state of the user, we prefer to detect moments of decline in alertness in a “real-
time manner” or with a short delay. Can we implement an ε-real time algorithm
that needs a minimum of ε samples in each new batch for CPD [226], or an online
changepoint detection system as in, for example, the Bayesian Online Changepoint
Detection (BOCD) of Adams and MacKay [240] or online inference algorithm of
Fearnhead and Liu [241]?

In response to these questions, the following methodological and technical contributions
for vigilance changepoint detection from behavioral and neural time-series data are pre-
sented in this chapter:

1. Inferring vigilance transitions for unsupervised changepoint detection: By acknowl-
edging large inter-individual variations in vigilance traits and without enforcing
any assumption on the maximum number of possible changepoints or their dis-
tances in the time-series, Bayesian offline and online CPD algorithms are applied
on vigilance-related performance curves – when available in the SEED-VIG and our
SART dataset – to obtain onsets of vigilance level transitions. This approach, in our
opinion, is the least constrained and most applicable choice for modeling human be-
havior and cognitive activities. To be more precise, after applying these algorithms
on the objective, continuous-valued vigilance curves to obtain changepoint loca-
tions, hereafter known as true changepoints or TCPs, we assess the performance of
EEG-based features in reporting similar change onsets, hereafter referred to as the
EEG-CPs, in the vicinity of detected TCPs.

2. Detecting changepoints from EEG-based time-series: Realizing that EEG time-
series may report several changepoints due to momentary transitions, both the be-
havioral curve and and EEG time series are first accumulated over a window of
size w. Although PLV and PSI features outperformed the pre-trial BP-ROI datasets
during the regression and classification tasks, the high dimensionality of the for-
mer modality – 2,016 unique channel pairs in the 64-channel EEG setup – makes it
extremely demanding for use in single or multi-dimensional changepoint detection
problems. BP-ROI features also had more consistent correlation patterns with vigi-
lance curves (Ref. Figure 4.4 for the SART and Figure 6.9 for SEED-VIG datasets).
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BP-ROI features act as a proof-of-concept method with an acceptable performance,
and we envision to upgrade the system with functional connectivity or PLV feature
in the future.

3. Lower complexity and improved localization: The ARMA, Metropolis-Hastings,
and Gibbs sampler methods for changepoint detection require a large number of
parameters for initial and proposed symmetric or independent kernels that quickly
add up in modeling non-stationary EEG features [242]. Furthermore, our prelimi-
nary analysis demonstrated the immense sensitivity of detected changepoints to the
selected time segments and choice of initial parameters. This is while, in our exper-
iments, the Bayesian online and offline models generalize better for the behavioral
curves from which the ground truth are to be obtained and EEG feature time-series,
have a time complexity of O(n) if solved approximately, and are our algorithms of
choice in this work. We plan to return to this problem in the future and develop
an autoregressive Bayesian changepoint model that would detect changepoints with
similar or better accuracy.

4. No prior information on the number of segments or states: As a powerful inferen-
tial technique, HMMs need to have prior information on the number of states to
estimate the transition and emission probabilities. Our experiments on CVS curves
demonstrated that a number of participants never go through more than one or two
alertness levels during their training data while falling into extreme drowsiness long
after. Therefore, it is not possible to set the exact number of states a priori. An in-
finite HMM would be a better algorithm of choice assuming old alertness states
can be revisited during the experiments [239]. One recent study used the LOO-CV
scheme to estimate the number of brain states [243]. One could also use the product
partition model (PPM) with independent or dependent parameters across segments
based on assumptions on the occurrence of old states [244].

5. Performance evaluation: The online, ε-real time, or offline (∞-real time) algorithms
[226] return different changepoints when applied to a time-series. We used those
TCPs as the separate ground truth for vigilance curves y, and introduced an evalu-
ation window of length Leval to detect the occurrence or localization of EEG-based
changepoints in a supervised manner by reporting the precision and recall values
[245] as is the common practice in expert-annotated datasets. An unsupervised
learning view can also be implemented to report a distance metric such as the mean
absolute error (MAE) or the Jaccard index and its derivations [226], [245].

The rest of this chapter is organized as follows. Section 5.2 provides a summary of
important literature on changepoint detection and their applications for cognitive and
medical applications. Sections 5.3 introduces the problem formulation for changepoint
detection using a product partition model, and presents details of a scheme for online and
offline BCPDs from the SEED-VIG dataset. Section 5.4 includes results and comparisons
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between the three utilized algorithms using the supervised performance metrics. This
chapter is concluded in Section 5.5 with a summary of important findings.

5.2 Related Work

The literature on changepoint detection covers a variety of parametric and non-parametric
algorithms, namely the probabilistic models, subspace and kernel based methods, prob-
ability density ratio estimation such as cumulative sum (CUSUM) and autoregressive
(AR) models [215], [225], and classification techniques including hidden Markov models
(HMMs) and Gaussian mixture models (GMMs). A number of studies also merged the
fields of Bayesian and AR models and developed Bayesian autoregressive changepoint
detectors [242], [246].
In this chapter, we focus on probability-based, Bayesian inference techniques due to their
low computational cost (O(n) if solved approximately), small number of parameters, and
ease of calculating the closed-form formula. In this context, Fearnhead and Xuan have
several pieces of work on changepoint detection from single and multivariate time-series
using the product partition model (PPM) [239], [247]. Adams and MacKay have a similar
PPM algorithm with independent segment parameters for online CPD based on run length
distributions [240].
In the context of brain imaging data and EEG signals, several studies have classified
experimental recordings into multiple states for sleep stage classification using deep ar-
chitectures and infinite HMMs [248], [249] or performed alert versus microsleep and alert
versus drowsy interval classification using source separation and pairwise inter-channel
features [191], [250]. Very few studies have, however, attempted to use dynamic infer-
ence for real-time detection of changepoints. For example, Gao et al. presented a linear
autoregressive model that detected changepoints in an expert-annotated EEG dataset us-
ing a sum of entropy values from time-domain features [251]. Zheng et al. used Pruned
Exact Linear Time (PELT) [252] to detect epileptic seizures in calcium imaging video
data from zebrafish [229]. Chen et al. applied a sliding window approach and calculated
the similarity metrics between subsequent power features to detect focal and non-focal
EEG segments from labeled datasets [230]. Guo et al. used the least squares method to
detect anxiety during driving from eye movement data [253]. The ground truth for ex-
tracted sessions were obtained from subjective declarations of participants and a number
of psychological questionnaires. A hidden semi-Markov model (HSMM) was applied
on fMRI data to estimate time-varying brain networks during anxiety-induced sessions
[243]. A LOO-CV scheme was used to obtain the optimal number of states across all
participants. In a different work, graph-theoretical methods were applied on functional
connectivity matrices for temporal changepoint detection [254]. The most comprehensive
review of Bayesian connectivity changepoint detection on EEG time-series is however
presented in [255] for application for clustering subjects into different groups rather than
detecting objective transition moments from their individual time-series.
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5.3 Methods and Experiments

We start this section by presenting a formal problem formulation for detecting change-
points from an ordered time sequence or time series, and continue by presenting details of
a proposed CPD scheme using online and offline algorithms for detection and evaluation
of vigilance transition moments using behavioral and EEG time-series.

5.3.1 Problem Formulation

Let y1:T = (y1,y2, ...yT ) denote a set of observations from T trials in an experiment.
If the statistical properties of the segment (y1,y2, ...,yτ) is different from those of seg-
ment (yτ+1, ...,yT ), then a changepoint has occurred at time τ . Extending it to a multiple
changepoint framework, the sequence of n+1 ordered changepoints τ0:n divides the time-
series into n segments where τ0 = 1 and τn = T is the last point. Segments are usually
assumed to have been generated from similar distributions with different parameters, with
segment j located between τ j−1 and τ j and generated using parameters θ j, j = 1, ...,n.
A common approach for single changepoint detection is using a likelihood framework
based on a null hypothesis that all observations in the sequence y are extracted from a
single distribution with similar statistical properties versus the alternative hypothesis that
(y1:τ)∼ θ1 and (yτ+1:T )∼ θ2. The changepoint location τ is then equal to the maximum
likelihood estimate (MLE) of the point of transition between the two statistical models
under the alternative hypothesis. But here we follow a product partition model (PPM) in
which the number of non-overlapping partitions or segments n is unknown while the data
themselves are assumed to be independent across these partitions or segments, i.e.,

p(y1:T |π) =
n

∏
j=1

p(yπ j), (5.1)

where π j denotes the prior density for parameters θ j of segment j [239], [247]. Note that
Fearnhead has a different perspective in which he assumes dependence among the parti-
tion parameters [244]. He also assumes the length of each segment follows a geometric
distribution. This prior on segment length affects the partition prior p(θ) as well.
To find the optimal number of changepoints and their priors, the posterior probability
function of p(π1:n|y1:T ) has to be maximized, resulting in the following maximum a pos-
teriori (MAP) estimation:

(n∗,π∗) = argmax
n,π1:n

p(y|π1:n) p(π1:n). (5.2)

[247] defines another prior function g(t) for the time between two successive points in
the range of 1 to T which should be strictly positive and independent across all segments.
A uniform or negative binomial distribution would satisfy this constraint. Following a
series of recursions, the following probabilities need to be computed:

1. The observation log-likelihood logP(t,s) = logP(yt:s|t,s in the same segment) or
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no changepoint occurring within their segment, s≥ t, is calculated from

P(t,s) =
∫

θ

s

∏
i=t

f (yi|θ)π(θ)dθ . (5.3)

2. logQ(t) = logP(yt:T |τt−1) or the log-likelihood of yt:T conditioned on a change-
point happening at time t−1. Here, t = 2,3, ...,T .

3. logPcp( j, t) = logP(yt:T |τ j = t) or the log-likelihood that the j-th changepoint hap-
pens at time t, t = 2,3, ...,T .

Note that when the number of changepoints n is unknown, a prior π(n) is needed from
which the following posterior distribution can be computed:

P(n|y1:T ) = π(n)P(y1:T |n) (5.4)

In what follows, we describe different models for observation likelihood functions.

5.3.1.1 Piecewise Gaussian Observation Model

In the piecewise Gaussian Observation Model (GOM), we assume that each single-dimensional
observation yi located in segment j has a Gaussian distribution with an unknown mean
and known variance, i.e., yi ∼ N(µ,z) where µ ∼ N(ν ,κ) and z ∼ IG(α,β ). IG repre-
sents an inverse Gamma distribution. Using Equation 5.3,

P(t,s) =
∫

z

∫
µ

s

∏
i=t

φ(yi; µ,z) p(µ) p(z)dµ dz (5.5)

where φ(yi; µ,z) = 1√
2πz

exp(−(yi−µ)2

2s ). The log-likelihood function of P(t,s) will then
be calculated and used in the changepoint detection algorithm to obtain the changepoint
likelihood function, Pcp, for each time point.

5.3.1.2 Independent Features Model

If y ∈ Rd×T , we can start by assuming independence among its d dimensions so that,

p(yt:s) =
d

∏
k=1

p(yt:s,k), (5.6)

hence the name Independent Features Model (IFM). Since p(yt:s)=
∫

p(yt:s|θk).p(θk)dθk,
we obtain the following expression for the probability of this segment’s observation hav-
ing been generated by a model with the parameter θk

p(yt:s) =
d

∏
k=1

p(yt:s,k) =
d

∏
k=1

(∫ ( s

∏
i=t

p(yi,k|θk)

)
p(θk)dθk

)
. (5.7)
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Now assume that observation in dimension k from time i is extracted from a normal
distribution with a zero mean and an unknown variance that follows an inverse Gamma
distribution [239]. In other words, yi,k ∼ N(0,σ2

k ) where x = σ2
k ∼ IG(N0/2,V0k/2). The

joint density in front of the integral can then be written as follows:

p(yt:s|θk).p(θk) =
(V0k/2)N0/2

Γ(N0/2)
e
−

V0k

2x x−N0/2−1
s

∏
i=t

1√
2πx

e
−
(yi−0)2

2x (5.8)

which can be rewritten as

p(yt:s|θk).p(θk) =
(V0k/2)N0/2

Γ(N0/2)
(2π)−m/2 exp(−

V0k +∑
s
i=t y2

i,k

2x
) x−m/2−N0/2−1. (5.9)

Here, m is the length of segment. Integrating with respect to θk and using the formula of
Γ function, we obtain

p(yt:s,k) = π
−m/2 V N0/2

0k

V (N0+m)/2
mk

Γ(N0/2)−1

Γ((N0 +m)/2)−1 , (5.10)

where Vmk = V0k +∑
s
i=t y2

ik. By setting N0 to the dimension d and empirically calcu-
lating V0 from the variance of flattened version of yt:s from its entire features, one can
calculate the log likelihood of this segment having been generated by the prior density j,
log p(yt:s|π j).

5.3.1.3 Full Covariance Model for Multidimensional Time-Series

The Full Covariance Model (FCM) is developed to consider the inter-feature correlations.
Let us assume the observation at each time point follows a multivariate normal distribu-
tion, i.e., yi ∼ N(0,Σ), and x = Σ ∼ IG(N0,V0). The marginal likelihood then simplifies
to

p(yt:s) = π
−md/2 |V0|N0/2

|Vm|(N0+m)/2
Γd(N0/2)−1

Γd((N0 +m)/2)−1 , (5.11)

where Vm =V0 +S, S = ∑
s
i=t yi yT

i , and Γd(N0/2) = πd(d−1)/4
∏

m−1
i=0 Γ(m− i/2).

The parameter V0 in this setup is set to a diagonal matrix with previously calculated
pooled variance. This model is said to work well for up to five dimensions since there
might not be enough data to estimate the covariance matrix Σ of relatively shorter seg-
ments [239]. Therefore, we try to limit the number of dimensions and use subsets of
features X to use for this model rather than using the whole pre-trial BP-ROI features.



5.3. METHODS AND EXPERIMENTS 88

5.3.1.4 Online Detection using Bayesian Inference

Suppose that data samples arrive sequentially in a real-time experiment, and that the
probability of each new observation belonging to either the previous hyperparameters or
to a new model needs to be calculated. Following a product partition model for non-
overlapping segments as before, the model of Adams and McKay [240] assumes the run
length rt increases linearly as a function of time until a changepoint occurs, at which
time it becomes equal to zero. Using the posterior distribution P(rt |y1:t) and the predic-
tive distribution conditioned on a given run length, P(yt+1|rt ,yr

t ), the marginal predictive
distribution P(yt+1|y1:t) is computed as follows:

P(yt+1|y1:t) = ∑
rt

P(yt+1|rt ,yr
t )P(rt |y1:t). (5.12)

This algorithm then recursively obtains the joint distribution over the run length and ob-
served data, P(rt ,y1:t) = ∑rt−1

P(rt ,rt−1,y1:t).
The outputs of this algorithm include the matrix R that contains = P(rt |y1:t), the posterior
probability for the current run length given a changepoint had happened rt steps earlier,
and the vector vmap that contains the maximum a posteriori (MAP) estimate or r̂tMAP from
P(rt |y1:t), denoting the maximum run length at time t.

