
ar
X

iv
:2

00
2.

00
00

4v
2 

 [
qu

an
t-

ph
] 

 6
 F

eb
 2

02
0

Optimal upper bound of entropic uncertainty

relation for mutually unbiased bases

Bilal Canturk∗,1 and Zafer Gedik1

1 Faculty of Engineering and Natural Sciences, Sabanci University
Tuzla, Istanbul 34956, Turkey

February 7, 2020

Abstract

We have obtained the optimal upper bound of entropic uncertainty relation for N Mutually
Unbiased Bases (MUBs). We have used the methods of variational calculus for the states
that can be written in terms of N MUBs. Our result is valid for any state when N is d+ 1,
where d is the dimension of the related system. We provide a quantitative criterion for the
extendibilty of MUBs. In addition, we have applied our result to the mutual information of
d+ 1 observables conditioned with a classical memory.

Keywords Entropic uncertainty relation · Mutually unbiased bases · Mutually coherent state · Extendibility
of MUBs

1 Introduction

One of the fundamental tasks in the quantum information theory is how to extract the complete information
of the density matrix of a system. For this purpose, an informationally complete set of measurement elements
with rank-1 is performed so that is a maximally efficient measurement. Mutually Unbiased Bases (MUBs)
[1] provide such a measurement. In addition to their importance in the vein of theoretical aspect [2], they
have found room in diverse application areas such as quantum error correction [3], quantum cryptography
[4], entanglement detection [5] and quantum state tomography [6, 1].

Uncertainty principle, however, puts a limit on obtaining information content of a quantum system. The
observables corresponding to MUBs cannot be determined exactly; the more information about one of such
observables is gained, the less information about the others is possible. This trade-off relation was first
presented in terms of deviations (σi) of the observables by Heisenberg [7] and later, improved further [8, 9].
The expression of uncertainty principle in terms of deviations was formulated either as the product of
the deviations or as the sum of them [10]. However, as firstly highlighted by Deutsch [11], this formula-
tion of uncertainty principle has some drawbacks; for example, lower bound of the uncertainty principle,
σA (|ψ〉)σB (|ψ〉) ≥ 1

2 | 〈ψ|[A,B] |ψ〉|, depends on the initial state, and thus, does not fix such that it can
vanish for some choices of |ψ〉, which do not have to be simultaneous eigenfunctions of the observables A and
B. In addition, deviation-based uncertainty relations do not capture in general the physical content of the
complementary aspect [12], and the spread of informational content [13], of the observables. Expressing un-
certainty in terms of entropies of observables was first set forth as a question by Everett [17]. It was answered
affirmatively in Ref.[14] such that the sum of entropies of position and momentum observables satisfies an
inequality. This entropic uncertainty relation was proved and improved respectively in Refs.[15, 16] for the
observables of having a continuous spectrum. The lower bound of the inequality is achieved when the state
of the system is a Gaussian wave-packet. The extension of entropic uncertainty relation to the observables in
a finite dimensional Hilbert space was first presented in Ref.[11], and improved later in Ref.[18]. We wish to
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highlight the importance of entropic uncertainty relation, which is that it does not have the aforementioned
drawbacks of the uncertainty based on deviations. Entropic uncertainty relation became a fundamental
instrument in quantum information theory, especially for entanglement detection [19, 20]. It puts a lower
bound on the summation of the entropies of two or more observables when they are measured. Formally, if
An and Am are two observables associated with a quantum system in Hilbert space Hd, with eigenvectors
sets {|nk〉} and {|ml〉} respectively, then the summation of their entropies has a lower bound [18],

H(An) +H(Am) ≥ − ln(c), c = max
k,l

(

|〈nk|ml〉|2
)

