
Localization and Estimation of Bending and
Twisting Loads Using Neural Networks

Diyar Khalis Bilal, Mustafa Unel, Mehmet Yildiz, Bahattin Koc
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
{diyarbilal, munel, meyildiz, bahattinkoc}@sabanciuniv.edu

Abstract—In this paper a neural network based modeling
approach is proposed for localization and estimation of loads
acting on aircraft wings from full field depth measurements.
These measurements can be provided by a multitude of sensors
such as depth cameras. Depth cameras have many advantages
over other intensity sensors in that they can work in low light
conditions and they are invariant to texture and color changes.
First, an autoencoder is proposed to extract maximum informa-
tive data from the depth images and encode them at a much
smaller dimension. Next, to develop the models for localization
and estimation of loads, supervised multinomial classification and
logistic regression networks are proposed, where the encoded
depth features are utilized as input in both networks. The
performance of the proposed method is validated on a composite
wing subject to concentrated and distributed loads, during which
the proposed methods for localization and estimation of loads
achieved very high accuracies of 94.3% and 92.7%, respectively.

Index Terms—Structural Health Monitoring, Load Localiza-
tion, Load Estimation, Depth Sensor, Artificial Neural Networks

I. INTRODUCTION

One of the major application areas of Structural Health
Monitoring (SHM) are aircraft industries due to the operation
nature of airplanes. Aircraft wings are structures designed to
be the main source of lift generation and they are subject
to almost all of the external loads acting on an aircraft.
Therefore, the wings are designed to withstand different kinds
of external loads through analytical models, but these models
are prone to errors due to inaccuracies in the prediction of
actual deflections occurring during flight. Therefore, a SHM
system for monitoring of loads is vital for these structures to
ensure safe operation and to increase their service life.

Current systems for structural health monitoring of aircraft
wings utilize strain gauges [1], [2], optical measurement
systems [3]–[7] and fiber brag grating (FBG) [8]–[11] sensors.

The SHM systems based on strain gauges are widely used
for measuring wing deflections both in literature and in the
industry due to their proven high measurement accuracies
[1], [2]. However, external temperature variations easily affect
them, and they can be easily damaged by physical scratches
or cuts. Moreover, if one needs to monitor the whole wing a
large number of them must be installed due to their small size.

As for monitoring of loads acting on aircraft wings and
measurement of their deflections, many optical SHM systems
were proposed in literature. The theoretical foundations of

video grammetric model deflection (VMD) measurement was
proposed by Burner et al. [3], which was used in wind tunnel
testing by National Aeronautics and Space Administration
(NASA) [4]. Many works in literature for wing deflection
monitoring were motivated by the crash of the unmanned aerial
vehicle (UAV) Helios [5], [6]. In the work by Lizotte et al. [7],
wing deflection measurements were utilized for estimation of
loads acting on aircraft wings. In their work, the deflections
were measured through infrared LEDs installed on the wings.
However, a many LEDs need to be installed in order to cover
the whole wing.

As for the usage of FBGs, Richards et al. [8] proposed a
realtime system for in flight wing deflection measurements
based on FBGs for Ikhana and Global Observer UAVs. More-
over, Alvarenga et al. [9] also utilized FBGs for realtime wing
deflection measurements on lightweight UAVs. Moreover,
Ciminello et al. [10] proposed a method for in flight shape
monitoring in which a network of FBG sensors were utilized
for chord wise strain distribution measurements. Additionally,
FBG sensors were utilized in the work by Nicolas et al.
[11] for estimating the out of plane loads as well as the
shape of the wing deflection. In their work, concentrated and
distributed loads were applied on the wings to simulate in
flight loading conditions. Their estimated out of plane loads
and displacements were withing 4.2% of the ground truth
data measured by strain gauges. Granted that FBGs have
advantages over conventional sensors used in SHM systems,
external temperature variations easily affect them. Moreover,
due to their fragile nature their installation requires special
attention [12].

