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ABSTRACT

A CPU-GPU HYBRID ALGORITHM FOR EMBEDDING LARGE GRAPHS

AMRO ALABSI ALJUNDI

Computer Science and Engineering M.A. Thesis, 2020

Thesis Supervisor: Asst. Prof. Kamer Kaya

keywords: Graph embedding, HPC, parallel algorithms, machine learning,

Graphs have become ubiquitous in this day and age, and their sizes are only becom-
ing larger and harder to deal with. Graph embedding is the process of transforming
graphs into a d-dimensional vector space to carry out machine learning tasks on
them. However, time- and memory-wise, it is a very expensive task. Many ap-
proaches have been proposed to optimize the process of graph embedding using
distributed systems and GPUs, however, state-of-the-art GPU implementations fail
to embed graphs unless the total memory of the available GPUs satisfies the cost
of embedding. We propose a hybrid CPU-GPU graph embedding algorithm that
enables arbitrarily large graphs to be embedded using a single GPU even when the
GPU’s memory capabilities fall short. The embedding is partitioned into smaller
embeddings and the GPU carries out embedding updates on embedding portions
that fit the GPU’s memory. The system generates samples on the CPU and sends
them to the GPU as they become needed without any global synchronization across
the system. The system adopts a generalizable DAG execution model to minimize
the dependencies between its sub-tasks. We embed a graph with 60 million vertices
and 1.8 billion edges in 17 minutes and report a link prediction AUC ROC score of
97.84% making us 67× faster than the state-of-the-art GPU implementation.

iv



ÖZET

BÜYÜK ÇAPLI ÇİZGELERDE ÇİZGE GÖMME İŞLEME İÇİN BİR CPU-GPU
HİBRİT ALGORİTMA

AMRO ALABSI ALJUNDI

Bilgisayar Bilimi, Yüksek Lisans Tezi, 2020

Tez Danışmanı: Asst. Prof. Kamer Kaya

Anahtar Kelimeler: çizge gömme, yüksek performanslı bilgi işlem, parallel
algoritmalar, makine öğrenmesi

Günümüzde çizgeler birçok alanda karşımıza çıkmaktadır, ve çizgelerin boyutu her
geçen gün büyümektedir. Çizge gömme, çizgeler üzerinde makine öğrenmesi işlemleri
gerçekleştirmek için çizgeleri çok boyutlu bir vektör uzayında temsil etme işlemidir.
Fakat bu işlem zaman ve bellek açısından pahalıdır. Birçok çalışma, dağıtılmış
sistemler ve ekran kartı kullanarak, çizge gömme işlemini optimize etmek üzerine
algoritmalar öne sürmüştür fakat son teknoloji ürünü algoritmalar ekran kartının
belleği gömme maliyetini karşılayamadığı takdirde işlemi gerçekleştirememektedir.
Bu çalışmada büyük ölçekli çizgeleri, ekran kartının belleği yeterli olmasa da, sadece
bir ekran kartı ile işleyebilen bir hibrit CPU-GPU çizge gömme algoritması öner-
mekteyiz. Bu algoritmada gömme matrisi GPU belleğine sığacak parçalara ayrılarak
sıralı bir şekilde işlenmektedir. Sistem, global bir senkronizasyon gerekmeden,
örnekleri CPU’da yaratarak, GPU’ya gerektikçe göndermektedir. Ek olarak sis-
tem genelleştirilebilir yönlü ve döngüsüz bir çizge modeli kullanarak yan işlerin bir
birine bağımlılığını en aza indirgemektedir. Önerilen algoritma 60 milyon nokta
ve 1.8 milyar kenar bulunduran bir çizgeyi 17 dakikada işlerken literatürdeki en
hızlı algoritmadan 67 kat hızlı olmakta, ve bağlantı tahmini problemi için %97.84
AUCROC skoru elde etmektedir.
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1. INTRODUCTION

Today, data is the most valuable asset of any technology. Many technologies we
use in our everyday life are driven by the data they collect and the data they
produce. Medical applications are driven by the medical literature data, as well
as the historic data of patients and medication. Social networks are nothing but a
massive collection of user data which is given in a simple interface for people to use.
These aggregates of data can be utilized to gain insights into many different fields of
research and industry. The study of data that is focused on the relationships within
the data and the information such relationships entails utilizes the mathematical
concept of a graph. Graphs are a special type of data representation that is used to
represent collections of data with a focus on how the elements making up the data
are connected. They are extremely useful for modeling data that can be reduced to
a set of connected entities. They allow researchers to extract valuable information
about the data from its structure. Graphs are used heavily in scientific research
and industrial applications. Protein-protein interaction networks, social networks,
hyperlink graphs, and co-authorship graphs are all such examples.

Graphs carry unique information, and understanding this information and extracting
it from graphs is not an easy process, especially with the scale in which graph sizes
are growing. With graphs that model hundreds of millions of vertices and billions of
edges, ordinary methods of data extraction are becoming computationally infeasible.
That is why the scientific community looked for ways to use machine learning (ML)
to study graphs as machine learning approaches are proven to be an invaluable tool
for analyzing data aggregates. For graphs, machine learning is used in many tasks,
e.g node classification, in which vertices in a graph are classified into labels using
a labeled set of nodes, and link prediction, where possible connections between
nodes are predicted. These ML approaches face a very important problem; the
structures of graphs are highly irregular. Unlike other data formats like text, audio,
and images, which have standard structures, representations, memory layouts etc.,
a graph usually has a structure that does not lend itself to be trivially used with
currently existing machine learning models. The procedure of graph embedding is
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an unsupervised machine learning task that takes arbitrary graphs and produces
standard d-dimensional vectors for entities of the graph (vertices, edges, or even
full graphs). These vectors capture the connectivity information of the graph and
encapsulate it into a vector space that is easily usable by machine learning models,
which in turn abstracts away the irregularity inherent in the structure of graphs and
expands the arsenal of machine learning models that are usable with graphs. Many
successful models have been introduced in recent years with much success (Grover
& Leskovec, 2016; Perozzi, Al-Rfou & Skiena, 2014; Tang, Qu, Wang, Zhang, Yan
& Mei, 2015; Tsitsulin, Mottin, Karras & Müller, 2018; Zhu, Xu, Tang & Qu, 2019).

As successful as graph embedding procedures are, they are heavily compute-intensive
and require hours and sometimes days to embed a single graph. This problem is
even more critical when considering the size of contemporary graphs. Graphs with
millions or even billions of vertices and edges are known to be used in fields like
social networks and e-commerce (Zang, Cui & Faloutsos, 2016). The Facebook
graph which captures the interactions in the social network has two billion nodes
and more than a trillion edges between these nodes. This computational complex-
ity has lead to research going in the direction of optimizing the process of graph
embedding to reduce its runtime overhead. Many such attempts have been made
with different approaches to solving the problem. Coarsening methods have been
used to compress the graph into smaller, more manageable sizes to produce em-
beddings faster Liang, Gurukar & Parthasarathy (2018). Distributed systems-based
approaches, like (Lerer, Wu, Shen, Lacroix, Wehrstedt, Bose & Peysakhovich, 2019),
utilize multiple nodes to lighten the load of embedding. Also, accelerators like GPU
were exploited to produce embeddings much faster (Zhu et al., 2019). However, ac-
celerators, despite their incredible computation ability, suffer from a lack of memory
capability when it comes to generating embeddings. This means that the hardware
requirement increases as the graph under embedding becomes larger.

In this work, we introduce an embedding algorithm with an efficient and specialized
scheduling schema that allows arbitrarily large graphs to be embedded using a single
GPU - even when the GPU’s memory capabilities are not sufficient to embed the
complete graph. Our approach partitions the graph into smaller sub-graphs and
carries out embedding updates on these sub-graphs. Besides, we utilize the CPU to
generate the samples used during the embedding in parallel with GPU computation.
Our approach does not have any global synchronization points, leading to non-stop
computation on the GPU.

The algorithm proposed in this work is part of Gosh (Akyildiz, Aljundi & Kaya,
2020), a tool that utilizes graph coarsening to produce high-quality graph embed-
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dings quickly and using a single GPU only. We briefly discuss Gosh in the thesis.
We summarize the contributions of this thesis as follows:

• We propose a highly flexible embedding algorithm that utilizes the capabilities
of GPUs while bypassing their harsh memory restrictions.

• Utilize the CPU’s computation and memory capabilities to accelerate the pro-
cess of embedding by generating the positive samples required for embedding
locally and sending the samples to the GPU without needing any global syn-
chronization mechanism.

• Propose a generalizable Directed Acyclic Graph (DAG) based execution model
for the embedding procedure that enables seamless communication between
the GPU and the CPU.

• Produce highly accurate embeddings at a fraction of the time needed by state-
of-the-art graph embedding algorithms. For instance, the state-of-the-art
GPU-based embedding algorithm, Graphvite, takes 5.36 hours to embed
a graph with around 40 million vertices and 600 million edges, and scores
94.3% AUC ROC score on the task of link prediction while using 4 Tesla P100
GPUs. Our approach, on the other hand, after embedding for 7 minutes only,
scores 98.44% on the same task with a single TITAN X GPU.

The remaining chapters are organized as follows: Chapter 2 provides some prelim-
inary information and presents an introduction to graph embedding. Chapter 3
discusses the GPU accelerated embedding procedure and introduces the partition-
ing schema used in the embedding, and Chapter 4 describes the DAG model which
carries out the embedding procedure using a single GPU. Chapter 5 includes an
analysis of the proposed algorithm and demonstrates the efficacy of Gosh in ma-
chine learning tasks. Finally, Chapter 6 summarizes the work and outlines future
work to be conducted.
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2. BACKGROUND

2.1 Preliminaries and notation

A graph G = (V,E) is a data structure composed of the sets V and E. We
define V = {v0,v1, · · · ,v|V |} as the set of vertices within the graph, and E =
{(vi,vj),(vl,vm), · · · ,(va,vb)} as the set of edges in the graph, where (u,v) ∈E indi-
cates that there is an edge between vertex u and vertex v. Graphs can be weighted,
in which case, the edges have numerical weights. In addition, graphs can be di-
rected or undirected. Edges in directed graphs are oriented, i.e (u,v) 6= (v,u) and
(u,v) ∈ E 6→ (v,u) ∈ E. Edges in undirected graphs, however, do not have any
orientation. In this work, we will assume all graphs are unweighted and undirected.

An embedding matrix M of a graph G is a d-dimensional matrix with d columns
and |V | rows, where vectors in the matrix correspond to embeddings of vertices in
G, i.e M[u] is the embedding vector of vertex u∈ V . The notation used in this work
is shown in Table 2.1.

2.2 Graph Embedding

A graph is an essential data representation that is ubiquitous in contemporary re-
search and industrial applications. Graphs capture the structure of data elegantly
and provide insights that are hard to grasp otherwise. However, their highly irregular
structure prevents their richness of representation from being exploited by contem-
porary ML models; it is highly desirable to open up the application of any machine
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Table 2.1 Notation used throughout the thesis.

Symbol Definition

G= (V,E) A graph with vertex set V and edge set E.
V The set of sub-graphs of a partitioned graph.
Vi The ith sub-graph of of the partitioned graph.
K # of parts in V .
d # features per vertex, i.e., dimension of the embedding.
s # negative samples per vertex.
σ Sigmoid function.
U�V The dot product operation between the vectors U and V.
simm Similarity metric modeled as a distribution.
e Total number of epochs that will be performed
lr Learning rate.
M The embedding matrix of the entire graph.
PGP U # embedding parts to be placed on the GPU.
M The set of embedding sub-matrices of the partitioned graph.
Mi Embedding sub-matrix of sub-graph Vi.
Md

i Sub-matrix bin i on the GPU.
B # Positive samples per vertex in a single sample pool.
Ki,j Embedding kernel of the the sub-graphs i, j.
SGP U # Sample pools to be placed on the GPU.
z # of sample pool sets on the CPU.

Sh
i,j,k

The sample pool in sample pool set k on the CPU containing
positive samples of the sub-graph pair i and j.

Sd
i Sample pool bin i on the GPU.
Di The directed acyclic graph (DAG) i consisting of task nodes.
Qi The execution queue of Di.
τi # of threads executing tasks from Qi.
STi,j,k A sampling task node that samples into sample pool Sh

i,j,k.

MST k
i,j

A sub-matrix swap task that switches
out Mi and switches in Mj from Md

k.
SCTi,j,k A sample pool copy task that copies Sh

i,j,k to the GPU.
KTi,j A task that executes Ki,j on the GPU.
X The execution order set.
Sh

i,j,k The shared variable of Sh
i,j,k.

Sd
i the shared variable of Sd

i .
Ki,j The shared variable of Ki,j .
C # of concurrent samplers on the GPU.
Ts # of sampling threads.
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learning model to graphs. Graph embedding techniques transform the connectivity
information of a graph into a d-dimensional vector space that is easily usable with
many ML models. It provides a data format that is extremely efficient in many
ML tasks including link prediction (Liben-Nowell & Kleinberg, 2003), node classi-
fication (Perozzi et al., 2014), and anomaly detection (Hu, Aggarwal, Ma & Huai,
2016). There have been many different approaches to graph embedding, and differ-
ent taxonomies classify them into a variety of sets of classes (Cai, Zheng & Chang,
2018; Goyal & Ferrara, 2017; Wang, Mao, Wang & Guo, 2017). Different approaches
target different elements of graphs. The most basic graph embedding flavor is an
embedding of the vertices of the graph, but embeddings of other elements of the
graph can be learned as well. This includes edges (Gao, Fu, Ouyang, Tsutsui, Liu
& Ding, 2018), sub-graphs (Adhikari, Zhang, Ramakrishnan & Prakash, 2018), and
even entire graphs (Narayanan, Chandramohan, Venkatesan, Chen, Liu & Jaiswal,
2017). Besides, embedding different types of graphs has been an important field of
research. This is especially true for knowledge graphs due to their flexibility and
richness with information (Lerer et al., 2019; Xiao, Huang, Hao & Zhu, 2015).

The earliest attempts at graph embedding are matrix factorization methods, which
take a relationship matrix (such as an adjacency matrix) and factorize it to produce
a d-dimensional matrix. Local Linear Embedding (Roweis & Saul, 2000), Laplacian
Eigenmaps Belkin & Niyogi (2002), and the more recent HOPE (Ou, Cui, Pei, Zhang
& Zhu, 2016) are all such methods. Matrix factorization methods, despite their
impressive results, suffer from a lack of scalability. The matrices these approaches
factorize scale with the square of the number of vertices in the graph. And for
graphs with millions or billions of vertices, the storage and time requirements become
astronomical.

