Flexible Combinatorial Interaction Testing
Hanefi Mercan, Arsalan Javeed, and Cemal Yilmaz, Member, |IEEE

Abstract—We present Flexible Combinatorial Interaction Testing (F-CIT), which aims to improve the flexibility of combinatorial
interaction testing (CIT) by eliminating the necessity of developing specialized constructors for CIT problems that cannot be
efficiently and effectively addressed by the existing CIT constructors. F-CIT expresses the entities to be covered and the space of
valid test cases, from which the samples are drawn to obtain full coverage, as constraints. Computing an F-CIT object (i.e., a set
of test cases obtaining full coverage under a given coverage criterion) then turns into an interesting constraint solving problem,
which we call cov-CSP. cov-CSP aims to divide the constraints, each representing an entity to be covered, into a minimum number
of satisfiable clusters, such that a solution for a cluster represents a test case and the collection of all the test cases generated
(one per cluster) constitutes an F-CIT object, covering each required entity at least once. To solve the cov-CSP problem, thus
to compute F-CIT objects, we first present two constructors. One of these constructors attempts to cover as many entities as
possible in a cluster before generating a test case, whereas the other constructor generates a test case first and then marks
all the entities accommodated by this test case as covered. We then use these constructors to evaluate F-CIT in three studies,
each of which addresses a different CIT problem. In the first study, we develop structure-based F-CIT objects to obtain decision
coverage-adequate test suites. In the second study, we develop order-based F-CIT objects, which enhance a number of existing
order-based coverage criteria by taking the reachability constraints imposed by graph-based models directly into account when
computing interaction test suites. In the third study, we develop usage-based F-CIT objects to address the scenarios, in which
standard covering arrays are not desirable due to their sizes, by choosing the entities to be covered based on their usage statistics
collected from the field. We also carry out user studies to further evaluate F-CIT. The results of these studies suggest that F-CIT is
more flexible than the existing CIT approaches.

Keywords—Combinatorial interaction testing, covering arrays, sequence covering arrays, constraint solving, structural coverage,
coverage criteria

*

INTRODUCTION

of parameters and their values. For instance, t-way

Exhaustively testing the input spaces of modern soft-
ware systems in a timely manner (if not impossible at
all) is generally far beyond the available resources for
testing [1], such as time, computers, storage devices,
network resources, and person-hour. Combinatorial in-
teraction testing (CIT) approaches systematically sam-
ple the input space and test only the selected instances
of the system’s behavior [1], [2]. Note that the term
“input” in CIT is used in the most general sense to refer
to any factor, which can affect program executions,
such as configuration options, input parameters, user
events, etc.

CIT approaches typically model the software under
test as a set of parameters, each of which takes its
values from a discrete domain. As not all possible
combinations of parameter values may be valid in
practice, the model can also have a set of constraints,
which invalidate certain combinations. Based on this
model, CIT then generates a sample, i.e., a set of test
cases, which from now on will be referred to as a
CIT object, meeting a specified coverage criterion. That
is, the sample contains some specified combinations

o H. Mercan, A. Javeed, and C. Yilmaz are with the Faculty of Engineering
and Natural Sciences, Sabanci University, Istanbul, Turkey.
E-mail: {hanefimercan, ajaveed, cyilmaz}@sabanciuniv.edu

covering arrays — a well-known CIT approach, where
t is called the coverage strength — requires that each
valid combination of parameter values for every com-
bination of ¢ parameters appears at least once in the
sample [3], aiming to reveal all the failures caused by
the interactions of ¢ or fewer parameters.

As an example, which will further be studied in
detail in Section 2, Figure la presents a configurable
system with 6 compile-time configuration options
(01,...,06) implemented by using preprocessor direc-
tives. Each option has two levels of settings {(T)rue,
(F)alse} and there are no inter-option constraints (i.e.,
all combinations of option settings are valid). The set
of test cases in Figure 1b represent a 2-way covering
array, i.e., a CIT object, for this system. Since ¢ = 2, all
pairwise combinations of settings for these 6 configu-
ration options can be found in at least one of the 7 test
cases selected by this CIT object.

To reduce the cost of testing, CIT constructors, i.e.,
the tools to compute CIT objects, aim to obtain a
full coverage under the given criterion by using the
smallest number of test cases possible. CIT has indeed
been successfully used in many application domains,
including systematic testing of network protocols [4],
input parameters [5], software configurations [6], soft-
ware product lines [7], multi-threaded applications [8],
and graphical user interfaces [9].

1 #iﬁdef (01 && 02) test cases decision outcomes
i #ifdef (os |l o04) 01 03 03 04 05 0| 01N02 03Vo4 05 Og
Y il T F T F F F| F - F -
5 #endif F T F T T F F - T F
T T T T F T T T F -
6 #ifdef (os) T F F F T F F - T F
7 #ifdef (oe) F F T F T T F - T T
8 v
S s F F F T F T| F - F -
10 #endif T T T F F T T T F -
(a) (b)
entities to be covered
€1 (01 N 02) test cases decision outcomes
e (01 A o2) 01 03 03 04 05 0| 01N02 03Voy 05 O0g
ezt (01 A\ 02) A (03 V 04) T T T T T T| T T T T
€41 (01 A oz2) A=(o3 V 04) F F T F F T| F - F T
es ¢ (05) T T F F T F| T F T F
€g - (ﬁ)
ey : (05 AN OG) (d)
es : (05 A\ —0g)
(c)

Fig. 1: (a) An example set of preprocessor directives for a system with 6 compile-time configuration options,

(b) an example 2-way standard covering array created for the system, (c) entities to be covered to obtain full

coverage under the decision coverage criterion, and (d) an example test suite obtaining full coverage under
the decision coverage criterion.

We, however, observe that when the actual CIT prob-
lems differ from the ones addressed by the existing CIT
approaches, it can be difficult to use these approaches
in an efficient and effective manner [1], [10], [11]. Note
that, in this context, changes in CIT problems refer to
changes in the coverage criteria or in the properties
of the test spaces from which the samples are drawn,
such that existing CIT constructors cannot be used as
they are (i.e., requiring modifications, if at all possible)
or demand excessive number of test cases to guarantee
full coverage.

For example, if the coverage criterion in our running
example was changed from ¢-way coverage to decision
coverage [12], where the goal is to cover every outcome
of a decision in Figure la at least once, then, to
guarantee full coverage, the strength of the standard
covering array to be used would be at least 4 (i.e.,
t > 4). This is because the outcome of the decision in
line 2 (Figure la) depends on the interactions among
4 options, namely o1, 02, 03, and o4. This, however,
requires to have at least 16 test cases, while a full
decision coverage in this scenario can be achieved by
using as little as 3 test cases, such as the ones given in
Figure 1d.

Different CIT problems typically necessitate the de-
velopment of specialized constructors. Taking a brief
look at the historical perspective of covering arrays can
help understand this trend: The very first variants of

covering array constructors supported only pairwise
testing of binary parameters, where ¢t =2 and each
parameter had exactly two levels of values [13]. When
these strict conditions were not met, the aforemen-
tioned objects were of little worth. Consequently, new
CIT constructors were developed to handle the CIT
problems, in which the parameters could take on a
different number of values and the covering arrays
could be computed for ¢t > 2 [3]. However, as these
objects assumed that all possible combinations of pa-
rameter values were valid, they were not appropriate
in the presence of system-wide inter-parameter con-
straints, causing wasted resources in testing [14], [15].
Thus, new CIT constructors were developed to handle
system-wide constraints [16], [17]. However, these ob-
jects then became inappropriate in the presence of test
case-specific constraints, which led to the development
of test case-aware covering arrays and their specialized
constructors [18].

Developing specialized constructors can, however,
be quite challenging and time-consuming, which is
also apparent from more than 50 papers published in
the literature, the sole purpose of which is to compute
standard covering arrays [1], [2].

In this work, we introduce Flexible Combinatorial In-
teraction Testing (F-CIT) to improve the flexibility of CIT
by eliminating the necessity of developing specialized
constructors for every distinct CIT problem. In F-CIT,

both the entities to be covered and the space of test
cases, from which the samples will be drawn, are
expressed as constraints. The problem of computing
an F-CIT object to cover all the requested entities then
turns into an interesting constraint solving problem,
which we call cov-CSP [19], [20], [21]. Given a set of
constraints, each of which represents an entity to be
covered, cov-CSP aims to divide the constraints into
a minimum number of satisfiable clusters, such that
each cluster depicts a subset of the entities, which can
be tested together in a single test case. A solution for
a cluster then represents a test case, covering all the
entities included in the cluster. Consequently, the col-
lection of all the test cases generated (one per cluster)
constitutes an F-CIT object that covers each required
entity at least once. In the remainder of the paper,
we use the terms “CIT object” and “F-CIT object”
interchangeably to refer to a set of test cases, which
obtain full coverage under a given coverage criterion.

Going back to our running example (Figure 1), a
decision coverage-adequate F-CIT object can be com-
puted by representing each configuration option as a
Boolean variable. Then, each entity to be covered corre-
sponds to a distinct outcome of a decision, represented
as a constraint in Boolean logic. Figure 1c presents
all the entities that need to be covered to obtain full
decision coverage for the system given in Figure la.
These entities can be divided into 3 satisfiable clusters:
{e1,e3,e5,e7}, {e2, e}, and {ey, es}. A solution for each
cluster represents a test case. For example, the three
test cases in Figure 1d, each of which corresponds to
a solution computed for a distinct cluster, represent an
F-CIT object, achieving full decision coverage.

Note that we use the term “constraint” in the general
sense in F-CIT. That is, any restriction, independent of
the logic in which it is specified, is considered to be a
constraint. Consequently, an F-CIT constructor can be
used as long as the entities to be covered are expressed
as constraints and an appropriate procedure (ie., a
“solver”) is provided to determine if a given set of
entities can be tested together in a single test case, i.e.,
if the respective constraints can be satisfied together.
In our running example (Figure 1), for instance, we
can use an ordinary SAT or CSP solver [22] to figure
out whether the constraints included in the clusters
are satisfiable or not. We, therefore, believe that F-CIT
can be used in a wide spectrum of domains, including
software product lines, system of systems, and cyber-
physical systems, in addition to the domains, which
we used for evaluating F-CIT in this work, i.e., highly-
configurable systems and event-driven systems.

Note further that using constraint solving techniques
for combinatorial interaction testing is not a new
idea [6], [10], [15], [16], [17], [23], [24]. However, the
constraints in F-CIT are interpreted quite differently
than the ones used in existing CIT approaches. More

specifically, while the constraints in existing CIT ap-
proaches are typically used to specify combinations
of parameter values that should be avoided, they are
used in F-CIT to specify both the combinations (i.e.,
the entities) to be covered and the space of valid test
cases, from which the samples are drawn. Therefore,
the scope of a constraint in existing CIT approaches is
all the test cases included in a covering array. That is,
all of the selected test cases should satisfy all the con-
straints. On the other hand, the scope of a constraint
representing an entity to be covered in F-CIT is limited
to a single test case. That is, such a constraint needs to
be satisfied by at least one test case, rather than by all
the test cases selected, allowing a considerable amount
of flexibility.

For instance, in our running example (Figure 1),
expressing os and —o5 (i.e., the outcomes of the de-
cision in line 6) as constraints to selectively determine
what to cover in standard covering arrays, prevents the
generation of any covering arrays as these conflicting
constraints are enforced to be satisfied by all of the
selected test cases. In F-CIT, however, these constraints
are required to be satisfied by different test cases. For
example, in Figure 1d, while the former constraint is
satisfied by the first and third test cases, the latter one
is satisfied by the second test case.

F-CIT is not a methodology for deciding what needs
to be tested. It, in fact, takes as input a set of entities
to be covered and aims to cover them in a minimum
number of test cases by accommodating as many en-
tities as possible in a single test case. Note that for
a given CIT problem, regardless of whether an F-CIT
constructor is to be used or a specialized constructor
is to be developed, entities to be covered need to
be enumerated and a procedure needs to be devised
to determine whether a given set of entities can be
covered together in a single test case or not. Once these
are given, though, F-CIT provides a constructor right
away.

Furthermore, F-CIT does not aim to replace existing
CIT approaches. We, indeed, don’t see much value
in using F-CIT to compute the same CIT objects that
the existing CIT constructors compute, as the gen-
eralized F-CIT constructors may not be as efficient
and as effective as their specialized counterparts. We
rather aim to reduce the barriers to applying CIT to
other domains and testing problems by generalizing
the construction of CIT objects as much as possible,
so that the collective effort spent for developing F-
CIT constructors can be leveraged to address a wider
spectrum of CIT problems.

In this work, we present two F-CIT constructors,
namely cover-and-generate and generate-and-cover. While
the former aims to cover as many entities as possible
in a cluster first and then generates a test case for the
cluster, the latter generates a test case first and then

marks all the entities accommodated by the test case
as covered.

To evaluate F-CIT, we then carry out three case stud-
ies, each of which focuses on a different CIT problem.
In the first study, we use F-CIT to compute struc-
tural code coverage-based test suites. In the second
study, we use F-CIT to improve a number of existing
order-based covering arrays for testing event-driven
systems by taking the reachability constraints imposed
by graph-based models directly into account during
the construction of CIT objects. In the last study, we use
F-CIT to compute usage-based CIT objects, where the
entities to be covered are determined according to their
usage statistics in the field — an approach which is of
importance especially when standard covering arrays
are not desirable due to their sizes.

In these studies, we observed that it was either
unclear how to use the existing constructors (if at all
possible) to compute the requested CIT objects; or the
existing constructors required non-trivial modifications
or excessive number of test cases to guarantee a full
coverage. F-CIT, on the other hand, used the same
constructor to compute all the requested CIT objects
without requiring any modifications, demonstrating
the flexibility of the proposed approach.

We also carry out user studies to further evaluate
the proposed approach. More specifically, we observe
human subjects working on the smaller instances of
the very same CIT problems we study in this work
and report the results we obtained together with the
insights we gained.

In previous work [25], we presented an initial set of
definitions for F-CIT and provided an algorithm for
computing F-CIT objects. And, we did this without
providing any implementations or empirical evalua-
tions. In this work, however, we present a simplified
set of more formal definitions, an additional F-CIT con-
structor, a tool implementing the F-CIT constructors,
and three case studies together with user studies, in
which F-CIT is evaluated.

The contributions of this work can be summarized
as follows:

« A flexible approach, F-CIT, for computing combi-
natorial objects for testing,

» Two constructors together with a tool implement-
ing these constructors to compute F-CIT objects,

o Definition and construction of structure-based F-
CIT objects,

o Definition and construction of order-based F-CIT
objects,

o Definition and construction of usage-based F-CIT
objects,

o A series of experiments demonstrating the flexi-
bility of F-CIT,

o User studies demonstrating the usability of F-CIT.

The remainder of the paper is organized as follows:
Section 2 provides a motivating example; Section 3
introduces F-CIT; Section 4 develops two constructors
for computing F-CIT objects; Section 5 presents three
case studies, demonstrating the drawbacks of the ex-
isting CIT approaches and how F-CIT addresses these
drawbacks; Section 6 presents the user studies; Sec-
tion 7 provides a general discussion of the applicability
of F-CIT; Section 8 discusses threats to validity; Sec-
tion 9 discusses related work; and Section 10 presents
concluding remarks and possible directions for future
work.

2 MOTIVATING EXAMPLE

In this section, we provide more details on our running
example used in Section 1. In this example, we are
concerned with compile-time configuration options im-
plemented in the form of preprocessor directives, such
as #ifdef and #ifndef directives found in C and
C++. Figure 1a presents a hypothetical system with 6
compile-time configuration options, namely o, ..., o,
each of which happens to have two levels of settings
(T)rue and (F)alse. In the remainder of the paper, we use
the term “if-then-else directive” to refer to an #ifdef,
#ifndef, or a similar conditional branch directive, the
conditions of which are comprised of only compile-
time configuration options and/or constants. Note that
such directives allow the decision outcomes to be di-
rectly controlled from outside the system by modifying
the settings of the compile-time options as a part of the
build process.

An if-then-else directive essentially describes how
configuration options interact with each other. That
is, the outcome of a decision (thus the behavior of
the system) may change due to these interactions.
Consequently, these interactions may need to be tested.
To this end, one structural test adequacy criterion
that the developers can use is the decision coverage
(DC) criterion. A full coverage under DC is obtained
when every decision, such as (01 A 02) and (03 V 04) in
Figure 1a, is evaluated to both true and false.

Consider a scenario where the goal is to create a DC-
adequate test suite for the system given in Figure 1a.
Note that since a single configuration can cover multi-
ple decision outcomes, the number of configurations
required to obtain full coverage under DC can be
reduced by covering as many outcomes as possible in
each of the selected configurations. This is, indeed, the
main motivation behind CIT. Therefore, CIT should be
of help.

2.1

It, however, turns out that standard covering arrays
are infeasible to achieve the aforementioned coverage
criterion in an efficient and effective manner.

Applying standard CIT

As an in initial attempt, a standard 2-way covering
given in Figure 1b is created. The first 6 columns
in this figure present the 2-way covering array and
the last 4 columns depict the outcomes of the deci-
sions: “T” for true, ‘F’ for false, and ‘—" for decisions
that are not exercised due to some unsatisfied guard
conditions. For example, the first row indicates that
the decision (o3 V 04) is not exercised by the configu-
ration (01 =T,00 = F,03 =T,04 = F,05 = F,05 = F),
because the guard condition (01 A 02) evaluates to F.

This covering array while obtaining a full coverage
for the if-then-else directive between the lines 6 and 10
in Figure la, obtains only 75% DC coverage for the if-
then-else directive between the lines 1 and 5, covering
3 out of 4 decision outcomes required for full coverage.
More specifically, out of the decision outcomes {(o1 A
02), =(01N02), (01N02)A\(03Vo4), (01 N02)A—(03V04)}, the
last one where the inner decision (03 V 04) needs to be
evaluated to F, is not covered. Note that this outcome
can only be achieved with a single 4-way combination,
in which 01=T, 0o=T, 03=F, and o4=F.

One solution approach to overcome this issue is to
increase the strength of the covering array, i.e., to use
a larger t. This, however, can excessively increase the
number of configurations to be tested. For example,
since the missing combination in our example is a 4-
way combination, to guarantee the coverage of this
combination, a 4-way covering array needs to be cre-
ated at the very least. However, a 4-way covering array
for this scenario can have as many as 28 configurations.

An alternative approach is to use a variable-strength
covering array, requiring a 4-way coverage only for the
options {o01,...,04}. However, since what is actually
being requested is the exhaustive testing of all possible
combinations of settings for these 4 binary options, at
least 16 configurations are required by this alternative.

Note that decision outcomes that need to be covered
cannot be expressed as constraints in standard cover-
ing arrays in an attempt to selectively determine what
to cover. This is because constraints in standard cover-
ing arrays are globally enforced. That is, the constraints
should be satisfied by each and every configuration in-
cluded in the covering array. Therefore, expressing the
decision outcomes as constraints in standard covering
arrays prevents the creation of any CIT objects because
the alternative outcomes of a decision are guaranteed
to conflict with each other. For example, since the
outcomes of the decision at line 6 in Figure 1a, ie.,
os and —os, conflict with each other, no configuration
satisfying both of these constraints can be generated;
thus, no standard covering array can be constructed.

2.2 Applying F-CIT

F-CIT, on the other hand, can flexibly be used as
follows to obtain DC-adequate test suites. Each entity

to be covered corresponds to a distinct decision out-
come. The entities are then expressed as constraints by
using Boolean logic where each configuration option
is represented by a Boolean variable. For our running
example, Figure 1c presents all the entities required
to be covered to obtain full coverage under the DC
criterion. For instance, the first two entities (e; and e3)
represent the 7" and F' outcomes of the decision at line
1 in Figure 1a, respectively.

Given the entities in Figure 1c, an F-CIT constructor
divides them into 3 clusters: {ej,es3,e5,er}, {e2, €6},
and {e4,es}, such that all the constraints within a
cluster can be satisfied together and that the number of
clusters required to cover all the entities is minimized
as much as possible.

Each cluster represents a set of decision outcomes
that can be covered together in a single configuration.
Therefore, a solution computed for a cluster repre-
sents a configuration, which covers all the decision
outcomes included in the cluster. Consequently, the F-
CIT constructor generates the three configurations (one
for each cluster) given in Figure 1d, which obtain full
coverage under the DC criterion; the first configuration
covers the entities {ei,es,e5,e7}, the second config-
uration covers {e2,es}, and last configuration covers
{ €4, 68}.

Note that neither the clusters nor the configurations
generated in this study are unique in the sense that
there are other sets of configurations that an F-CIT
constructor can generate to achieve full coverage. This
is indeed similar to what we have in standard cover-
ing arrays as different t-way covering arrays can be
computed for the same input space model.

Note further that although half of the constraints
in Figure 1c conflict with the other half, it does not
create an issue for F-CIT. This is because as each of
these constraints represents an entity to be covered,
F-CIT enforces them at the level of a test case. This,
in turn, improves the flexibility of CIT, compared to
enforcing the constraints at the level of a test suite as is
the case with standard covering arrays where each and
every test case included in a test suite should satisfy
all the constraints. That is, F-CIT aims to satisfy each
constraint representing an entity in at least one test
case, rather than enforcing all the selected test cases to
satisfy all of the entity constraints. For example, in the
test suite given in Figure 1d, the constraint for entity
ez : =(01 A 02) is satisfied by the second configuration
only. The other configurations included in this test
suite, indeed, violate this constraint.

