Author Proof

q

Check for
updates

Multi-modal Multi-agent Path Finding
with Optimal Resource Utilization

Aysu Bogatarkanl, Esra Erdeml, Alexander Kleinerz,
and Volkan Patoglul(@)

! Faculty of Engineering and Natural Sciences, Sabanci University,
Istanbul, Turkey
{aysubogatarkan, esraerdem, vpatoglu}@sabanciuniv. edu
2 Robert Bosch GmbH, Corporate Research, Stuttgart, Germany
alexander. kleiner@de. bosch. com

Abstract. The multi-agent path finding (MAPF) problem is a combinatorial
search problem that aims at finding paths for multiple agents (e.g., robots) in an
environment (e.g., an autonomous warehouse) such that no two agents collide
with each other. We study a general version of MAPF, called mMAPF, that
involves further challenges, such as multi-modal transportation modes, a set of
waypoints to visit for each agent, and consumption of different types of
resources. We introduce a declarative method to solve mMAPF, using answer
set programming that provides a flexible formal framework to address all these
challenges while optimizing multiple objectives.

Keywords: Multi-agent Path Finding - Answer Set Programming - Declarative
problem solving - Autonomous warehouses

1 Introduction

Autonomous robot teams are increasingly deployed for industrial applications in
warehouses and production. Commonly tasks are within intralogistics in which the goal
of the team is to efficiently transport crates and pallets between stationary locations
such as packing stations and conveyer entry points. For example, in Amazon’s Kiva
system or Ali Baba’s smart warehouses, there exist multiple robots picking and
delivering relevant shelves with products to human workers so that orders can be
completed efficiently in time. While these systems heavily depend on engineered
infrastructures, i.e., warehouses build from scratch with movable shelves, a substan-
tially larger fraction of intralogistics problems are arising from scenarios with existing
infrastructure in which the aforementioned solutions generally do not apply. Challenges
for robots in conventional environments are robust methods for Simultaneous Local-
ization and Mapping (SLAM) and Multi-agent Path Finding (MAPF). Whereas lidar-
based approaches are successfully deployed for solving the SLAM problem today, only
inflexible baseline approaches have been deployed for MAPF so far.

MAPF problem aims to find a plan for multiple agents to reach their destinations in
a certain environment with static obstacles, subject to some constraints on the maxi-
mum or the total plan length. Every agent can be considered as a dynamic obstacle for

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020

L. Wang et al. (Eds.): AMP 2020, LNME, pp. 1-12, 2020.
https://doi.org/10.1007/978-3-030-46212-3_24

AQl1

Author Proof

2 A. Bogatarkan et al.

other agents. Therefore, obstacles and agents are leading to some constraints for the
executability of the plan: agents cannot pass through obstacles, and agents cannot
collide with each other. While single-agent shortest pathfinding can be solved in
polynomial time [7], MAPF (with constraints on the plan length) is an intractable
problem [19] due to the latter constraint that no two agents can be in the same location
at the same time.

MAPF has been investigated in Artificial Intelligence by utilizing various heuristic
search algorithms. Some of these studies address time efficiency and minimize the
maximum plan length of an agent. Some of them address energy efficiency and min-
imize the total sum of distance traveled by the agents. However, many realistic con-
ditions observed in warehouses have not been considered in these studies. For instance,
the robots’ battery levels change as they travel around, and it may be necessary for
them to be charged to complete their tasks. Furthermore, some parts of the warehouses,
for instance with human occupants or tight passages, may necessitate robots to move
slowly to ensure safety.

Along these lines, to handle more realistic autonomous warehouse scenarios, a
mathematical model general enough to handle multi-objective optimizations and multi-
modal transportation conditions is needed. Furthermore, the computational framework
is required to be flexible such that a large set of variations of MAPF problems can be
addressed.

Motivated by these challenges, we mathematically model a general version of
MAPF (called mMAPF — multi-modal MAPF with resources) as a rich graph problem
and introduce a flexible method to solve mMAPF declaratively.

