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ABSTRACT

SECOND-ORDER CONE PROGRAMMING BASED METHODS FOR TWO
VARIANTS OF OPTIMAL POWER FLOW

SEZEN ECE KAYACIK

INDUSTRIAL ENGINEERING M.S. THESIS, 2020

Thesis Supervisor: Assist. Prof. BURAK KOCUK
Thesis Co-Supervisor: Asst. Prof. TUĞÇE YÜKSEL

Keywords: reactive optimal power flow, second-order cone programming
mixed-integer nonlinear programming, multi-period optimal power flow

Optimal Power Flow (OPF) is a fundamental optimization problem in power system
operations. In this thesis, we focus on two variants of the OPF problem: Reactive
Optimal Power Flow (ROPF) and Multi-Period Optimal Power Flow (MOPF). In
Chapter 2, we provide an overview of the classical OPF formulations. In Chapter
3, we present an alternative mixed-integer non-linear programming formulation of
the ROPF problem. We utilize a mixed-integer second-order cone programming
(MISOCP) based approach to find globally optimal solutions of the proposed ROPF
problem formulation. We strengthen the MISOCP relaxation via the addition of
convex envelopes and cutting planes. Computational experiments on challenging
test cases show that the MISOCP-based approach yields promising results with
small optimality gaps compared to a semidefinite programming based approach from
the literature. In Chapter 4, we focus on the MOPF problem with electric vehicles
(EV) under emission considerations. Our model integrates three different real data
sets: household electricity consumption, marginal emission factors, and EV driving
profiles. We present a systematic solution approach based on SOCP to find globally
optimal solutions. Our computational experiments on instances with up to 2000
buses demonstrate that our solution approach leads to globally optimal solutions
with very small optimality gaps, in addition to significant emission savings and
reductions in cost with the coordination of EV charging.
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ÖZET

ENIYI GÜÇ AKIŞI PROBLEMININ İKI SÜRÜMÜ İÇIN İKINCI DERECEDEN
KONIK PROGRAMLAMA TEMELLI YÖNTEMLER

SEZEN ECE KAYACIK

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, 2020

Tez Danışmanı: Dr. BURAK KOCUK
Eş Tez Danışmanı:Dr. TUĞÇE YÜKSEL

Anahtar Kelimeler: reaktif eniyi güç akışı, ikinci dereceden konik programlama,
karma tamsayılı doğrusal olmayan programlama, çok periyotlu eniyi güç akışı

Bu tezde eniyi güç akışı probleminin iki farklı sürümü olan reaktif eniyi güç akışı
problemi ve çok periyotlu eniyi güç akışı problemi çalışılmıştır. Bölüm 2’de, klasik
eniyi güç akışı problemine genel bir bakış sunulmuştur. Bölüm 3’te, reaktif eniyi
güç akışı problemi için alternatif bir karma tamsayılı doğrusal olmayan programlama
modeli kurulmuştur. Modelin küresel eniyi çözümünü bulmak için karma tamsayılı
ikinci dereceden konik programlama yönteminden yararlanılmıştır. Dışbükey zarflar
ve kesen düzlemler ile birlikte bu yaklaşım güçlendirilmiştir. Önerilen yöntemin
sonuçları literatürdeki bir yarı belirli programlama temelli yaklaşımın sonuçları ile
karşılaştırıldığında zor test vakaları üzerinde yeterince iyi sonuçlar alınmıştır. Bölüm
4’te, elektrikli araçları ve oluşturdukları emisyonu da dahil ederek çok periyotlu
eniyi güç akışı problemi üzerinde çalışılmıştır. Problemin modeli ev içi elektrik
tüketimi, marjinal emisyon faktörleri ve elektrikli araç sürüş profilleri olmak üzere
üç farklı gerçek veri setini içermektedir. Bu problem için de küresel eniyi çözüm-
ler elde edebilmek için ikinci dereceden konik programlamaya dayalı sistematik bir
çözüm yaklaşımı sunulmuştur. İki bine kadar düğümü olan ağlar üzerinde yapılan
deneyler, sunulan yaklaşımın çok küçük eniyilik açığı olan küresel eniyi çözümlere
ulaştığını göstermektedir. Buna ek olarak deney sonuçları elektrikli araçların ko-
ordineli bir şekilde şarj edilmesi ile emisyonun ciddi derecede azalatılabileceğini ve
üretim maliyetlerinde de azalma sağlanabileceğini göstermektedir.
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NOMENCLATURE

δ(i) Set of neighbors of bus i

ηi Charging efficiency of EV for bus i

Sij Apparent flow limit for line (i, j)

θij Bound on the phase angle of line (i, j)

ait, bit Maximum allowable charging and discharging rates of EV for bus i at time t

E Upper bound on the total CO2 emission

τij Tap ratio of line (i, j)

τ lij Allowable tap ratio l for line (i, j)

V i,V i Upper and lower bounds on the voltage magnitude of bus i

p
i
,pi Upper and lower bounds on the real output of generator i

q
i
, qi Upper and lower bounds on the reactive output of generator i

sit, sit Minimum energy requirement and maximum capacity of EV battery for bus
i at time t

bkii Allowable shunt susceptance k for bus i

Bij ,Bji Susceptance of line (i, j)

cit Energy requirement of EV for bus i at time t

et Marginal emission parameter at time t

gii Shunt susceptance of bus i
x



gii, bii Shunt susceptance of bus i

Gij ,Gji Conductance of line (i, j)

Ii Initial battery state of charge of EV for bus i

Li,Qi Linear and quadratic costs of generator i

pdit, q
d
it Real and reactive power load of bus i at time t

pdi , q
d
i Real and reactive power load of bus i

αki αki = 1 if bii = bkii, and 0 otherwise for bus i

βlij βlij = 1 if τij = τ lij , and 0 otherwise for line (i, j)

τij Tap ratio of line (i, j)

θit Phase angle of bus i at time t

θi Phase angle of bus i

ait, bit Charging and discharging power of EV for bus i at time t

bii Shunt susceptance of bus i

pijt, qijt Real and reactive power flow of line (i, j) at time t

pij , qij Real and reactive power flow of line (i, j)

pgit, q
g
it Real and reactive power output of generator i at time t

pgi , q
g
i Real and reactive power output of generator i

sit Stock variable of EV for bus i at time t
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1. INTRODUCTION

Power systems is concerned with generating, transmitting, and distributing elec-
tricity through networks so as to deliver electricity to consumers. Optimal Power
Flow (OPF) has been one of the most widely studied and important problems in
the area of power systems. OPF determines the optimal operations of the power
network while satisfying the power flow equations and network constraints, meeting
operation feasibility and security. Within this framework, a huge variety of OPF
formulations and solution strategies have been presented.

The general OPF formulation is highly nonconvex, and therefore developing both
efficient and accurate algorithms is usually challenging. In recent years, convex
relaxations of the OPF problem have drawn a substantial research interest since
they can provide the guarantee of global optimality or convergence. In this thesis,
we focus on two variants of the OPF problem and propose SOCP-based solution
approaches, aiming to find globally optimal solutions. The first problem is the
reactive optimal power flow (ROPF) which contains discrete control variables such as
shunt susceptance and tap ratio. The ROPF problem is generally more challenging
to solve than the OPF due to the presence of these discrete variables.

The second problem is multi-period optimal power flow (MOPF). The nature of OPF
is rapidly evolving with the integration of new technologies into the network, such as
electric vehicles, and network operations will become more challenging. Therefore,
the large scale integration of electric vehicles brings the necessity of solving MOPF
problem to coordinate charging strategies efficiently. The MOPF problem optimizes
operations of the power grid with respect to a certain objective and network con-
straints over a finite planning horizon.

The remainder of the thesis is organized as follows. In Chapter 2, we review the
literature on the classical OPF problem and its formulations. In Chapter 3, we focus
on developing a systematic approach for solving the ROPF problem. In Chapter
4, we propose a mathematical formulation of MOPF with electric vehicles (EV)
under emission considerations and investigate the effects of EV charging loads on

1



the optimal operations of the distribution network.
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2. OPTIMAL POWER FLOW PROBLEM

2.1 Literature Review

The optimal power flow (OPF) problem is one of the major tools to find optimal
power system operations while satisfying the power flow equations and network con-
straints, meeting operation feasibility and security. Since introduced by Carpentier
(1962), a wide variety of solution methods have been presented such as Nonlinear
Programming (NLP), Quadratic Programming (QP), Interior point methods (IPM)
and heuristic algorithms. The problem formulation includes nonconvex and nonlin-
ear functions. Therefore, one might experience issues such as converging to a locally
optimal solution or an infeasible point while solving large scale OPF problems.
Recently, convex relaxations that can overcome these difficulties appeared in the
literature and have drawn significant research interest. In subsequent paragraphs,
we discuss the previous studies together with their advantages and disadvantages.

NLP-based solution methods relying on the Karush–Kuhn–Tucker (KKT) condi-
tions are among the first attempts to solve the OPF problem. For example, Shen &
Laughton (1969) implement an iterative indirect approach based on the KKT condi-
tions on a small size system. El-Abiad & Jaimes (1969) present a similar approach
for the OPF problem using an acceleration factor to improve convergence. The
paper by Sasson, Viloria & Aboytes (1973) proposes the first method that exploits
the sparsity of the Hessian matrix for solving the OPF problem; however, it does
not work well with the reactive part of the problem. Sun, Ashley, Brewer, Hughes
& Tinney (1984) solve the OPF problem using an explicit Newton approach. The
challenging part of this approach is identifying the binding constraints. Once the
set of binding constraints is known, the algorithm converges the optimal solution
within a few iterations.

3



Santos & Da Costa (1995) present the Dual-Newton approach in which the binding
constraints are not needed to be known, and the equality constraints are handled
with Lagrange multipliers. However, insecure convergence and algorithmic com-
plexity are the potential disadvantages of these NLP based methods (Soliman &
Mantawy, 2011).

The nonlinear solution approaches are also presented in a decomposed manner to
improve the computation time and simplify the OPF formulation. Shoults & Sun
(1982) decompose the OPF problem into two subproblems: one corresponds to real
power optimization assuming voltages are constant and the other to reactive power
optimization assuming real power generation and phase angles are constant. Jolis-
saint, Arvanitidis & Luenberger (1972) suggest a similar decomposition approach,
where subproblems are alternatively solved with the use of successive linear pro-
gramming.

Another class of optimization methods for OPF uses IPM, which has appealing fea-
tures easily handling the inequality constraints and converging speed (Capitanescu,
Glavic, Ernst & Wehenkel, 2007). In Jabr, Coonick & Cory (2002), the authors
focus on enhancing the convergence properties of the IPMs controlling search di-
rection and step length with the use of a filter technique. Chiang, Wang & Jiang
(2009) develop an algorithm to improve initial starting conditions. Moyano & Sal-
gado (2010) present a parameterized formulation to solve the issue of divergence
when the model is infeasible. However, similar to the other nonlinear optimization
methods, the IPM’s major drawback is that it does not guarantee to converge to a
globally optimal solution because of the nonconvexity of the OPF problem.