,

where H(An) := −∑k pnk ln(pnk) is Shannon entropy of the observable An. This inequality was extended
to the cases of when the system has some connection with its environment such as quantum memory [21].
Beside Shannon entropy, other entropies, such as minimum entropy, collision entropy, Tsallis entropy, Rényi
entropy, are also used according to their convenience to the relevant problem. A review of entropic uncertainty
relations and their applications can be found in Ref.[22]. In addition to entropic uncertainty relation, upper
bound of entropic uncertainty relation is another important concept which puts an upper bound on the
summation of the entropies of two or more observables which, henceforth, we abbreviate as entropic certainty
relation. While entropic uncertainty relation quantifies the lack of information, entropic certainty relation
is related with the correlation between the observables. Entropic certainty relation for the observables set
{An}N

n=1 is defined as
∑

n H(An) ≤ f . If such an upper bound is found then mutual information of the
observables, which measures the correlation between the observables,

I(An : Y ) := H(An) −H(An | Y )

can also be bounded, where Y is a classical (or quantum) memory given its access to the observer. In
addition, entropic certainty relation can also be used for searching the existence of more than three MUBs
especially when the dimension of the system is not a power of a prime number. The extendibility of MUBs
is one of the most important question in quantum information theory. We will return to this point in Sec.2.

We obtain optimal entropic certainty relation of the measurements performed by N MUBs for some density
matrix. Our method is based on the variational calculus with some conditions satisfied by the probability
distributions.

2 Optimal entropic certainty relation for MUBs

Two bases {|nk〉 , k = 1, 2, . . . , d} and {|ml〉 , l = 1, 2, . . . , d} of Hilbert space Hd, which may be considered
as eigenvectors of two observables An and Am respectively, are called mutually unbiased bases (MUBs) iff
|〈nk|ml〉|2 = 1/d, for any k, l and n 6= m. These observables, An and Am, are known as complementary,
or mutually exclusive, observables. If there is d + 1 MUBs then we reconstruct the density operator ρ of
a system by the aid of the outcomes of the measurement of the observables as ρ =

∑d+1,d

n=1,k=1 pnkΠnk − I,
where Πnk is the projection operator onto the eigenspace of the eigenvector |k〉 of the observable An, and
pnk (=tr(Πnkρ)) is the probability of obtaining the corresponding eigenvalue through measurement. The
relation between the elements of two MUBs can be then rewritten as tr(ΠnkΠml) = 1+(dδkl−1)δnm

d
. The set

of probability distributions {pnk, n = 1, 2, . . . , N ; k = 1, 2, . . . , d} of N MUBs obeys the algebraic relation,

N,d
∑

n=1,k=1

p2
nk ≤ tr

(

ρ2
)

+ 1, (1)

which was obtained in Refs.[23, 24] independently. Cn :=
∑d

k=1 p
2
nk is called the purity of the observable

An. Hence, the inequality in Eq.(1) is a restriction on the summation of the purities of N mutually exclusive
observables, and the equality is achieved when N is d+1. When the summation of entropies of N observables
is maximized, this restriction has to be taken into account. The optimization of this restriction on purities was
used in Ref.[25] in order to obtain lower and upper bounds of entropic uncertainty relation of N observables for
pure states. Optimal entropic certainty relation for N MUBs can be obtained if, additional to the summation
of probability to unity, the inequality (1) is considered in the maximization of the entropy-summation of
the observables. In Refs.[26, 27], author found entropic certainty relation for d + 1 MUBs, with the aid of
the assumption that the purities of the observables corresponding to MUBs are constant independently. We
first extend the equality in Eq.(1) to N MUBs for some density matrix, and then, take it as a condition
on the probability distributions; thus, in turn, the purities of the observables are considered dependent on
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each other. The intuitive reason behind our consideration can be seen from the following scenario. If one
assumes the probability distribution of an observable as {pn1 = 1, pn2 = pn3 = · · · = pnd = 0}, then the
probability distributions of the rest observables become equally likely as {ps1 = ps2 = · · · = psd = 1/d; s =
1, 2, . . . , n − 1, n+ 1, . . . , N}, which implies that the purities of the observables corresponding to N MUBs
are dependent on each other.