Our method relies on the declarative programming paradigm Answer Set Pro-
gramming (ASP) [2, 3, 15, 17, 18]. By utilizing an expressive formal language and
efficient solver of ASP, our method can handle the following variations of MAPF:

e Multi-objective optimization: Our method can find priority-based optimal solu-
tions with respect to time optimization (the minimum plan length), energy opti-
mization (the sum of distances) and their combinations.

e Waypoints: Our method can handle scenarios where robots can visit several
locations (to pick and deliver different items) on their way to the goal. Note that the
determination of the order of items to be collected requires further decision making
while computing optimal solutions.

¢ Resource constraints: In addition to time constraints and total energy consump-
tion, our method also considers individual resource such as battery consumption of
each robot. As robots travel, their battery levels decrease. There exist charging
stations scattered around the warehouses such that robots can charge their batteries.
Therefore, while finding optimal solutions, our method also considers battery
consumption and the possibility of including charging stations in their itineraries.

e Multi-modal transportation: Our method considers different transportation
modes, for instance, for regions where robots should move slow or where they are
allowed to move fast, while computing optimal solutions.

Author Proof

Multi-modal Multi-agent Path Finding with Optimal Resource Utilization 3

In the following, once we define our mathematical model for mMAPF as a graph
problem, we describe how to solve mMAPF using ASP. We illustrate an application of
our method with an interesting scenario, emphasizing the advantages listed above.

2 Related Work

There are mainly two kinds of MAPF solvers: some of them use search-based problem
solving (mostly based on a variant of A* search), and some of them use declarative
problem solving.

For instance, Silver [21] introduces an incremental method where the paths of
agents are computed one by one with A* [13]; once a path is found for an agent, it is
considered as an obstacle for other agents. Luna and Bekris [16] propose to compute
the paths of agents independently, and then resolve the conflicts (i.e., when two agents
collide with each other) with respect to some push-and-swap rules (e.g., there should be
at least two free vertices in the graph). Chouhan and Niyogi [5, 6] propose a similar
solution where the paths are computed independently; but the conflicts are resolved
differently by assigning priorities to agents. Other search-based algorithms, like [8, 14,
24], also compute paths independently; in case a collision occurs, it is resolved by
replanning one of the conflicting agents’ route. Sharon et al. [20] propose a different
method that performs a search on a tree based on the conflicts between agents.

Declarative methods reduce MAPF to formal frameworks (e.g., ILP, SAT, ASP)
and use general problem solvers to find plans. Yu and Lavalle [25] model MAPF as a
network flow problem and use an ILP solver to optimize the makespan (the time when
the last robot reaches its goal) or the total distance traveled by all robots. Surynek et al.
[23, 24] reduce MAPF to SAT and use a SAT solver to optimize the makespan or the
sum of costs. Erdem et al. [9] model MAPF as a logic program and use an ASP solver
to optimize the makespan or the distance.

None of the earlier works is applicable to multi-modal transportation and considers
utilization of different resources. Our flexible method for mMAPF generalizes Erdem
et al.’s ASP-based solution for MAPF [9] by including different transportation modes
that allow priority-based optimization of multiple resource utilizations, and deciding
the order of waypoints/charging stations visited by the agents on their ways to the
goals.

3 mMAPF: Multi-modal MAPF with Optimal Resource
Utilization

mMAPF can be viewed as a generalization of MAPF to enable multiple transportation
modes and to take resource consumptions of the robots into account.

Let us first introduce some concepts and notation before we define mMAPF.

A traversal f of a path P = (wy,wa,...,wy) in a graph G, where every w; € V and
every (w;, w4 1) € E within some time ¢ € Z™, is an onto function that maps every
nonnegative integer less than or equal to 7 to a vertex in P or to intransit, such that, for
every w; and w;1; in P and for every x <t.

Author Proof

4 A. Bogatarkan et al.

o ifmode({w;,w; 1)) = normalandf(x) = wy,thenf(x+ 1) = wyorf(x+1) = w4 .
o if mode({w;,w;41)) =slow and f(x) =w, then f(x+1)=w;, or f(x+1) =
intransit and f(x+2) = wy ;1.

We denote by f(P) a traversal f of a path P (within time 7).