In general, It is observed that a model is used to study
the behavior of aircraft wing deflections under different types
of loads. However, obtaining physics based models for such
systems is hard due to system complexity and uncertainties.
This is especially the case when a lot of data is acquired
from various sensors, where the inherent sensor noise adds
more complexity to the system. In these cases data driven
modeling techniques have been found to be more effective
since all kinds of sensor errors, sensors noise and uncertainties
are already present in the acquired data [13]. One of the most
effective data driven modeling techniques has been proven to
be artificial neural networks (ANN)s [14]–[17].

In this work, an ANN based approach for localization
and estimation of loads acting on aircraft wings from depth



images is proposed. The proposed methodology is based on
the usage of full field depth measurements, therefore a single
depth camera capable of full field measurement is enough for
monitoring of a single wing. Moreover, depth cameras can
be used on all kinds of wings including composites due to
optical measurement nature of the sensor. Using the proposed
framework, the magnitude of both bending and twisting loads
causing wing deflections can be estimated and it is not limited
to pure pending as was the case in the work by Nicolas et al.
[11]. Moreover, the proposed method is also able to estimate
the location of the loads acting on the wing, thus making load
localization possible under both bending and twisting loading
conditions. Load localization can provide valuable information
about the nature of the loads acting on the aircraft wings during
flights. Therefore, one can improve the design of the wings
based on this new data.

The rest of the paper is structured as follows; In Section
II a neural networks based approach for monitoring of loads
from depth measurements is proposed. In Section III the
experimental setup and the conducted experiment is described.
The effectiveness of the proposed approach is validated by an
experimental study in Section IV, followed by the conclusion
in Section V.

II. AN ANN BASED METHODOLOGY FOR LOCALIZATION
AND ESTIMATION OF LOADS

This work proposes an ANN based modeling method for
localizing the loads acting on aircraft wings and estimating
their magnitude from depth images. To develop the model for
localization of loads, a supervised multinomial classification
network is proposed. As for estimation of the magnitude of
loads, a logistic regression network is proposed. Moreover,
to extract the most useful features from the depth images,
both of the proposed classification and regression networks
are preceded with an autoencoder. The proposed method is
explained in detail in the following subsections.

A. Data Reduction Using Autoencoders

In this work, an autencoder [18] network is proposed for
reducing the dimensionality of the input depth features and
to extract only the most informative data from them. This
is because working with depth sensors providing full field
measurements is computationally expensive due to the rich
but very large sizes of data provided by them. Autoencoders
provide an encoded representation of the input at a much
smaller dimension while retaining the most critical informa-
tion. Moreover, to avoid obtaining binary encoded data and
obtaining the maximum information from the input features,
Kullback-Leibler divergence (KLDiv) [19] is utilized in this
work. Kullback-Leibler divergence enforces the mean and/or
standard deviation of the encoded data to be some desired
values. Furthermore, logarithmic normalization is proposed to
be utilized at the input of the autoencoder to minimize the
possible large variance between the values of the input depth
measurements. The proposed autoencoder algorithm is given
as follows:

Y = Γ(< log(X),W1 > +B1) (1)

Z = Γ(< Y,W2 > +B2) (2)

KLDiv = αd log
αd

α
+ (1− αd) log

1− αd

1− α
(3)

CFAE =
1

N

N∑
i=1

(Xi − Zi)
2

+ βKLDiv (4)

where X is the input depth vector, Y is the output of the
encoder, Z is the output of the decoder, Γ is the activation
function, αd and α are the desired and actual mean and/or
standard deviation of the encoded data, respectively, W1 and
W2 are the weight matrices, B1 and B2 are the bias vectors,
CFAE is the autoencoder cost function to be minimized, and
< ·, · > is the dot product.

After the dimension of the input depth data is reduced and
maximum informative data is obtained using the proposed
autoencoder, supervised classification and regression networks
can then be utilized for localization and estimation of loads
from the encoded data as shown in Figure 1.

Fig. 1: The proposed framework for localization and estimation of loads using neural
networks.

