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ABSTRACT

MULTI-MODAL DECEPTION DETECTION FROM VIDEOS

MEHMET UMUT ŞEN

Ph.D Dissertation, September 2020

Dissertation Supervisor: Prof. Berrin Yanıkoğlu

Keywords: deception detection, multi-modal, word embeddings, document
classification, speech source separation

Hearings of witnesses and defendants play a crucial role when reaching court trial
decisions. Given the high-stakes nature of trial outcomes, developing computational
models that assist the decision-making process is an important research venue. In
this thesis, we address the deception detection in real-life trial videos. Using a
dataset consisting of videos collected from concluded public court trials, we explore
the use of verbal and non-verbal modalities to build a multimodal deception de-
tection system that aims to classify the defendant in a given video as deceptive or
not. Three complementary modalities (visual, acoustic and linguistic) are evalu-
ated separately for the classification of deception. The final classifier is obtained
by combining the three modalities via score-level classification, achieving 83.05%
accuracy.

Multimodal analysis of trial videos involves many challenges. Prior to developing
the final deception detection system, we have worked on sub-problems that would
be helpful on improving deception detection performance. High volume of back-
ground sounds in a video decreases the quality of the speech features, and it re-
sults in low speech recognition performance. We developed a neural network based
single-channel source separation model to extricate the speech from the mixed sound
recording.

Word embeddings, is the state-of-art technique in processing of textual data. In
addition to evaluating pretrained word embeddings in developing the deception sys-
tem for English, we have also worked on learning word embeddings for Turkish and
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used them for categorizing text documents. This work can be applied in future for
a deception system in Turkish.
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ÖZET

VIDEOLARDAN ÇOKLU-MODALITE ILE ALDATMACA KESTIRIMI

MEHMET UMUT ŞEN

Doktora Tezi, Eylül 2020

Tez Danışmanı: Prof. Berrin Yanıkoğlu

Anahtar Kelimeler: aldatmaca kestirimi, çoklu-modalite, kelime temsilleri,
doküman sınıflandırma, konuşma kaynak ayırımı

Sanık ve tanıkların duruşma konuşmaları mahkeme sonuçlarını etkileyen önemli
bir faktördür. Mahkeme kararlarının ilgili insanların hayatları üzerinde önemli
sonuçlarının olacağı düşünüldüğünde, hakimlerin ve/veya jüri üyelerinin doğru
kararları vermelerine yardımcı olabilecek bilgisayımsal modellerin geliştirilmesi
önemli bir araştırma alanıdır. Bu tezde, gerçek hayatta geçen mahkeme vide-
olarında aldatmaca saptaması üzerinde çalışılmıştır. Bu amaçla, sonuçlanmış
olan kamuya açık mahkemelerin video kayıtlarından oluşan bir verikümesi kul-
lanılmıştır. Verilen bir videodaki kişinin yanıltıcı olup olmadığını kestirmeyi hede-
fleyen çoklu-modaliteli bir aldatmaca kestirimi sistemi geliştirilmiştir. Aldatmacanın
sınıflandırılması için görsel, işitsel ve metinsel olmak üzere 3 farklı modalite ayrı
olarak değerlendirilmiştir. Son sınıflandırıcı sistemi, bu 3 farklı modalitenin skor se-
viyesinde birleştirilmesiyle elde edilmiştir ve 83.05% doğruluk oranıyla aldatmacaları
yakalamıştır.

Mahkeme videolarının çoklu-modaliteli analizinin çeşitli zorlukları vardır. Son sis-
temin geliştirilmesinden önce, aldatmaca kestiriminin performansını artırmaya fay-
dalı olabilecek alt-problemler üzerinde çalışılmıştır. Videolardaki yüksek sesli arka-
plan sesleri, konuşma özniteliklerinin kalitesini düşürmektedir; ayrıca otomatik sis-
teminin içerisinde bulunan konuşma tanıma sisteminin hata oranlarını artırmak-
tadır. Bu doğrultuda, konuşmaları arka-plan seslerinden ayrıştıran bir yapay sinir
ağı temelli tek-kanallı kaynak ayrıştırma modeli geliştirilmiştir.

Kelime temsil vektörleri, metin verisi içeren problemlerin en gelişkin çözümlerinde
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kullanılan bir tekniktir. Kelime temsil vektörleri, İngilizce metinsel konuşma kayıt-
larından aldatmacanın kestirimi için denenmiş ve iyi sonuçlar alınmıştır. Bunun
yanında, kelime temsil vektörlerinin Türkçe üzerindeki başarımının ölçümü üzerine
de çalışmalar yapılmış; Türkçe metin kategorizasyonu ve anlambilimsel metin eşleme
problemleri için kullanılmıştır. Bu çalışmalar kelime temsil vektörlerinin Türkçe al-
datmaca kestirimi probleminde kullanımı için bir ön-çalışma niteliği taşımaktadır.
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CHAPTER 1

INTRODUCTION

With thousands of trials and verdicts occurring daily in courtrooms around the
world, there is a high chance of using deceptive statements and testimonies as ev-
idence. Given the high-stake nature of trial outcomes, implementing accurate and
effective computational methods to evaluate the honesty of provided testimonies can
offer valuable support during the decision-making process.

The consequences of falsely accusing the innocents and freeing the guilty can be
severe. For instance, in the U.S. alone there are tens of thousands of criminal cases
filed every year. In 2013, there were 89,936 criminal cases filings in U.S. District
Courts and in 2014 the number was 80,262. 1 Moreover, the average number of
exonerations per year increased from 3.03 in 1973-1999 to 4.29 between 2000 and
2013. The National Registry of Exonerations reported on 873 exonerations from
1989 to 2012, with a tragedy behind each case (Gross & Warden, 2012). Hence, the
need arises for a reliable and efficient system to aid the task of detecting deceptive
behavior and discriminate between liars and truth-tellers.

Traditionally, law enforcement entities have made use of the polygraph test as a
standard method to identify deceptive behavior. However, this approach becomes
impractical in some cases, as it requires the use of skin-contact devices and human
expertise to get accurate readings and interpretation. In addition, the final decisions
are subject to error and bias not only from the device itself but also from human
judgment (Gannon, Beech & Ward, 2009; Vrij, 2001). Furthermore, using proper
countermeasures, offenders can deceive these devices as well as human experts.

Given the difficulties associated with the use of polygraph-like methods, machine
learning-based approaches have been proposed to address the deception detection

1www.uscourts.gov
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problem using several modalities, including text (Feng, Banerjee & Choi, 2012)
and speech (Hirschberg, Benus, Brenier, Enos, Friedman, Gilman, Gir, Graciarena,
Kathol & Michaelis, 2005; Newman, Pennebaker, Berry & Richards, 2003). Unlike
the polygraph method, learning-based methods for deception detection rely mainly
on data collected from deceivers and truth-tellers. The data is usually elicited from
human contributors, in a lab setting or via crowd-sourcing (Mihalcea & Strapparava,
2009; Pavlidis, Eberhardt & Levine, 2002), for instance by asking subjects to narrate
stories deceptively and truthfully (Mihalcea & Strapparava, 2009), by performing
one-on-one interviews, or by participating in “mock crime” scenarios (Pavlidis et al.,
2002).

Despite their potential benefits, an important drawback in data-driven research on
deception detection is the lack of real data and the absence of true motivation while
eliciting deceptive behavior. Because of the artificial setting, the subjects may not be
emotionally aroused or highly motivated to lie, thus making it difficult to generalize
findings to real-life scenarios.

In this thesis, we present a multimodal system that detects deception in real-life trial
data using verbal, acoustic and visual modalities. The data consists of video clips
obtained from real court trials and is initially presented in (Pérez-Rosas, Abouele-
nien, Mihalcea & Burzo, 2015).

Unlike previous work on this dataset, which focuses on detecting deception at the
video-level, we aim to detect deception at the subject-level. We believe this is more
in line with the ground-truth for this dataset since it was also obtained at the
subject-level: defendants who are found guilty at the end of the trial are labeled
as deceptive since they had not admitted to their guilt during the hearings. In
the remainder of the thesis, we will refer to this task as a subject-level deception
classification.
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1.1 Literature Review

Much of the previous study works with the transcriptions of the subjects, i.e. verbal
deception detection. Therefore, we split previous work as verbal and non-verbal
deception detection and we give summaries of these work at the next sections.

1.1.1 Verbal Deception Detection

Initial work on deception detection focused on statistical methods to identify ver-
bal cues associated with deceptive behavior. Bachenko et al. selected 12 linguis-
tic indicators of deception, including lack of commitment to a statement or dec-
laration, negative expressions, and inconsistencies with respect to verb and noun
forms (Bachenko, Fitzpatrick & Schonwetter, 2008). They extracted and analyzed
the effect of these indicators on deception for a textual database of criminal state-
ments, police interrogations, depositions and legal testimony. Hauch et al. con-
ducted a meta-study covering 44 studies with a total of 79 linguistic deception cues
and obtained a robust analysis of verbal deceptive indicators (Hauch, Blandón-
Gitlin, Masip & Sporer, 2015).

To date, works on verbal-based deception detection have explored the identifica-
tion of deceptive content in a variety of domains, including online dating web-
sites (Guadagno, Okdie & Kruse, 2012; Toma & Hancock, 2010), forums (Joinson
& Dietz-Uhler, 2002; Warkentin, Woodworth, Hancock & Cormier, 2010), social
networks (Ho & Hollister, 2013), and consumer report websites (Li, Ott, Cardie &
Hovy, 2014; Ott, Choi, Cardie & Hancock, 2011). Research findings have shown
the effectiveness of features derived from text analysis, which frequently includes
basic linguistic representations such as n-grams and sentence count statistics (Mi-
halcea & Strapparava, 2009), and also more complex linguistic features derived from
syntactic CFG trees and part of speech tags (Feng et al., 2012; Xu & Zhao, 2012).
Some studies have also incorporated the analysis of psycholinguistics aspects related
to the deception process. Some research work has relied on the Linguistic Inquiry
and Word Count (LIWC) lexicon (Pennebaker & Francis, 1999) to build decep-
tion models using machine learning approaches (Almela, Valencia-García & Cantos,
2012; Mihalcea & Strapparava, 2009) and showed that the use of psycholinguistic
information was helpful for the automatic identification of deceit. Following the
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hypothesis that deceivers might create less complex sentences to conceal the truth
and being able to recall their lies more easily, several researchers have also studied
the relation between text syntactic complexity and deception (Yancheva & Rudzicz,
2013).

There is a also significant amount of social science literature that statistically an-
alyzes verbal indicators for deception. Burns et al. extracted LIWC indicators
from transcriptions of a set of 911 calls (Burns & Moffitt, 2014). They fed these
indicators as features to machine learning classifiers and obtained an accuracy of
84%. Burgoon et al. examined linguistic and acoustic features extracted from a
company’s quarterly conference call recordings using the Structured Programming
for Linguistic Cue Extraction (SPLICE) toolkit (Burgoon, Mayew, Giboney, Elkins,
Moffitt, Dorn, Byrd & Spitzley, 2016). They analyzed the strategic and nonstrate-
gic behaviors of deceivers by annotating utterances as prepared (presentation) and
unprepared (Q&A) responses and reported significant differences between these two,
in terms of deceptive feature statistics. Larcker and Zakolyukina also applied lin-
guistic analysis on conference call recordings from CEOs and CFOs and obtained
significantly better deception prediction than a random guess (Bloomfield, 2012;
Larcker & Zakolyukina, 2012). Fuller et al. analyzed verbal cues developed by Zhou
et al. (Zhou, Burgoon, Nunamaker & Twitchell, 2004; Zhou, Burgoon, Twitchell,
Qin & Nunamaker Jr, 2004) and their revised framework using written statements
prepared by suspects and victims of crimes on military bases (Fuller, Biros, Burgoon
& Nunamaker, 2013). Braun et al. used LIWC indicators to investigate deceptive
statements made by politicians labeled by editors of the politifact.com website
and reported deceptive linguistic indicators in interactive and scripted settings sep-
arately (Braun, Van Swol & Vang, 2015).

While most of the data used in related research was collected under controlled
settings, only a few works have explored the used of data from real-life scenarios.
This can be partially attributed to the difficulty of collecting such data, as well as the
challenges associated with verifying the deceptive or truthful nature of real-world
data. To our knowledge, there is very little work focusing on real-life high-stake
data. The work presented by Vrij and Mann (2001) was the first study, to the best
of our knowledge, on a real-life high-stake scenario including police interviews of
murder suspects (Vrij & Mann, 2001). Ten Brinke et al. worked on a collection of
televised footage from individuals pleading to the public community for the return
of a missing relative (ten Brinke & Porter, 2012). The work closest to ours is
presented by Fornaciari and Poesio (Fornaciari & Poesio, 2013), which targets the
identification of deception in statements issued by witnesses and defendants using
a corpus collected from hearings in Italian courts. Following this line of work, we
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present a study on deception detection using real-life trial data and explore the use
of multiple modalities for this task.

1.1.2 Non-verbal Deception Detection

Earlier approaches to non-verbal deception detection relied on polygraph tests to
detect deceptive behavior. These tests are mainly based on physiological features
such as heart rate, respiration rate, and skin temperature. Several studies (Derksen,
2012; Gannon et al., 2009; Vrij, 2001) indicated that relying solely on such physiolog-
ical measurements can be biased and misleading. Chittaranjan et al. (Chittaranjan
& Hung, 2010) created audio-visual recordings of the “Are you a Werewolf?” game
to detect deceptive behavior using non-verbal audio cues and to predict the subjects’
decisions in the game. In order to improve lie detection in criminal-suspect interroga-
tions, Sumriddetchkajorn and Somboonkaew (Sumriddetchkajorn & Somboonkaew,
2011) developed an infrared system to detect lies by using thermal variations in
the periorbital area and by deducing the respiration rate from the thermal nostril
areas. Granhag and Hartwig (Granhag & Hartwig, 2008) proposed a methodology
using psychologically informed mind-reading to evaluate statements from suspects,
witnesses, and innocents.

Facial expressions also play a critical role in the identification of deception. Ekman
defined micro-expressions as relatively short involuntary expressions, which can be
indicative of deceptive behavior (Ekman, 2001). Moreover, these expressions were
analyzed using smoothness and asymmetry measurements to further relate them to
an act of deceit (Paul, 2003). Ekman and Rosenberg (Ekman & Rosenberg, 2005)
developed the Facial Action Coding System (FACS) to taxonomize facial expressions
and gestures for emotion- and deceit-related applications. Bartlett et al. (Bartlett,
Littlewort, Frank, Lainscsek, Fasel & Movellan, 2006) introduced a real-time system
to identify deceptive behavior from facial expressions using FACS. Tian et al. (Tian,
Kanade & Cohn, 2005) considered features such as face orientation and facial ex-
pression intensity. Owayjan et al. (Owayjan, Kashour, AlHaddad, Fadel & AlSouki,
2012) extracted geometric-based features from facial expressions, and Pfister and
Pietikainen (Pfister & Pietikäinen, 2012) developed a micro-expression dataset to
identify expressions that are clues for deception. Blob analysis was used to detect
deceit by tracking the hand movements of subjects and extracting color features
using hierarchical Hidden Markov Model (Lu, Tsechpenakis, Metaxas, Jensen &
Kruse, 2005; Tsechpenakis, Metaxas, Adkins, Kruse, Burgoon, Jensen, Meservy,

5



Twitchell, Deokar & Nunamaker, 2005). Meservy et al. (Meservy, Jensen, Kruse,
Twitchell, Tsechpenakis, Burgoon, Metaxas & Nunamaker, 2005) used individual
frames as well as videos to extract geometric features related to the hand and head
motion to identify deceptive behavior. Caso et al. (Caso, Maricchiolo, Bonaiuto,
Vrij & Mann, 2006) identified particular hand gestures that can be related to an act
of deception using data collected from simulated interviews including truthful and
deceptive responses. Cohen et al. (Cohen, Beattie & Shovelton, 2010) determined
that fewer iconic hand gestures were a sign of a deceptive narration using data col-
lected from participants with truthful and deceptive responses. To further analyze
the characteristics of hand gestures, a taxonomy of such gestures was developed for
multiple applications such as deception and social behaviour (Maricchiolo, Gnisci
& Bonaiuto, 2012). Hillman et al. (Hillman, Vrij & Mann, 2012) determined that
increased speech prompting gestures were associated with deception while increased
rhythmic pulsing gestures were associated with truthful behavior. Vrij and Mann
analyzed visual and acoustic features on a dataset of police interviews of murder sus-
pects and reported that convicted subjects "showed more gaze aversion, had longer
pauses, spoke more slowly and made more non-ah speech disturbances" when lying
than telling the truth (Vrij & Mann, 2001). Ten Brinke et al. manually extracted
codings depicting speech, body language and emotional facial expressions for a col-
lection of televised footage in which individuals pleading to the public community
for the return of a missing relative (ten Brinke & Porter, 2012). They report infor-
mative codings that reflect deception, e.g. liars use fewer words but more tentative
words.