Let f; and f; be traversals of two different paths P; and P; by agents g; and g;
respectively, in a graph G within some time 7. We say that the traversals f; and f; do not
collide with each other within time ¢ if the following three cases hold:

Case 1. For every time x,x' <t such that f;(x) # intransit, fj(x') # intransit the fol-
lowing holds: if f;(x) = f;(x’) then x # x'. That is, if the same vertex is visited by agents
a; and a; then it should be visited at different times. Intuitively, no two agents can be at
the same location at the same time. The type of collisions eliminated in this case are
illustrated in Fig. 1.

Fig. 1. Case 1. A collision occurs when two agents are at the same location at the same time. In
this figure, either mode({wz, w3)) = normal and mode((w3,ws)) = normal, or mode({wz,w3)) =
slow and mode({ws3, w4)) = slow. In the former case, the collision occurs at time #, = 1, + 1, after
the agents start moving towards w3 at time #;. In the latter case, the collision occurs at time
t, =t + 2, after the agents start moving towards w3 at time #;.

Case 2. For every time x < such that mode((f;(x),fi(x+ 1))) = normal, the following
holds: if f;(x) = fi(x+ 1) then fj(x 4 1) # f;(x). That is, a normal edge cannot be visited
by agents a; and g; in reverse directions at the same time. Intuitively, no two agents can
swap their locations along a normal edge at the same time. The type of collisions
eliminated in this case are illustrated in Fig. 2.

W

Fig. 2. Case 2. A collision occurs when two agents in the left figure move along the normal edge
(wa,ws3) at time #; towards each other, as they try to swap their places as in the right.

Author Proof

Multi-modal Multi-agent Path Finding with Optimal Resource Utilization 5

Case 3. For every time O<x<t¢—2 and for every vertex u,v € V, such that
mode(u,v) = slow and f;(x) = u,fi(x +2) = v,

o if fi(x—1) = v and f;(x) = intransit, then f;(x + 1) # u; and
e if fi(x) = v, then fi(x+2) # u.

The first condition ensures that no two agents can swap their places along a slow edge
if one of them is already in transit. The second condition ensures that no two agents can
swap their places along a slow edge, if they are already located at the endpoints of the
slow edge. The collisions eliminated in these cases are illustrated in Figs. 3 and 4.

—_— -—
‘WI O ‘WZ ‘WI O .WI
t=t, t=t,+1

Fig. 3. Case3(a). A collision occurs when two agents try to swap their places along a slow edge
(wy,w2) and one of them is a bit ahead in transit.

—

OWI ‘wz ‘Wl ’WZ
t=t;+2

t=t,

Fig. 4. Case3(b). A collision occurs when two agents located at the endpoints of a slow edge
(wy,wy) try to swap their places.

Now we can define mMAPF as a computational problem, in terms of its input and
output, as shown in Fig. 5. Intuitively, graph G characterizes the warehouse where the
agents move around, set C describes where charging stations are located in the
warehouse, set S describe where agents can be located initially and in the end, set O
denotes the parts of the environment covered by the static obstacles, set M denotes
transportation modes, function mode denotes the parts of the corridors where the agents
should travel slowly or where they are allowed to go faster, positive integer n denotes
the number of agents, set A denotes the set of n agents, functions init and goal describe
initial locations and goal locations of agents, set B describes the battery levels, function
init_battery describes the initial battery levels of agents, set W, describes the set of
waypoints for each agent a;, and positive integer 7 is an upper bound on plan lengths.

Given these input, mMAPF asks for, for each agent a;, a path P; in G from init(a;)
to goal(a;), a traversal f; of this path within time u < 7, and a battery level function b;
showing how the agent’s battery level changes during the traversal. mMAPF ensures
about P; that all the waypoints W,; are visited by the agent a; without colliding any
static obstacles O. mMAPF ensures about f; that the agents do not collide with each
other while traversing their paths. mMAPF ensures about b; that the agents’ batteries
have sufficient amount of energy (by charging at stations C, when needed) so that the
agents can complete their plans.