5.3.2 Proposed Online and Offline Vigilance Changepoint Detection Schemes

The SEED-VIG dataset [35] is used for the first validation attempt for offline and online
changepoint detection algorithms. This dataset is recorded from 21 participants who per-
formed a virtual driving task for 118 minutes. Each recording includes 17 EEG channels
located on the centro-parietal, parietal, occipital, and temporal cortices and 4 forehead
EEG and EOG channels which recorded signals at the sampling rate of 200 Hz. This
dataset includes PERCLOS labels that represent the PERcentage of eye CLOSure du-
ration during 8-second non-overlapping windows through direct computation with SMI
eye-tracking glasses. Thus, each participant has a vigilance time-series y with 885 ob-
servations or labels between zero and one. This measure goes beyond the usual and
autonomous eye blink events and thus represents increases in drowsiness, and in more
extreme cases, the absolute sleep status of each individual. Figures 5.1 to 5.4 demon-
strate PERCLOS curves for four different SEED-VIG participants.
In our proposed scheme, EEG-based BP-ROI features of Chapter 4 are calculated from
one-second time intervals and averaged across similar non-overlapping 8-second win-
dows. Due to the presence of EEG electrodes across the temporal and parietal regions
in the SEED-VIG dataset, only 6 non-empty ROIs are formed which result in a 60-
dimensional feature set. A correlation analysis demonstrates that 90% of participants
had significantly positive correlations between their PERCLOS labels and the α/β fea-
tures from all the six ROIs. In other words, an increase in these features is associated
with increase in drowsiness and reduction in vigilance. Thus, the six α/β features are
selected as the common neural markers and EEG predictors in these CPD experiments
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and organized in matrix X .
The following CPD scheme is then applied on the behavioral labels and EEG-based cor-
relates of vigilance variation:

1. A moving average window of length 10 is applied to vector y, the PERCLOS time-
series of each participant to obtain summarized tonic vigilance variations repre-
sented in an ordered sequence y1:T , T = 876.

2. Offline TCP detection from the vector y: Using IFM and GOM observation likeli-
hoods from y, the T -by-T matrices PIFM and PGOM, and (T -1)-by-(T -1) matrices
PcpIFM and PcpGOM of vector y are computed using this toolbox as a founda-
tion. Pcp matrices are marginalized to obtain the marginal likelihoods of having
a changepoint at each time t between from 1 to T . A lower threshold of λ = 0.01
is applied to smooth the density function, and all the peaks above that threshold
are calculated to represent true changepoints τIFM and τGOM for each PERCLOS
time-series y.

3. Offline EEG-CP detection from the matrix X : Similar to [239], applying the full
covariance model (FCM) on the 6 α/β features resulted in an unrealistic overes-
timation of changepoints. Thus, we apply IFM and GOM on each dimension of
matrix X separately. After using a similar moving average window of length 10,
EEG changepoints EEGτIFM and EEGτGOM are calculated similar to step 2 for
each feature in X ∈ R6×T .

4. Online TCP detection from the vector y: Using a uniform distribution between 1 to
250 for the Hazard function and a student’s t-distributions for the vector of predic-
tive probabilities π

(r)
t [239] with (α,β ,κ,µ) = (0.1,0.01,1,0), the maximum run

length estimation r̂MAP is computed that demonstrates a sawtooth-pattern. Loca-
tions of τonline are obtained from r̂MAP local peaks.

5. Online EEG-CP detection from the matrix X : The method in step 4 is used to
compute EEGτonline for each of the 6 individual features in matrix X .

6. Using τIFM, τGOM, and τonline as the ground truth for locations of transitions in the
PERCLOS vectors, the number of detected EEG-CP for each approach is obtained
inside an evaluation window with Leval = 10 trials. Subsequently, supervised per-
formance metrics are calculated to determine which observation likelihood could
lead to the highest precision and recall rates for detecting changepoints from EEG
features with a 10-sample lag. Precision and recall are defined as

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

, (5.13)

where T P+FP indicates the number of unique EEG-CPs detected by a model from
6 EEG features, and T P indicates the number of true positives, i.e., the number of

https://github.com/hildensia/bayesian_changepoint_detection
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unique EEG-CPs detected using that model and located within 10 samples from
a TCP. Finally, T P+FN consists of the total number of TCPs located from the
PERCLOS using a model. It should be mentioned that due to the different ground
truths used in online and offline algorithms, the reported precision and recall values
are compared separately.

5.4 Results

Three models used for the observation likelihood function consisting of the online Bayesian
model of [240], the offline individual features model (IFM) [239], and the piecewise
Gaussian model (GOM) [247] were run separately on the PERCLOS time-series y and
six-dimensional α/β matrices X . Figures 5.1 to 5.4 demonstrate the detected change-
points for participants S01, S16, S18, and S21 from the SEED-VIG dataset. The PERC-
LOS curves smoothed with a 10-point window are shown on the top plots with red points
denoting locations of the detected τonline calculated from the peaks of the run length
MAP. The second plot demonstrates the locations of all the detected EEGτonline which
occasionally overestimate the number of τonline. Plots 3 and 4 demonstrate the marginal
likelihoods for CPD detection from PERCLOS using the offline IFM and GOM algo-
rithms as well as their detected peaks τIFM and τGOM. Finally, the marginal likelihoods
from all the six α/β features as well as the EEGτIFM and EEGτGOM locations detected
offline are presented at the bottom of each figure.
The online, IFM, and GOM obtain an average number of 31.24, 5.19, and 9.95 true
changepoints from the PERCLOS curves. An analysis of variance (ANOVA) demon-
strates a significant factor of algorithm, F(2,60) = 109.38, p < 0.001, among the num-
ber of detected ground truths from PERCLOS curves from all participants. It can also be
observed that the online algorithms is more sensitive to phasic, short-term variations in
PERCLOS curves and some of its detected changepoints may not lead to true onsets of
vigilance variations. Table 5.1 demonstrates the average precision and recall for all par-
ticipants using the online and offline changepoint detection algorithms. As can be seen,
EEG features are able to detect the locations of τonline with an average precision and recall
of 0.82±0.26 and 0.56±0.14 which may point to the sensitivity of the online algorithm
to small variations in the curves that result in CPD not necessarily corresponding to tran-
sitions in vigilance time-series. The performance of CPD from EEG time-series using
offline algorithms are more comparable in terms of their precision values although their
τIFM and τGOM are essentially different from each other.
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Figure 5.1: Changepoint detection from PERCLOS and EEG α/β time-series for participant S01.
In the top plot, the blue curve represents the original PERCLOS, and red points denote locations
of TCPs detected using the online algorithm. EEG-CPs from the same online algorithm are shown
in the second plot. In the middle plots, blue curves indicate the independent features model (IFM)
and piecewise Gaussian model (GOM) Pcp curves from PERCLOS, and red points indicate their
peaks or TCPs from offline algorithms. Offline Pcp curves from all individual α/β features and
their EEG-CPs are demonstrated in the bottom plots.
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Figure 5.2: Changepoint detection from PERCLOS and EEG α/β time-series for participant S16.
In the top plot, the blue curve represents the original PERCLOS, and red points denote locations
of TCPs detected using the online algorithm. EEG-CPs from the same online algorithm are shown
in the second plot. In the middle plots, blue curves indicate the independent features model (IFM)
and piecewise Gaussian model (GOM) Pcp curves from PERCLOS, and red points indicate their
peaks or TCPs from offline algorithms. Offline Pcp curves from all individual α/β features and
their EEG-CPs are demonstrated in the bottom plots.



5.4. RESULTS 93

Figure 5.3: Changepoint detection from PERCLOS and EEG α/β time-series for participant S18.
In the top plot, the blue curve represents the original PERCLOS, and red points denote locations
of TCPs detected using the online algorithm. EEG-CPs from the same online algorithm are shown
in the second plot. In the middle plots, blue curves indicate the independent features model (IFM)
and piecewise Gaussian model (GOM) Pcp curves from PERCLOS, and red points indicate their
peaks or TCPs from offline algorithms. Offline Pcp curves from all individual α/β features and
their EEG-CPs are demonstrated in the bottom plots.



5.4. RESULTS 94

Figure 5.4: Changepoint detection from PERCLOS and EEG α/β time-series for participant S21.
In the top plot, the blue curve represents the original PERCLOS, and red points denote locations
of TCPs detected using the online algorithm. EEG-CPs from the same online algorithm are shown
in the second plot. In the middle plots, blue curves indicate the independent features model (IFM)
and piecewise Gaussian model (GOM) Pcp curves from PERCLOS, and red points indicate their
peaks or TCPs from offline algorithms. Offline Pcp curves from all individual α/β features and
their EEG-CPs are demonstrated in the bottom plots.
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Table 5.1: Mean and standard deviation of precision and recall for online and offline Bayesian
CPD algorithms using α/β features from 21 participants in the SEED-VIG dataset. Performance
metrics of the online, IFM, and GOM algorithms are obtained based on their corresponding and
individually detected changepoints τonline, τIFM, or τGOM, respectively, and are not to be compared
with each other.

Online CPD Offline IFM CPD Offline GOM CPD

Precision 0.82±0.26 0.38±0.27 0.36±0.20

Recall 0.56±0.14 0.19±0.16 0.46±0.15

5.5 Conclusion

In this chapter, we demonstrated the applicability of online and offline algorithms for
detecting changepoints from vigilance time-series and their predictor EEG feature se-
quences without having any constraint on the number and location of changepoints. The
performance of each algorithm in detecting changepoints from EEG time series were
evaluated based on the ground truths obtained from the drowsiness curves using the same
algorithm. Our results shows that the online Bayesian CPD algorithm detects higher
number of vigilance changepoints from PERCLOS curves compared to the offline indi-
vidual feature model and piecewise Gaussian models. Using the online algorithm, EEG
predictors also obtain higher precision and recalls in average. A visual inspection points
to the probable oversensitivity of the online algorithm in detecting points which may not
correspond to true variations in vigilance levels. This shortcoming can be improved by
smoothing the curves for a longer time window length, w, which causes in a delay or
ε-real time algorithm. This novel application of dynamic and sequential inference tech-
niques has immense potentials for implementation in unsupervised vigilance monitoring
systems for the final goal of alarming users about onsets of drowsiness. Similar models
will be applied on PLV matrices in the future to evaluate the performance of these pair-
wise, spatio-spectral vigilance correlates in terms of changepoint localization. In the next
chapter, we demonstrate the success of vigilance level clustering as another unsupervised
method for assessment of vigilance time-series for the final goal of BCI adaptation.



6 Adaptive Alertness-Aware Classification for Motor Imagery-
based Brain-Computer Interfaces

Brain-computer interfaces (BCIs) provide a direct path to control external devices through
mental commands, and motor imagery (MI) has been one of the most commonly used
paradigms in lab-based and commercial EEG-based BCI systems [256]. The interest in
utilizing MI-based BCIs arises from brain-mapping studies that demonstrate the imagi-
nation of motor movements activates regions related to motor execution [62] and, if im-
plemented within neurorehabilitation sessions, speeds up the limb and gait recovery and
reduces the risk of falling down after brain strokes and knee arthroplasty [2]. Further-
more, improving the efficacy and usability of MI-based BCIs has been partly motivated
by observing the feeling of autonomy in patients who are able to independently navigate
while mentally controlling a wheelchair or a car without using peripheral nerves [42],
or those who can control a robotic arm after having been in a locked-in state for a long
time. Due to its non-invasive nature and high temporal resolution, EEG is the most fa-
vored signal acquisition method in BCI systems [257]. However, factors such as cognitive
state variations, alertness levels, the ability to stay focused during the operation of a BCI-
controlled device, and lack of familiarity with or fear in working with technology affect
the extracted EEG-based features and the users’ experience with BCI systems [31], [33].
This is also due to the fact that long experiments with monotonic and steady audiovisual
stimuli increase the boredom in participants, create idle phases in the cortical networks,
and reduce alertness [79].
As shown in previous chapters through the correlations between neural and behavioral
correlates of long Go/NoGo execution during SART, any prolonged mental task that
fails to maintain arousal of brain networks and block irrelevant stimuli causes inevitable
decrements in sustained attention and delays response time (Ref. Section 4.4.2.1). We
thus hypothesize that inferring the users’ vigilance levels during the execution of mental
commands can improve the understanding of their current level of task engagement and
reaction time, and in turn increase the reliability of BCI systems. With this intention, this
chapter focuses on the effects of alertness on the performance of MI BCI as a common
mental control paradigm. In the first part of this chapter, Experiment 1, a new protocol
is proposed to predict MI performance decline through alertness-related pre-trial spatio-
spectral EEG features. This work has been presented at the 42nd International IEEE
Conference of Engineering in Medicine and Biology Society (EMBC2020) [53].
In the second part of this chapter, Experiment 2, we propose an adaptive MI BCI classi-
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fication approach based on the continuous assessment of alertness/vigilance information.
The proposed approach considers adaptation in (1) extraction of the best time intervals
for MI performance from each trial based on the inferred vigilance level, and (2) in using
classifiers trained and subsequently tested separately for each vigilance level. To be more
precise, without falling in the critical trap of pausing the experiment to collect subjec-
tive information about fatigue and drowsiness, vigilance information is estimated during
the training session of MI recordings based on the clustering of related pre-trial EEG
features discussed in Chapters 4 and 5. After vigilance clustering of training sessions
trials are complete, the best time intervals for MI performance are selected separately for
each vigilance level. These time intervals are used for MI feature extraction from the test
session trials, and the previously trained classifiers are evaluated separately for each vig-
ilance level. In short, we demonstrate that using the first experimental session as a train-
ing/calibration dataset for both MI and vigilance clustering enables the system to improve
its prediction of vigilance-dependent performance of EEG-based BCI systems in the up-
coming test/evaluation session. Results of this alertness-aware classification scheme are
presented for our SPIS MI-BCI dataset and a two-class version of BCI Competition IV
dataset 2a [71] in Experiment 2.

