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ABSTRACT

AN AUTOMATED BLACK-BOX MODEL DISCOVERY WITH SYSTEMATIC
SAMPLING ON ANDROID MOBILE APPLICATIONS

ÖMER KORKMAZ

COMPUTER SCIENCE AND ENGINEERING M.Sc. THESIS, AUGUST 2020

Assoc. Prof. Cemal Yılmaz

Keywords: automated model discovery, systematic sampling, covering arrays,
combinatorial testing

Clients progressively depend on mobile applications for computational needs. With
the popularity of Google Android and the rise of interest in Android devices, Android
applications have been valuable and millions of mobile applications have increased
the importance and demand of test processes in the complex systems. Since the
applications had well-developed strong conditions that need to be tested, automation
in the testing has played a significant role. Many types of researches have primarily
focused on different model discovery strategies to be used for different purposes
(e.g., test generation, bug detection). However, they were not used systematically
for testing of mobile applications. We present a tool that provides an automated
black-box model discovery by applying systematic sampling to build a model of an
application dynamically for different uses. The approach includes two purposes: (1)
discovering the model of an application by providing systematic sampling, and (2)
predicting guard conditions of the discovered model. The results of our experiments
have confirmed the ability of the approach to acquire higher code coverage and the
accuracy of predicted guard conditions than existing approaches.
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ÖZET

ANDROID UYGULAMALARDA SISTEMATIK ÖRNEKLEME ILE
OTOMATIKLEŞTIRILMIŞ MODEL KEŞIF YAKLAŞIMI

ÖMER KORKMAZ

BİLGİSAYAR BİLİMİ VE MÜHENDİSLİĞİ, YÜKSEK LİSANS TEZİ,
AĞUSTOS 2020

Tez Danışmanı: Doç. Dr. Cemal Yılmaz

Anahtar Kelimeler: model keşif, sistematik örnekleme, kapsayan diziler,
kombinatoryal test

İstemciler, hesaplama ihtiyaçları için mobil uygulamalara giderek daha fazla
güveniyor. Google Android’in popülaritesi ve Android cihazlara olan ilginin art-
ması ile Android uygulamaları değerli hale geldi ve milyonlarca mobil uygulama,
karmaşık sistemlerde test süreçlerinin önemini ve talebini artırdı. Uygulamalar
test edilmesi gereken iyi geliştirilmiş güçlü koşullara sahip olduğundan, testteki
otomasyon önemli bir rol oynamıştır. Birçok araştırma türü, öncelikle farklı amaçlar
için kullanılacak farklı model keşif stratejilerine odaklanmıştır (örneğin, test oluş-
turma, hata algılama). Ancak, mobil uygulamaların test edilmesinde veya farklı
amaçlar için kullanılabilecek olan uygulama modeli sistematik örnekleme ile oluş-
turulmadı. Farklı kullanımlar için dinamik olarak bir uygulama modeli oluşturmak
üzere sistematik örnekleme uygulayarak otomatik bir kara kutu modeli keşfi sağlayan
bir araç sunuyoruz. Yaklaşım iki amaç içerir: (1) sistematik örnekleme sağlayarak
bir uygulamanın modelini keşfetmek ve (2) keşfedilen modelin koruma koşullarını
tahmin etmek. Deneylerimizin sonuçları, yaklaşımın mevcut yaklaşımlardan daha
yüksek kod kapsamı ve koruma koşullarının doğruluğunu elde etme yeteneğini doğru-
ladı.
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1. INTRODUCTION

Mobile devices have been increasingly becoming smarter and more powerful. There-
fore, mobile applications in many areas such as education, health, economy, or man-
agement are used by millions of people on a daily basis. As the failures in the field
may have some severe consequences, these applications need to be tested thoroughly.

One frequently used approach for this purpose is model-based testing (D. Amalfitano
& Memon., 2015,1; Nariman Mirzaei & Malek, 2016; S. Hao & Govindan., 2014;
W. Yang & Xie., 2013). In model-based testing, given a model representing the
behavior of the system under test (SUT), test cases are automatically generated
typically by employing a structural coverage criterion, such as those based on state
and transition coverage (Pradhan, 2019; Shafique, 2010) Many empirical studies
strongly suggest that model-based testing is an efficient and effective approach for
testing mobile applications (D. Amalfitano & Memon., 2015,1; Nariman Mirzaei &
Malek, 2016; S. Hao & Govindan., 2014; W. Yang & Xie., 2013).

One down side of model-based testing, however, is that it takes as input the model
of the SUT. As these models often need to be created manually and updated as the
underlying codebase is modified, this greatly affects the practicality of the model-
based approaches.

Many approaches have been proposed in the past to automatically discover the
models of software systems, especially the mobile applications, so that these models
can be used with various model-based testing approaches to automate testing from
end to end (A. Machiry & Naik., 2013; AndroidMonkey, 2018; Claessen & Hughes,
2000; H. van der Merwe & Visser, 2014; R. Mahmood & Malek., 2014; S. Anand &
Yang., 2012).

The existing model discovery approaches can be categorized into two main
groups; random testing-based approaches (A. Machiry & Naik., 2013; AndroidMon-
key, 2018; Claessen & Hughes, 2000) and somewhat-systematic testing-based ap-
proaches (H. van der Merwe & Visser, 2014; R. Mahmood & Malek., 2014; S. Anand
& Yang., 2012). While the former approaches randomly generate user events, such
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tapping a button or swiping the current screen from top to bottom, the latter ap-
proaches aim to verify the requirements of the SUT in a somewhat-systematic man-
ner.

One observation we make, however, is that even the somewhat-systematic testing
approaches do not systematically take the interactions between various entities in
the SUT into account, such as the interactions between the inputs fields.

In this thesis, we conjecture that systematically sampling the input space of appli-
cations by taking the interactions between various factors into account can greatly
improve the effectiveness of model discovery.

To this end, we present an automated model discovery approach in this thesis. More
specifically, we discover finite state machine-based models, where states represent
distinct screens discovered during crawling and the transitions between states depict
the transitions between screens. The transitions are further annotated with guard
conditions (if any), which represent the conditions that must be satisfied in order
to take the transitions.

To systematically, sample the input space of the SUT, we use a well-known combina-
torial object for testing, called t-way covering arrays (D. M. Cohen & Patton, 1997).
A t-way covering array, where t is often referred to as coverage strength, takes as
input an input space model. The model includes a set of parameters, each of which
takes its value from a discrete domain, together with inter-parameter constraints (if
any), which invalidate certain combinations of parameter values. Given a model, a
t-way covering array is a set of test cases (where each test case is comprised of values
for all the parameters in the model), in which each possible combination of param-
eter values for every combination of t parameters appears at least once (C. Yilmaz
& Koc, 2014; Nie & Leung, 2011).

The basic justification for using t-way covering arrays is that they (under certain
assumptions) can efficiently and effectively exercise all program behaviors caused by
the interaction of t or fewer parameters (D. M. Cohen & Patton, 1997). Therefore,
they have been extensively used for software testing (R. Mahmood & Malek., 2014;
S. Anand & Yang., 2012). In this work, however, we used them (and, to the best
of our knowledge, for the first time) to systematically sample the input spaces for
automated model discovery.

At a very high level, the proposed approach operates as follows: we start with an
initially empty model. For each screen encountered during the discovery process,
we first check to see if we have seen the screen or not. If the screen has not been
seen before, we add a new state to the current model together with a transition
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from the previous state to the newly discovered state. Otherwise, i.e., if the screen
has already been seen, we map the screen to a state in the model and add an
appropriate transition (if not already included in the model) from the previous state
to the current state.

We then determine the input fields for the current screen (i.e., user interface ob-
jects with which the end-users can interact). To systematically test the interactions
between these input fields, we compute a t-way covering array by discretizing pa-
rameter domains using equivalence class partitioning (Bhat & Quadri, 2015; Fang
& Li, 2015).

Note that t (i.e., the coverage strength) is an input parameter of the proposed
approach and we compute a covering array for every distinct screen discovered. The
covering array is computed when the screen is discovered for the first time. Then,
every time the screen is encountered, we randomly pick a previously untested test
case from the respective covering array, which, indeed, is comprised of the values
to be fed to the input fields on the screen, and execute the test case. The crawling
process terminates when the test cases in the covering arrays computed for all the
discovered test cases are executed.

Once the crawling process terminates, the likely guard conditions are discovered. To
this end, for each state, the test results obtained from the covering array computed
for the state, are fed to a classification tree algorithm by using the destination
states as classes. For every transition originating from the state, the output is a
condition, which is comprised of parameters defined in the source state together
with their values, representing the likely condition that needs to be satisfied before
the transition can be taken.

To evaluate the proposed approach, we have conducted a number of empirical stud-
ies. In the first set of experiments, we used simulations to measure the sensitivity of
various parameters on the performance of the proposed approach. We used simula-
tions for this purpose as it was not possible for us to control these parameters in real
subject applications. And, in the second set of experiments, we used a number of
real applications as subject applications, which were, indeed, frequently used in re-
lated works (D. Amalfitano & Memon., 2015,1; S. Hao & Govindan., 2014; W. Yang
& Xie., 2013).

The results of our experiments strongly suggest that our hypothesis holds true in
practice that systematically testing the interactions between various factors can
improve the performance of model discovery approaches. We have arrived at this
conclusion by noting that compared to existing approaches the proposed approach
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increased state and transition coverage, structural code coverage, and the accuracy
of the guard conditions.

The contributions of this thesis can be summarized as follows:

• an approach for automated model discovery by systematically sampling the
interactions between factors that can affect program executions;

• a framework implementing the proposed approach;

• a series of experiments evaluating the proposed approach in a multi-faceted
manner.

The remainder of the paper is organized as follows: Section 2 provides background
information on the technologies and concepts used in the study, including covering
arrays and equivalence classes; Section 3 discusses related work; Section 4 introduces
the proposed approach; Section 5 presents the experiments carried out to evaluate
the proposed approach; Section 6 provides more discussion (and experiments) on
the practicality of the proposed approach; Section 7 discusses threats to validity;
and Section 8 presents concluding remarks and discusses possible future works.
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2. BACKGROUND

In this section, we give background information on Android platforms, Combinato-
rial Interaction Testing (CIT) including covering arrays, and the equivalence classes.

2.1 Android Platforms

Android platform developed by Google includes a full ARM processor-based Linux
operating system, libraries related to the system, middleware, and a suite of pre-
installed apps. It is optimized on running programs written in Java on the Dalvik
Virtual Machine (DVM) (Dalvik, 2018). Android also provides one the most impor-
tant feature called Application Development Framework (ADF) which is an API for
the development of the apps and includes services that needed to build component
types and GUI-based applications (AndroidDeveloper, 2018). Android framework
is improved for the integrity and reusability of the components.