Heuristic optimization algorithms to solve the OPF problem have also been discussed
in the literature. There are several examples of these heuristics such as genetic algo-
rithm (Paranjothi & Anburaja, 2002), tabu search (Ongsakul & Tantimaporn, 2006),
particle swarm optimization (Abido, 2002), simulated annealing (Roa-Sepulveda &
Pavez-Lazo, 2003) and hybrid heuristic algorithms. A comprehensive overview of
these algorithms can be found in Frank, Steponavice & Rebennack (2012). The
main drawback of a heuristic algorithm is its possible convergence to locally optimal
solutions, which is highly dependent on the initial starting point. Also, heuristics are
built based on several theoretical assumptions such as differentiability and convex-
ity that do not always hold for the actual OPF conditions (AlRashidi & El-Hawary,
2009).

In Bukhsh, Grothey, McKinnon & Trodden (2013), the authors point out that locally
optimal OPF solutions exist in several test cases, which brings the necessity of
using an efficient algorithm to obtain a globally optimal solution. Therefore, recent

4



studies have focused on convex programming methods to certify global optimality.
The paper by Bai, Wei, Fujisawa & Wang (2008) uses quadratically constrained
quadratic OPF formulation in order to convert it into a semidefinite programming
(SDP) problem. Jabr (2011) and Molzahn, Holzer, Lesieutre & DeMarco (2013)
make use of sparsity in SDP relaxations to decrease the computational effort. A
second-order cone programming relaxation of the OPF problem is first introduced
in Jabr (2006), and its exactness is discussed in Gan, Li, Topcu & Low (2014).
Other convex relaxation methods such as convex dist-flow (Farivar, Clarke, Low
& Chandy, 2011), moment-based (Molzahn & Hiskens, 2014) and quadratic convex
(Coffrin, Hijazi & Van Hentenryck, 2015b) have also been proposed in the literature.
Kocuk, Dey & Sun (2016) propose strengthened SOCP relaxations which perform
better than the other convex relaxations and competitive against SDP relaxations
in terms of solution quality. In a subsequent study (Kocuk, Dey & Sun, 2018),
with the use of some techniques such as cutting planes and convex envelopes, they
further strengthen the SOCP relaxation and propose a method that outperforms
the standard SDP relaxation.

2.2 Formulations

In this section, we will provide formulations of the OPF problem involving Alter-
nating Current (AC) power flow equations. Consider a power network N = (B,L),
where B denotes the node set, i.e., the set of buses, and L denotes the edge set,
i.e., the set of transmission lines. Let G ⊆ B denote the set of generators attached
to a subset of buses. We list he parameters and decision variables needed for the
formulations in nomenclature.

2.2.1 Rectangular Formulation

In the AC OPF formulation, the voltage Vi at bus i ∈ B is defined as a complex
number. In the rectangular formulation, the complex bus voltage is expressed by
Vi = ei+ ifi where ei and fi are the real and imaginary components, respectively.The
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rectangular formulation of the OPF problem is given as follows:

min
∑
i∈G

h(pgi )(2.1a)

s.t. pgi −pdi = gii(e2
i +f2

i ) +
∑
j∈δ(i)

pij i ∈ B(2.1b)

qgi − q
d
i =−bii(e2

i +f2
i ) +

∑
j∈δ(i)

qij i ∈ B(2.1c)

pij =Gij(e2
i +f2

i ) +Gij(eiej +fifj)−Bij(eifj− ejfi) (i, j) ∈ L(2.1d)

qij =−Bij(e2
i +f2

i )−Bij(eiej +fifj) +Gij(eifj− ejfi) (i, j) ∈ L(2.1e)

V 2
i ≤ e2

i +f2
i ≤ V

2
i i ∈ B(2.1f)

|atan2(fi/ei)−atan2(fj/ej)| ≤ θij (i, j) ∈ L(2.1g)

p2
ij + q2

ij ≤ S
2
ij (i, j) ∈ L(2.1h)

p
i
≤ pgi ≤ pi i ∈ G(2.1i)

q
i
≤ qgi ≤ pi i ∈ G.(2.1j)

Here, the objective function (2.1a) minimizes the total power generation cost. Con-
straints (2.1b)–(2.1c) derived from Kirchhoff’s Current Law enforce the real and reac-
tive power flow balance at bus i. Constraints (2.1d)–(2.1e) derived from Kirchhoff’s
Voltage Law correspond to real and reactive power flow at line (i, j). Constraint
(2.1f) represent the limits associated with voltage magnitude at bus i. Constraint
(2.1g)–(2.1h) restrict the phase angle and the apparent flow at line (i, j). Constraints
(2.1i)–(2.1j) set the upper and lower bounds on the real and reactive power output
of generator i. Also, we set p

i
= pi = q

i
= qi = 0 for i ∈ B\G.

Using rectangular formulation when applying IPMs may provide an advantage as
the Hessian matrix of the quadratic equations is constant (Sun & Phan, 2011). In
addition, since the trigonometric terms are not involved, the computational com-
plexity reduces. For instance, in Torres & Quintana (1998) and Capitanescu et al.
(2007) rectangular formulation is utilized in the application of the IPM to OPF
problem.

2.2.2 Polar Formulation

In the polar formulation, bus voltages are expressed by voltage magnitude |Vi| and
phase angle θi as follow: Vi = |Vi|(cos(θi) + isin(θi)).

6



The OPF problem can be equivalently modeled in polar coordinates as follows:

min
∑
i∈G

h(pgi )(2.2a)

s.t. pgi −pdi = gii|Vi|2 +
∑
j∈δ(i)

pij i ∈ B(2.2b)

qgi − q
d
i =−bii|Vi|2 +

∑
j∈δ(i)

qij i ∈ B(2.2c)

pij =Gij |Vi|2 + |Vi||Vj |[Gij cos(θi− θj)−Bij sin(θi− θj)] (i, j) ∈ L(2.2d)

qij =−Bij |Vi|2−|Vi||Vj |[Bij cos(θi− θj) +Gij sin(θi− θj)] (i, j) ∈ L(2.2e)

V i ≤ |Vi| ≤ V i i ∈ B(2.2f)

|θi− θj | ≤ θij (i, j) ∈ L(2.2g)

(2.1h)–(2.1j).

Here, the quadratic equality constraints in (2.1) replaced with the polar formula-
tions. Now the nonlinear quadratic voltage constraint (2.1f) and phase angle con-
straint (2.1g) that includes trigonometric function turn into linear constraints. One
can take advantage of using linear voltage constraints in the case where the voltage
magnitude of certain buses is given. In this particular case, the number of decision
variables decreases in the polar formulation, while the number of quadratic equality
constraints increases in the rectangular formulation (Sun & Phan, 2011).

The literature mostly uses the polar formulation while the rectangular formulation
is included in a smaller number of papers (Cain, O’neill & Castillo, 2012). However,
one can easily convert an optimal solution of the polar formulation into an optimal
solution of the rectangular formulation and vice versa.

2.2.3 Alternative Formulation

Now we provide the alternative formulation first introduced in Expósito & Ramos
(1999). Let us define a set of new variables cii cij and sij , respectively represent-
ing the quantities |Vi|2, |Vi||Vj |cos(θi− θj) and −|Vi||Vj |sin(θi− θj) for i ∈ B and
(i, j) ∈ L, respectively. By replacing these new decision variables, the alternative
formulation is obtained as follows:

min
∑
i∈G

h(pgi )(2.3a)
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s.t. pgi −pdi = giicii+
∑
j∈δ(i)

pij i ∈ B(2.3b)

qgi − q
d
i =−biicii+

∑
j∈δ(i)

qij i ∈ B(2.3c)

pij =Gijcii+Gijcij−Bijsij (i, j) ∈ L(2.3d)

qij = −Bijcii−Bijcij−Gijsij (i, j) ∈ L(2.3e)

V 2
i ≤ cii ≤ V

2
i i ∈ B(2.3f)

c2ij + s2
ij = ciicjj (i, j) ∈ L(2.3g)

θj− θi = atan2(sij , cij) (i, j) ∈ L(2.3h)

(2.2g),(2.1h)–(2.1j).

Constraints (2.3g) and (2.3h) are the consistency constraints that preserve the
trigonometric relation between the variables cii, cij and sij .

2.2.4 Relaxations

The alternative formulation consist of convex constraints except (2.3g) and (2.3h).
To convexfiy feasible region of the problem (2.3), we relax the constraint (2.3g) as a
second-order cone constraint and eliminate constraint (2.3h). The SOCP relaxation
of the alternative formulation is given as:

min
∑
i∈G

h(pgi )(2.4a)

s.t. c2ij + s2
ij ≤ ciicjj (i, j) ∈ L(2.4b)

(2.2g), (2.3b)–(2.3f) and (2.1h)–(2.1j).

This formulation is useful to reduce the computational complexity and produce a
globally optimal solution. In Chapters 3 and 4, we will construct SOCP relaxations
of the reactive optimal power flow and multi-period optimal power flow problems
on the basis of (2.4).
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3. REACTIVE OPTIMAL POWER FLOW PROBLEM

3.1 Literature Review

The reactive optimal power flow (ROPF) problem is a variant of the well-known OPF
problem in which additional discrete decisions, such as shunt susceptance and tap
ratio, are considered. Due to the presence of these discrete variables in the ROPF
problem, it can be formulated as a mixed-integer nonlinear programming (MINLP)
problem. This chapter utilizes the recent developments in the OPF problem to
propose an efficient way of solving the ROPF problem.

OPF is one of the most studied problems in the area of power systems and a variety
of solution approaches have been proposed in the literature. Local methods such
as the interior point method try to solve the OPF problem but they do not pro-
vide any assurances of global optimality. In recent years, convex relaxations of the
OPF problem have drawn considerable research interest since the convexity property
promises a globally optimal solution under certain conditions. Several approaches
have been developed based on convex quadratic (Coffrin et al., 2015b), semidefinite
programming (SDP) (Jabr, 2006), second order cone programming (SOCP) (Kocuk
et al., 2016) and convex-distflow (Coffrin, Hijazi & Van Hentenryck, 2015a) formu-
lations. The ROPF problem has a similar structure with the OPF problem, except
the inclusion of shunt susceptance and tap ratio variables, which are typically mod-
elled as discrete variables. The resulting MINLP problem is difficult to solve and
the literature has primarily focused on various heuristic methods (Bakirtzis, Biskas,
Zoumas & Petridis, 2002; Capitanescu &Wehenkel, 2010; Nakawiro, Erlich & Rueda,
2011; Sulaiman, Mustaffa, Mohamed & Aliman, 2015). The systematic treatment
of the ROPF problem is limited to an SDP-based relaxation called tight-and-cheap
relaxation (TCR) proposed in Bingane, Anjos & Le Digabel (2019).