Author Proof

6 A. Bogatarkan et al.

mMAPF is an intractable problem: unless P # NP, there does not exist a poly-
nomial time algorithm to solve this problem.

£mzf.graph G = (V, E), where V is the set of vertices and E is the set of edges,
— aset C' C V of charging nodes,
— aset S C V of station nodes,
— aset O CV of obstacles,
- aset M = {slow, normal} of edge modes,
— afunction mode : E — M,
- aset A={as,...,a,} of agents, (n>0),
— afunction init : A — S,
— afunction goal : A — S,
- aset B={1,..,mazBatteryLevel} of battery levels,
— afunction init_battery : A — B,
— aset W,; CV of waypoints for each agent a; € A,
— apositive integer 7 for maximum plan length.
Output: For every agent a; € A, for some positive integer u < T,
— apath P, = (w;1,...,w; n,) of length n; (n; <w),
e that the agent a; will follow to reach its goal location from its initial
location (i.e., w;,1=init(a;) and w; »,=goal(a;)),
e every waypoint w; € W, is included in the path P;,
e without colliding with any obstacles (i.e., wi; € V' \ O)
— atraversal f; of the path P; within time wu, such that
o for every other agent a; € A with a path P; and its traversal f; within u,
fi(Ps) and f;(P;) do not collide with each other.
— abattery level function b; : {1,2,...,u} — B where, for every z < u,
o if f;(x) € C, then b;(xz + 1) = maz(B),

Fig. 5. Problem definition

4 Solving MMAPF Using ASP

Answer Set Programming (ASP) [2, 3, 15, 17, 18] is a knowledge representation and
reasoning paradigm that is oriented towards combinatorial search problems as well as
knowledge-intensive applications. The idea of ASP is to represent a problem and
relevant knowledge as a “program” and to reason about the program by computing its
models (called “answer sets” [11, 12]). These models characterize solutions of the
problem, and can be computed by “ASP solvers” such as CLINGO [10].

We solve mMAPF using ASP by (i) representing it as a program in an ASP
language (in this case, the input language of the ASP solver CLINGO), (ii) using an
ASP solver (in this case, CLINGO) to find the answer sets for the program, and
(iii) extracting the solutions from the answer sets, if there is an answer set.

Let us describe how we represent mMAPF in the input language of CLINGO, so
that the interested readers can use it directly to experiment with it.

Author Proof

Multi-modal Multi-agent Path Finding with Optimal Resource Utilization 7

Describing the input and the output. In the following, suppose that t is the maximum
possible length for a plan (i.e., 7) and b is the maximum battery level (i.e., maxBat-
teryLevel). We represent the vertices of G by atoms of the form vertex (X) and
edges by atoms of the form edge (X, Y) . The agents can be located at vertices but also
may be in transit, so we define locations explicitly:

location(Y) :- vertex(Y).
location(intransit) .

The transportation modes are described by atoms of the forms mode (X,Y,n) or
mode (X, Y, s) for normal and slow modes of edges respectively. The vertices cov-
ered by static obstacles are described by atoms of the form obstacle (X). Agents are
described by atoms of the form agent (A) . The initial and goal vertices for each agent
are defined by atoms of the form init (&, X) and goal (A,Y) respectively. The
initial battery levels are described by atoms of the form init_battery (A, B).

We describe the output by atoms of the forms plan (A, T, X) (agent A is at location
X at time T) and batteryLevel (A, T, B) (agent A has battery level B at time T).

Generating the paths and their traversals. We generate plans of agents recursively.
Every agent A starts its plan at time step O at its initial location X.

plan(A,0,X) :- init(A,X), agent (A) .

Consider any agent A who visits location X at time T. Agent A can wait at its current
location X (if X denotes a vertex but not intransit) until the next time step T + 1:

{plan(A, T+ 1,X)}1 :- plan(A,T,X), vertex(X), time(T), T < t.

Alternatively, the agent can move to the adjacent vertex Y. Then agent A will be at Y at
the next time step, if X and Y have a normal edge between them.

{plan(A,T+1,Y)}1 :-plan(A,T,X), edge(X,Y), mode(X,Y,n),
time(T), T < t.