Android-based applications are generated by using XML manifest file which has
significant information on Android platforms to manage the life cycle of the appli-
cation. The information of the manifest file is mostly about the description of the
components on the app based on configuration and architectural properties. Compo-
nents are four different types (Activities, Services, Broadcast Receivers, and Content
Providers). This file is produced for each activity of an application. An Activity
typically corresponds to a screen the application that consists of components and
layouts. The layout includes GUI elements (e.g., Button for triggering defined op-
erations text and EditText for text inputs). Developers can control the behavior of
each activity with the callbacks. Since the activities provide a user interface, services
do not have any view that users can interact. However, they are used to run the op-
erations in the background as an application component. Broadcast Receivers and
Intents offers inter-process communication in the running time. They can be defined
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in the manifest file or the application code so that the app can react when the SMS
is received or a new connection is available. In addition to the given information,
structured data in the file system or a database is managed by a content provider.
The applications may have their own content providers and share them with other
applications by making a content provider available. All primary components are
managed by the ADF, even activities and services. Each activity has its own XML
file to store controls and components of an activity, as mentioned previously. The
XML-formatted file plays an important role in our research as explained later.

2.2 Combinatorial Interaction Testing and Covering Arrays

Combinatorial Interaction Testing (CIT) is an effective testing technique to address
the interaction of input parameters in software systems. CIT-based approaches sys-
tematically generate samples with the configuration space and test only selected
configurations (C. Yilmaz & Koc, 2014; Nie & Leung, 2011). The approach takes a
configuration space as input. The configuration space model includes a set of pa-
rameters such as configuration options, constraints that affect the configuration, and
the settings of options. With the given configuration space model, CIT approaches
to generate a set of configurations, known as t-way covering array (D. M. Cohen &
Patton, 1997), which include all possible combinations of the option settings that
appear at least once in every combination of t settings. After the generation of a
covering array, the system is tested by executing the test cases in the covering array.

A covering array, denoted by CA(N ; t,k,s), is a Nxk array on s symbols that con-
tains all t combinations of the symbols, since k is the number of options. As men-
tioned in a previous paragraph, a configuration space model includes a set of options
O = {o1,o2,o3, ...,on} and their possible settings V = {v1,v2,v3, ...,vn}. In our ap-
proach, each option o stands for an input field on the screen and each setting v

represents the discrete test values that need to be fed to the given option. In order
to clearly understand how the covering arrays work, we present an example related
to the approach.

In our illustrative example (Table 2.1, 2.2), we suppose that an application has
a screen and that screen has four editable input fields and one button. The test
values of the input fields are produced. Table 2.1 demonstrates the input fields of
a given Android screen represented as options and the test values, that need to be

6



Table 2.1 The Options and Settings of An Example

Options Settings
O1 (Input-1) < Summer,Winter >
O2 (Input-2) < Turkey,France,Italy >
O3 (Input-3) < Male,Female >
O4 (Input-4) < 18,26,45 >

Table 2.2 An Illustrative Example of CA when t = 2

Input-1 Input-2 Input-3 Input-4
Summer Turkey Male 26
Winter Turkey Female 18
Winter Turkey Male 45
Summer France Female 18
Winter France Male 26
Summer France Female 45
Summer Italy Female 26
Winter Italy Male 18
Winter Italy Female 45

fed to the input fields, represented as settings. The first option O1 gets two test
values Summer and Winter, respectively. The second option O2 takes three values
Turkey, France and Italy. As a third option, it takes two values Male and Female.
Last option gets three integer values 18, 26 and 45. The strength of a covering
array is represented by t. We set the strength of a covering array t = 2 to cover
the interactions of the all 2-way combinations of the options on a current Android
screen. So, we may generate a covering array CA(9;2,4,3). Once the covering array
is generated, the length of test cases is 9 and the generated configurations are shown
in Table 2.2. If the strength of a covering array t is increased, we then generate
more systematic samples as test cases.

2.3 Domain and Equivalence Classes

One assumption behind the combinatorial covering arrays is that each option takes
its values from a discrete domain. In this section, we present two terminology called
as Domain and Equivalence Class in the approach. As we explained more details in
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Table 2.3 An example demonstrating the relationship between domains and
equivalence classes

Domain Equivalence Class Values
Email Valid Email {test@hotmail.com, test@outlook.com}
Email Invalid Email {abc@def, test@!xyz}
Age Infant [0,1]
Age Toddler [2,3]
Age Teenager [4,18]
Age Young Adult [19,25]

Section 4, the goal of the domain and equivalence classes is to produce appropriate
test values for the input fields of the screens so that the approach can generate the
covering arrays for the screens using the input fields and their test values.

Domain of an input field is the set of all possible test values related to the input
field. Also, a domain represents the information that explains what kind of test
values should be fed for a given input field (e.g., email, age). In the approach, we
divide each domain into the partitions represented as equivalence classes.

Equivalence Class is a partition or group of the test input values that can be
used to derive the test cases and reduce the time required for testing. We create the
domains and equivalence classes manually and pick a test value randomly from each
equivalence class of a respective domain so that we can generate a covering array
for a given screen.

As a structure of domain and equivalence classes, they are used together in the
approach. If we do not know the domain of a given input field, the equivalence
classes cannot be generated showing that the approach cannot produce discrete test
values for the input fields. Therefore, the domain is detected by using the attributes,
provided by Android (AndroidDeveloper, 2018), of each input field (e.g., resource-
id, class, description). We then pick appropriate test values randomly from the
equivalence classes of a respective domain. In this way, the test values of the input
fields are produced to be covered by the covering arrays as systematic sampling.

Table 2.3 demonstrates the relationship between the domain and its equivalence
classes. In the table, there are equivalence classes and discrete test values for each
equivalence class of a given domain. For example, we consider that for a given
input field, the input domain is an email. We partition the email domain into two
equivalence classes as valid email and invalid email, respectively. Each equivalence
class has test input values that covers the email domain. We pick a random value
from each equivalence class. For a valid email test and an invalid email test of
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the given input field, we pick discrete test values from their equivalence classes as
shown in Table 2.3. At the end, a given input field has two discrete test values taken
from the invalid mail and valid mail equivalence classes, and these values cover the
specifications of the email domain. The process of producing test values for the
input fields is the same for the age domain as given in Table 2.3 and other domains,
too. We will give more details and discuss the approach regarding the domain and
equivalence classes detection in the Section 4.3.
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3. RELATED WORK

As mobile applications have rapidly become more complex, the testing procedure
has been crucial providing the development of high-quality applications. Since the
complexity of the applications may cause more failures that users encounter, the
researchers and practitioners have typically studied test automation approaches and
tools. In the literature, the recent works of the automated testing have mostly
focused on various exploration strategies (e.g., random testing, model-based testing
and systematic testing) (A. Machiry & Naik., 2013; AndroidMonkey, 2018; D. Amal-
fitano & Memon., 2015,1; H. van der Merwe & Visser, 2014; L. Mariani & Santoro,
2012; R. Mahmood & Malek., 2014,1; S. Anand & Yang., 2012; S. Hao & Govindan.,
2014; W. Yang & Xie., 2013; Z. Liu, 2010) for different purposes such as crawling
and testing the applications, generating test cases or detecting the bugs.

In random testing (A. Machiry & Naik., 2013; AndroidMonkey, 2018; Claessen &
Hughes, 2000; Hu & Neamtiu, 2011), which is known as one of the black-box software
testing techniques where the software systems are tested with a random generation,
proposed approaches generate the test inputs with a random strategy for mobile
applications, indicating that they produce UI (User Interface) and system events
as test cases. Since Monkey is the most frequently used tool as a random testing
tool, it randomly generates a limited number of UI events with a black-box strategy.
Also, Hu and Neamtiu (Hu & Neamtiu, 2011) proposed a random approach in order
to generate GUI tests with Monkey (AndroidMonkey, 2018). On the other hand,
Dynodroid (A. Machiry & Naik., 2013) is another random exploration tool using
several features as Monkey. Basically, Dynodroid generates the test events randomly
or the users produce test values manually. However, random testing approaches are
not efficient to get high code coverage because of the random generation. In other
words, random testing may not satisfy most of the all conditions that implemented
in the code-base and not execute most of the code lines during testing. Thus, we
focus on systematic sampling using the covering arrays.

As model-based testing approaches (D. Amalfitano & Memon., 2015,1; Nari-
man Mirzaei & Malek, 2016; S. Hao & Govindan., 2014; W. Yang & Xie., 2013),
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following the web crawlers (S. Roy Choudhary & Orso, 2013; V. Dallmeier & Zeller,
2013; van Deursen & Lenselin, 2012), they have been proposed to generate events
and explore the behaviors of an application building the model. Model-based testing
represents a software testing technique where the behaviors of a given software are
checked against the predictions of the model while the system is under test. The
models generated by the approaches may also be produced manually (Takala, 2011),
since other approaches may build the model dynamically (D. Amalfitano & Memon.,
2015,1). GUIRipper (D. Amalfitano & Memon., 2012), which is known as MobiGU-
ITAR (D. Amalfitano & Memon., 2015) later, builds the model of an application
dynamically by crawling the application from a start state. While the approach is
implemented by DFS (Depth-First Search) strategy and generates only UI events,
the approach cannot observe the interactions of the input fields systematically in
terms of the guard conditions of an application. Also, PUMA (S. Hao & Govindan.,
2014) is another model-based testing tool that consists of generic UI automator and
random exploration implemented by Monkey (AndroidMonkey, 2018). It is also
implemented by a dynamic analysis with the basis of the Monkey approach. Since
these approaches use DFS in their structures, Trimdroid (Nariman Mirzaei & Malek,
2016) uses combinatorial fashion instead of using randomly generated inputs. On the
other hand, ORBIT (W. Yang & Xie., 2013) is another model-based strategy that
uses static analysis instead of generating a model dynamically to discover suitable
UI events for a particular screen of a mobile application. Even if the use of models
achieve higher code coverage than random testing approaches (S. R. Choudhary &
Orso, 2015), a model must be provided as input in some cases (Takala, 2011) or the
models are not discovered by using covering arrays as systematic sampling; hence
the states of a model are not tested systematically. Here, our focus is to dynamically
discover the model of an application with systematic sampling.