Proposition 1. Let {|nk〉 , k = 1, 2, . . . , d} be the orthonormal basis of the observable An in Hilbert space Hd.

Then, for the density matrices ρ =
∑N,d

n=1,k=1 λnk |nk〉〈nk|, the summation of the purities of N observables is
∑N

n=1 Cn :=
∑N,d

n=1,k=1 p
2
nk = tr

(

ρ2
)

+ N−1
d

.

Proof. When the dimension of the relevant system is a power of a prime number, the expression ρ =
∑N,d

n=1,k=1 λnk |nk〉〈nk| is valid for density matrices that can be expanded in terms of N mutual unbiased
bases such that 1 ≤ N ≤ d + 1, because in this case, there are d + 1 MUBs [1]. If the dimension is not a
power of a prime number then the expression given above for the density matrices is still valid at least when
1 ≤ N ≤ 3 since we know that there exist at least three MUBs in any finite dimensional Hilbert space [28].

Let us assume that ρ =
∑N,d

n=1,k=1 λnk |nk〉 〈nk| . Since tr(ρ) = 1 then
∑N,d

n=1,k=1 λnk = 1. Furthermore, the
trace of the square of density matrix leads to

tr
(

ρ2
)

=
∑

m,n,k,s

λnkλms

1 + (dδks − 1)δnm

d

=
1
d

+
∑

nk

λ2
nk − 1

d

∑

n,k,s

λnkλns,

(2)

and the probabilities are

pnk : = tr(Πnkρ)

= λnk +
1
d

∑

m,l

λml − 1
d

∑

l

λnl.
(3)

If we consider the probabilities {pnk} and the coefficients {λnk} as two column vectors p =
(p11, p12, . . . , p(N)d)T and λ = (λ11, λ12, ..., λ(N)d)T , then the relation between them can be written by means
of an Nd×Nd symmetric matrix T as p = Tλ. More explicitly,









...
pnk

...









=









Id D1 D2 . . . DN−1

D1 Id D2 . . . DN−1

...
. . .

D1 D2 . . . DN−1 Id

















...
λnk

...









, (4)

where Id is d×d identity matrix and the matrices {Di}N−1
i=1 are also d×d matrices such that their all entries

are 1
d
, that is

D1 = · · · = DN−1 = Dd =
1
d









1 1 . . . 1
1 1 . . . 1

...
1 1 . . . 1









. (5)

It is easily seen that D2
d = Dd. The matrix T is not invertible which implies that a particular distribution

p = (p11, p12, ..., p(N)d)T is not uniquely determined by the density matrix. The summation of the purities

of N complementary observables is equal to the square of the norm of p,
∑N

n=1 Cn =
∑N,d

n=1,k=1 p
2
nk = pT p,

where it reads

pT p = λ
T T2

λ

=
N

d
+
∑

n,k

λ2
nk − 1

d

∑

n,k,s

λnkλns

=
N

d
+ tr

(

ρ2
)

− 1
d

= tr
(

ρ2
)

+
N − 1
d

.

(6)
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Consequently, this equality of purities proves the aforementioned intuitive reasoning of the fact that purities
of the observables are dependent on each other. Therefore, the equality has to be taken into account when
maximized the summation of the entropies. We obtain the optimal entropic certainty relation for N MUBs
under the following conditions satisfied the probability distributions of the associated observables

d
∑

k=1

pnk = 1 (7)

N,d
∑

n=1,k=1

p2
nk = tr

(

ρ2
)

+
N − 1
d

, (8)

and under the assumption that the density matrix ρ can be expressed in terms of N MUBs under considera-
tion. For N = d+ 1, the density matrix is the general one and, in turn, our following results become true for
any density matrix. Henceforth, we will abbreviate the trace of the square of density matrix as Π := tr

(

ρ2
)