3 F-CIT
F-CIT takes as input a set of entities E to be

covered and a model M =< P,D,C >, where
P={p1,p2,...,p} is a set of parameters,
D ={D;,D,,...,D,} is a set of respective domains

of values, and C is a constraint defined over P. While
C' defines the space of valid test cases, from which
the samples are drawn, E specifies what needs to be
covered by these samples.

Next, we make a number of definitions, starting from
the “standard” definitions and going towards the F-
CIT-specific ones:

Definition 1. A constraint is a tuple < P', R > where
P’ C P is a subset of | < k parameters and R is an l-ary
relation on the corresponding domains.

Definition 2. An evaluation is a function from a subset of
parameters to a particular set of values in the corresponding
subset of domains.

Definition 3. An evaluation satisfies a constraint
< P',R >, if the values assigned to the parameters in P’,
satisfies the relation R.

Definition 4. An evaluation is consistent with respect to
a set of constraints, if it satisfies all the constraints.

Definition 5. An evaluation is complete, if it includes all
the parameters in P.

Definition 6. An F-CIT testable entity is a constraint
over a subset of P, which has at least one evaluation
consistent with C, representing an entity to be covered in
testing.

Definition 7. An F-CIT test case is a complete evaluation
of P, which is consistent with C.

Definition 8. An F-CIT testable entity is said to be
covered by an F-CIT test case, if and only if the test case
is consistent with the testable entity.

Definition 9. Given an F-CIT model M =< P,D,C >
and a set of testable entities E to be covered, an F-CIT
object is a set of F-CIT test cases, such that every F-CIT
testable entity in E, is covered by at least one F-CIT test
case.

Going back to our running example in
Section 2, the F-CIT model M =<P D,C >
is defined as follows: P={o1,...,06},

D = {{T, F},{T, F}{T, F}.{T. F},{T, F}.{T. F}},
and C : true, indicating that all possible configurations
are valid. An F-CIT testable entity corresponds to a
distinct decision outcome expressed as a constraint
in Boolean logic. The testable entities to be covered
E = {e1,...,es} are then defined as they are given in
Figure 1c. For example, the testable entity e; is defined
as —(01 A 02), representing the F' outcome of the first
decision in Figure 1a. An F-CIT test case corresponds
to a configuration, in which each configuration option
assumes the value of either T or F, such as the second
configuration in Figure 1d where o1 =F, 0y =F,
03 = T, 04 = F, Oy = F, and Og = T. An F-CIT object
then corresponds to a decision coverage-adequate

set of F-CIT test cases, such as the ones given in
Figure 1d.

4 COMPUTING F-CIT OBJECTS

It turns out that computing F-CIT objects requires us
to solve an interesting constraint satisfaction problem,
which we call cov-CSP, inspired from the theoretical
concepts for “measuring” the level of consistency in
paraconsistent logic (i.e., “inconsistency-tolerant” sys-
tems of logic) [19], [20], [21].

Given a set of constraints H, cov-CSP aims to divide
H into a minimum number of satisfiable clusters. That
is, cov-CSP seeks to satisfy the constraints, not necessar-
ily as a whole, but in groups. We first define cov-CSP
in the most general sense and then show how solving
this problem helps compute F-CIT objects.

Definition 10. Given a set of constraints
H ={hy,...,hp}, cov-CSP divides H into a minimum
number of clusters S ={H,...,H,}, such that

Umn,es Hi = H and that for each H; € S, Nycpy h
is satisfiable, i.e., all the constraints in a cluster are
satisfiable together.

Given a model M =< P,D,C > and a set of F-CIT
testable entities to be covered E = {ey, ..., ey}, each of
which is represented as a constraint, computing an F-
CIT object proceeds by first solving the cov-CSP prob-
lem, so that F is divided into a “minimum” number
of satisfiable clusters S = {E},..., E,} (as specified by
Definition 10). Note that since computing the global
minimum may not be computationally feasible (or
desirable), F-CIT aims to compute an approximation
to it.

Each cluster depicts a set of testable entities that can
be tested together. Therefore, a solution for a cluster,
represents an F-CIT test case covering all the F-CIT
testable entities included in the cluster. Consequently,
the collection of all the test cases generated (one
per cluster), constitutes an F-CIT object covering each
testable entity in F at least once.

The only remaining detail to ensure the generation of
valid test cases, is to take the model constraint C' into
account. To this end, when checking the satisfiability
of a cluster I; € S or computing a solution for it, the
constraint to satisfy simply becomes C' A A . e.

Note that, in order to reduce the number of test
cases required, it is desirable to avoid redundancy as
much as possible by covering each testable entity in
exactly one test case. However, a testable entity, in the
process of covering other testable entities, may end up
being covered by multiple test cases. This can happen
unintentionally (i.e., by chance) or intentionally to
satisfy the model constraint C.

Next, we present two constructors for computing F-
CIT objects (thus, for solving the cov-CSP problem),
namely cover-and-generate and generate-and-cover.

Algorithm 1 The cover-and-generate constructor for
computing F-CIT objects

Algorithm 2 The generate-and-cover constructor for
computing F-CIT objects

Input: A test space model M =< P,D,C >
Input: A set of testable entities £ to be covered
Output: An F-CIT object T’

1: S« {}

2: for each testable entity e € E do
3: accommodated < false

4 for each £’ € S do

5 if satisfiable(e A \, cp €' A C) then
6: E' « E'U {6}

7: accommodated < true
8 break

9 end if

10: end for

11: if not accommodated then

12: S+ Su{{e}}

13: end if

14: end for

15:

16: T« {}

17: for each £’ € S do

18: T + T Usolve(CAN,cp€)
19: end for

20: return T’

4.1 The Cover-and-Generate Constructor

The cover-and-generate constructor (Algorithm 1)
maintains a pool S of clusters, each representing a set
of testable entities that can be covered together. The
pool is initially empty (line 1). Then, for each testable
entity e € E, we attempt to accommodate it in an
existing cluster £’ € S (lines 4-10). To this end, we
check to see if e is satisfiable together with all the
constraints in E’ as well as with the model constraint
C, i.e., whether e A /\e, B e’ A C is satisfiable (line 5).
If so, e is included in E’ (line 6), indicating that e
can be accommodated together in a single test case
with the other testable entities in E’. Otherwise (i.e.,
if no such cluster is found), we populate S with a new
cluster initially having only e (line 12). Once all the
testable entities are processed, for each cluster E € S,
we generate a test case by solving C' A A, .y € (line
18). The collection of all the test cases generated (T'), is
then returned as the F-CIT object computed, covering
all the testable entities in £ (lines 17-20).

4.2 The Generate-and-Cover Constructor

The generate-and-cover constructor associates a cluster
with an F-CIT test case, rather than with a set of F-CIT
testable entities. Conceptually, this constructor gener-
ates a test case first and then marks all the testable
entities accommodated by the test case as covered.

Input: A test space model M =< P,D,C >
Input: A set of testable entities £ to be covered
Output: An F-CIT object T

1. T+ {}

2: for each testable entity e € F do
3: accommodated < false

4 for each t € T do

5 if satisfiable(e At A C) then
6: accommodated < true
7 break

8 end if

9 end for

10: if not accommodated then

11: T < T U solve(e A C)

12: end if

13: end for
14: return T

Therefore, it is different than the cover-and-generate
constructor, which attempts to cover as many testable
entities as possible in a cluster before generating a
test case. Consequently, the set of clusters maintained
through the iterations of the generate-and-cover con-
structor, simply represents the F-CIT test cases that
have already been included in the F-CIT object being
computed.

Given a model M =< P, D,C > and a set of testable
entities F' to be covered, one way to generate a test
case is to compute a solution for the model constraint
C, regardless of E. However, generating test cases
without taking the testable entities to be covered into
account, may make it quite difficult to cover the entities
that are hard to cover by chance. We, therefore, employ
an alternative approach in this work, which guarantees
that at least one previously uncovered testable entity
is covered by every test case generated.

Algorithm 2 presents the generate-and-cover con-
structor. The F-CIT object T is initially empty (line 1).
Then, for each testable entity e € E, we check to see if e
has already been covered by a test case t € 1" (lines 4-9),
i.e., if there exists a test case ¢ € T, which is consistent
with e (line 5). If no such test case is found, a new
F-CIT test case covering e, is generated by solving the
constraint e AC and T is populated with the newly
generated test case (lines 10-12). Once all the testable
entities in E have been processed, T is returned as the
F-CIT object computed (line 14).

4.3 A Seeding Mechanism

Both of the constructors we have discussed so far can
also take as input a seed, which in this context refers

to a set of F-CIT test cases. Given a seed, all the F-
CIT testable entities in the seed, are considered to have
already been covered and additional F-CIT test cases
are generated only to cover the remaining entities.

To this end, the only change that needs to be made
is to modify line 1 in Algorithms 1 and 2, such that
instead of starting with an empty pool of clusters, we
start with an initially populated pool of clusters, each
of which is created to include a single F-CIT test case
in the seed. Nothing else in the algorithms needs to be
changed.

In Section 5.1, we use the seeding mechanism both
to compute higher strength F-CIT objects from lower
strength F-CIT objects (by using the lower strength
objects as seeds) and to generate F-CIT objects that
satisfy multiple coverage criteria (by using an object
satisfying a coverage criterion as a seed to compute
another object satisfying a different coverage criterion).

4.4 Example: Computing DC-Adequate Test Suites
as F-CIT Objects

In this section, for illustrative purposes, we use
the cover-and-generate constructor (Algorithm 1) to
compute DC-Adequate test suites as F-CIT objects
using our running example in Section 2. For the
sake of the discussion, however, we introduce the
following system-wide constraint to the problem:
(0o =F) = (06 =T),1ie.,if 05 is false, then og must
be true, invalidating the combination (o2 = F, 06 = F).

Modeling. The F-CIT model is defined
as M =< P,D,C >, where P=Ho1,...,06},
D={{T,F},....{T,F}}, and C: (-0 = o0g).

Each F-CIT testable entity then naturally corresponds
to a decision outcome to be covered. Figure 1c presents
all the F-CIT testable entities that need to be covered
to obtain full coverage under the decision coverage
criterion.

Assuming that the testable entities in Figure lc
are processed in the order e;,...,es, the cover-
and-generate constructor proceeds as follows: First,
e1: (01 ANog) is processed. Since the pool S is ini-
tially empty (line 1), a new cluster E; = {e;} is
created and S is populated with Ey, ie., S ={E:}
(line 12). Then, ey : —(01 Ao2) is processed. Since
e1 Nea AC, ie., (01 Aog) A=(o1 Aog) A (moy = o),
is not satisfiable (line 5), e; cannot be placed
in Fj. So, a new cluster FEj = {e3} 1is created
and S is updated to {Ei,E} (line 12). Next,
es : (01 AN o2) A (03 V 04) is processed. Since ey A eg A C,
ie., (01 Ao2) A((01 Ao2) A(o3Vo04))A(m02 = 0),1s
satisfiable (line 5), ez is included in E; (line 6). After
processing all the remaining testable entities in Fig-
ure 1c, we have the clusters given in the first column
of Table 1.

For each cluster in S ={FE;, Es, FE5}, we then
generate an F-CIT test case by satisfying the

TABLE 1: An F-CIT object (second column) created
for the set of satisfiable clusters S = {E1, Eo, E3} (first
column) obtained for the testable entities in Figure 1c.

satisfiable clusters | DC-adequate F-CIT object
S={E1,Ey,E3} |01 02 03 04 05 0g

E1 = {61,63,65,67} T T T T T T
Ey = {ez, 6} F F T F F T
Eg = {64,68} T T F F T F

constraints included in the cluster together with
the model constraint C' (lines 16-19). For example,
for E,, solving e; Ae3 Aes Aey AC produces the test
case (00 =T,00=T,03=T,04=T,05 =T,06 =T).
Processing all the clusters would then generate the
F-CIT object given in the second column of Table 1
(line 20), which is, indeed, DC-adequate.

4.5 Discussion

Regarding constraints and solvers. The terms “con-
straint” and “solver” are used in the general sense in
F-CIT. That is, any restriction, independent of the logic
in which it is specified, is considered to be a constraint
and a solver conceptually determines whether a given
set of testable entities can be covered together in a
single test case or not. Therefore, F-CIT expects that the
underlying solver supports essentially a single compu-
tational primitive, namely solve. The other primitive
used in Algorithms 1 and 2, namely satisfiable, can
actually be implemented by using solve as the absence
of a solution indicates unsatisfiability.

Having a simple interface between F-CIT construc-
tors and solvers further improves the flexibility of F-
CIT. For example, all of the widely-used SAT and CSP
solvers, in one form or another, provide a solve primi-
tive. Furthermore, this feature also allows application-
and domain-specific solvers to be used with F-CIT
constructors (Section 5.3).

This interface can indeed be further generalized by
having solve to take as input a set of constraints,
each of which can represent a testable entity, a model
constraint, or a test case. Since an F-CIT constructor
does not then need to interpret these constraints, the
testable entities, the model constraints, and the test
cases can be expressed in any form desired, which may
not even need to be formal.

Regarding constructors. We have presented two
constructors in this section, namely the cover-and-
generate constructor and the generate-and-cover con-
structor. We introduced the latter solely to mimic one of
the simplest ways of generating F-CIT objects: Keep on
generating valid test cases until all the required entities
have been covered. As such, we use this constructor as
a base line for comparisons in our experiments (Sec-
tion 5), demonstrating that computing F-CIT objects in
an efficient and effective manner is not trivial. Indeed,

the results of our experiments strongly suggest that the
cover-and-generate constructor performed better than
the generate-and-cover constructor in reducing both
the sizes and the construction times of F-CIT objects
(Section 5).

We, therefore, generally suggest to use the cover-
and-generate constructor. However, the generate-and-
cover constructor can still be of practical interest in sce-
narios especially when it is costly to determine whether
multiple testable entities can be covered together or
not (due to, for example, the complexity of the con-
straints to be solved) and when it is easy to cover
the entities by chance in valid test cases. Note that
the presence of these factors favors the generate-and-
cover constructor as multiple testable entities can be
covered by generating a valid test case. Furthermore,
by making sure that each test case covers at least one
previously uncovered testable entity, the generate-and-
cover constructor guarantees the convergence into full
coverage. Clearly, the end-users can always experiment
with both constructors to determine the one to use in
their projects.

With all these in mind, we have implemented the F-
CIT constructors given in Algorithms 1 and 2 in Python
in the form of an extensible tool that can work with any
types of constraints and solvers. The tool can be down-
loaded at https://github.com/susoftgroup /UCIT/.

The efficiency and effectiveness of the F-CIT con-
structors we introduced in this work (i.e., the construc-
tion times and the sizes of the F-CIT objects computed),
can be effected by the order, in which the testable enti-
ties are processed. In the presence of some knowledge
regarding a favorable order (or a partial order), the
testable entities can be sorted accordingly before they
are fed to an F-CIT constructor. If not, a random order
can be used by shuffling the entities. Furthermore, the
construction process can be repeated multiple times in
an attempt to compute smaller F-CIT objects at the
cost of increased construction times. In Section 5.3.4,
we carry out additional set of experiments to evaluate
the sensitivity of the cover-and-generate constructor
(which generally performed better than the generate-
and-cover constructor) to the order the testable entities
are processed.

Furthermore, F-CIT constructors may not be as ef-
ficient as their specialized counterparts. Our ultimate
goal, however, is not to perform better than the existing
constructors when F-CIT is used to compute the same
CIT objects that these constructors are specifically de-
signed to compute. As a matter of fact, we don't see
much value in using F-CIT in such scenarios unless
the F-CIT constructors perform better than the existing
ones. Our goal is rather to improve the flexibility, thus
the applicability, of CIT by eliminating the necessity of
developing specialized constructors for every distinct

CIT problem, which is not addressed by the existing
constructors.

5 EXPERIMENTS

F-CIT does not aim to replace existing CIT construc-
tors, but rather to reduce the barriers to applying CIT
to other domains and problems. Note that, in this con-
text, changing the underlying CIT problem is not the
same as simply changing the parameters of an existing
problem, but rather changing the problem itself. For
example, for standard covering arrays, we don’t con-
sider the changes in system-wide constraints and/or
the changes in model parameters to be a change in
the underlying CIT problem. This is because the only
thing that changes in such situations is the problem
parameters, while the original problem remains intact,
which is to cover all valid ¢-tuples at least once.

To evaluate F-CIT, we, therefore, carry out three
case studies, each of which focuses on a different
CIT problem. In the first study (Section 5.1), we com-
pute structure-based CIT objects to obtain decision
coverage-adequate objects. In the second study (Sec-
tion 5.2), we compute order-based CIT objects, where
the reachability constraints imposed by an underlying
graph-based model are taken into account to cover
various sequences of events. In the third study (Sec-
tion 5.3), we compute usage-based CIT objects by
selecting the tuples to be covered based on their usage
statistics in the field, which is especially useful when
standard covering arrays are not desirable due to their
sizes.

In each study, we first introduce the CIT problem
of interest and discuss the motivation behind this
problem. We then discuss and empirically demonstrate
that to compute the requested CIT objects, the existing
constructors (as they are) require excessive number of
test cases to guarantee full coverage. Or, they require
non-trivial modifications. Or, it is not clear (if at all
possible) how to modify them. We finally express the
CIT problems in F-CIT and show that the very same F-
CIT constructor (thus, the same construction approach)
can compute all of the requested CIT objects in all the
studies without any modifications, demonstrating the
flexibility of the proposed approach.

In the experiments, we integrate different “solvers”
with F-CIT. This, however, is solely for the purpose
of demonstrating that F-CIT can work with different
solvers. The very same solver, such as the CSP solver
we use in Section 5.1, can in deed be used in all the
studies.

Note further that although the CIT problems in
our studies are different than the ones addressed by
existing CIT constructors, we opt to use existing con-
structors for comparisons in the experiments to justify
the need for F-CIT. That is, in these studies, we are not
claiming that F-CIT constructors perform better than

standard CIT constructors (because the underlying CIT
problems are different), but rather demonstrating that a
different CIT constructor is indeed needed to compute
the requested CIT objects in an efficient and effective
manner. Otherwise, i.e., had the existing constructors
addressed the CIT problems presented in this paper in
an efficient and effective manner, there would be no
need for F-CIT.

We, furthermore, use our generate-and-cover F-CIT
constructor as a base line to show that computing F-
CIT objects is not trivial at all and that better con-
struction approaches, such as the cover-and-generate
approach, are needed.

The raw data we obtained from the experiments can
be found at https:/ /github.com/susoftgroup/UCIT/.

5.1 Study 1: Structure-Based CIT

In this study, we use the same CIT problem discussed
in Section 2.

5.1.1 Coverage criterion

In [26], [12], we introduced a novel CIT object, which
given a structural coverage criterion, such as decision
coverage (DC), computes a “minimal” test suite to
obtain full coverage under the criterion. In this work,
we not only express the same coverage criterion using
F-CIT, demonstrating the expressiveness of F-CIT, but
also generalize the aforementioned coverage criterion
to higher coverage strengths, demonstrating the flexi-
bility of F-CIT. We call this structure-based CIT.

In a nutshell, structure-based CIT takes as input
the source code of the system under test, a coverage
strength ¢, and a structural code coverage criterion.
First, for each outer-most if-then-else directive in the
implementation, a virtual configuration option is defined.
Then, for a given a virtual configuration option, con-
ditions that must be satisfied to obtain a full coverage
under the given structural coverage criterion for the
respective if-then-else directive, are defined as virtual
settings. Finally, a number of configurations are selected
to cover all valid ¢-way combinations of virtual option
settings. The smaller the number of configurations
selected, the better the approach is.

Next, without losing generality, we provide more
details by using DC as the structural code coverage cri-
terion of interest. The proposed approach, on the other
hand, is readily available to use with other structural
coverage criteria, such as condition coverage [27].

Definition 11. A virtual configuration option (or vir-
tual option, in short) represents an outer-most if-then-
else directive, which is not nested in another if-then-else
directive.

For example, the system in Figure 1a has two virtual
options: vo; representing the outer-most if-then-else
directive between lines 1 and 5 and vo; representing

10

the outer-most if-then-else directive between lines 6
and 10.

Definition 12. Given a virtual configuration option, each
feasible outcome of every decision in the respective if-then-
else directive, is defined as a virtual setting and expressed as
a constraint, such that covering all of these virtual settings
obtains a full coverage under DC.

For instance, the virtual option vo; in our running
example has four virtual settings: {01 A 02, =(01 A 02),
(01 A o2) A (03 V o4), (01 Aoz) A—(o3V o04)}. The first
two settings are respectively for covering the true and
false branches of the decision 07 A 02 and the last two
settings are respectively for covering the true and false
branches of the decision o3 V 04 while taking the guard
condition 05 A 02 into account. Similarly, vo, has four
virtual settings: {05, —05, 05 A 06, 05 A =06 }.