B. Localization of Loads From Depth Images Using Neural
Networks

In this work, a supervised classification ANN is proposed
to localize the loads acting on aircraft wings. The input to
the proposed localization ANN is provided by the proposed
autoencoder in the form of an encoded depth image, which
is then used to estimate the location of load. To reduce the
effect of sensor noise on the generalization capability of the
proposed neural networks, standardization was performed on
the encoded depth features for each sample in the training set.
This way the input features were made to have zero mean
and unit standard deviation. The inputs of the test set were
standardized using the mean and standard deviation of the
training set. The formula used for standardization is given as
follows:

X̂i =
Xi −mean(Xj)

σ(Xj)
(5)



where Xi vector contains the encoded features in each sample,
Xj vector contains the features across the samples, X̂i vector
contains the standardized features for each sample and σ is
the standard deviation.

The standardized input was then fed into the proposed lo-
calization network composed of two hidden layers with ReLU
(Rectified Linear Unit) activation functions in both layers as
shown Figure 2. Two hidden layers with ReLU activation
functions were determined to be sufficient for localization of
bending and twisting loads from depth images. ReLU was
chosen to be used in the proposed classification network
instead of other activation functions such as tanh or sigmoid
due to its fast convergence.

Fig. 2: The proposed load localization ANN with 2 hidden layers and ReLU activation
functions.

The output of the second hidden layer was passed through
a sigmoid layer to change the arbitrary scores to a range of
probabilities ranging between zero and one. Sigmoid instead
of other activation functions was used in this layer due to the
possibility of loads acting on multiple sections of the wing
at the same time. Therefore, the output labels are independent
i.e. the output labels are not mutually exclusive and more than
one correct label exists in the output. The output labels of the
proposed classification network, which are the load positions,
were one hot encoded so as to convert categorical data into a
numeric one. The closeness between the true labels (T ) and
the output of the sigmoid layer is defined as cost function.
The cost function of the classification (CFCL) is defined as
the average of Cross Entropy Error Function (CEEF) over a
batch of multiple samples of size N and labels of size K as
follows:

CFCL =
1

N

N∑
i=1

K∑
j=1

Tij log(S(xij)) (6)

Moreover, both dropout and L2 regularization [20] were
utilized to prevent overfitting and to increase the generalization
capability of the proposed network. This way, the cost function
defined by Equation (6) was modified to include a new scalar
regularization value β due to L2 regularization. Therefore, the
final cost function FCFCL used in the localization ANN is
given by Equation (7). The metric used for calculating the
accuracy of localization predictions is given by Equation (8).
The proposed localization network was trained using Adam
[21] optimizer which updates the weights and biases so as to
minimize the defined cost function.

FCFCL = CFCL + β
∑
||Weights||2 (7)

AccuracyCL =

∑
(Y = Ŷ )

N
× 100 (8)

where Y is the ground truth, Ŷ is the prediction, and N is the
number of samples.

C. Estimation of Loads From Depth Images Using Neural
Networks

For estimation of the magnitude of loads acting on aircraft
wings a logistic regression ANN is proposed. The encoded
depth images are input to this network and it provides the
magnitude of the load as output. The output layer in this
network is a single node providing continuous type numeric
load and unlike the localization network there is no need
for the usage of sigmoid function in the outer layer. The
cost function for load estimation (CFE) is defined as the
sum of the squared difference between the ground truth loads
and the estimations by the proposed load estimation ANN as
given by Equation (9). Similar to the proposed localization
network, two hidden layers were determined to be enough
for successful estimation of loads. However, the activation
functions in this case were chosen as tanh and sigmoid for first
and second layers respectively. This network was also trained
using Adam [21] optimizer and the accuracy of predictions
[22], [23] for load estimation is calculated using Equation (10).
The proposed ANN for estimation of loads is shown in Figure
3.

CFE =
1

N

N∑
i=1

(Y − Ŷ )2 (9)

where Y is the ground truth, Ŷ is the prediction, and N is the
number of samples.

AccuracyE = (1− ||Y − Ŷ ||
||Y − Ȳ ||

)× 100 (10)

where Y is the ground truth, Ŷ is the prediction, and Ȳ is the
mean of the ground truth.

Fig. 3: The proposed ANN for estimation of loads with two hidden layers of tanh and
sigmoid activation functions, respectively.