Recently, features from different modalities were integrated to find a combination
of multimodal features with superior performance (Burgoon, Twitchell, Jensen,
Meservy, Adkins, Kruse, Deokar, Tsechpenakis, Lu, Metaxas, Nunamaker &
Younger, 2009; Jensen, Meservy, Burgoon & Nunamaker, 2010). An extensive review
of approaches for evaluating human credibility using physiological, visual, acoustic,
and linguistic features is available in (Nunamaker, Burgoon, Twyman, Proudfoot,
Schuetzler & Giboney, 2012). Burgoon et al. (Burgoon et al., 2009) combined
verbal and non-verbal features such as speech act profiling, feature mining, and ki-
netic analysis for improved deception detection rates. Jensen et al. (Jensen et al.,
2010) extracted features from acoustic, verbal, and visual modalities following a
multimodal approach. Mihalcea and Burzo (Mihalcea & Burzo, 2012) developed
a multimodal deception dataset composed of linguistic, thermal, and physiological
features. Nunamaker et al. (Nunamaker et al., 2012) provided a review of ap-
proaches for evaluating human credibility using physiological, visual, acoustic, and
linguistic features. A multimodal deception dataset consisting of linguistic, ther-
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mal, and physiological features was introduced in (Pérez-Rosas, Mihalcea, Narvaez
& Burzo, 2014), which was then used to develop a multimodal deception detection
system that integrated linguistic, thermal, and physiological features from human
subjects to create a reliable deception detection system (Abouelenien, Pérez-Rosas,
Mihalcea & Burzo, 2014; Abouelenien, Pérez-Rosas, Mihalcea & Burzo, 2016).

1.2 Outline

In Chapter 2, we introduce the deception detection problem in general and the
dataset. Then, we present features that we use in our deception detection system
and propose new acoustic features. We report results with individual feature sets
and their combinations, both with feature concatenation and classifier combination,
for the semi-automatic system using some manually labelled features and fully-
automatic deception detection systems. Lastly, we analyze the importance of the
features and report some cues that are distinctive of deception.

In Chapter 3, we propose a neural network based model for the single-channel source
separation problem. After introducing and defining the problem, we explain the
traditional nonnegative matrix factorization (NMF) method. Then we define the
proposed method which consists of training a deep neural network discriminatevly
with individual source utterances and separating mixed test utterances by iteratively
minimizing an objective function that includes the outputs of the neural network
with respect to the source estimates. We report results of the experiments with a
dataset of mixed utterances of piano music and human speech. The work in this
chapter can be used in building a deception detection system for videos that includes
background sounds.

In Chapter 4, we apply the skip-gram model for learning word embeddings to the
Turkish language. After introducing the skip-gram model, we introduce question
sets that we produced for measuring the qualities of word embeddings. We conduct
experiments with embeddings that are trained with a large Turkish text corpus. We
compare hierarchilcal-maximum and negative sampling methods and report that
negative-sampling results in better accuracies on almost all cases. We also investi-
gate the effects of embedding dimensions on accuracies and the effect of removing
suffixes from the corpus. We finalize the chapter with conclusion and future work.
The work in this chapter can be used in building a deception detection system from
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videos in Turkish.

After introduction in Chapter 5, we introduce our Turkish document categorization
corpora that we downloaded from two news web portals and give descriptive statis-
tics. Then we define document categorization models that we conduct experiments
with, including a traditional text classification method of classifying TF-IDF fea-
tures, neural networks with word embeddings as well as latent dirichlet allocation
which is a topic modelling method. Then we define the experimental setup and
report the results. The formulation of text categorization problem is the same with
detecting deception from lexical modality, therefore we believe this work can be used
in building a deception detection system that includes lexical modality.

In Chapter 6, we investigate several text similarity methods for news article match-
ing. After introducing the problem and related work, we define our unsupervised
and supervised methods. In the experiments section, we define the dataset, prepro-
cessing steps and report the results.

Finally, in Chapter 7, we give concluding remarks and possible future directions.

1.3 Contributions of the Thesis

Our main contributions in the core part of the thesis are as follows:

• We present a semi-automatic system that can identify deception with 83.05%
accuracy using a combination of automatically extracted and manually anno-
tated features, as well as a fully-automatic system that reaches almost 73%
accuracy.

• We propose and evaluate new features for the acoustic modality (pitch vari-
ations and speech and silence duration histograms), and demonstrated the
possibility of using Action Units for automatic visual processing in detecting
deception.

• We present insights into the problem by analyzing the importance of fea-
tures obtained manually and automatically, as well as the linguistic differences
among deceptive and truthful subjects.
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Furthermore, we have made the following contributions in the related sub-problems:

• We introduce a novel neural network based model for single-channel source
separation.

• We trained word embeddings using skip-gram model for Turkish and derived
question sets for evaluating word semantic and syntactic linear relationship of
word embeddings for Turkish and conduct experiments.

• We collected news articles from two Turkish news portals and experimented for
document categorization with various models and report that a neural network
with word embeddings outperform other methods.

• We applied Fasttext and Word2vec word embeddings with cosine similarity to
the problem of matching news articles from different news sources that have
the subjects of the same event and showed that simpler lexical word-counting
techniques outperforms word embedding based similarity methods.

9



CHAPTER 2

MULTIMODAL DECEPTION DETECTION
USING REAL-LIFE TRIAL DATA

In this chapter, we introduce the deception detection system developed as the main
work of the thesis; describe the experimental setup; and report results on the real-
life trial video dataset. We start by introducing the real-life, high-stakes deception
dataset. Then, we define the extracted features for different modalities, namely;
linguistic, visual and acoustic. We then define the feature integration methods
for the subject-level problem setting. Two main deception detection systems are
introduced: semi-automatic which includes features that are manually extracted
along with features that are automatically extracted; and a fully-automatic system.
We report the results and compare them with human performance. Later; we give
some insights that are obtained from the models and we compare the results with
the state-of-the-art models in the literature at the last section.1

2.1 Dataset

We evaluate the developed system using a multimodal deception dataset that is
obtained from real-life court trials. The dataset description is included here for
completeness; further details can be found in (Pérez-Rosas et al., 2015).

1Work at this chapter is published at IEEE Transactions on Affective Computing (Sen, Perez-Rosas,
Yanikoglu, Abouelenien, Burzo & Mihalcea, 2020)
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2.1.1 Dataset Overview

The dataset consists of trial hearing recordings obtained from public sources. The
videos were carefully selected to be of reasonably good audio-visual quality and
portray a single subject with his/her face visible during most of the clip duration.

Videos are collected from trials with different outcomes: guilty verdict, non-guilty
verdict, and exoneration. For guilty verdicts, deceptive clips are collected from a
defendant in a trial and truthful videos are collected from witnesses in the same
trial. In some cases, deceptive videos are collected from a suspect denying a crime
he/she committed and truthful clips are taken from the same suspect when answering
questions concerning some facts that were verified by the police as truthful. For
the witnesses, testimonies that were verified by police investigations are labeled as
truthful whereas testimonies in favor of a guilty suspect are labeled as deceptive.
Exoneration testimonies are collected as truthful statements.

The dataset includes several famous trials (including trials of Jodi Arias, Donna
Scrivo, Jamie Hood, and others), police interrogations, and also statements from
the “The Innocence Project” website.2

2.1.2 Subject-level Ground-truth

In the original dataset, the ground-truth was obtained at video level, by care-
fully identifying and labeling truthful and deceptive video clips from trial’s record-
ings (Pérez-Rosas et al., 2015).

In this work, we focus on deception at the subject level for two reasons: 1) it
is difficult to know the ground-truth of all video clips with certainty and 2) the
ultimate goal is to determine whether an individual is being deceptive or not, rather
than pinpoint exactly when s/he is lying. Note that subject-level decision is what
human jurors are also asked to accomplish during real life trials consisting of several
interrogation episodes.

To obtain subject-level ground truth, we only used the trial outcomes to indicate
the subject as deceptive or not (deceptive in case of a guilty verdict vs not-deceptive
in case of non-guilty verdict or exoneration). The resulting subject-level dataset has

2http://www.innocenceproject.org/
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Table 2.1 Distribution of gender in the two categories after aggregating individual
videos.

Female Male Total
Deceptive 11 13 24
Truthful 12 23 35
Total 23 36 59

Table 2.2 Sample transcripts for deceptive and truthful clips in the dataset.

Truthful Deceptive
We proceeded to step back into the liv-
ing room in front of the fireplace while
William was sitting in the love seat.
And he was still sitting there in shock
and so they to repeatedly tell him to get
down on the ground. And so now all
three of us are face down on the wood
floor and they just tell us “don’t look,
don’t look" And then they started rum-
maging through the house to find stuff...

No, no. I did not and I had absolutely
nothing to do with her disappearance.
And I’m glad that she did. I did. I
did. Um and then when Laci disap-
peared, um, I called her immediately.
It wasn’t immediately, it was a couple
of days after Laci’s disappearance that
I telephoned her and told her the truth.
That I was married, that Laci’s disap-
peared, she didn’t know about it at that
point.

59 instances, and the distributions of male vs female and deceptive vs truthful are
given in Table 2.1. In the original video-based setting, 45 subjects have single videos,
while remaining subjects have a number of videos ranging from 2 to 18. Therefore,
aggregation of videos affects 14 of the subjects.

Note that a subject-level deception detection system can be evaluated fairly, by com-
paring its predictions to the subject-level ground-truth, which is the trial outcome,
with the assumption that the trial outcome is correct.

2.1.3 Transcriptions

The transcriptions are obtained using Amazon Mechanical Turk in the original
dataset. In video clips where multiple speakers are portrayed (i.e., defendants or
witnesses being questioned by attorneys), the AMT workers were asked to transcribe
only the subject’s speech, including word repetitions, fillers such as um, ah, and uh,
and intentional silences encoded as ellipsis.

The final set of transcriptions consists of 8,055 words, with an average of 66 words
per transcript. Table 2.2 shows transcriptions of sample deceptive and truthful
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Figure 2.1 Sample screenshots showing facial displays and hand gestures from real-
life trial clips. Starting at the top left-hand corner: deceptive trial with forward
head movement (Move forward), deceptive trial with both hands movement (Both
hands), deceptive trial with one hand movement (Single hand), truthful trial with
raised eyebrows (Eyebrows raising), deceptive trial with scowl face (Scowl), and
truthful trial with an up gaze (Gaze up).

statements.

2.1.4 Visual Behavior Annotations

Gesture annotations are also available in the dataset.3 The annotation was con-
ducted using the MUMIN (Allwood, Cerrato, Jokinen, Navarretta & Paggio, 2007)
multimodal scheme, which includes several different facial expressions associated
with overall facial expressions, eyebrows, eyes and mouth movements, gaze direction,
as well as head and hand movements. Sample screenshots showing facial displays
and gestures by deceptive and truthful subjects in the dataset are shown in Figure
2.1.

This annotation was done at the video-level by identifying the facial displays and
hand gestures that were most frequently observed during the entire clip duration.
The annotations are done to simply mark the existence of certain face and hand
movements (as binary attributes), due to the time and effort needed to mark the 39
annotations over the course of the video. Two annotators independently labeled a

3As done in the Human Computer Interaction Community, "gesture” is used as a broad term that refers to
body movements, including facial expressions and hand gestures.
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Figure 2.2 Distribution of important visual features for deceptive and truthful
groups: Smile, Close-R (closing eyes repeatedly), Side-Turn-R (head turning sides
repeatedly), Raise (eyebrow raising), Interlocutor (gazing towards interlocutor), side
(gazing to the sides), Down-R (moving the head downwards repeatedly), Single-H
(single hand movement), Both-H (moving both hands)

sample of 56 videos. The inter-annotator agreement for this task is shown in Table
2.3. The agreement measure represents the percentage of times the two annotators
agreed on the same label for each gesture category. For instance, 80.03% of the
time the annotators agreed on the labels assigned to the Eyebrows category. On
average, the observed agreement was measured at 75.16%, with a Kappa of 0.57
(macro-averaged over the nine categories).

As a preliminary analysis, Figure 2.2 shows the percentages of all the non-verbal
features for which we observe noticeable differences for the deceptive and truthful
groups. The figure suggests eyebrow (rise) helps differentiate between the deceptive
and truthful conditions. Twyman et al. reported that deceivers’ right hand moves
less during a mock crime experiment (Twyman, Elkins & Burgoon, 2011). This co-
incides with our single and both hands movement analysis as depicted in Figure 2.2.
ten Brinke and Porter (ten Brinke & Porter, 2012) reported that deceptive people
blink at a faster rate than genuinely distressed individuals; which also coincides with
our findings that deceivers display more frequent occurrence of rapid eye closures,
as seen in Fig. 2.). Interestingly, deceivers seem to shake their head (Side-Turn-R)
and nod (Down-R) less frequently than truth-tellers while true-tellers seem to move
their hands more frequently.
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Table 2.3 Gesture annotation agreement
Gesture Category Agreement Kappa Score
General Facial Expressions 66.07% 0.328
Eyebrows 80.03% 0.670
Eyes 64.28% 0.465
Gaze 55.35% 0.253
Mouth Openness 78.57% 0.512
Mouth Lips 85.71% 0.690
Head Movements 69.64% 0.569
Hand Movements 94.64% 0.917
Hand Trajectory 82.14% 0.738
Average 75.16% 0.571

2.2 Features for Deception Detection

Aiming to explore the subject-level deception detection with different levels of super-
vision, we conduct two main experiments using features obtained either manually or
semi-automatically. We first present a semi-automatic system where the linguistic
and visual feature extraction is done based on manual annotations, as described in
Section 2. Second, we build a fully-automatic system that does not rely on human
input. Finally, we compare the results with that of human performance on deception
detection.

Given the multimodal nature of our dataset, we were interested to evaluate the
usefulness of the linguistic, visual, and acoustic components of the recordings, both
individually and in combination.

Note that automatic temporal analysis of the videos would be significantly more
complicated to accomplish and would require a larger dataset to prevent overfitting;
hence it is outside of the scope of this thesis.

The feature extraction process is detailed below.
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2.2.1 Linguistic Features

We experimented with linguistic features that have been previously found to cor-
relate with deception cues (Depaulo, Malone, Lindsay, Muhlenbruck, Charlton &
Cooper, 2003; Pennebaker & Francis, 1999). These features are derived from the
text transcripts of the subjects’ statements. In addition, we experimented with
word embedding features that map each word to real vector and learned from a
large corpus using an unsupervised learning algorithm.

Unigrams We extract unigrams derived from the bag of words representation of
each transcript. Each feature consists of frequency counts of unique words
in the transcript. For this set, we keep only words with a frequency greater
than or equal to 10. The threshold cut was experimentally obtained in a small
development set.

LIWC We use features derived from the Linguistic Inquire Word Count (LIWC)
lexicon (Pennebaker & Francis, 1999). These features consist of word counts
for each of the 80 semantic classes in LIWC. For instance, the class “I” includes
words associated with the self (e.g., I, me, myself); “Other” includes words
associated with others (e.g., he, she, they); etc.

BERT We use Bidirectional Encoder Representations from Transformers (BERT),
which is a language representation model that achieved state-of-the-art results
for several language-related problems (Devlin, Chang, Lee & Toutanova, 2018).
We used a medium sized BERT model (L=8, H=512) which is pretrained on
a large corpus of books and Wikipedia Turc, Chang, Lee & Toutanova (2019).
We obtain a vector for each word and average them to get the embedding
vector of the utterance.

2.2.2 Annotated Visual Behaviour Features

One set of visual features are derived from the annotations performed using the
MUMIN coding scheme described in Section 2.1.4. We create a binary feature for
each of the 40 available gesture labels. Each feature indicates the presence of a
gesture only if it is observed during the majority of the interaction. The generated
features represent nine different gesture categories listed in Table 2.3, covering 32
facial displays and 7 hand gestures.
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Facial Displays. These are facial expressions or head movements displayed by the
speaker during the deceptive or truthful interaction. They include overall
facial expressions such as smiling and scowling; eyebrows, eyes and mouth
movements (e.g. repeated eye closing or protruded lips); gaze direction (e.g.
looking down or towards the interlocutor); and as well as head movements
(e.g. repeated nodding or shaking) and hand movements.

Hand Gestures. The second broad category covers gestures made with the hands,
including movements of one or both hands and their trajectories.

2.2.3 Automatically Extracted Visual Features

We automatically extract a second set of visual features consisting of assessments
of several facial movements as described below:

Facial Action Units (FACS). These features denote the presence of facial muscle
movements that are commonly used for describing and classifying expressions
(Ekman, Friesen & Hager, 2002).

We use the OpenFace library (Baltrusaitis, Zadeh, Lim & Morency, 2018) with
the default multi-person detection model to obtain 18 binary indicators of Action
Units (AUs) for each frame in our videos. These include: AU1 (inner brow raiser),
AU2 (outer brow raiser), AU4 (brow lowerer), AU5 (upper lid raiser), AU6 (cheek
raiser), AU7 (eyelid tightener), AU9 (nose wrinkler), AU10 (upper lip raiser), AU12
(lip corner puller), AU14 (dimpler), AU15 (lip corner depressor), AU17 (chin raiser),
AU20 (lip stretcher), AU23 (lip tightener), AU25 (lips part), AU26 (jaw drop), AU28
(lip suck), and AU45 (blink). We average these binary indicators through the frames
and obtain a single AU feature for each video.

2.2.4 Acoustic Features

Previous work has suggested that pitch is an indicator of deceit, and showed that
people tend to increase their pitch when they are being deceptive (Streeter, Krauss,
Geller, Olson & Apple, 1977). This motivated us to explore whether subjects will
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show particular pitch differences in their speech while telling the truth or deceiving.

In addition to pitch, we extracted acoustic features for voiced segments and pauses,
based on previous findings showing that deceivers produce slightly shorter utterances
and pause more frequently than true-tellers (ten Brinke, Stimson & Carney, 2014).
The extracted acoustic features are as follows.