Not all virtual settings of a virtual option may be
valid due to some conflicting settings required for the
actual configuration options that appear multiple times
in the same if-then-else directive. Since each virtual
setting is expressed as a constraint, an invalid virtual
setting can be marked and filtered out by determining
whether or not the respective constraint is satisfiable.
That is, a virtual setting is invalid, if the respective
constraint is not satisfiable. Clearly, covering invalid
virtual settings is not required to achieve full cover-
age. Consequently, in the remainder of the paper, the
term “virtual setting” is used to refer to valid virtual
settings.

Definition 13. A ¢-combination is a combination of vir-
tual settings for a combination of t distinct virtual options,
which is expressed by joining the respective constraints with
the AND logical operator.

As was the case with virtual settings, a t¢-
combination is invalid, if the respective constraint is
not satisfiable. In the remainder of the paper, the
term “¢-combination” is used to refer to valid t-
combinations.

Note that each t-combination represents an interac-
tion that can be tested. Going back to our running
example and considering that ¢ =2, some example
2-combinations for the virtual options vo; and wvos
are: (01 Aoz) A (05), testing the interaction between
the true branches of the decisions at lines 1 and 6;
and ((01 A o2) A —(03 V 04)) A (0g), testing the interac-
tion between the false branch of the decision at line 2
and the ¢rue branch of the decision at line 7.

Definition 14. Given a set of virtual configuration op-
tions, their virtual settings, and a coverage strength t, t-
way structure-based coverage criterion Ko marks
all valid t-combinations for coverage.

Definition 15. Given a set of virtual configuration options,
their virtual settings, and a coverage strength t, a t-way
structure-based F-CIT object is a set of actual system

11

TABLE 2: Information about the subject applications used in Study 1.

actual virtual valid valid valid
sut version description options options 1-combins 2-combins 3-combins
mpsolve 2.2 Mathematical solver 14 4 30 296 1104
dia 0.96.1 Diagramming application 15 11 42 734 7170
irissi 0.8.13 IRC client 30 11 70 2102 36056
xterm 243 Terminal emulator 38 31 78 2871 66497
parrot 0.9.1 Virtual machine 51 29 152 10359 426194
gimp 3.25 Vector graphics editor 79 28 198 16438 794050
pidgin 2.4.0 M 53 43 199 17857 986926
python 2.6.4 Programming language 68 49 210 21180 1368012
xfig 2.6.8 Graphics manipulator 79 48 237 26985 1969006
vim 7.3 Text editor 79 49 239 27442 2019176
sylpheed 2.6.0 E-mail client 84 48 258 31597 2451586
cherokee 1.0.2 Web server 97 28 272 32530 2318986

configurations, in which each t-combination selected by
Kstruct 1s covered by at least one configuration.

In this context, an actual system configuration is
said to cover a t-combination, if the configuration is
consistent with the respective constraint.

Note further that the coverage strength ¢ in Kgtpyct
can be 1, which simply marks the virtual settings of all
the virtual options for coverage. Therefore, covering all
valid 1-combinations (i.e., all virtual settings) guaran-
tees to obtain full coverage under DC. Consequently, 1-
way structure-based F-CIT objects are the same/similar
combinatorial objects we introduced in our short pa-
per [12], but expressed in F-CIT, demonstrating the
expressiveness of F-CIT.

One issue with the 1-way structure-based F-CIT
objects, however, is that they don’t take the inter-
actions between structurally isolated if-then-else di-
rectives into account. Take the 1-way structure-based
object given in Figure 1d as an example, although a
DC-adequate test suite, it does not, for example, test
the interaction between the ¢rue branch of the decision
01 N 02 (line 1) and the false branch of the decision o5
(line 6).

This issue, which was not addressed in our previous
work [12], can now easily be handled in F-CIT by sim-
ply increasing the strength of Kg¢ryct, demonstrating
the flexibility of F-CIT by generalizing the coverage
criterion introduced in [12]. Going back to our running
example in Figure 1 and considering that t = 2, Kgryet
selects 4 x 4 = 16 2-combinations for vo; and vos, cov-
ering all the pairwise interactions between the settings
of these virtual options.

5.1.2 Study setup

For the evaluations, we used 12 subject applications.
Each application had a number of binary compile-time
configuration options implemented by using prepro-
cessor directives. Table 2 provides information about
these subject applications. The columns of this table

TABLE 3: Percentages of the if-then-else directives
(one per virtual option) that are of cyclomatic
complexity 2, 3, 4, 5, and > 6.

cyclomatic complexity
sut 2 3 4 5 >6
mpsolve 0 50 0 0 50
dia 9.09 63.64 2727 0 0
irissi 0 36.36 36.36 0 2727
xterm 54.84 2581 645 645 645
parrot 2414 3793 1379 690 17.24
gimp 0 5714 1071 2857 3.57
pidgin 233 5349 2558 930 9.30
python 816 6327 1633 4.08 8.16
xfig 2.08 50 20.83 14.58 12.50
vim 408 4898 2041 1429 1224
sylpheed | 1042 56.25 833 625 18.75
cherokee | 3.57 3214 1429 714 4286

respectively present the subject applications, their ver-
sions and descriptions, the numbers of actual compile-
time options they have, the numbers of virtual op-
tions extracted, and the numbers of 1-, 2- and 3-
combinations selected by our structure-based coverage
criterion. Note that since we were not aware of any
inter-option constraints for these subject applications,
all possible combinations of option settings were con-
sidered to be valid. Furthermore, to give an idea about
the structural complexities of the virtual options we
extracted, Table 3 presents the percentages of the vir-
tual options that are of cyclomatic complexities of 2,
3, 4, 5, and > 6, respectively. Throughout the paper
cyclomatic complexities are computed on a per virtual
option basis by using Radon [28] — a tool to compute
various code metrics.

All the experiments, unless otherwise stated, were
repeated 5 times and carried out on Google Cloud
using Intel Xeon CPU 2.30GHz machine with 4 GB of

RAM, running 64-bit Ubuntu 17.10 as the operating
system.

5.1.3 Applying standard CIT

Modeling. The very first observation we make is that
standard covering arrays cannot be used (as they are)
with virtual options because the settings of virtual
options are constraints, rather than discrete values as
is the case with standard covering arrays. For example,
one setting for vo; is (01 A 02) A (03 V 04) and another
is (01 A 02) A =(03 V 04). To the best of our knowl-
edge, there is no standard covering array constructor
that can take constraints as settings. Note that these
virtual settings cannot be expressed as constraints in
standard constructors either, because such constraints
are globally enforced and virtual settings can conflict
with each other, which prevents the creation of any
covering arrays (Section 2).

An alternative approach can be to create a standard
covering array for the actual configuration options to
obtain full coverage under Kyy¢. This, however, may
unnecessarily increase the number of configurations
required. For example, the standard 2-way covering
array given in Figure 1b obtains only 38% coverage un-
der the 2-way Kipyet criterion (covering only 9 out of
24 2-combinations). Since the maximum number of ac-
tual configuration options involved in a 2-combination
is 6 in this example, a 6-way covering array needs to
be used to guarantee full coverage. This, however, is
the same as exhaustive testing. Indeed, using variable
strength covering arrays as an alternative, also suffers
from the same issue.

Next, to demonstrate that the CIT problem defined in
this study is indeed different than the ones addressed
by standard covering arrays, which justifies the need
for a different constructor to guarantee full coverage in
an efficient and effective manner, we apply standard
CIT on the subject applications in Table 2.

Evaluations. We first observed that since standard
covering arrays do not necessarily take the complex in-
teractions between configuration options into account,
they, especially in the presence of tangled options,
either fail to obtain full decision coverage or require
excessive number of test cases [26], [12].

More specifically, we first created standard 2-way
and 3-way covering arrays for our subject applications
and measured the ¢-way structure-based coverage they
provided for ¢ = 1, 2, and 3. The experiments for ¢t = 1
and 2 were repeated 30 times, whereas those for ¢t = 3
were repeated 5 times as measuring the coverage for
higher strengths was costly. The average sizes of the
standard 2-way and 3-way covering arrays created
were 13.74 and 36.78, respectively.

Standard covering arrays did not even guarantee
DC adequacy, i.e., 1-way structure-based coverage (Ta-
ble 4). More specifically, in about 58% (14 out of 24)

12

TABLE 4: Percentages of the 1-, 2-, and
3-combinations covered by standard 2- and 3-way
covering arrays. The experiments were repeated 30

times.
standard 2-way CA standard 3-way CA
sut % of t-combinations % of t-combinations
covered covered

t=1 t=2 t=3 t=1 t=2 t=3
mpsolve 100 55 23 100 83 56
dia 99 39 18 100 46 27
irissi 100 36 11 100 49 22
xterm 97 49 29 98 55 38
parrot 90 29 8 94 33 15
gimp 95 36 14 98 47 21
pidgin 99 23 11 100 25 17
python 98 31 12 99 36 18
xfig 99 31 12 100 35 18
vim 99 30 11 100 34 18
sylpheed 97 39 16 98 45 25
cherokee 99 21 5 100 28 10

TABLE 5: Percentages of valid 1-combinations of
various cyclomatic complexities covered by standard
t-way covering arrays.

standard ¢-way

cyclomatic | covering arrays
complexity | t=2 t=3
2 100.00 | 100.00

3 100.00 | 100.00

4 98.96 | 100.00

5 98.17 99.84

> 6 94.17 97.28

of the experimental setups, standard covering arrays
could not obtain full DC coverage. Overall, the DC cov-
erages achieved were 97.58% and 99.08%, on average,
for t = 2 and 3, respectively.

Furthermore, the higher the strength of the structure-
based criterion, the more the required combinations
were missing from the standard covering arrays (Ta-
ble 4). Overall, the 2- and 3-way standard covering
arrays, while respectively covering 34.92% and 43.00%
of all the 2-combinations, achieved 14.17% and 23.75%
coverage of the 3-combinations.

Similarly, the more the cyclomatic complexity of the
virtual options, the more the required combinations
were missing (Table 5). For example, standard 2-way
covering arrays, on average, covered 100.00%, 100.00%,
98.96%, 98.17%, and 94.17% of the 1-combinations for
the virtual options with cyclomatic complexities of 2,
3,4, 5, and > 6, respectively.

We have then created higher strength as well as
variable strength covering arrays. For the former, we
determined the maximum number of distinct config-
uration options that appear in a ¢-way virtual option
combination and used it as the strength of the stan-
dard covering array. For the latter, we determined the
number of distinct configuration options that appear

TABLE 6: Using standard covering arrays to
guarantee full coverage under structure-based
coverage criterion. The columns indicate the subject
application, the coverage strength of the standard
covering array computed together with the average
construction time and size obtained by repeating the
experiments 3 times for 1-, 2-, and 3-way
structure-based CIT, respectively. The symbol -’
marks experimental setups, for which the standard
constructor failed with an “out of memory” exception.

13

TABLE 7: Using variable strength covering arrays to
guarantee full coverage under structure-based
coverage criterion. The columns indicate the subject
application and the average construction time and
size of the variable strength covering arrays
computed for 1-, 2-, and 3-way structure-based CIT,
respectively. The experiments were repeated 3 times.
The symbol ’-" marks experimental setups, for which
the standard constructor failed with an “out of
memory” exception.

in each t-way virtual option combination and used
it as the coverage strength to be satisfied for these
configuration options. All of the covering arrays in
these experiments were computed by using ACTS [29]
and the experiments were repeated 3 times.

Tables 6-7 present the results we obtained. In 75% (27
out of 36) of the experimental setups for computing
fixed-strength covering arrays and in 28% (10 out of
36) of the experimental setups for computing vari-
able strength covering arrays, the standard constructor
(ACTS) failed with an “out of memory” exception.
The tables, therefore, present only the experiments, in
which we were able to compute a covering array using
the standard constructor. Although the covering arrays
we could compute achieved full coverage, they did so
at the expense of excessive number of configurations.
For comparisons, the interesting reader can refer to
Table 8 to check the sizes of the F-CIT objects computed
for the study.

5.1.4 Applying F-CIT
Modeling. We have defined the F-CIT model as
M =< P,D,C >, where P is the set of variables rep-
resenting the actual configuration options; D is their
respective domains, i.e., the settings that the actual
configuration options can take on; and C is the model
constraint (if any) invalidating certain combinations
of option settings. Each F-CIT testable entity then
naturally corresponded to a valid ¢-combination to
be covered (Definition 13) and each F-CIT test case
naturally corresponded to a configuration, in which
every actual configuration option has a valid setting.
We have also used the seeding mechanism of F-CIT
(Section 4.3) in this study to combine multiple coverage

t-way standard covering arrays created for structure-based CIT variable strength covering arrays created for structure-based CIT

sut 1-way structure- 2-way structure- 3-way structure sut 1-way structure- | 2-way structure- 3-way structure-

based CIT based CIT based CIT based CIT based CIT based CIT

t time size t time size t time size time size time size time size
mpsolve 2 0.34 10 4 033 54 6 056 272 mpsolve 0.29 8 0.41 47 0.88 252
dia 3 0.36 26 5 046 134 7 097 608 dia 0.32 8 0.42 48 0.79 202
irissi 4 0.90 82 7 - - 9 - - irissi 0.33 16 0.99 323 554.99 3217
xterm 9 - -1 12 - -1 15 - - xterm 0.54 512 | 12.05 4187 - -
parrot 10 - -1 15 - -1 18 - - parrot 5.49 3750 - - - -
xfig 6 - _ 9 - _ 112 _ - xfig 364.78 585 - - - -
python 5 616.80 299 9 - -l 12 - - python 0.40 32 4.70 845 6319.56 13350
pidgin 8 - -l 11 - -l 14 - - pidgin 0.44 256 | 15.90 3447 - -
gimp 5 -1 10 - -1 15 - - gimp 0.41 32 6.07 730 4317.48 8908
vim 5 T) T }) vim 041 36 | 4.82 718 | 43198.74 9037
sylpheed | 10 - - | 16 - - | 20 - - sylpheed | 19.62 5062 - - - -
cherokee | 4 7377 130 | 7 - -1 10 - - cherokee 043 18 - - - -

criteria. In particular, to construct 1-way structure-
based F-CIT objects in some experiments, we used
standard 2-way or 3-way covering arrays computed for
the actual configuration options, as seeds. By doing so,
we effectively computed ¢t-way DC-adequate covering
arrays, which not only covered all t-way combinations
of actual option settings, but also achieved DC ade-
quacy.

To further demonstrate that the very same seeding
mechanism can also be used to incrementally compute
F-CIT objects — a well-known approach for computing
standard covering arrays [30], we have used lower
strength structure-based F-CIT objects as seeds to com-
pute higher strength F-CIT objects.

Cost. To extract virtual options from source code, we
used cppstats, which is a static analysis tool for ana-
lyzing C/C++ preprocessor-based variability in highly
configurable systems [31]. The tool parsed the if-then-
else directives into an XML-based tree representation.
We then simply traversed the representation to identify
the elements that corresponded to virtual options. An
if-then-else directive, which was not structurally con-
tained in another if-then-else directive simply became
a virtual option. Once a virtual option was found, we
traversed the respective tree to determine the virtual
settings, i.e., visiting the decisions in the possibly
nested if-then-else directive. For each decision d with
a guard condition g, two virtual settings were created:
gAdand g A —~d. All told, developing a generic script
to carry out these steps took about 10 hours.

We have integrated our constructors given in Algo-
rithms 1 and 2 with SATisPy [32], which is a Python
library that interfaces with various SAT solvers, such
as MiniSat [33]. Since the decisions in the source code

14

TABLE 8: Information about the structure-based F-CIT objects created. The symbol "*" marks the experimental
setups, in which the generate-and-cover constructor timed out after six days. The experiments were repeated 5

times.
1-way 2-way 3-way

generate- cover-and- generate- cover-and- generate- cover-and-

and-cover generate and-cover generate and-cover generate
sut time size | time size time size time size time size time size
mpsolve 0.37 3.00 0.31 3.00 17.61 15.20 2.07 14.00 221.54 93.40 11.99 39.80
dia 0.37 4.40 0.34 4.20 16.35 19.60 226 19.40 482.35 131.80 24.79 70.60
irissi 0.69 4.00 0.66 4.00 7421 2520 | 13.16 24.20 8461.64 316.40 139.32 109.20
xterm 0.61 4.20 0.58 4.20 50.54 19.80 574 21.20 7025.89 271.60 92.54 79.00
parrot 2.03 10.00 195 10.00 877.18 57.80 | 46.65 55.80 | 206682.44 841.33 | 1070.67 317.40
gimp 2.45 8.20 2.27 8.00 825.78 49.80 | 67.11 48.00 | 457184.81 99850 | 1645.61 272.80
pidgin 2.26 4.40 2.29 4.40 788.98 34.00 | 31.82 33.40 * * 628.75 172.00
python 2.16 4.80 2.07 4.40 743.89 36.00 | 28.68 34.60 * * 932.46 187.00
xfig 2.81 5.80 2.74 6.00 | 1355.77 46.00 | 78.54 45.80 * * | 2311.84 270.00
vim 2.82 6.40 2.69 6.20 | 1357.64 48.60 | 56.47 48.60 * * |1 1679.70 291.20
sylpheed 3.18 6.00 3.04 6.60 | 1737.00 49.20 | 7820 47.40 * * | 272460 279.20
cherokee 3.59 5.00 3.53 5.00 | 2792.24 4540 | 79.89 45.00 * * | 209594 252.40

were already expressed as Boolean expressions and
since the virtual settings (thus, the testable entities)
were simply obtained by joining these expressions (or
their negations) with the AND logical operator, the
integration step took about 1 hour. Most of this time
was, indeed, spent for developing simple syntactic
transformations to match the input format of the solver.
Furthermore, since all the testable entities in this study
are expressed in Boolean logic, the SATisPy solver,
which we opted to use in the first place due to its ease-
of-use, can easily be replaced with any other SAT or
CSP solver.

Evaluations. The ¢-way structure-based F-CIT ob-
jects we computed in this study covered all the re-
quired t-combinations by construction. Furthermore,
the cover-and-generate constructor generally per-
formed better than the generate-and-cover constructor
in reducing both the sizes and the construction times
(Table 8). We, therefore, ran the generate-and-cover
constructor with a time-out period of six days per
construction. Overall, the cover-and-generate construc-
tor reduced the sizes by an average of 2%, 77%, and
66%, while at the same time reducing the construction
times by an average of 3.31%, 95.39%, and 99.56%,
when ¢t =1, 2, and 3, respectively. Note further that
in 16.67% (6 out of 36) of the experimental setups,
te generate-and-cover constructor timed out (Table 8).
We, therefore, focus on the results obtained from the
cover-and-generate constructor in the remainder of this
section.

As expected, the higher the coverage strength, the
larger the size and the construction time of the
structure-based F-CIT objects tended to be. More
specifically, the average sizes were 5.50, 36.45, and
195.05 with the average constructions times of 1.87,
40.88, and 1113.18 seconds for 1-, 2-, and 3-way
structure-based F-CIT objects, respectively.

TABLE 9: Information about the t-way DC-adequate
covering arrays created by computing 1-way
structure-based F-CIT objects using t-way standard
covering arrays as seeds. The column "+cfgs.” reports
the average numbers of additional configurations
needed. The experiments were repeated 5 times.

using 2-way standard using 3-way standard
CAs as seeds CAs as seeds

sut generate- cover-and- generate- cover-and-

and-cover generate and-cover generate
constructor constructor constructor constructor
time +cfgs. [time +cfgs. | time +cfgs [time size
mpsolve 0.72 0.00 | 0.61 0.00 | 0.70 0.00 | 0.60 0.00
dia 0.47 0.00 | 0.42 0.00 | 0.45 0.00 | 0.40 0.00
irissi 1.07 1.00 | 0.83 1.00 | 1.05 0.00 | 0.83 0.00
xterm 0.74 3.80 | 0.86 1.00 | 0.77 0.00 | 0.92 0.00
parrot 3.84 1240 | 353 7.00 | 425 6.00 | 414 5.00
gimp 568 1220 | 3.98 3.00 | 6.28 460 | 463 2.00
pidgin 2.53 1.00 | 3.09 1.00 | 271 0.00 | 331 0.00
python 3.82 5.00 | 3.51 2.00 | 3.85 0.00 | 3.61 0.00
xfig 4.23 3.00 | 4.24 1.00 | 441 0.00 | 420 0.00
vim 3.72 3.40 | 412 3.00 | 3.64 0.00 | 4.14 0.00
sylpheed | 5.08 3.40 | 457 2.00 | 571 1.00 | 5.02 1.00
cherokee | 5.80 3.00 | 6.12 1.00 | 6.22 1.00 | 613 1.00

Computing t-way DC-adequate covering arrays. Note
that as the ultimate goal of the structure-based F-CIT
objects is to obtain full coverage under the Kiipyet
coverage criterion, they may not cover all the standard
t-tuples. For example, the 1-way structure-based F-
CIT objects we generated covered 67.33% and 40.00%
of all the 2- and 3-tuples, on average, respectively.
The numbers were 94.33% and 86.33% for the 2-way
structure-based and 95.17% and 91.75% for the 3-way
structure-based F-CIT objects.