III. EXPERIMENTAL SETUP AND DATA COLLECTION
PROCEDURE

A. Experimental Setup

To evaluate the performance of the proposed method for
localization and estimation of loads, a quad tilt-wing aircraft
[24] made of composites was used in the experiments. The



dimensions of this aircraft’s wing were 50×25 cm in length
and width, respectively. To ensure that no tilting was induced
when the loads were applied, the root side of the was fixed.
To experimentally mimic the wing deflections that may occur
during flights, ground tests were performed similar to the
works in the literature. In this experiment both bending and
twisting deflections were induced through the usage of cali-
brated loads in concentrated and distributed loading scenarios.
In the concentrated loading case, the loads were made to act on
eight different positions of the wing as shown in the left image
of Figure 4. As for the distributed loading scenario, the loads
were designed to be acting in between the aforementioned
eight positions, thus acting on multiple locations of the wing
at the same time. This is illustrated in the right image of
Figure 4 where thirteen loading positions exist in this case. The
magnitudes of the calibrated loads acting on these positions
were [2.45, 4.9, 7.35, 9.81, 12.26, 14.71] N. Therefore, in
the concentrated loading scenario six distinct loads were
made to act on eight different positions of the wing, which
resulted in forty eight loading configurations in this scenario.
In the distributed loading case, the same six calibrated loads
were made to act on thirteen different positions of the wing,
therefore seventy eight loading configurations exist in this
loading case. This resulted in application of 126 distinct
loading configurations in the conducted experiment.

To measure the wing deflections over its span from a single
full field measurement sensor, this work proposes utilization
of a depth camera. Depth cameras provide images containing
pixel wise depth information of the capture scene. A few of
the advantages of depth cameras are that they do not require
sophisticated camera calibration procedures, they directly pro-
vide X, Y, and Z information in the camera frame and unlike
conventional cameras they are invariant to color changes and
can work in low light conditions [25].

Fig. 4: Positions of concentrated (Left) and distributed (Right) loads (Green) acting on
the UAV wing.

The depth sensors to be used in this work was chosen
to be Microsoft Kinect V1 [26]. The geometric quality of
the depth data collected by Kinect V1 was evaluated by
Khoshelham et al. [27]. Based on the results of their analysis,
they recommended that the data should be collected at a
distance of 1 to 3 m from the sensor. Therefore, the Kinect V1
sensor in the experiments of this work was placed under the
aircraft’s wing at a distance of 1 m as shown in Figure 5. It
should be noted that, even though the proposed methodology is
evaluated on a relatively small aircraft, the same method can be
utilized for monitoring of loads acting on much larger aircraft
through the usage of depth cameras with larger field of view

such as MYNT EYE [28], Carnegie Robotics® MultiSense™
S21B [29] and Arcure Omega [30]. The depth camera was
not installed on the aircraft in the conducted experiment due
to the small size of the used aircraft. Nonetheless, they can
be installed on larger aircraft while paying attention to the
minimum working distance of the used depth camera. Depth
cameras can be installed in place of RGB cameras used in the
works by [3], [4], [7] but without the additional requirement
of installation of LEDs or markers on the wing.

Fig. 5: Experimental setup.

B. Data Collection Procedure

The data was collected similar to the other works in liter-
ature [1]–[3]. After the calibrated loads were applied at each
position shown in Figure 4, the depth images of the wing were
acquired for a set amount of samples. For instance, the smallest
calibrated load was applied on position 1 of the wing only and
then the data from the depth image was acquired. This was
repeated for all of the other load magnitudes and load locations
until data were acquired for all of the load configurations for
both concentrated and distributed loading scenarios. The depth
images provided by Microsoft Kinect V1 are shown in Figure
6. In this image each pixel value shows the actual measured
distance in mm. Due to the distance between the depth sensor
and the wing, the acquired images contained depth information
of the unnecessary surrounding area of the wing; therefore, the
original images with a resolution of 640 × 480 pixels were
cropped to include only the wing, which resulted in obtaining
a depth image of 247 × 166 pixels. It is worth noting that the
cropping of the image is unnecessary if the wing encompasses
the whole depth image. Moreover, to get rid of redundant depth
information in the acquired images, any depth values above
2000 mm were changed to zero as shown in the right image
of Figure 6.