6.1 Contributions

In previous chapters, spatio-spectral features were used for building models that pre-
dicted attention levels during the execution of long vigilance tasks. The ground truths
for inattentive periods and drowsy states in Chapters 3 and 4 were acquired from our ob-
jective cumulative vigilance score (CVS) that had summarized the occurrence of errors
and delayed response time while, in Chapter 5, the PERCLOS curves reflected periods of
increased eye closures. However, during the continuous execution of motor imagination
when the user is completely focused on the mental task of imagining limb movements, no
objective performance measure such as the CVS can be naturally obtained due to the lack
of a recorded sequence of errors and response time. Therefore, a proposed scheme is to
focus on EEG features already highly associated with existing ground truth in vigilance-
labeled datasets, and utilize them to infer variations of attention levels in an unsupervised
manner from recordings that lack objective levels on attention and drowsiness.
With this view point, we present two pieces of work that evaluate the effects of users’
vigilance levels on the tonic performance of MI-based BCIs. Concerned with detect-
ing signs of attention decline, the first work proposes and demonstrates the effectiveness
of a variety of pre-trial spatio-spectral alertness features in predicting MI classification
performance. Information for inference of vigilance labels is directly obtained from a
cumulative classification score based on the outputs of the common spatial pattern (CSP)
filtering and LDA classifier. In the second work, focusing on the band-power, pre-trial
EEG correlates of attention variations, an unsupervised, clustering-based scheme is pro-
posed to infer vigilance level of each trial in the training and test sessions before adapting
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the classifier. This new information is used in the context of an alertness-aware adap-
tive classification method to obtain improvements in the inference of two-class motor
imagery.
The novelty and contributions of these pieces of work are as follow:

1. Since the alertness level of a user has a critical effect on their reaction time and
ability to correctly execute motor imagination, we hypothesize that alertness and
vigilance levels subsequently affect the performance of an MI BCI system. Thus,
we propose two contributions in Experiment 1 to directly evaluate these effects:
1. We evaluate vigilance based on an objective MI performance score, and 2. We
demonstrate the effectiveness of several pre-trial spatio-spectral alertness features
in predicting MI classification performance. The pre-trial band-power (BP) ratio
features from Section 4.4.1.4 as well as their distances with respect to the beginning
of each session and the pre-task resting-states are used as features or predictors of
this binary problem for classification of high-vs-low attention levels. We report
Cohen’s kappa as the classification evaluation metric. When the proposed EEG-
based features indicate the loss of attention, one can initiate the process of either
adapting the classifier to the cognitive state of the users or taking steps to restore
their attention. Hence, our work offers an objective methodology that can help
prevent BCI performance decline due to attention variations.

To the best of our knowledge, so far only one research group has objectively moni-
tored and labeled the fatigue level of users in the course of MI BCI execution, and
proposed an adaptive scheme for common spatial pattern (CSP) filtering based on
the underlying fatigue levels that are obtained subjectively at the end of each run
[45], [258]. However, this group has not provided any classification result and has
only reported the “improved separability” of MI EEG features extracted by their
proposed adaptive CSP scheme.

2. In Experiment 2, in order to validate an unsupervised learning scheme for contin-
uous detection of vigilance levels, we propose and evaluate different static and dy-
namic clustering schemes on a dataset labeled with eye-closure events, SEED-VIG
[35], and report significant correlations between the continuous vigilance labels and
cluster indices. These schemes are used to provide information for vigilance esti-
mation for our SPIS MI-BCI EEG recordings. We assume that the best EEG time
interval to be used for classification of MI-based BCI, hereafter referred to as the
winning time interval, should be the same across similar vigilance levels of train-
ing and test sessions for each participant. Therefore, after clustering the vigilance
features during training session, MI CSP+LDA classifiers are evaluated in a cross-
validation scheme on trials of each vigilance level in the training set. Once the best
(winning) time interval for MI execution is obtained for each level, the same MI
time interval is extracted from test trials predicted to have that cluster index, and
their MI accuracy is obtained from the corresponding trained CSP+LDA classifier.
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Three different versions of this adaptive classification are introduced in this work.
Therefore, in this novel approach, we propose and evaluate an alertness-aware adap-
tive classification for motor imagery paradigm.

As will be clarified in Section 6.4.1.5, the term “adaptive” in this work corresponds
to (1) extraction of best EEG time interval for MI execution according to the inferred
vigilance level, and (2) applying the CSP+LDA parameters according to the inferred
vigilance cluster. We report improvements in the overall test accuracy of adaptive
versions with respect to the original, non-adaptive baseline for the dataset collected
in our laboratory, referred to as the SPIS MI-BCI dataset, and the BCI Competition
IV - Dataset 2a for comparison [71]. For both datasets, the dynamic and trial-
based clustering schemes perform the best which points to the importance of phasic
alertness in correct decoding of trial-wise sensorimotor rhythms.

3. In both experiments and especially in Experiment 2, special attention is paid to
maintaining the temporal sequence of experiment trials during the clustering schemes
to preserve the original pattern of drowsiness and regaining of alertness as experi-
enced during SART sessions (see CVS curves in Section 4.4.2.1). Similarly, the
evaluation of MI performance in cross-validation folds is performed without ran-
dom permutation of trials. Both considerations are in line with the recommenda-
tions for block design experiments for neural data [38] and time-series treatment of
data in Chapter 5. For these reasons, we did not perform two-class MI classification
of left hand versus right hand on the 4-class datasets of BCI Competition mentioned
above since extracting half of experimental trials would completely disrupt the tem-
poral sequence of cluster indices.

The rest of this chapter is organized as follows. Section 6.2 presents a summary of the
related work and state-of-the-art methods. Section 6.3 focuses on the first piece of work
on prediction of discrete-valued MI performance scores. Section 6.4 then presents the
second piece of work on evaluating the consistency of best MI time intervals in simi-
lar vigilance levels across different sessions as well as the alertness-aware adaptive BCI
scheme. This chapter is concluded in Section 6.4.3 with a summary of important findings
and implications.

6.2 Related Work

Adaptation methods mentioned in Section 1.1 all belong to the class of covert adaptation
techniques since the system’s classifier is updated in the background according to the
varying statistical distributions of the incoming signals by changing the decision-making
criteria. Overt adaptation techniques, on the other hand, attempt to update the experiment
interface and experiment flow to decrease the participant’s boredom and enhance the in-
teraction outcome. In either case, any classification scheme that aims to incorporate the
underlying attention and alertness level of the user should be continuously updated with
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the new level of attention.
As one of the earlier attempts on the role of alertness in BCI performance, it was shown
that when training sessions use wakeful alertness levels, the P300 classifiers’ accuracy
significantly increases in experiments focusing on attention, concentration, and control
[115]. A more recent study reported that increased cognitive load, induced by presenting
visual distractors during the execution of MI BCI, could significantly predict reductions in
BCI performance of users whose undisturbed accuracy was below 75% [34]. The notion
of visual distractors is closely related to our previously conducted Go/NoGO experiment
with SART and leads to our understanding of sustained attention, i.e., the ability to main-
tain the cognitive focus in a long period of time while avoiding mind wandering [143].
Gaume et al. designed a cognitive BCI for a continuous task to discriminate high and
low sustained attention states. More recently, another group of researchers have analyzed
the separability of two-class motor imagery features once information on the trial-based
alertness levels has been taken into account [45], [258]. In their motor imagery paradigm,
they performed an unsupervised CSP adaptation, and the fatigue state at the end of each
run was rated using a subjective fatigue scale. The kernel partial least square (KPLS) from
spatio-soectral features was used to calculated the fatigue score. The adaptation paradigm
was applied in two modes: offline, where the CSP matrix was updated and applied for
each high fatigue run, and near real-time or online, where the CSP matrix was updated
on any high fatigue trial and subsequently used for the upcoming ones. However, to the
best of our knowledge, these researches or others have not directly reported the effects of
alertness levels and improvements in classification accuracy of MI-based BCI datasets as
a result of incorporating vigilance or fatigue information in a fully adaptive classification
paradigm.

6.3 Experiment 1: Prediction of Motor Imagery Performance from
Pre-Trial Alertness Features

In this experiment, having collected EEG signals from a two-class MI session, we intro-
duce a cumulative MI performance score (CMPS) that represents the tonic performance
of MI classification rather than the momentary or trial-wise mistakes. By keeping the ex-
perimental flow as consistent as possible, the alertness level is hypothesized as the main
factor affecting the MI performance. As will be explained, trials in the first half of each
session are used for optimization of the best time interval for MI classification while
the second half is used for the implementation and evaluation of the proposed alertness
protocol using pre-trial band-power (BP) ratio and distance features.
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Figure 6.1: A user attending a session of the two-class motor imagery experiment that generated
the SPIS MI-BCI dataset.

6.3.1 Methods

6.3.1.1 Participants

Ten healthy individuals (5 males and 5 females), aged 24.5 to 38 years (mean: 29.8),
attended single data collection sessions starting at 10:30 AM when they were relatively
alert. Participants had normal or corrected-to-normal vision, and all but one were right
handed. Participants were not under any drowsiness-inducing medications within three
days prior to the experiment date and reported no history of neurological disorders. All
individuals were notified of experimental goals prior to attendance. The recruitment and
experimental procedures were approved by the Sabanci University Research Ethics Coun-
cil and all participants signed informed consents.

6.3.1.2 EEG Data Acquisition

Data collection was performed in an EEG room inside a Faraday cage. EEG activity was
collected via 64 Ag/AgCl active electrodes placed according to the 10-10 International
Electrode Placement System and connected to a BioSemi ActiveTwo set (Biosemi Inc.,
Amsterdam, the Netherlands). Signals were sampled at 2,048 Hz and bandpass filtered
between 1 and 70 Hz using a Butterworth filter.
Once participants were seated in a comfortable armchair 60 cm away from a 17-inch
LCD monitor, one resting-state session with eyes open (EO) lasting for 2.5 minutes was
recorded to be used as the baseline. Next, they performed an MI practice session under
the supervision of experimenters. The actual 200-trial MI session was then conducted for
20 minutes. The experimental paradigm consisted of a two-class cue-based MI to imagine
movement of right and left hands as shown in Figure 6.1. Each trial composed of a 2-s
fixation period prompted by a plus sign, hereinafter referred to as the pre-trial interval,
followed by the appearance of an arrow pointing to the right or left for 4 s during which
the motor imagination is to be performed. Facial videos of participants were recorded
during EEG acquisition for verification of their alertness levels. The visual interface was
written in Visual C]. Figure 6.2 demonstrates the experimental flow.
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Figure 6.2: The experimental flow for the 200-trial cue-based two class motor imagery session.

Table 6.1: Spatio-spectral features for sustained attention analysis extracted from pre-trial inter-
vals of MI trials.

Feature Names Spectral Features ROIs Ratio Vectors Distance Vectors

Full δ , θ , α , β1, β2, γ , (θ +α)/β , α/β , (θ +α)/(α +β ), θ/β 14 scalp-wise vFull dInit.
Full , dRest

Full
Fronto-parietal θ , α , (θ +α)/β , α/β , (θ +α)/(α +β ), θ/β 12 frontal & parietal vFP dInit.

FP , dRest
FP

Frontal θ , α , (θ +α)/β , α/β , (θ +α)/(α +β ), θ/β 6 prefrontal & frontal vF dInit.
F , dRest

F
Parietal θ , α , (θ +α)/β , α/β , (θ +α)/(α +β ), θ/β 6 central & parietal vP dInit.

P , dRest
P

6.3.1.3 Motor Imagery Signal Processing

From the 64 scalp electrodes, 14 channels placed over the sensorimotor cortex (C3, C1,
Cz, C2, C4, CP3, CP1, CPz, CP2, CP4, P1, Pz, PO, and POz) are used for MI signal
processing and classification. EEG signals are downsampled to 256 Hz. A fifth-order
Butterworth bandpass filter is applied between 8 and 30 Hz to contain µ and β bands as
major MI related frequency range [259]. The well-known common spatial patterns (CSP)
method is then applied for feature extraction. The first and last three rows of the projected
EEG signals Z are used to calculate the log-variance matrix S = log(Var(Z)) for obtaining
the MI class discriminating features. The LDA scheme is then applied to classify the MI
features.
Based on monitoring the recorded facial videos, we established that participants are at a
sufficiently high alertness level during the first 10 minutes of the MI experiment. For each
participant, the best time interval to be used by the classifier, also known as the settle time,
is determined by a cross-validation (CV) process on the first 100 trials, hereafter known
as the training data. Four time intervals of 2-s duration are extracted starting from 0.5 s
post-arrow onset with 0.5-s overlaps. Ten-fold CV is applied, and the macro-averaged F1-
score, defined as the average of per-class F1-scores, is utilized as the selection criterion.
For each participant, the MI time interval resulting in the highest score is chosen.