One good thing about having a seeding mechanism
in F-CIT is that it can be leveraged to satisfy multiple
coverage criteria. For example, one way to obtain t-
way DC-adequate covering arrays, i.e., standard ¢-way
covering arrays that guarantee full DC coverage, is

15

TABLE 10: Using structure-based F-CIT objects as seeds to cover the missing 2- and 3-tuples by computing
standard covering arrays. The column "+cfgs.” reports the average numbers of additional configurations
needed. The experiments were repeated 5 times.

standard 2-way CA standard 3-way CA
sut using t-way structure-based objects as seeds using t-way structure-based objects as seeds
t=1 t=2 t=3 t=1 t=2 t=3

time +cfgs. | time +cfgs. | time +cfgs. | time +cfgs. | time +cfgs. | time +cfgs.
mpsolve | 0.07 7.00 | 0.06 240 | 0.06 0.80 | 007 19.40 | 0.08 13.20 | 0.07 8.40
dia 0.06 6.80 | 0.07 2.00 | 0.07 2.00 | 008 1880 | 0.08 11.60 | 0.08 9.20
irissi 0.07 8.80 | 0.08 2.00 | 0.10 2,00 | 016 2780 | 016 16.60 | 023 34.80
xterm 0.08 9.00 | 0.09 700 | 0.13 700 | 024 3120 | 024 2520 | 031 2440
parrot 0.10 840 | 0.14 440 | 024 400 | 041 3440 | 048 21.20 | 066 18.00
gimp 015 1080 | 0.22 820 | 0.35 780 | 097 3980 | 1.19 3040 | 147 28.20
pidgin 0.10 10.00 | 0.12 7.00 | 0.21 700 | 042 3540 | 046 2460 | 0.69 29.80
python 013 1040 | 0.19 5.00 | 0.27 500 | 072 3860 | 070 2420 | 119 58.60
xfig 0.16 10.80 | 0.22 3.00 | 0.34 3.00 | 1.04 40.00 | 1.05 21.00 | 1.43 23.60
vim 015 11.00 | 0.20 3.00 | 0.34 3.00 | 097 4020 | 1.10 20.80 | 1.40 24.00
sylpheed | 0.16 10.60 | 0.22 4.80 | 0.39 480 | 125 41.00 | 1.48 24.00 | 1.65 26.00
cherokee | 0.19 12.00 | 0.27 740 | 0.48 680 | 1.73 4380 | 224 29.80 | 226 26.00

TABLE 11: Information about the 3-way
structure-based F-CIT objects created by using 2-way
structure-based F-CIT objects as seeds. The
experiments were repeated 5 times.

generate-and—cover cover—and—generate

constructor constructor

sut

time si1ze time size

mpsolve 45.75 30.00 49.78 34.00
dia 152.62 58.20 65.38 59.60
irissi 2050.65 97.60 1029.66 92.00
xterm 594.90 73.20 167.30 71.60
parrot 18647.29 278.40 4103.58 279.60
gimp 12679.40 216.40 5563.53 215.80
pidgin 52514.79 158.80 30171.88 157.20
python 38510.67 170.40 16897.34 168.20
xfig 59537.75 230.40 14543.20 222.40
vim 67225.58 258.20 19227.10 247.80
sylpheed 117420.77 236.00 67550.43 243.80
cherokee 161779.40 211.20 57712.16 208.40

to use standard t-way covering arrays as seeds to
compute 1-way structure-based F-CIT objects.

To demonstrate the feasibility of this approach, we
generated 2- and 3-way DC-adequate covering arrays
(Table 9). We observed that 1-way structure-based F-
CIT objects turned the standard covering arrays into
DC-adequate test suites with little increases in both the
sizes and the construction times. The average numbers
of additional configurations required on top of the
standard 2-way and 3-way covering arrays were 1.83
and 0.75, respectively, with the additional construction
times of 2.99 and 3.16 seconds, on average.

Note that using structure-based F-CIT objects as
seeds to compute standard covering arrays is also
possible. To demonstrate the feasibility, we used, 1-,
2-, and 3-way structure-based F-CIT objects as seeds
to compute 2- and 3-way standard covering arrays

TABLE 12: Information about the 4-way
structure-based F-CIT objects created. Due to the cost,
the experiments were repeated only once.

valid
sut 4-combins time | size
mpsolve 1344 16.24 62
dia 32346 111.32 197
xterm 615994 576.92 281
irissi 395504 2067.48 442
pidgin 15293336 16772.38 751
python 19856465 16958.23 869
gimp 14678226 42706.50 | 1293
parrot 7587625 | 19631.76 | 1482
cherokee 47087747 90360.34 | 2300
sylpheed 81732014 | 111090.57 | 3040
xfig 76405845 | 149335.77 | 3987
vim 76661558 96900.90 | 4340

(Table 10). The average numbers of additional con-
figurations required on top of the 1-, 2-, and 3-way
structure-based F-CIT objects were 21.92, 13.28, and
15.18, respectively, with the additional construction
times of 0.40, 0.46, and 0.60 seconds, on average.

Incrementally computing structure-based F-CIT objects.
Another use of the seeding mechanism is to leverage
lower strength F-CIT objects as seeds for computing
higher strength F-CIT objects. To demonstrate the fea-
sibility, we used 2-way structure-based F-CIT objects as
seeds to compute 3-way structure-based F-CIT objects.
The results of these experiments can be found in
Table 11.

Computing 4-way structure-based F-CIT objects. Last
but not least, we have run our cover-and-generate
constructor for ¢t = 4. Table 12 presents the results we
obtained. Overall, the minimum, the average, and the
maximum sizes of the 4-way structure-based F-CIT
objects we computed were 62, 1587, and 4340 with

the construction times of 16.24, 45544, 03, and 96900.90
seconds respectively.

5.1.5 Discussion

Standard covering arrays and structure-based F-CIT
objects clearly employ different coverage criteria. We,
therefore, do not claim that the F-CIT constructors
developed in this work performed better than the
standard CIT constructor used in the study. We rather
demonstrate that a different CIT constructor is indeed
needed to obtain full coverage under the structure-
based coverage criterion in an efficient and effective
manner. Had the existing constructors addressed the
structure-based CIT problem in an efficient and effec-
tive manner, there would be no need for F-CIT.

5.2 Study 2: Order-Based CIT

In this study, we use graphs to model the input spaces
of software systems, which we believe can address
many interesting test scenarios, such as the ones that
arise during the systematic testing of event-driven
systems as well as multi-threaded applications. We first
define the model of the input space in an abstract
manner and briefly discuss two scenarios in which the
same or similar models have been used for testing, then
present a number of coverage criteria for which CIT
can be used to satisfy and discuss the shortcomings of
the state-of-the-art CIT approaches, and finally present
how F-CIT overcomes these shortcomings.

The model of interest in this study, in its simplest
form, is a directed graph G = (V, E,vg,v), where V
is a set of nodes; E is a set of ordered pairs of the
form (v,w), representing a directed edge from node
veV tonode weV;and vg € V and v; € V are
two distinguished nodes, namely the entry and the exit
node. The entry node has an in-degree of 0 and the
exit node has an out-degree of 0. Furthermore, all the
nodes are reachable from the entry node and the exit
node is reachable from all the nodes. Figure 2 presents
some example models.

Given a graph-based model, one high-level testing
objective is to generate test cases to satisfy some struc-
tural coverage criterion, such as exercising every node
and/or edge at least once [34]. When graphs are used
as a model, however, the coverage criterion is often
concerned with the order of the entities (e.g., nodes and
edges) to be tested. For Figure 2a, one such criterion for
example, would be to generate a set of paths from the
entry node to the exit node, such that every valid order
of two (not necessarily distinct) nodes is covered (not
necessarily in a consecutive manner) by at least one
path. Given this criterion, some example orders to be
covered for Figure 2a are: [vs,v4], [v1,v6), [s, V6], and
[v6, Us], which can all be covered (together with other
orders) by the path (vo,v1,vs,v4, vs5, 6, U5, vg, v1). On

16

©
o
/

©) G@\Q 5 2
OROROROROR0)
e

¢
©

(a) (b) (c)
Fig. 2: Example graph-based models.

the other hand, [vy, v3] and [vg, v4] are not valid orders
since no paths can include them.

The same and similar graph-based models and cov-
erage criteria have indeed been used for software test-
ing. For example, in systematic testing of event-driven
systems, such as graphical user interfaces (GUIs),
graph-based models can capture the flow of events
in the form of event sequence graphs [35] or event-flow
graphs [36], [35], where each node represents an event
and a directed edge from v; to v, indicates that event
ve can follow event v;. In this context, an event is
considered as an environmental or a user stimulus
that from the perspective of testing can be mimicked
by a test case. Since the behavior of an event-driven
system often depends on the order, in which the events
are processed, testing such a system typically involves
validating the system response under different event
orders.

Another domain, in which graph-based models have
been used for testing, concerns the systematic testing of
multi-threaded applications. In this domain, the model
of a thread captures all sequences of “atomic blocks”
that might be traversed through the thread during its
execution [37], [38]. In the remainder of the paper, the
aforementioned models are referred to as atomic block
flow graphs (AFGs).

Each node in an AFG represents an atomic block
and the edges connecting the nodes represent the
possible execution sequences of atomic blocks. For
the programs adhering to a strict mutual-exclusion
locking principle [38], an atomic block is defined as
a code segment from one lock exit to the subse-
quent lock exit. And, a lock exit in this context cor-
responds to the release of a lock previously acquired

for a synchronized code segment [38], [39], [40]. For
such programs, testing approaches aim to reveal non-
deadlock errors, namely afomicity-violation and order-
violation errors. Atomicity-violation errors occur when
a sequence of operations that need to be carried in an
atomic manner is erroneously divided into multiple
atomic blocks, such that the atomicity of the entire
operation cannot be guaranteed. Order-violation errors
occur when an implicit execution order between two
groups of atomic blocks is assumed, but not enforced,
e.g., thread A is assumed to start before thread B. To
detect these errors, different orders of atomic blocks
need to tested.

Note that for these and similar scenarios, since a test
case (e.g., a path from the entry node to the exit node)
can cover more than one order, the number of test cases
to obtain full coverage under a given coverage criterion
can be reduced by carefully constructing the test cases.
Consequently, CIT approaches can be of practical help.

With standard covering arrays, however, the order of
parameter values in a test case is assumed to have no
effect on the fault revealing ability of the test case. For
example, given a software configuration, such as the
ones studied in Section 5.1, any permutation of the op-
tion settings constituting the configuration, covers ex-
actly the same set of option setting combinations, thus
all these permutations should detect the same faulty
interactions. For the scenarios we are interested in this
study, however, the order matters. Consequently, the
types of CIT objects we need in this study are quite
different than the one we have computed in Section 5.1.

5.2.1

To take the orders into account, a different type of
covering array, called a sequence-covering array, was
defined in [41] and a number of interesting order-
based coverage criteria were presented in [9]. In this
study, we improve on these works by making both the
coverage criteria and the construction approach take
the reachability constraints imposed by a given graph-
based model into account. Further discussion on this
can be found in Section 5.2.3.

Coverage criterion

Definition 16. Given G = (V,E,vp,v,), a path is
an ordered sequence of mnodes (vj,,...,v;,), such that
(vi;,vi;,,) € E for 1 <j<n.

Definition 17. Given G = (V, E,vg,v), a test case is a
path from vy to v,

For a given test case p of length n, let p;, where 0 <
i < n, be the node located at position 4 in the test case,
such that py = vg and p,, = v, .

Definition 18. Given G = (V,E,vg,v), a t-order
[Viy, .-, v3,), Where v, €V for 1 < j < t, is an ordered
tuple of not-necessarily-distinct t nodes, such that there

17

exists a test case p, in which the nodes [v;,, ..., v;,] appear
in the order they are given (not necessarily in a consecutive
manner, though). A test case p of length n, such that
Pm; =vi; and 0 < myp < mg < --- < my < n for
1< j <t,is said to cover the t-order [v;,,...,v;,].

For instance, for the graph given in Figure 2a, [v1, v2]
and [v1,vg], which are both covered by the test case
(vo,v1,v2, V5, Vg, V1), are examples of 2-orders, whereas
[v2,v3] is not a 2-order, since there is no path from vy
to vs.

Definition 19. Given G = (V, E,vg, v,), a consecutive-t-
order [v;,,...,v;,] is a t-order, such that there exists a test
case p of length n, where v;; € V and pp,; = v;, for 1 <
j<tand mpy1 =my+1forl <k <t ie, [vi,...,0;]
is a subpath in path p. Such a test case p is said to cover
the consecutive-t-order [v;,, ..., v;,].

For instance, for the graph given in Figure 2a,
[v1,v2], [vs,vs5], and [ve,ve], which all appear as sub-
paths in (v, v1, v2, Vs, Vg, Us, Vg, U, V1), are examples of
consecutive-2-orders, whereas [vi,v6], although a 2-
order, is not a consecutive-2-order, as there is no edge
from v; to wvg.

Definition 20. Given G = (V,E,v,v.), a non-
consecutive-t-order [v;,,...,v;,] is a t-order, such that
there exists a test case p of length n, where v;; € V and
Pm; =vi; for 1. < j < t, and myy —my > 1 for at
least one 1 < k < t. Such a test case p is said to cover the
non-consecutive-t-order [v;,, ..., v;,].

For Figure 2a, [vi,vs5] is an example of a non-
consecutive-2-order, because there is at least one path,
e.g., (vo,v1, 2,05, V6, v,), where the nodes constituting
the order can appear in a non-consecutive manner. On
the other hand, [vs, v4], although a 2-order, is not a non-
consecutive-2-order, because all the paths including
this order have it in a consecutive manner.

Based on these definitions, we define the four cov-
erage criteria given below (inspired from [9]). We call
this order-based CIT.

Definition 21. Given G = (V, E, v, v), a set of test cases
T is t-order adequate, if and only if for every t-order in
G, there exists at least one test case in T, which covers it.

Definition 22. Given G = (V, E, v, v,), a set of test cases
T is t-cover adequate, if and only if for every consecutive-
t-order in G, there exists at least one test case in T, which
covers it.

Definition 23. Given G = (V, E, v, v), a set of test cases
T is tT-cover adequate, if and only if for every non-
consecutive-t-order in G, there is at least one test case in T,
which covers it.

Definition 24. Given G = (V, E, v, v,), a set of test cases
T is t*-cover adequate, if and only if T is both t-cover
adequate and t*-cover adequate.

Note that to satisfy the t-order adequacy criterion,
all possible t-orders need to be covered at least once
regardless of whether they are covered in the form
of a consecutive- or non-consecutive-t-order, whereas
to satisfy the t-cover adequacy criterion all possible
t-orders that can be covered in a consecutive manner
need to be covered in the form of a consecutive-t-order.
Similarly, to satisfy the ¢"-cover adequacy criterion,
all possible t-orders that can be covered in a non-
consecutive manner need to be covered in the form
of a non-consecutive-t-order. Finally, t*-cover adequacy
criterion is different than the t-order adequacy crite-
rion, because when a t-order can be covered both in a
consecutive and non-consecutive manner, the t*-cover
adequacy criterion guarantees that it is covered in the
form of both consecutive- and non-consecutive-¢-order,
whereas for the t-order adequacy criterion covering it
in either way is enough.

5.2.2 Study setup

In this study, we used 171 AFGs (atomic block flow
graphs) obtained from Apache ActiveMQ v5.9.1 [42]
— a high-performance, open source message oriented
middleware — to evaluate the proposed approach.
We unrolled the cycles in these graphs once to
get acyclic graphs, which is a frequently used ap-
proach in bounded model checking [43] (see Sec-
tion 5.2.4 for more details). After being unrolled, these
graphs had an average of 312.82 nodes (min = 12 and
max = 3604) and an average of 493.23 edges (min = 12
and maz = 6566). All the experiments were carried out
on the same Google Cloud platform we used in Study
1 (Section 5.1).

Note that due to the volume of the data to be
reported in this section, using tabular notations was
simply out of the question. Therefore, we opted to
present different views of the data as we see fit by
using plots, such as Figure 3, or by using summary
tables, such as Tables 13-14. The raw data can, however,
be found at https://github.com/susoftgroup /UCIT/.

In the summary tables, we first divide the experi-
ments into 4 almost equal-size partitions with increas-
ing complexity either by using the number of settings
each configuration option has (e.g., Table 15) or by
using the number of F-CIT entities to be covered (e.g.,
Tables 13 and 14). For each partition, we then report the
minimum, median, and maximum results obtained in
the partition. For a better interpretation of the results,
we also filter out the experimental setups, in which
the number of testable entities to be covered is less
than 10. Furthermore, the partitions are indicated in the
summary tables by the unique ID numbers reported
under the “part.” column.

5.2.3 Applying standard CIT

Modeling. The coverage criteria we have defined in
Section 5.2.1 are inspired from [9], which empirically

18

demonstrates that these order-based criteria are ef-
fective in detecting faults in event-driven software
systems, such as graphical user interfaces (GUISs).

On the other hand, although the aforementioned
work presents an approach to generate order-based
CIT objects for a given graph-based model, it does
not provide a systematic way of taking the reachabil-
ity constraints imposed by the underlying graph into
account during the construction of these objects. Such
constraints are rather attempted to be handled after a
CIT object is constructed with the aim of converting the
invalid test cases, which are erroneously selected due
to the overlooked-for constraints, to valid ones. How-
ever, no systematic way of carrying this post-mortem
analysis is provided in [9]. Therefore, this approach can
generate many invalid test cases, which may not be
trivially “fixed.” For example, for the model given in
Figure 2b, out of 24 possible permutations of 4 nodes
(excluding vp and v,), only one of them (4.2%) is a
valid test case, which is difficult to generate by chance.
Invalid test cases is an important issue in CIT, because
they often result in wasted testing resources [14], [15].

More specifically, the proposed construction ap-
proach in [9] uses standard covering arrays to compute
order-based CIT objects. It takes as input a set of e
events, a coverage strength ¢, and a predetermined
length [for the test cases to be generated (i.e., only
fixed-length test cases can be generated) and as out-
put computes a standard t-way covering array for !
options, each of which can take on e settings (one
distinct setting per event). For example, to compute a
2-cover-adequate CIT object for the model given in Fig-
ure 2a, the aforementioned approach would generate a
standard 2-way covering array for 6 options (because
the minimum length of a test case to guarantee the
coverage of all consecutive-2-orders is 6), each of which
has 6 settings (because the number of nodes except for
vg and v is 6).

Evaluations. We used the aforementioned construc-
tion approach [9] to obtain full coverage under the
order-based coverage criteria for the graphs discussed
in Section 5.2.2. To this end, given a graph with e
nodes, we, in an attempt to make sure that every
requested order can be covered, used the longest path
length [in the graph as the fixed-length. Note that this
approach requires us to fix the length of the test cases
to be generated. Consequently, the problem of covering
different types of t-orders, independent of the actual
coverage criterion used, was turned into a problem
of computing a standard t-way covering array for [
options, each of which can take on e settings. We used
ACTS [29] to compute the required standard covering
arrays. The experiments were repeated 5 times.

Table 15 presents the results we obtained. As the
graphs got larger, since the number of settings for
each option (i.e., the number of nodes e in the graph)

19

t-order 5 t-order
[0]
t=2 t=3 2 t=2 t=3
v g 150000 Y
@ 20001 . = 100000+ .
— [] L[]
@ 1000+ . J 2 50000+ o 2
‘ﬁ o1® o B * .
0l pm——enah o o] | geabT0N 0 ; D3 0 e—— e o 4-'!‘{? . .
0 O & O & O 9 o o o B 0 O O & & & o o N N
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
& & & &S S§ $ = & & S S$ $ §
S AN A R O o S A S S R O o o
N P X 0O N ® o
No of entities No of entities
t-cover - t-cover
Q
t=2 t=3 9 t=2 t=3
404 ° .o. P 1000 .o .
o® * E 75 .
[0) 30+ F XS 0 = []
N | R SRR I c 500 t Vil
(@) 0 "k"‘.. o ® po L) 2 250 % o » 0 o
1 W (] o o o . .
3 N J
oM ! ! £ 0 addu IR :
VQ Q}Q (LQ Q \QQ ‘LQQ g b(Q %0 \q/Q Q \QQ Q,QQ
" O -
No of entities No of entities
t" —cover " t" —cover
0]
t=2 t=3 2 t=2 t=3
y £ 150000 ’
© 2000 s = . .
N . c 100000+ . .
& 1000 . . 2 500001 'Y t
° * | © 0
O o
& & & &P § § $ 2 S & & § § S
N SN & & & o N EARE S & & &
N)) 0 N o) S
No of entities No of entities
t*-cover S t*-cover
Q
t=2 t=3 & t=2 t=3
- © 150000 4
€ . .
o 20001 . = 100000+ ®
N ° cC .. []
@ 10001 . ., S 50000+ ‘4
(] L 3] °
(iommenah we o #'“3 . J 3 (- ——— @0 o J'.. | |
N o o N o o o B N o o N o o o
L ¢ S & 8¢ KRN S & ¢
N P BN 0O N ® B
No of entities No of entities

Fig. 3: Results obtained for the coverage criteria given

in Definitions 21-24. The horizontal axes represent the

numbers of F-CIT entities to be covered, whereas the vertical axes depict either the average sizes of the F-CIT
objects constructed or the average construction times (in seconds), depending on the graph. The experiments

were repeated

increased, it took increasingly longer times to compute
the required covering arrays. This was indeed the
case even for relatively small option counts (i.e., small
values of I). As it was not feasible for us to generate all
the required covering arrays, we employed a threshold
value of 70 when ¢t =2 and 30 when ¢ =3 on the
number of settings an option can have. This enabled us
to cover all of the experimental setups, in which e < 70
when ¢t =2 and e < 30 when ¢t = 3. These thresholds
were chosen, such that the standard covering array

up to 5 times.

constructor had one day to compute the requested
object. Within the allocated time limits, we were able
to generate standard covering arrays for 96.49% (165
out of 171) of the models when ¢t = 2 and for 66.67%
(114 out of 171) of the models when ¢t = 3.