Pitch. We derive features from pitch measurements in the audio portion of each
video in the dataset. To estimate pitch, we obtained the fundamental fre-
quency (f0) of the defendants’ speech using the STRAIGHT toolbox (Kawa-
hara, Takahashi, Morise & Banno, 2009). Since f0 is defined only over voiced
parts of the speech, we remove unvoiced speech frames from our calculations.
We then derive two features (mean and standard deviation) from the raw f0

measurements: mean−f0 and stdev−f0.

Silence and Speech Histograms. To obtain these features, we run a voice activ-
ity detection (VAD) algorithm (Tan & Lindberg, 2010) to obtain the speech
and silent segments in the subject’s speech. Since the performance of VAD
algorithms is affected by the segmentation threshold θ, i.e., high values of θ
result on over-segmentation while low values produce under segmentation, we
experiment with two values of θ to improve the VAD segmentation in our data:
0.01 and 0.2. After manual inspection, we observed that using a threshold of
0.2, the algorithm segment the audio into words rather than full sentences
while a threshold of 0.01 produces full sentence segmentation. Using a VAD
threshold of 0.2, with the intent of capturing short pauses, we extract the
histograms (using 25 bins) of both voiced and silent segments as features.

Figure 2.3 shows the distribution of the mean and standard deviation of pitch fre-
quencies for the deceptive and truthful groups by gender. As can be seen in this
figure, pitch mean values depend on the gender, while standard deviation seems to
be more correlated with deception.

Figure 2.4 depicts the histograms of speech and silent lengths by deceptive and
truthful subjects. Interestingly, the plot shows that deceptive individuals tend to
make shorter pauses more frequently than truthful individuals.
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Figure 2.3 Pitch standard deviation vs pitch mean by gender.

2.2.5 Subject-level Feature Integration

Since our feature extraction is performed in each video clip separately for visual
features and there are cases where there is more than one video for a single sub-
ject, we devised two strategies to aggregate the features across all videos from the
same subject. First, taking the maximum values per feature across feature vectors
corresponding to every subject’s video. Second, averaging the feature values across
feature vectors corresponding to each subject’s video.

Taking the maximum of the feature values aims to represent single events (e.g., eyes
blinking), even if it is observed in just one of the videos belonging to a subject.
Averaging the feature values, on the other hand, aims to reduce potential noise
introduced during the manual annotation.

During our initial experiments, we found that the averaging strategy outperforms the
use of maximum values, hence the former is used during the rest of the experiments
reported in the chapter.
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Figure 2.4 Histograms of speech and silence length (measured in seconds) using 25
bins. In all cases, the last bin contains speech or silence segments with duration
greater than 3 seconds.

2.3 Classifiers

We chose the Random Forest (RF), Support Vector Machine (SVM) with Radial Ba-
sis Function kernel and Neural Network (NN) classifiers, due to their success in many
other machine learning problems. For the RF and SVM, we use their implementa-
tions as available in Matlab. We use the PyTorch library for the implementation of
the NN classifiers (Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison,
Antiga & Lerer, 2017). During our experiments, all classifiers are evaluated using
accuracy and area under the curve (AUC) as our main performance metrics.

For the SVM classifiers, we performed parameter tuning over the training set using
4-fold cross-validation separately for each test instance. Specifically, we tune the
penalty (C) and the γ parameters of the RBF kernel using grid-search. We applied
a 3×3 averaging filter to the resulting loss matrix of the grid search to smooth the
parameter tuning results to reduce the noise that results from the low number of
data points.
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For the RF classifiers, we used the default value for the number of trees (100) and
minimum leaf size of 3, without doing parameter optimization.

For the NN classifier, we used a two hidden layers network (100 and 500 nodes for
the hidden layers) with ReLu activations along with an output layer with softmax
activation function and a cross-entropy loss function. L2 regularization is applied
with a weight of 1E−5, to prevent over-fitting.

A strong advantage of using RF and the NN classifiers is that they are quite in-
sensitive to the values of their meta-parameters. For instance, when evaluated with
different number of hidden nodes in either layer {(10,100), (100,100), (500,500),
(500,10), (100,10), (10,500)}, the NN showed a performance variation of only 1%.

2.4 Semi-Automatic Deception Detection

We develop a semi-automatic system using features derived from manually anno-
tated modalities (visual and linguistic), along with automatically extracted features
(speech). Thus, we run several comparative experiments using leave-one-out cross-
validation where we test in a single test subject and train in the remaining ones.
Furthermore, we run all experiments three times with different random seeds and
report the mean and the standard deviation of the results.

2.4.1 Results for Individual Modalities

We initially conduct experiments using each feature set independently and then
experiment with different feature combinations using the SVM, RF, and NN clas-
sifiers. Table 2.4 shows the results for individual and combined sets of features in
each modality.

Among the different classifiers, the RF classifier is the best classifier for most of the
linguistic and acoustic features, while the NN performs best with the visual features.

For the visual features, the best results are achieved with the facial displays, reaching
an accuracy of 80.79% and an AUC score of 0.94. These results also constitute the
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best results across individual feature sets.

For the acoustic features, the best performing feature is the pitch_stdv, which
represents the standard deviation of the subject’s pitch, resulting in an accuracy
of 71.19% and an AUC score of 0.79. The rest of the acoustic features obtain
significantly lower performance than pitch_stdv alone.

For the linguistic modality, the classifier built with the BERT features outperformed
unigram features, LIWC features and their combinations. The highest accuracy with
lexical features is 68.93% with the Neural Network classifier.

2.4.2 Results for Combined Modalities

For the multi-modal approach, we conduct experiments using two different integra-
tion strategies of the three modalities in our dataset: early fusion and late fusion.

2.4.2.1 Early Fusion

First, we experiment with early fusion by concatenating the best performing feature
sets from the three modalities and using the different classifiers. Results are shown
in Table 2.5

During these experiments, the NN classifier consistently obtains the best results
among different feature combinations as well as the lowest standard deviation
through 3 repetitions of the experiments. Among the different combinations, the
combination of features encoding the facial displays, pitch and silence and speech
histograms achieve the highest accuracy (83.05%), improving the accuracy obtained
with facial display features only by 2.26% points. However, in terms of the AUC,
the combination of facial displays and the pitch standard deviation performs the
best (0.95).

22



2.4.2.2 Late Fusion

Second we use score-level fusion with classifiers built for individual modalities. For
these experiments, we use only the best classifiers and features, leaving out the SVM
classifier and hand’s gesture features. The aggregated score si is obtained as shown
in Equation 2.1, where sij is the score of class ci obtained with the classifier hj and
wj is the weight assigned to the classifier hj .

(2.1) si =
∑

j

wjsij

We use different classifier weights for the facial displays using increments of 0.1 (the
remaining weights are assigned equally to the other classifiers) and report results on
the test set. Thus, the best scoring setting is obtained a posteriori.

Classification results obtained with this strategy are shown in Table 2.6. We observe
that the best result (84.18%) is obtained using the NN classifier and the combination
of visual features and acoustic features. This result is higher than the best result
obtained with early fusion since it finds the best weights over the test set; but the
improvement is very small. The best early fusion results are reported as the proposed
system’s result, throughout the chapter.

2.5 Fully-Automatic Deception Detection

We also conducted a set of experiments where we explore how well fully automatic
feature extraction would work, for our task. Since our acoustic features are already
obtained using automatic methods, we focus on the automatic extraction of linguistic
and visual features.

We used the OpenFace library (Baltrusaitis et al., 2018) with the default multi-
person detection model, to obtain the facial action units (see Section 3.3) for the
subject in the video. To address cases where the model identifies multiple persons
in the frames, we select the person who is present in the majority of frames as the
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person of interest. We manually verified the result of this heuristic and confirmed
that in most cases this selection corresponds to the main subject in the video. The
software was unable to identify the subject’s face in four videos in the dataset, due
to the low video quality. These videos are nonetheless included in the evaluation,
so as to measure the performance of the system under realistic conditions.

To extract the linguistic features, we applied Automatic Speech Recognition (ASR)
to the videos using the Google Cloud Speech API (Google, 2019) and obtained
the corresponding transcriptions. Then, as in the manual system, we use these
transcriptions to extract lexical features. One shortcoming of the automation here
is that the transcriptions also contain the interviewer’s speech. Furthermore, the
ASR failed to recognize any speech for 10 videos, which correspond to three subjects
in the dataset. The obtained transcriptions resulted in an average Word Error Rate
(WER) of 0.603 and an insertion rate of 0.152.

The results of the automatic deception system are depicted in Table 2.8. We see
that the performance obtained by classifiers build with automatic visual features falls
behind the performance obtained when using manual annotations, while automatic
extraction of the linguistic features results in a similar performance. As for combined
modalities, we see that the best result, 72.88%, (obtained with the fully automatic
system, score-level combination, and the NN classifier) is significantly lower than
the best performance with the semi-automatic system, 83.05%. However, we would
expect the performance gap would to be smaller when using videos that have better
visual quality e.g., videos obtained with high-resolution cameras focused on the
subject’s face.

2.6 Video-Based Deception Detection

We also apply our method to the original dataset with video-level ground-truth
labels for completeness. We apply the same experimental setup of leave-one-out
scheme with the features and models that resulted in highest accuracies. It should
be noted that we remove the other videos of the same person whose video is being
tested, from the training data. Accuracies are depicted in Table 2.7. We see that
facial displays are again beste features. With the random forest classifier, adding
acoustic features to the facial displays increase the accuracy, but adding unigram
features results in performance drop.
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In general, we obtain lower accuracies with the video-based ground-truth than with
the subject-based ground-truth. This result is expected since features in the subject-
based setting are extracted from more data and, in addition, when testing a video,
we exclude other videos of the subject from the training set to prevent leakage.

2.7 Human Performance

The average human ability to detect deception is reported to be at chance level,
while law enforcement professionals can reach 70% (Aamodt & Custer, 2006; Su &
Levine, 2016). As part of the work analyzing the importance of multi-modal features
in deception detection, Pérez-Rosas et al. (Pérez-Rosas et al., 2015) conducted a
study where they evaluate the human ability to identify deceit on trial recordings
when exposed to four different modalities: Text, consisting of the language tran-
scripts; Audio, consisting of the audio track of the clip; Silent video, consisting of
only the video with muted audio; and Full video where audio and video are played
simultaneously.

They create an annotation interface that shows instances for each modality in ran-
dom order to each annotator, and ask him or her to select a label of either “De-
ception” or “Truth” according to his or her perception of truthfulness or falsehood.
The annotators did not have access to any information that would reveal the true
label of an instance. The only exception to this could have been the annotators’
previous knowledge of some of the public trials in the dataset. A discussion with
the annotators after the annotation took place, indicated however that this was not
the case.

To avoid annotation bias, they show the modalities in the following order: first they
show either Text or Silent video, then they show Audio, followed by Full video. Note
that apart from this constraint, which is enforced over the four modalities belonging
to each video clip, the order in which instances are presented to an annotator is
random.

Three annotators labeled all 121 video clips in the dataset, which portray 59 differ-
ent subjects. To calculate the agreement at the subject-level, they apply majority
voting to the labels assigned by each annotator over all the clips belonging to the
same subject. They resolve ties by randomly choosing between the deceptive and
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truthful labels. Table 2.9 shows the observed agreement and Kappa statistics among
the three annotators for each modality.4 We observe that the agreement for most
modalities is rather low and the Kappa scores show mostly poor agreement. As
noted before by Ott et al. (Ott et al., 2011), this low agreement can be interpreted
as an indication that people are poor judges of deception.

We compare the performance of the three individual annotators and the developed
systems, over the four different modalities in the dataset. As shown in Table 2.10,
we observe a positive trend in human accuracy in the subject-level deceit detection
when using multiple modalities. The trend could be explained by having more de-
ception cues available to them. On average, the poorest accuracy is obtained on
text only, followed by Audio, Silent video, and Full video, where the annotators have
the highest performance. Interestingly, we notice a similar pattern for the devel-
oped systems, where we see that having a greater amount of multimodal cues does
help to improve the system performance. The fully-automatic system outperforms
the average human performance when using each modality individually and in com-
bination (72.88% versus 71.79%). Furthermore, it achieves almost 30% reduction
in error compared to the lowest performing human annotator’s performance. The
semi-automatic system further improves the results of the fully automatic system
when using the three modalities (full video), thus suggesting that the feature fusion
strategy is also an important aspect when building these models.

Figure 2.5 Visual feature importance for automatically extracted AU features.

Overall, study of Pérez-Rosas et al. (Pérez-Rosas et al., 2015) indicates that de-
tecting deception is indeed a difficult task for humans and further verifies previous

4Inter-rater agreement with multiple raters and variables. https://nlp-ml.io/jg/software/ira/
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findings where the average human ability to spot liars was found to be slightly better
than chance (Aamodt & Custer, 2006). Moreover, the performance of the human
annotators appears to be significantly below that of the developed systems.

2.8 Insights for Deception Detection

2.8.1 Visual features

We compute the feature importance scores using the predictorImportance function
of Matlab (MATLAB, 2010) that bases its estimate on the performance change in
the random forest classifier, with the use of each feature. Importance measures of
visual AU features are depicted in Figure 2.5. We see that features describing actions
of lips reveal substantial deception information (Upper Lip Raiser, Lip Stretcher,
Lip Tightener, Lip Corner Depressor, Lip Corner Puller). In addition, (eye)Lid
Tightener, Nose Wrinkler, Brow Lowerer and Inner Brow Raiser also have high
importance scores.

2.8.2 Deception Language in Trials

To obtain insights into linguistic behaviors displayed by liars during court hearings,
we explore patterns in word usage according to their ability to distinguish between
the subjects’ deceptive and truthful statements. We thus trained a binary Naive
Bayes (NB) classifier that discriminates between liars and true-tellers using the
unigram features obtained from the subject’s statements. We then use the NB
model to infer the expected probabilities of each word given its class label. We then
sort the words by importance using the following scoring formula:

si = E[fi|class= deceptive]/E[fi|class= truthful],(2.2)
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In this equation, the expectation E of the word fi is compared across the deceptive
and truthful classes. Note that expectation values are obtained from the resulting
NB model rather than empirically from the dataset. The words that are more
strongly associated with the deceptive and truthful groups are shown below :

Deceptive Words: not, he, do, ’m, would, his, no, an, mean, with, uh, just, n’t,
at, but, want, did, if, a, her, any, very, never , . . .

Truthful Words: . . ., by, so, then, other, was, had, all, through, started, up, on,
the, years, two, my, when, of, to, from, um.

In each set, words are shown in decreasing score order i.e., from most deceptive
(”not”) to most truthful (”um”). We see that negative words such as “not”, “no”
and “n’t” have higher scores, suggesting that deceptive subjects often focus on deny-
ing the accusations, whereas truthful subjects are more focused on explaining past
events. This coincides with the meta-analysis work of Hauch et al. which shows that
deceptive statements have slightly more negative utterances than truthful statements
Hauch et al. (2015). Also extreme quantifiers (i.e. "any", "never", "very") occur more
frequently in deceptive statements. Houch et al. investigated the effect of certainty
on deception and, although certainty indicating words did not have significant ef-
fects on deception, they revealed that "deceptive accounts contained slightly fewer
tentative words (such as ’may’, ’seem’, ’perhaps’) than truthful accounts" (Hauch
et al., 2015). They commented on the possibility of deceivers’ motivation to appear
credible. Our findings do not coincide exactly, but they are in the same direction.

Newman et al. have found that deceivers have a tendency to use fewer self-
referencing expressions, such as "I", "my", "mine" (Newman et al., 2003). This
coincides with our findings, because self-referencing words do not appear among
the most deceptive words; while the word "my" is one of the most truth-indicating
words.

Interestingly, the word “uh” indicates deception whereas the word “um” indicates
truthfulness despite both words having the function of pausing.
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2.9 Comparison to State-of-Art

Our work extends the work of Pérez-Rosas et al., where the real-life trial dataset was
first presented, together with a video-clip level deception detection system (Pérez-
Rosas et al., 2015). The main differences with our current work are as follows: i) We
conduct the deception detection task at the subject-level rather than at the video-
level. Because the outcome of a trial does not say anything about subjects lying
in a particular stage of the trial, the subject-level classification better matches the
ground-truth labels. To obtain subject-level features, we experiment with different
methods for aggregating video-level ground-truth and found that feature averaging
across the videos works best. This perspective differentiates our work from all other
work conducted on this data set. ii) As a novel contribution, we incorporate the
acoustic modality with features designed to detect deception through variations in
pitch and silence duration. Our experimental findings indicate that silence duration
tends to slightly decrease in deceptive speech and that large pitch variations are
strong indicators of deceit. iii) We conducted a linguistic analysis on the differences
between deceptive and truthful speech using word-frequency methods. iv) Different
from the earlier work, our evaluations are conducted using 3 repetitions for each test
sample in the leave-one-subject-out cross-validation, to obtain more robust results.
Furthermore, we obtained both accuracy and AUC metrics. v) Finally, our work
obtained improved results on the deception detection task (83.05% accuracy and 0.95
AUC with feature-level fusion and 84.18% accuracy and 0.94 AUC with score-level
fusion), which are also more reliable due to the cross-validation settings.