9



The contributions of this study are as follows. We propose a completely new MINLP
formulation for the ROPF problem along with its mixed-integer second-order cone
programming (MISOCP) relaxation. In addition, we improve convex envelops from
the literature and use cutting planes to strengthen the MISOCP relaxation. We
also test the accuracy and efficiency of our approach with the TCR method from
the literature on difficult test cases and obtain promising results.

3.2 Formulations

Consider a power network N = (B,L), where B and L denote the set of buses and
the set of transmission lines respectively. Let G ⊆B, S ⊆B and T R ⊆L respectively
denote the set of generators connected to the grid, the buses with a variable shunt
susceptance and the lines with a variable tap ratio. Let G and B be the matrices of
line conductance and susceptance.

The ROPF problem can be modeled as the following MINLP:

min
∑
i∈G

h(pgi )(3.1a)

s.t. pgi −pdi = gii|Vi|2 +
∑
j∈δ(i)

pij i ∈ B(3.1b)

qgi − q
d
i =−bii|Vi|2 +

∑
j∈δ(i)

qij i ∈ B(3.1c)

pij =Gij(|Vi|/τij)2 + (|Vi|/τij)|Vj |[Gij cos(θi− θj)(3.1d)

−Bij sin(θi− θj)] (i, j) ∈ L

pji =Gji|Vi|2 + (|Vi|/τij)|Vj |[Gji cos(θi− θj)

−Bij sin(θi− θj)] (i, j) ∈ L

qij =−Bij(|Vi|/τij)2− (|Vi|/τij)|Vj |[Bij cos(θi− θj)(3.1e)

+Gij sin(θi− θj)] (i, j) ∈ L

qji =−Bji|Vi|2− (|Vi|/τij)|Vj |[Bji cos(θi− θj)

+Gji sin(θi− θj)] (i, j) ∈ L

V i ≤ |Vi| ≤ V i i ∈ B(3.1f) ∑
k∈Si

bkiiα
k
i = bii i ∈ B(3.1g)
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bii = 0 i ∈ B\S(3.1h) ∑
k∈Si

αki = 1, αki ∈ {0,1} i ∈ B(3.1i)

∑
l∈T R

ij

βlij
τ lij

= 1/τij (i, j) ∈ L(3.1j)

τij = 1 (i, j) ∈ L\T R(3.1k) ∑
l∈T R

ij

βlij = 1, βlij ∈ {0,1} (i, j) ∈ L(3.1l)

q
i
≤ qgi ≤ qi i ∈ G(3.1m)

p
i
≤ pgi ≤ pi i ∈ G(3.1n)

p2
ij + q2

ij ≤ S
2
ij , p2

ji+ q2
ji ≤ S

2
ij (i, j) ∈ L(3.1o)

|θi− θj | ≤ θij (i, j) ∈ L.(3.1p)

Here, the objective function (3.1a) minimizes the total real power generation cost
subject to the following constraints: real and reactive power flow balance at bus i
(3.1b)–(3.1c), real and reactive power flow from i to j (3.1d)–(3.1e), voltage magni-
tude bounds at bus i (3.1f), shunt susceptance selection for bus i (3.1g), tap ratio
selection for line (i, j) (3.1j), binary restrictions (3.1i)–(3.1l), reactive and real power
output of generator i (3.1m)–(3.1n), apparent flow limit for each line (i, j) (3.1o)
and phase angle limit for each line (i, j) (3.1p).

3.2.1 Alternative

In this section, we propose an alternative MINLP formulation of the ROPF problem
motivated by (Kocuk et al., 2016). Let us define a set of new decision variables cii,
cij and sij , respectively representing the quantities |Vi|2, |Vi||Vj |cos(θi− θj) and
sij := −|Vi||Vj |sin(θi− θj) for i ∈ B and (i, j) ∈ L. More variables are defined as
needed below.

We denote the lower (upper) bounds of variables cii, cij , sij as cii, cij , sij (cii, cij , sij)
and set them as follows:

cii := V 2
i , cii := V

2
i i ∈ B

cij := V iV j cos(θij), cij := V iV j (i, j) ∈ L

sij :=−V iV j sin(θij), sij := V iV j sin(θij) (i, j) ∈ L.
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We will now discuss the constraints in the alternative formulation and their relations
with the MINLP in Section 3.2. The updated version of the real power flow balance
constraint (3.1b) is given as:

(3.2) pgi −p
d
i = giicii+

∑
j∈δ(i)

pij i ∈ B.

Since the variable bii can be eliminated from the formulation by substituting∑
k∈Si

bkiiα
k
i , the reactive power flow equation (3.1c) is first rewritten as follows:

(3.3) qgi − q
d
i =−

∑
k∈Si

bkiiα
k
i

cii+ ∑
j∈δ(i)

qij i ∈ B.

Then, we define a new variable Γki := ciiα
k
i to reformulate (3.3) and include additional

constraints as follows:

qgi − q
d
i =−

∑
k∈Si

bkiiΓki +
∑
j∈δ(i)

qij i ∈ B

ciiα
k
i ≤ Γki ≤ ciiαki , i ∈ B

cii =
∑
k∈Si

Γki i ∈ B.

(3.4)

We now update power flow constraints using a similar procedure. In particular, we
substitute 1/τij with

∑
l∈T R

ij
βlij/τ

l
ij into constraints (3.1d) and (3.1e) as follows:

pij =Gij

|Vi| ∑
l∈T R

ij

βlij
τ lij


2

+

|Vi| ∑
l∈T R

ij

βlij
τ lij

 |Vj |[Gij cos(θi− θj)−Bij sin(θi− θj)] (i, j) ∈ L

qij = −Bij

|Vi| ∑
l∈T R

ij

βlij
τ lij


2

−

|Vi| ∑
l∈T R

ij

βlij
τ lij

 |Vj |[Bij cos(θi− θj) +Gij sin(θi− θj)] (i, j) ∈ L.

(3.5)

After defining the new variables Φ̄l
ij := ciiβ

l
ij , Φl

ij := cijβ
l
ij and Ψl

ij := sijβ
l
ij , we

rewrite constraint (3.5) together with the other equations necessary for the lin-
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earization as follows:

pij =
∑
l∈T R

ij

Gij
 Φ̄l

ij

(τ lij)2 +
Φl
ij

τ lij

−BijΨl
ij

τ lij

 (i, j) ∈ L

pji =Gjicjj +
∑
l∈T R

ij

GjiΦl
ij

τ lij
−Bji

Ψl
ij

τ lij

 (i, j) ∈ L

qij =−
∑
l∈T R

ij

Bij
 Φ̄l

ij

(τ lij)2 +
Φl
ij

τ lij

+Gij
Ψl
ij

τ lij

 (i, j) ∈ L

qji =−Bjicjj−
∑
l∈T R

ij

BjiΦl
ij

τ lij
+Gji

Ψl
ij

τ lij

 (i, j) ∈ L

ciiβ
l
ij ≤ Φ̄l

ij ≤ ciiβlij l ∈ T Rij , cii =
∑
l∈T R

i,j

Φ̄l
ij (i, j) ∈ L

cijβ
l
ij ≤ Φl

ij ≤ cijβlij l ∈ T Rij , cij =
∑
l∈T R

i,j

Φl
ij (i, j) ∈ L

sijβ
l
ij ≤Ψl

ij ≤ sijβlij ł ∈ T Rij , sij =
∑
l∈T R

i,j

Ψl
ij (i, j) ∈ L.

(3.6)

We also update the constraint on voltage magnitude bounds (3.1f) as follows:

(3.7) V 2
i ≤ cii ≤ V

2
i i ∈ B.

Finally, we define the following consistency constraints for each line (i, j):

c2ij + s2
ij = ciicjj (i, j) ∈ L(3.8a)

(Φl
ij)2 + (Ψl

ij)2 = Φ̄l
ijcjj (i, j) ∈ L, l ∈ T Rij(3.8b)

θj− θi = arctan(sij/cij) (i, j) ∈ L.(3.8c)

Equation (3.8a) preserves the trigonometric relation between the variables cii, cij
and sij . If we multiply (3.8a) by βlij , we can get a similar condition for the variables
Φ̄l
ij ,Φl

ij and Ψl
ij .

The alternative formulation minimizes (3.1a) subject to constraints (3.1h)–(3.1i),
(3.1k)–(3.2) and (3.4)–(3.8c).
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3.2.2 MISOCP Relaxation

The feasible region of the alternative MINLP formulation is non-convex due to
constraints (3.8a)–(3.8c). Let us relax these constraints as follows:

c2ij + s2
ij ≤ ciicjj (i, j) ∈ L

(Φl
ij)2 + (Ψl

ij)2 ≤ Φ̄l
ijcjj (i, j) ∈ L.

(3.9)

Then, an MISOCP relaxation is obtained as (3.1a), (3.1h)–(3.1i), (3.1k)–(3.2), (3.4)–
(3.7) and (3.9).

3.2.3 Tightened MISOCP Relaxation

To tighten the MISOCP relaxation, we also consider an outer-approximation of
constraints (3.8a) and (3.8c), which is an improved version of a similar approach
proposed in Kocuk et al. (2018). Let us define the set P = [c,c]× [s,s]× [θ,θ] and
consider

A :=
{

(c,s,θ) ∈ P : θ = arctan(s/c) , c2 ≤ c2 + s2 ≤ c2
}
,

where θi−θj is denoted by θ and the other subscripts are omitted. The four points
of interest are given as follows:

ζ1 = (c,s,arctan(s/c)), ζ2 = (c,s,arctan(s/c)),

ζ3 = (c,s,arctan(s/c)), ζ4 = (c,s,arctan(s/c)).

The following proposition provides two upper envelopes for A:

Proposition 1 Let θ = γ1 +µ1c+υ1s and θ = γ2 +µ2c+υ2s be the planes passing
through points {ζ1, ζ2, ζ3}, and {ζ1, ζ3, ζ4}, respectively. Then, two valid inequalities
for A can be obtained as

γ̄m+µmc+υms≥ arctan(s/c) ,

with γ̄m = γm+ ∆m, m= 1,2, where

(3.10) ∆m = max
(c,s,θ)∈A

{arctan(s/c)− (γm+µmc+υms)} .
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We will omit the proof of Proposition 1 since the statement holds true by construc-
tion. However, the interesting property related to the optimization problem (3.10)
is that although both its objective function and feasible region are noncovex, it can
still be solved globally. The key idea is to re-state this optimization problem in the
polar coordinates as

(3.11) ∆m =−γm+ max
r∈[c,c],θ∈[θ,θ]

{θ− r(µm cos(θ) +υm sin(θ))},

where r :=
√
c2 + s2. Since problem (3.11) is linear in r, it can be solved for the two

end-points of the interval [c,c] separately. Finally, the remaining one-dimensional
optimization problems in θ can be solved by checking the KKT points. We note
that Proposition 1 is an improvement over Proposition 3.8 from Kocuk et al. (2018)
since the feasible region of problem (3.10) is a smaller subset of the corresponding
optimization problem in Kocuk et al. (2018).