None of the test cases in the generated covering
arrays, on the other hand, were valid. As no systematic
approach is presented in [9] to take the reachability
constraints enforced by the underlying graphs into
account or to fix the invalid test cases in a post-mortem

20

TABLE 13: Summary statistics for the construction times (in seconds) and the sizes of the t-way order-based
F-CIT objects created for a) ¢ = 2 and (b) ¢t = 3 b. For each partition, the minimum, median, and maximum
values encountered in the partition for the metrics in the columns are reported. The experiments were
repeated up to 5 times.

part. | stat. nodes edges entities time size part. | stat. nodes edges entities time size
min 12 12 31 2 1 min 12 12 121 3 1
1 | med 44 66 61 11 5 1 | med 28 37 312 34 9
max 46 67 71 18 6 max 44 66 340 49 12
min 14 13 78 3 1 min 17 18 373 5 1
5 2 | med 34 38 123 13 3 5 2 | med 46 67 526 38 8
ke max 70 99 224 41 13 e max 70 99 1023 81 19
Q min 35 40 227 18 2 Q@ min 34 38 1329 36 3
= 3 | med 59 82 394 38 5 = 3 | med 54 69 3742 90 8
max 172 248 1020 188 26 max 172 248 14056 1612 98
min 118 150 1037 116 11 min 99 128 15196 333 24
4 | med 580 871 1936 725 54 4 | med 580 864 65389 12517 347
max 3604 6566 5215 2608 210 max 3604 6566 297308 155572 2643
min 12 12 10 3 1 min 12 12 10 4 1
1 | med 28 37 15 5 5 1 | med 28 37 20 11 4
max 44 66 17 9 5 max 54 69 24 20 9
min 19 23 18 6 2 min 20 24 25 15 3
5 2 | med 40 47 18 8 4 5 2 | med 44 66 28 29 10
> max 54 73 21 11 5 > max 50 72 30 33 11
g min 23 28 23 7 3 8 min 23 28 31 17 5
= 3 | med 69 98 30 15 5 = 3 | med 69 98 46 29 10
max 460 620 52 36 12 max 152 219 73 84 17
min 112 150 54 29 5 min 112 150 80 49 11
4 | med 580 871 83 92 11 4 | med 580 871 134 234 23
max 3604 6566 151 399 21 max 3604 6566 276 1163 42
min 12 12 30 12 1 min 12 12 121 18 1
1 | med 44 66 59 27 5 1 | med 28 37 310 60 9
max 46 67 68 39 6 max 44 66 330 82 12
min 16 18 73 27 1 min 17 18 371 39 1
3] 2 | med 34 38 114 50 3 b} 2 | med 46 67 521 74 9
2 max 71 111 222 141 13 z max 70 99 1007 156 19
7 min 35 10 241 114 2 J min 34 38 1327 160 3
- 3 | med 59 82 397 215 5 » 3 | med 54 69 3735 277 8
max 172 248 1032 722 47 max 172 248 14034 2865 98
min 118 150 1089 695 11 min 99 128 15185 1169 25
4 | med 580 871 1936 2067 55 4 | med 580 864 65389 17037 349
max 3604 6566 5200 7559 213 max 3604 6566 297294 173798 2672
min 12 12 42 15 1 min 12 12 136 22 1
1 | med 44 66 76 35 8 1 | med 28 37 338 79 16
max 46 67 86 53 8 max 44 66 346 142 18
min 16 18 88 35 2 min 17 18 401 49 3
5 2 | med 34 38 134 62 4) 2 | med 46 67 544 119 14
2 max 70 99 240 151 14 2 max 70 99 1038 175 26
*‘.‘ min 35 40 242 118 2 ;T) min 34 38 1373 182 4
+ 3 | med 59 82 409 232 6 » 3 | med 54 69 3763 394 15
max 172 248 1065 807 27 max 172 248 14144 3262 102
min 118 150 1084 644 14 min 99 128 15253 1359 32
4 | med 580 871 2029 2234 59 4 | med 580 864 65507 23023 368
max 3604 6566 5351 8383 218 max 3604 6566 297570 144652 2665

(a) (b)

manner, it is was not clear at all how to avoid and/or
fix these invalid test cases.

5.2.4 Applying F-CIT

Given a graph G = (V, E,vp,v,), which models the
input space of the system under test, an F-CIT testable
entity corresponds to a t-order, a consecutive-t-order,
or a non-consecutive-t-order to be covered, depending
on the the coverage criterion (Definitions 21-24). Then,
an F-CIT test case corresponds to a path from v, to
v, (Definition 17). Finally, the graph G, as it restricts
the orders to be covered as well as the test cases to be

generated, is expressed as the F-CIT model constraint
C.

To this end, we encode the problem of finding a
path from a source node to a sink node as a single-
source single-sink flow problem [44]. In particular, flow
on an edge (v;,v;) € E (using the terminology of flow
networks) is represented by a unique variable e;;. From
the perspective of finding a path, an edge (v;,v;) € E
is either taken, i.e., e;; = 1, indicating that there is a
flow on the edge, or not taken, i.e., ¢;; = 0, indicating
that there is no flow on the edge:

TABLE 14: Summary statistics for the construction
times (in seconds) and the sizes of the 4-way
order-based F-CIT objects computed. For each

partition, the minimum, median, and maximum
values encountered in the partition for the metrics in
the columns are reported. Due to the cost, the
experiments were repeated only once.

21

TABLE 15: Summary statistics for the construction
times (in seconds) and the sizes of the standard
covering arrays obtained by using the order-based
construction approach presented in [9]. None of the
test cases chosen by these standard covering arrays
were valid. For each partition, the minimum, median,
and maximum values encountered in the partition for
the metrics in the columns are reported. The

part. | stat. nodes edges entities time size ; .
min 12 12 274 1 1 experiments were repeated 5 times.
1 | med 28 37 1059 34 9 .
max 44 66 1432 61 10 . settings . .
in 17 18 1456 3 1 part. stat.s. options per options time size
2 | med 16 67 1735 35 6 min 13 0.38 175
g 1 med 28 12 0.64 336
el max 51 73 2866 59 15
& . >3 5 3189 5 T max 29 13 0.67 344
e o min 15 4 047 289
3 | med 44 55 19424 51 6 5 med 31 17 0.86 561
max 76 111 27601 786 191 « max 47 18 2:57 812
min 41 49 29070 35 4 1L min 73 19 074 703
min 12 12 10 2 1 min 54 38 14.99 3474
1 | med 44 55 11 3 3 4 | med 180 47 3775 6282
max 2889 4956 14 23 7 max 1153 63 43879.56 12171
min 17 138 15 3 2 min 13 9 228 2594
5 2 | med 51 70 18 6 7 1 | med 29 12 15.07 7014
z max 1703 3121 21 19 9 max 29 12 19.84 7014
9 min 19 23 23 9 5 min 15 13 3.8 6496
= 3 | med 56 80 27 16 8 2 | med 28 13 19.1 8776
max 2652 4147 39 67 15 B max 32 15 90.78 14156
min 59 82 40 19 6 - min 18 16 3.82 4096
4 | med 456 702 51 40 14 3 med 32 17 140.7 20501
max 2748 4264 143 197 26 max 47 18 760.67 28240
min 12 12 264 15 1 min 23 19 62.53 24659
1 | med 28 37 1044 81 9 4 med 33 21 410.34 38834
max 44 66 1426 129 9 max 62 27 11241.67 103923
min 17 18 1438 43 1
g 2 | med 46 67 1724 103 6
2 max 51 73 2833 140 15
_;'J min 23 28 3174 107 1
- 3 | med 44 55 19410 290 6
max 76 111 27572 1145 191 > =1 2)
min 7y 9 29046 389 ! (vo.0n)EE
4 | med 112 154 149246 3071 70
max 578 804 4360336 171050 5821 Z el = 1. (3)
min 12 12 274 20 1 (vi,v1)EE
1 | med 28 37 1059 93 11 ’
max 44 66 1432 123 13 Note that since the graph is acyclic, at most one of
min 17 18 1456 47 2 the i . d at t f th tooi d
. 2 | med 46 67 1735 112 1 e incoming and at most one of the outgoing edges
2 max 51 73 2561 172 17 | of a node can be taken, i.e., there can be a flow on at
. min 23 28 2866 119 4| most one incoming and at most one outgoing edge.
= 3 | med 40 47 19424 259 7 The fl h h de i i h d
max 7 11 27914 1539 199 e tlow through node ¢ i1s then expressed as a
min 1 19 27601 114 10 | constraint indicating that the amount of outgoing flow
4 | med 29 17 117735 2381 53 | from i is the same as the amount of incoming flow to
max 578 804 4360399 189773 5858 i
Z eri = Z eq < 1. 4)
(vg,v;)EE (vi,v))EE
Note that the source and the sink nodes are exempt
eij € {01} (1) from (4) since there is no flow into the source node and

Leaving cyclic graphs aside for the moment (which
will be discussed later on in this section), to generate
a test case, i.e., to form a flow from the source node vg
to the sink node v, one of the outgoing edges of v
and one of the incoming edges of v, must be taken:

no flow out of the sink node.

As an example, Figure 4 presents an encoding to
compute a test case, i.e., a path from vy to v, for the
graph given in Figure 2c.

To make sure that a specific order is covered by
a test case, additional constraints are needed. More

€01, €12, €13, €14, €15, €24, €34, €45, €51 € {0, 1}
€o1 — 1
€5 — 1
eor = €12 +e13+eq+exs
€12 = €24
€13 = €34
€24 + €14 + €34 = €45

€45 + €15 = €51

Fig. 4: Single-source single-sink encoding to find a
path from the entry node vy to the exit node v, in
the graph given in Figure 2c.

formally, to cover a t-order [v;,...,v;] in a graph
G = (V,E,vg,v.), the following additional constraints
are needed:

2.

(vg,vig)EE

epi, =1 for1 <s<t, 5)

which indicate that all the nodes in the requested order
must be visited. Since the graph is acyclic, the order of
visit is guaranteed.

For example, to cover the 3-order [v1, v4,v5] in Fig-
ure 2¢, the encoding in Figure 4 needs to be extended
with:

eor =1
€24 +e1a ez =1 (6)
eq45 +e15 = 1.
To cover the same order [v;,,...,v;] in a non-

consecutive manner, however, the following constraint
is required in addition to (5):

> i <t—1, @)

1<s<t

which ensures that the length of the path from v;, to
v;, is at least t.

Going back to our running example, to cover
[v1, v4,v5] In a non-consecutive manner, the following
additional constraint is required on top of (6):

e1q +eq5 < 2. (8)

If, on the other hand, the t-order [v;,,...,v;| needs
to be covered in a consecutive manner, then the fol-
lowing constraints are needed instead of (5) and (7):

€i, 1i, =1 forl<s<t,)

22

making sure that the edges between all the consecutive
pairs of nodes in the order are taken.

For our running example in Figure 4, we would need
the following additional constraints to cover [v1, v4, v5]
in a consecutive manner:

era =1 (10)
€45 — 1.

For a given graph G = (V,E,vp,v,1), we have,
therefore, defined the F-CIT model in this study as
M =< P,D,C >, where P is the set of variables, each
of which represents a distinct edge in the graph; D is
a set of sets {0,1}, one per edge, indicating whether
there is flow on the edge or not (i.e., whether the edge
is taken or not); and C is the model constraint cap-
turing the reachability restrictions in the graph. More
specifically, for a given graph, Equations 1-4 constitute
the model constraint C. For example, Figure 4 presents
the F-CIT model constraint created for the graph given
in Figure 2c. Note that, given a graph, C' stays the same
regardless of the testable entities to be covered. Each
F-CIT testable entity then corresponds to an order to
be covered (Definitions 21-24). In particular, to cover
a t-order, Equation 5; to cover a t-order in a non-
consecutive manner, Equations 5 and 7; and to cover
a t-order in a consecutive manner, Equation 9 needs
to be used. As an example, Equation 6 presents the
constraints to be used to cover the 3-order [vy, vy, vs5]
in the graph given in Figure 2c. Similarly, Equations 6
and 8 are needed to cover the same 3-order in a non-
consecutive manner. And, Equation 10 is needed to
cover it in a consecutive manner. Each F-CIT test case
then corresponds to a path from the entry node v, to
the exit node v, (Definition 17), covering a number of
required orders.

Note that we have so far been concerned with
directed acyclic graphs (DAGs). To work with cyclic
graphs, we unroll the cycles k times (for this work,
k =1), which is a frequently used approach in
bounded model checking [43]. To this end, we first con-
vert a given graph to a regular expression [45], where
all the Kleene plus operators are replaced by using the
Kleene star operator, i.e., converting a™t to aa*. We then
replace all the Kleene stars in the expression using the
bounded repetition operator, such that the respective
strings can be repeated at most £ times, i.e., converting
a* to a{0, k}. Finally, the resulting regular expression
is converted back to a graph.

For this work, we used the Vcsn tool [46] to carry
out these steps. More specifically, converting a graph
to a regular expression and a regular expression to a
graph were carried out by using a single Vcsn shell
command. And, replacing the unbounded Kleene star
operators by bounded repetition operators was per-
formed by another shell command using the replace
string-replacement utility.

% graph
edge (v0, wvl1).
edge (vl, v2).

o

R

o

% ’reaches’
reaches (A, B)
reaches (A, B)

definitions
:— edge (A, B).

:— edge (A, C), reaches(C, B).

% 3-orders

order (A, B, C) :- reaches (A, B), reaches(B, C).

% consecutive-3-orders
consec (A, B, C) :—- edge(A, B), edge(B, C).

o

% non-consecutive-3-orders

nonconsec (A, B, C) :- reaches(A, X), X!=B,
reaches (X, B),
reaches (B, C).

nonconsec (A, B, C) :- reaches (A, B),
reaches (B, X), X!=C,
reaches (X, C).

Fig. 5: An example ASP encoding for determining the
valid consecutive, nonconsecutive, and regular
3-orders.

After having an acyclic graph, we used ASP (Answer
Set Programming) [47], [48] to determine the different
types of t-orders to be covered. Note that this step
could also have been carried out by using reachability-
based graph algorithms. We, however, chose to use
ASP because, being a declarative logic programming
paradigm, it was a perfect match for the task at hand.
We were even able to provide whole code segments
in the paper (e.g., Figure 5) to demonstrate the effort
involved in the development

Figure 5 presents an example ASP encoding to de-
termine the consecutive, non-consecutive, and regular
3-orders. Below, we explain the encoding in a nutshell
with no intention to introduce ASP. For more details
about ASP, the interested reader may refer to an intro-
duction [49] or a book [50].

A DAG is expressed by using edge (. .) facts. There
is a path from node A to node B, i.e., A reaches B or
B is reachable from 3, if there is an edge from A to B
(i.e.,, edge (&, B) holds) or there is an edge from A to
C and B is reachable from C:

reaches (A, B)
reaches (A, B)

:— edge (A, B).
:— edge (A, C),
reaches (C, B).

Then,
order (A, B,
C:

c] is a valid 3-order, i.e.,
if A reaches B and B reaches

(A, B,
C),

order (A, B, C) :— reaches (A, B),

reaches (B, C).

For a 3-order [A, B, C] to be covered in a consec-
utive manner, there should be an edge from A to B and
edge from B to C:

consec (A, B, C) :- edge(A, B),

edge (B, C).

23

And, for the same order to be covered in a non-
consecutive manner, B should be reachable from A via
another node or C should be reachable from B via
another node:

:— reaches (4,
X!=B,
reaches (X, B
reaches (B, C
reaches (A, B
reaches (B, X

X!=C,

reaches (X, C).

nonconsec (A, B, C)

nonconsec (A, B, C) :-

Note that this encoding can trivially be extended to
determine t-orders for any strength ¢.

Cost. All told, developing a generic Python script
to unroll the cycles in a given graph using Vcsn
took about 2 hours, which was mostly spent for writ-
ing procedures to match the input and output for-
mats of Vcsn. Similarly, developing a generic Python
script to automatically generate the ASP encodings
for determining different types of ¢t-orders to be cov-
ered, such as the one given in Figure 5, took about
another 2 hours. Integrating a CSP solver, namely
Sugar [51], with the constructors (as also discussed in
Section 5.3.4) took less than 1 hour.

Evaluations. To evaluate the proposed approach, we
first used our F-CIT constructors to compute t-way
(t = {2,3}) order-based F-CIT objects for the graphs
discussed in Section 5.2.2. The experiments were re-
peated up to 5 times; 94% of the experiments with
the best-performing F-CIT constructor (i.e., cover-and-
generate) were repeated exactly 5 times. By construc-
tion, all the test cases selected by the F-CIT objects com-
puted were valid and all these F-CIT objects achieved
full coverage under the respective coverage criterion.

As was the case with the previous study (Sec-
tion 5.1), the cover-and-generate constructor per-
formed generally better than the generate-and-cover
constructor. Therefore, we ran the generate-and-cover
constructor with a time-out period of one day, while
letting the cover-and-generate constructor run to com-
pletion. For 93.20% (1275 out of 1368) of the experimen-
tal setups, the generate-and-cover constructor com-
puted the requested F-CIT objects within the allocated
time limits. For these setups, the cover-and-generate
constructor reduced the sizes by an average of 65.86%
and 60.79%, while at the same time reducing the
construction times by an average of 72.24% and 77.03%
when t =2 and 3, respectively. We, therefore, focus
on the results obtained from the cover-and-generate
constructor in the remainder of this section.

Figure 3 presents the results obtained from the cover-
and-generate constructor and Table 13 provides some
summary statistics. As expected, the coverage criteria
listed in the order of increasing number of entities
they required to cover, were: t-cover, tt-cover, t-order,

and t*-cover. These criteria respectively marked an
average of 38.50, 665.87, 672.37, and 704.36 entities for
coverage when ¢t = 2; and an average of 61.73, 21678.98,
21685.99, and 21740.71 entities when ¢ = 3.

The sizes of the order-based F-CIT objects as well
their construction times tended to be correlated with
the number of entities to be covered. Overall, the min-
imum, the average, and the maximum sizes of the F-
CIT objects created were 1, 17.28, and 220, respectively,
when ¢t = 2; and 1, 54.27, and 2672 when ¢ = 3. And the
construction times for these objects respectively were
2.57,461.32, and 4156.25 seconds when ¢ = 2; and 3.24,
2568.12, and 136116.19 seconds when ¢ = 3.

Another trend we observed was that although the
numbers of entities to be covered by the t-order crite-
rion were similar to those to be covered by the ¢*-cover
and t*-cover criteria, covering the latter set of entities
took longer than covering the former set of entities.
The average constructions times were 251.29, 751.03,
and 806.92 seconds for t-order, tT-cover, and t*-cover
criteria, respectively, when ¢t = 2; and 6885.59, 9508.46,
and 10626.21 seconds when ¢t = 3. We believe that this
was because of the additional constraints to be satisfied
to make sure that the requested orders are covered in
a non-consecutive manner (i.e., need for solving the
constraints in Equation 7 on top of Equation 5).

Computing 4-way order-based F-CIT objects. Last but
not least, we ran our cover-and-generate constructor
for t =4 with a time-out period of 200 hours. For
88.01% (602 out of 684) of the experimental setups, the
constructor was able to generate the requested F-CIT
objects within the allocated time limits, whereas for the
remaining 11.99% of the setups, it timed out.

Table 14 presents the results we obtained. Overall,
the minimum, the average, and the maximum sizes of
the 4-way order-based F-CIT objects computed were
1, 136.42, and 5858, respectively. And the construction
times for these objects respectively were 1.87, 4522.53,
and 189773.20 seconds.

5.2.5 Discussion

Note that given a graph, there are different approaches
for solving the problem of finding a path covering
certain sequences of nodes. In this study, however,
our goal was to demonstrate that there is at least
one solution, which can be expressed in F-CIT. For
example, instead of using a constraint solver, one can
use a model checker and formulate the same problem
as a property stating that there is no path covering the
requested orders. A counter example (if any) would
then be a test case covering the orders. Similarly, one
can even develop a special purpose constraint solver,
which uses graph-based reachability algorithms, to
determine whether a given set of orders can appear
on a single path. These solutions would all work with
F-CIT as long as the underlying solver supports the
single primitive solve as discussed in Section 4.