If there is a slow edge between X and Y, the agent moves to Y in two time steps: in the
first step, it becomes intransit state; in the second step, it becomes at Y.

{plan(A,T + 1,intransit)}1 :- plan(A,T,X), edge(X,Y),
mode (X,Y,s), time(T), T < t-1.

1{plan(A, T+ 2,Y): edge(X,Y), mode (X,Y,s)}1 :-
plan(A,T + 1,intransit), plan(A,T,X), time(T), T < t-1.

Validity of paths and their traversals. The paths generated recursively above should
satisfy the existence and uniqueness constraints: every agent should be at some location
at each time step; every agent cannot be at two different locations at the same time.

:- {plan(A,T,Y): location(Y)}0, agent (A), time(T).
:- 2{plan(A,T,Y): location(Y)}, agent (A), time(T).

Author Proof

8 A. Bogatarkan et al.

Note that these constraints ensure that there are not forks in a path and the path is
connected without any gaps.
Every agent should visit its goal as well as the waypoints.

:-goal(A,X), not visit(A,X).
:— waypoint (A, X), not visit (A, X).

Here visit (A, X) describes which vertices are visited by each agent.
visit(A,X) :-plan(A,T,X).

If there is an obstacle on vertex X, no agent visits it.
:-plan(A,T,X), obstacle(X), agent (A), time(T) .

Collision constraints. No two agents are at the same place at the same time, except
when they are both in transit.

:- plan(Al,T,X), plan(A2,T,X), agent (Al;A2), Al < A2,
X! = intransit.

This constraint eliminates the types of collisions described in Case 1 (Fig. 1).
Swapping is not allowed along a normal edge.

:-plan(2al,T,X), plan(Al, T+ 1,Y), plan(A2,T,Y), Al < A2,
plan(A2,T + 1,X), agent (Al;A2), mode(X,Y,n), T < t.

This constraint eliminates the types of collisions described in Case 2 (Fig. 2).
Swapping is not allowed along a slow edge, either. For that, we first define the
transition of an agent along a slow edge (X,Y) starting at time step T:

slow(A,T,X,Y) :-plan(A,T,X), plan(A,T + 1, intransit),
plan(A, T+ 2,Y), mode(X,Y,s), T< t-1.

Then, we ensure that swapping is not allowed on a slow edge.

:-—slow(Al,T,X,Y), slow(A2,T-1,Y,X), T>0, T< t-1, Al! =A2.
:-slow(Al,T,X,Y), slow(A2,T,Y,X), T< t-1, Al <A2.

These constraints eliminate the types of collisions described in Case 3 (Figs. 3—4).

Battery levels should remain positive. We define the battery level of an agent recur-
sively starting from its initial battery level.

batteryLevel (A,0,B) :- init_battery(A,B), agent (A).
At each step T, if the agent is not at a charging station, its battery level reduces by 1.

batteryLevel (A, T + 1,Bl1-1) :- batteryLevel (A,T,B1),
plan(A,T,X), not charging(X), agent (A), time(T), T < L,
planLength(A,L) .

Author Proof

Multi-modal Multi-agent Path Finding with Optimal Resource Utilization 9

If the agent is at a charging location, its battery level may quickly get to the maximum
level or the agent can move forward without charging its battery.

l{batteryLevel (A, T + 1,b); batteryLevel (A, T+ 1,B1-1)}1 :-
plan(A,T,X), batteryLevel (A,T,Bl), charging(X),
agent (A), time(T), T < L, planLength(A,L) .

Then we ensure that the battery level cannot be less than the minimum level 1.
:- batteryLevel (A, T,B), B< 1.

Optimizing the plan length. We identitfy, for each agent, when it reaches the goal (i.e.,
the time step L) ensuring that it visits all of its waypoints on the way.

planLength(A,L) :- #max{T: plan(A,T,X), goal (A,X)} =1,
agent (A) .
:-plan(A,T,X), waypoint (A,X), planLength(A,L), L<T.