In terms of systematic exploration strategies (H. van der Merwe & Visser, 2014;
R. Mahmood & Malek., 2014; S. Anand & Yang., 2012), basically, the sys-
tem/systematic testing, known as planned and ordered testing, is a software test-
ing technique that evaluate the end-to-end system specifications in the literature.
The researchers have developed different approaches that crawl the application in
a systematic way. Also, the inputs and system events are generated systematically
(S. Anand & Yang., 2012). In addition, EvoDroid (R. Mahmood & Malek., 2014)
is based on evolutionary algorithms to produce relevant inputs. In the framework,
EvoDroid presents the sequences of test inputs in order to maximize the code cov-
erage. ACTEve (S. Anand & Yang., 2012) is a concolic-testing tool that triggers
the events in the framework so that it may instrument the application and the
framework. Moreover, JPF-Android (H. van der Merwe & Visser, 2014) is another
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systematic exploration strategy that extends Java Path Finder (JPF), which lets
to verify the applications systematically against the specific properties. However,
either the input and system events are generated systematically or the specifications
are verified with a systematic manner, the weakness of systematic testing is to ignore
the interactions of the input fields. This weakness causes to not cover the interac-
tions of the input fields of an application systematically. Here, in our approach,
we cover the interactions between the inputs fields of the screens by using covering
arrays as systematic sampling so that we can discover the model systematically and
automatically.

In our approach, we get higher code coverage than the existing tools (A. Machiry &
Naik., 2013; AndroidMonkey, 2018) with the implementation of systematic sampling
in the model discovery process. Since the model-based testing approaches need to
build a model with a dynamic or static analysis, the approach automatically crawls
the application and generates dynamically a model providing test samples generated
systematically by the covering arrays. The approach we propose prevents random-
ness to crawl the application entirely applying systematic sampling when compared
to random testing strategies. In the approach, we use covering arrays to systemati-
cally generate appropriate test cases and the approach predicts the guard conditions
of the model interacting the input fields systematically. Moreover, when compared
to random sampling in Section 5, under the equal conditions as systematic sampling
(e.g., same number of test cases, domains and equivalence classes), the systematic
sampling is better than the random sampling in terms of various evaluation metrics
like state, transition and code coverage, and accuracy of predicted guard conditions
of the model.
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4. APPROACH

In this section, we present our approach and explain different algorithms to generate
test cases systematically, crawl the application automatically and discover the model
by predicting the guard-conditions.

4.1 General Overview of Approach

In this part, we define the general characteristics of the approach and express the
relationship between the main steps. We basically develop an automated model dis-
covery approach for mobile applications by applying systematic sampling generated
by the covering arrays during the test process. Figure 4.1 demonstrates the general
overview of the framework by subdividing the approach to explain how the system
works.

According to the Figure 4.1, we use Android mobile applications as an input in
the testing procedure. Although we use Android platform in this approach, the
proposed approach are readily available to other platforms, such as iOS and Web.
In general, the approach starts to crawl the application by detecting the screens of
the application while the system is under test and build a model at run time. In
the model, we represent the nodes as discovered distinct screens of the application
and the edges as transitions between the screens. In the approach, we call the nodes
as states and edges as transitions In addition, there are guard conditions on the
transitions, which are the conditions that need to be satisfied before the transitions
are taken. In the approach, the guard conditions consist of the test values of the
input fields positioned on the transition of a source state. If a test case satisfies a
guard condition, the approach arrives at a target state from a current source state.
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In order to define the screens, we first crawl a screen of the application and check
the distinctness of the screen with its specific attributes provided by Android (e.g.,
class name, resource-id, or package). At the end of the distinctness decision of a
screen, if a screen is distinctly identified, meaning that it has been discovered for the
first time, the approach starts to collect the input fields of a given screen by using
an XML file. For a given screen, the file basically includes the input fields and the
attributes of the input fields in a special formatted way so that we can parse the file
and use the input fields and their attributes easily in the approach.

After collecting the all inputs fields with their attributes of a current screen, we
initiate the domain detection process for each collected input field. At this point,
the approach needs to determine the input type to produce test values for the input
fields. The input domain is detected by matching the information taken from the
attributes of the input field with the keywords of the domains stored in the database.
Later, we pick a value randomly from each pre-recorded equivalence classes of a
detected domain for a given input field. We then generate test cases systematically
via covering arrays with selected test values of the equivalence classes in accordance
with the input fields.

For the test case generation process, we generate a t-way covering array, as system-
atic samples, with the input fields and their produced test values for each screen.
We then start to execute the generated test cases sequentially. In the approach,
we proceed in a depth-search manner. After each execution, we begin to check the
status of the application. If the approach detects a new screen, the test cases are
generated by the covering arrays and the approach executes them. On the other
hand, when we move to a discovered screen, we check whether there are test cases
remaining the covering array for the screen. If so, we pick the unexecuted test cases
and execute them. At the end of the test executions, the test case generation process
is completed and we then start to predict the guard conditions of the model.

As a last process of the approach, we discover the guard conditions of the discov-
ered model by making a prediction on the results of test executions. In the guard
condition discovery process, we make a binary classification leveraging a machine
learning approach (e.g., decision tree classifier). The results of the test executions,
as the data that will be trained, are prepared by labeling the data as 1 for each
target state that we want to predict the guard condition and as 0 for the rest. We
then execute the decision tree classifier on the prepared data and predict the guard
conditions. This process is repeated to discover the guard conditions between the
source state and each distinct target state.
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Figure 4.1 General overview of the approach

Algorithm 1 expresses the general crawling flow of the approach in an algorithmic
manner. As explained in Figure 4.1, the approach takes a mobile application A as
input. Then, the initialization processes are started. In lines 2-3, isF inished is set
to False and coveringarray ca, domainDispatcher dd, inputF ieldDispatcher fd

are declared. For each iteration, lines 5-6 show the initialization of a screen. The
algorithm takes a current screen (state) of an application as XML file, which includes
formatted information regarding Android screen, and transforms it to screen class
in line 5. Later, the input fields of a given screen are collected in line 6. After screen
initialization steps, the approach is ready to generate test cases systematically and
execute them in an automated way. In line 7, a current screen is checked to see
whether it is known by using isScreenKnown() method. If it is known, clarifying
that the screen has not been discovered before, the domain, equivalence classes, and
the input type detection processes are executed for each element in lines 8-12. dd

is a service that detects the input domain and its equivalence classes for a given
screen.

On the other hand, fd a detector service that determines the input type (e.g., Edit-
Text, Checkbox, List) of a given input field. This service finds the type of any input
by using its attributes (e.g., class name, clickable, touchable). At the end of the
loop, all test cases of a screen are generated by ca with a systematic manner in line
13. Then, we trigger to execute each test case tc. After each execution, the algo-
rithm needs to check the state of a current screen. If the application is still on the
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Algorithm 1 General crawling algorithm with the main steps as pseudocode.
1: Input: A mobile application A
2: Initialize isF inished = False
3: Initialize domainDispatcher dd, inputF ieldDispatcher fd, coveringArray ca

4: repeat
5: Initialize screen = getScreen(A.currentState)
6: Initialize screen.Elements = findElements(screen)
7: if isScreenKnown(screen) then
8: for el in screen.Elements do
9: el.Domain = dd.f indDomain(el)

10: el.V alues = dd.f indEquivalenceClasses(el.Domain)
11: el.Type = fd.f indInputType(el)
12: end for
13: Initialize testCases = ca.GenerateTestCases(screen.Elements)
14: for testCase tc in testCases do
15: Execute tc

16: if getScreen(A.currentState) == screen then
continue

17: else
18: break
19: end if
20: end for
21: else
22: Initialize paths = ShortestPathToMoveScreen(screen)
23: Move(paths)
24: testCases = GetTestCases(screen)
25: ExecuteTestCases(testCases)
26: end if
27: if isTestProgressDone(A) then
28: isF inished = True
29: end if
30: until isF inished is not True

same screen, we then continue to execute the next test case. If not, it means that we
find a new screen or observe a previously detected screen. In both conditions, the
test case execution process of a screen is stopped and the application is restarted.

A new current screen is selected and all input fields of a given screen are detected.
If the screen is known, the remaining process is the same as explained above. If
not, we move to a previously detected screen. However, there might be different
paths that allow to move a target screen from a current screen. In this situation,
the approach uses a shortest path algorithm to arrive at a target screen quicker.
Thus, ShortestPathToMoveScreen() function finds the shortest path that includes
minimum number of test cases to move a target screen in line 22. Move() function
is then executed to move to the target screen by restarting the application. In lines
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24-25, the test cases of a screen are selected from a database and execute them
sequentially. At the end of all test case executions and checking conditions, in lines
27-29 isTestProgressDone() method is triggered to check whether all test cases of
all screens are executed. If the function returns True, the approach then finishes
the procedure. If not, the algorithm selects a screen whose test cases have not been
finished and continues to execute the test cases.

When finishing the procedure, we start to discover the model of an application by
using stored details of the executions and predicting the guard-conditions between
the states known as Android screens. When we analyze the the execution details
stored in the database (e.g., source states, executed test cases, target states), we
know the distinct states on the model of an application. After the approach generates
a covering array as systematic samples for each state and execute all systematic
samples of a given state, we then discover the guard-conditions of the models by
training the executed systematic samples and making predictions on the trained
data. In the prediction of the guard-conditions, we use decision-tree classifier as
binary classifier and execute the classifier on the trained data of each state. At the
end of the guard-condition discovery process, we build the model of an application
by discovering the states and the guard-conditions.

4.2 Screen and Input Detection

To crawl the application in a systematic manner, we first discover the screens (e.g.,
the states) of a given application and collect the input fields (e.g., EditText, Button)
in order to build test cases for each screen. Basically, we provide an algorithm that
consists of different functionalities for the screen and input detection. As we focus on
Android mobile applications, we use XML file of each screen in order to discover the
Android screens with formatted information. The XML file includes the elements
of a screen with their attributes provided by Android (e.g., class name, resource id,
bounds), so that a developer can catch the elements easily in the codebase via the
attributes. The attributes we use are shown in Table 4.1 with their sample values.
The algorithm 2 demonstrates how to detect the input types using their attributes
as the input detection approach.

17



Table 4.1 The attributes of Android elements used in both Input Detection and
Domain Detection

Attributes Sample Attribute Values
Class Name android.widget.Button
Resource-id com.sample.android:id/LoginButton
Text Login
Content-desc Login the system
Clickable True
Long-Clickable True
Checkable False
Scrollable False
Editable False
Bounds [10,360][172,426]

4.2.1 Input Detection

In Algorithm 2, we first take an XML file of given screen as input. Then, the given
XML file is converted to a tree in order to iterate each child of a tree inside itself.
In a tree, each child represents an input field with its attributes.