Fig. 6: (Top) Acquired and (Bottom) Cropped depth image of the composite wing.



IV. DATASET CREATION AND EXPERIMENTAL RESULTS

A. Dataset Creation

A dataset of wing deflections due to bending and twisting
loads was constructed by following the procedure explained
in Section III.B. The Microsoft Kinect V1 was operating
@ 30 Hz during the collection of the data. First, the data
was collected when no load was acting on the wing. Then,
for concentrated and distributed loading scenarios the depth
images were acquired when 6 distinct load magnitudes were
being applied at 21 different positions of the wing. For the
training dataset, 100 depth images were acquired for each
distinct loading case resulting in 12700 samples. The same
procedure was performed for the test dataset but this time
30 depth images were acquired for each distinct loading case,
which resulted in 3810 samples in this dataset. The constructed
training and test datasets are given in Table I. To build and
test the proposed ANN models, TensorFlow [31] software was
used in this work. The models were developed on a computer
having an Intel Xeon 3.6 GHz twelve thread CPU with 16 GB
of RAM without a need for a dedicated GPU.

TABLE I: Training and test datasets
Samples per Load

per Position
Distinct Loads

per Position
Distinct

Positions
Total

Samples
No Load 100 (30) 1 1 100 (30)
Concentrated Loads 100 (30) 6 8 4800 (1440)
Distributed Loads 100 (30) 6 13 7800 (2340)
Training Dataset 100 — 22 12700
Test Dataset 30 — 22 3810
The ( ) show the number of samples in the test dataset.

B. Experimental Results and Discussions

1) Localization of Loads From Depth Images Using Neural
Networks: In this section, the performance of the proposed
framework for localization of loads is analyzed and discussed
in detail. First, to extract maximum informative data at a
much smaller scale from the depth images an autoencoder was
proposed in Section II.A. The proposed autoencoder was run
in series with the proposed localization network in order to de-
termine the smallest encoded data size required for successful
load localization. This way the accuracy of the localization
can be used as a measure of performance for the proposed
autoencoder. In the localization of concentrated loads, the
output positions were labeled 1 to 8 and in distributed loading
scenario the labels 9 to 21 were used. The no load condition
was labeled as 0. Thus, 22 distinct positions exist in the output
layer of the localization network. These 22 distinct labels were
one hot encoded using only nine classifiers in the output of
the classification network by choosing K to be 9 and P to
be 22. The first eight classifiers were used to one hot encode
the labels 1 to 21, and the ninth classifier was used for the no
load case.

The proposed autoencoder and classification ANN was
trained using the training dataset described in Section IV.A by
varying the size of the encoded data. Initially, the encoded data
size was set to have 400 features and then it was incremented
by 200 features multiple times until the loads were localized
successfully. Sigmoid was chosen as the activation function in
the proposed autoencoder. While the first and second hidden

layers of the localization network had neurons equal to 60%
and 30% of the encoded data size, respectively. The mean
and standard deviation of the encoded data were set to 0.5
and 0.2, respectively in Equation (3). The dropout ratio and
β coefficient for regularization were chosen to be 0.8 and
0.1, respectively. The learning rate was set to 0.0005 and the
number of iterations for training the proposed network was
set to 8000 for each encoded data size. The obtained results
are given in Table II. These results show that as the size of
encoded data increases, the variation between the training and
test accuracies decrease. Therefore, one can conclude that as
the encoded data size increases more distinctive features are
extracted from the depth images. As seen from these results,
by using an encoded image with 1200 features only, very
high accuracies of 96.4% and 94.3% can be obtained for
localization of loads when evaluated on the training and test
datasets, respectively.

TABLE II: Accuracy of the proposed localization ANN.

