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ABSTRACT

Issue triage is a manual and time consuming process for both open
and closed source software projects. Triagers first validate the issue
reports and then find the appropriate developers or teams to solve
them. In our industrial case, we automated the assignment part of
the problem with a machine learning based approach. However,
the automated system’s average accuracy performance is 3% below
the human triagers’ performance. In our effort to improve our
approach, we analyzed the incorrectly assigned issue reports and
realized that many of them have attachments with them, which
are mostly screenshots. Such issue reports generally have short
descriptions compared to the ones without attachments, which we
consider as one of the reasons for incorrect classification. In this
study, we describe our proposed approach to include this new piece
of information for issue triage and present the initial results.
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1 INTRODUCTION

For automating issue triage, previous work concentrate on the
summary and description attributes of the issue reports [1, 3], which
are one line short title for the issue report and a more detailed
explanation written in natural language. With text mining and
machine learning techniques, the assignees of the issue reports
can be predicted. Support Vector Machines (SVM) is a successful
algorithm for classifying the textual data present in issue reports
[1-3].
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Our industrial case is a large scale industrial software com-
pany, Softtech!, serving the largest bank in Turkey, IsBank?, where
around 350 software related issue reports are received at Softtech
daily from the bank.

We automated the issue assignment process in Jan 2018 at Soft-
tech with state of the art techniques (¢f-idf for vectorization and
SVM algorithm for prediction). However, we occasionally receive
complaints asking why a specific issue report was assigned to their
team. When we check such issue reports, we often observe that they
have attachments, where the user does not explain the issue much
in the description part. Furthermore, most of these attachments
are screenshots of the errors they receive when using the related
software product.

In this work, we explain our approach for including the infor-
mation in screenshots for automated issue report assignment. The
rest of the paper is organized as follows: In Section 2, we describe
our approach to extract the textual data in screenshots and how
we include this extra information for classification, in Section 3 we
represent the results of the study whether including the textual
information in screenshots may improve accuracy of the system
with the proposed approach and in Section 4, we conclude and
discuss the future work to conduct.

2 APPROACH

2.1 Data Extraction

We use Optical Character Recognition (OCR) to extract the textual
information in these screenshots. We first retrieve the “ID, summary,
description and attachment URL” features of the issue reports. If the
issue report has any attachments, we then check its extension. If the
attachment is an image file, or if it is a document sheet that includes
an image file in it, we get the image and utilize Py-tesseract [5] as
the OCR engine to get the textual data in it. We do not perform
data cleaning due to the errors that may occur in OCR translation.
Finally, we use the text from screenshots as another textual attribute
of the issue report. We apply tokenization and remove stop words
on all the textual data.

With this method, we extract three months of data for training
(17604 issue reports), created in June, July and August of 2019 and 1
week of data for testing (1451 issue reports), created in the first week
of September 2019, where 735 of them have attached screenshots
and 716 of them do not.

Among these reports, 56% of them have screenshots. With the
deployed system, we observe that 81% and 88% of the ones with
and without screenshots are assigned correctly, respectively. So, an
upper bound for the improvement that can be obtained by including
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this artefact could be around 4%, if we could obtain the same level
of accuracy with and without screenshots.

2.2 Classification

Machine learning based issue triage techniques use previously
solved issue reports for training and regards the problem as a super-
vised classification problem. First, the textual data is pre-processed
(tokenized and stop-words are removed, however stemming is not
applied in our case since it has minor effect) and then vectorized to
obtain the ¢ f — idf (term frequency - inverse document frequency)
vectors.

Number of times term t occurs in issue report i

tf(t.i) = 1

Total number of terms in issue report i

Total number of issue reports in repository I

idf(t,I) = log( ) ()

Number of issue reports having term t

tf —idf(t,i,1) = tf(t,i) xidf(t,1I) 3)

We then use Support Vector Machines (SVM) as the classifier,
which is a commonly used technique in issue triage. We utilize
Linear SVC implementation of scikit-learn tool [4] and use the
default parameters.

Depending on the selected feature to be used as input for the
pipeline, we have four machine learning models trained with SVM:
MLy is trained by using “summary” feature only; ML, is trained by
using the concatenated feature “summary” and “text from image”;
ML is trained by using the concatenated feature “summary” and
“description”; ML, is trained by using the concatenated feature
“summary”, “description” and “text from image”. We have one final
model, that is an ensemble of two models: MLy; and MLg,. We
multiply the prediction probabilities of the two models with their
weights (which sum up to 1), and select the class that has the highest
resultant probability. We use 0.6 for the weight of ML, and 0.4 for
the weight of MLg,, which are obtained after some initial training
and testing with the current data.

We use accuracy, precision, recall and f-measure as the evaluation
metrics for our multi-class classification problem and report the
results of predictions on our separate test data (1451 issue reports).

3 STUDY

3.1 Research Questions

We investigate the following questions in our study:

RQ1: Does using the extra feature, text from images, has any con-
tribution in prediction accuracy? We compare ML and ML, to see
how much we improve by adding “text from attachments”, com-
pared to using only the “summary” attribute.

RQ2: Does adding the extra textual information from screenshots
improve the overall performance? Our baseline model is MLy and
we compare it with MLgg, and ML, sempie to see whether the
overall performance improves when we add the textual data in
screenshots.

3.2 Study Results

Accuracy (A), weighted precision (P), recall (R) and F-measure (F)
results on the test data set are presented in Table 1.
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Table 1: Results on the test issue report dataset

Classifier A P R F

ML 070 072 0.70 0.69
MLgq 074 075 0.74 0.73
MLy 0.86 084 0.86 0.84

MLsg, 086 084 085 0.84
MLensemple 086 085 086 0.85

RQ1: Does using the extra feature, text from images, has any contri-
bution in prediction accuracy? MLg, performs better than ML on
the test dataset. A 0.04 performance improvement is achieved in ac-
curacy, precision and f-score and 0.03 performance improvement in
recall. Although we applied minimal pre-processing on the textual
data extracted from images, the performance improvement implies
that attached screenshots may have extra useful information to
improve issue triage.

RQ2: Does adding the extra textual information from screenshots
improve the overall performance? The performance of MLgy, MLgy4,
and ML, semble are very similar as seen in Table 1. So, with our
approach, we cannot conclude that we could improve in overall.
The possible reasons are, the techniques used in this study are fairly
simple and mainly based on analysis of the raw textual data on
which little processing is applied. As future work, we plan to study
on what kind of textual data in screenshots is actually useful for
improving issue triage.

4 CONCLUSION

In this paper, we argued that useful information exists in issue
report attachments that could improve automated issue triage. We
proposed to use OCR technique to extract the textual information in
these attachments. We applied minimal processing on this data and
used it with summary and description for the prediction of software
teams to solve these issue reports. Our initial results suggest that
the attached image files may have useful information for issue
triage, however with the proposed approach the results are not
substantial and significant.

In the future, we plan to extend our work such that we work on
more innovative ways to exploit the useful textual data in attach-
ments to improve issue management.
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