In line 3, there is a list called actions that stores possible actions attributes of an
input field that can be taken by a user. In the approach, we use the action attributes
clickable, long− clickable, checkable, scrollable and editable, respectively as major
action attributes. Line 4 shows the list variable which returns the input fields with
the attributes of a given screen at the end of the execution. In lines 5-10, the
approach iterates each child of a tree generated by an XML file. For each child (e.g.,
an input field), we make sure that the action attributes of a given input field need to
be matched with at least one of the actions list defined in line 3. If there is no match,
the approach cannot generate a test action for a given input field, since it does not
know how to interact with the input field. If an action is matched with a defined
actions list, meaning that a given child of the tree has an action, then, we collect
the attributes of an input field with getAttributes() method in line 7. Since the tree

is not easily readable to get the attributes, we develop a getAttributes() method
which takes a child as a tree member and converts it to the information including
the attributes as a class called elementAttributes. In Android applications, various
attributes are provided for the use of different purposes (e.g., writing a test case,
catching an input field). In the approach, we choose some of the attributes to use in
our approach and they are explained in Table 4.1. We collect these attributes and
store them in a database with the input field of a screen. In addition to the flow of
the actions, we use an attribute called as class name to specifically determine what
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Algorithm 2 General input detection algorithm as pseudocode.
1: Input: XML file of the Android Screen XMLa

2: Initialize tree = ParseXMLFile(XMLa), actions
3: actions = [”clickable”,”long− clickable”,”checkable”,”scrollable”,”editable”]
4: Initialize elementsList = []
5: for child in tree do
6: if child.actions() in actions then
7: Initialize elementAttributes = getAttributes(child)
8: elementsList.append(elementAttributes)
9: end if

10: end for
11: return elementsList

Algorithm 3 General screen detection algorithm as pseudocode.
1: Input: an XML file of a screen XMLa, discovered screens’ hash values Ha

2: Initialize tree = ParseXMLFile(XMLa)
3: Initialize elementsList = []
4: for child in tree do
5: Initialize resourceId = child.get(”resource− id”)
6: Initialize className = child.get(”className”)
7: elementsList.append(resourceId+”− ”+ className)
8: end for
9: elementsList = sort(elementsList)

10: Initialize listHashV alue = HashList(elementsList)
11: if listHashV alue not in Ha then
12: Ha.append(listHashV alue)
13: return True
14: else
15: return False
16: end if

the input field is. At the end of the Algorithm 2, we detect the input fields with their
attributes of a given screen by checking the actions that an input field may take and
write the test cases depending on the input types. Also, the attributes we use in
Input Detection Algorithm are used in Screen Detection Algorithm as explained in
Algorithm 3.

4.2.2 Screen Detection

Algorithm 3 is simply developed to detect the screens and determine the distinct
screens. In addition, the workflow of the screen detection algorithm is similar to
the input detection approach. Similarly, we take an XML file of a screen XMLa
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as input and also a list Ha that stores the hash values of the discovered screens.
As explained clearly in Algorithm 2, we again parse an XML file as tree and get
the input fields of a given screen with their attributes as childs. After collecting
the input fields together with their attributes, we then hash the input fields of a
given screen combining the specific attributes. To detect the screen as a new or a
previously discovered screen, we compare the hash value of a given screen with the
hash values of the previously discovered screens that stored in the database. At the
end of this comparison, the screen detection process is completed. Most importantly,
for a screen detection process, any screen detection logic can be implemented. In
other words, our approach is convenient for other screen detection algorithms.

The major difference between screen detection and input detection algorithms begins
in lines between 5-7. Since the approach selects only the action attributes of the
input fields to detect the input types in the input detection process, the input
fields of a given screen are collected from tree based on specific attributes called
as resourceId and className in a screen detection algorithm. The reason to use
these attributes is that they are typically not changed in the applications. When
compared with other attributes of an input field (e.g., bounds, text, contentDesc),
these attributes may easily be modified in the new versions of the applications. The
reason for this decision is related to the change in the value of a screen. When an
element is relocated (e.g., bounds like x-y positions) or a text on the input field is
changed, a hash value of the given screen will change, although the input field is the
exactly the same as itself. Therefore, because of the changes in the values of the
input fields, the approach may discover the screen as a new one.

In line 7, we combine the values of the attributes and store in elementsList. At the
end of the loop iteration, We first sort the input fields by combining in an ordered
agnostic way and then calculate the hash value of a screen via HashList function.
Line 11 checks the distinctness of a given screen comparing the has values of the
screens stored in the database to see whether a given screen has been discovered
before. If a calculated hash value listHashV alue is matched with a value stored
in the hash values of discovered screens Ha, it means that the screen has been
discovered previously and the algorithm returns False. If the hash value is not
matched, the approach shows that the current screen is distinct. Therefore, the
algorithm stores a new hash value into Ha and returns True.
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Algorithm 4 Domain and equivalence classes detection algorithm as pseudocode.
1: Input: An input element el
2: Initialize dd = domainDispatcher
3: Initialize domains = dd.getAllDomains()
4: Initialize matchedDomain,matchedEquivalenceClasses = null,null
5: Initialize attr = el.attributes
6: for domain in domains do
7: if (attr.ResourceId in domain.Keywords) or (attr.Text in

domain.Keywords) then
8: matchedDomain = domain
9: matchedEquivalenceClasses = dd.f indEquivalenceClasses(matchedDomain)

10: break
11: end if
12: end for
13: return matchedDomain,matchedEquivalenceClasses

4.3 Domain Detection and Equivalence Classes

To systematically sample the input space by using covering arrays, the approach
needs to produce coherent test values for each input field of the screen. In addition,
one assumption behind the combinatorial covering arrays is that each input field,
as an option parameter of the covering arrays, takes its discrete values from the
domains. In this process, we detect the input domains, we divide the domains into
the partitions as equivalence classes so that the approach can produce test values
for the input fields from the equivalence classes of a detected domain.

Algorithm 4 demonstrates the domain detection and pre-recorded equivalence classes
of the approach. Basically, the algorithm takes an input field el as input and returns
matchedDomain and matchedEquivalenceClasses (e.g., the domain and test values
from the equivalence classes) at the end of the execution. As initialization, we declare
domainDispatcher, the variables that will return the values, the attributes of an
input field in attr, and the domains that stores all the domains of the approach
in lines between 2-5. In the approach, we generally define helpers that manage the
functionalities for the detection approaches.

We have mainly three dispatchers called as DomainDispatcher,
EquivalenceClassDispatcher and InputF ieldDisPatcher. As we mentioned
in Algorithm 1, InputF ieldDispatcher determines the type of a given input field
(e.g., Button, EditText, CheckBox) by analyzing the input fields stored in the
database.
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DomainDispatcher and EquivalenceClassDispatcher work with the same logic
as InputF ieldDisPatcher. Since EquivalenceClassDispatcher is responsible for
the equivalence classes, the DomainDispatcher manages a domain detection logic
and communicates with EquivalenceClassDispatcher to produce test values for the
input fields. All domains and equivalence classes are stored in the database and the
dispatchers have access to use the database.

In line 2, all input domains are selected from the database by dd and are stored in
the domains variable. Each domain includes name and keywords attributes. The
keywords attribute represents a set of words that identify the input domain. For
instance, if we have a login domain, the keywords might be mail, email, e-mail or
username. For this reason, we use three of the attributes of an input field called
as resourceId, contentDesc and text to detect the input domain by matching
the attributes with the keywords of the domains, because other attributes do not
contain eligible contexts (e.g., Bounds, ClassName) for the input domain detection.

If one of the selected attributes contains a keyword from keywords, we detect the
domain in lines between 6-12. Then, the pre-reecorded equivalence classes of a
detected domain are selected from the database with the findEquivalenceClasses()
function. EquivalenceClassDispatcher is triggered inside dd to collect all test input
values from the equivalence classes. Here, the approach picks a value randomly from
each pre-recorded equivalence classes of a given domain. If there is no match with
the keywords, it means that there is no suitable domain stored in the database for a
given input field, clarifying that the input domain must be added into the database.
At the end, for each input field, the input domain is detected and the discrete test
values are produced from the equivalence classes of a given domain so that the test
values of the input fields can be covered by using covering arrays for each screen.

In the domain detection process, we could have used a semantic similarity approach
(Islam, 2008) to determine the domains of the input fields. We however opted not
to do so in this work as our ultimate goal is demonstrate that systematic sampling
can do better when it comes to model discovery.

4.4 Covering Array Generation

In this step, for each screen, we generate a covering array by using the test values
that collected from the equivalence classes for each input field of a given screen
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Algorithm 5 Covering array and test cases generation algorithm as pseudocode.
1: Input: Elements of a screen elementsa, the strength of a covering array t
2: Initialize ca = coveringArrayGenerator(ACTS)
3: Initialize file, testCaseCombinations, testCases
4: Initialize actionElements = ca.GetActionElements(elementsa)
5: Initialize otherElements = ca.GetNotActionElements(elementsa)
6: for el in otherElements do
7: file.write(el.InputName+”(enum) : ”+ el.V alues)
8: end for
9: Initialize tempList = []

10: for actionEl in actionElements do
11: tempList.append(actionEl.V alues)
12: end for
13: file.write(”Actions(enum) : ”+ tempList)
14: testCaseCombinations = ca.Generate(t,file)
15: Initialize tempCombinationList
16: for combination in testCaseCombinations do
17: for combinationV alue in combination do
18: case = ca.WriteTest(combinationV alue.InputF ield,combinationV alue.V alue)

19: tempCombinationList.append(case)
20: end for
21: testCases.append(tempCombinationList)
22: tempCombinationList = []
23: end for
24: return testCases

in order to execute all t-way combinations of the input fields, as test cases, in a
systematic manner. At the end of the covering array generation process, we execute
all the test cases in the computed covering array sequentially for each screen. In
order to generate the test cases with the combinations of the input fields together
with their test values, we used ACTS (ACTS, 2018) framework, known as a covering
array generator, in the approach.

In Algorithm 5, the workflow of a covering array and test case generation procedure
are explained in detail. The algorithm first takes the input fields of a screen with
their test values, the input types elementsa and the strength of a covering array
t as parameters to generate t-way combinations of input fields. An instance of a
covering array generator ACTS is taken and initialized with ca. In order to generate
a covering array, we need to write all input fields with their values into a file and
execute the file.

In lines between 4-5, we have a separation process based on the input fields (e.g.,
EditText, Button, RadioButton). Since the input fields have different action at-
tributes (e.g., clickable, editable), we need to divide the input fields according to
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Table 4.2 An example of a register screen showing the generated covering array
with four options and their test values where t=3 (Option 1:Pharmacy Number,

Option 2:Username, Option 3:Password, Option 4:Agreement, A1:Register Button,
A2:Login Button)

Option 1 Option 2 Option 3 Option 4 Actions
Set 100716 Set john@gmail.com Set Passw0rd Set checked Click A1
Set 100716 Set john@gmail.com Set ???? Set unchecked Click A1
Set 100716 Set qy@11.com Set Passw0rd Set unchecked Click A1
Set 100716 Set qy@11.com Set ???? Set checked Click A1
Set 000000 Set john@gmail.com Set Passw0rd Set unchecked Click A1
Set 000000 Set john@gmail.com Set ???? Set checked Click A1
Set 000000 Set qy@11.com Set Passw0rd Set checked Click A1
Set 000000 Set qy@11.com Set ???? Set unchecked Click A1
Set 100716 Set john@gmail.com Set Passw0rd Set checked Click A2
Set 100716 Set john@gmail.com Set ???? Set unchecked Click A2
Set 100716 Set qy@11.com Set Passw0rd Set unchecked Click A2
Set 100716 Set qy@11.com Set ???? Set checked Click A2
Set 000000 Set john@gmail.com Set Passw0rd Set unchecked Click A2
Set 000000 Set john@gmail.com Set ???? Set checked Click A2
Set 000000 Set qy@11.com Set Passw0rd Set checked Click A2
Set 000000 Set qy@11.com Set ???? Set unchecked Click A2

their action attributes before the test cases are produced.