6.3.1.4 Sustained Attention Feature Extraction

In our previous work involving a long and monotonic sustained attention to response task
(SART), we identified a set of EEG features that provide information about sustained at-
tention levels [52], also ref. Section 4.4. In this experiment, we analyze the relationships
between similar types of features and MI performance. To obtain potential predictors
of variations in the MI performance based on cognitive processes during the stimulus ex-
pectation interval, several spatio-spectral features are extracted from pre-trial EEG signals
for evaluation of attention levels. Two types of features are considered, the band-power
(BP) ratio features and their distances with respect to (a) several initial trials of the same
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session in which participants are assumed to be at their most alert states, and (b) the EO
resting-state in which the task-related networks are idle while the visual cortex is active
[117]. These distance features, i.e., variations in sample covariance matrices of the ob-
tained ratio features during an MI session, are proposed in this work to objectively reflect
the user’s current alertness with respect to their initial cognitive state.
1) BP ratio features. One-second pre-trial EEG signals are downsampled to 512 Hz. A
128-sample Hanning window with 64-sample overlaps computes the short-time Fourier
transform (STFT) coefficients over 2-48 Hz with a 0.1 Hz resolution. The logarithmic
BP is calculated for 2-4 Hz and 4-Hz non-overlapping bands for the remaining spectra.
Due to different power levels in the resting-state and MI task sessions across participants,
BP ratios are normalized with respect to the total power. Ten BP and combined BP ratio
features are computed: δ (2-4 Hz), θ (4-8 Hz), α (8-12 Hz), β1 (12-16 Hz), β2 (16-20
Hz), γ (28-48 Hz), (θ +α)/β , (θ +α)/(α + β ), α/β , and θ/β , where β is from 12
to 28 Hz. To focus on the specific cortical regions and avoid inter-subject differences
in channel placements, all 64 electrodes are grouped into 14 regions of interest (ROI):
left, midline, and right prefrontal, frontal, central, and parietal regions, and left and right
temporal ROIs. BP ratios are averaged among electrodes of each ROI to form vFull , a
140-d feature vector.
Sustained attention is generally associated with the prefrontal region, and attention de-
cline can turn into drowsiness in more extreme cases. Furthermore, the connection be-
tween frontal and parietal regions is critical in intrinsic alertness and phasic alertness
control [150], [260]. Therefore, as shown in Table 1, aforementioned indicators of at-
tention and drowsiness are extracted from the prefrontal and frontal regions, vF ∈ R1×36,
central and parietal cortices, vP ∈ R1×36, and their concatenation, vFP ∈ R1×72.
2) Distance features. BP ratio features represent the phasic patterns of individuals await-
ing the new stimuli. Their corresponding initial-distance and rest-distance features are
extracted to reflect tonic changes in sample feature covariance matrices from initial trials
of each session and the EO resting-state signals, respectively.
Assume X ∈ RNt×n is a BP ratio feature set where Nt and n represent the number of trials
and number of features (140, 72, or 36), respectively. The initial and EO covariance
matrices covInit and covRest are, respectively, calculated from the pairwise covariance
elements of the first m samples of matrix X and the 150 one-second epochs of EO signals.
Subsequently, covk ∈ Rn×n is the covariance matrix of samples 1+k to m+k from matrix
X .
Next, the pairwise city block distance between covk and covInit or covRest is proposed for
extracting distance features. The intuition behind this proposal is to measure changes in
collective variance of spectral features in a specific region with respect to the state when
users are assumed to be at higher alertness level. Although a variety of distance metrics
could be utilized, we focused on the city block distance which represents the absolute
value of changes between two instances. The pairwise city block distance between row s
of matrix W and row t of matrix Y is obtained from the following formula
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Figure 6.3: Initial and subsequent covariance matrices and 3 distance vectors for one participant.

Figure 6.4: Pipeline for predicting the MI BCI performance using EEG-based sustained attention
features.

dst =
n

∑
j=1
|Ws j−Yt j|. (6.1)

This results in an n-by-n distance matrix D composed of the obtained elements. To sum-
marize this information, 3-dimensional vectors of maximum, minimum, and average val-
ues of the resulting matrices are considered as the distance feature vectors. Distance
metrics are calculated for all the spatio-spectral feature groups as elucidated in Table 6.1.
Figure 6.3 presents the initial and subsequent covariance matrices and corresponding dis-
tance vectors for the participant S06.

6.3.1.5 BCI Performance Prediction based on Vigilance Level

Figure 6.4 demonstrate the pipeline for predicting the MI BCI performance using EEG-
based sustained attention features explained in the previous section. The classification
results achieved by applying the trained MI system on the test trials using the features
of the selected time interval is fed to the alertness assessment protocol. To assess the
effects of users’ underlying alertness levels on their MI BCI performance, a cumulative
MI performance score (CMPS) is defined that would focus on the tonic performance of



6.3. EXPERIMENT 1: PREDICTION OF MOTOR IMAGERY PERFORMANCE FROM
PRE-TRIAL ALERTNESS FEATURES 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S01 S02 S03 S04 S05 S06 S07 S08 S10
K

ap
p

a 
V

al
u

es
 

Figure 6.5: Alertness Kappa from the vFull feature set.

Table 6.2: Kappa values for predicting MI-BCI performance using pre-trial spatio-spectral and
distance features.

MI Evaluation
S01 S02 S03 S04 S05 S06 S07 S08 S10

CV F1 0.70 0.63 0.59 0.79 0.61 0.74 0.64 0.70 0.60
Test F1 0.65 0.53 0.55 0.71 0.56 0.62 0.43 0.51 0.58

A
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vFull 0.356 0.452 0.493 0.513 0.748 0.614 0.311 0.366 0.232
vFull , dInit.

Full 0.351 0.452 0.493 0.513 0.694 0.764 0.283 0.376 0.195
vFull , dRest.

Full 0.321 0.481 0.493 0.513 0.445 0.673 0.303 0.376 0.232
vFP 0.189 0.248 0.462 0.210 0.675 0.650 0.459 0.292 0.024
vFP, dInit.

FP 0.213 0.286 0.397 0.343 0.537 0.652 0.426 0.221 0.093
vFP, dRest.

FP 0.213 0.140 0.525 0.237 0.407 0.566 0.547 0.509 0.032
vF 0.104 0.354 -0.046 0.315 -0.068 0.941 0.607 0.208 0.263
vF , dInit.

F 0.382 0.247 -0.205 0.286 0.354 0.941 0.372 0.208 0.287
vF , dRest.

F 0.326 0.414 0.052 0.343 0.429 0.793 0.607 0.418 0.318
vP 0.195 0.129 0.462 0.479 0.302 -0.051 0.275 0.198 0.232
vP, dInit.

P 0.218 0.065 0.525 0.319 0.205 0.059 0.167 0.030 0.263
vP, dRest.

P 0.114 0.026 0.462 0.296 0.308 0.039 0.139 0.055 0.296

MI classification rather than the momentary or trial-wise mistakes: First, a binary-valued
vector called classification status, sMI , is defined for the test set classification output such
that sMI for each trial is equal to 1 if its MI label is correctly estimated by the MI classifier.
Next, sMI is smoothed using a moving window of length m to obtain the CMPS vector,
sm

MI . By keeping the experimental flow as consistent as possible, the alertness level is
hypothesized as the main factor affecting the MI performance. Monitoring facial videos
of the users can validate this assumption that changes in alertness levels correspond to
variations in the MI performance. Therefore, a sm

MI close to 1 is assumed to correspond to
high tonic alertness while a value close to 0 indicates decreased attention or drowsiness.
The sm

MI is hence quantized based on its median value to form two alertness level labels.
The 20 different feature sets composed of features listed in Table I and the concatena-
tions of BP and their corresponding distance features are applied to predict the quantized
sm

MI labels. Support vector machine (SVM) with a linear kernel is used in a 5-fold CV
scheme respecting the sequential order of trials. Due to the probable inequality in the
distributions of two defined alertness classes in each fold, Cohen’s kappa is reported as
the classification evaluation metric.
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Figure 6.6: Percentage of participants achieving Cohen’s kappa over 0.3 from different spatio-
spectral feature sets.

6.3.2 Results

The obtained results are reported for all participants but S09 whose CV MI classification
did not exceed the chance level – a possible indicator of insufficient MI performance. The
alertness feature parameter window length, m, is set to 10 that represents the underlying
cognitive activity of the recent (10×6 =) 60 s.
1) MI performance prediction based on alertness. To evaluate the hypothesis of pre-
dictability of MI performance based on pre-trial alertness features, the full feature set
is first applied and its kappa results are shown in Figure 6.5. For 5 out of 9 partici-
pants, a kappa over 0.4 is achieved that corresponds to an accuracy of 0.70 in a balanced,
binary classification task. S04 and S05 obtain noteworthy kappas of 0.617 and 0.748,
respectively, and S01 and S08 have kappa scores close to 0.4. These results indicate the
efficiency and applicability of our approach in predicting the alertness levels during MI
execution and demonstrate that a good relationship exists between the proposed pre-trial
alertness features and the MI performance. Alertness is absolutely not the only factor in
BCI performance decline; however, the obtained results suggest that it can be successfully
used as a predictor together with other effective factors.
2) Alertness feature assessment. The evaluation is then performed using all the proposed
20 feature sets and results are presented in Table 6.2. Results based on distance features
without combining them with BP ratio features are eliminated due to their low achieved
kappa in most cases. The feature set resulting in the high kappa for each participant is
bolded. The CV and test MI F1-scores are also summarized in the table. Different fea-
tures yield the best result for different participants, which suggests subject-based feature
selection may yield more promising results. Overall, our results indicate the predictive
power of frontal features in a subset of participants, which is in line with the localization
of alerting, orienting, and executive attention networks over frontal anatomic structures
[40]. Particularly, S06 achieved a highly promising kappa of 0.94 based on frontal fea-
tures.
Additionally, to introduce the best predictors over all users, the percentage of participants
for which a kappa value over 0.3 is achieved for each feature set is reported in Figure 6.6.
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Utilizing a regional perspective, vFull , vFull concatenated with dRest
Full , and vF concatenated

with dRest
F outperform other feature sets for 90% of participants. In addition, although

distance features alone do not perform as well as BP ratio features, adding dRest
F features

to the vF set increases the aforementioned percentage of participants. This positive effect
is also observed in Table II where adding dRest

FP to the fronto-parietal features improves
kappa scores in 6 out of 9 participants.
It is worth noting that S04 and S07 experienced the lowest and highest MI performance
reduction, respectively, across the training and test sessions. This matches the visual
inspection of recorded videos that demonstrate excessive sleepiness accompanied with
continuous eye closures and head tilts for S07 as opposed to the stable and alert position
of S04, and provides another means for validating the role of alertness decline in this
study.

6.3.3 Conclusion

We have demonstrated that MI BCI performance can be predicted by alertness related
pre-trial EEG features. Our work can be used to develop BCIs that react to inferred loss
of alertness during their use either by performing a classifier adaptation to restore BCI
performance or by initiating a process to restore the user’s alertness. Comparing effects
of different BCI decoders on generating labels for alertness levels will be considered in a
future extension of this work.

6.4 Experiment 2: Adaptive Alertness-Aware Classification for Mo-
tor Imagery-based BCI

In the previous section, we focused on predicting the cumulative MI performance score
(CMPS) based on vigilance-related pre-trial EEG features, with the underlying assump-
tion that any decline in MI performance score is a result of reduction in attention levels
and increased mind wandering. To improve MI classification accuracy due to attention
decline, in this extension of Experiment 1, we present an unsupervised clustering-based
technique to estimate trial vigilance levels and propose an adaptive and alertness-aware
classification approach whose performance will be evaluated with respect to the regular,
non-adaptive classification approach.

6.4.1 Methods

The datasets used in this experiment are composed of the SEED-VIG dataset [35], BCI
Competition IV - Dataset 2a [71], and an extended version of our previously reported
MI BCI dataset, now dubbed SPIS MI-BCI. In contrast with our previous work in which
the first and last 100 trials of one session were used, respectively, for MI classifier opti-
mization and alertness classification, in Experiment 2, participants have completed two
separate, training and test, MI sessions. here, the goal was to demonstrate that using
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the first session as the training/calibration dataset for both MI and vigilance clustering
enables the system to predict vigilance-dependent performance of that MI task in the
upcoming test/evaluation session.

6.4.1.1 SPIS MI-BCI Dataset

Eight healthy individuals (5 males and 3 females), aged 24.6 to 37.7 years (mean: 28.59,
SD: 4.68), attended two subsequent data collection sessions starting at 10:30 AM when
they were relatively alert. Participants had normal or corrected-to-normal vision, and all
but one were right handed. Participants were not under any drowsiness-inducing medi-
cations within three days prior to the experiment date and reported no history of neuro-
logical disorders. All individuals were notified of experimental goals prior to attendance.
The recruitment and experimental procedures were approved by the Sabanci University
Research Ethics Council and all participants signed informed consents. The dataset com-
posed of these participants is hereinafter referred to as the SPIS MI-BCI dataset.
Experimental flow and EEG data acquisition were similar to those explained in Sec-
tion 6.3.1.2. The only exception was that the experiment consisted of two sessions in
one setting: training (calibration) and test (evaluation). For participants 1 to 3, the train-
ing session consisted of 200 MI trials and lasted for 20 minutes while for participants 4
to 8, it had 300 MI trials and was completed in 30 minutes. All participants completed
a 300-trial test session after a 10-minute break in which they talked with the experi-
menters about their ability to perform motor imagination, answered questions regarding
their sleepiness levels, and rested. As before, facial videos were recorded during EEG
acquisition for verification of their alertness levels. Channel P10 was used as the refer-
ence due to its proximity to the right ear. MI features were extracted from 2-second time
intervals that started 0.5 seconds after the cue onset.

6.4.1.2 BCI Competition IV, Dataset 2a

Searching for long MI BCI recordings that would demonstrate clear correlates of declined
alertness and sustained attention was a challenging task. Our group came across the 11-
participant recordings of Talukdar et al. [45], [258] composed of a maximum of 8 runs
of 4-class motor imagery for a total of 96 minutes, and was the best fit to validate our
proposed algorithm due to its self-annotated vigilance levels. However, the dataset was
not available for download at the time of writing of this thesis. Instead, we focused on
the publicly available BCI Competition IV, dataset 2a [71]. This dataset is collected with
a cue-based paradigm recorded from 9 healthy participants, each having completed one
288-trial session of four-class motor imagery on two different days. The flow of its 8-
second trials are shown in Figure 6.7. Each trial starts by demonstrating a cross on the
screen for 2 seconds, followed by a cue in the shape of one of the four classes lasting
for 1.25 seconds. The four classes of motor imagery consisted of instructions to imagine
movement of the left hand, right hand, feet, or tongue that had to be executed for 3 sec-
onds. There was a 2-second break at the end of each trial in which participants should
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Figure 6.7: The timing flow of 8-second trials in BCI Competition IV - Dataset 2a [71].

refrain from imagining any movement. Each session lasts for 38.4 minutes, and record-
ings consisted of 22-channel EEG and 3-channel EOG signals sampled at 250 Hz using
the left mastoid as the reference and the right mastoid as ground. The initial preprocess-
ing steps including a bandpass filtering from 0.5 Hz to 100 Hz and notch filtering at 50
Hz were already applied on the signals.

6.4.1.3 Clustering of Vigilance Levels

Consider the data set X ∈ RNt×d composed of pre-trial, band-power EEG features where
Nt represents the total number of trials and d is the number of features. While maintaining
the order of trials, the dataset is split into the training or calibration set XTrain and the test
or evaluation set XTest . The following steps are performed on the training set to cluster its
features:

1. K-means clustering algorithm is performed on all NTrain samples of XTrain using the
square Euclidean distance metric for a pre-specified number of clusters, k.

2. The optimum number of training set clusters, k∗Train, is selected using the Silhouette
clustering evaluation criterion. The Silhouette value measures the degree of simi-
larity of each point in a cluster to all other points in the same cluster versus others,
and is calculated from the following formula for each point j:

S j =
b j−a j

max(a j,b j)
, (6.2)

where a j is the average distance between point j and all other points in its cluster,
and b j represents the minimum average distance between point j and other points in
different clusters. A S j closer to 1 represents higher similarity of point j within its
own cluster. The Silhouette clustering evaluation criterion in this algorithm reports
the Silhouette value averaged across all points and clusters.