24

5.3 Study 3: Usage-Based CIT

An electronics company has approached us to improve
their CIT-based testing practices. In particular, they
were interested in testing the Internet connectivity
feature of a consumer device, which they market in
dozens of countries. The end-users of this device can
customize the aforementioned feature by using 9 con-
figuration options, which have 308, 280, 154, 82, 58,
41, 6, 3, and 2 settings, respectively. Since there is no
system-wide constraint, all possible configurations (i.e.,
all possible combinations of option settings) are valid.
All told, these options constitute a space of more than
90 billion valid configurations.

The company provided us with 526691 real con-
figurations that they collected from the field during
the month of May in 2016. Each configuration was
obtained from a different consumer device and there
were a total of 37503 distinct configurations, i.e., some
configurations were used by multiple costumers.

Historically, configuration-related failures in this sys-
tem have often been caused by the faulty interactions
among the configuration options. However, exhaustive
testing of neither the whole configuration space nor the
distinct configurations seen in the field, is desirable for
the company. Due to legal and privacy concerns, we
are not able to provide further details.

5.3.1

We first attempted to create standard covering arrays
for the scenario at hand (see Section 5.3.3 for more
information). It turned out that the smallest covering
array we could generate was a 2-way covering array of
size 86241. It is, however, quite difficult to justify the
use of all these configurations for testing when one
knows that the total number of distinct configurations
used in the field is 37503. Had the company had
enough resources (i.e., time and computing platforms)
to test all the distinct configurations in the field, they
would have done it.

We, therefore, defined two novel coverage criteria,
namely Kgeer, and Kyeighted, based on the idea that
when testing all ¢-tuples is not feasible, one should at
the very least, consider testing the t-tuples appearing
in the field. We call this usage-based CIT.

Coverage criterion

Definition 25. The seen-t-way coverage criterion Kseen
takes as input a set of configurations T', a coverage strength
t, and a cutoff frequency in [0, 1), and mark for coverage
all the t'-tuples (1 < t' < t) appearing in T, the frequencies
of which are greater than the cutoff frequency.

The frequency of a tuple is computed as follows:

Definition 26. Given a set of configurations T, the fre-
quency of a tuple is the ratio of the number of configurations
in T, in which the tuple appear, to the total number of
configurations in T.

Note that, when the frequency cutoff is 0, Kieen
selects all the t'-tuples (1 < ¢’ < t) appearing in T

Kgeen, can further be extended to obtain variable
strength coverage by using a weighted sum of the
frequencies, where the weight of a tuple is defined as
follows:

Definition 27. Given a set of configurations T, the weight
of a tuple is the ratio of the number of times the tuple appears
in T to the total number of tuples in T.

Note that computing the denominator in Defini-
tion 27 does not require to explicitly enumerate all
possible tuples appearing in 7". More specifically, since
the number of tuples in a given configuration of k
options is 2% — 1, the total number of tuples in T (thus
the denominator) is |T|(2¥ — 1).

Definition 28. The weighted-t-way coverage criterion
Kweighted takes as input a set of configurations T, a
coverage strength t, and a cutoff weight in (0, 1], and mark
for coverage a minimal set of t'-tuples (1 < t' < t), the total
weight of which is greater than or equal to the given cutoff
weight.

To determine the tuples to be covered by this cri-
terion, all the ¢'-tuples (1 <t <t) appearing in T
are sorted by the descending order of their weights.
Then, the minimum number tuples from the top of
the list are selected, such that the total weight of the
selected tuples is greater than or equal to the cutoff
weight. Note that the Kcignteq criterion with the cutoff
weight of 1 can be satisfied by selecting all the distinct
configurations in 7.

5.3.2 Study setup

For the evaluations, we used the aforementioned sub-
ject application with 9 configuration options, which
had 308, 280, 154, 82, 58, 41, 6, 3, and 2 settings,
respectively, together with the 526691 real configura-
tions collected from the field, out of which 37503 were
distinct.

All the experiments were carried out on the same
Google Cloud platform with the previous two studies
(Sections 5.1 and 5.2).

5.3.3 Applying standard CIT

Modeling. We first attempted to create standard cov-
ering arrays of various strengths by using a number
of well-known covering array constructors, namely
Jenny [52], PICT [53], and ACTS [29].

The very first thing we observed was that although
we had a small number of configuration options (only
9), due to the large number of settings some of these
options had, many of the existing covering array
constructors failed to generate the requested covering
arrays. For example, we were not even able to model
the configuration space in Jenny, because it turned out

25

Jenny employs the letters of the English alphabet to
represent the settings of a configuration option, limit-
ing the maximum number of settings that an option
can have to 52 (the number of capital and lowercase
letters in the English alphabet). On the other hand,
PICT, which is specifically designed for scalability [53],
was able to generate a 2-way covering array of size
86241 in 100 seconds. It, however, failed to generate
a 3-way covering array in 10 days, after which we
terminated the process. Whereas ACTS was able to
generate a 2-way covering array of size 86255 in 16
seconds and a 3-way covering array of size 13283730
in 1887 seconds (about 32 minutes). However, when
we attempted to generate 4-way covering arrays, ACTS
crashed after a while with some memory-related errors.

Note that given a usage-based coverage criterion,
neither the tuples to be covered nor the tuples not to
be covered can be expressed as constraints in standard
constructors in an attempt to selectively determine
what to cover and what not to cover. This is because
constraints in standard constructors are globally en-
forced, i.e., all of the test cases selected must satisfy all
of the constraints. Therefore, expressing a tuple, which
is selected by a given coverage criterion, as a constraint
to indicate that the tuple needs to be covered, will
enforce the same tuple to appear in all of the selected
configurations. Since this can prevent conflicting tuples
from being covered, no covering array can be created.
Similarly, expressing a tuple, which is not selected by
a given coverage criterion, as a constraint to indicate
that the tuple needs to be avoided, can also prevent the
creation of a covering array. It may not, for example, be
possible to assign values to certain model parameters
due to some invalidated tuple combinations.

An alternative approach might be to express tuples
that are not needed to be covered as soft constraints,
which mark combinations of parameter values that are
permitted, but not desirable [16]. However, when the
tuples to be covered is a small fraction of all the tuples,
the number of soft constraints can get quite large,
which can in turn cause performance and scalability
issues. For example, in our experiments, 99.90% of all
the tuples (of strength up to and including a given
value of t), on average, did not need to be covered. In
other words, had soft constraints been used to express
these need-not-to-be-covered tuples, the number of
constraints would have been as high as 4.7 trillion in
some experiments. We couldn’t experiment with this
approach, because none of the standard constructors
that we have access to, supported soft constraints.

Evaluations. All told, the size of the smallest stan-
dard covering array that we could generate was larger
than the number of distinct configurations seen in the
field, which rendered the use of standard covering
arrays in this context hard to justify.

26

TABLE 16: Statistics about the K., coverage obtained by standard covering arrays. The columns,

respectively, report the frequency cutoff values, the

numbers of testable entities to be covered, and the

numbers of testable entities covered by the standard 2-way and 3-way covering arrays created for the study.

t=2 t=3 t=4 t=5 t=6

% covered % covered % covered % covered % covered
no of | by standard CAs no of | by standard CAs no of | by standard CAs no of | by standard CAs no of | by standard CAs
cutoff | entities | 2-way 3-way | entities | 2-way 3-way | entities | 2-way 3-way entities | 2-way 3-way entities | 2-way 3-way
0.5 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100
0.25 20 100 100 25 100 100 26 100 100 26 100 100 26 100 100
0.2 34 100 100 44 100 100 49 100 100 50 98 100 50 98 100
0.15 54 100 100 89 97 100 100 94 100 101 93 100 101 93 100
0.1 80 100 100 164 90 100 235 78 100 264 70 97 269 69 96
0.05 200 100 100 474 85 100 734 67 96 900 56 87 971 51 81
0.04 240 100 100 601 84 100 964 65 95 1204 53 85 1318 48 79
0.03 299 100 100 811 80 100 1395 58 94 1811 46 82 2001 42 75
0.02 422 100 100 1281 76 100 2382 53 92 3256 39 79 3705 35 71
0.01 669 100 100 2201 74 100 4475 47 90 6585 33 74 7825 28 63
0.005 1056 100 100 3751 71 100 7949 44 89 12028 30 71 14634 25 59
0.001 2652 100 100 11604 67 100 27890 39 85 45599 25 65 57741 19 53
0 22554 100 100 | 182952 42 100 | 658825 11 67 | 1240182 1 27 | 1321685 0 4

TABLE 17: Statistics about the Kyeightea cOVerage

obtained by standard covering arrays. The columns,

respectively, report the weight cutoff values, the numbers of testable entities to be covered, and the numbers
of testable entities covered by the standard 2-way and 3-way covering arrays created for the study.

t=2 t=3 t=4 t=5 t=6
% covered % covered % covered % covered % covered

no of | by standard CAs no of | by standard CAs no of | by standard CAs no of | by standard CAs no of | by standard CAs

cutoff | entities | 2-way 3-way | entities | 2-way 3-way | entities | 2-way 3-way | entities | 2-way 3-way | entities | 2-way 3-way
0.70 332 100 100 2171 74 100 8037 44 89 18518 28 69 29272 22 56
0.75 426 100 100 2951 72 100 11240 42 87 26467 27 68 42694 21 54
0.80 566 100 100 4117 70 100 16252 41 87 39309 25 66 63498 19 52
0.85 793 100 100 6051 69 100 24798 39 86 60222 23 64 98886 17 50
0.90 1185 100 100 9675 68 100 40330 37 85 | 101015 21 62 | 169254 15 47
0.95 2073 100 100 17826 64 100 79330 33 83 | 211007 17 58 | 368650 12 43

To further demonstrate that obtaining full coverage
in an efficient and effective manner under the usage-
based coverage criteria is a non-trivial task, Tables 16-
17 report the coverage percentages obtained by the
standard covering arrays generated in this study. In
particular, when ¢ > 3 with K.y, the standard 2- and
3-way covering arrays did not guarantee to cover all
the requested tuples. For example, when cutoff=0.001,
only 39% (85%), 25% (65%), and 19% (53%) of all the
required tuples for ¢t =4, 5, and 6 under Kgc.,, were
covered by the standard 2-way (3-way) covering arrays
(Table 16). Similarly, the standard covering arrays did
not guarantee to cover all the tuples requested by
Keighted €ither, especially for large values of coverage
strength and weight cutoff values. For example, when
t =6 and cutoff=0.95 only 12% and 43% of all the
required tuples were covered by the standard 2-way
and 3-way covering arrays, respectively (Table 17).

5.3.4 Applying F-CIT

Modeling. We have defined the F-CIT model
as M =< P,D,C >, where P={o1,...,09},
D = {{1..308},{1..280}, {1..154}, {1..82}, {1..58}, {1..41},
{1..6},{1..3},{1,2}}, and C': true, indicating that all
possible configurations were valid.

Each F-CIT testable entity then naturally corre-
sponded to a tuple selected by the coverage cri-
terion Kgeen O Kyeighted, Which was expressed
as a constraint over finite sets. For example, the
3-tuple (01 =204,05 = 12,09 = 1) was expressed as

01 =204 Nos =12 Aog = 1. Note that the very same
approach can readily be used to define and compute
standard t-way covering arrays as F-CIT objects by
expressing all valid ¢-tuples as F-CIT testable entities.

Consequently, any solver that works with logical
operators, such as A (AND), and equality constraints
over finite sets, such as 0, = 204, including the com-
monplace SAT and CSP solvers [54], [55], can be used
with the F-CIT constructors compute the F-CIT objects
satisfying the Kgcer, and Kipeignteq Criteria.

Indeed, being able to work with any type of con-
straints as long as an appropriate solver is provided,
improves the flexibility of F-CIT. To demonstrate that
this feature also enables the use of domain- and/or
application-specific solvers, we have implemented a
quite simple solver for this study, instead of trivially
using an existing SAT or CSP solver.

Algorithm 3 presents the aforementioned solver. It
simply determines whether a given set of tuples £ can
be accommodated together in a single configuration or
not. In particular, it marks E as satisfiable as long as
the option settings appearing in £ do not contradict
with each other (lines 7-8).

Cost. All told, developing a generic script to deter-
mine the tuples (i.e., the testable entities) selected by
the Kgcen and Kyeightea cOVerage criteria for any con-
figuration space model, coverage strength, and cutoff
value, took less than 2 hours. And, implementing the
solver in Algorithm 3 and integrating it with the F-CIT
constructors took less than 1 hour. To further demon-

Algorithm 3 Determine if a given set of tuples can be
accommodated together in a configuration cfg.

Input: Set of tuples £

1: ¢fg < undef

2: for each tuple e in E do

for each option o in e do

4 Let efo] is the value of 0 in e

5 Let cfglo] is the value of o in cfg,
6: which is initially undef
7

8

9

if defined cfg[o] and cfg[o] # e[o] then
return False

else
10: cfglo] = elo]
11: end if
12: end for
13: end for

14: return True

strate the flexibility of F-CIT, we have also integrated
our constructors with a CSP solver (namely, Sugar [51])
to solve exactly the same set of constraints. Interest-
ingly enough, it took about the same time (less than
1 hour) for us to do that as we needed to implement
a simple procedure to match the input format of the
solver. The implementation was done in Python.
Evaluations. To evaluate the proposed approach, we
carried out a series of experiments. In these experi-
ments, we used the cover-and-generate and generate-
and-cover constructors given in Algorithms 1 and 2
to compute F-CIT objects of various strengths. Since
the cover-and-generate constructor performed gener-
ally better than the generate-and-cover constructor, the
experiments with the latter constructor were repeated
up to 3 times and with a time-out period of one day
for each repetition to keep the cost of the experiments
under control. The experiments with the former con-
structor, on the other hand, were repeated 100 times
to evaluate the sensitivity of the proposed approach to
the order, in which the testable entities are processed,
except for the experimental setups where the frequency
cutoff was 0 and ¢ > 2, which were repeated only
once, to keep the cost under further control. In all the
experiments, the orders were randomly generated by
shuffling the testable entities to be covered.
Evaluating the K., coverage criterion. Table 18 sum-
marizes the results we obtained for the K., coverage
criterion. We first observed that the F-CIT constructors,
especially the cover-and-generate constructor, were
scaled to obtain full coverage under K., for various
values of ¢t up to and including 6, even when the
frequency cutoff was 0. As a matter of fact, we chose
to stop at the strength of 6, because, in the presence
of 9 options, increasing the strength any further was
quickly becoming exhaustive testing, which, in this

27

context, is the same as testing all the distinct config-
urations seen in the field.

We then observed that the cover-and-generate con-
structor performed generally better than the generate-
and-cover constructor in reducing both the covering ar-
ray sizes and construction times. More specifically, the
cover-and-generate constructor reduced the sizes by an
average of 65.62%, 82.55%, 86.35%, 88.25%, and 88.16%
while at the same time reducing the construction times
by an average of 96.35%, 97.20%, 97.88%, 97.72%,
and 97.32% when ¢t =2, 3, 4, 5, and 6, respectively.
We, therefore, focus on the results obtained from the
cover-and-generate constructor in the remainder of this
section.

When ¢t < 3 and cutoff=0, i.e., when all the ¢-tuples
seen in the field are required to be covered, the sizes of
the F-CIT objects generated by the cover-and-generate
constructor, were smaller than the number of distinct
configurations seen in the field, i.e., 37503. More specif-
ically, the average sizes were 3625.24 and 24971.00 with
the average construction times of 205.55 and 7216.62
seconds for ¢ = 2 and 3, respectively (Table 18). When
t >3 and cutoff=0, however, the F-CIT objects had
more than 37503 configurations, on average (Table 18).

In reality, when testing all the t-tuples seen in the
field is still not practical due to the cost, the cutoff
parameters of the usage-based coverage criteria can be
utilized to select a weighted fraction of the tuples for
testing. For example, when the frequency cutoff was set
to 0.001 with Ksccp, i.e., when the tuples that appeared
in at least one thousandth of the configurations seen in
the field were to be covered, the average sizes of the
F-CIT objects became 327.31, 817.66, 1124.70, 1123.06,
and 1015.85 when t =2, 3, 4, 5, and 6, respectively.

All the results we obtained under different coverage
strengths and cutoff values can be found in Table 18.
For a fixed strength, as the cutoff increased, the number
of testable entities as well as the size of the F-CIT
objects tended to decrease. For example, when ¢ = 6,
the average sizes of the F-CIT objects were 1015.85,
206.63, 95.96, 46.23, and 5.84 for cutoff=0.001, 0.005,
0.01, 0.02, and 0.1, respectively. For a fixed cutoff, as
the strength increased, on the other hand, although
the number of testable entities to be covered increased,
this did not necessarily cause an increase in the sizes
of the F-CIT objects computed. For example, when
cutoff=0.005, the average size of the F-CIT objects was
228.94 for t = 5, but 206.63 for t = 6. We believe that
this was because covering a frequently appearing t-
tuple covers multiple frequently appearing t'-tuples,
where t' < t. Thus, covering higher strength tuples
may help reduce the number of test cases needed by
covering more required tuples per test case. Regarding
the construction times, except for the experimental
setups, in which cutoff=0, all the constructions times

TABLE 18: Statistics about the F-CIT objects created for the K., coverage criterion, where the columns,
respectively, report the coverage strengths, the frequency cutoff values, the numbers of testable entities to be
covered, and the average construction times (in seconds) as well as the average sizes of the F-CIT objects
computed by the generate-and-cover and cover-and-generate constructors together with the minimum,
maximum, standard deviation, and coefficient of variation statistics for the results obtained from the latter
constructor. The character "*” marks the experimental setups, in which the generate-and-cover constructor
timed out after one day. Furthermore, the number of times the experiments were repeated are given in the
column “repeat count.”

28

generate-and-cover

constructor cover-and-generate constructor
no of avg. avg. repeat time size repeat