Encoded
Data Size CFAE

Layer 1
Neurons

Layer 2
Neurons

Training
AccuracyCL (%)

Test
AccuracyCL (%)

400 31.76 240 120 66.1 60.3
600 31.58 360 180 93.9 88.8
800 31.05 480 240 95.1 91.3
1000 29.98 600 300 96.2 93.6
1200 29.44 720 360 96.4 94.3

The predictions of the proposed localization ANN with 1200
encoded data size when evaluated on the test dataset are plotted
against the ground truth in Figure 7. Here, the no load case is
represented by the zero label, the concentrated load positions
are labeled 1 to 8, the distributed load positions are labeled
9 to 21 and the misclassified outputs not belonging to any of
the defined positions are labeled as 22. These results show
that the proposed localization ANN is capable of classifying
the positions of the applied loads causing various bending and
twisting deflections on the wing quite accurately. Moreover,
the proposed method is invariant to the type of the applied load
since it successfully localizes both concentrated and distributed
loads with a high accuracy of 94.3%.

Fig. 7: Position predictions based on the proposed localization ANN evaluated on the
test dataset.

2) Estimation of Loads From Depth Images Using Neural
Networks: Here, the proposed autoencoder and regression
network’s load estimation performance is evaluated on the test
dataset described in Section IV.A. The output of the proposed
regression ANN is a single continuous variable representing



the magnitude of both concentrated and distributed loads. The
proposed load estimation ANN is preceded with the same
autoencoder used in the localization ANN. Moreover, just like
the localization of loads, the estimation ANN is trained by
varying the size of the encoded data. The training of the
estimation network was performed for 30000 iterations for
each encoded data size. The obtained results are tabulated in
Table III. From these results it is observed that an encoded
image with 1200 features again is enough for obtaining very
high accuracies of 97.3% and 92.7% when evaluated on the
training and test datasets, respectively.

TABLE III: Accuracy of the proposed load estimation ANN.

Encoded
Data Size CFAE

Layer 1
Neurons

Layer 2
Neurons

Training
AccuracyE (%)

Test
AccuracyE (%)

400 31.76 240 120 93.9 83.1
600 31.58 360 180 96.0 88.3
800 31.05 480 240 96.7 90.8

1000 29.98 600 300 96.4 91.5
1200 29.44 720 360 97.3 92.7

The predictions by the proposed load estimation ANN with
1200 encoded data size are plotted against the ground truth
loads in Figure 8 when evaluated on the test dataset. From
these results it is seen that the load estimation ANN is able to
estimate the magnitude of both concentrated and distributed
loads acting on aircraft wings with a high accuracy of 92.7%.

Fig. 8: Load estimation based on the proposed ANN evaluated on test dataset.

As observed from the experimental results, the proposed
method can be used for localization and estimation of loads
acting on aircraft wings from depth images with very high
accuracies. This is valid for loads causing bending and twist-
ing deflections in both concentrated and distributed loading
scenarios. It is worth noting that the proposed method was
trained with loads causing elastic deflections and it will not
work with wings subject to permanent deflections unless it is
trained with it as well.

V. CONCLUSION

In this work an artificial neural network based load moni-
toring system for localization and estimation of bending and
twisting loads acting on aircraft wings from full field depth
measurements is proposed. First, an autoencoder network was
proposed to extract the critical information from the full field
depth measurements obtained from a depth camera and encode
it at a much smaller scale. Then, a supervised classification

network composed of two hidden layers with ReLU activa-
tion functions was proposed to localize the locations of the
loads from the encoded depth images. Moreover, a supervised
regression network composed of two hidden layers with tanh
and sigmoid activation functions was proposed for estimation
of the magnitude of loads from the encoded depth images.

The effectiveness of the proposed framework was validated
by an experimental study performed on a composite wing of
an UAV, in which both concentrated and distributed loads were
applied. The proposed ANN based approach for localization
and estimation of bending and twisting loads achieved ac-
curacies of 94.3% and 92.7%, respectively when evaluated
on a dataset containing both concentrated and distributed
loads. As shown, the proposed method enables localization
and estimation of loads acting on a wing of an aircraft with
remarkably high accuracies from a single depth camera.

In the near future, it is planned to extend the current study
to localize and estimate dynamic loads with comparison to
other state of the art methods.
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