3. Upon detection of k∗Train, centroids of the optimal scheme are sorted so that centroids
with smallest coordinates are assigned to cluster 1. This step maintains a consistent
order for features’ levels, corresponding to a consistent vigilance order.

Before predicting vigilance cluster indices of test session trials, we notice that, due to
the nonstationarity of brain dynamics in general and EEG signals in particular, dynamic
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models are of superior performance in capturing time-varying features especially for test-
ing and prediction purposes [261]–[263]. Therefore, we follow a gradual framework for
predicting vigilance clusters of test trials, starting from a statistic prediction system as a
baseline in the C1 scheme, moving towards a real-time and dynamic prediction scheme in
C2 and C′2, and smoothing the predictions in a real-time manner to decrease the effect of
momentary outliers in C3. Thus, the following clustering schemes are conducted on the
test set:

• Scheme C1 - the baseline: Static prediction of test clusters. All NTest samples in
XTest are clustered based on their distances from k∗Train centroids to obtain the test
cluster indices, CI1:NTest

Test . Here it is assumed that distances between centroids of
training vigilance clusters will stay the same during the subsequent test sessions,
meaning that the relative distances of vigilance features are constant across these
sessions.

• Scheme C2: Dynamic updating of test clusters after arrival of new test samples.
Upon arrival of each new m samples j−(m+1) to j from XTest , all samples in XTrain

and
⋃ j

i=1 xi
Test are concatenated for computation of new centroids. In other words,

the optimum number of clusters and their corresponding centroid coordinates are
reevaluated upon arrival of new samples which are then assigned to one cluster.

• Scheme C′2: Predict the test clusters first before dynamically updating their cen-
troids. Upon arrival of each new m samples j− (m+1) to j from XTest , their clus-
ter index is first predicted using the already existing centroids. Next, XTrain and⋃ j

i=1 xi
Test are concatenated for computation of new centroids. This method is more

applicable for implementation of real-time experiments.

• Scheme C3: Smoothing the training and test cluster indices. High-frequency ripples
in train or test clustering indices and variations in clustering decisions due to exis-
tence of movements and outliers might not be ideal or representative of the brain’s
alertness levels. Thus, once k∗Train is determined, cluster indices are smoothed us-
ing a 3-point moving average and quantized to have a maximum of three levels.
Next, for every new arrival of sample j from XTest , its true cluster index or CI j

Test
is predicted, and a moving average window of length 3 is applied on the last three
predicted labels CI j−2: j

Test to obtain CIsmooth. Since the smoothed curve contains deci-
mal numbers, it is quantized to have a maximum of three levels. In another scheme,
a sliding average window of length 3 is applied on the entire predicted test clusters
up to sample j, CI1: j

Test , to obtain CImovmean before quantizing it.

It should be mentioned that the schemes C2, C′2, and C3 are all based on causal algorithms.
C2 has the drawback of having to wait for new samples before recalculating the centers
of vigilance clusters while C′2 speeds up the real-time implementation of this dynamic
clustering scheme. Furthermore, obtaining cluster indices for C1, C2, and C′2 rely on pre-
stimulus amplitudes of EEG features which demonstrate a short-time and phasic perspec-
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tive in capturing the alertness levels. Scheme C3, however, considers the assigned indices
of preceding trials as well for smoothing out its predictions, and thus has a more tonic
perspective similar to our treatment of cumulative vigilance scores. In the subsequent ex-
periments of section 6.4.2, we explore which alertness inference approach improves the
prediction of trial-wise motor imagery labels.

6.4.1.4 Detection of Consistent MI Features during Similar Vigilance Levels

In this experiment, the assumption is that the best time interval resulting in the highest
classification has to be consistent for similar vigilance levels of any executed BCI session.
Assume an MI BCI paradigm is executed for separate training and test sessions, S1 and
S2, and that clustering the training and test α/β features demonstrate that each session
consists of two different vigilance levels V L1 and V L2. Then we hypothesize that the
vigilance level is a key factor affecting the reaction time and concentration of participants
which subsequently affects the MI classification accuracy in each session. In addition, the
best time interval that wins the classification accuracy for similar vigilance levels should
be identical for two sessions.

1. Unsupervised labeling of vigilance levels: Pre-trial BP-ROI features are extracted
from one second before the cue onset, and α/β features from all regions available
in the dataset are used to compute cluster indices (CIs) in sessions S1 and S2. Hav-
ing specified a maximum of k clusters, trials with vigilance levels V L1 to V Lk are
identified in both sessions. Note that there are 14 ROIs available in our SPIS MI-
BCI dataset due to having 64 electrodes covering the whole scalp while the BCI
Competition provides only 7 ROIs due to having electrodes only over the sensori-
motor cortex. This is a challenge for studies involving the latter dataset since no
feature from the pre-frontal or frontal regions can be obtained.

2. Classification of MI trials for discrete vigilance levels and sessions: MI EEG fea-
tures are extracted from four time intervals of 2-s duration starting from 0.5 s post-
cue (left or right arrow) onset with 0.5-s overlaps, i.e., [0.5 , 2.5], [1 , 3], [1.5 ,
3.5], and [2, 4] seconds. For each vigilance level V L j, k = 1 to k, motor imagery-
labeled trials are classified: A multi-fold cross-validation (CV) is applied on trials
belonging to V L j of each session without any permutation to maintain the origi-
nal temporal sequence of trials while assuring that almost equal number of samples
from each MI class is included in each fold. If, for a specific vigilance level, less
than two samples from a class are included in a fold, MI is not classified for that
vigilance level. Finally, the average CV accuracy is reported and the time interval
T I j,i resulting in the highest MI accuracy in V L j of Session i, Si, reported as the
winning time interval.

3. Our adaptation approach is based on the assumption that each participant has similar
time intervals being successful in classifying their motor imagery tasks for similar
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vigilance levels across different sessions. For example, for a 2-level vigilance clus-
tering scheme performed in two sessions, we hypothesize that the T I1,1 and T I1,2

should be the same for a participant as should be the T I2,1 and T I2,2. For each
dataset, the vigilance clustering scheme that results in the highest number of par-
ticipants having consistent MI performance is reported as the winning vigilance
detection scheme.

6.4.1.5 Proposed Adaptive Alertness-Aware Classification Approach

The proposed adaptive BCI approach considers adaptation in (1) extraction of the best
time intervals for MI execution in each trial according to its inferred vigilance level, and
(2) in setting its classifier parameters according to the same inference. As the highlight
of this adaptive alertness-aware classification method, we present the results of the orig-
inal, non-adaptive MI classification that does not utilize any vigilance level information,
and the proposed adaptive methods that incorporate information on the vigilance level of
each clustered trial. As an important contribution to the literature, the proposed method
includes both an adaptive feature extraction time interval and an adaptive setting for the
CSP + LDA classification.

1. Unsupervised labeling of vigilance levels: Pre-trial BP-ROI features are extracted,
and α/β features from all regions available in the dataset are used to compute clus-
ter indices (CIs) in sessions S1 and S2. Having specified a maximum of k clusters,
trials with vigilance levels V L1 to V Lk are identified in both sessions.

2. Classification of MI trials for discrete vigilance levels and sessions: Four time in-
tervals of 2-s duration starting from 0.5 s post-cue onset with 0.5-s overlaps are
taken into account. In the “Original” or non-adaptive paradigm, the best interval
is selected using K-fold cross-validation (CV) over all the trials of the train data.
The classic CSP and LDA are applied for MI feature extraction and classification
respectively. By selecting the best interval, the BCI system (CSP+LDA) is trained
by train data and evaluated over test data based on the chosen best interval.

(a) Adaptive Classification, Version 1: Here, the best interval is selected separately
for each vigilance level by using K-fold cross validation over each level of
train data. If two clusters are detected in the training trials, two systems of
CSP1+LDA1 and CSP2+LDA2 are built by K-fold CV on their corresponding
training trials and evaluated on test data separately for vigilance levels V L1

and V L2 by considering the corresponding chosen time interval T I1 and T I2.
Finally, the overall accuracy achieved from all the test trials is reported as the
result of “Adaptive” vigilance based BCI system.

Data recorded from participants at their alert state is assumed to have been a
better representative of their MI execution abilities. Additionally, the small
number of drowsy trials for most participants in our existing datasets reduces
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Figure 6.8: Three versions of the proposed adaptation approach for alertness-aware MI-BCIs.
High and low vigilance clusters correspond to the alert and drowsy or V L1 and V L2 clusters,
respectively.

the amount of valuable information for detecting the best MI interval and train-
ing the BCI system in their drowsy state due to the possible overfitting or not
building a reliable model. Therefore, two other versions of the proposed adap-
tive BCI are also conducted, as follows:

(b) Adaptive Classification, Version 2: The selection of the best time interval for
V L2 is performed based on its corresponding trials from the training data as
before. The training of the CSP2+LDA2 system is, however, conducted based
on all trials of the training data by considering the chosen interval T I2.

(c) Adaptive Classification, Version 3: In this version, both selecting the best in-
terval T I2 and training the CSP2+LDA2 are performed based on all trials of
training data for evaluation on V L2 test trials.

Figure 6.8 demonstrates the three versions of this proposed adaptation approach for alertness-
aware MI-BCIs. Light red arrows indicate using trials of the alert cluster, V L1, in training
the drowsy classifiers in version 2, or using those trials for obtaining both the best time
interval T I2 and training the drowsy classifier in version 3.

6.4.2 Results

6.4.2.1 Alertness-Aware Clustering of SEED-VIG Dataset

The SEED-VIG dataset [35], developed by the Center for Brain-like Computing and Ma-
chine Intelligence (BCMI) and introduced in Section 5.3.2, is used for evaluation of
alertness-aware clustering techniques. The dataset was recorded from 21 participants
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who performed a virtual driving task for 118 minutes. Vigilance levels were labeled with
the PERCLOS indicator every 8 seconds using the SMI eye-tracking glasses, creating
885 labels for each session. Each recording includes 17 EEG channels located on the
centro-parietal, parietal, occipital, and temporal cortices and 4 forehead EEG and EOG
channels, all sampled at 200 Hz. Vector y ∈ R885×1 contains continuous vigilance values,
ranging from 0 to 1, obtained from 8-second non-overlapping windows.
In calculating pre-trial BP-ROI features from our SART and MI-BCI datasets, we were
aware of the exact onset of visual stimuli presentation to the users. In the SEED-VIG
setup, however, participants were constantly following the visual stream of cars and roads
on the screen and no cue was presented to help with extracting the “pre-trial” intervals.
Thus, noticing that PERCLOS labels are computed from 8-second long windows, BP-ROI
features averaged across similar non-overlapping 8-second windows. It should be noted
that due to the presence of EEG signals only across the temporal and parietal regions,
only 6 non-empty ROIs are formed which results in a 60-dimension feature set. In other
words, the SEED-VIG dataset of BP-ROI features is represented as X ∈R885×60. We form
various subsets of X formed by band-specific features: Xθ , Xα , Xθ+α)/β , Xθ+α)/(α+β ),
Xα/β , and Xθ/β , as features potentially be related to the drowsiness levels.
As demonstrated in heatmaps of Figure 6.9, over 90% of participants consistently demon-
strated significantly positive correlations between their α/β features from all 6 ROIs and
PERCLOS labels. For θ features from midline central, left and midline parietal, and
right temporal regions, and α features from midline central and left/right/midline parietal
channels, this accounted for 80% of participants. We thus select α/β features as the
common neural markers of increased eye closure, in turn a behavioral marker of
increased sleepiness and decreased vigilance.
These results on BP-ROI correlates of increased drowsiness from SEED-VIG are in
agreement with the heatmaps of Figure 4.5 in which negative correlations of BP-ROI
features with CVS curves was an indicator of increased drowsiness. Positive correlation
of all centro-parieto-temporal α/β features with increased PERCLOS was observed in
more than 90% of SEED participants, while such strong associations with decreased CVS
were observed only from the right and midline central and left parietal regions for more
than 80% of SART participants. Positive correlations of left parietal α with drowsiness is
also obtained for over 90% of individuals from both datasets. Patterns of θ associations
are also common in central features. Finally, in SART heatmaps, an increase in γ ratios
from the right central and left parietal regions was an indicator of improved performance.
This strong association has shifted towards the left and right temporal regions as seen in
SEED-VIG heatmaps. The smaller number of channels used inside each ROI in the latter
dataset could be a reason for these small anatomical shifts.
Considering Nt = 885 as the total number of samples obtained from 8-second windows,
the 6-dimension training set of Xα/β is extracted to include the first bNt/4c samples of
α/β features, accounting for 222 samples or the first 29.5 minutes of the driving session.
Subsequently, the test set of Xα/β contains the remaining 663 samples, corresponding to
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Figure 6.9: Percentage of SEED-VIG participants with statistically significant positive (left) and negative
(right) correlations between various BP-ROI features and PERCLOS labels, p < 0.1. α/β features from
6 ROIs were positively correlated with increase in sleepiness in 90% of participants, followed by α and θ

features. Right temporal γ is correlated with decrease in sleepiness and eye closure in 95% of participants.

the last 88.9 minutes of the driving session. The three clustering schemes explained in
Section 6.4.1.3 are applied on the training and test sets of each participant. The dynamic
schemes are especially evaluated since samples in the test set could be at extremely higher
or lower levels of the utilized α/β features, and, subsequently, at a previously unobserved
vigilance level.
Starting from k = 3 number of clusters for the training set, Table 6.3 presents k∗Train in
schemes C1 and C2 with m = 1, k∗Test for scheme C2, and Pearson correlation coefficients
between the labels y (PERCLOS) and cluster indices (CI) for the training set, test set, and
their concatenations. Table 6.4 then demonstrates k∗Train and correlation coefficients be-
tween the PERCLOS labels and cluster indices for the C3 scheme. The standard deviation
(SD) of eye-closure labels is also reported since highly constant labels or predicted clus-
ters would result in undefined Pearson coefficients. Bold numbers demonstrate the higher
correlation between the two quantized versions of CIsmooth versus CImovmean for each par-
ticipant. These higher correlation coefficients are above 0.5 for 11 out of 21 participants.
The paired sample Student’s t-test demonstrates no statistically significant difference ex-
ists between the means of the two groups, p > 0.2. Therefore, both quantized versions
were computed for subsequent experiments on BCI Competition IV Dataset 2b and our
own SPIS MI-BCI dataset.
Considering all three schemes, in 11 out of 21 participants, the quantized CIsmooth based
on α/β features obtains the highest correlation coefficients, and in two cases, it generates
a fixed cluster index for all samples in the test set, hence a NaN result for correlation. A
one-way analysis of variance (ANOVA) demonstrates a non-significant effect of cluster-
ing scheme on the obtained correlations of overall participants, F(3,78) = 0.66, p >0.5.
To visually present the effectiveness of unsupervised labeling of trial vigilance using
the quantized smooth scheme, α/β features obtained from C3 and their corresponding
PERCLOS labels from the entire driving sessions of four participants are shown in Fig-
ure 6.10. Since increase in the α/β level is positively correlated with more duration
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Table 6.3: Optimum number of clusters and Pearson’s linear correlation coefficients between
PERCLOS labels and Cluster Indices (CI) in schemes C1 and C2 with m = 1 when starting with
k = 3 clusters.