More recently, deep learning-based graph embedding methods have been receiving
a great deal of attention due to the non-linearity of their models and the recent
advancements in the field of deep learning. Structural Deep Network Embedding
(SDNE) and Variational Graph Auto-Encoders both use auto-encoders to generate
high-quality embeddings (Kipf & Welling, 2016; Wang, Cui & Zhu, 2016). Graph
Convolutional Networks (GCN) (Kipf & Welling, 2017), a class of neural networks
that interface a graph directly, have also been successful at producing high-quality
embeddings.

Sampling-based graph embedding approaches are a class of deep learning-based al-
gorithms which uses sampling to optimize an objective function. The approach
proposed in this work belongs to this class of algorithms. The following sections will
review some of the most prominent sampling-based embedding algorithms.
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2.2.1 DeepWalk

DeepWalk is the first of a series of embedding algorithms to adopt random walks in
the process of graph embedding. It builds upon advancements in the area of using
neural networks for building latent representations of natural languages (Collobert
& Weston, 2008). DeepWalk builds in parallel with natural language modeling
techniques and proves that many of the existing natural language models can be
used to model community networks.

This algorithm carries out embeddings by generating random walks, then updating
the embeddings of the vertices in a walk such that vertices within a certain distance
from one another will have a bigger co-occurrence probability. The idea is to treat
vertices as words in a language model, and random walks as sentences.

DeepWalk’s embedding procedure begins with choosing a random root vertex r uni-
formly from the graph and carrying out a random walk starting at r for a certain
walk length. Once the walk is generated and given a certain window size w, Deep-
Walk will iterate through every node in the walk and carry out updates to the
embeddings of these vertices that will maximize the co-occurrence probability be-
tween every vertex and the w vertices before it in the walk, as well as the w vertices
after it in the walk. Maximizing the co-occurrence probability corresponds to up-
dates to the embedding matrix, which are done through SkipGram (Mikolov, Chen,
Corrado & Dean, 2013), a model designed originally to maximize the co-occurrence
of words appearing in a sentence. SkipGram is optimized using Hierarchical Soft-
max (Mnih & Hinton, 2008) to reduce the complexity of updating the embeddings.
This process is repeated many times until the embedding is complete.

DeepWalk is evaluated on the task of node classification against several baseline
approaches and it produces very high classification F1-scores, especially when the
amount of labeled data is scarce (less than 60%). This goes to prove that the
embeddings DeepWalk generates capture information about the graph independent
of any labels on the graph vertices.

2.2.2 LINE

LINE is a graph embedding algorithm designed to scale up to very large graphs that
previous approaches had struggled with. It uses a novel embedding approach that
optimizes the embeddings not only based on the proximity between nearby nodes
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but also the overlap between vertices’ neighborhoods. This method proves to be
very effective and delivers highly accurate results.

The embedding of LINE runs two sets of embeddings for a single graph. The first
one preserves the first-order proximity between vertices, which LINE defines as the
pairwise proximity (weight of the edge between vertices). The second embedding
preserves what LINE defines as the second-order proximity between vertices. The
second-order proximity between two vertices u and v is described as the similarity
of their neighborhood structure, which is determined by the shared neighbors of u
and v.

LINE trains its embeddings using the negative sampling technique (Mikolov,
Sutskever, Chen, Corrado & Dean, 2013). In each sampling iteration, one (existing)
edge is sampled from the graph and another ns (probably non-existing) edges are
chosen from some noise distribution as negative samples. These edges are used to
optimize an objective function that distinguishes the positive and negative samples.
The sampling process is further optimized for weighted graphs by creating a sam-
pling table in which edges are unrolled based on their weight, i.e., taking an edge
(u,v) with weight w and adding to the sample pool w instances of that edge. Its op-
timization procedure is carried out using asynchronous gradient descent (ASGD) by
batching sampled edges and updating the embeddings accordingly. The embedding
is carried out by training embeddings that preserve first-order proximity, another set
that preserves second-order proximity, and concatenating the two sets to produce
the final embedding matrix.

The model provides two different parameter sets. The first is the embedding matrix
M, and the second is a context embedding matrix C. The context embedding matrix
has the same dimensions as M but it is used for the optimization of second-order
proximity. During the second stage of embedding, when embeddings are optimized to
reflect the second-order proximity, sampling the edge (u,v) would result in updating
M[u] and C[v]. This way, two vertices who share a neighbor v will update their
embeddings with C[v].

2.2.3 node2vec

node2vec takes the concept of random walks for generating embeddings of vertices
and generalizes it to produce embeddings that capture neighborhood information
as well as the structural equivalence between nodes. node2vec observes that classic
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random walks, like those used in DeepWalk, are very linear and cannot capture the
richness of information in a network, which is why it proposes a randomized search
strategy that explores different neighborhoods of the same root vertex.

node2vec claims that different random walk strategies can capture different aspects
of a network. Carrying out a random walk that moves away from a root in DFS
fashion will create embeddings that reflects the neighborhood of the root node at the
macro level. On the other hand, a BFS-like walk strategy captures the structural
information of a node as it entails exploring multiple nearby neighborhoods.

node2vec guides the random walks in such a way that the degree to which the
nearby neighborhood of a vertex is explored, and the distance traveled away from
the vertex, can be controlled with the two tuning parameters p and q. p controls the
likelihood of hopping backward in a random walk which biases it to stay close to its
community, while q controls the likelihood of moving away from the community of
the node, which makes it lean more toward a DFS strategy.

The hyper-parameters p and q are chosen at the beginning of the embedding, and
the embedding proceeds by aggregating random walks that are biased with these
parameters. Similar to DeepWalk, the vertices within a certain window (or context)
in a walk are updated through the process of negative sampling and using stochastic
gradient ascent.

The model was evaluated with the tasks of node classification and link prediction its
random walk strategy was shown to be superior over both the classical walk strat-
egy of DeepWalk, as well as the first-order and second-order proximity optimization
method of LINE. However, node2vec suffers an important drawback. To make the
most out of node2vec’s random walk strategy, one must find the best p and q values
for the downstream machine learning task at hand, which needs to be done through
searching the space of p and q independently for each graph. This adds a quadratic
element to the time complexity of embedding. Even though it is shown that under-
standing the graph being embedded and its structure can guide the choice of these
tuning parameters, searching the input space can still be necessary.

2.2.4 VERSE

VERSE is a highly versatile graph embedding approach, meant to generalize the
process of graph embedding and make it faster and more scalable. VERSE fol-
lows a very straightforward approach to embedding; model the embedding matrix
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as a similarity distribution between vertices in the graph, model any other empir-
ical similarity measure as another distribution, and minimize the Kullback-Leibler
divergence between the two distributions through the process of Noise Contrastive
Estimation (NCE), a variant on negative sampling (Mikolov et al., 2013). We dis-
cuss the similarity distribution approximation process in more detail in Section 3 as
we use it for our embedding algorithm.

In their paper, Tsitsulin et al. (2018) instantiate VERSE with three similarity mea-
sures, namely Personalized Page-Rank (Page, Brin, Motwani & Winograd, 1999),
SimRank (Jeh & Widom, 2002), and adjacency similarity, which is similar to the
first-order proximity that LINE uses. Each one of these similarity measures was
reduced to distributions that can be used in training, and the effectiveness of these
approaches was analyzed with a variety of tasks. Similarity distributions are not
calculated beforehand, as that would incur an O(|V 2|) space complexity overhead
to the embedding. Instead, samples were generated in-time during the embedding
procedure. A version that calculates the distributions before the embedding starts
was implemented and it was shown that it produces slightly better results.

VERSE was evaluated against various embedding algorithms based on tasks like
link prediction and node classification and was shown to perform very well against
state-of-the-art methods.

2.2.5 Pytorch Big Graphs

Pytorch Big Graphs is an embedding approach for knowledge graphs, but it can
be generalized for other graphs as well. It provides a partitioning schema that
allows distributing the work of embedding over multiple machines even when these
machines’ memory capabilities do not allow for a full embedding procedure. Also,
work can be spread across multiple machines in parallel to gain speedups from the
parallelism.

A partitioning schema is introduced in PBG in which vertices in the graph are
partitioned into P parts, and the edges of the graph are partitioned into P 2 bins
such that every part pair has a corresponding edge bin. The embedding matrix is
sharded across the machines and a single, centralized lock server controls access to
the embedding matrix. The lock server controls which machines get access to which
partitions and moves the embedding procedure forward.

PBG optimizes the embeddings using a margin-based ranking objective between
10



edges in the graph (positive edges) and edges that have been corrupted (negative
edges). It uses mini-batch SGD to lighten the load on processing units when work-
ing with larger graphs. Negative samples are generated partially uniformly from a
random distribution, and partially by following the data distribution.

PBG produces highly accurate embeddings in tasks such as link prediction and node
classification. Besides, its parallelization schema proved to provide a performance
speedup as the number of contributing machines increased.

2.2.6 Graphvite

Graphvite is a multi-GPU graph embedding approach that distributes the workload
of embedding larger graphs onto one or more GPUs while utilizing the CPU to
generate samples and provide them to the GPU on the fly as they become needed.

Graphvite uses the embedding procedure of LINE’s second-order proximity; it has
a context embedding matrix in addition to the original embedding matrix with the
same dimensions. It bypasses the immense memory overhead of these two matrices
by partitioning the graph into multiple subgraphs and partitioning the embedding
and context matrices to match these of the sub-graphs. The embedding takes place
by switching embedding and context embedding sub-matrices in and out of the
GPU along with CPU-generated positive samples and letting the GPU carry out
the embedding updates.

Sampling in Graphvite is done on the CPU. Every pair of parts in the partitioned
graph has a sample pool in the host, which the samplers will populate with samples.
These samples are generated by conducting DeepWalk or node2vec random walks,
then iterating through the generated walks and placing samples from these walks
into the appropriate sample pools based on the matrix partitioning. Two sample
pool sets are allocated on the CPU such that when the GPU is currently fetching
from a pool, the CPU can continue sampling on the other. Also, samples are copied
to the GPU in small batches such that sample pools do not take up extra space on
the GPU and that the GPU doesn’t wait idly for samples. Negative samples are
generated on the GPU itself; when updating the vertices of a part A with samples
from part B, negative samples are uniformly drawn from part B. This way, no data
transfers between the CPU and the GPU need to happen to fetch negative samples.

The embedding procedure is split into episodes. At the beginning of an episode,
embedding and context sub-matrices are sent to different GPUs, such that no sub-
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matrix is in two GPUs at the same time. The CPU proceeds to send batches of
positive samples to the GPUs and parallel embedding starts. Once an episode is
over, the CPU will synchronize with the GPUs, fetch back the updated embedding
and context sub-matrices, and start a new episode.

Graphvite has been evaluated against many state-of-the-art embedding algorithms in
both link prediction and node classification and its shown substantial speedups over
multi-core CPU implementations, as well as highly accurate embeddings. However,
it suffers from an important hardware constraint - if using a single GPU, it cannot
embed graphs which cannot physically fit inside the GPU (Zhu et al., 2019). This
means that multiple GPUs are required to embed large-scale graphs.

2.3 General Purpose GPU Computing with CUDA

Graphics Processing Units (GPU) are high-performance hardware chips designed
to accelerate the rendering of graphical elements. GPUs have a high number of
specialized computation cores that provide them with extremely high throughput.
For these reasons, scientists and engineers saw the potential of these devices, es-
pecially in terms of the parallelism they allow. General Purpose GPU (GPGPU)
computing is a term used to describe using GPUs for scientific research or industrial
applications that are beyond the specialty of GPUs, i.e, rendering graphics.

Many GPGPU programming interfaces are currently being used to develop GPGPU
programs. The CUDA language is Nvidia’s proprietary GPU programming interface
that’s designed to run on Nvidia’s GPUs. It is a programming language with C like
syntax supported on all the major operating systems. The programming paradigm
of CUDA is different from CPU based programming languages. With CUDA, the pro-
grammer is working with thousands of threads running in parallel which provides
substantial speedups when used appropriately.

In this work, we will use the CUDA jargon to describe the inner workings of the
algorithm. In the remainder of this section, we give a few pointers about the GPU
operations:

• The CPU that runs the CUDA program is called the host. For the remainder
of this work, we will use the terms host and CPU interchangeably.

• A CUDA block is a collection of threads which share fast on-chip memory
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called the shared memory. Every thread has its registers and local private
memory.

• Threads in a CUDA program are grouped into groups of 32 lock-stepped warps.
The threads in the same warp are controlled by the same controller hence, they
always run the same instruction.

• Global memory is the memory region on the GPU that the host can write
to and read from. All threads running on the GPU have access to data on
global memory.

• Kernels are the computation execution units that the GPU carries out. The
programmer writes these kernels as functions and dispatches them to the GPU
in the host code. Also, the programmer must specify the number of blocks
the kernel should use and the number of threads in each block. However, how
these blocks and threads are distributed on the physical cores is decided by
the GPU.

• Physical cores on the GPU are grouped into streaming multiprocessors,
with each SM having a limited amount of shared memory and register space.
An SM is bound by its memory capability; if its shared memory or register
space is full while some of its threads are idle, and there are queued blocks
to execute, it will not be able to execute them and these threads will remain
idle. The rate of active warps on an SM to the maximum number of possible
active warps supported by the SM is called the occupancy.

• All CUDA dispatches, including reads and writes to global memory, as well
as kernels, are sent to a specific cudaStream. Each stream is a queue of
jobs that the GPU will execute. Multiple streams can be active on the GPU
concurrently. The order of dispatched jobs on a single stream is deterministic,
but the relative order of jobs on different streams is not.

• cudaEvents are special constructs used to synchronize different CUDA jobs
dispatched on different streams, as well as synchronize GPU work with the
host’s code.

• cudaCallbacks are special functions that can be enqueued into cudaStreams.
However, these functions run on the host and they can be used for synchro-
nization purposes.
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3. EMBEDDING LARGE GRAPHS ON A SINGLE GPU

Graph embedding is an extremely costly procedure, both in terms of time and re-
sources. That is why we designed a novel framework and algorithm to exploit the
acceleration capabilities of GPUs. In this chapter, we first present the formal defi-
nition of the embedding optimization we follow and its sequential implementation.
Afterward, we introduce our GPU parallelized embedding algorithm. Finally, we
introduce the partitioning schema used to perform our global-synchronization free
large-scale graph embedding. As discussed in Chapter 2, graph embedding can take
many different forms, but it is essentially the process of optimizing a certain objec-
tive function which uses the embeddings as its parameters. For our algorithm, we
chose the method presented in VERSE (Tsitsulin et al., 2018) as we recognize its
high utility and, as the name suggests, versatility. The way VERSE approaches the
process of embedding is by optimizing the embeddings in such a way that they re-
semble one of many graph similarity measures from the literature (like Personalized
PageRank (Page et al., 1999) or SimRank (Jeh & Widom, 2002), for example).