Note that L denotes the plan length for each agent.
Then we identify the maximum of the plan lengths for all agents.

maxPlanLength (M) :- #max{T: planLength(A,T)} = M.
and ask CLINGO to minimize it by the following weak constraint:
: ~ maxPlanLength (M) . [M@1]

Further optimizations. We can ask CLINGO to minimize the total plan lengths to
reduce the total energy consumption:

: ~ planLength(A,L). [LEQ1l,A]
or we can also ask CLINGO to minimize the total number of charging the batteries:
: ~ batteryLevel (A,T,b). [1@1,A,T]

For multi-objective optimization, suppose that we want to minimize the maximum
plan length first since we want the tasks to be completed by a given time. Next, we
want to minimize the total energy consumption and ensure that robots do not wander
around redundantly. Finally, we want to ensure that robots charge their batteries only
when needed, by minimizing the number of times they charge. We can express these
multiple optimizations by setting the priorities of weak constraints accordingly.

Solving a problem instance using CLINGO. Once the input is described by a set of
facts, we can compute an answer set for the program above using the ASP solver
CLINGO. After that, we can extract the atoms of the forms plan (A, T,X) and
batteryLevel (A, T, B), to identify the traversals of agents and how their battery
levels change along the way. An example scenario is illustrated in the next section.

Author Proof

10 A. Bogatarkan et al.

5 An Example MMAPF Scenario

Let us illustrate how our method can be applied to solve an example mMAPF scenario,
illustrated in Fig. 6. In this example, the warehouse consists of three shelf units denoted
as obstacles (black cells). The charging stations are located at cells 24 and 27 high-
lighted by yellow, and the corridor where the agents should go slowly, covers cells 3-8
highlighted by red. There are two robots located at opposite corners of the warehouse.
Robot A1 start with an initial battery level of 10, while robot A2 has an initial battery
level of 8. The maximum battery level is set to 10. Each robot wants to collect some
items on its way (denoted by stars that match the color of the relevant robot) and to
deliver these items to the opposite corner of the warehouse. Therefore, eventually, they
want to swap their places.

Fig. 6. A mMAPF instance. Initially, robot A/ is located at cell 1 and robot A2 is located at cell
30. The goal of Al is to deliver some items to cell 30, while the goal of A2 is to deliver some
items to cell 1. Each robot’s waypoints are shown by stars with the same color as that robot.

A solution for this mMAPF instance is computed by CLINGO. Colored paths in
Fig. 7 denote paths followed by the robots. Note that each robot visits its waypoints on
the way to the goal. The traversals of these paths are shown in Table 1. The traversal of
each slow edge (e.g., A2 moving from cell 6 to 5) takes two time steps. The battery
levels of the robots are also shown in this table. The battery level decreases at each time
step, unless a robot is at a charging station. The battery level gets to its maximum when
robots decide to charge while at a charging station. For instance, A2’s battery level
increases to 10 when the charging station at cell 27 is visited.

Table 1. The table presents (i) the traversals of the blue and green paths shown in Fig. 7, by the
blue robot AI and the green robot A2, respectively, from time step O to 18, and (ii) how the
battery levels of these two robots change during these traversals.
Time 0112|314 5|6 |7 |8 |9 |10/11|12|13|14|15|16/|17|18
Al location| 1| 2| 3| t| 4|14|24/25(26(27|17|7 t| 8/ 9/10(/20(30 |-

Al battery (10| 9| 8| 7| 6| 5| 4| 3| 2| 1|/10(9 | 8| 7| 6| 5| 4| 3|-
A2 location [30|29 |28 |27 (17| 7 5| t|4 [14(24(23|22|21|11|1
A2 battery | 8| 7| 6| 5(10| 9| 8| 7| 6| 5| 4|3 | 2| 1|10| 9| 8| 7|6

Author Proof

Multi-modal Multi-agent Path Finding with Optimal Resource Utilization 11

Fig. 7. A solution for the mMAPF instance shown in Fig. 6. Al follows the blue path while A2
follows the green path to reach their goals, ensuring they collect items at their waypoints.