t Scheme C1 Scheme C2
k∗Train ρTrain ρTest ρTrain

⋃
Test k∗Train k∗Test ρTrain ρTest ρTrain

⋃
Test

S01 2 0.833 0.850 0.846 2 2 0.833 0.867 0.858
S02 2 0.070 0.353 0.332 2 2, 3 0.070 0.358 0.343
S03 3 0.243 0.319 0.353 3 2, 3 0.242 0.334 0.299
S04 2 0.169 0.225 0.446 2 2 0.169 0.343 0.354
S05 2 0.648 0.690 0.691 2 2 0.648 0.697 0.699
S06 2 0.016 -0.109 -0.078 2 2 0.016 -0.079 -0.047
S07 3 -0.136 0.316 0.061 3 2, 3 -0.136 0.182 -0.048
S08 2 0.010 0.670 0.644 3 2, 3 0.118 0.497 0.333
S09 2 0.015 0.089 0.016 2 2 0.015 0.071 0.011
S10 2 0.313 0.093 0.099 2 2 0.313 0.084 0.091
S11 3 0.191 0.432 0.355 3 2, 3 0.262 0.372 0.273
S12 3 0.506 0.635 0.606 3 2, 3 0.482 0.575 0.543
S13 2 0.662 0.628 0.654 2 2 0.662 0.598 0.629
S14 2 0.320 0.478 0.462 2 2, 3 0.345 0.470 0.438
S15 2 -0.023 -0.038 0.013 2 2 -0.023 -0.026 0.025
S16 2 0.610 0.763 0.762 2 2, 3 0.610 0.520 0.565
S17 2 0.793 0.687 0.757 2 2, 3 0.793 0.685 0.738
S18 3 0.721 0.813 0.807 3 2, 3 0.800 0.847 0.853
S19 2 0.424 0.007 0.229 2 2 0.502 0.100 -0.012
S20 2 0.359 0.064 0.157 2 2 0.359 0.045 0.138
S21 2 0.250 0.689 0.630 2 2, 3 0.250 0.580 0.529

Table 6.4: Optimum number of clusters, SD of PERCLOS labels, and Pearson’s linear correlation
coefficients between PERCLOS labels and Cluster Indices (CI) in scheme C3 when starting with
k = 3 clusters.

t k∗Train SD of yTrain SD of yTest ρTrain ρTest ρquantizedsmooth ρquantizedmovmean ρTrain
⋃

Test

S01 2 0.274 0.292 0.833 0.850 0.929 0.893 0.846
S02 2 0.041 0.184 0.092 0.360 0.484 0.418 0.339
S03 3 0.053 0.164 0.306 0.307 0.581 0.372 0.364
S04 2 0.036 0.172 0.169 0.225 0.019 0.220 0.446
S05 2 0.199 0.339 0.648 0.690 0.819 0.726 0.691
S06 2 0.071 0.080 0.016 -0.109 NaN -0.101 -0.078
S07 3 0.054 0.107 -0.136 0.316 0.205 0.342 0.061
S08 3 0.016 0.254 -0.010 0.612 0.752 0.666 0.599
S09 2 0.089 0.130 0.015 0.089 NaN 0.082 0.016
S10 2 0.099 0.144 0.307 0.097 0.162 0.061 0.105
S11 3 0.089 0.115 0.191 0.432 0.587 0.485 0.355
S12 3 0.318 0.391 0.510 0.645 0.789 0.685 0.615
S13 2 0.186 0.198 0.662 0.628 0.818 0.696 0.654
S14 2 0.103 0.243 0.345 0.484 0.515 0.553 0.472
S15 2 0.055 0.167 -0.023 -0.038 0.004 -0.048 0.013
S16 2 0.269 0.291 0.610 0.763 0.826 0.844 0.762
S17 2 0.275 0.124 0.793 0.687 0.666 0.740 0.757
S18 2 0.236 0.349 0.785 0.810 0.851 0.860 0.813
S19 2 0.065 0.091 0.424 0.007 0.017 0.020 0.229
S20 2 0.378 0.326 0.359 0.064 0.018 0.059 0.157
S21 2 0.120 0.358 0.250 0.689 0.833 0.763 0.630
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Figure 6.10: Clustering results of scheme C3 using the quantized smooth method for four SEED
participants, S01, S05, S16, and S21. Blue and green curves indicate the α/β features of clusters
1 and 2, respectively, while the red curves correspond to the scaled PERCLOS labels for the entire
session.

of eye closure and sleepiness, sorting the cluster centroids assures that vigilance level
1 always corresponds to the highest vigilance level and subsequent clusters represent
lower vigilance and higher sleepiness. It should be noted that we did run clustering
schemes using other BP-ROI features, but their correlations coefficients were low and
completely outperformed by the α/β features.

6.4.2.2 Consistent MI Features during Similar Vigilance Levels

Once the clustering of α/β features using the quantized CIsmooth and CImovmean was veri-
fied for the majority of SEED-VIG participants, the same procedure was applied for our
SPIS MI-BCI dataset and the BCI Competition IV Dataset 2a. To detect consistent per-
formance of MI time intervals during similar vigilance levels across different sessions,
the methodology of Section 6.4.1.4 is applied on the two-class SPIS MI-BCI dataset as
follows:

1. Vigilance-related features explained in Section 4.4.1.4 are extracted from 1-second
intervals before the cue onset, and α/β cluster indices are calculated according to
the schemes C1 to C3. In each experiment, each trial is labeled as either belonging
to vigilance level V L1 or V L2.

2. The training session consisted of 200 trials for the first three and 300 trials for the
last five participants while the test session had 300 trials for everyone. Here we
attempted to detect imagination of class 1 (left hand) versus class 2 (right hand)
using a combination of CSP and LDA on trials labeled with similar cluster indices.
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Table 6.5: Winning T I j,i from two clustering schemes with the highest number of consistent time
intervals for similar vigilance levels in the binary MI classification of 8-participant SPIS MI-BCI.
Number of sessions for whom 3-fold CV was skipped due to the low number of samples is also
reported.

Clustering Scheme C′2, m = 5, k = 3 C2, m = 5, k = 2

t V L1 V L2 V L1 V L2

Participant S1 S2 S1 S2 S1 S2 S1 S2

S1 1 1 2 3 1 1 2 3
S2 1 1 4 1 1 1 4 1
S3 2 2 4 2 2 2 4 1
S4 1 1, 2 1 1 1 1 1 1
S5 1 1 3 0 1 1 3 0
S6 1 1 1 1 1 1 1 4
S7 3, 4 4 1 1 3, 4 4 1 1
S8 4 3 4 4 4 3 4 4

# Consistent Levels 7 4 7 3t

Table 6.5 presents the winning time intervals T I j,i from two clustering schemes that result
in the highest number of consistent time intervals across all participants. As before,
V L1 and V L2 correspond to relatively higher and lower vigilance levels (or, lower and
higher sleepiness levels). Each clustering scheme has one zero session, i.e., a session
for which the 3-fold CV was skipped due to the low number of samples and not because
of inconsistent time intervals. It can be seen that from the total 32 V L× Session pairs
observed in this table, these two clustering schemes have successfully obtained similar
time intervals for 30 pairs. Interestingly, the former scheme has more agreeable sessions
for V L2 vigilance level, denoting the success of prediction using old centroids before
using the whole data for updating new cluster coordinates.
Focusing on the 9-participant BCI Competition dataset and to detect consistent perfor-
mance of MI time intervals during similar vigilance levels across different sessions, the
methodology of Section 6.4.1.4 was applied as follows:

1. Features explained in Section 4.4.1.4 are extracted from 1-second intervals before
the cue onset, and α/β cluster indices are calculated according to the three cluster-
ing schemes C1 to C3. In each scheme, each trial is labeled as either belonging to
vigilance level V L1 or V L2.

2. Due to the 4-class nature of this dataset, having only 288 trials in a session, and
an occasional low number of trials in V L2 in most sessions, 2-class motor imagery
classification is performed by grouping two of four classes together at a time to
form positive and negative samples. In the first MI experiment, “1&2 vs. 3&4”,
classes 1 and 2 (left and right hands) are classified versus classes 3 and 4 (both
feet and tongue). In the second MI experiment, “1&4 vs. 2&3”, classes 1 and 4
(tongue and left hand) are classified against classes 2 and 3 (right hand and both
feet). These experiments are performed due to the higher separability of features
across all participants of this dataset [259]. To be more precise, since we were to
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Table 6.6: Winning T I j,i from the clustering scheme with the highest number of consistent time
intervals for similar vigilance levels in the binary MI classification of “1&2 vs. 3&4”, BCI Com-
petition IV - Dataset 2a. Number of trials from each vigilance level and each session is denoted
in parentheses.

Clustering Scheme C3: quantized CIsmooth, k =2

t V L1 V L2

Participant S1 S2 S1 S2

A1 2 (122) 1, 2 (214) 2 (166) 1 (74)

A2 2 (131) 2 (264) 2 (157) 0 (24)

A3 1 (123) 4 (52) 3 (165) 1, 3 (236)

A4 1 (180) 1 (157) 1, 3 (108) 1 (131)

A5 1 (214) 2 (282) 1 (74) 0 (6)

A6 1 (189) 1 (148) 1 (99) 3 (140)

A7 1 (164) 3 (203) 1, 2 (124) 1 (85)

A8 4 (139) 3 (222) 2 (149) 3, 4 (66)

A9 1 (207) 1 (96) 2 (81) 1 (192)

# Consistent Levels 5 3
t

focus on the effect of vigilance on the MI BCI performance, we tried to utilize the
already tested scenarios in terms of high separability in MI EEG features.

Thus, 10-fold CV is performed on separate vigilance levels of each session and the win-
ning time intervals are reported. Tables 6.6 and 6.7 present the clustering schemes that
resulted in the highest cases of consistent time intervals from similar vigilance levels
across different sessions in each experiment. If two different time intervals resulted in ex-
actly equal classification accuracies, both intervals are reported. As before, V L1 and V L2

correspond to relatively higher and lower vigilance levels (or, lower and higher sleepiness
levels).
In MI classification of ‘1&2 vs. 3&4”, the quantized version of smoothed CIs from both
training and test sessions resulted in the highest number of agreeable intervals as shown
in Table 6.6. As seen in this table, participants experienced similar T I1, j. This number
reduced to 3 participants with similar winning time intervals in the lower vigilance level
of V L2 across different sessions. However, more participants demonstrate consistent time
intervals across two sessions when MI classes 1 and 4 were classified against classes 2 and
3, as shown in Table 6.7. When clustering train and test trials after 5 new samples with
a maximum of two clusters, C′2, 6 and 4 participants had consistent time intervals in V L1

and V L2, respectively. When both training and test CIs were smoothed, this was in favor
of the lower vigilance level which saw 5 out of 9 participants experiencing consistent time
intervals.
A note on the winning adaptive alertness-aware method for lower vigilance levels:
For the same BCI Competition dataset, we tested the scenario in which MI EEG features
were extracted from trials of different lengths all starting at 0.5 seconds post-cue onset.
In other words, six new time intervals were formed covering the [0.5, 1], [0.5, 1.5], [0.5,
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Table 6.7: Winning T I j,i from clustering schemes with the highest number of consistent time
intervals for similar vigilance levels in the binary MI classification of “1&4 vs. 2&3”, BCI Com-
petition IV - Dataset 2a. Number of trials from each vigilance level and each session is denoted
in parentheses.

Clustering Scheme C′2, m = 5, k =2 C′3 smooth CITrain & CITest , k =2

t V L1 V L2 V L1 V L2

Participant S1 S2 S1 S2 S1 S2 S1 S2

A1 1, 4 (162) 1 (220) 1, 4 (126) 1 (68) 1 (122) 1 (214) 1 (166) 1 (74)

A2 4 (168) 4 (245) 4 (120) 0 (43) 1 (131) 4 (264) 4 (157) 0 (24)

A3 1 (163) 1 (120) 2 (125) 2 (168) 1 (123) 2 (52) 4 (165) 2 (236)

A4 4 (195) 1 (210) 3 (93) 4 (78) 4 (180) 2 (157) 4 (108) 1 (131)

A5 2 (218) 3 (259) 4 (70) 0 (29 2 (214) 2 (282) 4 (74) 0 (6)

A6 3 (220) 1 (180) 2 (81) 2 (108) 2 (189) 2 (148) 2 (99) 2 (140)

A7 3 (186) 3 (199) 3 (102) 1 (89) 3 (164) 3 (203) 2 (124) 2 (85)

A8 1 (173) 1 (220) 1 (115) 1 (68) 1 (139) 1 (222) 1 (149) 1 (66)

A9 1 (211) 1 (164) 1 (77) 3 (124) 1 (207) 3 (96) 1 (81) 1 (192)

# Consistent Levels 6 4 5 5t

2], [0.5, 3], [0.5, 3.5], and [0.5, 4] second intervals after onset of arrows. In this way, we
were exploring whether increasing the amount of data during the periods of sleepiness
would assist with increased MI accuracy and lead to using time intervals of equal length
in both sessions. As shown on Table 6.8, clustering scheme C3 with 2 clusters where the
training CIs were smoothed and used to predict the test CIs results in the largest number
of participants having consistent interval lengths across different sessions of V L2.