VERSE defines two random distributions for every vertex v in the graph, namely
simv

Q and simv
E , both of which will give a value for the similarity between v and

any other vertex u in the graph. simv
Q is calculated from the structural information

of the graph according to the definition of an empirical similarity measure Qv, such
that a higher probability of picking some vertex u over another vertex k in simv

Q

implies that v is more similar to u than k. In other words, simv
Q(u)> simv

Q(k) ⇐⇒
Qv(u)>Qv(k).

On the other hand, simv
E is a distribution that is calculated from the values of the

embedding matrix M itself. To elaborate, to calculate the value of simv
E(u), the

dot product of the vectors of v and u is calculated and softmax normalized with the
dot products of v and every other vertex in the graph such that they sum up to 1.
That is

(3.1) simv
E(u) = exp(M[v]�M[u])∑|V |−1

i=0 exp(M[v]�M[i])
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and

(3.2)
∑
∀u∈V

simv
E(u) = 1

where � is the dot-product of two embedding vectors.

The objective function then becomes to simply minimize the Kullback-Leibler (KL)
divergence between the two similarities simQ and simE by minimizing the following
cross entropy loss:

(3.3) L=−
∑
∀u∈V

 ∑
∀v∈V

simu
Q(v)

 · log
 ∑
∀v∈V

simu
E(v)


Minimizing the loss defined by (3.3) is carried out using Noise Contrastive Estima-
tion (NCE), which is a variant of negative sampling (Mikolov et al., 2013). NCE
optimizes an objective function by training a binary classifier to distinguish between
the true observations and other observations from a noise distribution. In our case,
we train the classifier to distinguish the (edge) samples coming from the empirical
similarity simQ and the samples coming from a random distribution N , with M
being the parameter space of this binary classifier. The training is done through
asynchroneous stochastic gradient descent (ASGD).

3.1 A Sequential Embedding Algorithm

Effectively, the optimization is carried out through repetitively choosing a vertex v
from the original graph, sampling a positive vertex and one or more negative ver-
tices for v, and updating the embeddings of v and the sampled vertices. Algorithm 1
shows the optimization process in more details. Given a graph G, an initial embed-
ding matrix M (possibly initiated with random values), a negative sample count s,
a learning rate lr, and an epoch count e, the algorithm will return the final, trained
embedding matrix M. For e rotations (i.e., epochs), ∀v ∈ V , a single vertex u is cho-
sen from simv

Q as a positive sample (Line 4) and s vertices (u1,u2, · · · ,us) are chosen
from a random (uniform) distribution N as negative samples (Line 8). The embed-
dings of v and u are updated such that the distance in the embedding space between
M[v] and M[u] is shortened (Line 4), while the embeddings of v and u1,u2, · · · ,us

are updated such that the distances between M[v] and M[u1],M[u2], · · · ,M[us] are
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made longer (Line 9). Algorithm 2 shows the process of making a single embedding
update. M is the embedding matrix, b is a binary variable indicating whether this
sample is positive or negative, v is the source vertex and sample can either be a pos-
itive sample (sampled from simv

Q) in which case b= 1, or it can be a negative sample
(sampled from N), in which case b= 0. In addition, σ is the sigmoid function, and
� is the dot-product of two embedding vectors.

In this work, we use the adjacency matrix as the empirical similarity measure simQ,
i.e the call to GetPositiveSample(v, G) will return one of v’s neighboring ver-
tices. Adjacency similarity can be switched for another similarity measure without
changing the algorithm (Tsitsulin et al., 2018).

Algorithm 1: FullGraphEmbedding
Input: G: input graph

M: embedding matrix
s: number of negative samples
lr: learning rate
e: training epochs

Output: M
1 for j = 1 to e do
2 lr′← lr×max

(
1− j

e ,10−4
)
;

3 for ∀v ∈ V do
4 u← GetPositiveSample(v, G);
5 if u 6=−1 then
6 SingleVertexUpdate(M[v], M[u], 1, lr′ );
7 for k = 1 to s do
8 uk← GetNegativeSample(G);
9 SingleVertexUpdate(M[v], M[uk], 0, lr′);

Algorithm 2: SingleVertexUpdate
Input: M: embedding matrix

b: sample is positive (1/0)
v: source vertex ID
sample: sample vertex ID
lr: learning rate

Output: M[v], M[sample]
1 score← b−σ(M[v]�M[sample])× lr ;
2 M[v]←M[v]+M[sample] · score;
3 M[sample]←M[sample]+M[v] · score;

3.2 Parallelizing Graph Embedding with GPUs
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The proposed algorithm parallelizes the graph embedding procedure described in
Section 3.1 using GPUs. This task is not at all trivial as one must pay special
attention to several GPU specific design restrictions, namely the Single Instruction
Multiple Threads (SIMT) paradigm that GPUs follow, the limited size of shared
memory on a GPU’s Streaming Multiprocessor, and the global memory data access
pattern.

Single instruction multiple threads (SIMT): A single GPU contains upwards
of tens of thousands of microprocessors, all running concurrently. However, the
(SIMT) execution model on a GPU is very different from that on the CPU. In this
model, threads are organized into groups of 32 called "warps". All threads within
a warp are thread-locked, meaning that they all execute the same instruction at
all times. However, each thread has separate registers and address space. In this
paradigm, every thread can store its independent data, but it must abide by the
instruction flow of the other threads in the warp. To maximize the utilization of
threads in this paradigm, we must make sure that all threads in a warp follow the
same control flow (without divergence at any control statements).

Global memory access pattern: All threads on the GPU can access a memory
region called the global/device memory. As a form of optimization, GPUs are de-
signed to minimize accesses from SMs to global memory by grouping global memory
accesses of threads in a warp into transactions such that a single transaction can
service many threads simultaneously. This grouping, or coalescing, can only be uti-
lized when threads access consecutive memory locations. If threads on a warp try
to access uncoalesced memory locations then the number of memory transactions
will increase, and hence the average latency.

Shared memory usage: The thread warps in the GPU are executed on Streaming
Multiprocessors (SM), the physical devices the make up the GPU. Every SM provides
its warps with a portion of fast-access memory called the shared memory. This
portion of memory provides very fast access for the threads within a warp, but its
capacity is much smaller than that of the global memory.

3.2.1 Implementation Details

To achieve the best utilization of the GPU, we parallelize Line 3 of Algorithm 1
on the warp level as shown in Figure 3.1; each warp in the GPU will carry out
the positive update and negative updates of a source vertex v, with its 32 threads
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Figure 3.1 A GPU warp containing the threads t0, t1, · · · , t31 split the workload of
processing a single vertex through having every thread ti read and update specific
elements within the vector M[v]. More precisely, thread ti handles embedding

elements ei, ei+32, ei+64, · · · for all 0≥ i > 32.

splitting the workload. With this approach, all 32 threads in a warp will operate on
the same embedding vectors at all times. In Algorithm 2, instead of a single thread
operating on every value of embedding vectors M[v] and M[sample], thread ti in
the warp will operate on the values M[.][i+c×32] where c is a positive integer such
that i+c×32 is smaller than the length of vectors. This approach carries three very
important benefits:

• Since all threads in a warp are operating on the same vertex and processing
the same samples, it means that there will never be a case in which some
threads are idle due to different control paths. In other words, there cannot
be a case in which a thread will evaluate Line 5 of Algorithm 1 differently from
the other threads in its warp.

• This method coalesces access to global memory to retrieve embedding values
- accesses happen in such a way that two adjacent threads in the same warp
access consecutive elements. This allows the GPU to make fewer memory
transactions to global memory. In fact, using single-precision floats, a warp
will make a single global memory transaction per instruction.

• Processing a single update using 32 threads effectively means that there are
32× less concurrent updates which would greatly reduce the race conditions
created by GPU parallelization.

To reduce the overall communication between SMs and global memory, we first carry
the embeddings of source vertices to shared memory. This way, instead of threads
having to read and write the embeddings of the source vertex v once in Line 6
and s times in Line 9, the embeddings of v will only be read from global memory
once before the positive update, and written once after the negative updates. All
intermediate reads and writes will happen on the shared memory. However, the reads
and writes of the embeddings of positive and negative samples are done directly on
global memory.
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3.3 Large-Graph Embedding on a Single GPU

Although it is working extremely well on medium-scale graphs, the algorithm de-
scribed in the previous section cannot embed large-scale graphs especially into spaces
with large dimensions since it is limited by the memory of the GPU being used. In
this work, we propose an embedding algorithm that can bypass the memory limita-
tions of GPUs and embeds arbitrarily large graphs using a single GPU without the
need for global synchronization. The algorithm consists of two concurrent processes
on the host and the device:

• the host continuously samples edges from the input graph and sends them to
the GPU as they are needed, and,

• the device performs embedding updates on sub-parts of the graph using the
samples brought over from the host.

Here we explore the challenges our algorithm attempts to solve and the solutions.

3.3.1 Memory bottlenecks

The algorithm described in Sections 3.1 and 3.2 incur a heavy memory cost. Without
any modifications to Algorithm 1, this memory cost puts a hard limit on the size of
the graphs that can it can embed. There are two main memory costs on the GPU for
embedding graphs: storing the embedding matrix M, and storing the graph data
itself. For the former, the algorithm requires that the entirety of the embedding
matrix M be present on the GPU during the embedding process. This is because
the accesses to the embeddings are completely random, specifically, the access to
the embeddings of the positively and negatively sampled vertices. The exact cost
of storing the embedding matrix, given that the embedding values are stored as
single-precision floats:

(3.4) d×|V |×4

For a graph with 100 million vertices, and an embedding dimensionality of 128, the
embedding matrix would be 51.2 GB in size. That is twice the maximum available
memory size of contemporary scientific GPUs.
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There are many different standard methods for storing graph data structures, and
in our algorithm, we use the Compressed Sparse Row (CSR) format for storing
graphs. In CSR, an array, adj holds the neighbors of every vertex in the graph
consecutively. It is a list of all the neighbors of vertex 0, followed by all the neighbors
of vertex 1, and so on. Another array, xadj, holds the starting indices of each vertex’s
neighbors in adj, with the last index being the number of edges in the graph. In
other words, the neighbors of vertex i are stored in the array adj from adj[xadj[i]]
until adj[xadj[i+ 1]]. This representation is very compact and assuming the vertex
IDs are stored as 4-byte integers, the total cost of storing the graph can be calculated
as:

(3.5) (|V |+ |E|)×4

Storing the graph on the GPU is highly desirable for our algorithm. That is because
it would allow us to generate the samples on the GPU itself without needing to
communicate with the host. However, as graphs become larger, storing the graph
on the GPU becomes a more significant cost. For example, given the same graph
above with 100 million vertices, and assuming that its average degree is 3, then the
size of the CSR is 1.6 GB.

3.3.2 Large-graph embedding

The memory costs shown in Section 3.3.1 make the process of accelerating graph em-
bedding hardware dependent. Even though there have been successful attempts at
using GPUs to accelerate embedding large graphs (Zhu et al., 2019), these solutions
required that the number of GPUs increase with the graph size. This requirement
puts a serious barrier between researchers who wish to explore the field of graph em-
bedding while not having sufficient resources. That is why this algorithm is designed
in such a way that graphs whose memory cost exceeds a single GPU’s capability can
be embedded using said GPU. To do so, we partition the embedding matrix into
sub-matrices that fit the GPU and rotate them in and out of the GPU. Besides,
we generate samples on the host and send them to the GPU. The GPU utilizes the
embedding sub-matrices and the samples in its memory and executes the necessary
embedding operations.

The embedding process can be reduced to a series of updates to vectors within
the embedding matrix M, in which a single update will read and write from not
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more than two embedding vectors. As such, for the GPU to execute the embedding
consisting of U = {(u0,v0),(u1,v1), · · · ,(ui,vi)} updates where uj ,vj ∈ V , it must
have access to the embedding vectors of every pair of vertices involved in these
updates. Since we cannot store the entire embedding matrix on the GPU, we need
to either (a) store parts of the embedding matrix on the GPU; enough to carry
out a subset of the updates, or (b) store the embeddings on the host, and access
them on the GPU using the Unified Virtual Memory (UVM) interface, in which the
CUDA runtime decides when to fetch embeddings to the GPU. Using UVM hides
the process of moving embeddings from and to the GPU, but it takes away from our
ability to control the movement of embeddings. This would lead to a large number
of unnecessary data movements - especially given the random access pattern of the
embedding vectors during the embedding process. On the other hand, we can resort
to the former option by partitioning the embedding matrix into K sub-matrices that
are small enough to be stored on the GPU. We would only require two sub-matrices
to be stored on the GPU at the same time since, for a single update, we would need
to access at most two sub-matrices. This way, an update involving any two vertices
u and v where u,v ∈ V can be executed on the GPU as long as the sub-matrices
which include u and v reside on the GPU.

More formally, we partition V into K disjoint subsets of vertices V =
{V0,V1, . . . ,VK−1}. LetM= {M0,M1, . . . ,MK−1} be the sub-matrices of M corre-
sponding to the vertex sets in V with 2×sizeof(Mi) < GPU memory. With this
partitioning, embedding G becomes the process of moving the sub-matrices inM to
the GPU, carrying out the updates which involve vertices within these sub-matrices,
and switching them out for the next sub-matrices, and so on.

3.3.3 Embedding rounds

Following the partitioning idea, the embedding procedure is executed in rounds.
Each round consists of:

• a series of sub-matrix copy operations from/to the device, and

• executions of embedding kernels on the GPU that carry out the updates on
the sub-matrices residing on the GPU.

The pattern in which the embedding sub-matrices are switched in and out of the
GPU must maintain the condition that within a single round, for every possible pair
of embedding sub-matrices, there must exist a time-point at which the corresponding
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sub-matrices concurrently reside on the GPU. In other words, during an embedding
round, there will be a time instance when the embedding sub-matrices (Mi,Mj)
will be on the GPU at the same time ∀i, j : 0≤ j ≤ i < K. To process sub-matrices
on the GPU, we move the sub-matrices from the host to PGP U < K pre-allocated
sub-matrix bins on the GPU Md

0,Md
1, · · · ,Md

PGP U−1.

During a round, an embedding kernel Ki,j is executed for every embedding sub-
matrix pair (Mi,Mj) where 0 ≤ j ≤ i < K. An embedding kernel Ki,j executes
Algorithm 3 and is explored in more detail at the end of this section. Every em-
bedding kernel will carry out up to B positive samples (and s negative samples for
every positive sample) for every vertex in Mi. For each one of these updates, the
(positively and negatively) sampled vertices will be from Mj . The same will happen
in the opposite direction. B is the batch size of a single round. This schema of ex-
ecution means that, in each rotation, we run a total of at most B×K positive and
B×K× s negative samples for every vertex. It should be noted that for a vertex
v ∈ Vi, no updates will be executed for v during zero or more embedding kernels Ki,j

or Kj,i. This happens when there are no vertices u ∈ Vj that are positive samples
for v. We add an atomic global counter for the samples to ensure that no additional
sampling is performed beyond |V |×e. Otherwise, we would execute p samples where
|V |× e≤ p≤ |V |× e×K.