We also obtain two under envelopes for A.

Proposition 2 Let θ = γ3 +µ3c+υ3s and θ = γ4 +µ4c+υ4s be the planes passing
through points {ζ1, ζ2, ζ4}, and {ζ2, ζ3, ζ4}, respectively. Then, two valid inequalities
for A are defined as

γ̄n+µnc+υns≤ arctan(s/c)

with γ̄n = γn−∆n, n= 3,4, where

∆n = max
(c,s,θ)∈A

{(γn+µnc+υns)−arctan(s/c)} .

Finally, we add the following valid inequalities to the MISOCP relaxation:

γmij +µmij cij+υmij sij ≥ θj− θi m= 1,2, (i, j) ∈ L

γnij +µnijcij+υnijsij ≤ θj− θi n= 3,4, (i, j) ∈ L.

We will use the abbreviation MISOCPA to refer to this stronger relaxation.

Additionally, we generate cutting planes for each cycle in the cycle basis using a
method called SDP Separation; more details can be found in Kocuk et al. (2016).
We denote this further improved relaxation as MISOCPA+.
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3.3 Solution Approach

We first solve the continuous relaxation of the MISOCPA formulation by relaxing the
integrality of αki and βlij variables. Then, for each cycle in the cycle basis, we use
the SDP separation method to generate cutting planes to separate this continuous
relaxation solution from the feasible region of the SDP relaxation of the cycle. The
separation process is parallelized over cycles. We repeat this procedure five times
consecutively. Then, we solve the final MISOCPA+ relaxation to obtain a lower (LB)
bound, and then fix the binary variables in the MINLP formulation to obtain an
upper bound (UB) from the remaining nonlinear program (NLP) using a local solver,
which provides a feasible solution to the ROPF problem. The optimality gap is
computed as %Gap = 100× (1−LB/UB).

3.4 Computational Experiments

We compare the percentage optimality gap and the computational time of the
MISOCPA+ approach with the publicly available implementation of TCR relaxation of
Type 2 (TCR2) from Bingane et al. (2019) under default settings. All computational
experiments have been carried out on a 64-bit desktop with Intel Core i7 CPU with
3.20GHz processor and 64 GB RAM. Our code is written in Python language using
Spyder environment. The solvers Gurobi, IPOPT and MOSEK are used to solve the
MISOCPA+ relaxation, NLP and separation problems, respectively. We run Gurobi
with the default settings except for changing the time limit as 30 seconds.

For the computational experiments, we use the OPF instances from the NESTA li-
brary; typical operating conditions, congested operating conditions (API) and small
angle difference conditions (SAD). We only consider difficult instances in which the
SOCP optimality gap is more than 1% Kocuk et al. (2016).

The sets of the discrete values are determined as bkii ∈ {0,1} for i ∈ S and τ lij ∈
{1±0.0125×h : h ∈ {0,1, ...,8}} for (i, j) ∈ T R, which represent the on/off status of
the shunt susceptance and values of the tap ratio, respectively.
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Table 3.1 Computational results with 0.0125 discretization step size. Instances with the SOCP optimality gap above 3% are indicated
with an asterisk.

TCR2 MISOCPA+
Case LB Time UB %Gap LB Time UB %Gap
3lmbd 5769.87 0.65 5812.64 0.74 5780.75 0.59 5812.64 0.55
5pjm* 15313.38 0.72 17551.89 12.75 16504.27 0.23 17551.89 5.97
30ieee* 205.19 1.13 205.24 0.02 205.13 4.59 205.24 0.05
118ieee 3695.39 4.66 3714.77 0.52 3685.97 34.45 3717.48 0.85

Average 1.79 3.51 9.97 1.86
3lmbd_api* 363.00 0.66 367.74 1.29 362.89 0.11 367.74 1.32
6ww_api* 273.76 0.53 273.76 0.00 273.64 0.37 273.76 0.04
14ieee_api 319.12 0.93 319.87 0.23 318.87 1.34 320.92 0.64
30as_api* 559.96 2.38 571.13 1.96 562.25 0.92 571.13 1.55
30fsr_api* 213.93 2.16 372.14 42.51 227.69 0.89 372.11 38.81
39epri_api 7333.40 2.59 7495.37 2.16 7208.84 31.33 7473.25 3.54
118ieee_api* 5932.26 4.47 10171.50 41.68 5923.71 34.47 10185.71 41.84
Average 1.96 12.83 9.92 12.53

3lmbd_sad* 5831.07 0.57 5992,72 2.70 5869.13 0.12 5992.72 2.06
4gs_sad* 321.55 0.58 324,02 0.76 323.65 0.13 324.02 0.12
5pjm_sad* 25560.36 0.62 26423,33 3.27 26419.24 0.18 26423.32 0.02
9wscc_sad 5521.49 0.54 5590,09 1.23 5589.55 0.2 5590.09 0.01
29edin_sad* 31173.80 3.19 46933,31 33.58 36290.42 3.78 45883.89 20.91
30as_sad* 903.09 2.32 914.44 1.24 906.93 1.12 914.44 0.82
30ieee_sad* 205.30 0.96 205.35 0.02 205.21 4.25 205.34 0.06
118ieee_sad* 3869.62 4.66 4281.41 9.62 3984.37 34.46 4296.00 7.25
Average 1.68 6.55 5.53 3.91

Overall Average 1.81 8.23 8.08 6.65
Overall Average* 1.78 10.81 6.12 8.63
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Table 3.2 Computational results with 0.05 discretization step size. Instances with the SOCP optimality gap above 3% are indicated with
an asterisk.

TCR2 MISOCPA+
Case LB Time UB %Gap LB Time UB %Gap
3lmbd 5769.87 0.65 5812.64 0.74 5780.75 0.56 5812.64 0.55
5pjm* 15313.38 0.72 17551.89 12.75 16504.27 0.23 17551.89 5.97
30ieee* 205.2 1.13 205.25 0.02 205.15 1.42 205.25 0.05
118ieee 3695.39 4.66 3714.67 0.52 3688.39 15.41 3714.41 0.7
Average 1.79 3.51 4.41 1.82

3lmbd_api* 362.99 0.66 367.74 1.29 362.89 0.12 367.74 1.32
6ww_api* 273.76 0.53 273.76 0 273.64 0.36 273.76 0.04
14ieee_api 319.12 0.93 320.16 0.32 318.87 0.71 321.22 0.73
30as_api* 559.96 2.38 571.13 1.96 562.25 0.93 571.13 1.55
30fsr_api* 213.93 2.16 372.14 42.51 227.69 0.92 372.11 38.81
39epri_api 7333.4 2.59 7481.14 1.97 7263.86 13.31 7474.46 2.82
118ieee_api* 5932.26 4.47 10143.75 41.52 5951.21 23.69 10198.57 41.65
Average 1.96 12.80 5.72 12.42

3lmbd_sad* 5831.07 0.57 5992.72 2.70 5869.13 0.13 5992.72 2.06
4gs_sad* 321.55 0.58 324.02 0.76 323.65 0.13 324.02 0.12
5pjm_sad* 25560.36 0.62 26423.33 3.27 26419.24 0.18 26423.32 0.02
9wscc_sad 5521.49 0.54 5590.09 1.23 5589.55 0.2 5590.09 0.01
29edin_sad* 31173.8 3.19 46933.31 33.58 36307.34 3.35 45886.11 20.88
30as_sad* 903.09 2.32 914.44 1.24 906.93 1.1 914.44 0.82
30ieee_sad* 205.3 0.96 205.37 0.03 205.26 1.41 205.37 0.06
118ieee_sad* 3869.62 4.66 4303.63 10.08 4004.72 8.79 4293.96 6.74
Average 1.68 6.61 1.91 3.84

Overall Average 1.81 8.24 3.84 6.57
Overall Average* 1.78 10.84 3.05 8.58
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The results of our computational experiments are reported in Table 3.1. The com-
putational time is measured in seconds and includes the time spent for solving
the separation problems. If we compare the averages of optimality gap, MISOCPA+
outperforms TCR2 in all types of NESTA instances. MISOCPA+ has the best perfor-
mance on SAD instances and dominates TCR2 in all of them. Overall, we note that
MISOCPA+ relaxation has more accurate solutions with 6.65% optimality gap, on av-
erage, than TCR with 8.23%. In terms of computational time, MISOCPA+ is slower
with 8.08 seconds, on average, than TCR2 with 1.81. We also point out the even
better performance MISOCPA+ in terms of accuracy on more difficult instances with
the SOCP gap more than 3%.

3.4.1 The Effect of Tap Ratio Discretization

We also analyze the effect of tap ratio discretization on the ROPF problem. The
algorithm is repeated with a different discrete set τ lij ∈ {1± 0.05×h : h ∈ {0,1,2}}
for (i, j) ∈ T R. The results are reported in Table 3.2. We observe that UBs and
optimality gaps do not change significantly with this coarser discretization. In fact,
the average absolute percentage change of UBs is only 0.02%. Since the computa-
tional effort increases with the number of discrete steps, we conclude it may be more
practical to use a small number of discrete steps, especially for small size test cases.

3.4.2 A Test Case for a Larger Instance

In order to solve a large scale instance within acceptable time limits, we modify
our algorithm as follows: The final MISOCPA+ relaxation is also solved by relaxing
the integrality of αki and βlij variables. The convex combinations of discrete values
{bkii : k ∈ Si} and {τ lij : l ∈ T Rij } with coefficients αki and βlij are rounded off to the
nearest discrete value in these sets. Then, we fix the binary variables with respect
to the rounded-off values in the MINLP formulation. Once tested on 1354-bus
PEGASE SAD test case, the modified algorithm produces a feasible solution with a
cost of $1,220,718 with an optimality gap of 3.82% in approximately 6 minutes. We
note that the TCR2 relaxation experiences numerical difficulties for this test case.
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3.5 Conclusions

In this chapter, we propose an MISOCP-based approach, namely MISOCPA+, to ap-
proximate globally optimal solutions of the ROPF problem. The accuracy and
efficiency of this approach are compared with TCR2 using difficult OPF instances
from the NESTA library. The computational results indicate that MISCOPA+ is quite
promising to solve any type of instances accurately, especially the ones with small
angle conditions.
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4. MULTI-PERIOD OPTIMAL POWER FLOW PROBLEM WITH

ELECTRIC VEHICLES

4.1 Introduction

With the advent of electric vehicles (EV), the OPF studies that consider large scale
integration of EVs have become increasingly important. While the classical OPF
problem only considers a single period planning, the interconnection of the energy
storage of EVs with the power network makes it necessary to solve multi-period
OPF. The MOPF problem optimizes operations of the power grid with respect to
a certain objective and network constraints over a finite planning horizon. Large
scale integration of EVs requires additional settings and limitations and, therefore,
problem complexity and computational effort increase. EV charging creates extra
demand on the grid and in the case of Vehicle to Grid (V2G) systems, EVs can
also supply power to the grid. This bidirectional flow with its impacts on the grid
and several other aspects, such as penetration level, driving profiles, and battery
characteristics, need to be taken into consideration in the model formulation.