6.4.2.3 Adaptive Alertness-Aware Classification for MI BCI

Following the discussion in Section 6.4.1.5 for adaptive feature extraction and classifi-
cation of MI BCI, the vigilance information based on clustering of α/β features was
utilized to perform adaptive classification for 2-class motor imagery in the SPIS MI-BCI
dataset. Tables 6.9 and 6.10 demonstrate these results when using Version 1 of adapta-
tion, ref. Section 6.4.1.5. Clustering and indexing vigilance levels were performed using
a maximum of 3 clusters with the scheme C2 (updating the centroids before prediction,
m = 5), and C′2 (predicting cluster indices first before updating centroids after 5 new tri-
als), respectively. The columns under “Original MI, No Adaptation” include results of a
3-fold CV on training trials only using the left and right MI labels, the time intervals with
highest CV accuracy, and test accuracy using those MI features of those time intervals.
Columns under “Vigilance Level 1” contain similar results when only trials labeled as
V L1 (the base vigilance level) by the clustering scheme and their best time intervals were
used for classification. Similarly, results under “Vigilance Level 2” were obtained when
only V L2 trials from the lower vigilance level (higher drowsiness) and their winning time
intervals were used for MI classifications. Finally, the total number of correctly classified
MI trials from the two adapted classifications divided by the entire 300 trials in the test
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Table 6.8: Winning time intervals from the clustering scheme C3 with a maximum of k =2 that
resulted in the highest number of consistent interval lengths for similar vigilance levels in the bi-
nary MI classification of “1&4 vs. 2&3”, BCI Competition IV - Dataset 2a. Numbers correspond
to 6 intervals starting at 0.5 s post-cue onset.

t V L1 V L2

Participant S1 S2 S1 S2

A1 6 4 5 2, 5
A2 5 6 2, 6 0
A3 3 5 4 4
A4 6 1 1, 2, 4 1
A5 4 5 4, 5 0
A6 6 6 3 3
A7 1 6 2, 5 2
A8 4, 5, 6 4 6 3, 6
A9 2 3 3 4

# Consistent Levels 2 6
t

session are reported under the “Vigilance” column.
As can be seen from Tables 6.9 and 6.10, the overall AccTest has improved for 5 out
of 8 participants and remained the same for one participant in both clustering schemes.
And the overall AccTest in the full adaptation case shows an average rate of change of
1.99±5.80 under C2 and 0.99±5.21 under C′2. Student’s t-test reported no significant
statistical difference between the results of two clustering schemes, p > 0.2.
Two notable results are worth a special discussion: Participant S5 who had the highest
AccTest of 70% without any adaptation saw a perfect MI detection rate for trials labeled as
V L2 under the C′2 clustering while C2 had pointed to wrong MI time intervals. Analyzing
the test CIs demonstrated that S5 only had one trial labeled as V L2 in his test session.
On the contrary, the overall AccTest of participant S6, 49.33%, had not changed under the
train and update scheme C′2, but increased to 54.67% under the train and test scheme of
C2. For this participant, the AccTest for separate V L1 and V L2 classifications were also
higher under the C2 clustering. A review of facial videos showed that S6 had excessive
sleepiness periods during their MI sessions. This brought us to the conclusion that they
had performed motor imagination only for a short period during the training session.
For the same participants and using identical clustering schemes C2 and C′2, adaptation
paradigms Version 2 and Version 3 which modify the method of training CSP+LDA sys-
tem for drowsy trials in V L2 were also performed. Table 6.11 presents the average and
standard deviation for improvements in overall AccTest in three Adaptation versions with
respect to the Original, non-adaptive classification results. Using Version 2, the classifica-
tion accuracy changed between -8.66% and +6.21% after adaptation while, using Version
3, improvements between -1.96% and 6.05% were obtained. Results indicate that Adap-
tation Version 3 outperforms the other two versions and obtains the highest improvement.
Furthermore, the overall adaptive test accuracy had significantly increased with respect
to the non-adaptive values for C2 scheme in Version 2 and both clustering schemes in
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Table 6.9: Classification accuracy for the SPIS MI-BCI dataset without adaptation (Original MI),
and adaptation Version 1. Clustering is performed using the C2 scheme with m= 5 and a maximum
of 3 clusters. Highlighted cells demonstrate improved test accuracy after adaptation while bold
cells indicate no change in the test accuracy. TI: Time Interval; Acc: Accuracy; SD: Standard
Deviation.

t Original MI, No Adaptation Vigilance Level 1 Vigilance Level 2 Vigilance

Participant 3-fold Winner AccTest 3-fold Winner AccTest 3-fold Winner AccTest AccTest
AccTrain Train TI (%) AccTrain Train TI (%) AccTrain Train TI (%) (%)

S1 50.00 1 49.67 54.62 1 55.69 51.43 2 49.62 53.00

S2 55.00 3 57.67 54.61 1 52.05 61.02 4 55.56 53.00

S3 66.00 1 71.67 56.91 2 76.28 64.94 2 74.12 75.67

S4 52.33 1 53.67 59.02 1 54.44 42.86 2 55.77 54.67

S5 64.00 1 70.67 66.36 2 70.90 57.83 4 0.00 70.67

S6 52.67 4 49.33 52.49 4 54.89 49.37 2 54.49 54.67

S7 50.67 1 58.52 55.91 4 60.00 47.50 1 58.57 59.11

S8 40.33 2 51.00 49.30 4 51.10 44.83 4 39.29 50.00

Average 53.88 57.78 56.15 59.42 52.47 48.43 58.85

SD 8.14 8.94 5.04 9.25 7.96 21.83 9.29

Table 6.10: Classification accuracy for the SPIS MI-BCI dataset without adaptation (Original
MI), and adaptation Version 1. Clustering is performed using the C′2 scheme with m = 5 and a
maximum of 3 clusters. Highlighted cells demonstrate improved test accuracy after adaptation
while bold cells indicate no change in the test accuracy. TI: Time Interval; Acc: Accuracy; SD:
Standard Deviation.

t Original MI, No Adaptation Vigilance Level 1 Vigilance Level 2 Vigilance

Participant 3-fold Winner AccTest 3-fold Winner AccTest 3-fold Winner AccTest AccTest
AccTrain Train TI (%) AccTrain Train TI (%) AccTrain Train TI (%) (%)

S1 50.00 1 49.67 54.62 1 55.69 51.43 2 49.62 53.00

S2 55.00 3 57.67 54.61 1 51.39 61.02 4 55.95 52.67

S3 66.00 1 71.67 57.14 2 75.93 64.86 4 66.67 73.33

S4 52.33 1 53.67 53.97 1 58.96 45.83 1 51.02 57.67

S5 64.00 1 70.67 65.42 1 71.91 53.49 3 100.00 72.00

S6 52.67 4 49.33 50.45 1 47.79 48.75 1 50.61 49.33

S7 50.67 1 58.52 55.91 4 59.77 47.50 1 59.15 59.33

S8 40.33 2 51 48.62 4 50.18 42.90 4 40.74 49.33

Average 53.88 57.78 55.09 58.95 51.97 59.22 58.34

SD 8.14 8.94 5.02 10.19 7.57 18.14 9.53
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Table 6.11: Average improvements, in percent, in overall AccTest of three Adaptation versions
with respect to the Original, non-adaptive MI classification results for the SPIS MI-BCI dataset,
N = 8. Results of one-sided, paired Student’s t-test between the adaptive and non-adaptive test
accuracy are indicated inside the parentheses.

Clustering Scheme Version 1 Version 2 Version 3

C2 , m = 5 1.99 ±5.80 2.32±2.66 (p < 0.05) 3.06±5.95 (p < 0.1)

C′2 , m = 5 0.99±5.21 1.50±5.08 2.85±5.22 (p < 0.1)

Table 6.12: Classification accuracy for the SPIS MI-BCI dataset without adaptation (Original
MI), and Adaptation Version 3. Clustering is performed using the C′2 scheme with m = 5 and a
maximum of 3 clusters. Highlighted cells demonstrate improved test accuracy after adaptation
while bold cells indicate no change in the test accuracy. TI: Time Interval; Acc: Accuracy; SD:
Standard Deviation.

t Original MI, No Adaptation Vigilance Level 1 Vigilance Level 2 Vigilance

Participant 3-fold Winner AccTest 3-fold Winner AccTest 3-fold Winner AccTest AccTest
AccTrain Train TI (%) AccTrain Train TI (%) AccTrain Train TI (%) (%)

S1 50.00 1 49.67 54.62 1 55.69 51.43 2 53.38 54.67

S2 55.00 3 57.67 54.61 1 52.05 61.02 4 60.49 54.33

S3 66.00 1 71.67 56.91 2 76.28 64.94 2 71.67 75.00

S4 52.33 1 53.67 59.02 1 54.44 45.86 2 51.92 54.00

S5 64.00 1 70.67 66.36 2 70.90 57.83 4 0 70.67

S6 52.67 4 49.33 52.49 4 54.89 49.37 2 55.69 55.33

S7 50.67 1 58.52 55.91 4 60.00 47.50 1 61.43 60.89

S8 40.33 2 51.00 49.30 4 51.10 44.83 4 42.86 50.33

Average 53.88 57.78 56.15 59.42 52.47 49.69 59.40

SD 8.14 8.94 5.05 9.25 7.96 21.75 8.85

Version 3. Finally, Table 6.12 demonstrates the non-adaptive and adaptive classification
results using the clustering scheme C2 and adaptation Version 3. It should be clarified
that only one test trial belonged to the second cluster for S5.

Finally, the vigilance information based on clustering of α/β features was utilized to
perform adaptive “1&4 vs. 2&3” classification for BCI Competition Dataset 2a. Observ-
ing that the Adaptation version 3 had outperformed the other two in the SPIS MI-BCI
dataset, here we only choose to present the classification result from the same version.
Table 6.13 demonstrates these results when clustering and labeling of vigilance levels
were performed using a maximum of 3 clusters with the scheme C′2 (predicting cluster
indices first before updating centroids after 5 new trials). As can be seen in this table,
AccTest has increased for 6 out of 9 participants and remained constant for one when us-
ing the whole vigilance information. Overall, an average improvement of 1.72±6.80 (%)
is observed in the AccTest results of Adaptive versus Original classification.
To investigate the reason for the large reduction in the test accuracy of participant A4,
the Euclidean distances between cluster centroids throughout the test session updates are
computed for each participant. Figure 6.11 demonstrates these distances when the clus-
tering scheme C′2, i.e., prediction of cluster indices and subsequent updates are performed
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Table 6.13: Results of the binary MI classification of “1&2 vs. 3&4”, BCI Competition IV -
Dataset 2a, without adaptation (Original MI) and adaptation Version 3. Clustering is performed
using the C′2 scheme with m = 5 and a maximum of 3 clusters. Highlighted cells demonstrate
improved test accuracy after adaptation while bold cells indicate no change in the test accuracy.
TI: Time Interval; Acc: Accuracy; SD: Standard Deviation.

t Original MI, No Adaptation Vigilance Level 1 Vigilance Level 2 Vigilance

Participant 10-fold Winner AccTest 10-fold Winner AccTest 3-fold Winner AccTest AccTest
AccTrain Train TI (%) AccTrain Train TI (%) AccTrain Train TI (%) (%)

A1 90.97 2 92.36 93.21 2 93.64 89.68 2 89.71 92.71

A2 73.61 2 68.06 73.24 3 69.80 75.34 2 65.12 69.10

A3 81.60 1 85.07 79.04 1 83.76 75.21 4 85.38 84.72

A4 54.86 1 71.18 55.62 1 60.20 60.40 4 70.65 63.54

A5 61.81 3 57.64 53.21 1 66.02 52.86 1 65.52 65.97

A6 67.36 4 51.04 61.54 1 58.89 58.75 3 49.07 55.21

A7 86.46 2 84.38 85.47 1 86.60 80.73 2 84.04 85.76

A8 73.96 4 72.57 71.10 1 70.91 73.04 2 79.41 72.92

A9 60.76 1 76.39 61.14 1 74.39 63.64 1 79.03 76.39

Average 72.38 73.19 70.40 73.80 69.96 74.21 74.04

SD 12.31 13.26 13.73 11.98 11.84 12.82 12.05

with a maximum of 3 clusters. For A4, during the first 100 trials and later between trials
205 and 230, the distance between centroids is highly fluctuating. This participant had 2
samples from V L3 in trials 39 and 47 of their test set which were concatenated with V L2

for practical classification. It seems the algorithm was struggling with the computation of
a new cluster throughout the test session, but the procedure of clustering was not stable
for this participant.
Excluding the results of participant A4, Table 6.14 demonstrates the average and stan-
dard deviation for improvements in the overall AccTest in three Adaptation versions with
respect to the Original, non-adaptive classification results of BCI Competition IV dataset
2a. Results indicate that here as well, the Adaptation Version 3 outperforms the other two
versions and obtains the highest improvement. Furthermore, the overall adaptive test ac-
curacy had significantly increased with respect to the non-adaptive values for C′2 scheme
in Version 3.

6.4.3 Conclusion

In this chapter, we demonstrated that performance of MI BCI can be predicted by pre-trial
EEG features from which vigilance information can be inferred. Since different spatio-
spectral feature subsets yield the best result for different participants, we suggested that
subject-based feature selection may yield more promising results. The predictive power
of frontal features in a subset of participants was also in line with the localization of
alerting and executive attention networks over frontal anatomic structures.
Furthermore, we presented an adaptive alertness-aware MI classification system built
upon the assumption that vigilance level of users affect their reaction time and the ability
to focus during mental imagination tasks, and hence affect the accuracy of decoding algo-
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Figure 6.11: Euclidean distance between cluster centroids in the test session of BCI Competition
IV - Dataset 2a, under scheme C′2 with a maximum of 3 clusters. Predictions and updates were
performed after arrival of each 5 test samples.

Table 6.14: Average improvements, in percent, in overall AccTest of three Adaptation versions with
respect to the Original, non-adaptive MI classification results for BCI Competition IV Dataset 2a,
N = 8, excluding A4. Results of one-sided, paired Student’s t-test between the adaptive and non-
adaptive test accuracy are indicated inside the parentheses.