t cutoff entities time size count min. avg. max. sd. cv. min. avg. max. sd. cv. | count
2 0.5 4 0.02 2.00 3 0.00 0.03 0.06 0.01 57.86 1 1.00 1 0.00 0.00 100
2 0.25 20 0.05 8.67 3 0.01 0.08 0.19 0.05 56.35 2 2.31 3 046 20.02 100
2 0.2 34 0.13 16.00 3 0.01 0.13 0.27 0.07 56.09 3 3.89 5 0.61 15.80 100
2 0.15 54 0.25 24.00 3 0.00 0.18 0.38 0.11 61.40 4 4.70 7 0.62 13.29 100
2 0.1 80 0.60 38.33 3 0.02 0.29 0.60 0.16 56.09 5 6.50 9 0.83 1278 100
2 0.05 200 3.02 94.33 3 0.06 0.73 1.54 041 55.85 13 16.00 19 1.33 8.34 100
2 0.04 240 4.51 124.00 3 0.06 0.93 1.95 0.52 55.76 19 21.72 25 1.46 6.74 100
2 0.03 299 6.05 152.33 3 0.04 1.14 2.40 0.66 58.07 21 27.46 31 1.77 6.46 100
2 0.02 422 1047 211.33 3 0.14 1.74 3.61 0.97 5553 35 40.53 45 1.93 4.75 100
2 0.01 669 23.79 333.00 3 0.32 3.07 6.07 1.67 5436 61 69.34 75 2.82 4.06 100
2 0.005 1056 50.97 518.33 3 0.30 4.92 9.60 2.75 5591 113 118.83 126 291 2.44 100
2 0.001 2652 265.32 1275.00 3 2.29 14.85 27.08 751 50.58 311 327.31 342 5.89 1.80 100
2 0 22554 10389.32 9606.33 3 228.72 364.05 493.08 7538 20.71 3589 3625.24 3666 17.06 0.47 100
3 0.5 4 0.01 2.33 3 0.00 0.02 0.05 0.01 5645 1 1.00 1 0.00 0.00 100
3 0.25 25 0.10 8.33 3 0.01 0.08 0.18 0.04 5847 2 2.26 3 0.44 1941 100
3 0.2 44 0.12 15.33 3 0.01 0.12 0.29 0.07 58.07 3 3.82 6 0.77 20.07 100
3 0.15 89 0.61 32.00 3 0.01 0.16 0.38 0.10 58.08 4 4.96 8 095 19.11 100
3 0.1 164 1.20 53.67 3 0.03 0.28 0.68 017 5797 5 6.86 10 133 1934 100
3 0.05 474 8.16 170.00 3 0.06 0.79 2.66 0.50 63.02 14 18.54 24 222 12.00 100
3 0.04 601 10.22 194.00 3 0.13 1.08 2.09 0.57 52.87 20 26.24 32 2.32 8.84 100
3 0.03 811 20.99 285.33 3 0.12 1.37 2.82 074 5417 27 34.60 42 3.14 9.08 100
3 0.02 1281 40.73 456.00 3 0.19 2.30 4.48 126 54.66 45 57.47 68 3.95 6.87 100
3 0.01 2201 106.93 781.67 3 0.58 4.66 9.26 248 53.10 103 113.27 129 4.67 413 100
3 0.005 3751 251.85 1340.67 3 1.26 9.05 17.85 459 5071 203 217.86 238 6.87 3.15 100
3 0.001 11604 1813.94 4137.00 3 14.21 43.31 71.85 16.66 3846 790 817.66 853 1296 1.59 100
3 0 182952 | 197208.59 72642.00 2 8266.04 8266.04 8266.04 n/a n/a | 24971 24971.00 24971 n/a n/a 1
4 0.5 4 0.02 2.33 3 0.00 0.02 0.06 0.01 60.87 1 1.00 1 0.00 0.00 100
4 0.25 26 0.05 7.67 3 0.01 0.08 0.18 0.04 5893 2 2.31 3 046 20.02 100
4 0.2 49 0.15 16.00 3 0.01 0.11 0.28 0.07 59.04 3 3.65 5 0.73 19.90 100
4 0.15 100 0.43 24.33 3 0.01 0.15 0.37 0.09 57.23 4 491 8 091 1846 100
4 0.1 235 1.69 65.33 3 0.01 0.24 0.55 0.14 5837 5 6.32 10 122 1923 100
4 0.05 734 10.29 188.33 3 0.07 0.66 1.29 0.34 51.88 11 16.82 22 2.09 1240 100
4 0.04 964 16.06 235.00 3 0.12 0.90 1.99 049 5420 16 23.26 31 3.06 13.15 100
4 0.03 1395 31.92 368.67 3 0.14 1.25 2.85 0.66 52.82 26 32.07 41 2.90 9.04 100
4 0.02 2382 74.45 606.67 3 0.30 217 451 1.10 50.58 44 54.46 66 3.93 7.21 100
4 0.01 4475 189.34 1136.00 3 1.10 5.07 10.46 243 4796 99 118.57 138 7.23 6.10 100
4 0.005 7949 503.37 2073.33 3 297 11.06 19.49 485 43.84 223 24891 270 9.51 3.82 100
4 0.001 27890 3793.76 7266.00 3 39.78 76.39 11412 2034 26.63 1089 1124.70 1165 17.37 1.54 100
4 0 658825 * * 1 62011.15 62011.15 62011.15 n/a n/a | 59960 59960.00 59960 n/a n/a 1
5 0.5 4 0.01 3.00 3 0.00 0.02 0.05 0.01 56.31 1 1.00 1 0.00 0.00 100
5 0.25 26 0.05 8.67 3 0.01 0.08 0.19 0.05 59.27 2 2.30 3 046 19.92 100
5 0.2 50 0.10 14.33 3 0.00 0.11 0.28 0.07 60.11 3 3.76 5 0.72 19.22 100
5 0.15 101 0.39 28.33 3 0.01 0.15 0.39 0.09 59.85 4 4.89 7 086 17.57 100
5 0.1 264 1.31 53.00 3 0.02 0.21 0.46 012 5631 5 5.84 10 1.01 1725 100
5 0.05 900 11.66 185.00 3 0.10 0.62 1.44 0.33 5270 13 1591 21 1.65 1037 100
5 0.04 1204 18.24 236.33 3 0.14 0.85 1.76 045 52.63 16 21.74 28 270 1242 100
5 0.03 1811 32.68 339.33 3 0.21 1.19 440 0.65 54.62 24 29.79 38 2.82 9.47 100
5 0.02 3256 68.51 598.67 3 0.48 2.07 4.04 0.94 45.63 40 48.82 57 3.92 8.02 100
5 0.01 6585 217.98 1188.67 3 1.20 4.64 7.92 195 41.96 89 106.41 126 7.00 6.58 100
5 0.005 12028 564.90 2256.67 3 433 11.50 19.43 418 36.39 206 228.94 244 8.89 3.88 100
5 0.001 45599 4400.78 8645.33 3 66.72 100.02 133.16 18.82 18.81 1056 1123.06 1168 20.17 1.80 100
5 0 1240182 * * 1 17133144 17133144 171331.44 n/a n/a | 88314 88314.00 88314 n/a n/a 1
6 0.5 4 0.01 2.33 3 0.00 0.03 0.05 0.01 56.15 1 1.00 1 0.00 0.00 100
6 0.25 26 0.03 5.00 3 0.01 0.07 0.18 0.04 56.12 2 2.22 3 041 18.66 100
6 0.2 50 0.14 14.33 3 0.00 0.11 0.64 0.08 75.56 3 3.73 5 072 19.28 100
6 0.15 101 0.36 27.00 3 0.01 0.15 0.41 0.09 5795 4 4.73 7 086 18.15 100
6 0.1 269 1.18 43.33 3 0.02 0.20 0.59 012 5736 5 5.84 10 097 16.55 100
6 0.05 971 10.15 155.67 3 0.07 0.57 1.27 0.30 5293 13 15.45 20 1.66 10.77 100
6 0.04 1318 16.74 223.33 3 0.11 0.80 1.64 040 5033 17 21.15 29 222 1047 100
6 0.03 2001 25.10 280.67 3 0.24 1.14 217 0.53 46.50 24 28.33 35 2.45 8.63 100
6 0.02 3705 68.32 538.33 3 0.51 1.93 3.87 0.84 4362 38 46.23 60 3.58 7.74 100
6 0.01 7825 196.90 1061.00 3 1.39 4.44 8.35 1.77 39.80 78 95.96 112 6.31 6.58 100
6 0.005 14634 493.02 2031.00 3 5.10 10.83 17.33 3.52 3250 186 206.63 225 791 3.83 100
6 0.001 57741 3880.13 7842.67 3 74.39 105.56 139.61 1658 1571 963 1015.85 1065 20.88 2.06 100
6 0 1321685 * * 1 179456.00 179456.00 179456.00 n/a n/a | 80350 80350.00 80350 n/a n/a 1

29

TABLE 19: Statistics about the F-CIT objects created for the Kycigntea cOverage criterion, where the columns,
respectively, report the coverage strengths, the weight cutoff values, the numbers of testable entities to be
covered, and the average construction times (in seconds) as well as the average sizes of the F-CIT objects

computed by the generate-and-cover and cover-and-generate constructors together with the minimum,
maximum, standard deviation, and coefficient of variation statistics for the results obtained from the latter
constructor. Furthermore, the number of times the experiments were repeated are given in the column “repeat

count.”
generate-and-cover
constructor cover-and-generate constructor
no of avg. avg. repeat time size repeat
t cutoff entities time size count min. avg. max. sd. cv. | min. avg. max. sd. cv. | count
2 0.70 332 7.16 167.67 3 0.07 0.76 173 048 62.75 27 31.74 37 197 622 100
2 0.75 426 10.23 209.67 3 0.09 0.99 2.16 0.63 63.43 36 41.10 47 220 536 100
2 0.80 566 17.90 279.33 3 0.13 1.38 3.03 0.88 63.99 49 55.73 61 226 4.05 100
2 0.85 793 34.33 400.33 3 0.24 2.11 4.64 130 61.60 77 85.40 94 3.00 351 100
2 0.90 1185 63.95 574.67 3 0.46 3.33 7.03 199 59.87 126 133.28 141 3.60 270 100
2 0.95 2073 162.53 990.33 3 1.10 6.42 14.11 3.73 58.04 235 245.66 256 446 1.82 100
3 0.70 2171 100.70 777.33 3 0.49 2.73 5.86 154 5641 100 111.32 120 415 373 100
3 0.75 2951 181.72 1090.00 3 0.89 4.14 8.51 225 5434 150 164.80 178 5.04 3.06 100
3 0.80 4117 303.40 1488.67 3 1.59 6.60 1270 340 5150 227 24296 263 628 258 100
3 0.85 6051 582.78 2164.00 3 3.40 11.20 2129 525 46.83 362 384.02 405 809 211 100
3 0.90 9675 1291.66 3447.33 3 9.26 2247 38.32 879 39.12 639 666.56 696 10.16 1.52 100
3 0.95 17826 3671.09 6332.00 3 34.85 63.21 9430 17.61 2786 | 1320 134732 1387 14.03 1.04 100
4 0.70 8037 49352 2095.67 3 3.07 7.74 1370 3.07 39.64 218 251.25 275 898 3.57 100
4 0.75 11240 850.59 2905.67 3 6.23 13.25 2550 472 35.59 357 38240 414 1073 2.80 100
4 0.80 16252 1608.39 4222.33 3 12.85 2391 37.19 7.35 30.76 568 605.22 645 1396 231 100
4 0.85 24798 3177.50 6454.67 3 31.82 50.10 7179 1196 23.88 947 98422 1039 19.26 1.96 100
4 0.90 40330 6942.08 10454.67 3 90.62 12755 20033 2377 18.64 | 1675 173426 1816 24.83 143 100
4 0.95 79330 | 21111.57 20702.00 3 40389 459.80 500.68 19.50 424 | 3768 3868.14 3923 29.77 0.77 100
5 0.70 18518 1070.09 3516.67 3 10.01 16.76 2458 439 2617 362 386.81 413 11.02 285 100
5 0.75 26467 1896.90 5018.33 3 20.37 31.69 46.81 7.37 2324 573 608.41 662 1530 2.51 100
5 0.80 39309 3540.80 7484.33 3 47.71 66.26 109.47 1247 18.83 911 956.32 1003 19.17 2.00 100
5 0.85 60222 6776.82 11397.67 3 115.87 132.83 14814 746 5.61 | 1499 1555.03 1612 2524 1.62 100
5 0.90 101015 | 15938.67 19338.33 3 362.41 411.02 439.87 1426 347 | 2751 2849.14 2937 3723 131 100
5 0.95 211007 | 50420.67 40552.50 2 197717 2081.92 2156.12 39.50 190 | 6738 6857.15 6974 4897 071 100
6 0.70 29272 1380.18 4027.33 3 18.73 27.23 4074 567 20.81 442 47520 502 1264 266 100
6 0.75 42694 2511.12 5857.00 3 40.92 54.86 90.64 936 17.06 708 743.64 789 16.65 224 100
6 0.80 63498 4650.73 8831.33 3 86.44 102.17 11387 570 558 | 1065 111334 1156 20.65 1.85 100
6 0.85 98886 9152.57 13601.33 3 227.07 260.64 28815 1086 4.17 | 1765 185389 1936 32.88 1.77 100
6 0.90 169254 | 22546.59 23611.67 3 775.99 846.07 896.63 2520 298 | 3359 3449.67 3540 37.66 1.09 100
6 0.95 368650 | 75936.20 52238.00 1 448259 4611.18 478540 61.42 133 | 8495 8627.77 8794 5754 0.67 100

were under 106 seconds, with a majority of them being
under 12 seconds, on average.

Evaluating the Kyeightea coverage criterion. Table 19
summarizes the results we obtained from the exper-
iments, in which we used the Kycigntea coverage cri-
terion.

As was the case with K,, the cover-and-generate
constructor, compared to the generate-and-cover con-
structor, computed smaller covering arrays at a fraction
of the cost. More specifically, the cover-and-generate
constructor reduced the sizes by an average of 77.39%,
80.93%, 83.29%, 83.09%, and 80.29% while at the same
time reducing the construction times by an average
of 94.94%, 98.20%, 98.00%, 95.88%, and 92.00%, when
t=2,3, 4,5, and 6, respectively. We, therefore, focus
on the results obtained from the cover-and-generate
constructor in the remainder of this section.

We observed that the sizes of all the F-CIT objects we
computed for the study, were profoundly smaller than
the number of distinct configurations observed in the
field (Table 19). More specifically, the maximum aver-
age size was 8627.77, which occurred when ¢ = 6 and
the weighted cutoff was 0.95. That is, to cover 95% of
the most frequently appearing t-tuples forall 1 <¢ <6

in a weighted manner as described in Definition 28, an
F-CIT object of size 8627.77 was needed, on average.

For a fixed strength, as the cutoff decreased, the
number of testable entities to be covered as well as
the size of the F-CIT objects tended to decrease. For
example, when t = 6, the sizes of the F-CIT objects
for cutoff=0.95, 0.90, 0.85, 0.80, 0.75, and 0.70, were,
respectively, 8627.77, 3449.67, 1853.89, 1113.34, 743.64,
and 475.20 (Table 19). Similarly, for a fixed cutoff, as
the coverage strength decreased, both the number of
testable entities to be covered as well as the size of the
F-CIT objects tended to decrease. For example, when
cutoff=0.95, the average sizes were 8627.77, 6857.15,
3868.14, 1347.32, and 245.66 for t =6, 5, 4, 3, and
2, respectively. Last but not least, the maximum av-
erage construction time in all the experiments was
4611.18 seconds, which happened when t =6 and
cutof f = 0.95. A majority of the construction times
(79.4%) were, on the other hand, under 150 seconds
(Table 19).

Evaluating sensitivity to the order of processing. Ta-
bles 18 and 19 report the minimum, maximum, stan-
dard deviation, and coefficient of variation (i.e., the
ratio of the standard variation to the mean, in short

CV) results obtained from the cover-and-generate con-
structor by repeating the experiments 100 times (except
for the experimental setups where the frequency cutoff
was 0 and ¢ > 2, which were repeated only once due to
their costs). Clearly, the performance of the cover-and-
generate constructor can be affected by the order, in
which the testable entities are processed. Consequently,
in the absence of any knowledge regarding a favorable
order (or a partial order), a random order can be used
by shuffling the entities to be covered before they
are fed to the constructor. This process can further
be repeated multiple times in an attempt to generate
smaller CIT objects at the cost of increased construction
times.

5.3.5 Discussion

Note that the maximum coverage strength that can be
used with the K eighted cOVerage criterion is the num-
ber of configuration options that the system under test
has. Therefore, Kyyeighted, in a sense, offers a solution
to an important, but still an open question of how to
determine the coverage strength in CIT, by automat-
ically determining strength based on usage statistics.
That is, the strength of a tuple to be covered by
Kyeighted, essentially depends on how frequently the
tuple appears in the field. Consequently, the strength
may vary across the test space. This is different than
variable strength covering arrays [56], because in vari-
able strength covering arrays, the strengths are deter-
mined a priori and they vary at the level of option
combinations. In the Kycighted cOverage criterion, on
the other hand, the strengths vary at the level of option
setting combinations and they are determined based
on usage statistics. Therefore, no strength needs to be
determined beforehand.

Note that F-CIT does not aim to replace standard
covering array constructors. We, indeed, don’t see
much value in using F-CIT to compute the same CIT
objects that the existing CIT constructors compute, as
the generalized F-CIT constructors may not be as effi-
cient and as effective as their specialized counterparts.
For example, when we used the cover-and-generate
constructor to compute standard covering arrays for
the configuration space models used in the experi-
ments, the aforementioned F-CIT constructor gener-
ated a 2-way standard covering array of size 87586 in
32263.90 seconds (vs. a 2-way covering array of size
86241 generated in 100 seconds by ACTS) and failed
to generate a 3-way standard covering array within a
day, after which we stopped the constructor (vs. a 3-
way covering array of size 13283730 generated in 32
minutes by ACTS).

The point we want to emphasize, however, is that
even if F-CIT was able to reduce the sizes by half and
did so in seconds, it would still not be feasible at all
(for the consumer company, for which we carried out

30

the study) to run all the test cases selected. Therefore,
the coverage criteria needed to be changed. However,
existing constructors, as they are, could not take advan-
tage of these new criteria, which required fewer tuples
to be covered.

Last but not least, it seems that for the usage-based
CIT problem, it may actually be possible to modify an
existing constructor. This, however, requires that the
source code of the constructor is available, the code
is reversed engineered, and a modification strategy is
implemented, tested, and maintained. Note, however,
that even if this was possible, these modifications
would be of little help (or of no help at all) to compute
the structure-based and order-based CIT objects we
discussed in Section 5.1 and Section 5.2, respectively.
Consequently, another set of modifications would be
required to compute the structure-based CIT objects,
such that the values of model parameters can be
expressed as arbitrarily complex Boolean expressions.
Similarly, different set of modifications would be re-
quired to compute the order-based CIT objects, such
that the reachability restrictions imposed by a graph-
based model can be expressed as constraints to cover
various orders of nodes. As a matter of fact, we don’t
know how these modifications can be made without
the solution quickly converging to F-CIT. This is ex-
actly why F-CIT aims to eliminate the need of mod-
ifying existing constructors or developing specialized
constructors, by generalizing the construction of CIT
objects as much as possible.

6 USER STUDIES

To further evaluate the proposed approach, we have
also carried out user studies.

6.1 Study Setup

We asked the Junior, Senior, and graduate-level com-
puter science students studying at Sabanci University
whether they would take part in the study. A total of
13 graduate-level and 7 undergraduate-level students
agreed to participate on a voluntary basis. Table 20
summarizes the demographic information about the
participants. Note that students at Sabanci University
study standard combinatorial interaction approaches at
different levels and/or for different purposes in the
Software Engineering (undergraduate level), Software
Verification and Validation (undergraduate/graduate
level), and Automated Debugging (graduate level)
courses, which explains the participants knowledgable
of CIT in Table 20.

The participants were first given a 1-hour lecture. In
this lecture, after a brief introduction of how the study
would be carried out, the basic concepts in constraint
solving, such as Boolean logic and satisfiability, were
discussed. Then, F-CIT was introduced. To this end,

31

TABLE 20: Demographic information about the participants.

undergraduate graduate
no of participants 7 13
knowledgeable of CIT yf S n60 yl%S 1;0
experience in <2 3 4 >5 <2 3 4 >5
programming (in years) 2 3 2 0 0 2 5 6
experience in software <2 3 4 >5 <2 3 4 >5
testing (in years) 7 0 0 0 11 1 0 1

the definitions and the algorithms given in Sections 3-
4 were studied. Finally, a short tutorial on the F-CIT
tool, which we had developed for the study was given
(see below for more information about this tool).

The participants, after taking the lecture, took part
in the study at their spare times. To gain better insight,
each participant carried out the study with one of the
authors playing the role of an observer, sitting by the
participant and taking notes. The participants were
asked to think out loud as much as possible. When
it was not clear for the observer what the participant
was doing, the observer prompted the participant with
questions, such as what do you want to do now? Is the
output what you were expecting? What do you think
what went wrong? etc.

Each participant was given with the same three
problems. These problems were, indeed, the smaller
instances of the very same problems we studied in
Section 5.1, Section 5.2, and Section 5.3, respectively.
For each problem, the participants were first asked
to develop an F-CIT model M =< P,D,C >, then to
express a number of F-CIT entities as constraints using
M, and finally to generate an F-CIT object (by using the
F-CIT constructor provided) to cover all of the given
entities. The problems as well as the entities used in
the study were given in Table 21.

Note that F-CIT is not a methodology for choosing
the entities to be tested. It rather takes as input a set of
entities to be tested. Therefore, the participants in the
study were given with a set of entities to cover. For
each problem, the entities were presented starting from
the easier ones progressing to the more challenging
ones. Furthermore, the number of entities was kept
small not to tire the participants.

We designed the studies such that if a partici-
pant working on a problem got stuck after the first
10 minutes, the observer would remind the partici-
pant of the basic concepts that 1) the F-CIT model
M =< P,D,C > should define a set of parameters P
and their domains D; 2) the model constraint C' is
a constraint that should be satisfied by all of the F-
CIT test cases generated; and 3) the entities should be
expressed as constraints over P.

Furthermore, for the second problem (Table 21), if
the participant got stuck after the first 15 minutes,
he/she was provided with a description of the network

TABLE 21: Problems used in the user studies.

Problem 1
description
The same problem in Section 5.1 with 6 Boolean
configuration options: py, ..., pe.
entities
b3
P1 A D2
—pe A\ pd
p2 A —p3 A\ —pd
—(ps V —ps)
Problem 2
description
The same problem in Section 5.2 with the graph
given in Figure 7.

entities
— t-orders —

a1, as]

[Cl1, asg, Cl4]

[aQa Ay, aﬁ]

— consecutive-t-orders —

[as, ac]

[al, as, Cl4]

[Clg, Qayq, CLG]

— non-consecutive-t-orders —

a1, as]

[a1, a3, a4
[as, ag]

Problem 3

description
The same problem in Section 5.3 with 5 param-
eters: p1,p2 : [1,3], ps : [1,4], and p4,ps : [1, 5].
entities
(ps = 4)
(p1 =1,p2 = 3)
(p2 =1,p5 =2)
(p3=3,p4 =3,p5 =2)
(pl =2,p2 =2,p3 =2,pd = 5,p5 = 2)

flow problem [57] given in Figure 6a. If the participant
got stuck again 15 minutes after reading the descrip-
tion, a solution for the example flow problem given in
Figure 6b was presented to the participant. Note that
both the description in Figure 6a and the example in
Figure 6b are general enough that they can be found in

= The graph has a source vertex ‘s’ and a terminating
vertex ‘t’.

= Every edge ‘e’ has a capacity.

= No edge can have flow exceeding its capacity.

= For every vertex, except for ‘s’ and ‘t’, the amount of
total incoming flow to the vertex must be the same as
the amount of total outgoing flow.

= To visit a vertex, there must be an incoming flow to
the vertex, i.e., there must be flow on at least one of
the incoming edges to the vertex.

(a)

32

Solution:
es: [0,5]
el: [0,3]

es==5

es=el+e2
e2:[0,3]
e3:[0,3]
e4:[0,3]
e5: [0,2]
e6: [0,2]
e7:[0,4]
e8:[0,3]
et:[0,5]

el=e3+ed
e2+ed=e5
e3=e6+e7
e5+e7=e8
e6 +e8=et

(b)

Fig. 6: Explanations used for the second problem in the user study: (a) the description of the network flow
problem and (b) an example network flow with incoming flow as 5 (i.e., es = 5) and its solution, where each
edge has a label in the form of ez, ¢, indicating that ¢ (except es and et) is the capacity of the edge ex.