Integrating EV charging stations to power systems changes the dynamics of conven-
tional power distribution and poses considerable challenges to network operations
under an uncoordinated charging scenario. For example, flexible EV charging pat-
terns might increase the peak load of the power grid and cause overload on trans-
mission lines; consequently, this increases power generation cost and damages power
system security. Coordinated charging is critical for overcoming the security and
economy issues of the grid operations. On the other hand, with the coordinated
charging strategies, one can turn the flexibility of EVs into an advantage by flatten-
ing peak load and filling load valleys.

EVs create a considerable opportunity for reduction of greenhouse gas emissions
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from transportation compared to conventional vehicles. However, the additional
electricity generation to charge EVs may cause greenhouse gas emissions depending
on the source of electricity generation (Yuksel, Tamayao, Hendrickson, Azevedo &
Michalek, 2016). For example, coal-based generation results in significant amounts
of emissions into the atmosphere. Therefore, it is also critical to consider additional
emissions generated by power plants to exploit EVs’ environmental benefits.

Many countries such as the United States government set targets to render EVs
competitive with fossil fuel vehicles. Many federal and local tax credits and other
incentives are granted to promote the use of EV (AFDC, 2017). In the future, EVs’
charging demand can comprise a major part of the electricity consumption. With
the large scale deployment of EVs, charging strategies will become more critical from
different perspectives such as network operators, financial parties, EV drivers, and
environmental policy.

4.1.1 Literature Review

The incorporation of a large number of EVs into power systems can cause various
complications in operations under uncoordinated charging scenario. These compli-
cations include increased network losses, overloaded transmission lines, unbalanced
voltage and increased peak load, resulting in a significant increase in electricity
generation cost and damage to power system security. To address these issues, var-
ious coordinated charging strategies of EVs have been developed in recent years.
Clement-Nyns, Haesen & Driesen (2009) show that power losses and voltage devia-
tions can be reduced by flattening load profile if the charging of EVs is coordinated.
In order to fill the load valley, Gan, Topcu & Low (2012) schedule EV charging
using a decentralized algorithm. Masoum, Moses & Hajforoosh (2012) investigate
the effects of coordinated charging on transformer loading and use a real-time algo-
rithm to minimize the stress on transformers. However, they note that the proposed
approach may not be satisfactory in the case where the penetration level of EV is
very high.

Vehicle-to-Grid (V2G) emerged as a promising concept with the goal to compensate
the power mismatch between generation and load. This concept was firstly pre-
sented in Kempton & Letendre (1997), and its economic feasibility and adaptability
are studied in Kempton & Tomić (2005) and Tomić & Kempton (2007). The sub-
sequent studies such as Andersson, Elofsson, Galus, Göransson, Karlsson, Johnsson
& Andersson (2010); Saber & Venayagamoorthy (2010); Sortomme & El-Sharkawi
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(2010) integrate V2G technology into the distribution network to exploit its eco-
nomic and environmental benefits. Additional benefits of V2G, such as regulation
of real power, load balancing, peak load shaving, valley filling and reactive power
support, are discussed in Yilmaz & Krein (2012). The aggregator, which controls
a fleet of the EVs to function as a source of generation, is a key concept for imple-
menting V2G technology (Guille & Gross, 2009). In Ortega-Vazquez, Bouffard &
Silva (2012) and Schuller, Dietz, Flath & Weinhardt (2014), the aggregation for EV
charging strategies is further analyzed in V2G context.

In the past decades, several heuristic solution approaches have been developed to co-
ordinate the charging of EVs. Hutson, Venayagamoorthy & Corzine (2008) present
a binary particle swarm optimization to maximize EV users’ profit under the net-
work and EV charging constraints. A simulated annealing based optimization is
employed in the plug-in EV (PEV) charging problem to minimize total system cost
in Valentine, Temple & Zhang (2011). Alonso, Amaris, Germain & Galan (2014)
propose a genetic algorithm optimization approach to flatten the load profile while
taking into consideration PEV users’ behavior and network technical limits, includ-
ing apparent flow limit and voltage limit. In Yang, Li, Niu, Xue & Foley (2014),
a self-learning teaching-learning based optimization variant is introduced to solve a
dynamic economic dispatch problem integrating different PEV charging scenarios.
A more comprehensive list of these heuristic approaches can be found in Yang, Li
& Foley (2015).

Convex relaxations of the single-period OPF problem have been widely studied (re-
fer to Chapter 2), however very few studies focus on convex relaxations of MOPF
problem. Li, Gan, Chen & Low (2012) model a demand response problem in radial
distribution networks as an AC OPF problem ignoring reactive power. This opti-
mization problem is convexified and extended to an AC MOPF problem. Gopalakr-
ishnan, Raghunathan, Nikovski & Biegler (2013) solve the AC MOPF problem using
an SDP relaxation, and Jabr (2014) proposes an SOCP relaxation of the AC MOPF
problem for distribution networks with photovoltaics. The paper by Huang, Wu,
Wang & Zhao (2016) formulates the AC MOPF with the planning of EV charging
as an SOCP problem in which generator limits are ignored.

Several studies focus on the OPF problem that considers the integration of EVs in
recent years. Judd & Overbye (2008) solve the OPF and the security-constrained
OPF problems for a single period. Then, they analyze the effect of EV penetration
on cost reduction by solving the problems once more with the inclusion of the EVs
as generators. In order to minimize power losses while avoiding the usage of tap
changers, Acha, Green & Shah (2010) propose a time coordinated OPF (TCOPF)
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model with network and EV charging constraints, however, the effects of EV charg-
ing on power system security are not considered. The paper by Acha, Green &
Shah (2011) suggest a similar TCOPF model to minimize both energy and emission
costs. Yang, He & Fu (2014) present an OPF strategy to schedule charging and
discharging of EVs considering EV drivers’ satisfaction and the grid cost, and use
improved particle swarm optimization algorithm based on genetic variation and sim-
ulated annealing. However, the simulation is only performed on a small size system.
Zakariazadeh, Jadid & Siano (2014) formulate a multi-objective optimization prob-
lem in order to minimize both operational costs and emission. They decompose an
MINLP model into an MILP master problem consisting of EV charging constraints
and an NLP problem based on the OPF. Fan, Duan, Zhang, Jiang, Mao & Wang
(2017) utilize the decomposability of alternating direction method of multipliers to
solve the MOPF problem and divide the problem into two subproblems: first, to
dispatch charging power to each aggregator; second, to distribute the total power of
aggregator to each EV controlled by the aggregator.

There are some missing aspects of EV charging strategies in the literature. In Tang &
Zhang (2016), the authors do not consider physical limitations and assume that EVs
can be fully charged during a single period. In some of the previous works, power
grid security constraints are ignored such as line flow (Fan et al., 2017), generator
(Wang, Bharati, Paudyal, Ceylan, Bhattarai & Myers, 2019) and voltage limits.
Many existing studies incorporate only a small number of EVs (Chen, Tan & Quek,
2014) or charging stations (Fan et al., 2017). Shi, Tuan, Savkin, Duong & Poor
(2018) consider only economic aspects without environmental impacts. Azizipanah-
Abarghooee, Terzija, Golestaneh & Roosta (2016) consider both operation cost and
emission objectives; however, they do not guarantee to produce globally optimal
solutions and carry out comprehensive tests only on small size networks. Several
studies, such as (Fan et al., 2017), do not consider the behavior of EV users and
randomly generate arrival times.

4.1.2 Contributions

The main contributions of this chapter are summarized as follows:

• We introduce a new MOPF formulation for the joint problem of OPF and EV
charging by bringing together test cases and real data for electricity consump-
tion, marginal emission factors, and EV driving profiles.
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• We develop a convex optimization framework. Specifically, we introduce an
SOCP model in which an emission constraint is imposed to restrict emissions
related to EV charging from power plants. EV charging constraints and their
effects on the power system are also taken into account.

• We demonstrate the effectiveness of the proposed approach on three test cases
with up to 2000 buses from PGLIB-OPF. Our algorithm is able to solve large
scale test cases in reasonable computation time and offer guarantees of global
optimality with very small optimality gaps.

• Our extensive computational experiments suggest that through coordinated
charging of EVs, marginal emission can be decreased while keeping the
marginal cost constant, and the integration of the V2G concept leads to cost
savings, despite assuming hourly electricity prices are constant.

The remainder of this chapter is organized as follows. Section 4.2 describes the
problem, and provides an alternative formulation and its SOCP relaxation. Section
4.3 introduces our approach to solve this optimization problem. Section 4.4 defines
the input data used in the formulation. Section 4.5 presents the experimental setup
and the computational results.

4.2 Formulations

In this section, we present our mathematical programming formulation and its SOCP
relaxation. We formulate an MOPF problem that coordinates the charging of EVs.
The model minimizes the total cost of generation over a finite planning horizon while
determining the optimal schedule of power generation and EV charging. We take
into account both network constraints and EV charging constraints. We consider
only power station emissions associated with EV charging. Therefore, we utilize
marginal emissions, which occur to satisfy the additional demand due to EVs. The
EV charging constraints are formulated based on actual EV driving profiles that
provide arrival and departure times of each trip and energy requirements for each
period. We assume that only real power can be consumed by EV and fed back
to the grid. All EVs connected to the same bus are aggregated as an entity. In
the formulation, we will use the term EV to refer to a fleet of EV charged at the
same bus. Note that our formulation considers aggregate charging load and requires
perfect knowledge of the user’s driving behavior and electricity consumption.

25



Consider a power network N = (B,L), where B denotes the node set, i.e., the set
of buses, and L denotes the edge set, i.e., the set of transmission lines. Let G ⊆ B
denote the set of generators and T = {1, ...,T} represents the time periods. D ⊆ B
is the set of buses with real power load.