Among the studies that report results on this database, Jaiswal et al. used the
OpenFace toolkit (Baltrušaitis, Robinson & Morency, 2016) to extract visual fea-
tures and the OpenSmile toolkit (Eyben, Weninger, Gross & Schuller, 2013) to
extract acoustic features which are then fed to an SVM classifier (Jaiswal, Tabibu
& Bajpai, 2016). They report a 78.95% accuracy with feature-level fusion, after
excluding videos (21 of 121) that are either too short or portray many people such
that OpenFace is unable to recognize the subject.

Wu et al. labeled short segments of video clips to train a micro-expression classifier
whose outputs are fed to the deception classification system (Wu, Singh, Davis &
Subrahmanian, 2017). They report that even though the micro-expression classifier
has low performance, its output probabilities are useful to improve the performance
of the overall system. They also use GloVe (Global Vectors for Word Representation)
embeddings (Pennington, Socher & Manning, 2014) for the linguistic representation
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and MFCC features for the acoustic modality. They report an AUC score of 0.92
obtained with a Logistic Regression classifier on a subset of the dataset (104 videos),
pruning videos with either significant scene change or human editing.

Krishnamurthy et al. used Convolutional Neural Networks (CNNs) to learn deep
representations of the video frames and word embeddings corresponding to the man-
ually annotated transcriptions (Krishnamurthy, Majumder, Poria & Cambria, 2018).
These representations are then combined with automatically extracted audio fea-
tures (obtained using the openSMILE library) and manually annotated visual fea-
tures in a single hidden layer neural network. The resulting semi-automatic system
achieves an AUC score of 0.98 and an accuracy of 96.14%, thus obtaining the best
results reported so far on this dataset. However as the authors also acknowledge,
there is a possibility that the results may not generalize as well on larger datasets,
due to overfitting or learning the idiosyncrasies of the small dataset.

Karimi et al. developed a multimodal deception detection system with automated
features (Karimi, Tang & Li, 2018). They employ CNNs followed by a Long-Short
Term Memory (LSTM) model to extract the temporal information in the visual
and vocal input, along with an attention mechanism focusing on the frames that
include visual cues of deception. Their system achieves an accuracy of 84.16% for
video-level classification. Venkatesh et al. reported a 97% accuracy on the video-
level deception detection using majority voting over the combination of individual
modality classifiers (Venkatesh, Ramachandra & Bours, 2019). They used a bag-
of-n-grams for lexical features, Cepstral Coefficients for acoustic features, and the
visual annotations. However, the last two works appear to have followed a biased
experimental protocol: while doing cross-validation, they do not remove other videos
of the tested subject from the training set. In that case, the identity of the subject
and the labels of the training videos can be used to label the test video. This is also
warned against in (Wu et al., 2017).

In summary, existing research on this dataset has approached the problem at the
video-level only, obtaining classification performances ranging from 78% to 97%.
However, the experimental evaluations are not fully compatible, it is difficult to
compare their results directly. For instance, in some work, the videos where the
subject is not clearly seen are removed from the dataset; and a subject-based cross
validation is not performed in others.

Our results are also not directly comparable with the state-of-art since we detect
deception at the subject-level rather than at the video-level. Nonetheless, our best
figures obtained with the semi-automatic system (AUC of 0.9462 obtained with a
feature-level combination and an AUC of 0.9323 obtained with a score-level combi-
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nation of all modalities) are on par with the results of the semi-automatic system
of (Krishnamurthy et al., 2018).

2.10 Conclusions

In this chapter, we presented a study of multimodal deception detection using real-
life high-stake occurrences of deceit. We use a dataset from public real trials to
perform both qualitative and quantitative experiments. We built classifiers relying
on the individual or combined sets of verbal and non-verbal features and showed
that a system using score-level combination can detect deceptive subjects with an
accuracy of 84.18%. Our analysis of non-verbal behaviors occurring in deceptive
and truthful videos brought insight into the gestures that play a role in deception.
Additional analyses showed the role played by the various feature sets used in the
experiments.

We also performed a study of the human ability to detect deception with single or
multimodal data streams of real-life trial data. The study revealed high disagreement
and low deception detection accuracies among human annotators. Our automatic
system using all the modalities outperformed the average non-expert human perfor-
mance by more than 6% points, and the lowest human annotator’s performance by
more than 11% points.

In the future, we will work on improving automatic gesture identification and auto-
matic speech transcription, with the goal of taking steps towards a real-time decep-
tion detection system.
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Table 2.8 Fully-automatic system: classification accuracies with individual (top 3
rows) and combined modalities (bottom 2 rows)

Modality SVM RF NN
Visual (Action Units) 53.67% 61.58% 57.63%
All Acoustic 56.50% 63.28% 61.02%
Linguistic (Unigrams) 57.06% 63.28% 71.75%
All (Early Fusion) 58.76% 68.36% 70.06%
All (Combiner) 56.50% 63.28% 72.88%

Table 2.9 Agreement among three human annotators on text, audio, silent video,
and full video modalities.

Modality Agreement Kappa
Text 30.76% 0.014
Audio 53.84% 0.040
Silent video 53.84% 0.040
Full video 53.84% 0.050

Table 2.10 Classification accuracy of three annotators (A1, A2, A3) and the devel-
oped systems on the real-deception dataset over four modalities.

Text Audio Silent video Full video
A1 69.23% 69.23% 69.23% 61.53%
A2 53.84% 61.53% 61.53% 76.92%
A3 69.23% 76.92% 76.92% 76.92%
Average 64.10% 69.22% 69.22% 71.79%
Fully-autom. sys. 71.75% 63.28% 61.58% 72.88%
Semi-autom. sys. 64.41% 63.28% 80.79% 75.71%
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CHAPTER 3

DEEP NEURAL NETWORKS FOR SINGLE
CHANNEL SOURCE SEPARATION

Performances of speech processing solutions, in general, are sensitive to the qual-
ity of the recordings such as amount of background noise or inclusion of different
sound sources. Extracting fundamental frequency (pitch frequency) of the speech
signal, which is used as a feature in our deception system, is also sensitive to the
background sounds. In addition, lexical features are obtained from the transcrip-
tions that are extracted using an automatic speech recognition system and auto-
matic speech recognition systems are also known to be affected by artifacts that
are present in the speech recording. In this regard, we believe, source separation
of speech recordings would be a fundamental part of a fully automatic deception
detection system.

In this chapter, a novel approach for single channel source separation (SCSS) using
a deep neural network (DNN) architecture is introduced. Unlike previous studies
in which DNN and other classifiers were used for classifying time-frequency bins
to obtain hard masks for each source, we use the DNN to classify estimated source
spectra to check for their validity during separation. In the training stage, the train-
ing data for the source signals are used to train a DNN. In the separation stage,
the trained DNN is utilized to aid in estimation of each source in the mixed signal.
Single channel source separation problem is formulated as an energy minimization
problem where each source spectra estimate is encouraged to fit the trained DNN
model and the mixed signal spectrum is encouraged to be written as a weighted
sum of the estimated source spectra. The proposed approach works regardless of
the energy scale differences between the source signals in the training and separation
stages. Nonnegative matrix factorization (NMF) is used to initialize the DNN esti-
mate for each source. The experimental results show that using DNN initialized by
NMF for source separation improves the quality of the separated signal compared
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with using NMF for source separation. 1

3.1 Introduction

Single channel audio source separation is an important and challenging problem and
has received considerable interest in the research community in recent years. Since
there is limited information in the mixed signal, usually one needs to use training
data for each source to model each source and to improve the quality of separation.
In this work, we introduce a new method for improved source separation using
nonlinear models of sources trained using a deep neural network.

3.1.1 Related work

Many approaches have been introduced so far to solve the single channel source sep-
aration problem. Most of those approaches strongly depend on training data for the
source signals. The training data can be modeled using probabilistic models such as
Gaussian mixture model (GMM) (Kristjansson, Attias & Hershey, 2004; Reddy &
Raj, 2004,0), hidden Markov model (HMM) or factorial HMM (Deoras & Hasegawa-
Johnson, 2004; Roweis, 2001; Virtanen, 2006). These models are learned from the
training data and usually used in source separation under the assumption that the
sources appear in the mixed signal with the same energy level as they appear in the
training data. Fixing this limitation requires complicated computations as in (Her-
shey, Rennie, Olsen & Kristjansson, 2010; Ozerov, Févotte & Charbit, 2009; Radfar
& Dansereau, 2007; Radfar, Wong, Chan & Dansereau, 2009; Radfar, Dansereau &
Chan, 2010; Radfar, Wong, Dansereau & Chan, 2010). Another approach to model
the training data is to train nonnegative dictionaries for the source signals (Grais
& Erdogan, 2011b,1; Schmidt & Olsson, 2006). This approach is more flexible with
no limitation related to the energy differences between the source signals in training
and separation stages. The main problem in this approach is that any nonnega-
tive linear combination of the trained dictionary vectors is a valid estimate for a
source signal which may decrease the quality of separation. Modeling the training

1Work at this chapter is presented at IEEE International Conference on Acoustics, Speech and Signal
Processing, 2014 (Grais, Sen & Erdogan, 2014)
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data with both nonnegative dictionary and cluster models like GMM and HMM
was introduced in (Grais & Erdoğan, 2012; Grais & Erdogan, 2012a,1; Grais & Er-
doğan, 2013) to fix the limitation related to the energy scaling between the source
signals and training more powerful models that can fit the data properly. Another
type of approach which is called classification-based speech separation aims to find
hard masks where each time-frequency bin is classified as belonging to either of the
sources. For example in (Wang & Wang, 2012), various classifiers based on GMM,
support vector machines, conditional random fields, and deep neural networks were
used for classification.

3.1.2 Contributions

In this work, we model the training data for the source signals using a single joint
deep neural network (DNN). The DNN is used as a spectral domain classifier which
can classify its input spectra into each possible source type. Unlike classification-
based speech separation where the classifiers are used to segment time-frequency
bins into sources, we can obtain soft masks using our approach. Single channel
source separation problem is formulated as an energy minimization problem where
each source spectral estimate is encouraged to fit the trained DNN model and the
mixed signal spectrum is encouraged to be written as a weighted sum of the esti-
mated source spectra. Basically, we can think of the DNN as checking whether the
estimated source signals are lying in their corresponding nonlinear manifolds which
are represented by the trained joint DNN. Using a DNN for modeling the sources
and handling the energy differences in training and testing is considered to be the
main novelty of this chapter. Deep neural network (DNN) is a well known model
for representing the detailed structures in complex real-world data (Hinton, Deng,
Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath & others, 2012;
Hinton, Osindero & Teh, 2006). Another novelty of this chapter is using nonnega-
tive matrix factorization (Grais & Erdogan, 2011a) to find initial estimates for the
sources rather than using random initialization.
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3.1.3 Organization of the chapter

This chapter is organized as follows: In Section 3.2 a mathematical formulation
for the SCSS problem is given. Section 3.3 briefly describes the NMF method for
source separation. In Section 3.4, we introduce our new method. We present our
experimental results in Section 3.5. We conclude the chapter in Section 3.6.

3.2 Problem formulation

In single channel source separation problems, the aim is to find estimates of source
signals that are mixed on a single channel y(t). For simplicity, in this work we
assume the number of sources is two. This problem is usually solved in the short
time Fourier transform (STFT) domain. Let Y (t,f) be the STFT of y(t), where t
represents the frame index and f is the frequency-index. Due to the linearity of the
STFT, we have:

(3.1) Y (t,f) = S1(t,f) +S2(t,f),

where S1(t,f) and S2(t,f) are the unknown STFT of the first and second sources
in the mixed signal. In this framework (Schmidt & Olsson, 2006; Virtanen, 2007),
the phase angles of the STFT were usually ignored. Hence, we can approximate the
magnitude spectrum of the measured signal as the sum of source signals’ magnitude
spectra as follows:

(3.2) |Y (t,f)| ≈ |S1(t,f)|+ |S2(t,f)| .

We can write the magnitude spectrogram in matrix form as follows:

(3.3) Y ≈ S1 + S2.

where S1,S2 are the unknown magnitude spectrograms of the source signals and
need to be estimated using the observed mixed signal and the training data.
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3.3 NMF for supervised source separation

In this section, we briefly describe the use of nonnegative matrix factorization (NMF)
for supervised single channel source separation. We will relate our model to the NMF
idea and we will use the source estimates obtained from using NMF as initilization
for our method, so it is appropriate to introduce the use of NMF for source separation
first.

To find a suitable initialization for the sources signals, we use nonnegative matrix
factorization (NMF) as in (Grais & Erdogan, 2011a). NMF (Lee & Seung, 2001)
factorizes any nonnegative matrix V into a basis matrix (dictionary) B and a gain
matrix G as

(3.4) V≈BG.

The matrix B contains the basis vectors that are optimized to allow the data in V
to be approximated as a linear combination of its constituent columns. The solution
for B and G can be found by minimizing the following Itakura-Saito (IS) divergence
cost function (Févotte, Bertin & Durrieu, 2009):

(3.5) min
B,G

DIS (V ||BG) ,

where
DIS (V ||BG) =

∑
a,b

(
Va,b

(BG)a,b

− log Va,b

(BG)a,b

−1
)
.

This divergence cost function is a good measurement for the perceptual difference
between different audio signals (Févotte et al., 2009). The IS-NMF solution for
equation (3.5) can be computed by alternating multiplicative updates of G and B
as follows:

(3.6) G←G⊗
BT

(
V

(BG)2

)
BT

(
1

BG
) ,

(3.7) B←B⊗

(
V

(BG)2

)
GT(

1
BG

)
GT

,
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where 1 is a matrix of ones with the same size of V, the operation ⊗ is an element-
wise multiplication, all divisions and (.)2 are element-wise operations. The matrices
B and G are usually initialized by positive random numbers and then updated
iteratively using equations (3.6) and (3.7).

In the initialization stage, NMF is used to decompose the frames for each source i
into a multiplication of a nonnegative dictionary Bi and a gain matrix Gi as follows:

(3.8) Strain
i ≈BiGtrain

i , ∀i ∈ {1,2} ,

where Strain
i is the nonnegative matrix that contains the spectrogram frames of the

training data of source i. After observing the mixed signal, we calculate its spec-
trogram Ypsd. NMF is used to decompose the mixed signal’s spectrogram matrix
Ypsd with the trained dictionaries as follows:

(3.9) Ypsd ≈ [B1,B2]G or Ypsd ≈ [B1 B2]
 G1

G2

 .
The only unknown here is the gains matrix G since the dictionaries are fixed. The
update rule in equation (3.6) is used to find G. After finding the value of G, the
initial estimate for each source magnitude spectrogram is computed as follows:

(3.10) Ŝinit1 = B1G1
B1G1 + B2G2

⊗Y, Ŝinit2 = B2G2
B1G1 + B2G2

⊗Y,

where ⊗ is an element-wise multiplication and the divisions are done element-wise.

The magnitude spectrograms of the initial estimates of the source signals are used
to initialize the sources in the separation stage of the DNN approach.

3.4 Method

In NMF, the basic idea is to model each source with a dictionary, so that source
signals appear in the nonnegative span of this dictionary. In the separation stage,
the mixed signal is expressed as a nonnegative linear combination of the source
dictionaries and separation is performed by taking the parts corresponding to each
source in the decomposition.
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The basic problem in NMF is that each source is modeled to lie in a nonnegative
cone defined by all the nonnegative linear combinations of its dictionary entries. This
assumption may be a limiting assumption usually since the variability within each
source indicates that nonlinear models may be more appropriate. This limitation
led us to consider nonlinear models for each source. It is not trivial to use nonlinear
models or classifiers in source separation. Since deep neural networks were recently
used with increased success in speech recognition and other object recognition tasks,
they can be considered as superior models of highly variable real-world signals.

We first train a DNN to model each source in the training stage. We then use an
energy minimization objective to estimate the sources and their gains during the
separation stage. Each stage is explained below.

3.4.1 Training the DNN

We train a DNN that can classify sources present in the mixed signal. The input
to the network is a frame of normalized magnitude spectrum, x ∈ Rd. The neural
network architecture is illustrated in Figure 3.1. There are two outputs in the DNN,
each corresponding to a source. The label of each training instance is a binary
indicator function, namely if the instance is from source one, the first output label
f1(x) = 1 and the second output label f2(x) = 0. Let nk be the number of hidden
nodes in layer k for k = 0, . . . ,K where K is the number of layers. Note that n0 = d

and nK = 2. Let Wk ∈ Rnk×nk−1 be the weights between layers k− 1 and k, then
the values of a hidden layer hk ∈ Rnk are obtained as follows:

(3.11) hk = g(Wkhk−1),

where g(x) = 1
1+exp(−x) is the elementwise sigmoid function. We skip the bias terms

to avoid clutter in our notation. The input to the network is h0 = x ∈ Rd and the
output is f(x) = hK ∈ R2.

Training a deep network necessitates a good initialization of the parameters. It is
shown that layer-by-layer pretraining using unsupervised methods for initialization
of the parameters results in superior performance as compared to using random
initial values. We used Restricted Boltzmann Machines (RBM) for initialization.
After initialization, supervised backpropagation algorithm is applied to fine-tune
the parameters. The learning criteria we use is least-squares minimization. We are
able to get the partial derivatives with respect to the inputs, and this derivative is
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Figure 3.1 Illustration of the DNN architecture.

also used in the source separation part. Let f(.) : Rd→R2 be the DNN, then f1(x)
and f2(x) are the scores that are proportional to the probabilities of source one
and source two respectively for a given frame of normalized magnitude spectrum
x. We use these functions to measure how much the separated spectra carry the
characteristics of each source as we elaborate more in the next section.