Execution order: During the execution of the aforementioned embedding ker-
nels, we follow an order resembling the inside-out order proposed in (Lerer et al.,
2019) as it showed the best results in terms of embedding quality. Formally,
we define the execution order to be the order of part pair in the set X =
{(Va0 ,Vb0),(Va1 ,Vb1), · · · ,(Va`

,Vb`
)} where `= K(K+1)

2 and

(Vaj ,Vbj
) =


(V0,V0) j = 0

(Vaj−1 ,Vbj−1+1) j > 0 and aj−1 > bj−1

(Vaj−1+1,V0) aj−1 = bj−1

Samples: As mentioned at the beginning of Section 3.3.2, we avoid the memory
cost of storing the graph on the GPU by generating the positive samples needed
for embedding on the host, and sending these samples to the GPU as they become
needed. We generate the samples needed for embedding on the host and store them
in the z ≥ 1 sample pool sets S where every embedding kernel Ki,j has z designated
sample pools {Sh

i,j,0,Sh
i,j,1, · · · ,Sh

i,j,z−1} which contain positive samples from Vi to Vj ,
and, if i 6= j, samples from Vj to Vi. On the GPU, we allocate SGP U sample pool
bins Sd

0,Sd
1, · · · ,Sd

SGP U−1 and move sample pools from the host to these bins on the
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GPU according to the kernels about to be executed. As for negative samples, we
generate them on the GPU itself. For every positive sample executed for a vertex
v ∈ Vi, s vertices are chosen randomly from Vj and used as negative samples. The
same happens for vertices u ∈ Vj .

Algorithm 3: SubGraphEmbedding
Input: Sd: pool of positive samples

Md
m: sub-matrix bin a which contains the sub-matrix of sub-graph i

Md
n: sub-matrix bin b which contains the sub-matrix of sub-graph j

s: number of negative samples
lr: learning rate

Output: Md
m, Md

m

1 numi← Sd[0];
2 numj ← Sd[1];
3 index← 1;
4 for j = 1 to numi do
5 src← Sd[index×2];
6 sample← Sd[index×2+1];
7 SingleVertexUpdate(Md

m[src], Md
n[sample], 1, lr );

8 for k = 1 to s do
9 u← GetNegativeSampleEmbedding(Md

n);
10 SingleVertexUpdate(Md

m[src], u, 0, lr);
11 index← index+1;
12 for j = 1 to numj do
13 src← Sd[index×2];
14 sample← Sd[index×2+1];
15 SingleVertexUpdate(Md

n[src], Md
m[sample], 1, lr );

16 for k = 1 to s do
17 u← GetNegativeSampleEmbedding(Md

m);
18 SingleVertexUpdate(Md

n[src], u, 0, lr);
19 index← index+1;

Kernel execution: An embedding kernel Ki,j carries out Algorithm 3. It uses
positive samples from the sample pool bin Sd to update the two sub-matrices Mi

and Mj while they are on the GPU in bins Md
m and Md

n, respectively. The number
of positive samples in the pool is fetched from the sample pool itself (Lines 1–2) and
the samples are read and used to perform updates on Md

m (loop on Line 4) and Md
n

(loop on Line 12). For every positive sample update to a vertex in Md
m and Md

n, s
negative samples from the opposing sub-matrix are fetched and updated, with calls
to GetNegativeSampleEmbedding(Mk) returning a random embedding vertex
from the sub-matrix Mk (Lines 9 and 17).
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3.3.4 Impact of the parameters on the performance

Recall that PGP U is the number of sub-matrices that can be stored on the GPU
at a time. Since we require every sub-matrix pair to exist on the GPU together
during a single rotation, the smallest acceptable value is 2. However, PGP U = 2
means that there will be time-points where all the kernels processing the current
sub-matrices finish, and a new kernel cannot start until a new sub-matrix is copied
to the GPU. This leaves the GPU idle during the copy operation. On the other
hand, using PGP U > 2 will reduce the size of a single sub-matrix (and the number
of samples executed on it per kernel) but allows an overlap of data transfers with
kernel executions. For instance, assume M1,M2 and M4 are on GPU and the three
upcoming kernels are K4,1,K4,2 and K4,3. The first two kernels are dispatched and
after the first finishes, while the second is running, M1 is replaced with M3, thus
hiding the latency.

A large PGP U increases the amount of overlap. However, it also consumes more space
on the GPU and increases K, i.e., the number of sets in V . This leads to a rotation
containing more kernels, i.e., pairs to be processed. We explore the relationship
between the PGP U and the speed of embedding in Section 5.1.2 .

Since we do not keep the large graphs on GPU memory and draw positive samples
on the CPU, these samples must also be transferred to the GPU for the kernels to
execute. Let SGP U be the number of sample pools stored on the GPU concurrently.
Smaller values of SGP U would lead to the same issue stated above; once a sample
pool is used up, updates must halt and the GPU will be idle until a new sample
pool is fetched from the host. Larger values for SGP U would bypass the idling issue.
However, it should be noted that increasing the number of sample pools on the
GPU increases the memory space they occupy, leaving less space for the embedding
parts and potentially increasing K, which, as stated previously, can slow down the
embedding. We explore the performance of different values of SGP U further in
Section 5.1.3.

Another equally important hyperparameter is the batch size B. Larger values of B
increase the size of a single sample pool which could potentially increaseK, however,
it allows for more updates to be carried out per rotation, reducing the total number
of rotations required to run e epochs. We explore the effect of B on the embedding
quality and speed in Section 5.1.4.

The next chapter describes the proposed directed acyclic graph execution model we
used to maximize the GPU utilization with efficient synchronization mechanisms.
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4. DIRECTED ACYCLIC GRAPH EXECUTION MODEL

To achieve the highest possible utilization of the GPU, we must make sure that it
is never idle and that it is always carrying out embedding updates. For that, we
need to reduce the number of synchronization points in the algorithm. We do so
by adopting a Directed Acyclic Graph (DAG) model of execution. As described in
the previous chapter, the proposed approach involves the coordination of four main
tasks:

• generating samples on the host,

• copying the sample pools to the device,

• copying the embedding sub-matrices to and from the device, and

• executing the embedding kernels.

In this model, instantiations of the tasks above are represented as nodes, and when
a task T2 is dependent on task T1, an edge will go from T1 to T2. With this model, a
task Ti will only synchronize with its incoming neighbors, thus eliminating the need
for algorithm-wide synchronization points while maintaining correctness. Formally,
we define the tasks that comprise our system as follows:

1.1 Sampling Task (STi,j,k): utilize a team of sampling threads on the host to
generate positive samples into a sample pool Si,j,k for some k < z, where z is
the number of sample pool sets.

1.2 Sub-Matrix Swap Task (MST k
i,j): dispatch two GPU memory copies, one

to copy sub-matrix Mi out of the kth sub-matrix bin Md
k on the GPU to

the host, and one to copy another sub-matrix Mj from the host to the same
sub-matrix bin on the GPU. If i=−1 then no copy out of the GPU is carried
out, and if j =−1 then no copy to the GPU is carried out.

1.3 Sample Pool Copy Task (SCTi,j,k): dispatch a GPU memory copy to copy
the sample pool Si,j,k to the GPU (the exact location on the GPU is resolved
at execution time).
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1.4 Kernel Execution Task (KTi,j): dispatch an embedding kernel Ki,j on the
GPU.

We establish a node for each task instance mentioned above and connect the nodes
with edges to define their dependency structure, forming an execution DAG D. We
also define an execution queue Q associated with every execution DAG for nodes
in the DAG which are ready to be executed. Given a DAG Di and a task node
n ∈ Di, whenever node n’s incoming neighbors finish executing, it is added to the
execution queue Qi. A node n ∈ Qi is executed using an independent thread such
that multiple nodes from the execution queue can be executed in parallel.

More specifically, we define two DAGs:

• the Embedding DAG De consisting of the Sub-Matrix Swap Tasks, Sample
Pool Copy Tasks, and Kernel Execution Tasks.

• The Sampling DAG Ds: consisting of Sampling Tasks.

The construction of both DAGs, as well as the definition of each of their edges, are
elaborated on in the following in Sections 4.1 and 4.2.

4.1 The Embedding DAG (De)

The Embedding DAG consists of the tasks which interact directly with the GPU
by dispatching work to it. More precisely, it comprises of the tasks that dispatch
memory copies of sample pools and sub-matrices and the tasks that dispatch kernels.
These tasks are executed on the host and only asynchronously dispatch jobs to the
GPU. A task finishes executing once it dispatches its jobs to the GPU; it does not
wait for the job to finish executing on the GPU - or even start executing. That is why
we need a method to guarantee that the dependency structure of De is transferred
to the GPU. We discuss this topic further in Section 4.1.1.

4.1.1 GPU Dependency Using cudaEvents
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One method to enforce dependency between different jobs on the GPU is by dis-
patching all the GPU jobs on a single cudaStream since all jobs on a stream are
sequentially executed based on the order they were dispatched in. However, this will
greatly limit the parallelism and eliminate any overlap between memory copies and
computation. That is why we use cudaEvents to achieve this dependency structure
without sacrificing parallelism. cudaEvents are the canonical method for creating
a dependency between different GPU jobs running on different streams. If we wish
to create a dependency between the GPU job A dispatched on cudaStream Si and
the GPU job B dispatched on the cudaStream Sj , we would dispatch A, record
cudaEvent E on the stream Si, instruct the stream Sj to wait for event E, then
dispatch B to stream Sj . This guarantees that B (and all subsequent jobs on Sj)
do not start until job A is complete.

We utilize cudaEvents in De by making it so that every node n ∈ De will have a
single cudaEvent En which it will record after it dispatches its GPU work, and
will use to communicate with its neighbors. Given a node ni ∈ De with incoming
neighbors (nI

0,n
I
1, · · · ,nI

a), outgoing neighbors nO
0 ,n

O
1 , . . . ,n

O
b and cudaEvent Eni .

Before ni dispatches its job on its stream Si, it instructs Si to wait for the events
of all of its incoming neighbors (EnI

0
,EnI

1
, · · · ,EnI

a
), then it dispatches its GPU job

and records the event Eni on Si. With this method, the dispatched jobs of any node
n will always wait for its incoming nodes’ jobs to finish executing, and n’s outgoing
neighbor nodes’ jobs are guaranteed to not execute until n’s job is finshed executing,
effectively maintaining the correctness of the dependency structure of De.

4.1.2 Structure of De

The three tasks comprising De can be thought of as running in three parallel lanes.
The first lane consists of all the sub-matrix swap tasks, the second of the kernel
execution tasks, and the third of the sample pool copy tasks. Given a graph that’s
partitioned into K sub-graphs, that we are using PGP U sub-matrix bins and SGP U

sample pool bins on the GPU, and z sample pool sets on the host, that we are
running an embedding of e epochs, and given the execution order X , the DAG is
constructed as shown in Algorithm 4.

At the beginning, we calculate the number of embedding rounds r from the number
of epochs e and the batch size B (Line 1 of Alg. 4). Then, we create an empty DAG
and a shell Beginning Node to serve as an execution starting point (Lines 2–4). We
create two arrays, matrixPositions and matrixGPUNodes to track the state of the
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sub-matrix bins on GPU. Observing matrixPositions[i] = k indicates that Mi is
currently on the GPU in sub-matrix bin Md

k, and observing matrixGPUNodes[k]
= MST indicates that the last node to move a sub-matrix to Md

k is MST (Lines 5–
6). We also set up two node containers to store the last created sample copy and
kernel nodes (Lines 7–8). Then, we createMST nodes that will move the first PGP U

sub-matrices to the GPU (Line 9).

The loop at Line 16 is responsible for the bulk of the algorithm. We repeat this
loop r times to generate a graph that executes r rounds of embedding. This loop
proceeds by dequeuing a part pair (Vi,Vj) from X , and creating SCNi,j and KNi,j

to dispatch a copy of the sample pool and dispatch an embedding kernel for said part
pair, respectively (Lines 17–18). We make KNi,j dependent on SCNi,j to guarantee
that a kernel does not start until its samples are on the GPU (Line 19). Besides, we
make this iteration’s sample copy node dependent on the last iteration’s sample copy
node (Line 19). As for consecutive kernel nodes, we connect them with a weak edge.
This edge does not lead to the event propagation process mentioned in Section 4.1.1;
when a kernel node is finished executing, it does not send its recorded event to the
next kernel node. This is so that kernel nodes on the GPU do not run sequentially,
and to allow for kernels to run out-of-order (in case a kernel is ready to execute
before its preceding kernel in the execution order is done executing). Afterwards,
we make it so the KNi,j is dependent on the nodes which copied sub-matrices Mi

and Mj to the GPU (Lines 24–25). This guarantees that a kernel does not start
until the sub-matrices it needs for it to run are on the GPU.

After a kernel node is executed, one (or both) of its sub-matrices are switched
out. The function matricesToSwitch(X , matrixPositions) in Line 28 deter-
mines whether, after kernel Ki,j is finished executing, any sub-matrices should be
switched out, and which sub-matrices are to be switched in their stead (Line 27).
If it is determined that sub-matrix a, residing in bin k, is to be switched out and
replaced with sub-matrix b, we create the sub-matrix switch nodeMST k

a,b (Line 29).
The execution of the copy job must not begin until all the kernels which depend
on Ma are finished executing. We project this dependency on the graph structure
in the loop in Line 30; MST k

a,b is made to depend on all the kernel nodes which
depend on the MST node that brought Ma into the GPU. The matrixGPUNodes
and matrixPositions arrays are updated to reflect the change in the sub-matrices’
states (Lines 32–33).

Finally, after all the kernel nodes have been added to the graph, a shell Terminal
Node is created and made to depend on the final kernel node as well as the part
switch nodes which will take out whichever embeddings sub-matrices are on the
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GPU (Lines 34–36) as well as the. A demonstration of this process is shown in
Figure 4.1. In the preceding section, it can be seen that we determine at the graph
generation stage the exact locations of sub-matrices on the GPU, while we do not do
the same for sample pools. This is because the processing time of a sample pool is
highly unpredictable; sample pools can have a variable number of positive samples
and, consequently, would require varying amounts of time to process. We leave the
location of sample pools on the GPU to be decided at the node execution time and
we coordinate it using shared variables. We discuss this further in Section 4.3.

4.1.3 Task Queue of De

The task queue of the embedding DAG is populated by the nodes whose incoming
neighbors have been executed to completion. Nodes enqueued into the task queue
are executed by a team of τe threads. The tasks the threads execute for nodes in
De are not computationally significant, and hence do not incur any costs on the
running host. In our experiments, we use τe = 5 as we found it to be sufficient, and
experimentally, using higher values does not yield any improvement in execution
time.