We present the following formulation of the MOPF problem:

min
∑
i∈G

∑
t∈T

(pgitLi+ (pgit)2Qi)(4.1a)

s.t. pgit−pdit−ait+ηibit = gii|Vit|2 +
∑
j∈δ(i)

pijt i ∈ B, t ∈ T(4.1b)

qgit− q
d
it =−bii|Vit|2 +

∑
j∈δ(i)

qijt i ∈ B, t ∈ T(4.1c)

pijt =Gij |Vit|2 + |Vit||Vjt|[Gij cos(θit− θjt)(4.1d)

−Bij sin(θit− θjt)] (i, j) ∈ L, t ∈ T

qijt =−Bij |Vit|2−|Vit||Vjt|[Bij cos(θit− θjt)(4.1e)

+Gij sin(θit− θjt)] (i, j) ∈ L, t ∈ T

V i ≤ |Vit| ≤ V i i ∈ B, t ∈ T(4.1f)

p
i
≤ pgit ≤ pi i ∈ G, t ∈ T(4.1g)

q
i
≤ qgit ≤ qi i ∈ G, t ∈ T(4.1h)

p2
ijt+ q2

ijt ≤ S
2
ij (i, j) ∈ L, t ∈ T(4.1i)

|θit− θjt| ≤ θij (i, j) ∈ L, t ∈ T(4.1j)

sit+ηiait− bit− cit = si(t+1) i ∈ B, t ∈ {0}∪T(4.1k)

sit ≤ sit ≤ sit i ∈ B, t ∈ T(4.1l)

si0 = Iisi0 i ∈ B(4.1m)

si(T+1) ≥ Iisi(T+1) i ∈ B(4.1n)

0≤ ait ≤ ait i ∈ B, t ∈ T(4.1o)

0≤ bit ≤ bit i ∈ B, t ∈ T(4.1p) ∑
i∈B

∑
t∈T

eitait ≤ E.(4.1q)

Here, the objective function (4.1a) aims to minimize the total cost of power gener-
ation. Constraint (4.1b) ensures real power flow balance at bus i, while considering
EV charging and discharging power. Constraint (4.1c) ensures reactive power flow
balance at bus i. Constraints (4.1d) and (4.1e) represent the real and reactive power
flow, respectively. Constraint (4.1f) enforce bus voltage magnitude to maintain a
level under acceptable limitations. Constraints (4.1g) and (4.1h) limit real and re-
active power outputs of generator i. Also, we set p

i
= pi = q

i
= qi = 0 for i ∈ B\G.
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Constraint (4.1i) satisfy transmission capacity limitations of line (i, j). Constraint
(4.1j) sets restrictions on phase angle. Constraint (4.1k) ensures balance between
power supply and EV demand. Constraint (4.1l) controls the load of EV battery in a
specified range between the minimum charging requirement and the maximum bat-
tery capacity in order to satisfy the charging demand of the EV. Constraint (4.1m)
and (4.1n) set the battery state of charge at the beginning and end of the planning
horizon, respectively. Constraints (4.1o) and (4.1p) limit the charging and discharg-
ing rate of EV. If an EV is connected to the grid at time t, its charging/discharging
rate should be between zero and the maximum limit. Otherwise, maximum allow-
able charging and discharging limits (ait, bit) are set to zero. Constraint (4.1q) sets
an upper on the total amount of emission allowed.

4.2.1 Alternative Formulation

In this section, we present an alternative formulation for the mathematical model
(4.1) motivated by the reformulation in Section 2.2.3. Let us first define the new
decision variables:

• For each bus i ∈ B and time t ∈ T ,

– ciit := |Vit|2.

• For each line (i, j) ∈ L and time t ∈ T ,

– cijt := |Vit||Vjt|cos(θij− θjt)

– sijt :=−|Vit||Vjt|sin(θit− θjt).

Then, we denote the lower (upper) bounds of variables ciit, cijt, sijt as cii, cij , sij
(cii, cij , sij), respectively. We can set these bounds as follows:

• For each bus i ∈ B and time t ∈ T ,

– cii := V 2
i , cii := V

2
i .

• For each line (i, j) ∈ L and time t ∈ T ,

– cij := V iV j cos(θij), cij := V iV j ,

– sij :=−V iV j sin(θij), sij := V iV j sin(θij).

To eliminate the nonlinearities, we rewrite the constraints (4.1b)–(4.1f) replacing
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the newly defined variables as follows:

pgit−p
d
it−ait+ηibit = giiciit+

∑
j∈δ(i)

pijt i ∈ B, t ∈ T(4.2a)

qgit− q
d
it =−biiciit+

∑
j∈δ(i)

qijt i ∈ B, t ∈ T(4.2b)

pijt =Gij
ciit

(τij)2 + [Gijcijt−Bijsijt]
τij

(i, j) ∈ L, t ∈ T(4.2c)

qijt = −Bij
ciit

(τij)2 −
[Bijcijt+Gijsijt]

τij
(i, j) ∈ L, t ∈ T(4.2d)

V 2
i ≤ ciit ≤ V

2
i i ∈ B, t ∈ T .(4.2e)

We define the following consistency constraints which preserves the trigonometric
relation between the variables ciit, cijt and sijt:

c2ijt+ s2
ijt = ciitcjjt (i, j) ∈ L, t ∈ T(4.3a)

θjt− θit = atan2(sijt, cijt) i ∈ B, t ∈ T .(4.3b)

The alternative formulation minimizes the objective function (4.1a), under the con-
straints (4.1g)–(4.1q), (4.2) and (4.3).

4.2.2 SOCP Relaxations

The feasible region of the alternative NLP formulation is noncovex due to constraints
(4.3). We eliminate the constraint (4.3b) and relax the constraint (4.3a) as follows:

(4.4) c2ijt+ s2
ijt ≤ ciitcjjt (i, j) ∈ L, t ∈ T .

Then, an SOCP relaxation of the MOPF problem is obtained as (4.1a), (4.1g)–(4.1q),
(4.2) and (4.4).
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4.3 Solution Approach

In this section, we present our solution approach for the optimization problem (4.1)
to find a globally optimal solution. The presented problem is nonlinear and noncon-
vex, which may cause solvers to produce a locally optimal solution. The purpose
of relaxing the problem as an SOCP problem is to find a globally optimal solution;
however, a relaxation is not sufficient to guarantee convergence to a optimal solu-
tion of the original problem. Therefore we aim to construct lower and upper bounds,
which come from the relaxation and the original problem, respectively. If the op-
timal solution of the relaxation is contained in the feasible region of the original
problem, which means the lower bound equals the upper bound, the algorithm pro-
vides an optimality guarantee. Otherwise, the lower bound gives a quality measure
of the upper bound.

Initially, we start solving the SOCP relaxation from Section 4.2.2 to obtain a lower
bound (LB). The next step is to solve the MOPF model (4.1) to obtain an upper
bound. Since the problem is challenging to solve, we fix the charging and discharging
power variables ait and bit to the optimal values obtained from the SOCP relaxation
in the MOPF model and eliminate EV charging constraints (4.1k)–(4.1q). Now
the remaining problem is separable; we decompose the problem into smaller size
subproblems, one for each time. The single period NLP formulation corresponds to
model (2.2) where pdi = pdi + ai− ηibi. We solve this problem for each period and
sum up its objective values to obtain an upper bound (UB). The optimality gap is
computed as %Gap = 100× (1−LB/UB).

We introduce Algorithm 1 in order to observe the relation between marginal emis-
sions and total generation cost. We first consider cost and emission objectives sep-
arately to obtain levels of emission, then perform optimization for the different
settings of emission parameter E. This is like a multi-objective approach and the
aim is to approximate the Pareto frontier. Solving the SOCP formulation under
the emission minimization objective, we first find a lower bound on emission (LBE)
while satisfying the operation and security constraints. To find an upper bound on
emission (UBE), we solve the problem under the cost minimization objective and
calculate the marginal emission. Then, we select E values varying on a logarith-
mic scale within the LBE and UBE. For the different settings of E, we repeat the
optimization algorithm to find the upper and lower bounds of the MOPF problem.
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Algorithm 1
1: LBE = min{∑i∈B

∑
t∈T eitait : (4.1g)–(4.1q), (4.2), (4.4) }

2: Solve min{ (4.1a) : (4.1g)–(4.1p), (4.2), (4.4) } to obtain (a∗it)
3: Compute UBE=∑i∈B

∑
t∈T eta

∗
it

4: Generate a list size of n which consists numbers spaced on a logarithmic scale
between LBE and UBE as {ρ1,ρ2, ...,ρn}

5: for k = 1 to n do
6: E = ρk
7: Compute LBk = min{ (4.1a) :(4.1g)–(4.1q), (4.2), (4.4) } and obtain (a∗it, b∗it)
8: for all t ∈ T (in parallel) do
9: Fix pdi in (2.2) to pdi +a∗it−ηib∗it

10: Set an initial value for each variable
11: Solve model (2.2) to obtain UBkt
12: UBk =∑

t∈T UBkt
13: Compute %Gap = 100× (1−LBk/UBk)
14: Plot coordinates {(LBk,ρk) : k = 1 , . . . , n} and {(UBk,ρk) : k = 1 , . . . , n}

4.4 Input

In this section, we provide information on input datasets utilized for constructing
the optimization model. Our aim is to use realistic datasets in order to suggest
practical solutions to cope with possible grid challenges. Most of the researchers
use synthetic grid data in OPF studies because access to confidential information
on power grids is restricted, and actual grid data is not publicly available. Thus
the existence of realistic grid data becomes more critical. In our study, we use a
realistic synthetic test case and integrate real datasets to increase the applicability
of the optimization model. In detail, our model draws on three real data sets: hourly
electricity consumption, hourly marginal emission factors, and EV driving profiles.
Therefore, we select the regions where a realistic OPF test case and real datasets
are available. In the following sections, we explain these datasets and describe their
variations across different regions. In Section 4.5.1, we will discuss in detail how to
process these datesets.

4.4.1 OPF Test Case

The first important piece of information is the OPF test case. We test our algorithm
on 200-bus, 500-bus, and 2000-bus Texas AM University (TAMU) instances from
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the Power Grid Library (PGLIB-OPF) (Birchfield, Xu, Gegner, Shetye & Overbye,
2016), geographically situated in Illinois (IL), South Carolina (SC), and Texas (TX),
respectively. These synthetic test cases do not match to any actual grid; they are
constructed based on the statistical characteristics of the actual grid. The creators of
these test cases initially situate substations in a specified region and determine loads
and generators of these substations in such a way that generation and load profiles
are similar to real profiles. Then, they link these substations with an automated
line placement process based on realistic choices. They also consider additional
complexities such as voltage control and transient stability to make the test cases
more realistic. For detailed information on how to generate these test cases, see
Birchfield et al. (2016). The main reason why we prefer to use TAMU instances is
their similarity in size, complexity, and characteristics to real networks, in addition
to the availability of real datasets given below for the same regions.