3.4.2 Source separation using DNN and energy minimization

In the separation stage, our algorithm works independently in each frame of the
mixed audio signal. For each frame of the mixed signal spectrum, we calculate the
normalized magnitude spectrum y. We would like to express y = ux1 +vx2 where u
and v are the gains and x1 and x2 are normalized magnitude spectra of source one
and two respectively.

We formulate the problem of finding the unknown parameters θ = (x1,x2,u,v) as
an energy minimization problem. We have a few different criteria that the source
estimates need to satisfy. First, they must fit well to the DNN trained in the training
stage. Second, their linear combination must sum to the mixed spectrum y and third
the source estimates must be nonnegative since they correspond to the magnitude
spectra of each source.

The energy functions E1 and E2 below are least squares cost functions that quantify
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the fitness of a source estimate x to each corresponding source model in the DNN.

(3.12) E1(x) = (1−f1(x))2 + (f2(x))2,

(3.13) E2(x) = (f1(x))2 + (1−f2(x))2.

Basically, we expect to have E1(x) ≈ 0 when x comes from source one and vice
versa. We also define the following energy function which quantifies the energy of
error caused by the least squares difference between the mixed spectrum y and its
estimate found by linear combination of the two source estimates x1 and x2:

(3.14) Eerr(x1,x2,y,u,v) = ||ux1 +vx2−y||2.

Finally, we define an energy function that measures the negative energy of a variable,
R(θ) = (min(θ,0))2.

In order to estimate the unknowns in the model, we solve the following energy
minimization problem.

(3.15) (x̂1, x̂2, û, v̂) = argmin
{x1,x2,u,v}

E(x1,x2,y,u,v),

where

E(x1,x2,y,u,v) = E1(x1) +E2(x2) +λEerr(x1,x2,y,u,v)

+β
∑

i

R(θi)
(3.16)

is the joint energy function which we seek to minimize. λ and β are regularization
parameters which are chosen experimentally. Here θ = (x1,x2,u,v) = [θ1, θ2, . . . , θn]
is a vector containing all the unknowns which must all be nonnegative. Note that,
the nonnegativity can be given as an optimization constraint as well, however we
obtained faster solution of the optimization problem if we used the negative energy
function penalty instead. If some of the parameters are found to be negative after
the solution of the optimization problem (which rarely happens), we set them to
zero. We used the LBFGS algorithm for solving the unconstrained optimization
problem.

We need to calculate the gradient of the DNN outputs with respect to the input
x to be able to solve the optimization problem. The gradient of the input x with
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respect to fi(x) is given as ∂fi(x)
∂x = q1,i for i= 1,2, where,

(3.17) qk,i = WT
k (qk+1,i⊗hk⊗ (1−hk)),

and qK,i = fi(x)(1−fi(x))wT
K,i, where wK,i ∈ RnK−1 contains the weights between

ith node of the output layer and the nodes at the previous layer, in other words the
ith row of WK .

The flowchart of the energy minimization setup is shown in Figure 3.2. For il-
lustration, we show the single DNN in two separate blocks in the flowchart. The
fitness energies are measured using the DNN and the error energy is found from the
summation requirement.

Figure 3.2 Flowchart of the energy minimization setup. For illustration, we show
the single DNN in two separate blocks in the flowchart.

Note that, since there are many parameters to be estimated and the problem is
clearly non-convex, the initialization of the parameters is very important. We ini-
tialize the estimates x̂1 and x̂2 from the NMF result after normalizing by their
`2-norms. û is initialized by the `2-norm of the initial NMF source estimate ŝ1

divided by the `2-norm of the mixed signal y. v̂ is initialized in a similar manner.

After we obtain (x̂1, x̂2, û, v̂) as the result of the energy minimization problem, we
use them as spectral estimates in a Wiener filter to reconstruct improved estimates
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of each source spectra, e.g. for source one we obtain the final estimate as follows:

(3.18) ŝ1 = (ûx̂1)2

(ûx̂1)2 + (v̂x̂2)2 ⊗y.

3.5 Experiments and Discussion

We applied the proposed algorithm to separate speech and music signals from their
mixture. We simulated our algorithm on a collection of speech and piano data at
16kHz sampling rate. For speech data, we used the training and testing male speech
data from the TIMIT database. For music data, we downloaded piano music data
from piano society web site (Society, 2020). We used 39 pieces with approximate 185
minutes total duration from different composers but from a single artist for training
and left out one piece for testing. The magnitude spectrograms for the speech and
music data were calculated using the STFT: A Hamming window with 480 points
length and 60% overlap was used and the FFT was taken at 512 points, the first
257 FFT points only were used since the conjugate of the remaining 255 points are
involved in the first points.

The mixed data was formed by adding random portions of the test music file to 20
speech files from the test data of the TIMIT database at different speech to music
ratio. The audio power levels of each file were found using the “speech voltmeter”
program from the G.191 ITU-T STL software suite (software, 2014).

For the initialization of the source signals using nonnegative matrix factorization,
we used a dictionary size of 128 for each source. For training the NMF dictionaries,
we used 50 minutes of data for music and 30 minutes of the training data for speech.
For training the DNN, we used a total 50 minute subset of music and speech training
data for computational reasons.

For the DNN, the number of nodes in each hidden layer were 100-50-200 with three
hidden layers. Sigmoid nonlinearity was used at each node including the output
nodes. DNN was initialized with RBM training using contrastive divergence. We
used 150 epochs for training each layer’s RBM. We used 500 epochs for backpropa-
gation training. The first five epochs were used to optimize the output layer keeping
the lower layer weights untouched.
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In the energy minimization problem, the values for the regularization parameters
were λ= 5 and β = 3. We used Mark Schmidt’s minFunc matlab LBFGS solver for
solving the optimization problem (Schmidt, 2014).

Performance measurements of the separation algorithm were done using the signal to
distortion ratio (SDR) and the signal to interference ratio (SIR) (Vincent, Gribonval
& Févotte, 2006). The average SDR and SIR over the 20 test utterances are reported.
The source to distortion ratio (SDR) is defined as the ratio of the target energy to
all errors in the reconstructed signal. The target signal is defined as the projection
of the predicted signal onto the original speech signal. Signal to interference ratio
(SIR) is defined as the ratio of the target energy to the interference error due to the
music signal only. The higher SDR and SIR we measure the better performance we
achieve. We also use the output SNR as additional performance criteria.

The results are presented in Tables 3.1 and 3.2. We experimented with multi-
frame DNN where the inputs to the DNN were taken from L neighbor spectral
frames for both training and testing instead of using a single spectral frame similar
to (Grais & Erdogan, 2011b). We can see that using the DNN and the energy
minimization idea, we can improve the source separation performance for all input
speech-to-music ratio (SMR) values from -5 to 5 dB. In all cases, DNN is better
than regular NMF and the improvement in SDR and SNR is usually around 1-
1.5 dB. However, the improvement in SIR can be as high as 3 dB which indicates
the fact that the introduced method can decrease remaining music portions in the
reconstructed speech signal. We performed experiments with L = 3 neighboring
frames which improved the results as compared to using a single frame input to the
DNN. For L = 3, we used 500 nodes in the third layer of the DNN instead of 200.
We conjecture that better results can be obtained if higher number of neighboring
frames are used.
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Table 3.1 SDR, SIR and SNR in dB for the estimated speech signal.

SMR NMF DNN
L= 1 L= 3

dB SDR SIR SNR SDR SIR SNR SDR SIR SNR
-5 1.79 5.01 3.15 2.81 7.03 3.96 3.09 7.40 4.28
0 4.51 8.41 5.52 5.46 9.92 6.24 5.73 10.16 6.52
5 7.99 12.36 8.62 8.74 13.39 9.24 8.96 13.33 9.45

Table 3.2 SDR, SIR and SNR in dB for the estimated music signal.

SMR NMF DNN
L= 1 L= 3

dB SDR SIR SNR SDR SIR SNR SDR SIR SNR
-5 5.52 15.75 6.30 6.31 18.48 7.11 6.67 18.30 7.43
0 3.51 12.65 4.88 4.23 16.03 5.60 4.45 15.90 5.88
5 0.93 9.03 3.35 1.79 12.94 3.96 1.97 13.09 4.17

3.6 Conclusion

In this work, we introduced a novel approach for single channel source separation
(SCSS) using deep neural networks (DNN). The DNN was used in this work as a
helper to model each source signal. The training data for the source signals were used
to train a DNN. The trained DNN was used in an energy minimization framework
to separate the mixed signals while also estimating the scale for each source in the
mixed signal. Many adjustments for the model parameters can be done to improve
the proposed SCSS using the introduced approach. Different types of DNN such
as deep autoencoders and deep recurrent neural networks which can handle the
temporal structure of the source signals can be tested on the SCSS problem. We
believe this idea is a novel idea and many improvements will be possible in the near
future to improve its performance.
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CHAPTER 4

LEARNING WORD REPRESENTATIONS FOR
TURKISH

In Chapter-2, we showed that word embeddings that are pretrained on large corpora
in an unsupervised manner resulted in the best performance among the lexical fea-
ture sets. Implementing a deception system for Turkish would only require training
word embeddings for Turkish, as the other two modalities are language independent
for the most part. However, training and employing word embeddings in Turkish
is not straightforward because of the morphologically rich structure of Turkish. In
this chapter, we investigate the usage of word embeddings in Turkish and measure
their performances on general semantic and syntactic tasks. We believe, this work
would be useful for the development of an automatic deception detection system in
Turkish.

High-quality distributed word representations have been very successful in recent
years at improving performance across a variety of NLP tasks. These word rep-
resentations are the mappings of each word in the vocabulary to a real vector in
the Euclidean space. Besides high performance on specific tasks, learned word rep-
resentations have been shown to perform well on establishing linear relationships
among words. The recently introduced Skip-gram model improved performance on
unsupervised learning of word embeddings that contains rich syntactic and seman-
tic word relations. Word embeddings that have been used frequently on English
language, is not applied to Turkish prior to this work. In this work, we apply the
Skip-gram model to a large Turkish text corpus and measured the performance of
them quantitatively with the "question" sets that we generated. The learned word
embeddings and the question sets are publicly available at our website. 1

1Work at this chapter is presented at 22nd Signal Processing and Communications Applications Conference
(SIU) (Sen & Erdogan, 2014)
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4.1 Introduction

Successes of Deep Neural Network (DNN) based solutions on Natural Language
Processing (NLP) problems are reported with a vast amount of publications in recent
years. However, DNN based methods that solve NLP problems, such as Named
Entity Recognition, Part of Speech Tagging, Semantic Role Labeling, are mostly
employed on English datasets. A significant process of such methods is unsupervised
learning of word embeddings that map words to low dimensional continuous real
vectors from large text corpora. In such unsupervised models, each word (w) is
represented by a d-dimensional real vector (vw ∈ <d). Word embeddings encode
semantic and syntactic information into low dimensional vectors.

Word embeddings are employed in Deep Neural Network based models; such as
Recurrent Neural Networks (Bengio, Ducharme, Vincent & Janvin, 2003), hierar-
chical models (Mnih & Hinton, 2008; Morin & Bengio, 2005) or Convolutional Neural
Networks (Mikolov, Karafiát, Burget, Cernocký & Khudanpur, 2010; Mikolov, Kom-
brink, Burget, Cernocký & Khudanpur, 2011); as well as more customary feature-
based methods (Koo, Carreras & Collins, 2008; Ratinov & Roth, 2009). Collobert
et al. used word embeddings as inputs to a multi-objective NLP model and reported
improved performance over single-objective models (Collobert & Weston, 2008). In
another work, learned word representations are observed to hold linear semantic
relationships (Mikolov, tau Yih & Zweig, 2013). For example, the difference be-
tween the vectors for the words King and Queen is reported to be very close to
that of the words Man and Woman. Based on this observation, Mikolov et al. pre-
pared questions for measuring the performance of word embeddings quantitatively,
not for a particular NLP problem but in the sense of linear semantic and syntactic
information capacity of the words.

Word embeddings that are frequently and successfully used in English language had
not been used in Turkish prior to this work to the best of our knowledge. This
work learns word embeddings from a large Turkish corpus with the aim of investi-
gating the usefulness of word embeddings in Turkish and draw attention from Turk-
ish NLP community. The quality of the word embeddings that are learned using
the skip-gram model (Mikolov, Chen, Corrado & Dean, 2013a; Mikolov, Sutskever,
Chen, Corrado & Dean, 2013a) is measured quantitavely using constructed Turk-
ish question-sets. Learned word representations and constructed question sets are
publicaly shared online. 2

2http://myweb.sabanciuniv.edu/umutsen/research/
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4.2 Skip-Gram Model

In skip-gram model, word in a sentence is given to the log-linear classifier as input
and the nearby words are estimated (Mikolov et al., 2013a,1). Input word is mapped
to a vector using a look-up table and given to the classifier as input. Parameters of
the look-up table constitutes the word embeddings. Let w1,w2, . . . ,wT be a sequence
of words, then the skip-gram model maximizes the following objective function:

(4.1) Φ = 1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

logp(wt+j |wt)

where, c/2 is the number of context words that are to be estimated and it is called
context size. Increasing c would lead to higher quality word embeddings but training
time is increased too. For the conditional p(wt+j |wt), softmax formulation is used:

(4.2) p(wO|wI) =
exp(yT

wO
vwI )∑W

w=1 exp(yT
wvwI )

where, vw and yw, are the input and output word embedding vectors of the word w
and W is the vocabulary size. After training, vw is used as the word representation
vector. Calculation of the denominator in the above formulation is computationally
expensive and two of the solutions of this problem are Hierarchical Softmax and
Negative Sampling.

4.2.1 Hierarchical Softmax

This method is a computationally efficient approximation to the softmax function
and employs binary trees (Morin & Bengio, 2005). Leaf nodes in the tree represent
the words in vocabulary and there are vector representations for the internal nodes
too. For each word, there is a certain path from the root. The conditional probability
defined in (4.1) of a word is found by taking inner products of the input vector with
every node along the path from the root to the leaf, taking the sigmoid function
and multiplying all resulting scalar values. This results in approximately log2(W )
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evaluations instead of W evaluations in regular softmax calculations. In addition,
each word has a single vector representation in Hierarchical Softmax method unlike
in the original skip-gram formulation in which words have 2 vector representations.
Structure of the tree effects the performance of the model and Binary Huffman Tree
is shown to work well for learning word embeddings (Mikolov et al., 2011,1; Mnih
& Hinton, 2008) .

4.2.2 Negative Sampling

Negative Sampling is a simplified form of Noise Contrastive Estimation and uses the
following conditional probability model:

(4.3) logp(wo|wI) = logσ(yT
wo

vwI ) +
k∑

i=1
logσ(−yT

wi
vwI )

where, wi is a randomly selected word from vocabulary, and σ(x) = 1/(1+exp(−x))
is the sigmoid function. This method samples k words from vocabulary and use
them as negative samples for a given a pair of input and output words. Second term
in the right side of the above equation uses these negative samples.

In general, Negative Sampling works better than Hierarchical Softmax in terms of
accuracy and computational convergence speed and our experiments showed consis-
tent results as shown in Section-4.3.

4.2.3 Subsampling Frequent Words

A subset of the words has very large frequencies in the dataset ("ve":10 million,
"bir":9 million). Such high-frequency words may not have as much mutual informa-
tion as less frequent words with a given sample word. In addition, vector represen-
tations of high-frequent words do not change significantly after a certain amount of
training. In order to balance between rare and very frequent words, we used the
method at Mikolov et al. (Mikolov et al., 2013a): each word is removed from the
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training data with the following formula:

(4.4) p(wi) = 1−
√

t

f(wi)

where, f(wi) is the occurrence frequency of the word and t is a threshold with a
chosen value of 0.001.

4.3 Experiments

We used two different corpora for training word representations. First one is the
Turkish Wikipedia dump (wikipedia, 2013), second one is a Turkish online news
corpus, which we call Bogazici Corpus throughout the chapter (Sak, Güngör &
Saraçlar, 2008). Wikipedia corpus contains 52 million words after removing irregular
content such as tables and figures. Bogazici corpus contains 270 million words.

4.3.1 Preprocessing

First, corpora are cleaned from punctuation and non-text elements. Separating
suffixes from the roots affects the performance of the quality of word embeddings
because of the high morphological structure of the Turkish language. Hence, words
that occur in the corpora less than 1000 are separated into roots and suffixes using
the Zemberek toolkit (Akin & , 2007) and the rest of the high frequency words
are left as they appear in the dataset. Words that are not recognized with the
morphological analyzer of the Zemberek toolkit are attempted to be deasscified
using again the Zemberek toolkit. These words, then, again applied to morphological
analyzer and the words that are failed to be recognized are left as they appear in the
dataset. In the case that the analyzer resulted in a multiple choice for separation, the
option with the longest root is chosen. After finding the root, rest of the word part
is employed as a single suffix, ignoring the possible transformations of the suffixes.
For example the word geldiklerinde is transformed into two tokens as gelmek +
_diklerinde.
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After the morphological transformation, vocabulary is constructed and words that
appear less than 6 in the dataset are discarded. In the final dataset, there are 530
million words and the vocabulary size is approximately 380.000 of which approxi-
mately 25.000 are suffixes.