4.2 Sampling DAG (Ds)

Sample pools must be generated in the same order of the kernel executions mentioned
in Section 3.3.3 since that is the order in which the sample pools will become needed
by the embedding kernels. However, generating sample pools sequentially could lead
to idleness on the GPU. That is because the GPU is capable of processing multiple
sample pools in parallel and the sample pools vary greatly in the number of samples
they contain. That is why up to C sample pools are sampled in parallel, and the
order in which the sampling happens is in such a way that the sample pools needed
sooner are sampled into first. An important distinction between the nodes in Ds

and De is that the nodes in the former do not dispatch any GPU jobs, and therefore
do not record cudaEvents. In other words, all edges in Ds are weak edges according
to the definition in Section 4.1.2
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Algorithm 4: constructDe
Input: SGP U : number of sample pool bins on the GPU

PGP U : number of sub-matrix bins on the GPU
e: number of epochs
z: number of sample pool sets
K: number of sub-graphs in the partition of the graph
X : execution order set

Output: De: embedding DAG
1 r← e

B ;
2 De← createEmptyDAG();
3 BN ← createBeginningNode();
4 setRoot(De, BN);
5 matrixGPUNodes ← array[PGP U ] = null;
6 matrixPositions ← array[K] = −1;
7 lastCopyNode ←BN ;
8 lastKernelNode ← BN ;
9 for i = 0 to PGP U do

10 MN ← createMatrixSwapTask(−1, i, i);
11 matrixGPUNodes[i] ← MN ;
12 matrixPositions[i] ← i;
13 lastMatrixNode.addEdge(MN);
14 lastMatrixNode ← MN ;
15 for r rounds do
16 for (i, j) ∈ X do
17 SCN ← createSampleCopyTask(i, j, r mod z);
18 KN ← createKernelTask(i, j);
19 SCN .addEdge(KN);
20 lastSampleCopyNode.addEdge(SCN);
21 lastKernelNode.addWeakEdge(KN);
22 lastSampleCopyNode ← SCN ;
23 lastKernelNode ← KN ;
24 matrixGPUNodes[matrixPositions[i]].addEdge(KN);
25 matrixGPUNodes[matrixPositions[j]].addEdge(KN);
26 outMatrices, inMatrices ← matricesToSwitch(X ,

matrixPositions);
27 for (in, out) ∈ (outMatrices, inMatrices) do
28 outPosition ← matrixPositions[out];
29 MN ← createMatrixSwapTask(out, in, outPosition);
30 for KN ∈ matrixGPUNodes[outPosition].getOutEdges() do
31 KN .addEdge(MN);
32 matrixGPUNodes[in] ← MN ;
33 matrixPositions[in] ← outPosition;

34 TN ← createTerminalNode();
35 lastKernelNode.addEdge(TN);
36 for i = 0 to PGPU do
37 matrixGPUNodes[i].addEdge(TN);
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Figure 4.1 A demonstration of the construction of De given K = 4 and PGP U = 3.
(a) The graph starts with a beginning node that connects to the first sample task,
kernel task, and part swap task. Consecutive kernels are connected with weak

edges (white arrows) while other elements in the graph are connected with normal
edges. (b) The sub-matrix swap node that will copy out M1 and copy in M3 will
depend on kernel nodes that are using M1, and its dependents are the nodes that
will use M3. (c) At the end of the embedding, the last kernel node, plus the last

PGP U sub-matrix switch nodes will have an edge to the terminal node.
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4.2.1 Structure of Ds

Nodes in the sampling DAG are set up linearly such that they are created in the same
order as the execution order X . The process of creating Ds is shown in Algorithm 5.
The algorithm takes as inputs the execution order set X , the number of sample
pool sets z, the total number of rounds r, and the number of sub-graphs that the
graph under embedding has been partitioned to K. It returns a fully constructed
Ds. There are two types of edges added to this graph. The first type contains the

Figure 4.2 The construction of Ds is given for K = 3. There exist two types of
edges; one between consecutive sample pools, and one between sample tasks that

will be sampled into the same pool.

edges between consecutively created nodes (Line 13 of Alg. 5). These are added to
guarantee that sample pools are made ready for kernels in time. The second type
contains the edges between nodes which will sample into the same pool (Line 11).
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Hence, no two thread teams attempt to sample into the same pool. A snippet from
a Ds construction is shown in Figure 4.2.

Algorithm 5: constructDs
Input: X : execution order set

z: number of sample pool sets
r: number of embedding rounds
K: number of sub-graphs in the partition of the graph

Output: Ds: sampling DAG
1 Ds← createEmptyDAG();
2 BN ← createBeginningNode();
3 setRoot(De, BN);
4 k← 0;
5 lastNode ← BN ;
6 lastRoundsNodes ← array[z][K][K] = {null};
7 for r rounds do
8 for (i, j) ∈ X do
9 TS ← createSampleTask(i,j,k);

10 if lastRoundsNodes[k][i][j] 6= null then
11 lastRoundsNodes[k][i][j].addWeakEdge(TS);
12 lastRoundsNodes[k][i][j] = TS;
13 lastNode.addWeakEdge(TS);
14 lastNode ← TS;
15 k← (k+1) mod z;

4.2.2 Task Queue of Ds

Sampling tasks are heavily compute-intensive on the host. We control the number
of concurrent sampling tasks by limiting τs, the size of the team of threads executing
tasks from Qs, the task queue of Ds. In other words, we set τs =C, i.e to the number
of concurrent samplers.

4.3 Host Dependency Using Shared Variables

We establish communication between different tasks using the inherent structure of
the DAGs for both De and Ds, and use cudaEvents to transfer our dependency
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structure to the GPU in the case of De as mentioned in Section 4.1.1. However,
these two methods do not cover the entire array of communication required for the
correctness of the algorithm. Two additional types of communication arise between
sample tasks and sample copy tasks, and between sample copy tasks and kernel
tasks. Sample tasks and sample copy tasks are not part of the same graph, and yet
they require to communicate to establish the states of sample pools on the host. A
sample copy task needs to be informed of whether the pool it is assigned to copy
has been sampled into or not. Similarly, a sample task must not sample into a pool
that is being copied from by a sample pool.

Additionally, there is an element in the algorithm which is not coordinated during
the graph generation phase, nor is it coordinated using cudaEvents: the locations
to which sample pools are copied to on the GPU. To elaborate, while generating
De, we specify the order in which sample pools are copied, but we do not dictate
the location on the GPU to which they should be copied, i.e in which sample pool
bin Sd to place them. This is not the case with sub-matrices; we define the location
to which sub-matrices are to be copied during graph generation time. The reason
for this difference between sample pools and sub-matrices is that sample pool usage
times are highly unpredictable - much more than sub-matrices. Sample pools vary
greatly in the number of positive samples they may contain. This is because the
bigger that a graph is, and the more partitions it has, the higher the odds for vertices
in some sub-matrix Mi to not have any positive samples in another sub-matrix Mj .
This leads to a drastic contrast in sample pool processing times, and consequently, to
many instances when a sample pool is processed to completion before its predecessor
sample pools. For this reason, we leave the decision of choosing sample pool locations
on the GPU to be made at sample copy time. Just as the location to which sample
pools are copied is relevant to sample copy nodes, it is also important for kernel nodes
since these nodes, when dispatching embedding kernels, must inform the embedding
kernel of the location of its samples.

We establish communication between kernel nodes and sample copy nodes as well
as sample copy nodes and sample task nodes using shared variables, mutexes, and
condition variables. Shared variables store the states of the different resources on
the host and the device, mutexes prevent race conditions and ensure correctness,
and condition variables provide an interface by which threads can send messages
amongst themselves. There are three system-wide control variables by which this
communication is achieved:

• Sh
i,j,k where 0 ≤ j ≤ i < K and 0 < k < z: a variable which relays the status

of sample pools on the host. Sh
i,j,k = −1 indicates that sample pool Sh

i,j,k is
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empty and ready to be sampled into, Sh
i,j,k = 0 means that the sample pool

is full and ready to be copied, and Sh
i,j,k = 1 means that the sample pool is

currently being copied to the GPU.

• Sd
i where 0≤ i < SGP U : holds the status of sample pools on the device. Sd

i =
−1 indicates that GPU pool Sd

i is empty, Sd
i = 0 indicates that said pool is

being copied into, but not ready for usage by a kernel yet, and Sd
i = 1 means

that the pool is full and ready to be used for embedding.

• Ki,j where 0≤ j ≤ i < K: every kernel of execution is given a variable which
indicates whether or not it has been assigned a sample pool on the device to
fetch its samples from. Ki,j =−1 means that kernel Ki,j has not been assigned
a sample pool yet, while Ki,j = g where 0≤ g < SGP U indicates that the kernel
Ki,j has been assigned the sample pool bin Sd

g on the GPU; it will use it as a
source for its positive samples.

These control variables are read and written to by a variety of threads in the system
and their usage will be elaborated upon in Section 4.4.

4.4 Implementation of Tasks

4.4.1 Sampling task

On the host, where all the sampling takes place, z× K×(K+1)
2 sample pools are

generated, i.e., z pools are generated for every Ki,j . These sample pools are con-
tinuously sampled into by a team of Ts sampling threads. Do note that not all
the threads will sample into the same pool; sampling threads sample into up to C
sample pools concurrently where C ≥ 1. Using C > 1 means that multiple sample
pools are prepared concurrently. We explore the effect of concurrent samplers on
embedding runtime further in Section 5.1.5.

Sampling into a sample pool is shown in Algorithm 6. The sampling thread waits for
the sample pool on the host to be empty through its shared variable Sh

i,j,k, locks the
variable to prevent race conditions, and sets it to 0 to indicate that it is full (Lines 1–
2). After sampling is over, the variable is unlocked (Line 32). The execution of a
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Algorithm 6: SampleToPool
Input: Sh

i,j,k: sample pool k for sub-graph part pair Vi and Vj

Vi: sub-graph i
Vj : sub-graph j
B: embedding batch size
vertices_per_part: number of vertices in a single sub-graph
Ts: number of sampling threads
C: number of concurrent samplers
Sh

i,j,k: shared variable with the status of the sample pool Sh
i,j,k

Output: Sh
i,j,k

1 waitUntilAndLock(Sh
i,j,k, -1);

2 Sh
i,j,k← 0;

3 Tl← Ts
C ;

4 vertices_per_thread ← vertices_per_part
Tl

;
5 thread_counter ← array[Tl] = {0};
6 samples_per_thread ← array[Tl] = {null};
7 starting_src ← i× vertices_per_part;
8 for every thread t in Tl in parallel do
9 counter← 0;

10 pool← array[B×vertices_per_thread×2] = 0;
11 for 0 to B do
12 src ← starting_src + vertices_per_thread ×t;
13 for k = 0 to vertices_per_thread do
14 ps ← SampleFromSubpart(src+k, Vj);
15 if ps 6=−1 then
16 pool[t][counter×2] ← src+k;
17 pool[t][counter×2+1] ← ps;
18 counter+ =;

19 if i 6= j then
20 starting_src ← j× vertices_per_part;
21 src ← starting_src+vertices_per_thread ×t;
22 for 0 to B do
23 for k = 0 to vertices_per_thread do
24 ps ← SampleFromSubpart(src+k, Vi);
25 if ps 6=−1 then
26 pool[t][counter×2] ← src+k;
27 pool[t][counter×2+1] ← ps;
28 counter+ = 1;

29 thread_counter[t]← counter;
30 samples_per_thread[t]← pool;
31 Sh

i,j,k← mergeThreadSamples(thread_counter, samples_per_thread);
32 unlockVariable(Sh

i,j,k);
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single sampling job uses Tl local threads, and each thread will generate samples for
an equal portion of vertices (Line 4). Every thread allocates a thread-private sample
pool to store its generated samples and a thread-private counter to write the number
of samples it generates (Lines 9–10). After a thread is done sampling, it will write
its pool and its counter to the shared memory space so that they can be merged
and placed into Sh

i,j,k (Lines 29–30). These private data guarantee that sampling
is completely parallelized and protected against false-sharing. However, this can
lead to load-imbalance if regions in a sample pool are less dense with samples than
others. We experimentally show in Section 5.1.5 that generally, this is not the case.

The function SampleFromSubpart(v, Vk) chooses a sample u ∈ Vk for vertex v,
and if no samples are found returns -1. After a thread is finished generating samples
for vertices in Vi from Vj (loop at Line 11), it will generate samples for vertices
in Vj from Vi given that i 6= j (loop at Line 22). After all the threads are done
sampling, mergeThreadSamples(thread_counters, samples_per_thread) will
use the thread counters to sequentially merge the per-thread sample pools and store
the results in Sh

i,j,k.

4.4.2 Sample pool copies

At the beginning of the algorithm, SGP U sample pool bins are allocated on the
GPU. These bins are what the embedding kernels use to carry out the embedding.
Whenever kernel Ki,j is scheduled to run, it will wait until a sample pool Sh

i,j,k has
been moved to one of the sample pools bins on the GPU. The task of dispatching
the copies of sample pools to the GPU is carried out by sample pool copy tasks. In
addition to dispatching the copy jobs to the GPU, sample copy tasks inform sample
tasks when the latter should resample into a pool, and communicate with kernel
tasks to inform them from which sample pool bin on the GPU the kernels must
fetch their positive samples.

Let SCi,j,k be the task of copying a single sample pool Si,j,k to the GPU. The exe-
cution of SCi,j,k is shown in Algorithm 7. As shown, before the copying is initiated,
the thread will wait until the control variable of the sample pool Sh

i,j,k indicates that
the sample pool on the host has been filled, and sets it to 1 afterward to indicate
that it is being copied from (Line 1). Then, the task attempts to reserve a sample
pool bin on the GPU with the call to reserveGPUSamplePoolBinAndLock().
This call will block until one of the SGP U bins on the GPU is free. Once it acquires
one, say, the bin at position bin, it will reserve it by locking its shared variable Sd

bin,
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Algorithm 7: SamplePoolCopy
Input: Si,j,k: shared variable containing the status of pool Sh

i,j,k

Sh
i,j,k: sample pool k of the sub-graph pair Vi and Vj

Ki,j : shared variable of the status of kernel Ki,j

1 waitUntilAndLock(Sh
i,j,k, 0);

2 Sh
i,j,k← 1;

3 bin ← reserveGPUSamplePoolBinAndLock();
4 waitUntilAndLock(Ki,j , -1);
5 Ki,j ← bin;
6 Sd

bin← getSamplePoolBin(bin);
7 dispatchCopyFromTo(Si,j,k, Sd

bin);
8 addGPUCallback(sampleCopyCallback, Sh

i,j,k, Sd
bin);

9 unlockVariable(Sh
i,j,k);

10 unlockVariable(Sd
bin);

11 unlockVariable(Ki,j);

and setting its value to Sd
bin = 0 to indicate that Sd

bin is being copied to and is not
vacant (Line 3). Afterward, it also waits for the control variable of the kernel to
become Ki,j =−1 to indicate that the kernel is not currently being executed. It then
locks the variable and sets its value to bin, communicating that Sd

bin is the location
from which the kernel is to fetch its samples upon its execution (Lines 3–5). After-
ward, the GPU copy of the sample pool is dispatched (Line 7). After dispatching
the copy, a cudaCallback is dispatched to the GPU (Line 8). This callback will be
executed on the host once the copy job has been executed to completion and will
make the required changes to the shared variables to indicate that the sample copy
is complete, the callback’s workings are shown in Algorithm 8.