In the test cases used in this study, substations are situated in the central part of
the IL, northwestern part of the SC and the whole state of TX. More details about
the distribution networks are given in Table 4.1.

Table 4.1 Size of the instances.

TAMU Instances
Number of IL SC TX
buses 200 500 2000
buses with demand 112 200 1125
lines 245 597 3206
generators 49 90 544

4.4.2 Electricity Demand

Electricity demand is the second important piece of information. We retrieve the
hourly electricity demand data available in Energy Information Administration EIA
(2020). We match each test case with the demand data in the corresponding region.
The hourly demand data for Illinois is not available, instead we consider the Mid-
continent Independent System Operator’s demand. For SC and TX, we use demand
for the SC Public Service Authority and regional demand of Texas.

Seasonal variations in electricity demand may result in differences in the operation
scheduling of the network. Therefore, the numerical experiments are conducted us-
ing data both for a summer’s day and a winter’s day to demonstrate the influences
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of the variations on the model results. To generate an average day, we first cal-
culate the hourly averages of electricity consumption for a certain month. Then,
these hourly averages are normalized by the maximum consumption as outlined in
Algorithm 2 and plotted in Figure 4.1 for August 2018 and December 2018. We
will explain how to process the normalized data to determine the real and reactive
power demand of the grid in more detail in Section 4.5.1.

Algorithm 2 Normalization
Input: Sets of hourly electricity demand for a summer’s day and a winter’s day:
U = {ut : t ∈ T } and W = {wt : t ∈ T }
Output: U = {ut : t ∈ T } andW = {wt : t ∈ T }

1: max_consumption = max(U ∪W)
2: for all t ∈ T do
3: ut = ut

max_consumption ,wt = ut
max_consumption

Figure 4.1 Hourly electricity demand.
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(b) South Carolina 500-bus
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(c) Texas 2000-bus
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Hourly electricity consumption follow a similar trend across all regions. The total
consumption in summer is higher than in winter. In winter, hourly electricity con-
sumption varies slightly and peaks in the morning and the evening, while in summer
it peaks in the afternoon.
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4.4.3 Emission Factors

The other real dataset is the emission factors. We use the marginal emissions that
occur from power stations to satisfy additional demand for EV charging. We retrieve
marginal emission factors estimates, available in the Climate and Energy Decision
Making Center by Azevedo IL (2019). We only take into account of CO2 emissions
and (although our framework would allow) do not investigate the effects of other air
pollutants. For the winter and summer, the hourly marginal CO2 emission factors
in kg/MWh are shown in Figure 4.2.

Figure 4.2 Marginal CO2 emission factors.
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(b) South Carolina 500-bus
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(c) Texas 2000-bus
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The marginal emission factors, as shown in Figure 4.2, vary widely across regions,
seasons, and time.

4.4.4 Driving Profiles

Our model also considers driving profiles to determine charging profiles. We use the
driving profiles over 24-hour that include energy requirement at time t and vehicle
weight, which is the number of EVs using a certain driving profile. We explain in
detail how to obtain these profiles in Algorithm 3. We use the National Household
Travel Survey (NHTS) (NHTS, 2017) dataset, a household survey that tracks trends
in personal travel and includes all transportation modes. The NHTS dataset con-
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tains household, person, vehicle, and travel day trip files. We use vehicle and travel
day trip files. The vehicle file includes records for each household vehicle, while the
travel day trip file includes records for each personal trip. Regional data is available
for IL, SC, and TX. We select trips made by a personal vehicle and eliminate non-
household vehicles. We do not eliminate nonelectric vehicles to investigate how their
electricity consumption will affect the OPF problem, if a portion of these vehicles
becomes electric.

Algorithm 3 Driving Profile
Input: Trip index r ∈ [0,R], vehicle index v ∈ [0,V ]
From vehicle and travel day trip file import Dr: Total distance travelled during trip
r, Sr: Start time of trip r, Er: End time of trip r, Sv: Set of trips for vehicle v, wv:
weight for vehicle v
cavg: Average energy consumption per mile
B: Battery capacity
Output: Driving Profile

1: Select region
2: Select passenger cars (Car, SUV, Van, Pickup Truck)
3: Delete nonhousehold vehicles
4: if Dr ≥B/cavg then
5: Delete trip r
6: Create a drive duration matrix ∆ of size T ×R
7: for all t ∈ [0,T ], r ∈ [0,R] do
8: if Sr ≤ t−1 and Er ≥ t then
9: ∆rt = 60

10: if Sr ≥ t or Er ≤ t−1 then
11: ∆rt = 0
12: else
13: ∆rt = min(t,Er)−max(t−1,Sr)
14: Calculate average speed Savgr =Dr/(Er−Sr)
15: Create an EV energy consumption matrix Ω of size T ×V
16: for all t ∈ [0,T ],v ∈ [0,V ] do
17: Ωvt =∑

r∈Sv
Savgr ∆trc

avg

18: Driving profile of vehicle v Ωv = {Ωvt : t ∈ [0,T ]}

To obtain the energy requirement of vehicles at time t, we make some assumptions.
Nissan Leaf has the highest sales in the moderate cost electric car segment in US
INSIDEEVs (2020). Therefore, we assume all of the EVs are similar to Nissan Leaf.
The standard battery of Nissan Leaf has usable capacity of 32 kWh, that is 80% of the
its 40 kWh capacity (NISSAN, 2020); we set the battery capacity B to 32. According
to EPA (2020), this vehicle has an average energy consumption of 0.3 kWh/mile.
We assume the energy consumption is constant and set the corresponding parameter
cavg to 0.3. Lastly, we also eliminate trips that require more than a full battery.
After filtering the data, we calculate energy requirements at each time t for vehicle
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v as outlined in Algorithm 3. Vehicle weights wv are already provided in datasets.

Since the data is only available for one typical day, we use the same EV driving
profiles both summer and winter ignoring possible seasonal variations. Figure 4.3
provides an overview of these driving profiles. We will later explain how to process
these driving profiles to integrate our model in detail in Section 4.5.1.

Figure 4.3 Percentage of energy requirement of EVs by time of day.
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4.5 Computational Experiments

This section presents the results of our computational experiments, which have been
conducted to investigate the effectiveness of our approach and assess the aggregate
impact of EV charging load on optimal network operations under different scenarios.
We first discuss the experimental setup to explain how we integrate input datasets
in Section 4.4 into the MOPF model in Section 4.2. Then, we graphically illustrate
the results of the computational experiments.

4.5.1 Experimental Setup

This section presents how we process input datasets so as to be compatible with the
multi-period formulation. For the MOPF model, we consider a 24-hour period, in
1-hour slots, from 00:00 to 00:00 the following day.

The TAMU instances include network parameters for only one single period. Most
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of the parameters remain constant throughout the day, but some parameters vary
on an hourly basis such as power load and electricity price. To extend to the multi-
period version, we multiply the real and reactive power load of the grid with the
corresponding normalized values obtained from Algorithm 2 as follows:

pdit = pdi ×ut, qdit = qdi ×ut i ∈ B, t ∈ T ,

pdit = pdi ×wt, qdit = qdi ×wt i ∈ B, t ∈ T .

Here ut and wt are the normalized values for summer and winter seasons. Since
hourly electricity price data is not publicly available for U. S. (EIA, 2020), we assume
that the price is constant over the 24-hour period. We adjust emission parameters
eit to corresponding marginal emission factors in Section 4.4.3.

We utilize EV driving profiles to adjust parameter settings related to EV charging.
We assume that EVs can only be charged at a bus with a nonzero real power load.
If there is no real load at bus i, we set cit = ait = bit = sit = sit = 0 for all t ∈ T .

Instead of individual EVs, we consider EV groups each containing EVs with the
same driving profile. Some of these EV fleets are assigned to buses according to
their weighted energy demand, ∑t∈T wvΩvt, in such a way that each bus i ∈ D has
one EV fleet. Assuming that if the bus load is high, the EV demand around the
bus is also high; we assign an EV fleet with a higher demand to a bus with a higher
load. The steps of the procedure used for this assignment are provided in Algorithm
4.

Algorithm 4 Assignment
Input: parameter, BD = {pdi : i ∈ D ⊆ B}, EV = {∑t∈T wvΩvt : v ∈ [0,V ]}
Output: Assignment of EVs to buses

1: Sort BD and EV in ascending order
2: Normalize BD by max(BD) and EV by max(EV)
3: k ← 0
4: for all n ∈ [0, size(BD)] do
5: if parameter ∗BD[n]≥ EV [k] then
6: Assign EV in the kth order of EV to the nth bus in BD
7: k ← k+ 1
8: else
9: for j ∈ [n,size(EV)] do

10: if BD[n]> EV [j] then
11: Assign EV in the jth order of EV to the nth bus in BD
12: k ← j+ 1
13: break

Now, each bus with a real power load has one fleet of EV, and thus we can use bus
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indices i instead of vehicle indices v for brevity. We adjust parameter settings for
EV fleets instead of individual EVs. We first set energy requirements cit to wiΩit for
i ∈ D, t ∈ T . According to the energy requirements, we determine stock parameter
sit for each period. If an EV has demand during successive periods (t, t+1, . . . , t+n),
the amount of battery charge at the beginning of the period t should be sufficient
to satisfy the demand in these successive periods. In regard to this, the stock
parameters are determined as in Algorithm 5.

Algorithm 5 Stock parameter settings of EV at bus i
Input: {cit : t ∈ T }
Output: {sit : t ∈ T }

1: sit = 0 for all t ∈ T
2: t= 1
3: while t≤ T do
4: if cit 6= 0 then
5: k ← t
6: while cik 6= 0 and t≤ T do
7: si(t−1) ← si(t−1) + cik
8: k ← k+ 1
9: t ← k

As previously mentioned in Section 4.4.4, we use the Nissan Leaf as a baseline
vehicle. The Nissan Leaf has a usable battery capacity of 32kWh with a 6.6kW
onboard charger (NISSAN, 2020). We assume that charging rates are constant over
a period. For each bus i ∈ D, the maximum limit of charging and discharging
powers, ait and bit, is set to wi× 6.6. We set the stock parameter sit to usable
battery capacity, that is wi×32, and the charging efficiency to 98% (Zhang, Yigang,
Mingjian & Yongling, 2017). We consider two different settings for the initial battery
state of charge (SOC) at the beginning of the day. In the first case, the initial battery
SOC Ii is equal to zero for each i ∈D. In the second case, for each EV, we first find
the maximum possible level of battery charge (in percentage) at the end of the day.
Then, we set the initial battery SOC Ii for EV at bus i ∈D to this computed value.
The second setting adds some flexibility to initial battery SOC of EVs.