4.3.2 Quantitative Evaluation

We applied two different testing schemas for evaluating the quality of the learned
word representations. First one is about finding analogical relations between word
pairs and this method is introduced in the work that introduced the skip-gram model
and applied for the English language (Mikolov et al., 2013a,1). Each test question
is composed of 4 words and has the form "If A → B, then C → ?. For finding the
word in the place of the question mark, linear relationships of the word embeddings
are used:

(4.5) vD̂ = vB−vA + vC

After finding the vector of vD̂, the word that has the closest embedding to this
vector in terms of cosine similarity (excluding A, B, and C) is chosen to be the
answer:

(4.6) D̂ = argmax
w

vT
wvD̂

‖vw‖
∥∥∥vD̂

∥∥∥
We prepared question sets for the analogical reasoning task in Turkish for evaluating
semantic and syntactic performances separately. Definitions for these question sets
and some examples are given at Table-4.1 and Table-4.2. We obtained a total of
26588 questions in these two categories.

Second testing category constitutes a semantic task: given a group of words, finding
the single word that does not belong the the group. We find the incompatible word
by first finding the mean embedding vector of the group and choosing the word with
the highest distance to the mean vector in the Euclidean space. We have chosen the
incompatible words such that they are semantically relatively close to the group with
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Table 4.1 Semantic Analogy Question Sets

Set Name # of Quest. Sample
Family Relations 132 (kız → oğul) ⇔ (gelin → damat)

Capitals 2970 (Tokyo → Japonya) ⇔ (Brüksel → Belçika)
Synonyms 3422 (sözcük → kelime) ⇔ (ırmak → nehir)
Districts 6466 (Konak → İzmir) ⇔ (Beyoğlu → İstanbul)
Currencies 156 (ABD → dolar) ⇔ (Hindistan → rupi)
Antonyms 2756 (barış → savaş) ⇔ (büyük → küçük)

Table 4.2 Syntactic Analogical Question Sets

Set Name # of Quest. Sample
Plurals 4830 (olay → olaylar) ⇔ (işlem → işlemler)

Negatives 756 (sever → sevmez) ⇔ (döner → dönmez)
Past Time 3540 (bulmak → buldu) ⇔ (istemek → istedi)

Present Time 1560 (etkilemek → etkiler) ⇔ (yaşamak → yaşar)

Table 4.3 Group Question Sets

Countries Units Trees Animals Provinces

1029 476 31 198 438
Asya ağırlık meyve ağ. kuşlar Marmara
Afrika uzunluk diğer ağ. balıklar Ege

Doğu Avrupa sıcaklık sürüngenler Akdeniz
Kuzey Avrupa alan memeliler Karadeniz
Güney Avrupa basınç Doğu Anadolu
Batı Avrupa hacim Güney Doğu An.

Güney Amerika zaman İç Anadolu
Kuzey Amerika bilg. hafızası

para

the intent of making the task more difficult. For example, countries are separated
with respect to the continents they are in and the country that is not in the same
continent with the rest of the group is chosen to be the incompatible word (e.g.
England, France, The Netherlands, Ireland, Switzerland, Algeria). Group Question
sets are summarized at Table-4.3. There are 2172 group testing questions in total.
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Table 4.4 Accuracies - Hierarchical Softmax and Negative Sampling

Hierarchical Softmax Negative Sampling
Group Top-1 Top-3 Top-10 Group Top-1 Top-3 Top-10

Semantic - 23.02 35.77 49.33 - 29.69 43.18 56.48
Syntactic - 28.67 43.58 58.75 - 42.25 58.97 72.78
General 58.83 25.29 38.91 53.11 57.50 34.74 49.52 63.03
Time 642 min. 459 min.

4.3.3 Results

4.3.3.1 Method Comparisons

Firstly, We compare the Negative Sampling with the Hierarchical Softmax method
using the generated questions sets. We used 5 as the number of negative samples
for each example (Eq-4.3). The context size is chosen to be 5 for each method (c= 5
at Eq-4.1). Word embedding dimensions are chosen to be 200. Results are given at
Table-4.4. Top-n results are for the analogical reasoning task and the data point is
said to be correctly classified if the true word is in the top-n of the estimated words
when sorted according to the similarity.

We see that Negative Sampling works better than Hierarchical Softmax both in terms
of runtime and accuracy. Another result is that semantic accuracies are lower than
syntactic accuracies in general. We attribute this result to that syntactic questions
are mostly composed of verbs and the number of verbs in the dataset is higher than
the other types of words. But another reason might be that semantic questions are
more difficult than the syntactic questions in general. All the experiments are done
with the Negative Sampling method from now on.

4.3.3.2 Removing Suffixes

We expect that removing suffixes from the datasets would improve the performances
since the questions do not contain any suffixes. We compare the results using
datasets with and without suffixes in Table-4.5.
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Table 4.5 Accuracies using Datasets with and without Suffixes

Without Suffixes With Suffixes
Group Top-1 Top-3 Top-10 Group Top-1 Top-3 Top-10

Semantic - 35.40 48.42 60.80 - 29.69 43.18 56.48
Syntactic - 43.17 60.21 74.68 - 42.25 58.97 72.78
General 61.00 38.52 53.16 66.38 57.50 34.74 49.52 63.03
Time 453 min. 459 min.

Table 4.6 Runtimes vs. Dimension Sizes

Vector Dimension 100 200 300 400 500 600 700
Time (min.) 299 453 539 735 899 994 1171

4.3.3.3 Effect of Vector Dimension

In this section, we analyzed the effect of word embeddings’ dimension on seman-
tic and syntactic accuracies. We used Negative Sampling method and the same
parameters with the previous experiments. Results are depicted at Figure-4.1.

We observe consistent changes in accuracies when we change the vector dimensions.
The dimension size is observed to have more effect on semantic accuracy than the
syntactic accuracy. Runtimes of the learning for different vector sizes are given at
Table-4.6 .

4.4 Conclusion and Future Work

In this chapter, we trained word embeddings using a Turkish corpus. We created
question sets for measuring the semantic and syntactic performances of word em-
beddings in a linear fashion. We believe this work had a good impact in the Turkish
NLP community in terms of usage of unsupervised training of word embeddings,
which are frequently and successfully used in English, for Turkish. We believe, un-
supervised models that take into account the rich morphological structure of the
Turkish language would have a high impact on various NLP problems.
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Figure 4.1 Change in accuracies (y-axis) with respect to vector dimensions (x-axis)
for top-1, top-3, top-5, top-10 scorings.
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CHAPTER 5

DOCUMENT CLASSIFICATION OF SUDER
TURKISH NEWS CORPORA

Word embeddings are successfully employed in various Natural Language Processing
tasks, but training them requires large amount of text, which is scarce for Turkish.
In this work, we collected large amounts of articles from two news websites and
tags within web pages are used as labels. Obtained corpora are tested with various
document classification models. Embedding based models performed better than
models with the traditional TF-IDF features. A neural network that simultaneously
learns the word embeddings and document classification performed the best. 1

5.1 Introduction

Document classification is the problem of automatically separating texts into cat-
egories. Some applications are subject classification, spam filtering and sentiment
classification. In this chapter, we focus on subject classification.

Traditional approaches extract features from text using the occurrence statistics
of words and uses Machine Learning models for classifying these features. Term-
frequency Inverse-document-frequency (TF-IDF) features and its variants are the
most used feature family that have successful results for various applications. A
survey for different alterations in feature extraction and ML models is given at
Jindal et al. (Jindal, Malhotra & Jain, 2015)

1Work at this chapter is presented at 26th Signal Processing and Communications Applications Conference
(SIU) (Sen & Yanıkoğlu, 2018)
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As introduced at Chapter-4, word embeddings are representations of words with
low dimensional real vectors and has vast usage on various problems with success.
These vectors are given to the Neural Networks (NN) as input and can be updated
through Back Propagation (BP) algorithm. Goldberg surveyed the usage of NNs on
NLP problems (Goldberg, 2016).

Mikolov et al. showed that unsupervised learning of word embeddings with large
corpora contains semantic and syntactic information about words (Mikolov, Chen,
Corrado & Dean, 2013b). Word embeddings that are learned using unsupervised
models from large unlabeled corpora can be used for initialization of models that
are trained with a small labeled corpus for a specific problem.

There are numerous works in the literature for Turkish text classification. Kilic et
al. introduced two variants of TF-IDF and showed their success on Turkish datasets
(Kilic, Ates, Karakaya & Sahin, 2015). Ay et al. used a genetic algorithm and
introduced a new quality weighting method (Ay, Doğan, Alver & Kaya, 2016). Sahin
showed that SVM classification of document representations that are obtained by
averaging embeddings of words inside the documents overperformed the traditional
TF-IDF based classification (Sahin, 2017). In this chapter, we showed that using
NN as the classifier and updating the embeddings during training of the NN further
improves the performance.

Available Turkish corpora for document classification have been increasing at recent
years. Sahin et al. labeled Turkish Wikipedia articles in an automated fashion and
obtained a corpus with approximately 10 million words (Sahin, Tirkaz, Yildiz, Eren
& Sonmez, 2017). Tufekci et al. collected news articles from 5 different online news
portals and obtained a corpus with 750 documents of 5 categories (Tüfekci, Uzun &
Sevinç, 2012). They analyzed effects of different morphological processing methods
on classification performance and they showed that removing words that are not
nouns from the corpus allowed them to reduce the vector dimension substantially
without sacrificing accuracies. Kilinc et al. collected news articles from 6 differ-
ent online news portals and obtained a corpus of 3600 documents (Kılınç, Özçift,
Bozyigit, Yıldırım, Yücalar & Borandag, 2017).

Successes of word embeddings are highly dependent on the corpus sizes. State-of-
the-art accuracies are mostly obtained with word embeddings that are trained using
very large corpora. Despite the increasing number of available Turkish text corpora,
there is still a lack of very large Turkish text corpora. In this work, we obtained
two large corpora from online news portals. We conveyed experiments for measuring
performances of supervised text categorization models such as TF-IDF with Support
Vector Machines (SVM), word embeddings with Neural Networks (NN) and Latent
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Dirichlet Allocation which is an unsupervised topic modelling method.

5.2 Corpora

We downloaded news articles, opinion columns, art galleries and video sharing web
pages from two online news portals, namely Sabah2 and Cumhuriyet3, and text are
extracted from these web pages along with category, date, title information.

From Sabah, approximately 426.000 web pages obtained between dates 2010-January
and 2017-July and pages with number of words less than 10 are discarded which
resulted in 420513 pages in total. There are 4 different categories and descriptive
statistics are given at Table-5.1. Titles are not included in these statistics as well as
in the experiments.

From the Cumhuriyet portal, approximately 463.000 pages are obtained with dates
up to 2017-September. Pages that are published before the year 2014 do not con-
tain category information and they are discatded. The remaining number of pages
with category information is approximately 273.000. After discarding the text with
the number of words less than 10, 268.784 documents remained that belong to 14
different categories. Descriptions of the Cumhuriyet corpus is given at Table-5.2.

Table 5.1 Statistics for the Sabah Corpus

Category Num. of Documents Num. of Words
Total Train Test Total Average

gündem 143,842 117,019 26,823 35,749,880 248.54
yaşam 123,086 108,202 14,884 22,878,732 180.86
ekonomi 85,485 75,512 9,973 22,261,600 247.38
yazarlar 68,100 60,683 7,417 16,335,364 239.87
Total 420,513 361,416 59,097 95,494,110 227.09

We used documents published before September, 1, 2016 as the training set and
rest of the documents as the test set. Suffixes that are added to the words with
apostrophe are included in the vocabulary, single letter words and numbers are
excluded from the vocabulary 4.

2www.sabah.com.tr

3www.cumhuriyet.com.tr

4Corpora are publicly available at: https://github.com/suverim/suder
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Table 5.2 Statistics for the Cumhuriyet Corpus

Category Num. of Documents Num. of Words
Total Train Test Total Average

türkiye 84,741 56,140 28,524 22,829,220 269.39
yazarlar 33,835 29,694 4,141 16,663,717 492.49
video 33,409 23,686 9,723 2,007,691 60.09
spor 31,396 24,627 6,730 7,240,974 230.63
dünya 21,005 14,684 6,152 4,416,708 210.26
siyaset 15,969 11,274 4,686 6,409,811 401.39
foto 14,302 9,729 110 248,871 17.40

ekonomi 8,187 5,811 2,356 2,520,473 307.86
teknoloji 7,913 5,089 2,810 1,734,268 219.16

kültür-sanat 6,506 4,680 1,806 2,664,020 409.47
yaşam 4,833 3,931 886 918,754 190.10
sağlık 2,573 2,047 514 863,208 335.48
eğitim 2,380 1,544 805 744,396 312.77
çevre 1,735 1,081 607 477,811 275.39
Total 268,784 194,017 69,850 69,739,922 259.46

5.3 Methods

5.3.1 TF-IDF ve Support Vector Machines

Term Frequency-Inverse Document Frequency (TF-IDF) features represent each doc-
ument with a fixed and large dimensional vector. Each dimension corresponds to
a word in the vocabulary and values are proportional to the occurrence frequency
of the corresponding word in the document. Let cdt be the number of occurrences
of the term-t in document-d and let Nd be the number of words in document-d.
Term frequency (TF) is calculated as follows: tf(d,t) = cdt/Nd. To eliminate the
disturbing effect of very frequent words that do not contain information about the
categories, such as stop words like "a" or "the", TF is multiplied by the Inverse
Document Frequency:

(5.1) tdf(t) = log
( 1 +D

1 +mt

)

where, D is the number of documents, and mt is the number of documents that
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contain the term t. Then, TF-IDF is calculated as follows: tftdf(d,t) = tf(d,t)×
tdf(t).

We used single words as terms in this work as opposed to including word phrases.
We experimented with different values for the number of TF-IDF features ranging
from 1000 to 50000. Term vectors are normalized using l1 normalization. Obtained
features are modeled using Support Vector Machines (SVM). We used the linear
SVM learned with primal formulation since learning time of linear SVMs are much
smaller than non-linear SVMs but the accuracy values are close to the non-linear
SVMs when the number of examples is much larger than the number of features
(Keerthi & DeCoste, 2005). "One-vs-all" method is used as the multi-class modifi-
cation of the original binary SVM formulation (Rifkin & Klautau, 2004).

5.3.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is an unsupervised probabilistic model for the
topic modelling problem (Blei, Ng & Jordan, 2003). In topic modelling, each doc-
ument receives a topic distribution instead of a hard classification into one of the
categories. In LDA, each word in a document is sampled from a single topic that is
sampled from the topic distribution of the document and each topic has a distribu-
tion over the vocabulary. Number of topics is determined apriori.

In this work, we tried different number of topics (K) through experiments. On-
line LDA training method, that uses a Variational Bayes method for inference, is
used since the corpus is large and Online LDA works faster than the regular LDA
(Hoffman, Bach & Blei, 2010)5. We used the purity score for measuring the classifi-
cation performance of the LDA topic model. After training the model, each topic is
mapped to a specific category. For finding this mapping, topic distribution of each
document is calculated (γdk: probability that document-d is a sample from topic-k);
and each topic is assigned to the category with the maximum empirical expected
probability:

(5.2) mk = argmax
c

1
|Dc|

∑
d:d∈Dc

γdk

5LDA code obtained from: github.com/wellecks/online_lda_python
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where, Dc is the document set of class-c; and mk represents the class of topic-k.

5.3.3 Word Embeddings and Support Vector Machines

Word embeddings that are learned from large corpora in an unsupervised setting
are proven to contain semantic and syntactic information about the words (Mikolov
et al., 2013b; Sen & Erdogan, 2014). In this work, we used the skip-gram model that
is defined at Chapter-4 (Mikolov et al., 2013b; Mikolov, Sutskever, Chen, Corrado
& Dean, 2013b). We used the Negative Sampling objective function.

We used the average of the word embeddings of the words in the document to obtain
the document representation vector. Then document representations are fed into
SVM model with the labels of the dataset. This method was shown to be successful
for Turkish in the work of Sahin et al. (Sahin, 2017).

5.3.4 Word Embeddings and Neural Networks

In this method, we used a Neural Network (NN) for the modelling with the word
embeddings. Let wt ∈ Rd be the word embedding of a word t and let f : Rd→ RC

be a NN, where C is the number of classes. Then the classification of a document
Sd =

{
t1, . . . , tNd

}
is formulated as follows:

(5.3) yc(d) = f

 1
|Sd|

∑
t∈Sd

wt



where, yc(d) is the score of class-c for the document-d. Sums of least-squares function
is used as the objective:

(5.4) Φ = 1
CD

D∑
d=1

C∑
c=1

(yc(d)− δdc)2

where, δdc is 1 if document-d belongs to class-c, 0 otherwise; and D is the total
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number of documents in the training data. Unlike previous work that uses this
setting such as (Sahin, 2017), we let the word embeddings to be updated during
training with the Back-Propagation algorithm. This helps the word embeddings
to be more discriminative features for separating document labels and results in
better accuracies. It should be noted that, word embeddings that are learned in
an unsupervised manner using skip-gram model are used as the initialization of the
word-embedding layer of the NN.

5.4 Experiments

Some preprocessing steps that we applied are; lowercasing, separating suffixes that
are added appended to words using apostrophe and removing them, discarding
single-letter words, and discarding numbers. Stop words that are collected from
various online resources6 7 8 are also discarded. Number of stop-words that are
listed is 553.

Zemberek toolkit is used for morphological processing (Akın & Akın, 2007). After
morphological analysis, option with the longest root is chosen and all suffixes are
discarded. Choosing longest root is shown to obtain better results in the literature
before (Cataltepe, Turan & Kesgin, 2007; Sen & Erdogan, 2014; Tüfekci et al., 2012).