.
Our method is based on the variation of the function

S[{An}] :=
N
∑

n=1

H(An) = −
N,d
∑

n=1,k=1

pnk ln pnk,

where H(An) is Shannon entropy of the observable An. Maximization of the function S[{An}] under the
conditions given above is equivalent to the maximization of the following function

Ω({pnk}) := −
N,d
∑

n=1,k=1

pnk ln pnk

− λ(
N,d
∑

n=1,k=1

p2
nk − Π − N − 1

d
) − β(

d
∑

k=1

pnk − 1),

(9)

where λ and β are Lagrange multipliers. Variation of Ω-function reads

δΩ =
d
∑

k=1

(

−
N
∑

n=1

ln pnk − 2λ
N
∑

n=1

pnk − (β +N)

)

δpnk = 0,

so that the following equality must be satisfied for all pnk’s, where none of them can be zero,

N
∑

n=1

ln pnk + 2λ
N
∑

n=1

pnk + (β +N) = 0, k = 1, 2, . . . , d. (10)

Without losing generality, we choose the probabilities set {pnd = bn, pnk = tnkbn, k = 1, 2, . . . , d − 1;n =
1, 2, . . . , N}. Substituting these probabilities into Eq.(10), we obtain two equations

N
∑

n=1

ln bn + 2λ
N
∑

n=1

bn = −(β +N) for k = d, (11)

N
∑

n=1

ln tnk +
N
∑

n=1

ln bn + 2λ
N
∑

n=1

tnkbn = −(β +N) for k = 1, 2, . . . , d− 1. (12)

Substituting −(β +N) of Eq.(11) into Eq.(12), we obtain the following equality

∑N
n=1 ln tnk

∑N

n=1 (tnk − 1) bn

= −2λ; k = 1, 2, . . . , d− 1. (13)

The right hand side of Eq.(13) is a constant number for every k = 1, 2, . . . , d− 1, so that the parameter tnk

must be independent of index-k, that is, tn1 = tn2 = · · · = tn(d−1) = 1−bn

(d−1)bn

. Consequently, we obtain the

4
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probability distributions as {pnd = bn, pnk = 1−bn

d−1 , k = 1, 2, . . . , d − 1;n = 1, 2, . . . , N}. According to these
distributions, the summation of the entropies is

HT ({bn}) : = S[{An}] = −
N
∑

n=1

bn ln bn

−
N
∑

n=1

(1 − bn) ln

(

1 − bn

d− 1

)

(14)

with the condition
N
∑

n=1

(

db2
n − 2bn

)

=
(d− 1) [d(Π + 1) − (d+ 1)] −N

d
, (15)

which is the revision of the condition in Eq.(8), since we could not eliminate this condition at the end of
the maximization of the function S. To find the extremum values of the function HT , we define similarly
another function as

Ψ({bn}) := −
N
∑

n=1

bn ln bn −
N
∑

n=1

(1 − bn) ln

(

1 − bn

d− 1

)

− µ

(

N
∑

n=1

(

db2
n − 2bn

)

− (d− 1) [d(Π + 1) − (d+ 1)] −N

d

)

.

(16)

The variation of Ψ function reads
N
∑

n=1

(

ln

(

1 − bn

(d− 1)bn

)

− 2µ(dbn − 1)

)

δbn = 0 (17)

Since the infinitesimals {δbn} are arbitrary, the coefficients must be zero

ln

(

1 − bn

(d− 1)bn

)

− 2µ(dbn − 1) = 0

⇒
ln
(

1−bn

(d−1)bn

)

dbn − 1
= 2µ;n = 1, 2, . . . , N.