The callback is tasked with signaling that the sample pool Sh
i,j,k is free to be resam-

pled into (Line 3 in Alg. 8), and signaling that the sample pool bin Sd
bin on the GPU

has now been filled to completion with samples (Line 4).

Algorithm 8: sampleCopyCallback
Input: Sh

i,j,k: shared variable containing the state of sample pool Sh
i,j,k

Sd
bin: shared variable containing the state of sample pool bin Sd

bin
1 lockVariable(Sh

i,j,k);
2 lockVariable(Sd

bin);
3 Sh

i,j,k←−1;
4 Sd

bin← 1;
5 unlockVariable(Sh

i,j,k);
6 unlockVariable(Sd

bin);
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4.4.3 Matrix Swaps

Carrying out the embedding procedure happens on parts of the embedding matrix
M which we partition suitably for the GPU memory capabilities. The GPU stores
two or more embedding sub-matrices in sub-matrix bins allocated on it before the
execution of the embedding and embedding is carried out on whichever sub-matrices
are currently in these bins. The task of dispatching copies of embedding sub-matrices
to and back from the GPU is carried out by matrix swap tasks. These tasks will
take out an updated embedding sub-matrix from one of the sub-matrix bins on the
GPU back to its location on the host, then they will copy a different embedding
sub-matrix from the host and place it in the same sub-matrix bin on the GPU. This
process is shown in Algorithm 9. It starts by acquiring a pointer to the sub-matrix
bin on the GPU (Line 1). Afterwards, it will copy whichever sub-matrix is currently
on the GPU back to the host (Lines 2–3), and will copy a sub-matrix from the host
to the GPU (Lines 4–5). Do note that a swap job is not always in both directions.
If the sub-matrix bin is empty, we do not wish to copy its contents to the host.
Similarly, if we’ve reached the end of the embedding and a sub-matrix bin is not
going to be used anymore, we do not wish to spend time and resources copying to
it.

Algorithm 9: createMatrixSwapTask
Input: Mout: sub-matrix of sub-graph out on the host

Min: sub-matrix of sub-graph in on the host
bin: index of the sub-matrix bin on the GPU the copy is occuring on

1 Md
bin← getSubMatrixBin(bin);

2 if Mout 6= null then
3 dispatchCopyFromTo(Md

bin, Mout);
4 if Min 6= null then
5 dispatchCopyFromTo(Min,Md

bin);

4.4.4 Kernel execution tasks

The embedding procedure operates by sending sub-matrices from the embedding
matrix to the GPU and carrying out embedding updates on whichever sub-matrices
are currently residing on the GPU. Kernel execution tasks dispatch the embedding
kernels tasked with these updates. They coordinate with sample pool copy tasks to
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inform the GPU of the locations of the samples required for a particular kernel exe-
cution. They do not need to directly coordinate with sub-matrix copy tasks since the
locations of the sub-matrices that they will use for embedding are predetermined at
DAG generation time, and the dependency relationship is decided with cudaEvents.
The operation of a kernel execution task is shown in Algorithm 10. The execution
requires the indices of the sub-graphs on which embedding is going to take place,
as well as the sub-matrix bins that contain the sub-matrices of the aforementioned
sub-graphs. Execution starts by waiting for the kernel to be assigned a sample-pool
bin on the GPU by a sample pool copy task (Line 1). After the index of the sample
pool bin on the GPU is acquired from the shared variable of the kernel (Line 2),
the task will wait until the sample pool has been copied to completion by a sample
copy task (Line 3). Once copying is finished successfully, the task will dispatch the
embedding kernel to the GPU (Line 5). Afterward, a cudaCallback is dispatched
on the GPU and scheduled to run right after the kernel is finished executing. This
callback is tasked with signaling that the kernel is complete and that the sample
pool bin is free for other sample pools to be copied into it. The callback is shown in
Algorithm 11. The callback sets the shared variable of the kernel that was executed
to −1 to indicate that the kernel is finished executing and is ready for another round
of embedding (Line 3). Also, it sets the shared variable of the sample pool bin on
the GPU to −1 to indicate that the sample pool bin is now free for other sample
pools to be copied into it (Line 4).

Algorithm 10: kernelExecutionTask
Input: i: index of the first sub-graph the embedding kernel is updating

j: index of the second sub-graph the embedding kernel is updating
Md

m: the sub-matrix bin on which Mi is located
Md

n: the sub-matrix bin on which Mj is located
1 waitUntilAndLock(Ki,j , >−1);
2 samplePoolBin ←Ki,j ;
3 waitUntilAndLock(Sd

sampleP oolbin, 1);
4 Sd

sampleP oolBin← getSamplePoolBin(samplePoolID);
5 dispatchEmbeddingKernel(Md

m, Md
n, Sd

sampleP oolBin);
6 addGPUCallback(kernelCallback, Ki,j , Sd

sampleP oolID);
7 unlockVariable(Ki,j);
8 unlockVariable(SD

sampleP oolID);
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Algorithm 11: kernelCallback
Input: Ki,j : shared variable containing the status of kernel Ki,j

Sd
bin: shared variable containing the status of sample pool bin Sd

bin
1 lockVariable(Ki,j);
2 lockVariable(Sd

bin);
3 Kj,k←−1;
4 Sd

bin←−1;
5 unlockVariable(Kj,k);
6 unlockVariable(Sd

bin);
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5. EVALUATION

The embedding procedure proposed in this work accelerates graph embedding using
GPUs while mitigating their memory limitations which prevent larger scale graphs
from being embedded by a single GPU. As important as it is to accelerate the process
of embedding, we must not sacrifice the quality of the embeddings it produces. In
this chapter, we explore the effectiveness of the schema proposed in this work, both in
terms of embedding runtime and prediction accuracy. The approach proposed in this
work is a part of a tool named Gosh (Akyildiz et al., 2020) designed for accelerating
graph embedding and reducing the procedure’s memory overhead. GOSH utilizes a
graph coarsening approach that compresses the graph under embedding to minimize
the amount of work required to carry out an embedding. More precisely, given a
graph G0, GOSH compresses G0 into a smaller graph by combining groups of one
or more vertices in G0 into super vertices to produce a new, smaller graph G1. The
graph G1 is coarsened into a graph G2, and so on. Once a certain stopping criterion
has been met and D coarsened graphs have been generated, the final level generated,
GD−1, is embedded using the embedding algorithm proposed in this work. Then,
its embedding is projected on a graph GD−1 by assigning every vertex in GD−2 the
embedding of its super vertex in GD−1. Then GD−2 is embedded with the projected
embeddings as its initial starting point, and its embeddings are projected to GD−3.
The process continuous until G0 is embedded. The algorithm presented in this work
is mainly concerned with embedding the larger levels that do not fit inside the GPU
memory.

In the following sections, we will introduce the graphs we use in our experiments,
as well as the hardware and software environments used during our experiments.
Afterward, we analyze the large graph embedding procedure. Finally, we provide
experimental results that compare Gosh to other state-of-the-art graph embedding
implementations both in terms of speed and embedding quality.

Datasets: For our experiments, we use four large-scale graphs to demonstrate the
efficiency of the proposed embedding method. Also, we use eight medium-scale
graphs to assess the machine learning quality of Gosh as a whole. The graphs
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Table 5.1 Medium- and large-scale graphs used in the evaluation experiments.

Graph |V| |E| Density

com-dblp (Leskovec & Krevl,
2014)

317,080 1,049,866 3.31

com-amazon (Leskovec & Krevl,
2014)

334,863 925,872 2.76

youtube (Mislove, Marcon, Gum-
madi, Druschel & Bhattacharjee,
2007)

1,138,499 4,945,382 4.34

soc-pokec (Leskovec & Krevl,
2014)

1,632,803 30,622,564 18.75

wiki-topcats (Leskovec &
Krevl, 2014)

1,791,489 28,511,807 15.92

com-orkut (Leskovec & Krevl,
2014)

3,072,441 117,185,083 38.14

com-lj (Leskovec & Krevl, 2014) 3,997,962 34,681,189 8.67
soc-LiveJournal (Leskovec &
Krevl, 2014)

4,847,571 68,993,773 14.23

hyperlink2012 (Meusel, 2015) 39,497,204 623,056,313 15.77
soc-sinaweibo (Rossi & Ahmed,
2015)

58,655,849 261,321,071 4.46

twitter_rv (Rossi & Ahmed,
2015)

41,652,230 1,468,365,182 35.25

com-friendster (Leskovec &
Krevl, 2014)

65,608,366 1,806,067,135 27.53

range in their vertices amount as well as densities. A summary of the graphs is
shown in Table 5.1.

Experimental Environment: We compile and run our algorithm and the other
systems used for evaluation on two different servers. The first machine, which we
will refer to as Gandalf, has 4 NUMA sockets, each with 15 Intel E7-4870 v2 cores
running at 2.30GHz and a single thread per core for a total of 60 logical cores. The
server is equipped with 515GBs of RAM. It uses a single Tesla K40c GPU with
compute capability 3.5, having 11.4GBs of global memory, and connected through
PCIe 3. The server has CentOS 6.5 as its operating system.

The second system, which we will refer to as Nebula, has 2 NUMA sockets with 8
Intel E5-2620 v4 cores running at 2.10GHz and two hyper-threads per core, adding
up to 32 logical cores. The machine is equipped with 192GBs of RAM, and a
TITAN X GPU with compute capability 6.1 and 12GB of global memory. The
GPU is connected to the server via PCIe 3.0 x 16. The server’s operating system
is Ubuntu 4.4.0-159.
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The code was compiled using nvcc 10.1 on both servers with optimization flag
-O3. For CPU parallelization, OpenMP was used with C++11 multithreading data
structures.

Experimental setup: We evaluate the accuracy of the embeddings generated with
link prediction, which is one of the most commonly used machine learning tasks
used for evaluating graph embeddings (Grover & Leskovec, 2016; Lerer et al., 2019;
Tsitsulin et al., 2018; Zhu et al., 2019).

Evaluating a graph G starts by splitting the graph into a train sub-graph Gtrain =
(Vtrain,Etrain) and a test sub-graph Gtest = (Vtest,Etest). The split is made such
that Gtrain contains 80% of the edges of G and Gtest contains the remaining 20%.
Afterwards, we remove all isolated vertices from Gtrain, i.e we remove all vertices
v ∈ Vtrain iff (v,u) /∈ Etrain∀u. In addition, we remove any edge in Etest if one of
the vertices making up the edge are not in Vtrain. More formally, we remove all
(u,v) ∈ Etest ⇐⇒ u,v /∈ Gtrain. This is to prevent Gtest from including vertices
which will not have an embedding at the end of training phase. In other words, it
guarantees that Vtest ⊆ Vtrain. Next, we execute the embedding model under evalua-
tion with Gtrain as input. Finally, we use the resultant embedding matrix to predict
the existence of edges in Etest by employing a Logistic Regression model. We use
the SGDClassifier module from the scikit-learn library with a logistic regres-
sion classifier (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel,
Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot &
Duchesnay, 2011).

The logistic regression model is trained and evaluated using two matrices, Rtrain

and Rtest. Each vector i in these matrices R[i] corresponds to a logistic regression
sample. Positive samples in Rk correspond to edges that exist in the graph Gk,
while negative samples correspond to edges that do not. We generate a single sample
corresponding to the edge (u,v) by element-wise multiplying the embeddings of u
and v. In addition, we concatenate to each vector a binary value that indicates
whether the sample is a positive or a negative one. Rtrain includes vectors for all
the edges ∈ Etrain as positive samples, as well as |Etrain| negative samples. The
same procedure is carried out for Rtest by using Gtest instead of Gtrain.

After training the logistic regression model with Rtrain, we evaluate its prediction
performance using Rtest and report its acquired AUCROC score (Fawcett, 2006).

5.1 Large Graph Embedding Analysis
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The algorithm proposed in this work uses a highly flexible scheduling schema in
terms of the parameters provided for the users to tune. These parameters affect
many different elements of the algorithm. In this section, we explore the performance
of the algorithm and gauge the sensitivity of some of the tunable hyper-parameters
present.

5.1.1 GPU parallelization performance

We examine the efficiency of the GPU parallelization introduced in Section 3.2.1 as
well as our partitioning approach for large-scale graphs that do not fit the GPU
by comparing it to a multi-core CPU version that we implemented. Table 5.1
shows some of the speedups acquired from running our algorithm versus the multi-
core CPU implementation running with 16 threads. The three leftmost graphs are
medium-scale and do not require the large graphs scheduling schema. The other four
are large-scale graphs that do not fit inside a single GPU and require partitioning.
We find that using the GPU parallelization is at least 2× faster than a multi-core
CPU implementation, and at most 7.3× faster. However, the partitioning schema
entails a heavy penalty on the performance. The average speedup for all eight of the
medium-scale graphs in Table 5.1 is 5.47×, while the average for large-scale graphs
is 2.80×.

5.1.2 Number of embedding sub-matrix bins PGP U

Large graphs embedded with our model are partitioned into smaller sub-graphs
whose corresponding embedding sub-matrices can fit inside the GPU. The number of
sub-matrices placed on the GPU is controlled with the parameter PGP U . Table 5.2
presents the runtimes of embedding the four large-scale graphs in Table 5.1 with
different values of PGP U . These results are plotted in Figure 5.2. The smallest
value used for PGP U is PGP U = 2 since it is the smallest value that maintains the
correctness of the algorithm as explained in Section 3.3.4. We observe that going
from two sub-matrix bins to a three sub-matrices drastically improves the runtime
- we see an average improvement of 20% in runtime, with hyperlink2012 seeing
the biggest improvement with a 25% speedup. This improvement is due to the
overlapping of kernel computation and memory copies of sub-matrices from and to
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Figure 5.1 The speedup GPU parallelization achieves over a multicore parallel
version. Experiments were run with 4 medium-scale graphs (green) and 4

larege-scale graphs (blue). The multi-core CPU implementation was run with 16
threads. We used B = 5, PGP U = 3, SGP U = 4, C = 4 and Ts = 16 as the

hyper-parameters for our approach.

the GPU that an additional sub-matrix can introduce. We demonstrate this effect in
Figure 5.3 which shows a trace of the embedding of hyperlink2012 obtained through
nvvp, the Nvidia visual profiling tool. As shown in the figure, when PGP U = 2,
the GPU is idle after every kernel execution (except Ki,j : j = i−1). This happens
because while the GPU is running some kernel Ki,j where j < i−1, the sub-matrices
on the GPU cannot be switched out until the kernel is complete, and the next kernel
must wait for the new kernel to be swapped into the GPU. On the other hand, with
PGP U = 3, copies of the sub-matrices are hidden by embedding kernels. It should
be noted that the time difference between the two figures is not all due to the
aforementioned latency hiding. It is also the result of 2 partitioning the graph into
fewer parts than PGP U = 3; parts that have more vertices, and consequentially,
kernels that carry out more work, and memory copies of bigger chunks of data. The
difference in the number of sub-graphs generated for different values of PGP U is
shown in Table 5.2.