Clustering Scheme Version 1 Version 2 Version 3

C′2 , m = 5 1.58±8.56 2.36±6.91 3.28±5.28 (p < 0.1)

rithms. We showed that successful MI time intervals are the same across similar vigilance
levels of different experimental sessions, and demonstrated that, using the first session as
a training/calibration dataset for both MI and vigilance clustering enables the system to
predict vigilance-dependent performance of EEG-based BCI systems in the upcoming
test/evaluation sessions. We verified the statistically significant improved classification
accuracy on our SPIS MI-BCI and BCI Competition IV datasets. Unfortunately, the EEG
recordings of Talukdar et al. [45] were not readily available for evaluation of the proposed
paradigm.
When comparing Tables 6.11 and 6.14, it is clear that the utilized BCI competition dataset
reports a higher improvement in the overall classification accuracy as a result of adapta-
tion version 3. Analyzing results of respective classification tables point to the higher
training accuracy for this dataset, 73.19 ± 13.26 (%), with respect to that of the SPIS
BCI dataset, 57.78 ± 8.94 (%). This lower accuracy could have been caused by the lack
of sufficient motor imagery skills for our participants which points to the importance of
prior spatial and MI training sessions, preferably augmented through neurofeedback [29],
before conducting long MI experiments. Since retraining the same group of participants
is not possible at this point, future attempts could employ novel classifiers based on the
DNN and CNN architectures, for example, to increase the training accuracy for the SPIS
BCI dataset before or while incorporating the adaptive alertness-aware classification ap-
proach.
The reported results for both datasets also demonstrate the success of dynamic clustering
schemes C2 and C′2 compared to the static baseline of C1 and smoothed indices of C3 in
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obtaining the highest MI classification accuracy. This observation can be explained by
the nonstationary nature of EEG signals while pointing to the association of short-term,
phasic alertness in correct prediction of trial-wise MI performance.



7 Contributions and Future Work

7.1 Summary of Contributions

Existing experimental BCI systems are usually trained in a supervised fashion and then
evaluated during test sessions. With increasing demands for daily and long-term use of
BCIs such as in semi-autonomous cars, these systems have been tested on longer ses-
sions during which researchers have observed considerably lower performance of trained
systems partly due to variations in the underlying attention levels of operators. Vigi-
lance level variation and failing to maintain consistent attention and performance levels
is one of the major obstacles in applicability of the BCI systems in real-life environments.
The literature and our own results in Figures 4.4 have shown that individuals demonstrate
extremely different behavioral and neurophysiological patterns of maintaining their atten-
tion levels – sustained attention or vigilance – or falling into microsleep or even longer
drowsiness periods. For the first part of this thesis, Chapters 3 and 4, we ran an experi-
mental session of sustained attention to response task (SART) that lasted for 105 minutes
and drove brain networks to intense boredom due to its repetitive nature and the low ratio
of target-to-non-target stimuli. We observed significant inter-individual differences in at-
tention maintenance. After proposing an objective and multi-level adaptive performance
measure and its continuous-valued version, the Cumulative Vigilance Score (CVS) that
summarized the tonic patterns in error and response time, we proposed to determine the
EEG-based correlates of large variations in personal vigilance traits. We first asked the
question of whether brain dynamics during the resting states recorded immediately be-
fore the cognitive task could explain common correlates of performance variation. We
then presented two multi-variate regression models based on feature relevance analysis
and a deep neural network (DNN) architecture that showed the role of various spatio-
spectral EEG features, including opposite roles of lower and higher beta components and
the effect of high gamma from left temporal – the default mode network (DMN) – in pre-
dicting higher mean and lower variability of objective attention performance measures.
The DNN solution was specially useful in visualizing hidden weights of trained networks
that are presented for the first time in the literature.
Our analysis was not limited to band-power features and we considered pairwise phase
synchrony across the whole cortical regions to build descriptive EEG models of function
connectivity. We report that the right and left tempo-parietal channels during the eyes-
open and closed resting states should be more synchronized with the opposite frontal and
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central channels as correlates of fewer commission errors and more consistent CVS and
response time. Resting-state interhemispheric synchrony in the alpha and beta-bands also
predicted more variability of CVS and response time. This is the first time that EEG-based
PSI predictors of both commission and omission errors as well as continuous-valued vig-
ilance scores and response time and their variability are presented in the literature. In
another regression scheme using deep neural networks, symmetric matrices of phase syn-
chrony features from EEG signals in a one-second time windows before the occurrence
of visual stimuli were computed for cross-subject prediction. Phase synchrony index
(PSI) from lower beta-2 (12-16 Hz) and alpha band (8-12 Hz), respectively, returned the
largest correlation coefficient and smallest error for prediction of average CVS and re-
sponse time in long-term, 8-second experimental blocks across all participants. We thus
demonstrated the consistency of our EEG-based phase synchrony features in two differ-
ent settings while adding to the literature on technical capability of vigilance modeling
with deep neural networks.
In the second part of Chapter 4, we focused on between-subject, two-class analysis of
extreme vigilance performance for each participant. Although several studies listed in
Table 4.12 limit their definition of drowsy and alert cognitive states to the beginning
and end of experimental sessions or choose the easiest and hardest blocks for the dataset
generation, we considered the highest and lowest CVS scores of each participant in an
adaptive and objective manner. Our novel extraction of phase locking values from var-
ious time intervals before and after the stimulus onset paired with a deep convolutional
neural network (CNN) outperforms the classification results of [191] and [193] who also
explored role of pairwise spatio-spectro-temporal features and were essentially different
from the driving conditions of other studies. Gamma-band PLVs especially outperform
the rest of phase-locking values features for this classification and pointed to the role
of high-frequency associations across different cortical regions for improved information
transfer and improved activation in task-related networks [153]. We believe our classifi-
cation results can be improved by incorporating both recurrent neural networks (RNNs)
or LSTMs and CNNs. Attention mechanisms can also be incorporated to learn temporal
dependencies across neighboring trials.
In the second part of this thesis, Chapters 5 and 6, we focus on the fact that objective
labeling of vigilance/alertness/sustained attention is a challenge during purely cognitive
BCI tasks as the participants do not provide any physical input in the form of clicks or
response time. Since vigilance curves and their EEG predictors are continuous-valued
time-series, we propose two unsupervised models for identifying the exact moments at
which a vigilance transition occurs. To study feasibility of inferring vigilance level in-
formation from an unlabeled time-series, in Chapter 5 we utilize two offline and on-
line Bayesian changepoint detection (BCPD) algorithms to locate transitions of vigilance
curves and their EEG-based band-power features on SEED-VIG, a dataset labeled with
continuous-valued eye-closure events from driving simulations [35]. We demonstrate
that online BCPD from these EEG features results in an average precision of 0.82 and
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average recall of 0.56, and significantly outperforms the offline algorithms for detecting
vigilance transitions themselves detected objectively by similar algorithms. This novel
application of dynamic and sequential inference techniques for chanegepoint detection
from band-power features can be implemented in unsupervised vigilance monitoring sys-
tems to alarm users about onsets of drowsiness.
Another application of such unsupervised vigilance detection methods is to build adap-
tive BCIs that detect the onset of vigilance changes and, consequently, modify the clas-
sification parameters in covert adaptation or the interface parameters in overt adaptation
schemes. Therefore, in Chapter 6, an adaptive MI BCI classification approach based on
the continuous assessment of alertness/vigilance information is proposed that considers
adaptation in both the best time intervals for MI feature extraction as well as in setting the
classifier parameters. Without pausing the experiment to collect subjective information
about fatigue and drowsiness, information for vigilance estimation during MI record-
ings are obtained from unsupervised learning of EEG correlates for increased drowsiness
based on our earlier studies [52], [53]. Once vigilance clustering of training trials is
complete, the best time interval for MI inference is selected and classifiers are trained
and tested separately for each vigilance level. Three different versions of this adaptive
classification framework are introduced. We report improvements in the overall test ac-
curacy of adaptive versions with respect to the original, non-adaptive baseline from the
dataset collected in our laboratory, referred to as the SPIS MI-BCI dataset, and the BCI
Competition IV Dataset 2a.
To the best of our knowledge, this is the first time that a fully covert adaptive classification
paradigm is proposed that utilizes adaptation based on alertness information in both its
feature extraction and classification. Although extensive work has been done in the past
5 years for characterizing neural correlates of drowsiness, fatigue, and vigilance in the
context of simulated driving and, less frequently, sustained task execution using EEG and
EOG signals, the most recent work on incorporating this information with MI execution
has resulted in only reporting improved separability of MI-based CSP features, measured
by a number of distance indices, and not improved classification accuracy under the pro-
posed adaptations [258].
The improvements in classification accuracy reported in Tables 6.9 and 6.12 are mean-
ingful considering the personal traits of attention maintenance. The success of dynamic
clustering schemes C2 and C′2 compared to the static baseline or smoothed cluster indices
can be explained by the nonstationarity of EEG signals and the link between phasic alert-
ness and correct prediction of trial-wise MI performance. Shorter periods of attention
drifts are more common as observed by the recorded facial videos and cause variations in
the learned features and covariate shifts not only across sessions but also between trials of
the same session [5]. Our proposed adaptive alertness-aware MI classification approach
achieves improved MI accuracy even for one particular participant, S6, who had long
periods of drowsiness in the 30-minute training session (from 49.33% to 55.33% using
version 3, thus a maximum increase of 12.16%), and provides a promising perspective for
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training of users with highly unstable vigilance traits. In another participant, S4, who was
highly drowsy as well and had a baseline accuracy of 53.67%, version 1 of the adaptive
BCI approach obtained a test accuracy of 57.67%, showing a 7.45% increase. Meanwhile,
for participant S5 who was already highly alert and had a baseline accuracy of 70.67%,
version 1 of this adaptive approach provided an improvement of 1.88%, thus showing no
serious need for adaptation in this case.
The second set of results belongs to the BCI Competition IV Dataset 2a obtained from 9
participants of a 4-class MI paradigm in which the adaptive approach shows an average
improvement of 3.28%. We envision that the observed increase in classification accu-
racy for users with highly unstable attention patterns provide a very promising path for
improving the usability of BCI systems in and outside laboratory settings.

7.2 Future Research Directions

The proposed extensions for this work fall in two main lines of work: (1) dynamic mod-
eling and changepoint detection from BP and PLV EEG time-series for alarming users
of transitions in their vigilance levels, and (2) improving the performance of proposed
alertness-aware adaptive classifier.
For the first line of work, we have already tested implementations with the HMM and
RNN/LSTM architectures. A problem we faced for predicting SART time-series with
HMMs is that often it is not possible to include the number of states in the model design
or even calculate the transition and emission probabilities during training since the model
does not observe enough variations in a participant with high performance in the first half
of experiment. To this end, an infinite HMM (IHMM) with a Dirichlet process approach,
as used for determining number of brain states in simulated sleep datasets [249], would be
an interesting approach as it would not need to be aware of the number of states. However,
the proposed solution with the Gibbs sampler requires a large number of iterations that
prohibits an efficient and real-time implementation. Furthermore, we have already used
LSTM in the context of our SART dataset for prediction of average response time and
CVS, but the high number of dimensions and channels made the system susceptible to
overfitting.
We instead turn our attention on Bayesian regression structures that consider spatio-
temporal dependencies among their input features, including the Continuous Conditional
Neural Fields (CCNF) [113] and especially its chain-CCNF version that is capable of
solving regression for time-series with varying lengths. CCNF is an undirected graphi-
cal model that learns the condition probabilities of outputs based on inputs. Continuous
Conditional Random Fields (CCRF) [264] is another suitable model, but it needs initial
predictions from unstructured regressions such as support vector regression (SVR). An
application for predicting eye movements using horizontal and vertical components of
EOG signals was presented for the SEED-VIG dataset using these architectures [35], and
the best correlation results were reported for CCNF and temporal signals using differen-
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tial entropy (DE) in a 5-fold cross-validation approach. We propose to extend that work
by predicting the PERCLOS label itself using our BP and PLV features and extending
them to use in SART dataset. Our current results indicate chain-CCNF with α/β features
followed by CCRF with α/β features outperform the rest of BP-ROI datasets in terms
of mean correlation metric. It would be interesting to feed PLV matrices to grid-CCNF
and analyze performance of these regression architectures in extracting spatial informa-
tion across different sequence lengths. Similarly, changepoint detection from temporal
sequences of two-dimensional PLV matrices would be another interesting line of work to
explore.
The alertness-aware adaptive BCI paradigm introduced in Chapter 6 was to be evalu-
ated online on new participants in our laboratory; however, at the time of writing this
dissertation, this plan had to be discarded due to the ongoing lockdown. We still be-
lieve that new BCI users should be trained by receiving informative visual feedback to
increase their mastery of motor imagination [29] before evaluating variations in their un-
derlying sustained attention levels in a long MI BCI session. However, the proposed
attention/alertness-aware paradigm uses pre-stimulus features that are associated with
general drowsiness, and thus can be used as the neural correlates of attention variations
in tasks other than the motor imagery-based BCI. Multi-class spellers based on P300
event-related potentials or SSVEPs could benefit from attention inference and subsequent
adaptations as well. It would also be interesting to explore the fields of auditory stimuli to
see if their classification could be improved using such alertness-aware paradigms. Since
attention variation is a key challenge for learners affected by attention deficit disorders or
people working in unstimulating environments, the proposed unsupervised changepoint
detection and the clustering schemes could have immense potentials as two augmenting
and assistive methodologies for improving the performance of children and adults in cog-
nitive tasks, mathematical and analytical paradigms, and continuous learning and reading
applications.
In another important extension, we will focus on improving the classification accuracy of
the proposed algorithm in Section 6.4.1.5. Noticing the low MI training accuracy of the
SPIS MI BCI dataset and the fact that new training is not possible, one could improve the
generalization of drowsy classifiers in Figure 6.8 by using extra drowsy trials from the
test sessions of the same participants to validate the applicability of the proposed adaptive
classifiers. This task can even be extended to use a leave-one-subject-out approach and
use all the trials labeled as low vigilance from other participants to train the CSP+LDA
classifiers that otherwise suffer from insufficient drowsy trials.
This work was the first attempt for proposing a solution for BCI systems using online
inference of attention variations towards the challenging goal of developing neuroadap-
tive BCIs [265]. Such adaptations can be done in two ways, one by overt adaptation –
updating properties of the visual interface to increase alertness and concentration of the
otherwise drowsy user – or covert adaptation by updating the classifier parameters. For
the first method, once the BCI decision software is notified of a transition in underlying
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vigilance level either through clustering or changepoint detection, the color, frequency,
and size of stimulus on the screen could be modified to attract more attention and en-
gage the user back in the task of mental imagination. In the second method, in addition
to extracting fixed-length time intervals for MI execution as we proposed in this work,
the raw EEG signals could be fed to a deep learning architecture ideally composed of
both temporal and spatio-spectral layers for feature learning. Employing novel classifiers
based on the DNN and CNN architectures that use the attention mechanism and explore
a variety of temporal resolutions from EEG signals can increase the accuracy of adaptive
alertness-aware classification without requiring the need for pre-detecting the winning
MI time intervals. This feature will also help to generalize the classification approach
to other BCI paradigms. Information on estimated vigilance levels will then be used for
adaptive feature extraction and for applying a unique combination of hidden weights to
obtain improved prediction of brain dynamics under a variety of task paradigms.
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