5.4.1 Parameters

We experimented with different values for the number of TF-IDF features ranging
from 1000 to 50000. TF-IDF features are extracted using Gensim toolkit (Ře-
hůřek & Sojka, 2010). Vocabulary ordering is based on the number of occurrences
of the words in the corpora. SVM model is implemented using the scikit-learn
Python library (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel,
Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot

6https://github.com/ahmetax/trstop/blob/master/dosyalar/turkce-stop-words

7https://github.com/crodas/TextRank/blob/master/lib/TextRank/Stopword/turkish-stopwords.txt

8https://github.com/stopwords-iso/stopwords-tr/blob/master/stopwords-tr.txt
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& Duchesnay, 2011) and we used the default penalty parameter (C). Results of
TF-IDF and SVM modeling for various vocabulary sizes are given at Table-5.3

Table 5.3 Accuracies (%) of TF-TDF + SVM for Various Vocabulary Sizes

Corpus/Voc. Size 1K 5K 10K 20K 50K
Sabah 84,29 86,22 86,41 86,52 86.50

Cumhuriyet 69,12 71,71 71,81 71,72 71,69

We observe that a vocabulary size around 10.000 and 20.000 results in relatively
better accuracies and increasing this size further does not yield performance im-
provement. With the light of these results, we used 10.000 for the vocabulary size
of LDA training which is explained next.

Online Latent Dirichlet Allocation has a parameter τ that is used for changing the
affect of first documents used in the training on the model and we used a τ value of
1024. We used a decay factor (κ) of 0.7, a batchsize of 100 and number of epochs
was 3. Various values for the number of topics are used but they are all greater than
or equal to the number of classes.

We used Gensim toolkit for unsupervised training of word embeddings (Řehůřek &
Sojka, 2010). We used a context length of 20, and number of negative samples per
example was 5, and number of epochs was 20. We tried 100, 200, 400 and 600 for
the vector sizes. We discarded words that appear less than 10 times in the corpora
from the dataset and the final vocabulary sizes are 70.118 for the Cumhuriyet corpus
and 60.718 for the Sabah corpus.

We used a Neural Network with 2 hidden layers and 50 nodes at each hidden layer.
We used ReLu activations for hidden layers and the sigmoid function for the output
layer. Optimization is done by RMSprop learning algorithm and the learning rate
is 0.01. Number of epochs is chosen to be 10, and the batchsize is chosen to be 100.
Implementation is done by the Pytorch deep learning library (Paszke et al., 2017).

5.4.2 Results

Results are given at Table-5.4. LDA model which does not use any label resulted
in the worst accuracies (purity score) as expected. Increasing the number of top-
ics improved the performance for the Sabah corpus; however, for the Cumhuriyet
corpus, best accuracy is obtained by the number of topics that is equal to the
number of classes. We attribute this behaviour to the high number of classes for
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the Cumhuriyet corpus and a number of classes of 4 for the Sabah corpus; so the
variations in topics of a single class is expected to be much higher for the Sabah
dataset.

For supervised models, TF-IDF with SVM and word embeddings with SVM mod-
els resulted in similar accuracies. However, increasing the embedding dimensions
improves the performance and surpasses the performance of the TF-IDF model.
This behaviour does not hold for the TF-IDF feature as increasing the feature size
more than 20.000 did result in performance loss as shown in Table-5.3. This can
be attributed to the phenomenon called "Curse of Dimensionality" and this result
supports the benefit of low dimensional nature of word embeddings.

We used vocabulary sizes of approximately 70.000 and 60.000 for the NN models with
word embeddings for the Sabah and the Cumhuriyet corpora respectively. Updating
word embeddings through Back-Propagation resulted in higher accuracies than the
SVM model with word embeddings and best results are obtained with these meth-
ods (%88.28 ve %74.31 for the Sabah and the Cumhuriyet datasets respectively).
Another observation is that accuracies increase as embedding dimensions decreases
and this shows that topic/category information can be embodied with very low di-
mensions of features using word embeddings and using traditional high dimensional
vector-space representations such as TF-IDF would be cumbersome in terms of both
accuracies and computational requirements.

Table 5.4 Accuracies (%). K values of the LDA are for the Sabah and the
Cumhuriyet corpora respectively.

Method Sabah Cumhuriyet
LDA (K = 4 / K = 14) 65.41 47.94
LDA (K = 10 / K = 20) 67.60 43.31
LDA (K = 20 / K = 30) 72.08 45.37

TF-TDF (10K Voc. size) + SVM 86.41 71.81
WE (d= 100) + SVM 85.47 70.34
WE (d= 200) + SVM 86.16 71.55
WE (d= 400) + SVM 86.72 72.24
WE (d= 600) + SVM 86.89 72.50
WE (d= 100) + NN 88.28 74.31
WE (d= 200) + NN 87.93 73.64
WE (d= 400) + NN 87.94 72.29
WE (d= 600) + NN 87.53 72.97
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5.5 Conclusion

In this chapter, we introduced two new Turkish text corpora with category labels and
publicly share them. We applied some text categorization models and reported the
results. We observed that NN with average word embedding for document represen-
tations where embeddings are updated simultaneously with the Back-Propagation
algorithm resulted in the best performance.

We believe that LDA, which does not use label information, has also promising
results for the text categorization problem. This implicates that unsupervised or
semi-supervised models should be worked on considering the increasing amount of
text data and labeling large datasets is not as feasible, especially with the large
volumes of new text data being produced daily in recent years.
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CHAPTER 6

COMBINING LEXICAL AND SEMANTIC
SIMILARITY METHODS FOR NEWS

ARTICLE MATCHING

Matching news articles from multiple different sources with different narratives is a
crucial step towards advanced processing of online news flow. Although, there are
studies about finding duplicate or near-duplicate documents in several domains, none
focus on grouping news texts based on their events or sources. A particular event
can be narrated from very different perspectives with different words, concepts, and
sentiment due to the different political views of publishers. We develop novel news
document matching method which combines several different lexical matching scores
with similarity scores based on semantic representations of documents and words.
Our experimental result show that this method is highly successful in news matching.
We also develop a supervised approach by labeling pairs of news documents as
same or not, then extracting structural and temporal features. The classification
model learned using these features, especially temporal ones and train a classification
model. Our results show that supervised model can achieve higher performance and
thus better suited for solving above mentioned difficulties of news matching. Some
of the techniques developed in this work can be used in lexical analysis of a deception
video. 1

1Work at this chapter is presented at 2nd International Data Science Conference – iDSC2019 (Sen, Erdinc,
Yavuzalp & Ganiz, 2019)
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6.1 Introduction

The number of news from different sources and perspectives has dramatically in-
creased due to the ever increasing variety of internet news portals and the rapid
sharing of news on social media. A necessity for organizing and summarizing vast
amounts of news items has emerged. Modelling news events from multiple sources
would be useful for summarizing stories of long term event sequences as well as de-
tecting false news. A necessary step of this news modelling, that we focus on in this
work, is matching news articles from different portal sources that correspond to the
same event. This is an important problem since a particular event can be narrated
from very different perspectives with different words, concepts, and sentiment due
to the different political views of publishers in a highly polarized society.

Although, there are studies about finding duplicate or near-duplicate documents
in several domains, none focus on detecting same news texts which are expressed
differently. News matching can be considered as a sub-problem of semantic simi-
larity which aims to model the similarity of different textual elements considering
the meaning of those elements (Guo, Fan, Ji & Cheng, 2019; Liu, Zhang, Niu, Lin,
Lai & Xu, 2018). Semantic similarity is mostly studied for the information retrieval
problems such as question answering, text summarization and web search. These
problems, although numerous models have been proposed and applied to them (Guo
et al., 2019; Hu, Lu, Li & Chen, 2014; Pang, Lan, Guo, Xu, Wan & Cheng, 2016),
are fundamentally different than the news matching problem in two ways: First, at
least one of the two items in the pair are short text documents, such as questions,
queries, summaries, etc. However, news articles usually are longer. Second, un-
like in semantic matching problems, queries are commutative in the news matching
problem, i.e. both items in the query pair are news articles.

Despite various architectures and models on different semantic similarity problems,
matching long text documents is still a challenging problem (Liu et al., 2018).

We approach the problem from several aspects. First, we investigate the perfor-
mance of simple lexical matching scores for the news matching problem. We argue
that, even though two matched news articles have different narratives, the number
of keywords and entities that define the event of concern is reasonably high for long
articles and that is in favor for the lexical matching based scoring methods. We
experiment on various lexical matching methods, and propose a value for thresh-
old parameter. Following this we show an improved performance using semantic
similarity which leverage word embeddings. In addition to this, combining lexical
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matching scores and cosine similarity scores of different word embedding methods,
namely Word2Vec (Mikolov et al., 2013b) and FastText (Bojanowski, Grave, Joulin
& Mikolov, 2016,1; Joulin, Grave, Bojanowski & Mikolov, 2016), improves the per-
formance further. These were unsupervised methods.

As mentioned before, some matched news articles may have different level of details
about an event. This imbalance creates noise for the lexical matching scores. To
alleviate this problem, we obtain additional scores between other fields of the two
news articles, namely title and spot. We show improved performance using these
additional field scores.

We also develop with supervised classification models using similarity scores as fea-
tures along with other features such as the time difference and length difference of
news articles. These supervised models seems especially effective.

In Section-6.2 we summarize some previous work. In Section-6.3 we define the
problem, explain the unsupervised and supervised methods that we applied. In
Section-6.4 we first describe the dataset that we collected, define the experimental
setup, present results and discuss them. We give concluding remarks and future
work at Section-6.6. 2

6.2 Related Work

As discussed at Section-6.1, most of the existing works on semantic similarity focus
on problems such as question answering, text summarization and search (Guo et al.,
2019). Traditional methods exploit lexical databases such as WordNet (Corley &
Mihalcea, 2005), or any other structured semantic knowledge sources as for the
biomedical text matching problem (McInnes & Pedersen, 2013; Pedersen, Pakhomov,
Patwardhan & Chute, 2007), to measure the semantic similarity of words. However,
using such external lexical resources is not practically applicable to our problem,
because technical terms and named entities in the news items are of vast domain
and evolve in time. In addition, high quality WordNet databases are not available
in all languages.

More recent methods of semantic similarity use word embeddings that are obtained
by unsupervised training on large corpora. Kenter et al. apply BM25 algorithm

2The dataset and codes are available at: https://github.com/donanimhaber/newsmatching
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(Robertson, Zaragoza & others, 2009) to word embeddings, along with other meta-
features, for semantic similarity of short texts (Kenter & De Rijke, 2015). We com-
pare with this algorithm in our experiments. Kusner et al. introduce Word Mover’s
Distance (MVD) which casts the dissimilarity of two sets of word embeddings as
Earth Mover’s Distance transportation problem, where each word embedding from
one document moves to embeddings in the other document with some proportions
and the minimum distance is considered as the dissimilarity (Kusner, Sun, Kolkin
& Weinberger, 2015). They report that removing one constraint in the optimization
problem results in slightly lower performance but the computation time is highly
reduced. We compare with this similarity algorithm, which they call Relaxed WMD
(RWMD), in our experiments.

Recent supervised models mostly employ Deep Neural Network (DNN) architectures
to achieve better accuracy on these tasks than the traditional methods (Hu et al.,
2014; Pang et al., 2016; Yin, Schütze, Xiang & Zhou, 2016). Pang et al. obtain
a matrix with word embeddings that contains interactions of word pairs among
the two documents and treat the matrix as an image to feed into a Convolutional
Neural Network (CNN) with dynamic pooling layer (Pang et al., 2016). Hu et al.
uses a similar architecture with max pooling and apply their model to various Nat-
ural Language Processing (NLP) problems such as sentence completion, matching
a response to a tweet, etc. (Hu et al., 2014). The only work, to the best of our
knowledge, that deals with matching long texts of news events is the work of Liu et
al. (Liu et al., 2018). For the purpose of efficient learning with Neural Networks for
long documents, they first embed these long documents into a concept graph, where
nodes in the graph represent different concepts. Each sentence in the document is
assigned to a different concept. Then, graph pairs are fed into a Siamese Encoded
Graph CNN. They obtain better results for the news matching problem than the
general similarity matching models.

These DNN models perform poorly in our problem because they require large
amounts of labeled data, whereas in our dataset a small (≈ 2K) number of news
articles are labeled. Our trials with smaller DNN models performed poorly on our
dataset, therefore we discard these results from the Experiments Section.
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6.3 Method

6.3.1 Problem Definition

We tackle the problem of matching news with the same or very similar content of
different portal sources. Document matches are postulated as news stories depicting
the same event. We formulate the problem as inputting a pair of documents to the
model and outputting a binary decision as “same” or “different”.

Each document has the following fields:

1.1 Title: Heading of the news story.

1.2 Spot: Sub-heading of the story.

1.3 Body: Details and the main content of the story.

1.4 Date-time: Last modified date and time of the story.

We assume that some fields can be empty for some documents. We created another
field named “text” that is the concatenation of “title”, “spot” and “body” fields and
used this field instead of “body”. So “text” field is all the textual content of the
document, and we did not use the “body” since it is usually very close to “text”
because of the short lengths of “title” and “spot”.

Textual fields (titlei, spoti and texti) of a document doci are sequences of words,
for example S(i)

title = [w0,w1, . . . ,wN ].

First we describe our text based methodologies for unsupervised scoring of document
pairs. In the following section, we describe the supervised setting and methods.

6.3.2 Unsupervised Scoring

Given two documents, doc1 and doc2, we calculate four different similarity scores for
all three fields “title”, “spot” and “text”. Three of these scores are based on lexical
matching. Another scoring uses word embeddings to capture semantic similarity.

72



6.3.2.1 Lexical Matching Scores

Jaccard Similarity Coefficient (JSC) (Pandit, Gupta & others, 2011) with unique
words in the field is obtained as follows:

(6.1) JU(fieldi,fieldj) =

∣∣∣∣U (i)
field∩U

(j)
field

∣∣∣∣∣∣∣∣U (i)
field∪U

(j)
field

∣∣∣∣ ,

where U (i)
field is the set of unique words in the sequence S(i)

field, |A| is the cardinality
of a set A, ∩ is the intersection operator and ∪ is the union operator.

We calculate JSC also with all words as opposed to unique words:

(6.2) JC(fieldi,fieldj) =

∣∣∣∣C(i)
field∩C

(j)
field

∣∣∣∣∣∣∣∣C(i)
field∪C

(j)
field

∣∣∣∣ ,

where C(j)
field is obtained by enumerating words by the occurrence count in the field.

For example, for a field with words Sfield = [“the”,“cat”,“sat”,“on”,“the”,“mat”],
the counted field set is Sfield = {“the-1”,“cat-1”,“sat-1”,“on-1”,“the-2”,“mat-1”}
at which the second occurrence of the word “the“ is now different than the first
occurrence.

One issue we observed with these scorings is that for news pairs that give substan-
tially different amount of details about an event we obtain poor JU and JC scores.
Therefore we define another scoring function that replaces the denominator of the
JU function with the length of the short document field:

(6.3) JS(fieldi,fieldj) =

∣∣∣∣U (i)
field∩U

(j)
field

∣∣∣∣
min

(∣∣∣∣U (i)
field

∣∣∣∣ , ∣∣∣∣U (j)
field

∣∣∣∣) ,

Even though we expect that JS would result in better similarity scores for hand
matched pairs with a large difference in length, it may result in poor performance
on other pairing cases, resulting in lower performance on overall dataset. But, we
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keep this scoring to be used as a feature with supervised classification models.

6.3.2.2 Word Embedding Scores

We use two different word embedding models: Word2Vec and FastText.

Word2Vec is a continuous word representation where each word is mapped to a low
dimensional real vector (Mikolov et al., 2013b). We use the Skip-gram model which
learns from large textual corpus with the objective of predicting the context words,
i.e. nearby words, given an input word. A large unlabeled news articles corpus is
used to train the model. After training, we obtain the vector of a given document
by averaging vectors of the words contained in the document.

FastText is another continuous word representation method. Unlike previous unsu-
pervised word embedding models such as Word2Vec (Mikolov et al., 2013b), Doc2Vec
(Le & Mikolov, 2014), Glove (Pennington et al., 2014); FastText learns embeddings
of character n-grams in addition to the word n-grams using skip-gram model (Bo-
janowski, Grave, Joulin & Mikolov, 2017b). It obtains the representation of a word
by averaging over character n-gram vectors and the word vector. For example vec-
tor of the word “the” is obtained by averaging over the word vector “the” and the
character n-gram vectors of “<t”, “th”, “he”, “e>”, “<th”, “the”, “he>” if only
2-grams and 3-grams are used.

Using character n-gram embeddings paves the way to dumping syntactic information
into the representative vectors. This may particularly beneficial for morphologically
rich languages such as Turkish, Finnish, and Hungarian. In addition, it helps to
deal with syntax errors and typos which occurs frequently in non-editorial texts.

Since the number of n-grams would be enormous for a reasonably large corpus and
a reasonable selection of n in the n-gram such as 3 to 6; memory requirement of this
algorithm would be very high. Mikolov et al. deal with this problem by randomly
grouping n-grams using a hash function and using the same vector for n-grams that
are in the same group (Bojanowski et al., 2017b).

FastText obtains the document vector by first calculating word vectors, normalizing
them such that their l2 norm is 1 and then averaging them.