(18)

The left hand side of Eq.(18) is constant, so that the parameters bn must be independent of index-n, that is,
b1 = b2 = · · · = bN . Bearing in mind this fact, we obtain bn from Eq.(15) as

b±
n =

√
N ±

√

(d− 1) [d(Π + 1) − (d+ 1)]

d
√
N

;
⌈

d+ 1
Π + 1

⌉

≤ d,

(19)

where ⌈.⌉ is ceiling function. The condition on the dimension d in Eq.(19) comes from the fact that the
term

√

(d− 1) [d(Π + 1) − (d+ 1)] must be non-negative real number. The value b+
n gives the optimal upper

bound of the total entropy HT . Making the abbreviation α :=
√

(d− 1) [d(Π + 1) − (d+ 1)], we obtain the
optimal entropic certainty relation for N MUBs as

HT ≤ H+
T = N ln

(

d(d − 1)
√
N

(d− 1)
√
N − α

)

− N +
√
Nα

d
ln

(

(d− 1)(
√
N + α)

(d− 1)
√
N − α

)

.

(20)

In order b−
n to be a positive real number, it requires that

b−
n =

√
N −

√

(d− 1) [d(Π + 1) − (d+ 1)]

d
√
N

> 0

⇒ d <
d+ 1
Π + 1

+
N

(d− 1)(Π + 1)
≤ d+ 1

Π + 1

(

1 +
1

d− 1

)

⇒ d <
d+ 1
Π + 1

+ 1 → d ≤
⌈

d+ 1
Π + 1

⌉

.

(21)
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Both restrictions in Eq.(19) and Eq.(21) on the dimension d give a unique value, d =
⌈

d+1
Π+1

⌉

. This is possible

only if Π = 1/d, which corresponds to pure mixed state ρ = 1
d
I. This means that b−

n cannot be a stationary
value for the function S[{An}] but an extremum [31], which is the special value 1/d of b+

n .

3 Results and Discussion

Our result in Eq.(20) is different from the one given in Ref.[27] since we have considered Eq.(8) when
maximized the function S[{An}] which is satisfied by the purities of the observables {An}N

n=1, and makes
them dependent on each other. In addition, contrast to the certainty relations given in Refs[27, 24, 25],
our result is optimal when density matrix of the system of inquiry can be written in terms of bases of N
observables. Entropic certainty relation of Ref.[25] is valid only for pure states and, is not optimal. As
a difference from the result in Ref.[25], our result in Eq.(20) is state-independent for pure states. When
N = d+ 1, our result is novel since it is optimal upper bound for general density matrices.

we have confirmed the novelty of the result by some numerical estimations. For a pure state ρ in dimen-
sion d = 2, one can estimate the maximum value of the total entropy of the spin observables (operators)
{σX , σY , σZ} numerically as 1.547120, which coincides with the value of the optimal upper bound H+

T given
in Eq.(20); for d = 3, N = d+ 1 and a pure state ρ, the (maximum) value is numerically ≈ 3.449119, which
again almost coincides with the value 3.47025 of H+

T (for details, see Appendix A).

The physical significance of entropic certainty relation rises in searching mutually coherent states, which
are related with the existence of MUBs. By definition, |ψcoh〉 is a mutually coherent state with respect
to N MUBs associated with the set of observables {An}N

n=1, iff {tr(Πnk |ψcoh〉 〈ψcoh|) = 1
d
, ∀n, k;n =

1, 2, . . . , N ; k = 1, 2, . . . , d}. As emphasized in introduction, MUBs have important applications in the
fields such as quantum cryptography and quantum state tomography. Even if the existence of 3 MUBs is
known [28], whether there are more than three MUBs in non-prime power dimension is still an open question.
If {|ψk〉}d

k=1 are mutually coherent states with respect to N MUBs, the set of N MUBs can be extended to
N+1 MUBs [29]. Stating in a reverse manner, (i) if there is no a mutually coherent state |ψcoh〉 with respect
to N MUBs, this set of N MUBs cannot be extended to N + 1 MUBs. It is straightforward to see that in
case of the state of the system being a mutually coherent state (with respect to N MUBs in question), total
entropy of N MUBs must achieve its maximum value, that is, N ln(d). We now wish to show how our result
in Eq.(20) covers this fact. We assume that the density matrix of the system of inquiry could be written in
terms of N MUBs and the mutually coherent state |ψcoh〉, that is,