Increasing PGP U past three, however, slows down the runtime consistently for all
graphs under evaluation. This is because increasing PGP U means that sub-graphs
must become smaller, and the number of sub-graphs the graph is partitioned into
increases, as well. This is translated into more sub-matrix copies done per round of
embedding, and more kernel calls.
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Table 5.2 The effect of the number of sub-matrix bins PGP U on the the number of
graph sub-parts K generated for a graph, as well as the runtime of embedding.

The experiments were carried out on Gandalf using the four large-scale graphs in
Table 5.1. Experiments were run with e= 100, SGP U = 4, C = 4, B = 5, and

Ts = 16.

Graphs PGP U K Time (s) Graphs PGP U K Time (s)

soc-sinaweibo

2 7 1431.07

hyperlink2012

2 5 744.29
3 9 1173.85 3 6 556.36
4 12 1253.81 4 8 457.97
5 14 1301.68 5 10 496.62
6 17 1514.45 6 11 528.00

twitter_rv

2 5 740.29

com-friendster

2 7 1541.32
3 7 607.93 3 10 1230.56
4 8 510.88 4 13 1196.00
5 10 531.15 5 16 1369.68
6 12 615.93 6 19 1594.44

Figure 5.2 Embedding runtimes acheived from embedding the graphs in Table 5.1
with a range of values for PGP U . This plot projects the results in Table 5.2.
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Figure 5.3 The figure shows an extract from the nvvp visual profiling tool profile of
two embedding executions of the graph hyperlink2012 on Gandalf with

SGP U = 1, B = 5, C = 4, and Ts = 16. However, the top execution is with PGP U = 3
and the bottom execution is with PGP U = 2. Figure 5.4 explains the notation used
in this figure. The sub-matrices that are on the GPU at the beginning and at the
end of each execution are shown below the time series. As shown, using PGP U = 3

hides some of the latency of memory copies with computation.
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Figure 5.4 A time series figure is a snippet from the nvvp visual profiling tool used
for profiling CUDA applications. From top to bottom, the rows in the time series
show the memory copy jobs of data from the host to the GPU, the memory copy
jobs from the GPU to the host, and the computation kernel jobs on the GPU.

5.1.3 Number of sample pool bins of SGP U

Carrying out embeddings on the GPU requires positive samples to be prepared on
the host and sent to the GPU. We allocate SGP U sample pool bins on the GPU
for embedding kernels to use during embedding, and we move sample pools to the
GPU once they become needed as determined by the scheduling algorithm discussed
in Chapter 2. We experiment with different values of SGP U to gauge the effects of
increasing the number of sample pools residing concurrently on the GPU. Table 5.3
shows the runtimes of the large-scale graphs in Table 5.1 with a range of values for
SGP U . The results show that the number of sample pools on the GPU does not
affect the embedding speed directly. Instead, its influence on K, the number of
sub-graphs in the graph partition, is what affects the embedding runtime. As SGP U

increases, more space on the GPU is required to store the sample pools, this leaves
less space for embedding sub-matrices, and consequently, to splitting the graph into
more sub-parts. The direct effect of increasing the number of parts in the partition
is an increase in the number of kernels executed, and sub-matrices and sample pools
copied.

An unexpected outcome from this experiment is that the change from SGP U = 1 to
SGP U = 2 does not lead to any drastic speedup. A single sample pool bin on the GPU
means that only a single embedding kernel can be executed on the GPU at any single
time instance - removing kernel-kernel parallelization. That is why we anticipated
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that increasing the number of sample pools from a single pool to multiple pools
would improve runtime. Upon further experimentation, we found that having more
than one sample pool bin resides on the GPU does allow for overlapping kernels;
however, the bottleneck of the embedding becomes the sub-matrix swaps to and
back from the GPU. Figure 5.5 illustrates these effects. We can make two main
observations from the figure.

Kernel overlap: Even though there is a slight overlap between kernels, the kernels
do not run in complete parallelism. For example, kernel K2,0 does not overlap K1,1

completely even though both the sub-matrices it requires and the sample pool are
on the GPU. We believe that this because every single embedding kernel we dispatch
completely saturates the GPU’s SM s. To elaborate, every kernel we send is made up
of 512 threads and 512 blocks. According to nvvp, the kernel’s theoretical occupancy
is 75%. When running on Gandalf, only three blocks can be active concurrently on
a single SM. Since Gandalf is equipped with 15 multiprocessors, this means that
the machine can only have 3×15 = 45 active blocks concurrently - less than 10% of
the blocks of a single kernel. That is why we observe that only at the very end of
a kernel, presumably when it has < 45 blocks left to process, does the next kernel
begin processing and its blocks become active.

Compute idleness: Looking at Figure 5.5, we can see that there is a substantial
period of idleness on the GPU after kernel K2,2 is finished executing. The idleness
is not due to missing sample pools as it is clear that the samples of the next two
kernels are already loaded into the GPU by the time K2,2 is finished executing.
However, we can see that the sub-matrix M3 is not on the GPU by the time K2,2

finishes executing. This figure shows that even though increasing the number of
sample pools does result in kernel-kernel overlapping, this benefit is lost due to the
bottleneck of submatrix copies.

50



Figure 5.5 A time series of an embedding of the graph twitter_rv produced by
the nvvp visual profiling tool. This execution was carried out on Gandalf and,
SGP U = 2, PGP U = 3, B = 5, C = 4, and Ts = 16 were used as hyperparameters.
The notation of this time series is explained in Figure 5.4. However, this figure
contains two parallel computation streams, shown as "Computation 0" and

"Computation 1". The sub-matrices which are on the GPU before the beginning of
the time series are shown at the bottom of the figure, as well as the sub-matrices
on the GPU after the time series is complete. A computation overlap between
embedding kernels can be seen. In addition, a period in which the GPU is not

doing any computation occurs between kernels K2,2 and K3,0.

Figure 5.6 Visual representations of the effect of increasing SGP U runtime of graph
embedding.

5.1.4 Batch size of a single round B
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Table 5.3 The effect of SGP U on the the number of graph parts K and the
embedding runtime for the large-scale graphs in Table 5.1. Experiments were run
with e= 100, PGP U = 3, B = 5, C = 4, and Ts = 16 and were done on Gandalf.

Graphs SGP U K Time (s) Graphs SGP U K Time (s)

soc-sinaweibo

1 8 1119.12

hyperlink2012

1 8 518.64
2 9 1220.18 2 9 512.92
3 9 1167.75 3 9 547.58
4 9 1170.69 4 9 554.36
5 9 1165.90 5 9 551.29

twitter_rv

1 6 542.21

com-friendster

1 9 1147.37
2 6 532.49 2 10 1164.96
3 6 542.19 3 10 1228.60
4 7 607.93 4 10 1230.56
5 7 605.02 5 10 1236.65

Table 5.4 The effect of B on the the number of graph parts K, the runtime of
embedding, as well as link prediction accuracy on the four large-scale graphs in
Table 5.1. Experiments were run with e= 100, PGP U = 3, SGP U = 4, C = 4, and
Ts = 16 and were carried out on Gandalf. Please note that these experiments do

not incorporate coarsening; embedding is applied to the original level only.

Graphs B K Time (s) AUCROC (%)

soc-sinaweibo
1 8 2107.46 98.02
5 9 842.73 99.78
9 10 720.12 99.85

hyperlink2012
1 8 1031.10 97.42
2 9 455.32 97.36
3 10 413.71 97.09

twitter_rv
1 6 1103.09 93.97
5 7 508.50 94.03
9 6 436.28 90.00

com-friendster
1 9 2476.13 93.18
2 10 874.43 91.96
3 12 1026.57 90.36

The embedding procedure that we propose in this work carries out the embedding
in multiple rounds, each round composed of large chunks of data copied into and
out of the GPU. The batch size B controls the number of training epochs that
are executed in a single round. A higher value of B means that there will be less
embedding rounds, and therefore, fewer memory copies between the host and the
GPU will be dispatched. The amount of computation carried out is not affected by
B since the total number of samples generated by the algorithm is controlled using a
global atomic counter; embedding ends once e×|V | positive samples are generated
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and used for embedding. Table 5.4 shows the effect of tuning B on the runtime
of the embedding, as well as the link prediction AUCROC scores. Figures 5.7
and 5.8 demonstrate the effect of increasing B on the link prediction scores and the
runtime of embedding, respectively. We can see a consistent trend of the batch size
being inversely proportional to the runtime of embedding, while either maintaining
AUCROC scores or degrading them slightly. On average, moving from B = 1 to
B = 5 improves runtime by 58%, while only degrading the AUCROC score by less
than 1%. The improvement in runtime is natural since there will be a 5-fold decrease
in rounds, which equals to a 5-fold decrease in the number of memory copy operations
and kernel calls (despite the amount of embedding work not changing). These copy
operations are of larger chunks of memory since sample pools become larger as
B increases, but the effect is drastic nonetheless. The degradation in AUCROC,
despite being almost negligible for some graphs, is expected. Increasing B means
that more embedding updates are happening in isolation from the rest of the graph.
To elaborate, when updates are happening in kernel Ki,j , the vertices in this kernel
will only be affected by updates to the small subset of the graph composed of Vi

and Vj . Moving from B = 5 to B = 9 improves the runtime by a mere 2% while
degrading the AUCROC score by around 2%, and in the case of twitter, by almost
5%. Unlike the aforementioned jump from B = 1 to B = 5, going from B = 5 to
B = 9 does not decrease the number of rounds by a large amount - when running
100 epochs, this amounts to reducing the number of rounds from 20 rounds to 11
rounds.

Figure 5.7 Effect of B on link prediction AUCROC scores for the large-scale
graphs in Table 5.1. The data plotted in these line charts are from Table 5.4.
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Figure 5.8 Effect of B on the embedding runtime of the large-scale graphs in
Table 5.1. These plots use the data in Table 5.4.

5.1.5 Sampling time analysis

Sampling is a key part of the embedding procedure we propose in this work. We
use teams of threads to carry out the embedding and ensure that their work is
parallelized. We have two different levels of parallelism in the sampling work. a) we
sample into multiple sample pools concurrently, and b) we utilize multiple threads
to carry out the sampling procedure into a single sample pool.

Figure 5.9 shows, for all the large-scale graphs in Table 5.1, the speedup acquired
from increasing the number of sampling threads after averaging the sampling time
of more than 15,000 sample pools. It can be seen that the parallelism of sampling
produces major speedups for all four graphs. However, soc-sinaweibo does not
benefit from a greater number of threads as much as the other three; at 16 threads,
soc-sinaweibo gains a speedup of 6.61×, while the other three gain > 8×. We
believe that this due to the different structure of the graph itself. To elaborate, we
plot in Figure 5.10 histograms of the number of samples that are generated in a
single pool for all four graphs. Unlike the other three graphs, soc-sinaweibo has
a very high amount of sample pools with very few samples. In fact, 55% of sample
pools have < 1000 samples in them. We think that since the sampling time of most
pools is very small, the overhead of using additional threads becomes a bigger part
of the sampling time.

Figure 5.11 compares the performance gain achieved by increasing the number of
54



Figure 5.9 Sampling time as the number of sampling threads increases. Left:
speedup acquired from increasing the number of sampling threads that are

sampling into a single pool. Baseline is the time taken by a single thread. Right:
the average time of sampling into sampling pools. Experiments were run with

C = 1 and B = 5.

Figure 5.10 The frequency of different numbers of samples that are generated per
sample pools modeled as histograms for the large-scale graphs in Table 5.1
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sampling threads for a single concurrent sampler, and the one gained by increasing
the number of concurrent samplers while giving each a single thread. The leftmost
column shows the result of running 1 to 8 concurrent samplers with a matching
number of threads, such that every concurrent sampler uses a single thread for sam-
pling. The second column shows the result of running a single concurrent sampler,
but increasing its team of threads linearly from 1 to 8. The third column is a super-
imposition of the two figures. For the graphs com-friendster and hyperlink2012,
we can see that the effect of increasing the number of threads is almost identical;
whether more threads were dispatched to sample a single pool, or threads were
spread out to sample into multiple sample pools, a steady speedup in embedding
is seen until a certain cut-off. At that point, the bottleneck of embedding is no
longer the sampling. This trend can be seen in twitter as well, but the values are
less stable and the trend is weaker. However, soc-sinaweibo shows a very pecu-
liar behavior. It seems that using more threads in a single concurrent sampler is
more important than spreading out the work into more samplers. This result can
be explained by examining the histogram in Figure 5.12 which depicts the frequen-
cies of sampling times of sample pools of the four large-scale graphs in Table 5.1
using B = 5. We notice that soc-sinaweibo’s sample times are very dispersed, with
more than 90% of the pools being sampled into in less than 0.2 seconds, while a
small portion takes more than twice that amount. We believe that this disparity in
sampling times results in the difference between the effectiveness of increasing con-
current samplers versus increasing sampling threads per concurrent sampler that we
see in Figure 5.11. To elaborate, this phenomenon happens because the highly-dense
sample pools, which are only sampled using a single thread, are not being sampled
fast enough and are holding back the embedding from progressing forward. For
example, let’s assume that sample pool Sh

4,0,0 is highly dense, and requires a long
amount of time to be sampled. While it is being sampled by a single thread, the
following three sample pools, Sh

4,1,0 Sh
4,2,0, and Sh

4,3,0 are smaller and have already
finished sampling. When the sample copy task node of Sh

4,0,0 is running, it will not
terminate until Sh

4,0,0 has been populated. Since successive sample pool tasks are
dependent, this will prevent the following two sample pools from being copied to the
GPU despite being full and ready to execute. This way, the sample pool S4,0,0 hin-
dered the progress of the entire embedding. That is why we recommend users with
scarce thread resources to use more sampling threads and less concurrent samplers,
so as to avoid this effect.
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Figure 5.11 The figure depicts the distribution of sampling threads over multiple
concurrent pool sampling tasks versus using more threads to sample into a single
pool. All experiments were run using e= 20, PGP U = 3, SGP U = 4, and B = 5. The
leftmost column depicts increasing the number of concurrent samplers one-to-one
with the number threads so that every concurrent sampler receives a single thread.

The middle column shows experiments that were run with a single concurrent
sampler, but with an increasing number of threads, which means that all the

threads in the pool will work on a single sample pool. The rightmost column is a
superimposition of the graphs in the other two columns.