We use the cosine similarity to obtain the word embedding score of a pair of docu-
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ment fields:

(6.4) WE(fieldi,fieldj) = vT
i vj

‖vi‖‖vj‖
,

where vi is the FastText (FT) or Word2Vec (WV) vector of fieldi and ‖.‖ is the l2
norm.

6.3.2.3 Thresholding

We obtain an optimal threshold for each scoring function and for each field using a
labeled dataset of news articles. We use the threshold for which precision is equal to
recall since the number of negative examples, i.e. pairs that do not match, is much
higher than the number of positive examples. This corresponds to the threshold for
which the number of false negatives (falsely classified as negatives) is equal to false
positives (falsely classified as positives).

6.3.2.4 Combination with Weighted Averaging

We combine different scores by weighted averaging. First, we normalize each score
using the corresponding threshold and the standard deviation:

(6.5) JUnorm(fieldi,fieldj) = JU(fieldi,fieldj)− thrJU-field
std({JU(fieldi,fieldj)}(i,j)∈X)

where X contains the index pairs in the training data, thrJU-field is the optimal
threshold for the method JU and the field field. Normalized scores for other fields
are computed similarly. After normalization of individual scores, we obtain the

75



combined score as follows:

(6.6) COMB(fieldi,fieldj) = 1
5

∑
m

∈{JU,JS,JC,FT,WV}

∑
f

∈{title,spot,text}

wfs
(i,j)
fm

where wf is the weight of field f independent of the scoring method, s(i,j)
fm is the

normalized score of documents i and j with the method m for the field f , such as
JUnorm(titlei,titlej) for field title and method JU. We choose the weights manually
proportional to the average lengths of the fields in the training data, i.e. wtitle <

wspot < wtext and weights sum to one.

Optimal threshold for the combined score is obtained similar to those of previous
scoring methods. However, since the normalized scores have the optimal threshold
of 0, the resulting optimal threshold for the combination is very close to 0.

6.3.2.5 Comparision of Semantic Similarity Methods

We compare with two similarity scoring methods which employ word embeddings.
First one is the Word Mover’s Distance (WMD) (Kusner et al., 2015) which mini-
mizes the following constrained optimization problem:

min
T≥0

∑
i,j

Ti,jc(i, j)(6.7)

subject to∑
j

Tij = di ∀i(6.8)

∑
i

Tij = d′j ∀j(6.9)

where, c(i, j) is the Euclidean Distance between embeddings of the ith and jth unique
words of the first and second document respectively, di and d′j are the frequencies
of the corresponding words in the document. After finding optimal T, the distance
between documents is computed by ∑

i,j Ti,jc(i, j). Since solving above problem
is computationally difficult, Kusner et al. relaxed this optimization problem by
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removing one of the constraints, obtain two easy-to-optimize problems one for each
constraint (Relaxed WMD). Maximum of the two distances is used as the final
distance. They show that RWMD obtains similar classification results with the
WMD, therefore we obtained results using RWMD.

Kenter et al. (Kenter & De Rijke, 2015) uses the following BM25 similarity algorithm
(Robertson et al., 2009) for short texts of S1 and S2:

(6.10) f(S1,S2) =
∑

w∈S1

IDF(w) sem(w,S2)(k1 + 1)
sem(w,s) +k1(1− b+ b |S2|

L )

where, IDF(w) is the Inverse Document Frequency, L is the average document
length, |S1| ≥ |S2|, b and k1 are meta-parameters and sem is defined as follows:

(6.11) sem(w,S) = max
w′∈S

vT
wvw′

||vT
w|| ||xw′||

where, vw is the word embedding of the word w.

6.3.3 Supervised Classification

We use the scores described in previous section as features to be fed into a classifier.
In addition, we extract length features and time features. For length features, we
use mainly two inputs: l1 and l2 which represent the lengths (number of words) of
fields of the document pair. We extract the following length features for each field
(“title”, “spot”, “text”):

• Minimum of lengths: min(l1, l2)

• Maximum of lengths: max(l1, l2)

• Absolute value of difference of lengths: |l1− l2|

• Absolute value of the difference divided by maximum of lengths |l1 −
l2|/max(l1, l2)

• Maximum length divided by the minimum length: max(l1, l2)/min(l1, l2)
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In addition to the text length features, we extract time features which are the dif-
ference of the last modified times of the two news articles. We extract two features
corresponding to time difference in hours and in days. These features provide sig-
nificant information to the classifier since news articles are published mostly on the
same day with the event of subject.

We have 16 score features, 15 textual length features and 2 time features which
amounts to a total of 33 features. These features are then fed to various classifiers
including Random Forest (RF), Support Vector Machines (SVM) and Multilayer
Perceptron (MLP). Majority Voter (MV) classifier combination results are also re-
ported.

6.4 Experiments

In subsequent sections we describe the dataset, preprocessing of the texts, parame-
ters and details of the implementation and give results and discuss them.

6.4.1 Labeled News Dataset

We evaluate the methods on a news articles corpus in Turkish whose URLs are
obtained manually by searching for the articles of the same events on different news
portals. Then we crawled the web pages to obtain the fields “title”, “spot”, “body”
and “date-time”.

There are in total 20 different news portals and 2049 news items in the dataset. News
articles span approximately 6 months, but majority of the articles are in a 1 month
period. We obtained 693 groups of news where news in the same group correspond
to the same event, i.e. positively labeled. Each group contains 2.75 documents
on average. We obtained a total of 1858 positive examples and randomly choose
15,000 negative examples. Our dataset has a total of 16858 news texts. Average
numbers of words in the dataset are 6.94±2.82, 25.72±13.86 and 205.4±223.72 for
the fields title, spot and body respectively where second arguments are the standard
deviations.
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We also use an unlabeled news corpus in Turkish of size ≈ 4.7 million news texts for
training the Word2Vec and FastText models. This unlabeled news corpus does not
contain news texts of the labeled dataset. We apply the same preprocessing steps
on the unlabeled as with the labeled dataset.

6.4.2 Preprocessing

We apply the following preprocessing steps to all text fields:

• Escape html character references.

• Remove html tags.

• Lowercase.

• Sentence tokenizer using NLTK toolkit (Bird, Loper & Klein, 2009).

• Lemmatization - Morphological analysis and disambiguation with Zemberek
toolkit (Akın & Akın, 2007) to get lemmas.

• Stopword removal.

6.4.3 Settings

We use vector dimension of 100 for all word embeddings methods. For Word2Vec,
gensim toolkit is used with skip-gram model and negative sampling (Řehůřek &
Sojka, 2010). Context window length parameter is chosen as 5, minimum count for
filtering out words is set to 5 and training performed for 5 epochs. There were no
improvement on the loss value after a few epochs.

For the FastText model; minimum count for filtering out words is set to 5, context
window length parameter is chosen as 5, bucket size is chosen to be 2,000,000 and
from 3-grams up to (including) 6-grams are used for character n-gram embeddings.
Training performed for 100 epochs.

For combination of different fields and lexical matching methods as in (6.6), we used
the following weights: wtitle = 0.1, wspot = 0.3, wtext = 0.6.
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Scores for missing fields are set to the mean of the corresponding field’s scores in
the dataset.

We used Random Forest (RF), Multilayer Perceptron (MLP) and Support Vector
Machines (SVM) for the supervised classification. Models are implemented using
the sklearn toolkit (Pedregosa et al., 2011). For the RF, 100 trees are used with
2 as the minimum samples per split, 2 as the minimum samples per leaf, and Gini
impurity as the split criterion. For MLP, we used 2 layers with 500 nodes each,
adam solver, batchsize of 100 and Relu activations. Training is stopped when the
loss is not decreased for at least 1e− 4 in 10 epochs. For the SVM classifier, we
used RBF kernel and applied grid search for the penalty parameter (C) and the
RBF kernel parameter (γ). We searched in {1e− 7,1e− 5,1e− 3,1e− 1,1,10} and
{1,10,100,1000,10000,100000} for γ and C respectively.

We normalized all the classifier features to the range [0,1]. 10-fold Cross Validation
(CV) are applied to test the performances. For the feature that divides maximum
length by the minimum, we used the maximum of the feature along the dataset if
one of the field is missing and used 1 if both fields are missing.

For the BM25 algorithm, we applied grid search for the meta-parameters b and k1

in {0.8,1,1.2,1.5,2,2.5,5,10,20,50} and {0,0.001,0.01,0.1,
0.2,0.5,0.75,0.9,1} respectively. For the RWMD method, we calculated Inverse
Document Frequencies (IDF) from the large unlabeled news corpora.

6.5 Results

Results for lexical matching based and word embedding based similarity scoring
along with compared algorithms are shown at Table-6.1. Here, FT stands for Fast-
Text, WV stands for Word2Vec, COMB. is the average of different scores as in
(6.6).

We obtained scores for all fields title, spot, text along with the combination of scores
for these three fields, which is depicted with Weighted Av. in the table, similar to
using (6.6) except with only the related method. Combined results are also computed
similarly.

Our results show that in general lexical matching works better than word embedding
based similarity methods, except for the title field for which FastText works better.
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(a) JU-text (b) FT-text

(c) FT-title (d) CB (Combined)

Figure 6.1 Score histograms of negative and positive pairs for some methods and
fields

Table 6.1 F1 Results of Unsupervised Methods for Different Fields

Method title spot text Weighted Av.
RWMD-FT 0.8299 0.9386 0.9263 0.9645
RWMD-WV 0.8465 0.8762 0.9440 0.9758
BM25-FT 0.7438 0.8665 0.8881 0.9333
BM25-WV 0.7508 0.8741 0.8994 0.9413
Cosine FT 0.8407 0.9182 0.9273 0.9537
Cosine WV 0.8423 0.9225 0.9177 0.9403
JU 0.8328 0.9535 0.9639 0.9833
JS 0.8280 0.9476 0.9459 0.9839
JC 0.8339 0.9533 0.9709 0.9839
COMB. (FT,WM) 0.8466 0.9241 0.9225 0.9499
COMB. (JU,JS,JC) 0.8341 0.9532 0.9817 0.9887
COMB. (ALL) 0.8617 0.9532 0.9726 0.9833
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This shows that as the length of the text decreases, importance of semantic infor-
mation increases for text matching. Another useful observations is that FastText
achieves higher performance than the Word2Vec model.

Compared algorithm RWMD outperforms cosine similarity of word embeddings, but
performs worse than the lexical matching based results. BM25 algorithm does not
work well even though extra IDF information is incorporated.

Even though title and spot fields result in lower scores than the text field, score
level combination of three fields (all in the table) achieves higher performance than
the text field itself, even though text field already contains the title and spot in its
content. This is expected since some news pairs have a high difference in the amount
of details and titles or spots may result in noise-free match.

Among different lexical matching methods (JU, JS, JC ), JU performs the best
although results are close to each other. Results for score level combination are
depicted with COMB. at the table. Best performing method is the score level
combination of lexical matching methods, i.e. JU, JS and JC with the weighted
averaging of fields. However, word embedding based combination works better for
the title field.

We present histograms of scores of negative and positive pairs for some methods
and fields at Figure-6.1. Note that we use the right y-axis for positive class for
clear visualization since the number of positive examples are much lower in the
dataset. We observe that lexical matching based methods result in closer to uniform
histograms than word embedding based methods. However, the combined method
yields more Gaussian like distribution for the positive examples. We also see higher
interference between the positive and negative classes at the title histogram than
the text histogram of FT.

Table 6.2 Results for Supervised Methods

Method F1 Prec. Recall Acc.
WE-MLP 0.9895 0.9919 0.9871 0.9977
WE-RF 0.9879 0.9876 0.9882 0.9973
WE-SVM 0.9922 0.9935 0.9909 0.9983
WE-MV 0.9922 0.9925 0.9919 0.9983
MLP 0.9925 0.9935 0.9914 0.9983
RF 0.9911 0.9914 0.9909 0.9980
SVM 0.9919 0.9935 0.9903 0.9982
MV 0.9930 0.9941 0.9919 0.9985

Results of supervised classifications are depicted at Table-6.2. We experimented
using only word-embedding based similarity scores (FT and WV) along with addi-
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tional features to test the benefit of lexical matching based scores in the supervised
setting. We see improvements for all of the classifiers which shows the benefit of
lexical matching scoring for news matching.

All supervised methods result in better performance than the best unsupervised
score thresholding method (depicted as COMB. (all) at Table-6.1).

The final F1 score is 0.9930 which corresponds to falsely classifying 26 pairs in total.
Some of these errors are pairs with the same narratives but for different events,
such as lottery results, weather reports, etc. Another misclassification pattern is the
huge difference in details between two news articles, such as a document with one
sentence v.s. document with more than 100 sentences. In these cases, title matching
scores are not high enough to balance the text matching scores.

6.6 Conclusion

In this chapter, we propose novel lexical matching based similarity calculation meth-
ods for matching long text articles of same events with different narratives. Since
long articles contain higher number of event related keywords and entities than short
text documents such as queries or questions, we show that, lexical matching based
scores are able to obtain a fine discrimination between matched and unmatched
pairings, even without the use of labels. We also proposed that obtaining scores for
different fields such as title and spot of the news article would make the model more
robust. Using these scores as features to be fed to classifiers, together with other
length and time based features, improved the performance even further.

As a future work, we plan to work on matching two sets of news as opposed to
single news, so that we can benefit from previous matchings. Another effort would
be online learning of the model and testing the system in real-time.

83



CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In Chapter 2, we presented our work on multimodal deception detection evaluated
our model both qualitatively and quantitatively on a real-life high-stakes dataset.
The dataset contains videos of subjects from public trials. We convert the dataset to
a subject-level setting rather than a video-level setting and we argue that this setting
is more appropriate to the deception detection problem. We extracted features
from verbal, acoustic and visual modalities and built classifiers using them. We
propose to use new acoustic features, namely f0-mean, f0-std and speech/silence
length histograms. Our results indicate that, combining different modalities at the
score level results in an accuracy of 84.18%. We also analyzed the effects of individual
visual gestures and word usages on deception decision. We reported that these cues
of deception are in line with the deception detection literature.

In Chapter 3, we introduced a novel approach for single channel source separation
using a deep neural network for learning the manifolds of sources. The network is
trained discriminatevly for classifying the source type given the utterance using the
training data of individual sources. In the separation phase, the trained DNN is used
in an energy minimization framework for enforcing each estimated source signal to
reside in their corresponding manifold while additional loss functions ensure that
the weighted sum of the sources is close to the input mixed signal. We initialize the
source estimates with the predictions of the NMF model and fine-tune them using
the DNN model. Results of our experiments show that the predictions of the DNN
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model improves the predictions of the NMF model.

In Chapter 4, we trained word embeddings using the skip-gram model with a large
Turkish corpus. We created question sets for measuring the semantic and syntactic
qualities of word embeddings. We believe this work had a good impact in the Turkish
NLP community in terms of usage of unsupervised training of word embeddings,
which are frequently and successfully used in English, for Turkish. To the best of
our knowledge, this is the first work of applying the skip-gram models to Turkish.
We compare models with different embedding dimensions. In addition, we compare
hierarchical-maximum method with the negative sampling method and report that
negative-sampling works better. We also report that removing suffixes from the
dataset improves the performances.

In Chapter 5, we introduced two new Turkish text corpora of online news articles
and publicly share them. We automatically extracted the article categories and cast
them as labels. We applied some text categorization models and reported the results.
We observed that NN with average word embedding for document representations
where embeddings are updated simultaneously with the Back-Propagation algorithm
resulted in the best performance. We also report the results of the LDA model, which
is an unsupervised topic model, to the categorization problem and report that results
are promising.

In Chapter 6, we proposed novel lexical matching based similarity calculation meth-
ods for matching long text articles of same events with different narratives. Since
long articles contain higher number of event related keywords and entities than short
text documents such as queries or questions, we show that, lexical matching based
scores are able to obtain a fine discrimination between matched and unmatched
pairings, even without the use of labels. We also proposed that obtaining scores for
different fields such as title and spot of the news article would make the model more
robust. Using these scores as features to be fed to classifiers, together with other
length and time based features, improved the performance even further.

7.2 Future Work

In the future, we will work on improving automatic gesture identification and au-
tomatic speech transcription, with the goal of taking steps towards a real-time de-
ception detection system. We believe a critical issue of improving performances
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deception detection systems is the lack of large real-life deception datasets. In this
regard, we believe that an important contribution to the problem would be enlarging
the available data. Another possible future direction would be extracting temporal
features or using tempral models for incorporating the time-dependent information
into to the model.

Many adjustments for the model parameters can be done to improve the proposed
single channel source separation model introduced in Chapter 3. Different types
of DNN such as deep autoencoders and deep recurrent neural networks which can
handle the temporal structure of the source signals can be tested on the SCSS
problem. We believe our idea is a novel idea and many improvements will be possible
in the near future to improve its performance.

In Chapter 4, we trained word embeddings for Turkish. We believe, unsupervised
models that take into account the rich morphological structure of the Turkish lan-
guage would have a high impact on various NLP problems.

In Chapter 5, we showed that the unsupervised topic model-LDA has promising
results for the text categorization problem. This implicates that unsupervised or
semi-supervised models should be worked on considering the increasing amount of
text data and labeling large datasets is not as feasible, especially with the large
volumes of new text data being produced daily in recent years. Another possible
future direction would be employing attention mechanisms with the neural networks
instead of averaging word embeddings of documents.

As a future work for the semantic matching model proposed in Chapter 6, we plan
to work on matching two sets of news as opposed to single news, so that we can
benefit from previous matchings. Another effort would be online learning of the
model and testing the system in real-time.
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