To make the ratio of the electricity consumption and EV charging demand consistent
with the actual data, we calculate a parameter called weight as the ratio between
the total power demand of the grid and daily electricity consumption as follows:

(4.5) weight =
∑
i∈B

∑
t∈T p

d
it

max(∑t∈T ut,
∑
t∈T wt)

.

Here, ut and wt are the electricity consumptions for summer and winter obtained
from Algorithm 2. We multiply EV charging requirement cit and thereby all charging
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parameters ait, bit, sit, sit, Ii with weight. Note that we use the same weight for
different seasons. Table 4.2 summaries the daily demand data at a macro level.

Table 4.2 Daily demands in kWh.

Region
IL SC TX Source

August demand (∑t∈T ut) 149690 82575 1256288 Algorithm 2
December demand (∑t∈T wt) 129297 69901 923604 Algorithm 2
Grid demand (∑i∈B p

d
i ) 1476 7751 67109 Model (2.2)

Total grid demand (∑i∈B
∑
t∈T p

d
it) 29276 151214 1313994 Model (4.1)

EV demand (∑t∈T
∑
v∈V Ωvtwv) 9632 3312 22646 Algorithm 3

weight 0.19 1.83 1.05 Equation (4.5)

We assume that an EV cannot be driven and connected to the grid in the same
period. If the EV is in driving mode at time t, we set ait and bit to be zero. If EV
has no energy requirement at time t, we assume that it is connected to the grid,
and optimization decides exactly one mode among the following three based on the
driving profile: charging, discharging, or rest mode. It can only be in one of these
modes during time t. In addition, if the operating cost of a generator is zero, then
we remove the lower bound on the power generation and set pi = 0.

The proposed MOPF model allows bidirectional flow, from grid to vehicle (G2V)
and vehicle to grid (V2G). In the case where only unidirectional flow G2V is allowed,
the maximum allowable discharging rate bit should be set to zero.

4.5.2 Results and Discussion

In this section, we report the result of our computational experiments on the in-
stances from PGLIB-OPF. A 64-bit desktop with Intel Core i7 CPU with 3.20GHz
processor and 64 GB RAM is used for all experiments. Our code is written in
Python programming language using Spyder environment. The solvers GUROBI
and IPOPT are used to solve the SOCP relaxation and the NLP models, respec-
tively. In order to reduce the computational time, the NLP models are solved in
parallel. We also set the initial value of each variable to the average of its upper
and lower bounds.

We perform the optimization under different settings and illustrate eight cases for
each of the regions depending on the season of the year, initial battery SOC, and
direction of flow. Table 4.3 gives a summary of the input data and parameter settings
for case studies.
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Table 4.3 Input data and parameter settings.

Settings

Region
Illinois

South Carolina
Texas

Season Winter
Summer

Initial battery SOC 0%
max%

Direction of flow only G2V
G2V and V2G

For every combination of parameter settings, i.e., for 24 different cases, we run
Algorithm 1. To illustrate the results, we group the test cases that belong to the same
region and season. Each group consists of four different cases in the combination
of the direction of flow and initial SOC settings. We plot results with both total
generation cost and marginal generation cost in Figures 4.4–4.15.

4.5.2.1 Computational Accuracy in Terms of Optimality Gap

To demonstrate the computational accuracy of the proposed optimization algorithm,
we repeat Algorithm 1 and plot the results in Figures 4.4, 4.6, 4.8, 4.10, 4.12, and
4.14. These figures show lower bound (in red dashed line) obtained from SOCP
relaxation and upper bounds (in solid blue line) computed via NLP models. These
figures better illustrate the quality of our approach in terms of the optimality gap.

For the 200-bus system in IL and 2000-bus system in TX, the proposed approach is
capable of providing approximately globally optimal solutions with an optimality gap
below 0.005% and 0.7%, respectively. For the 500-bus system in SC, the optimality
gaps are no more than 2.9% in winter; however, in summer, the optimality gaps
vary between 3.9 % and 6.4 %. The authors in Babaeinejadsarookolaee, Birchfield,
Christie, Coffrin, DeMarco, Diao, Ferris, Fliscounakis, Greene, Huang & others
(2019) also note that the 500-bus case exhibits a significant SOCP optimality gap.
Overall, our proposed algorithm achieves relatively small percentage optimality gaps
for all the instances we consider.
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4.5.2.2 Marginal Cost vs. Marginal Emission

We also consider the marginal generation cost associated with the power generation
of the grid for EV charging. We calculate marginal costs by subtracting the current
cost, which is the optimal total cost of electricity without EV charging load, from
the total generation cost. Figures 4.5, 4.7, 4.9, 4.11, 4.13, and 4.15 may give a better
understanding of the relation between cost and emission.

Figures 4.4–4.7 depict different cases for Illinois. These graphs show how marginal
emission and cost change in relation to each other. At first sight, one can easily
observe that marginal emission and marginal cost are inversely correlated. When
we set tight restrictions on marginal emission, the marginal cost tends to rise while
we aim to minimize marginal cost, marginal emission increases. In some cases,
despite the tighter restrictions on marginal emission, the marginal cost remains the
same up to a point. At this point, the reduction of marginal emission is free. For
example, in Figure 4.5a with no change in the generation cost, marginal emission
decreases by approximately 6%.

4.5.2.3 Effect of V2G

We investigate how marginal emissions and marginal costs are affected by the in-
tegration of the V2G concept. The bidirectional flow has the potential to decrease
marginal cost. For example, we observe negative marginal costs in Figure 4.7b. In
the case of bidirectional flow (see Figure 4.17e), EVs are charged during off-peak
hours of electricity consumption and give energy back to the grid during peak hours
to reduce the peak load of the power grid. This results in a reduction of power losses,
thereby decreasing the total generation cost. However, this phenomenon does not
only depend on the direction of flow but also the initial SOC setting. When the final
battery SOC should be equal to max % at the end of the day, there is no reduction
in the peak load of the grid (see Figure 4.17g), and thus the generation cost remains
the same as in unidirectional flow (see Figure 4.17c). We also observe similar results
for the test cases in SC and TX, see Figures 4.11b and 4.15b.
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Figure 4.4 Pareto frontier of total cost and marginal emission for Illinois (200-bus
system) in winter.
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Figure 4.5 Pareto frontier of marginal cost and marginal emission for Illinois (200-bus
system) in winter.
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Figure 4.6 Pareto frontier of total cost and marginal emission for Illinois (200-bus
system) in summer.
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Figure 4.7 Pareto frontier of marginal cost and marginal emission for Illinois (200-bus
system) in summer.
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Figure 4.8 Pareto frontier of total cost and marginal emission for South Carolina
(500-bus system) in winter.
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Figure 4.9 Pareto frontier of marginal cost and marginal emission for South Carolina
(500-bus system) in winter.

(a) SOC=0%, only G2V

2.5 3 3.5 4 4.5 5
·104

3.9

4

4.1

·104

Marginal cost

M
ar
gi
na

le
m
iss

io
n

(b) SOC=0%, G2V and V2G

2.5 3 3.5 4 4.5 5
·104

3.8

4

4.2

4.4

·104

Marginal cost

M
ar
gi
na

le
m
iss

io
n

(c) SOC=max%, only G2V

3 3.5 4 4.5 5 5.5 6
·104

3.95

4

4.05

4.1
·104

Marginal cost

M
ar
gi
na

le
m
iss

io
n

(d) SOC=max%, G2V and V2G

3 3.5 4 4.5 5
·104

4

4.1

4.2
·104

Marginal cost

M
ar
gi
na

le
m
iss

io
n

43



Figure 4.10 Pareto frontier of total cost and marginal emission for South Carolina
(500-bus system) in summer.
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Figure 4.11 Pareto frontier of marginal cost and marginal emission for South Carolina
(500-bus system) in summer.
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Figure 4.12 Pareto frontier of total cost and marginal emission for Texas (2000-bus
system) in winter.
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Figure 4.13 Pareto frontier of marginal cost and marginal emission for Texas (2000-
bus system) in winter.
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Figure 4.14 Pareto frontier of total cost and marginal emission for Texas (2000-bus
system) in summer.
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Figure 4.15 Pareto frontier of marginal cost and marginal emission for Texas (2000-
bus system) in winter.
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4.5.2.4 Hourly Load Variations for Illinois 200-Bus System

We also plot the conventional load without EVs (in dashed blue line), and EV
charging load (in solid red line) and V2G power profile (in orange dotted line) power
curves for both cost and emission minimization objectives in Figures 4.16 and 4.17.
Because we observe similar trends for regions IL, SC, and TX in general, we only
provide the plots for IL 200-bus system. Now, we will further analyze the effects of
hourly electricity consumption and marginal emission factors on operations.

The curve trend of the EV charging load is opposite to that of conventional load
without EVs under the cost minimization objective. For example, in Figure 4.17a,
when the conventional load is relatively low early in the morning, the EV charging
load is high while at the peak of the conventional load, the total EV charging load
is minimal. On the other hand, Evs supply power to the grid at the peak of the
conventional load in order to flatten the load profile (see Figure 4.17e).

If the problem aims to minimize emission, the power grid generates electricity when
the emission factor is relatively low, even at the peak of conventional load (see
Figure 4.17h). This results in higher peaks of the grid; therefore, grid losses and
consequently, total generation cost increases. It is also important to consider the
impacts of initial SOC settings and driving profiles. For example in Figure 4.17b,
although emission factors are higher in the early morning, EVs have to be charged
in the early morning to satisfy their demand in the morning (see Figure 4.3).
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Figure 4.16 Hourly load variations for Illinois (200-bus system) in winter.
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Figure 4.17 Hourly load variations for Illinois (200-bus system) in summer.
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4.6 Conclusions

This chapter presents a solution approach based on SOCP to solve the multi-period
joint OPF and EV charging problems. We propose a new mathematical formulation
of the problem and its SOCP relaxation. We consider a realistic OPF test case
with three real datasets: hourly electricity consumption, hourly marginal emission
factor, and EV driving profiles. We systematically solve the SOCP and the original
problem to approximate globally optimal solutions. We conduct computational ex-
periments to investigate the aggregate effect of the EV charging load on the grid.
A number of assumptions and limitations in the optimization model should be con-
sidered when interpreting our findings, such as constant electricity prices, the same
EV type and constant charging rates. In addition, our model requires hourly elec-
tricity consumptions, EV charging demands, and charging location of each EV to
be known a priori. Computational experiments on different sizes of OPF instances
from PGLIB-OPF library show that our solution approach provides globally optimal
solutions with minimal optimality gaps. In addition, through coordinated charging
of EVs, marginal emission can be significantly reduced with no change or mini-
mal increase in cost, and the integration of the V2G concept leads to cost savings,
although assuming hourly electricity prices are constant.
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