ρ =
N,d
∑

n=1,k=1

λnk |nk〉 〈nk| + r |ψcoh〉 〈ψcoh| . (22)

The only change in our maximization procedure for total entropy happens to the parameter α such that
α 7→ ᾱ =

√

(d− 1) [d(Π + 1) − (d+ 1) − r2(d− 1)]. Therefore, we need to make the revision H+
T (N, d, α) 7→

H+
T (N, d, ᾱ) in Eq.(20). Now, if ρ is a mutually coherent state with respect to N MUBs, it must be

∀λnk = 0, r = 1, which makes the parameter ᾱ = 0, and thereby, H+
T (N, d, 0) reduces to N ln(d) that was to

be shown. In addition to the numerical justification, this is another justification of the fact that our result in
Eq.(20) is indeed optimal. Since r → 0 then ᾱ → α, and since result in Eq.(20) is optimal upper bound, we
can, in consequence, assert that, (ii) if the optimal upper bound in Eq.(20) cannot be exceeded, there is no
a mutually coherent state with respect to N MUBs. As a result, from the two premises (i) and (ii) above, we
make the following inference: (iii) if the optimal upper bound for N MUBs in Eq. (20) cannot be exceeded,
this set of N MUBs cannot be extended to N + 1 MUBs. This inference sets forth a quantitative criterion
for the existence of mutually coherent states, and thus, for the extendibilty of MUBs. For instance, since
the existence of 4 MUBs in 6-dimensional Hilbert space is still conundrum, this criterion can be used as a
numerical ground in order to show the non-existence of 4th MUB. If the upper bound in Eq.(20) cannot be
exceeded for 3 MUBs in six dimensional Hilbert space, then there is no fourth MUB.

We now wish to give an application of entropic certainty relation in Eq.(20) to the mutual information. If
the total entropy of the observables set {An}d+1

n=1 has a lower bound such as
∑

n H(An) ≥ q, then that
summation of the observables, where each of them is conditioned with a classical memory Y , satisfies the
inequality

∑

n H(An | Y ) ≥ q; more formally,
∑

n H(An) ≥ q ⇒ ∑

n H(An | Y ) ≥ q (see, Ref.[22, p.22]).

6
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From the definition of the mutual information, we can now write

I(An : Y ) := H(An) −H(An | Y )

⇒
∑

n

(H(An) − I(An : Y )) =
∑

n

H(An | Y )

⇒
∑

n

(H(An) − I(An : Y )) ≥ q.

(23)

For the complementary observables {An}d+1
n=1 in d-dimensional Hilbert space, q = (d+ 1) ln

(

d+1
Π+1

)

[32] and

using the inequality in Eq.(20) for d+ 1 MUBs, we obtain an upper bound on the summation of the mutual
information as

d+1
∑

n=1

I(An : Y ) ≤ (d+ 1) ln

(

d(d− 1)(Π + 1)
√
d+ 1

(d+ 1)
[

(d+ 1)
√
d+ 1 − α

]

)

− d+ 1 +
√
d+ 1α

d
ln

(

(d− 1)
√
d+ 1 + α

(d− 1)
√
d+ 1 − α

)

.

(24)

4 Conclusion

We have obtained the optimal upper bound of the entropic uncertainty relation for N MUBs if the density
matrix of the relevant system can be expressed in terms of N MUBs. This bound implies that the entropies
of the observables cannot achieve to their maximum values (ln(d)) simultaneously. The crucial point in
our derivation is the condition satisfied by the purities of the observables given in Eq.(1). As pointed out,
the purities of the observables corresponding to N MUBs are dependent on each other; therefore, we have
considered the equality in Eq.(8) in the maximization of the total entropy. If an equality relation for the
summation of the purities of N MUBs exists for a general density matrix, our result can be extended directly.
An equality of this sort will be related with the dimension of the system (d), the density matrix (ρ) and the
number of MUBs (N). As another choice, if a way of how to take the inequality in Eq.(1) into account can
be found, an optimal entropic uncertainty relation for N observables can be again obtained for a general
density matrix. Eq.(1) is a non-holonomic condition on the summation of the entropies. It seems that the
maximization under this non-holonomic condition cannot be solved by the method given in Ref.[33], which
is about the variational calculation of a (at least piece wise) continuous function with inequality constraints.