Figure 5.12 The frequencies of the time taken to sample pools using a single thread
and B = 5.
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5.2 Embedding Quality

This section examines Gosh in terms of its ability to produce high-quality embed-
dings in terms of their link prediction quality as well as its speed of embedding.

Baseline algorithms and tools: We evaluate the performance of the proposed
embedding algorithm by comparing its runtime and embedding results to these
state-of-the-art embedding algorithms.

• Verse: a multi-core graph embedding algorithm (Tsitsulin et al., 2018) which
employs the similarity measure-based sampling procedure we use in our tool.
In our experiments, we use the PPR (Page et al., 1999) similarity measure for
sampling as recommended by the authors for the best results. We run Verse
with three different epoch values, e= 600,1000 and e= 1400m and use the run
with the best AUCROC for each experiment. In addition, we set the learning
rate to lr = 0.0025.

• Graphvite: the state-of-the-art multi-GPU graph embedding algorithm at
the time this work was published. Graphvite can use a variety of underly-
ing sampling schemas including LINE (Tang et al., 2015), DeepWalk (Perozzi
et al., 2014), and Node2Vec (Grover & Leskovec, 2016). Graphvite, however,
suffers from a memory limitation that prevents it from embedding graphs
whose memory requirement surpasses that of the GPU. That is why we were
not able to use it to embed the large-scale graphs in Table 5.1. In the experi-
ments in this section, we use two different configurations for Graphvite. A
slow configuration with 600 epochs and a fast configuration with 1000 epochs.
We found that Graphvite’s AUCROC scores saturate at 1000 epochs and
running more epochs does not benefit the AUCROC scores while reducing the
runtime. We use LINE as the base embedding method and leave the remaining
hyper-parameters to their default values.

• Mile: a coarsening based approach to embedding that iteratively coarsens
graphs, embeds the final level, and projects the embedding to the original
graph using a deep-learning-based approach. We set the base embedding
method to DeepWall and the refinement method to MD-GCN. We also
set the number of levels of coarsening levels to 8 and the learning rate to its
default of lr = 0.001. It should be noted that Mile does not allow for the
number of embedding epochs to be configured.

For Gosh, we use three different embedding configurations which we call fast, nor-
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mal, and slow. These configurations are shown in Table 5.5. The parameter p in
the table describes the smoothing ration in Gosh, which controls how the number
of embedding epochs is distributed across coarsening levels, with smaller smoothing
ratios resulting in more work assigned to coarser levels compared to higher values
of p, resulting in faster but less fine-tuned embedding. Along with the variation
in p across configurations, we vary the number of epochs and the learning rate. It
should be pointed out that we use different epoch counts for medium- and large-
scale graphs. We reduce the number of epochs for larger graphs as we found it
experimentally sufficient to acquire satisfactory AUCROC scores. We use a fourth
configuration option for Gosh: Gosh-no-Coarse. This version does not do any
coarsening on the graph and embeds the original graph directly.

In the following experiments, we modify the definition of a single epoch of work
during the embedding of the graph G= (V,E) to become the execution of |E| pos-
itive samples. This is to match the definition of Graphvite for fairness in our
experiments.

Table 5.5 Configurations of Gosh used in the experiments in Section 5.2. The
three configurations vary in the amount of work they do during embedding and

demonstrate the flexibility of Gosh.

Configuration p lr enormal elarge

Fast 0.1 0.050 600 100
Normal 0.3 0.035 1000 200
Slow 0.5 0.025 1400 300
No coarsening - 0.045 1000 200

5.2.1 Experiments on Embedding Quality

Table 5.6 shows the results of embedding the large-scale graphs in Table 5.1, and
Tables 5.7 and 5.8 show the results of embedding the medium-scale graphs. In the
aforementioned tables, we show the speedup achieved by each model as compared
to Verse. All large-scale graphs use the large-graph embedding schema proposed
in this work to embed one to three of the coarsening levels that Gosh produces. For
example, the first three coarsening levels for the graph com-friendster do not fit in
the GPU (require more than 12GB of memory to store the embedding matrix and the
graph information). It is important to note that the Gosh-NoCoarse configuration
in Table 5.6 is different from that of the medium-scale graphs tables (Tables 5.7
and 5.8). We only used e = 10 and a learning rate of 0.04. This is because we
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found that very few epochs are needed when training such large-scale graphs since
the number of samples executed pre epoch is |E| × e. The graph with the least
amount of edges, soc-sinaweibo, would execute more than 2.6 billion samples in
ten epochs.

None of the four large-scale graphs were embedded with Graphvite since neither
of our servers was equipped with GPUs that had sufficient memory capabilities to
embed these large scale graphs. However, Zhu et al. (2019) report that Graphvite
embeds hyperlink2012 in 5.36 hours using four Tesla P100 GPUs and achieves
94.3% link prediction AUCROC. Gosh-NoCoarse, meanwhile, can achieve an AU-
CROC of 98.44% after only 5 minutes of embedding, producing a speedup of 62.91×.
In addition, they report that Graphvite embeds the graph com-friendster in 20.3
hours on the same setup mentioned earlier. Gosh-NoCoarse, on the other hand,
embeds the same graph in 17 minutes, which amounts to a speedup of 67.51× that
of Graphvite. The graph com-friendster was not assessed in terms of AUCROC
in Zhu et al. (2019), and so we could not compare the embedding qualities for this
graph.

Mile could not finish any embedding jobs due to timing out during the execution.
Verse timed out for three out of the four large-scale graphs. It finished execu-
tion successfully on soc-sinaweibo and it was able to surpass the AUCROC score
of Gosh-NoCoarse by 0.03%. However, Gosh-NoCoarse is 127.33× faster than
Verse.

5.2.1.1 Medium-scale graphs

Table 5.7 and 5.8 show the results of embedding the medium-scale graphs in Ta-
ble 5.1. These tables show the effectiveness of the embedding algorithm proposed
in Section 3.2, specifically, the results of the configuration Gosh-NoCoarse demon-
strate that even without any coarsening, the parallelism optimizations we introduce
in Section 3.2.1 produce noticeable speedups while maintaining the accuracy of the
embedding. On average, Gosh-NoCoarse is 15.64× faster than the multi-core CPU
implementation of Verse. These results demonstrate the power of coarsening and
its potential as an accelerator for graph embedding, even compared to Graphvite,
the state-of-the-art GPU graph embedding algorithm. Looking at tables 5.7 and 5.8,
we make the following observations:
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• Gosh can carry out extremely fast embeddings with high accuracy using the
Gosh-fast configuration. The speedup it can achieve over Verse is up to
three orders of magnitude, and its resultant accuracies do not show a loss of
more than 2% (1.64% on average). In addition, it is on average 23.44× faster
than Graphvite, the state-of-the-art GPU embedding algorithm. Also, it
surpasses Mile in both accuracy and runtime.

• The flexibility that Gosh possesses in terms of the trade-off between speed and
accuracy is clear with its normal and slow configurations. The gap between
Verse and Gosh in terms of the AUCROC score goes from 1.64% to 0.76%
when using Gosh-normal, and from 0.76% to 0.24% when using Gosh-slow.
All the while maintaining its edge in embedding speed over Verse, and Mile.

• We find that, compared to Gosh-slow, Graphvite is able to produce em-
beddings at comparable speeds. However, when comparing the best results
of Gosh and Graphvite on each graph, we find that Gosh surpasses
Graphvite in 4/8 graphs, and is, on average, 5.2× faster than Graphvite.
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Table 5.6 Link prediction results on large graphs. Every data point is the average
of 6 experiments. Graphvite and Mile fail to embed any of the graphs due to
excessive memory usage or an execution time larger than 12 hours. τ = 16 threads
used for both Verse and Mile. These experiments were executed on the Nebula
server. In this table, the Gosh-NoCoarse row was run with fewer epochs than the

other runs and with the learning rate lr = 0.04 as it converges to very high
AUCROC scores very early on.

AUC
Graph Algorithm Time (s) Speedup ROC (%)

hyperlink2012

Verse Timeout - -
Gosh-fast 201.02 - 87.60
Gosh-normal 724.09 - 97.20
Gosh-slow 1676.93 - 98.00
Gosh-NoCoarse (e= 10) 306.71 - 98.44

soc-sinaweibo

Verse 20397.79 1.00× 99.89
Gosh-fast 48.88 417.30× 70.27
Gosh-normal 352.86 57.81× 97.00
Gosh-slow 759.85 26.84× 99.37
Gosh-NoCoarse (e= 10) 160.28 127.26× 99.86

twitter_rv

Verse Timeout - -
Gosh-fast 261.08 - 91.78
Gosh-normal 994.46 - 97.36
Gosh-slow 2128.70 - 98.50
Gosh-NoCoarse (e= 10) 740.22 - 98.27

com-friendster

Verse Timeout - -
Gosh-fast 680.33 - 85.17
Gosh-normal 2720.82 - 93.40
Gosh-slow 5000.96 - 94.98
Gosh-NoCoarse (e= 10) 1068.16 - 97.84
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Table 5.7 Link prediction results on medium-scale graphs. Every data-point is the
average of 15 results. Verse and Gosh uses τ = 16 threads. Mile is a sequential
tool. Both Graphvite and Gosh use the same GPU. The speedup values are
computed based on the execution time of Verse. These experiments were

performed on Nebula.

Graph Algorithm Time (s) Speedup AUCROC(%)

com-dblp

Verse 247.99 1.00× 97.82
Mile 136.65 1.81× 97.65
Graphvite-fast 13.97 17.70× 97.80
Graphvite-slow 19.93 12.40× 98.08
Gosh-fast 0.72 344.43× 96.45
Gosh-normal 2.08 119.23× 97.38
Gosh-slow 3.84 64.58× 97.63
Gosh-NoCoarse 29.97 8.27× 93.31

com-lj

Verse 12502.72 1.00× 98.86
Mile 3948.62 3.17× 80.19
Graphvite-fast 373.58 33.47× 98.04
Graphvite-slow 644.43 19.40× 98.33
Gosh-fast 16.27 768.45× 96.82
Gosh-normal 55.01 227.28× 98.33
Gosh-slow 153.72 81.33× 98.46
Gosh-NoCoarse 675.25 18.52× 98.32

wiki-
topcats

Verse 8709.48 1.00× 99.31
Mile 4953.68 1.76× 86.04
Graphvite-fast 310.47 28.05× 96.42
Graphvite-slow 544.06 16.01× 96.28
Gosh-fast 11.34 768.03× 98.13
Gosh-normal 40.76 213.68× 98.33
Gosh-slow 93.86 92.79× 98.50
Gosh-NoCoarse 549.65 15.85× 98.51

soc-pokec

Verse 9182.53 1.00× 98.32
Mile 2848.78 3.22× 85.75
Graphvite-fast 370.73 24.77× 97.42
Graphvite-slow 607.07 15.13× 97.37
Gosh-fast 16.34 561.97× 96.34
Gosh-normal 54.66 167.99× 96.49
Gosh-slow 131.06 70.06× 96.67
Gosh-NoCoarse 598.95 15.33× 97.28
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Table 5.8 A continuation of Table 5.7.

com-amazon

Verse 216.18 1.00× 97.71
Mile 146.29 1.48× 98.14
Graphvite-fast 12.45 17.36× 97.40
Graphvite-slow 16.84 12.83× 97.82
Gosh-fast 0.69 313.30× 97.20
Gosh-normal 1.88 114.99× 98.29
Gosh-slow 3.59 60.22× 98.43
Gosh-NoCoarse 24.60 8.79× 90.13

com-orkut

Verse 45994.93 1.00× 98.65
Mile 11904.31 3.86× 90.38
Graphvite-fast 1246.38 36.90× 98.02
Graphvite-slow 2199.25 20.91× 98.05
Gosh-fast 43.30 1062.24× 97.35
Gosh-normal 185.12 248.46× 97.63
Gosh-slow 487.33 94.38× 97.69
Gosh-NoCoarse 2301.89 19.98× 97.64

youtube

Verse 1365.36 1.00× 98.04
Mile 1328.62 1.03× 94.17
Graphvite-fast 63.90 21.37× 97.07
Graphvite-slow 104.76 13.03× 97.45
Gosh-fast 2.76 494.70× 96.16
Gosh-normal 7.15 190.96× 97.78
Gosh-slow 15.32 89.12× 97.93
Gosh-NoCoarse 158.60 8.61× 97.16

soc-
LiveJournal

Verse 14965.76 1.00× 97.61
Mile 6210.58 2.41× 80.84
Graphvite-fast 745.33 20.08× 99.23
Graphvite-slow 1209.95 12.37× 99.31
Gosh-fast 29.74 503.22× 98.58
Gosh-normal 112.72 132.77× 98.87
Gosh-slow 183.64 81.50× 98.76
Gosh-NoCoarse 1348.74 11.10× 98.88
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6. CONCLUSION

In this thesis, we presented a graph embedding algorithm that utilizes a single GPU
to embed very large graphs while bypassing the GPUs memory limitation. The
algorithm uses a sampling-based approach of embedding adopted from (Tsitsulin
et al., 2018) that allows the use of any similarity measure, providing additional
generalizability to the presented algorithm. The GPU embedding kernel used utilizes
the GPU’s architecture to provide fast and accurate embeddings.

Overcoming the memory limitations of the GPU is achieved by partitioning the
embedding matrix into smaller sub-matrices and moving them to and back from
the GPU to carry out embedding updates. This allows utilizing the accelerating
capabilities of the scarce resource that is GPUs.

Sampling is carried out on the CPU and samples are sent to the GPU as they become
needed without needing any global synchronization; sampling is done on the CPU
in parallel with the GPU embedding, minimizing the idle time on the GPU that
could result from waiting for samples.

We presented the Directed Acyclic Graph (DAG) execution model used to carry
out the embedding. This model abstracts the embedding into smaller tasks, and
is carefully designed with an execution graph in which a task does not synchronize
with any work on the CPU or the GPU unless it is directly dependant on it.

We provided analytics of the algorithm and the sensitivity to the parameters demon-
strated by the algorithm with regards to some of its key elements. We also present
the embedding accuracy results of Gosh, which is a tool built with the algorithm
presented in this work. We find our algorithm can achieve high AUCROC scores of
large-scale graphs with millions of vertice and billions of edges in a fraction of the
time. Using our algorithm the com-friendster which has 60 million vertices and
over one billion edges is embedded in 17 minutes and an AUCROC score of 97.84%
was achieved.
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6.1 Future work

We plan to add multi-GPU capabilities to the algorithm and exploit the DAG struc-
ture to provide global-synchronization free embedding for the GPUs. In addition,
we find from our experiments in Chapter 5 that the bottleneck of execution is the
copy of sub-matrices. That is why we are considering different methods to reduce
the number of sub-matrix copies, such as keeping the most updated vertices’ em-
beddings on the GPU.
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