GetActionElements() method is used to select the input fields actionElements that
may take the actions (e.g., click, double-click) and change the state of the screen.
Therefore, we determine these input fields by checking the action attributes. For
instance, if the input field has the actions such as click and double-click, these two
actions are selected and combined with test values of the input fields systematically.

On the other hand, GetNotActionElements() function determines all input fields
otherElements that have test values. After the separation procedure of the input
fields according to the input types, the algorithm begins to store each input field in
the otherElements and writes the test values in the file. While choosing test values
for the input fields, we use equivalence classes as explained in Approach Section
4.3 to generate systematic samples with the covering arrays. In this situation, we
randomly take a test value from each equivalence class of each input field to generate
a covering array.

Since there are no test input values of actionElements for testing, we store action
input fields in a list tempList. Then, they are written in a file as Actions. In line
14, the covering array is generated by Generate() function depends on a strength
of a covering array t. At the end of the covering array generation process, we parse
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each combination of testCaseCombinations and converts the combined values to
the test cases in lines between 16-23.

When compared to Table 4.2 , each column refers to an option represented as an
input field of a register screen and each row gives a combination of the input fields
as a test case. In addition, each cell represents a test action including the test value
of an input field. After getting value from each cell, WriteTest() function is used to
generate an executable test code by using the input field with a selected value. As
a last step, all test cases testCases are systematically generated and the approach
starts to execute the generated test cases sequentially.

4.5 Guard-Condition Discovery

In this step, we discover the guard conditions between the states on the discovered
model of an application. After generating systematic samples with the covering
arrays for each state, the approach executes all samples sequentially on the given
state. After each execution, we store the details regarding the execution such as
source state, executed sample as test case, and target state. When the approach
finishes all test executions for each state, we begin to predict the guard conditions
between current state and the target states. For instance, if we generate a covering
array as systematic samples for state s1, execute all test cases and move to the state
s2 and state s3 from state s1, the approach predicts the guard conditions between
state s1 and s2, and state s1 and s3. To discover each guard condition of the given
state, we leverage the decision-tree classifier as binary classifier. For each target
state, we apply a binary classification to predict the guard condition between the
source state and target state.

In Algorithm 6, we illustrate the classification process of guard condition discovery.
In line 1, we collect the executed test cases, that satisfied to move from the given
state to each target state, from the database. We use the collected data as train
data in the classification. In lines between 2-3, we find the target states arrived by
the state S′ analyzing the collected data D′ and initialize the predictionresults that
returns the prediction results of the state S′.

In lines between 4-9, we predict the guard conditions of the state S′ for each arrived
target state iteratively. In line 5, for each target state, we first label the data that
will be trained by the classifier. We label the data whose target state we want
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Algorithm 6 General guard-condition discovery algorithm as pseudocode.
1: Input: Data D′ stored in the database for state S′

2: Initialize targetStates = FindTargets(D′)
3: Initialize predictionResults = []
4: for state in targetStates do
5: LabelData(D′, state)
6: Initialize prediction = RunClassifier(D′, state)
7: Initialize predictedTargetState = Execute(prediction)
8: Initialize result = CheckPrediction(D′,predictedTargetState)
9: predictionResults.append(result)

10: end for
11: return predictionResults

to predict as 1, and label others as 0. After labeling the data, the approach then
predicts the guard condition of each target state labeled as 1 and finds the discovered
guard condition in line 6.

To satisfy the accuracy of predicted guard condition, the approach executes the
predicted guard condition once on the given screen and finds the predicted target
state in line 7. We then check the accuracy of the prediction with CheckPrediction

method in line 8.

If the predicted guard condition is the same as the one before the prediction and
the given state S′ cannot move to the other target states with the predicted guard
condition, the approach approves that the guard condition is discovered correctly.
Otherwise, the prediction of a guard condition is marked as incorrect.

This process is repeated for each target state of each screen sequentially. After each
prediction, the approach inserts the prediction result into the predictionResults

variable in line 9. At the end of the guard condition discovery process, the approach
discovers the guard conditions on the discovered model of an application and returns
the results in line 11.
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5. EXPERIMENTS

We have conducted a series of experiments to evaluate the proposed approach. In
the first set of experiments (Section 5.1), we have evaluated the sensitivity of the
approach to various model parameters, including the number of states, density, the
level of determinism, and the complexity of the guard conditions. To this end, we
have used simulations as it was not possible for us to systematically vary these
parameters on real subject applications, on which we had no control over. In the
second set of experiments (Section 5.2), we have evaluated the proposed approach
by conducting comparative studies using real subject applications.

5.1 Evaluating sensitivity to model parameters

In this set of experiments, we evaluate the sensitivity of the proposed approach to the
model parameters by systematically varying these parameters on the simulations.

5.1.1 Setup

In particular, we manipulate the following parameter:

• states: the number of states in the graph-based model.

• density: the density of the graph-based model (Ahuja, 2017), which is used
to compute the number of edges in the graph-based model.

• parameters: the number of parameters defined in a state, i.e., the number
of input fields on a screen.
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Table 5.1 Model parameters manipulated in the experiments.

Parameter Values
number of states {10,20,50}
density {0.4,0.6}
number of parameters per state {[5,10], [16,20]}
number of equivalence classes per input {[3,6]}
number of distinct parameters involved in guard conditions {1,2,3,4, [1,5]}
covering array strength {2,3,4}
level of determinism {0,0.01,0.05,0.1}

• settings: the number of equivalence classes for a parameter.

• guard-complexity: the number of distinct parameters involved in a guard
condition associated with a transition.

• t: the coverage strength of the covering arrays used for sampling.

• determinism: the level of determinism in the model, depicting the probabil-
ity of taking a transition given that the guard condition of the transition is
satisfied. When determinism= 1.0, all the transitions are deterministic; given
a transition, when the system is currently in the source state and the guard
condition of the transition is satisfied, the transition is guaranteed to be taken
and the system moves to the target state.

Table 5.1 presents the values used for these parameters in the experiments. The
range values, which are given in the form of [min,max], indicate that the actual
values are randomly chosen, such that they are between min and max, inclusive.
For example, when settings = [3,6], each state parameter in the model will have in
between 3 and 6 randomly chosen equivalence classes. More specifically, for each
state parameter, a number is randomly picked from the range 3 through 6 and used
as the number of equivalence classes that the parameter has. For each configuration
in the Cartesian product of the settings given in Table 5.1, we randomly generated
100 models and stored the test results of the simulations in the database.

5.1.1.1 Models and Simulations

Since we did not know true guard conditions and had no control over the real
applications, we used the simulations to evaluate the sensitivity of the approach
varying the model parameters systematically. For this reason, in this subsection, we
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Figure 5.1 An example of a model used in the simulations where the number of
states = 5, the density = 0.4, and the number of edges = 10.

explained what the models are and how the models are used in the simulations. To
understand clearly, we presented an example model used in the simulations with the
given model parameters in Figure 5.1.

In the figure, the model impersonated real Android applications during the simula-
tions. Each node of a given model was represented as Android screen including the
input fields with their test values. The nodes between the states were used as the
transitions having the guard conditions. In a given model, we had 5 distinct states
and 10 transitions calculated with the density between the states where the density
was 0.4. The number of transitions on the model was calculated with a given for-
mula; transitions = (numberOfStates)2 ∗density. In the simulations, each model
was generated in a such way that it is a strongly connected directed graph so that
the automaton does not get stuck at a state. This is also consistent with the general
behavior of mobile applications; every screen is reachable from the start screen and
the start screen is typically reachable from every other screen.

In addition, we presented a detailed example of a given model, demonstrated in
Figure 5.1, to clarify how the model is simulated by analyzing two specific states
of a model with a transition in Figure 5.2. In a given part of the model, S1
and S2 were the states represented as a source state and target state, respectively.
Each state had 2 parameters, implied as input fields, i1, i2, i3 and i4, respectively.
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Figure 5.2 An example of a given model in detail with the model parameters
(parameters=2, settings=3, guard-complexity=2).

For each parameter, 3 settings, known as equivalence classes, were produced. On
the other hand, we had a guard condition on the transition between S1 and S2.
The guard condition included two parameters of the state S1, where the guard-
complexity was 2. Here, the parameters of a guard condition were linked with the
AND (&) operator. If a guard condition was satisfied, the state S1 moved to the
state S2 taking the respective transition. Furthermore, for each state in a model, the
guard conditions for the transitions originating from the state were guaranteed to
be mutually exclusive, so that determinism = 1.0 makes sense in the experiments.

In the simulations, for each model, a randomly chosen state was marked as the start
state. On a given model, we operated as if it were operating on a subject application.
In particular, when a state was visited, we obtained the parameters associated with
the state and generated a covering array. And, when a test case is executed, the
model was fed with the respective values, the transition to be taken was determined,
and the system was moved from the current state to the target state.

5.1.2 Evaluation Framework

For the evaluations, we used the following metrics:

• state coverage: percentage of the states visited.

• transition coverage: percentage of the transitions exercised.

• accuracy: accuracy of the guard conditions predicted.

In terms of coverage criteria evaluation, we evaluated the states and transitions in
all simulations. As state coverage, we confirmed that the state s′ was covered if
the simulation satisfied the state s′ at least once. On the other hand, as transition
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coverage, we confirmed that the transition t′ was covered if the simulation verified
the guard condition of the given transition t′ with its parameters at least once. In
other words, the simulation moved to the target state from the source state when
the transition between the source and target state was satisfied.

We, furthermore, compared the results obtained from the proposed approach to
those obtained from random testing. To this end, we used the same models and for
every state that the random testing strategy visited in these models, we randomly
generated the same number of test cases with the proposed approach by using exactly
the same equivalence classes used by the proposed approach. Everything else was
kept the same, i.e., the way the models were simulated and the way the guard
conditions were predicted and evaluated.

5.1.3 Operational Framework

All the experiments were carried out on an Intel I7 6700HQ machine with 16 GB
of RAM, running Windows 10 as the operating system. The classification models
were trained by using the Decision Tree classifier implemented in scikit-learn (Scikit-
learn, 2018). Furthermore, we used ACTS (ACTS, 2018) to generate the covering
arrays used in the experiments.

5.1.4 Data and Analysis

In total, we generated 22,997,103 test cases and trained 7200 classification mod-
els by using the proposed approach. The results we obtained are summarized in
Figures 5.3, 5.4, 5.5, 5.6, and 5.7.