We have shown that our result in Eq.(20) provides a criterion for the existence of mutually coherent states,
which are related with the existence of MUBs. Two questions can be argued in connection with the criterion:
Can we assert that if there is no a mutually coherent states, the optimal upper bound in Eq.(20) cannot be
exceeded? The second question is that: Can a new MUB be constructed, starting from a mutually coherent
state (with respect to the old N MUBs) that we find? To answer the first question, one needs a detailed
logical analysis of the premises (i) and (ii) given above. As for the second question, we would like to just
orient the attentions to two related works [29] and [30] for now.

We have also applied entropic certainty relation to the summation of the mutual information of d+1 comple-
mentary observables conditioned with a classical memory; one can make use of Eq.(24) to detect whether the
observables are correlated. In a scenario of detecting this correlation between spin observables {σX , σY , σZ},
the optimal lower bound for entropic uncertainty relation is q = ln 4 − { 1+|r|

2 ln 1+|r|
2 + 1−|r|

2 ln 1−|r|
2 } [26],

where r is Bloch vector in the density matrix representation, ρ = 1
2 (I + r.σ) with σ = (σX , σY , σZ)T . The

inequality given in Eq.(22) can be revised depending on the lower bound q of the summation of the entropies.

A Appendix A: Probability distributions of d+1 MUBs in dimensions d=2

and d=3 for a pure state

A.1 Probability distributions in dimensions d=2

In dimension d=2, a pure density matrix in computational basis {|0〉 , |1〉} is

ρ =

[

| α |2 αβ∗

α∗β | β |2
]

.
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In addition, taking the eigenstates of spin operators as columns for constructing the unitary matrices

Uz =

[

1 0
0 1

]

, Ux =
1√
2

[

1 1
1 −1

]

, Uy =
1√
2

[

1 1
i −i

]

,

we can calculate the probabilities as pnk = 〈1k|U †
nρUn |1k〉, where {|11〉 = |0〉 , |12〉 = |1〉} is computational

basis. Without losing generality, if we choose α =
√
r and β =

√
1 − r exp(iφ), then we obtain the probability

distributions of spin observables Sz, Sx, Sy as in the Table 1.

Table of MUBs and their probabilities, d=2
Sz p11 = r p12 = 1 − r

Sx p21 = 1
2 (1 + 2

√

r(1 − r)cos(φ)) p22 = 1
2 (1 − 2

√

r(1 − r)cos(φ))
Sy p31 = 1

2 (1 − 2
√

r(1 − r)sin(φ)) p32 = 1
2 (1 + 2

√

r(1 − r)sin(φ))
Table 1: The probability distributions table of MUBs in d=2 when the density matrix is a pure state. The
first column on left stands for MUBs (Sn, n = z, x, y.), and the others for probabilities of obtaining their
first and second eigenvalues respectively.

Writing total Shannon entropy of the observables (Sn, n = z, x, y.)

ST (r, φ) := −
3,2
∑

n=1,k=1

pnk ln(pnk),

We can estimate numerically the maximum value of ST by adjusting the parameters r and φ. The maximum
values is 1.547120, achieving when r = 1

2 and φ = π
4 .