6 Conclusion

We introduced a general mathematical model for mMAPF problems as a rich graph
problem that allows different transportation modes for parts of the environment,
priority-based optimization of multiple resource utilizations, and agents to visit way-
points to pick/deliver some items on the way to the goal. Based on this model, we
introduced a method to declaratively solve mMAPF using the expressive formalism
and efficient solvers of ASP. The generality of our model and its declarativeness
provide a formal yet flexible framework to investigate alternative solutions in auton-
omous warehouses. Particularly the flexibility of our framework allows to tailor
solutions for highly diverse scenarios comprising various constraints, as they can arise
in industrial domains.

Based on the theoretical setup provided in this paper, we plan to extend our studies
with a comprehensive experimental evaluation to better understand the scalability of
our method, and by considering changes in the environment as investigated in our
earlier studies [1].

References

1. Bogatarkan, A., Patoglu, V., Erdem, E.: A declarative method for dynamic multiagent path
finding. In: Proceedings of the 5th Global Conference on Artificial Intelligence, pp. 54-67
(2019)

2. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. ACM
Commun. 54(12), 92-103 (2011)

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming: an introduction to the
special issue. AI Mag. 37(3), 5-6 (2016)

4. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive Datalog by constraints. IEEE

Trans. Knowl. Data Eng. 12(5), 845-860 (2000)

5. Chouhan, S.S., Niyogi, R.: DMAPP: a distributed multi-agent path planning algorithm. In:
Proceedings of AL pp. 123-135 (2015)

6. Chouhan, S.S., Niyogi, R.: DIMPP: a complete distributed algorithm for multi-agent path
planning. J. Exp. Theor. Artif. Intell. 29(6), 1129-1148 (2017)

Author Proof

12

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

A. Bogatarkan et al.

. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269—

271 (1959)

. Dresner, K.M., Stone, P.: A multiagent approach to autonomous intersection management.

J. Artif. Intell. Res. (JAIR) 31, 591-695 (2008)

. Erdem, E., Kisa, D.G., Oztok, U., Schueller, P.: A general formal framework for pathfinding

problems with multiple agents. In Proceedings of AAAI (2013)

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary
report. In Proceedings of ICLP (Technical Communications) (2014)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of International Logic Programming Conference and Symposium, pp. 1070—
1080 (1988)

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generat. Comput. 9, 365-385 (1991)

Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to “a formal basis for the heuristic
determination of minimum cost paths”. SIGART Newslett. 37, 28-29 (1972)

Jansen, R., Sturtevant, N.: A new approach to cooperative pathfinding. In: Proceedings of
AAMAS, pp. 1401-1404 (2008)

Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138, 39-54 (2002)
Luna, R., Bekris, K.E.: Efficient and complete centralized multi-robot path planning. In
Proceedings of IROS, pp. 3268-3275 (2011)

Marek, V., Truszczynski, M.: Stable models and an alternative logic programming paradigm.
In: The Logic Programming Paradigm: A 25-Year Perspective, pp. 375-398. Springer,
Heidelberg (1999)

Niemela, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell. 25, 241-273 (1999)

Ratner, D., Warmuth, M.K.: Finding a shortest solution for the n x n extension of the 15-
puzzle is intractable. In: Proceedings of AAAI pp. 168-172 (1986)

Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-
agent pathfinding. Artif. Intell. 219, 40-66 (2015)

Silver, D.: Cooperative pathfinding. In: Proceedings of AIIDE, pp. 117-122 (2005)
Simons, P., Niemelae, 1., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1), 181-234 (2002)

Surynek, P.: On propositional encodings of cooperative path-finding. In: Proceedings of
ICTAI pp. 524-531 (2012)

Surynek, P., Felner, A., Stern, R., Boyarski, E.: Efficient SAT approach to multiagent path
finding under the sum of costs objective. In: Proceedings of ECAI, pp. 810-818 (2016)
Wang, K.-H.C., Botea, A.: Fast and memory-efficient multi-agent pathfinding. In:
Proceedings of ICAPS, pp. 380-387 (2008)

Yu, J., LaValle, S.M.: Planning optimal paths for multiple robots on graphs. In: Proceedings
of ICRA, pp. 3612-3617 (2013)