We first observed that as the strength of the covering arrays used for discovery
increased, state coverage, transition coverage, and accuracy of the predicted guard
conditions for all guard complexity (e.g., 1, 2, 3, and 4) increased (Figure 5.3). This
is, indeed, to be expected as higher strength covering arrays cover more distinct com-
binations of parameter values using additional configurations. The average number
of test cases generated by 2-, 3- and 4-way covering arrays on a per-state basis,
were 818, 5,477 and 38,662, respectively. Overall, while the average state coverage,
transition coverage, and accuracy of predicted guard condiitons obtained from 2-
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Figure 5.3 Overall State Coverage, Transition Coverage and Accuracy comparison
based on the strength t of covering arrays.

way coverings arrays were 83.10%, 82.28%, and 68.07%, those obtained from 3-way
covering arrays were 91.90%, 91.48%, and 73.12%, respectively. As 4-way covering
arrays, we obtained 100% state and transition coverage, and 77.20% accuracy.

In Figure 5.4 and 5.5, we made a couple of comparisons in terms of the values
of independent variables and the accuracy of predicted guard conditions where the
strength of covering arrays t is greater than the guard-complexity. As we expected
in Figure 5.4, the state coverage and transition coverage were 100% and 100% re-
spectively for all independent variables used in the evaluation. The results showed
that systematic sampling is an effective sampling approach to get complete state
and transition coverage so that we can visit the entire system by satisfying all guard
conditions on the transitions. Even if the number of states, the density which affects
the number of transitions, and the number of parameters per state increased, the
systematic sampling kept 100% state and transition coverage by showing that inde-
pendent variables do not have impact on the coverage, if the system has a condition
where t > guard−complexity. On the other side, for all simulations without having
a specific condition (e.g., t > guard−complexity), we observed that as the complex-
ity of the models increased, i.e., as the number of states, transitions (i.e., density),
state parameters, or equivalence classes increased and/or the guard conditions be-
came more complex, the state coverage, transition coverage, and the accuracy of the
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Figure 5.4 State and Transition Coverage based on values of independent variables
(e.g., state count, density and per state parameter count).

predicted guard conditions tented to decrease, especially when lower strength cover-
ing arrays were used. However, the smallest state coverage, transition coverage, and
accuracy obtained in all the experiments when t = 3, density = 0.6, stateCnt = 50,
stateParams = [16,20], and guard− complexity = 4 for example, were still 57.70%,
56.05%, and 67.36%.

In addition, in Figure 5.5, we again observed that the accuracy of predicted guard
conditions on the transitions increased when the strength t of covering arrays in-
creased for each guard complexity (e.g., guard-complexity=1). For example, in the
figure, when we kept the guard-complexity same as 1, if the strength of the covering
arrays increased, the accuracy of predicted guard conditions increased as well. On
the other hand, if the guard complexity of the transitions increased, then, the results
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Figure 5.5 Accuracy of predicted guard conditions based on the guard complexity
and the strength t of covering arrays.

obtained from the figure demonstrated that the accuracy of predicted guard condi-
tions decreased for each strength t of the covering arrays as we expected, because the
complexity makes the approach difficult to detect the guard conditions accurately.
For instance, in Figure 5.5, when we kept the strength of the covering arrays same
as 4, if the guard-complexity increased, the accuracy of predicted guard conditions of
the models decreased correlatively. While the accuracy for guard− complexity = 1
obtained from 2-, 3- and 4-way covering arrays were 80.82%, 82.10%, and 84.89%,
the accuracy for guard−complexity = 2 obtained from 3- and 4-way covering arrays
were 77.45%, 80.75%, respectively. As guard−complexity = 3, we obtained 77.13%
accuracy.
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Figure 5.6 Effect of Non-determinism comparison in terms of State Coverage,
Transition Coverage and Accuracy.

In Figure 5.6, as we expected, the results indicated that if the determinism level
of the model increased, the state coverage, transition coverage, and accuracy of
predicted guard conditions decreased. For example, while the state coverage, tran-
sition coverage and accuracy of predicted guard conditions obtained from the model
that worked as fully deterministic (e.g., level=0) were 100%, 100% and 81.89%, re-
spectively, those obtained from the model where level = 0.1 were 93.56%, 92.23%
and 68.81%, respectively. Thus, we proved that the rate of determinism for each
simulation model affects the coverage and accuracy.

Last but not least, comparing the results obtained from the proposed approach to
those obtained from random testing in Figure 5.7, we observed that our proposed
approach prominently offers higher state coverage, transition coverage and accu-
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Figure 5.7 Comparisons between systematic and random testing in terms of state
coverage, transition coverage, and accuracy.

racy of predicted guard conditions than the random testing under the equal condi-
tions (e.g., same number of systematic samples, domains and equivalence classes)
in terms of the number of generated test cases and model parameters (e.g., density,
guard-complexity, number of states). Since the state coverage, transition coverage
and accuracy of predicted guard conditions obtained from proposed approach were
100%, 100%, and 81.67%, respectively, those obtained from the random testing were
71.34%, 70.89% and 73.78%, respectively. At the end, the results obtained from Fig-
ure 5.7 showed that the systamtic sampling is better than the random sampling in
terms of different evaluation metrics.
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5.2 Evaluations on Real Subject Applications

In this section, we evaluate the proposed approach by conducting comparative stud-
ies using real subject applications. Also, we applied the random testing with the
proposed approach and compared it with other approaches.

5.2.1 Setup

In particular, we used 10 subject applications from Google Play Store (Store, 2018).
Information about these applications can be found in Table 5.2. We chose these
applications as they had been also used to evaluate related approaches (A. Machiry &
Naik., 2013; D. Amalfitano & Memon., 2015; R. Mahmood & Malek., 2014; W. Yang
& Xie., 2013).

Also, we used the following terms in the evaluations of real applications:

• screen: a page of Android mobile applications. It might be an Android
activity or a different page in the same activity (e.g., pop-up, modal). Each
page which consists of UI elements is called as screen.

• test action: one of the executable tests in test suites. For example, if we
have a test suite that includes 3 executable tests, each of them is called as test
action.

5.2.2 Evaluation Framework

For the evaluations, as the models of the subject applications were not known, we
could not use the state and transition coverage metrics (Section 5.1). Instead,
we used the code and screen coverage metrics, depicting the percentages of the
source code statements and the screens visited during testing, respectively. Given
a subject application, we determined the number of screens by first performing a
static analysis of the binaries for the application (i.e., by analyzing the apk file).
Then, as we discovered new screens during testing (either by the proposed approach
or by the existing testing tools used for comparative studies) we updated the set of
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Table 5.2 Information about the subject applications used in the study (e.g.,
C1:application, C2:description and C3:number of activities).

C1 C2 C3
Tureng A Dictionary for Turkish-English translations 11
Tippy Tipper A simple and open source Tip Calculator 5
Munchlife A counter app to keep track of your character level 2
Contact Manager A tool for managing the contacts 10
To Do Manager A task manager to track and organize to-do tasks 18
Alarm Klock An alarm tool to create and manage the alarms 7
Habit App A tool to keep track of your habits and routines 8
Any Memo An open-sourced flashcard learning software 15
Simple Weight Tracker A body weight watcher to analyze weight loss 3
BBC News An app to bring the news from BBC News 40

known screens.

Furthermore, as the true guard conditions for the transitions were not known, we
computed the accuracy of the predicted conditions by using n-fold cross validation,
where 3≤ n≤ 5 depending on the number of samples available in the training data.
That is, after the covering array generated for a state was tested, the results obtained
were used to carry out the cross validation (Section 5.2.4).

Last but not least, we compared the results obtained from the proposed approach to
those obtained from existing approaches, namely Dynodroid (A. Machiry & Naik.,
2013) and Monkey (AndroidMonkey, 2018), as well as from random testing. For
the latter, as was the case in Section 5.1, for every state visited by the random
testing strategy, the same number of test cases with the proposed approach was
randomly generated by using the same equivalence classes. For the former, we ran
the existing tools on the same experimental platform with the proposed approach
(Section 5.2.3). We, furthermore, ensured that the existing approaches performed
similar or more actions, compared to the proposed approach. In this context, an
action corresponds to a collection of related events for performing a task from the
perspective of end-user, such as tapping on a button or entering a string into a
text field. We counted the number of actions, rather than the number of test cases
because the existing tools used in the study do not have a notion of the test case.
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5.2.3 Operational Framework

In the experiments, we used 1) ACTS (ACTS, 2018) to generate the covering arrays,
2) Appium (Appium, 2018) to execute the generated test cases of real applications, 3)
ACVTool (AcvTool, 2018) to measure the code coverage without having the source
codes of the applications, and 4) Decision Tree classifier in scikit-learn (Scikit-learn,
2018) to predict the guard conditions. All the experiments were carried out on the
same computing platform used in Section 5.1.

5.2.4 Data and Analysis

We first run all generated test cases for each mobile application and collected data
from the test results. Table 5.3 shows that general information regarding test re-
sults on the subjects applications. The average execution time of 10 applications
is 40.3 minutes. In the table, the number of domains demonstrates how many in-
put domains the approach detected for the applications. Since the EC stands for
Equivalence Classes in the table, the number of equivalence classes emphasized how
many equivalence classes for the respective domains the approach produced. The
data from general information on the test results show that the average number
of input domains and equivalence classes generated by the approach for all input
fields were 2.9 and 6.4, respectively. On the other hand, the average number of test
cases generated by covering arrays for systematic sampling was 89.2. In terms of
executed test cases during the experiments, the average number of actions taken by
the approach was 257.

According to the analysis of general test results of real applications, the execution
times of the approach were quite high. The reason was about the test automation
framework we used in the approach called as Appium. Since Appium has a client-
server architecture, there were sometimes network problems as expected during the
testing procedure, indicating that the network problem caused the delays in the
responses coming from the server to the client. So, it took more time to handle the
problems and continues to the test process of subject applications.

In terms of the coverage criteria, the screen coverage was 93.3% on average which
shows that the approach detected almost all distinct screens of the applications
with the given input domains and their equivalence classes. However, there were
a couple of reasons that made 100% screen coverage difficult. One reason was
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Table 5.3 Overall test results of subject applications (e.g., C1:application,
C2:execution time, C3:number of domains, C4:number of equivalence classes,

C5:number of inputs, C6:number of test cases and C7:number of Android screens,
C8:screen coverage).