A.2 Probability distributions in dimension d=3

Like in dimension d=2, the general pure density matrix in dimension d=3 can be written as the follows

ρ =





| α |2 αβ∗ αγ∗

α∗β | β |2 βγ∗

α∗γ β∗γ | γ |2



 ,

and the unitary matrices are

U1 =

[

1 0 0
0 1 0
0 0 1

]

, U2 =
1√
3





1 1 1
1 ω ω2

1 ω2 ω



 , U3 =
1√
3





1 1 1
ω ω2 1
ω 1 ω2



 , U4 =
1√
3





1 1 1
ω2 ω 1
ω2 1 ω



 ,

where ω = exp
(

2πi
3

)

. Then, the probability of obtaining the eigenvalue λk of the observable An is
pnk = 〈1k| [U †

nρUn |1k〉. Without losing generality, we choose α =
√
r, β =

√
q exp(iφ1) and γ =

√

1 − (r + q) exp(iφ2), leading to the probability distributions in Table 2:

Table of MUBs and their probabilities, d=3
A1 p11 = r p12 = q p13 = 1 − (r + q)
A2 p21 = 1

3 (1 + 2f21) p22 = 1
3 (1 + 2f22) p23 = 1

3 (1 + 2f23)
A3 p31 = 1

3 (1 + 2f31) p32 = 1
3 (1 + 2f32) p33 = 1

3 (1 + 2f33)
A4 p41 = 1

3 (1 + 2f41) p42 = 1
3 (1 + 2f42) p43 = 1

3 (1 + 2f43)
Table 2: The probability distributions table of MUBs in d=3 when the density matrix is pure state. The
first column on left stands for MUBs (An, n = 1, 2, 3, 4.), and the others for probabilities of obtaining their
first, second and third eigenvalues respectively.

The functions fnk’s are as follows

f21 =
√
rqcos(φ1) +

√

r(1 − (r + q))cos(φ2) +
√

q(1 − (r + q))cos(φ1 − φ2)

f22 =
√
rqcos(φ1 − 2π/3) +

√

r(1 − (r + q))cos(φ2 − 4π/3) +
√

q(1 − (r + q))cos(φ1 − φ2 + 2π/3)

f23 =
√
rqcos(φ1 − 4π/3) +

√

r(1 − (r + q))cos(φ2 − 2π/3) +
√

q(1 − (r + q))cos(φ1 − φ2 + 4π/3)
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f31 =
√
rqcos(φ1 − 2π/3) +

√

r(1 − (r + q))cos(φ2 − 2π/3) +
√

q(1 − (r + q))cos(φ1 − φ2)

f32 =
√
rqcos(φ1 − 4π/3) +

√

r(1 − (r + q))cos(φ2) +
√

q(1 − (r + q))cos(φ1 − φ2 + 2π/3)

f33 =
√
rqcos(φ1) +

√

r(1 − (r + q))cos(φ2 − 4π/3) +
√

q(1 − (r + q))cos(φ1 − φ2 + 4π/3)

f41 =
√
rqcos(φ1 − 4π/3) +

√

r(1 − (r + q))cos(φ2 − 4π/3) +
√

q(1 − (r + q))cos(φ1 − φ2)

f42 =
√
rqcos(φ1 − 2π/3) +

√

r(1 − (r + q))cos(φ2) +
√

q(1 − (r + q))cos(φ1 − φ2 + 4π/3)

f43 =
√
rqcos(φ1) +

√

r(1 − (r + q))cos(φ2 − 2π/3) +
√

q(1 − (r + q))cos(φ1 − φ2 + 2π/3)

Like in d=2, the maximum value of total Shannon entropy ST (r, q, φ1, φ2) can be estimated, searching over
its parameters r, q, φ1 and φ2. We obtained numerically the (maximum) value as ≈ 3.44911877719, achieving
when r = 0.21, q = 0.395, φ1 = φ2 = 5.236 ≈ 5π

3 . Since the computer we used is not powerful enough, we
made the search over two variable while taking the others constant. However, a precise search must be
performed by varying the whole parameters simultaneously. The theoretical value ( the value of H+

T ) can be
numerically achieved if a more powerful computer is used.
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