C1 C2 C3 C4 C5 C6 C7 C8
Tureng 39 min 5 11 40 184 11 81.88%
To Do Manager 57 min 7 23 52 104 18 100%
Tippy Tipper 21 min 4 15 10 72 5 100%
Munchlife 15 min 2 5 8 21 2 100%
Alarm Klock 47 min 2 6 16 89 7 100%
Habit App 65 min 6 11 30 100 8 81.88%
Simple Weight Tracker 56 min 3 7 12 76 3 100%
BBC News 35 min 6 16 25 165 40 70%
Any Memo 43 min 4 12 21 101 15 100%
Contact Manager 25 min 4 11 29 128 10 100%

regarding the system bugs of the applications. When an application was suddenly
crashed because of a failure (e.g., network connection, deficient development, infinite
loops), the path our approach traverses was broken, showing that Android screen
became unreachable. Another reason was related to the behaviors of the applications
(e.g., HabitApp, BBC News). In some situations, when a test case was executed,
an application did not react or exit itself while the system was under test. Since
the approach used the shortest path to move a specific screen during testing, the
application repeatedly stayed in the same screen or suddenly exited itself. These
issues showed that even if all test cases are executed, there may be the screens that
have not been tested yet.

In the second analysis, the comparisons related to the code coverage results with
other approaches in Table 5.4 demonstrated that proposed approach offers higher
code coverage than Monkey (AndroidMonkey, 2018), Dynodroid (A. Machiry &
Naik., 2013) and random sampling indicating that the systematic sampling covers
more functionalities and conditions implemented in the application than other ap-
proaches. Instead of using covering arrays, since random sampling is one of the
sampling approaches that generates the test cases randomly by using equivalence
classes related to the input domains under the equal conditions of the proposed ap-
proach, random sampling still provides higher code coverage for each real application
than Monkey and Dynodroid.

When we compared the random and systematic sampling under the equal condi-
tions (e..g, equal number of test cases, same domains and equivalence classes), the
comparison obviously indicated that the test cases generated systematically provide
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Table 5.4 Code coverage comparison with other approaches (e.g., Random
sampling, Monkey and Dynodroid).

App Name Approach Random Sampling Monkey Dynodroid
Tureng 53% 46% 32% 40%
To Do Manager 66% 57% 38% 45%
Tippy Tipper 78% 65% 51% -
Munchlife 78% 66% 45% 59%
Alarm Klock 65% 58% 44% 52%
Habit App 62% 49% 39% 32%
Simple Weight Tracker 65% 58% 45% 48%
BBC News 52% 43% 28% 35%
Any Memo 53% 44% 38% 33%
Contact Manager 69% 60% 51% 53%

Table 5.5 The comparisons between proposed approach and other approaches in
terms of executed test actions for subject applications (e.g., Monkey, Dynodroid).

App Name Approach Monkey Dynodroid
Tureng 418 2000 2000
To Do Manager 365 2000 2000
Tippy Tipper 180 2000 2000
Munchlife 65 2000 2000
Alarm Klock 207 2000 2000
Habit App 245 2000 2000
Simple Weight Tracker 202 2000 2000
BBC News 380 2000 2000
Any Memo 237 2000 2000
Contact Manager 271 2000 2000

higher code coverage than the test cases generated randomly. In the comparisons
between our approach and other approaches (e.g., random sampling, Monkey, Dyn-
odroid), we showed that the use of covering arrays to generate systematic samples
is an effective factor in terms of getting higher code coverage.

In the third analysis, we stored the number of test actions executed by both our
approach and other approaches during testing and compared the results. We deter-
mined the equal numbers of test actions to be executed by other approaches because
of the limitation of initializing the maximum number. In Table 5.5, the comparison
showed how the number of executed test actions affected the coverage of the appli-
cations. The data in the table indicated that proposed approach provides higher
code coverage with less number of executed test actions when compared to other ap-
proaches. Moreover, the number of Android screens in the applications has an effect
on the test actions executed by the approach, showing that there is a correlation be-
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Table 5.6 Average cross-validation results based on guard conditions of subject
applications (C1:application, C2:discovered number of screens, C3:discovered

number of guard conditions and C4:cross-validation accuracy).

C1 C2 C3 C4 (%)
Tureng 30 89 43%
To Do Manager 15 45 49%
Tippy Tipper 4 6 68%
Munchlife 5 10 70%
Alarm Klock 19 41 51%
Habit App 8 12 60%
Simple Weight Tracker 6 11 54%
BBC News 14 37 38%
Any Memo 15 34 58%
Contact Manager 9 19 45%

tween the number of executed test actions and the number of Android screens in the
application. However, we transparently know that the number of screens is not the
only case. As we demonstrated in the second analysis (Table-5.4), the applications
that have more complex screens and highly constrained conditions were covered less
such as Habit App and BBC News. The complexity of the subject applications is
related to the guard-complexity of the conditions between the screens. Then, we
observed that the complexity of an application is a significant factor in this analysis.

In the fourth analysis, Table 5.6 demonstrated the cross-validation results of pre-
dictions with respect to the guard conditions of subject applications on average.
In terms of given subject applications as parameters, the number of screens and
the number of guard conditions of the transitions discovered by the approach were
clearly measured. Since the number of screens showed how many each distinct screen
discovered, the number of guard conditions represented how many transitions were
satisfied between the screens. Basically, the data in Table 5.6 indicated that more
complex applications have a huge number of guard conditions (e.g., Tureng, Alarm
Klock or To Do Manager). As shown in CV Accuracy column, the predicted accuracy
of guard conditions were not enough high. The major reason was the mechanism of
real applications. As researchers, we did not know the expected behaviors of the the
subject applications when compared to the simulations in ( Study 5.1. Since the
comparisons of the prediction results with the guard conditions were quite difficult
because of a reason as mentioned above and the size of the train data was not much
enough to build a better classifier, we, therefore, measure cross-validation accuracy
for the predictions of the guard conditions.
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Figure 5.8 The comparison of the strength t of covering arrays in terms of screen
coverage, code coverage, and accuracy for systematic sampling.

In addition, in Figure 5.8, we observed that if the strength of covering arrays in-
creased, the code coverage and accuracy of predicted guard conditions increased
for the subject applications such that we observed in the simulation study (Section
5.1). Although the screen coverage was same 93.37% for t = 2, t = 3 and t = 4, the
code coverage and accuracy of predicted guard conditions obtained from t = 2 were
56.02% and 43.02%, those obtained from t = 3 were 60.86% and 47.87%, and those
obtained from t = 4 were 65.37% and 55.02%, respectively.

Last but not least, in Figure 5.9, we compared the strength of covering arrays in
term of the state, code coverage, and the accuracy of predicted guard conditions
when we applied random sapling for the testing process of mobile applications.
We first observed that if the strength of covering arrays increased, the state, code
coverage and accuracy of predicted guard conditions increased for the subject ap-
plications.

While the screen coverage obtained from Figure 5.9 were 79.37%, 81.33%, and
83.21%, respectively where t = 2, t = 3 and t = 4, the code coverage and accuracy
of predicted guard conditions obtained from t = 2 were 44.02% and 29.32%, those
obtained from t = 3 were 56.86% and 33.45%, and those obtained from t = 4 were
58.35% and 36.12%, respectively.
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Figure 5.9 The comparison of the strength t of covering arrays in terms of screen
coverage, code coverage, and accuracy for random sampling.

In the random sampling comparison, we then observed that the random sampling
gets higher code coverage than the existing tools (A. Machiry & Naik., 2013; An-
droidMonkey, 2018), as systematic sampling provided, indicating that even if the
test cases are produced randomly in the same approach, the random sampling is
better than the existing tools in terms of the code coverage.

Also, the results obtained from the random sampling comparison showed that when
we compared systematic sampling with random sampling, under the equal conditions
(e.g., same number of test cases, same input domains, and associated equivalence
classes), systematic sampling is better than random sampling, as we also observed
in the simulation study (Study 5.1), in terms of the state and code coverage, and
the accuracy of predicted guard conditions, while the real applications under the
test.
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6. DISCUSSION

In this section, we will discuss the assumption of the proposed approach related to
our research questions and clarify a solution for a given assumption. In particular,
the approach assumes that the input domains and equivalence classes are given.
Now, the question investigates whether we can use the same input domains and
equivalence classes between the applications and domains.

6.1 Analyzing the feasibility of the input domains from the clusters

In this part, we will cluster the inputs to see the feasibility of using the input domains
and their associated equivalence classes across different applications and domains.
In other words, we want to see whether different applications and categories can
share the input domains between each other, once we create the equivalence classes
for each input domain, when new applications are tested, the input fields of these
applications can use the shared input domains so that the manual effort of producing
the domains and equivalence classes for each application will reduce.

6.1.1 Setup

In particular, we used 100 Android applications from F-Droid (Fdroid, 2020), which
is a free and open source Android repository. In total, we selected 5 different cat-
egories and used 20 unique Android applications for each category. Information
about these categories can be found in Table 6.1.

45



Also, we used the following term in the evaluation of clustering:

• silhouette score: a technique that provides a graphical representation of how
well each object has been clustered. The range of score is between −1 and 1.
If the score is near to 1, it indicates that the object is well matched to its own
cluster. Otherwise, the clusters are not appropriate.

6.1.2 Approach and Evaluation Framework

In the approach, our aim is to analyze the feasibility of using the input domains
and their associated equivalence classes to see whether the applications can share
common input domains. In this case, we collect 100 applications from differ-
ent 5 categories and applied the Agglomerative Hierarchical Clustering Algorithm
(K.Sasirekha, 2013) for each category to make clusters by collecting the values used
in Android applications.

As the first step, we used Apktool (Apktool, 2020) to extract the Android app files
and get the resources. For each application, we took a strings.xml file, provided by
Android, to get all the explanations used in the entire application. After collecting
all strings from 100 Android applications, we used our algorithm developed for
preprocessing the data (e.g., strings, values) and calculated the similarity scores
between the values before clustering. In the preprocessing of the string values,
we used the following techniques; lower-casing, stemming, lemmatization, and stop
words removal (Extraction, 2018). In addition, we removed the non-English words
to make the similarity more appropriate.

In the similarity calculations, we used a semantic similarity metric (Islam, 2008;
Rau, Hotzkow & Zeller, 2018) to calculate the similarity score between two values.
In semantic similarity, the similarity score was calculated by training word2vec (word
vector model) on a large set of documents (Islam, 2008) and using a cosine similarity
(Rau et al., 2018). If the similarity of the two values was near to 1, it showed that
these values are very similar. On the other hand, they were far from each other
in terms of the similarity. At the end of the similarity calculation process, we
created the similarity matrix to be clustered. In the similarity matrix, the rows and
columns represented the strings (e.g., please enter username, please type email) used
in the applications and the cells were used as the similarity scores between each row
and column. As a last step of the clustering process, we executed the clustering
algorithm (e.g., Agglomerative Hierarchical Algorithm) on the similarity matrix of
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Table 6.1 The information about the categories of Android applications.

Category Descriptive Keywords
Finance applications related to money, budget, economy and finance.
Sport & Health applications related to sport, health, tracking and person.
Internet applications related to internet, cloud, client and network.
Security applications related to security, encryption and privacy.
Science applications related to science, education and learning.

each category, and then analyzed the results in terms of how appropriate the clusters
were.

For the evaluations, we used the silhouette score to see the distribution of the data
and clusters. Also, we checked the predicted clusters manually to see whether the
values in each cluster were similar or not. In addition to these evaluation metrics,
we calculated our metric scores to support to the evaluation results coming from the
silhouette scores. In our metric, we measured in-cluster similarity and iterated the
measurement process as the number of clusters. In this evaluation, we checked the
words in the predicted clusters by calculating the similarities between them once
again. If the similarity s′ of two words in the cluster was lower than the threshold,
we labeled the s′ as false. In this calculation, we counted the numbers of false and
measured the average in all clusters. The threshold t was 0.9≤ t≤ 1.0.

6.1.3 Operational Framework

In the clustering executions, we used 1) Agglomerative Hierarchical Algorithm, as a
clustering algorithm, provided by scikit-learn (Scikit-learn, 2018), 2) the silhouette
score, as a evaluation metric for the predicted clusters, provided by again scikit-
learn (Scikit-learn, 2018), 3) Apktool (Apktool, 2020) as an extractor of Android
applications. All the executions were carried out on the same computing platform
used in Section 5.1.3

6.1.4 Data, Analysis and Discussion

We first applied Agglomerative Hierarchical Algorithm to Android applications from
5 different categories for clustering. In total, we used 24.345 string values taken

47



Table 6.2 The information about the results of clustering based on the categories
of Android applications. (C1:Category, C2:Total Values, C3:Preprocessed Total
Values, C4:Intra-Cluster Similarity, C5:Average Number of Apps per cluster,

C6:Number of Clusters)

C1 C2 C3 C4 C5 C6
Finance 6235 6120 94.65% 3.4 502
Sport & Health 5369 4320 93.59% 4.3 431
Internet 5434 4738 95.32% 3.1 387
Security 4504 3813 89.92% 4.7 302
Science 5672 5210 91.39% 3.7 493

from strings.xml of each application and those values were stored in 134 different
Android screens. Moreover, in total, we achieved 2.242 different clusters for all
applications, indicating that each cluster was a distinct input domain. Thus, we
observed that different applications can commonly share the input domains together.
On the average, we observed that the values of each cluster were provided by 3.84
different Android applications in each category. In Table 6.2, we clarified the general
information regarding the results of clustering based on the categories of Android
applications. C1 represents the category of the applications used in the evaluation.
C2 shows the total values collected from each category. C3 demonstrates the values
that preprocessed from the total values of the applications to be clustered. C4
represents the intra-cluster similarity as silhouette score. C5 clarifies the number of
different applications that trained in each cluster. Lastly, C6 shows the number of
clusters obtained from the execution of clustering algorithm.

In the second analysis, we evaluated the clusters with their silhouette scores. In
Figure 6.1, we compared the the silhouette scores in terms of 5 different categories.
In each category, we used 20 Android applications. The silhouette scores obtained
from Figure 6.1 were 0.921, 0.935, 0.945, 0.884 and 0.902, respectively. The data
obtained from the evaluation of silhouette scores easily showed that the clustering
approach we applied achieves high scores, indicating that the values taken from
each category were well-matched in their clusters. In other words, each cluster, as
an input domain, can be shared between the applications.

The results obtained from the clustering for 5 different categories in Table 6.2
showed that we can achieve high intra-cluster similarity scores, which indicates that
the clusters are well-separated, for all categories. In other words, we observed that
the values of each cluster are provided from different applications. Also, the results
showed that the applications from the same category or from different categories
can use the input domains as shared so that we do not need to make an effort to
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Figure 6.1 Silhouette score comparisons based on the categories.

create the input domains and their associated equivalence classes for each applica-
tion. On the other hand, since the values of the predicted clusters were the same
or very similar to each other, we clarified that these values were used by more than
1 different Android application in the given category. The analysis of an average
number of Android applications used in per cluster once again showed that the in-
put domains of the different applications are typically similar and the input domains
can be shared between each other. Once such clusters are obtained, the equivalence
classes can be produced for each cluster and then given a previously unseen input
field, the field can automatically be mapped to a cluster, and then the equivalence
classes associated with the cluster can be automatically leveraged.
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In terms of all evaluations in the discussion, we clarified that there are generally
similarity between the domains of inputs from different applications and those input
domains can be shared between the applications when we analyzed the results. Once
the approach wants to detect the domain of a new input field that not clustered
before, the input domain might easily be detected by using the clusters so that the
manual effort of a domain detection will be decreased. In other words, we do not
have to repeat the generation process of the domains and equivalence classes for the
testing of each application.

In addition, we obtained that the input domains have as many similarities as the
number of clusters between applications. If the number of clusters is high, the
applications can share more input domains between each other. Thus, once we
can generate the equivalence classes for each cluster, we can use them for many
applications so that we can not make an effort for the manual process.

Also, we can observe the domain of the given input field from predicted clusters.
In both solutions, we can choose test values from Android applications by applying
a clustering approach, which is one of the machine learning approaches, instead of
choosing the test values from the databases generated by us making searches and
providing the domains manually. Also, what we demonstrated that as domains seem
to be shared across different applications the manual effort required to come up with
equivalence may not need to be duplicated, which increase the practicality of the
proposed approach.
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7. THREATS TO VALIDITY

All empirical studies suffer from threats to their internal and external validity. For
this work, we were concerned with threats to both of the internal and external
validity since they limit our ability to generalize the results of our experiment to
industrial practice.

7.1 External Validity

One threat concerns the representativeness of the subject applications used in the
experiments. There was a limited number of mobile applications used in the experi-
ments. The reason was that they have been used and well-known by many research
papers in the literature (A. Machiry & Naik., 2013; AndroidMonkey, 2018; R. Mah-
mood & Malek., 2014; S. R. Choudhary & Orso, 2015; W. Yang & Xie., 2013) so
that we could easily compare our approach with another approaches (A. Machiry &
Naik., 2013; AndroidMonkey, 2018) using the same applications in terms of different
evaluation metrics.

Yet another threat concerns the representativeness of the traditional covering array
generator used in the experiments, namely, ACTS (ACTS, 2018). In the literature,
ACTS is a well-known and widely used generator. We opted to use only one covering
array generator as ACTS since it offered the best run-time performance among the
generators we experimented with, and other generators could also provide same
properties to generate the covering arrays of the screens for mobile applications and
the models in the simulations.
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7.2 Internal Validity

Firstly, a potential internal threat is that the proposed approach assumes that all the
input domains and their associated equivalence classes (e.g., test values) are given.
In other words, the input domains and equivalence classes are produced for each
application. It means that if the approach cannot match the domain with a given
input field by checking its attributes, the equivalence classes cannot be produced.
For this reason, we should add a new input domain and its equivalence classes in
the database indicating that there needs to be manual effort for producing.

A second internal threat is about the structure of the guard conditions. In the
approach, we assumed that the guard conditions are not like the arbitrary func-
tions of the state parameters. Since we interacted with only UI of the applications
and applied no static analysis, it was typically not possible to predict the guard
conditions between the states, if a guard of the conditions was structured with the
system conditions (e..g, the level of a battery, GPS, WIFI, Cellular) or created with
the operational conditions implemented in the source code (e.g., a + b > c, number
% 2 == 0, city like ’%Istanbul%’).

To this end, we need to apply the approach to a larger number of the applications
with real faults to analyze how well the approach works and further automate the
clustering approach, explained in Section 6, in future work.
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8. CONCLUSION

Exploration strategies such as model-based and random testing are very common
for the automated testing of mobile applications. While the system is under test,
the model of an application has an impact on the different use of purposes (e.g.,
generating test cases, representing test strategies, detecting bugs).

In many researches, model-based and random testing have been used to build the
model of an application and/or generate test cases for the testing procedures, and
also have been combined together. Since the input space is not provided by the
systematic sampling in random testing and the model must be provided for the
model-based testing approaches (Takala, 2011), the model is not discovered system-
atically. In addition, even if divergent systematic exploration strategies have been
proposed in the literature, the systematicity is not applied by the covering arrays,
indicating that they ignore the interactions of the input fields. In this paper, we have
presented a novel tool that discovers the model of mobile applications automatically
with systematic sampling as a black-box approach. The key contributions of our
approach are (1) discovering the model of mobile applications with systematic sam-
ples generated by covering arrays and (2) predicting the guard conditions between
the states, represented as Android screens, on the discovered models by leveraging
a machine learning approach, known as a decision-tree classifier, on the results of
the test executions.

In this work, we have developed a couple of algorithms. As a first algorithm, we
have enhanced a mechanism that detects each distinct Android screen, the input
fields (e.g., Buttons, EditTexts) of a screen, the input domain and its associated
equivalence classes (e.g., test values) of the input fields for a given application as a
parameter, and discovers the model of an application via systematic sampling. The
second algorithm aims to systematically sample the input space for each distinct
screen that discovered by the approach using covering arrays, a part of CIT combi-
natorial interaction testing, in order to execute all combinations of test values of a
screen. In the last algorithm, we have leveraged a machine learning approach called
as a decision-tree classifier to predict the guard conditions of the discovered model
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by making binary classification.

Lastly and most importantly, we have evaluated the approach with different case
studies. In the first study, we have simply observed the approach using simulations so
that we can control the model parameters and analyze the effects of these parameters
on the performance of the proposed approach. In the simulations, we have randomly
generated different state machines by creating the states and guard conditions on
the transitions with the configuration parameters of the system. The simulation
test results have demonstrated that the test cases generated in a systematic manner
are an effective factor in order to predict the guard conditions and visit the states
by satisfying the transitions. Also, under the equal conditions (e.g., same number
of test cases, same domains and equivalence classes), the systematic sampling is
better than the random sampling. In the second case study, we have systematically
generated test cases and executed them on the subject applications by comparing
with previously proposed tools in terms of the screen and code coverage, the accuracy
of predicted guard conditions, and the number of executed test actions of different
applications. The results of subject applications comparison have indicated that
the approach provides higher code coverage than previously proposed tools in the
literature (A. Machiry & Naik., 2013; AndroidMonkey, 2018), showing that it is
more powerful by executing less number of test actions to crawl the application
and discover the model. In general, the evaluation results of the approach have
significantly shown that the approach is better than existing tools (A. Machiry &
Naik., 2013; AndroidMonkey, 2018) and random sampling in terms of the code and
state coverage of the applications and the accuracy of predicted guard conditions.

As future work, we plan to apply the proposed approach to a large number of An-
droid applications to analyze how the approach works better. Secondly, we aim to
automate the clustering approach discussed in Section 6. Lastly, as developed for
Android application, we aim to enhance the proposed approach to test IOS applica-
tions and also discover the models of those applications by making infrastructural
changes in the algorithms.
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