Fig. 7: The graph-based model used in the user
studies.

any textbook on the subject [57]. Given these artifacts,
the participants were still required to figure out how to
express reachability in a graph as a flow problem and
how to express different types of order-based entities
(Section 5.1) as flow constraints.

We did this because solving the aforementioned
problem requires specific knowledge of network flow
problems and not all participants might have had the
right background. Therefore, by providing a general
description of the network flow problems together
with an example, we aim to answer the following
question: Had the participants had a basic background
information on network flow problems, could they
have leveraged it in F-CIT to obtain full coverage under
various order-based coverage criteria?

Last but not least, we have developed an F-CIT
tool for the practitioners to use in the study. Figure 8
presents a screen dump taken from this tool. At a very
high level, the tool has three frames. A description
frame on the left, presenting the problem to be solved.
An F-CIT frame in the middle where the participant

TABLE 22: The exit survey used in the user studies.
All the questions, except for the last two, were Likert
scale questions. Questions 1-2 and 6-8 had the
following answer options: 1 - strongly disagree, 2 -
disagree, 3 - neutral, 4 - agree, and 5 - strongly agree.
And, questions 3-5 had the following answer options:
1 - very difficult, 2 - difficult, 3 - normal, 4 - easy, and 5
- very easy. The last three questions (5-7) were
open-ended questions.

no question
Q1 I understand the following concepts:
a | constraints
satisfiability
unsatisfiability
I understand the following concepts:
F-CIT models
F-CIT entities
F-CIT test cases
F-CIT objects
Q3 | For problem 1 — Difficulty of encoding:
a | F-CIT model
b | F-CIT entities
For problem 2 — Difficulty of encoding;:
a | F-CIT model
b | F-CIT entities
Q5 For problem 3 - Difficulty of encoding:
a | F-CIT model
b | F-CIT entities

n T

Q2

QO n T o

Q6 I found F-CIT useful.
Q7 | I would use F-CIT in projects.
Q8 I would recommend F-CIT to others.

Q9 What was the most challenging part in
the study?
Any suggestions to improve F-CIT?

Q10

expresses a solution to the given problem in F-CIT. An
output frame on the right, which (among other things,
see below for more information) presents the results
obtained from the cover-and-generate constructor (Sec-
tion 4.1) for the F-CIT formulation given in the middle
frame.

33

| Sabanci UniversitySurvey x =+

< Cc

Study Description Help

In this study, we have a system with a graphical user interface
(GUI). The end-users of this system can take certain actions
on the GUI, such as clicking on a button or selecting a menu
item. The behavior of the system depends on the order, in
which the actions are taken. Not all possible sequences of
actions are, however, valid.

System Model
e70.1]

The valid sequences of actions for this system are modeled by
using the following acyclic directed graph:

° Entity1: any, [al,a5]
o es>0
e e6>0

; N Entity2: any, [al,a3,a4]
@__ea @ es>0
€250
ed+e550

Entity3: any, [a2,ad,a6]

el+e3>0
ed+e5>0

et
é Entity4: consecutive, [a4,a6]

e7==1
Fig.1 Graph Model

Entity5: consecutive, [al,a3,ad]
In this graph, s and t are special nodes representing the entry
and exit nodes, respectively. Each of the remaining nodes

represents an action that can be taken by an end-user and an

e2==1
es==1

@ localhost:5000/study/study-3-entity9?0utput=<h1%20style%3D"color%3Awhite;font-family%3Aarial;background-color?%3Agreen;text-align¥%3Acenter'>Coverage%20Percentag... & ¢ @ H

[Study 1 (& Study 2 | (& Study 3
:

Output

Coverage Percentage:
100

« TEST

el | e2 | e3 | e4 | e5 | e6 | e7 | e8 | es | et
T 0 1 0 0 1 0 1 0 1
T2| 0 1 1 1 0 1 0 1 11

Coverage Information:
« Entity-1 is covered by test case(s): T2
« Entity-2 is covered by test case(s): T1, T2
« Entity-3 is covered by test case(s): T2
« Entity-4 is covered by test case(s): T1
« Entity-5 is covered by test case(s): T1
« Entity-6 is covered by test case(s): T1
« Entity-7 is covered by test case(s): T2
« Entity-8 is covered by test case(s): T2
« Entity-9 is covered by test case(s): T2

+ TEST

+ TEST

« TEST

« TEST

« TEST

EN] Wt

%

Fig. 8: A screen dump of the tool we have developed for the user studies.

The middle frame had a multi-line text field (model
field) to express the F-CIT model and a multi-line
text field (entity field) for expressing each entity to
be covered. Each field had a “Test” button associated
with it. When the Test button of the model field was
clicked, the constraints entered for this field were fed
to a constraint solver and the result was displayed in
the output frame, allowing the participant to check
whether the F-CIT model is capable of generating valid
test cases. When the Test button of an entity field
was clicked, on the other hand, the constraints entered
in the respective entity field and those in the model
field were combined and fed to the constraint solver.
The result was then displayed in the output frame,
allowing the participant to check whether the entity
can be covered in a valid test case. In both cases,
when the constraints were satisfiable, the output frame
presented a solution where each parameter defined in
the F-CIT model took on a valid value. Otherwise, a
warning message indicating that the constraints were
not satisfiable, was emitted.

In addition to the Test buttons, we also had a
“Generate” button, which fed all the constraints en-
tered (the ones entered in the model and entity fields)
to the cover-and-generate constructor (Section 4.1) to
compute an F-CIT object. When an F-CIT object was
created (which is, indeed, a set of test cases), it was
displayed in the output frame in the form of a table,
where rows represented the test cases generated and
columns depicted the parameters defined in the F-CIT

model (Figure 8). Furthermore, the entities covered by
each test case are reported.

After completing all the studies, participants filled
out an exit survey. Table 22 presents this survey.

6.2 Evaluation Framework

To evaluate the proposed approach, we first counted
the number of successful formulations. For a given
problem, we define a successful formulation as a for-
mulation where both the F-CIT model and the entities
to be covered are correctly expressed in a generalizable
manner, such that an F-CIT object obtaining full cover-
age can be computed. Note that we also take the gen-
eralizability of the formulation into account because
we observed that (solely for the second problem) some
participants came up with formulations that are too
specific for the problem instance given in the study and
that, therefore, are non-trivial to generalize for other in-
stances of the same problem. These formulations were
often obtained by introducing additional constraints in
the F-CIT model in an ad hoc manner just to avoid
some undesirable results. More discussion on this can
be found in Section 6.3.

We also measured the time it took for the partic-
ipants to complete the study. More specifically, for
a given problem, we measured the completion time
as the difference between the time the description
of the problem was presented to the participant and
the time the participant completed the study. Note
that a study was completed whenever the participant
chose to finish the study. In all but two cases, this

34

TABLE 23: Demographic information about the participants categorized based on their performances in
addressing the second problem.

degree knowledgeable experience (in years) in
level of CIT programming | software testing

cat. count | cat. count cat. count cat. count
undergrad 2 es 4 S 2 2 S 2 6
after seeing only grac. y 3 1 3 0
the description ad 4 n 2 4 1 4 0
successful grad. 0 >5 2 >5 0
formulations underorad 5 1 <2 0 <2 4
after seeing both the ergrac. yes 3 1 3 0
description and example 4 2 4 0
grad. 2 no 3 > 5 1 > 5 0
<2 0 <2 2
missing undergrad. 0 yes 2 3 1 3 0
constraints rad 3 no 1 4 1 4 0
formulations grad. >5 1 >5 1
with issues d d 3 2 <2 0 <2 5
non-trivial undergrad. yes 3 2 3 0
generalization 4 3 4 0
grad. 2 no 3 >5 0 > 5 0
. undergrad. 0 yes 2 SB 2 8 S?, 2 i
give-ups 4 0 4 0
grad. 2 no 0 >5 2 > 5 0

happened after computing an F-CIT object achieving
full coverage. In two cases, however, the participants
chose to stop working on the current problem in the
middle of the study as they found the problem “very
difficult” (see Section 6.3 for more information). Each
participant worked on the problems one after another.

We, furthermore, counted the number of errors made
by the participants. To this end, we counted the num-
ber of times the Test and the Generate buttons were
clicked (Section 6.1) and the result obtained did not
meet the expectation of the participant. More specif-
ically, if a participant, after clicking on a Test button
or a Generate button, made some changes and clicked
on the same button, we assumed that the participant
made an error before the first click (as the expectation
of the participant after the first click did not seem to be
met). Note that this metric provides an approximation
of the number of errors made because on numerous
occasions, we observed that the participants intention-
ally developed incorrect or missing constraints to test
their hypotheses or to gain insight into the problem.
We still opted to use this metric because attempting to
figure out the actual intention of the participant after
every click of a button would have introduced a great
deal of intervention.

Furthermore, the percentage of the participants, who
“agreed” or “strongly agreed” with a question group
in the exit survey, was computed as the average per-
centage of the participants, who “agreed” or “strongly
agreed” with the questions in the group. The per-
centage of the participants, who found the problems
“difficult” or “very difficult,” is computed in the same
manner.

6.3 Data and Analysis

We first observed that all of the participants under-
stood how F-CIT works. In particular, none of the
participants were reminded of the basic F-CIT concepts
during the study.

We then observed that the participants could also
formulate previously unseen problems in F-CIT. More
specifically, all of the participants successfully formu-
lated the first and the third problems. That is, for
each of these problems, all of the participants correctly
expressed the F-CIT model as well as all of the F-CIT
entities to be covered in a generalizable manner and
generated an F-CIT object obtaining full coverage. And,
they did so in a relatively fast manner. The average
time it took for the participants to complete these stud-
ies was 4.88 minutes (min = 1.47 and max = 13.89) for
the first problem and 5.38 minutes (min = 2.29 and
max = 9.02) for the third problem.

As expected, the participants found the second prob-
lem more difficult than the other two problems, which
was also reflected on the outcomes of the exit sur-
vey. While 65% of the participants found the second
problem “difficult” or “very difficult,” none of the
participants thought the same thing for the first and
third problems. As a matter of the fact, based on the
answers given to the open-ended Q9 (Table 22), the
most challenging part in the entire study turned out to
be expressing an F-CIT model for the second problem.
Two participants, indeed, chose to terminate this study
in the middle of it after spending 42.56 minutes on
average as they found the problem “very difficult” (see
the row marked with “give-ups” in Table 23 for the
demographic information of these participants).

Half (10 out of 20) of the participants, however,
successfully formulated the problem in a generalizable
manner by using the same (or similar) approach intro-
duced in Section 5.2.4 and obtained full coverage. 6 of
them did so after seeing the description in Figure 6a
and 4 after seeing both the description and the example
flow problem in Figure 6b (see the rows marked with
“after seeing only the description” and “after seeing
both the description and example” in Table 23, respec-
tively, for the demographic information of these partic-
ipants). None of the participants, who came up with a
generalizable solution for this problem, did so without
seeing the description or the example. The average
completion time was 47.14 minutes (min = 25.79 and
mazx = 69.49).

The remaining 40% (8 out of 20) of the participants,
although generated F-CIT objects obtaining full cover-
age, either came up with a formulation, the general-
ization of which was non-trivial, or covered some of
the entities by chance. More specifically, 3 participants
developed generalizable formulations by represent-
ing edges using Boolean variables (rather than using
integer variables), which were quite similar to the
formulation we developed in Section 5.2.4. However,
the constraints, which should have invalidated the
presence of multiple independent flows, were missing
from the F-CIT models (see the row marked with
“missing constraints” in Table 23 for the demographic
information of these participants). The participants
failed to identify the issue because their formulations
happened to obtain full coverage by generating valid
test cases for the graph given in the study. Had they
worked on larger graphs, however, they might have
pinpointed and fixed the issue. The average completion
time for this category of participants was 37.36 minutes
(min = 33.91 and maz = 43.01).

The remaining 5 participants developed formula-
tions, the generalizations of which were non-trivial
(see the row marked with “non-trivial generalization”
in Table 23 for the demographic information of these
participants). In particular, all of these participants
chose to represent each vertex (rather than each edge)
in the graph by using an integer variable, the value
of which represents the order in which the vertex is
visited. For a given variable, the set of possible values
were determined manually by considering all possible
paths that could be traversed. The invalid combina-
tions of variable values (i.e., invalid paths) were then
prevented by introducing model constraints in a rather
ad hoc manner every time the participant observed
that some of the generated test cases were invalid
and/or some of the entities could not be covered. 4 (out
of 5) of these participants correctly expressed all the
constraints as well as the entities for the graph given
in the study and obtained full coverage. The remaining
participant, although had some missing and/or faulty

35

constraints in the F-CIT model, happened to obtain
full coverage by chance. The average completion time
for this category of participants was 46.42 minutes
(min = 23.26 and max = 64.54).

We did not find any correlations between the perfor-
mances of the participants and their levels of degree,
knowledge of CIT, or experiences in programming
and testing. We, however, observed that the knowl-
edge of the domain was influential in successfully
completing the studies. More specifically, for the first
and third problems, which required basic knowledge
of programming and testing, all of the participants
successfully formulated the problems in F-CIT. For the
second problem, which required basic knowledge of
network flow problems, all of the participants, who
successfully formulated the problem in F-CIT, did so
either after seeing a definition of the network flow
problem or after seeing both the definition and an
example flow problem. Table 23 provides demographic
information about the participants categorized based
on their performances in addressing the second prob-
lem.

Regarding the mistakes made during the study, we
first observed that (as expected) the participants made
more mistakes when solving the second problem, com-
pared to the other two problems. While the average
number of mistakes made for the second problem was
5.06, those for the first and third problems were 0.50
and 0.67, respectively.

We then observed a debugging pattern. The partici-
pants, solely for the second problem, found expressing
the entities as constraints easier than expressing the F-
CIT models. They, therefore, used the entity constraints
to debug the models. More specifically, to gain insight
as well as to test their hypotheses, they tended to click
on the Test buttons associated with the entity fields.
When the results obtained were not expected, they
modified and fixed the models.

Another interesting observation we made is that
more than half of the participants (especially for the
first and third problems) encoded the F-CIT models as
they were reading the study descriptions. That is, as
they discovered new system constraints (e.g., param-
eters and their domains), they updated the models,
suggesting that they knew what to look for in the
requirements to develop the F-CIT models.

Last but not least, Table 24 presents the outcome
of the exit survey. Regarding the questions Q1-Q2
(i.e., Ql.a-Ql.c and Q2.a-Q2.d) and Q6-Q8, all of the
participants “agreed” or “strongly agreed” that 1)
they understood the basic concepts both in constraint
solving and in F-CIT, 2) they found F-CIT useful, 3)
they would use F-CIT in a project, and 4) they would
recommend F-CIT to others.

Regarding Q10, one suggestion was to improve the
syntax of the language we used for expressing the

TABLE 24: Responses to the exit survey given in

Table 22.

strongly strongly

disagree | disagree | neutral | agree agree
Qla 0 0 0 2 18
Q1b 0 0 0 3 17
Qlc 0 0 0 4 16
Q2a 0 0 0 3 17
Q2b 0 0 0 6 14
Q2c 0 0 0 4 16
Q2d 0 0 0 7 13
Qo6 0 0 0 7 13
Q7 0 0 0 7 13
Q8 0 0 0 4 16

very very

difficult | difficult | normal | easy easy
Q3a 0 0 1 3 16
Q3b 0 0 1 4 15
Q4a 1 12 7 0 0
Q4b 1 6 9 4 0
Qb5a 0 0 0 2 18
Q5b 0 0 0 2 18

constraints in a way that closely resembles the Boolean
expressions used in main stream programming lan-
guages. Another suggestion was to develop a means
of expressing “long and repetitive” constraints in a
more efficient and effective manner, which, in turn,
can further simplify the processes of developing the
constraints.

6.4 Discussion

We observed that some problems are more difficult to
formulate in F-CIT than others. This is, indeed, to be
expected. After all, solving some problems may require
specific background knowledge and not everybody
may possess it. Note, however, that the proposed ap-
proach still allows experts to formulate such problems
in F-CIT and others to use the existing formulations to
compute F-CIT objects. For example, the F-CIT formu-
lation we developed to express reachability in graph-
based models, can be used to obtain full coverage
under other reachability-based coverage criteria (other
than the ones we studied in this work) by changing
the entities to be covered.

7 GENERAL DISCUSSION

In this section, we informally discuss the proposed
approach in an attempt to 1) address the additional
questions that the reader may have, 2) discuss the
big picture, in which we envision F-CIT to be an
integral part, and 3) present possible avenues for future
research. To further support the discussion, we also
provide simple examples and code segments as we see
fit.

F-CIT is not a methodology for choosing the entities
to be tested. It rather takes as input a set of testable
entities and aims to find a minimum number of test

36

cases, such that every required entity is covered by at
least one test case.

In the absence of a methodology or a tool that can
automatically determine what needs to be tested, such
as the existing structural code coverage criterion we
used in Section 5.1, identifying the set of entities to be
tested may require some effort. Note, however, that if
the entities at question should really be tested, then
they, in one way or another, must be defined and enu-
merated regardless of whether F-CIT or a specialized
constructor is used.

Once the entities are determined, one may consider
developing a specialized CIT constructor. To do that,
however, a procedure, which determines whether a
given set of entities can be covered together in a test
case or not, needs to be devised. But, then, the very
same procedure can be used as the “solver” in F-
CIT, which in turn offers a constructor for free. Note
that, as we have discussed in Section 4.5, given such a
procedure, the entities can be represented in any form
desired (e.g., not necessarily in formal logic), since F-
CIT does not need to interpret them.

After all, developing specialized CIT constructors
may not be easy. As a matter of fact, we introduced our
generate-and-cover constructor (Algorithm 2) to mimic
one of the simplest ways of generating CIT objects:
Keep on randomly generating valid test cases until
all the required entities have been covered. However,
developing a high-performing specialized constructor
is quite challenging, which is also apparent from more
than 50 papers published in the literature, the sole
purpose of which is to compute standard covering
arrays [2]. Therefore, our goal is to generalize the
construction as much as possible, so that the collective
effort spent for developing F-CIT constructors can be
leveraged in a wider spectrum of test scenarios, which
in turn increases the flexibility of CIT.

We believe that the performance (i.e., the construc-
tion times) of F-CIT constructors can further be im-
proved by using “hints.” The idea behind using hints
stems from a simple observation of ours: Testable
entities to be covered are typically composed of the
same set of sub-entities, e.g., the same conjuncts appear
in multiple testable entities. Therefore, in the processes
of computing F-CIT objects, the same constraints are
often solved multiple times. Consequently, capturing
the relationships between these recurring constraints
(i.e., sub-entities) in the form of hints can improve
the efficiency of F-CIT constructors by reducing the
number of times the solver is called and/or by calling
the solver with simpler constraints. For example, if it is
known that the 2-orders [v1, v3] and [vq, v3] are covered
by a test case for a DAG, then it can be inferred without
even using a solver that the 2-order [vq, v3] as well as
the 3-order [vq, v2, v3] are also covered by the same test
case. We have indeed been working on expressing hints

in a way (e.g., as constraints), such that they can be
leveraged regardless of the F-CIT constructor in use.
Although initial feasibility studies show promise, the
aforementioned work is still at its early stages.

We also believe that tools (e.g., front-ends) that
can provide various means for defining the coverage
criteria as well as the input spaces, such that the
testable entities selected by the coverage criteria are
automatically generated, can be of further practical use.
The important point to note, however, is that regardless
of the way these tools operate, the cov-CSP problem,
thus, the F-CIT constructors we have developed in this
work, will stay intact.

To this end, we make two observations. First, declar-
ative modeling approaches, such as the Answer Set
Programming (ASP) approach we used in Section 5.2,
is a good fit for F-CIT, as they express the logic
of a computation without describing its control flow.
Second, these approaches can further leverage the com-
monalities in the coverage criteria and the test spaces
that may be present in different application domains.
For example, the test spaces we have used in all of our
three studies (Sections 5.1-5.3) can indeed be expressed
by using a single DAG-based model. In such a model,
a node can be associated with a possibly empty set
of configuration options, each of which takes its value
from a discrete domain. And, an edge can be associated
with a condition, which needs to be satisfied before the
edge can be taken.

With regard to Study 2. We, indeed, used such
DAG-based models in Study 2 (Section 5.2). Since the
only thing that mattered in that study was the possible
orderings of nodes, no configuration option was asso-
ciated with the nodes and all the edge conditions were
true.

With regard to Study 1. The virtual options in
Study 1 (Section 5.1) can also be modeled by using
DAGs. More specifically, each virtual option can be
expressed by using the control flow graph (CFG) of
the respective if-then-else directive, in which an edge
originating from a decision node is associated with a
condition that specifies the respective outcome of the
decision. For example, one of the edges that originates
from the decision if (c) then{...} else{...}
would be associated with ¢, representing the then
branch, and the other edge would be associated with
—c, representing the else branch. Then, covering the
virtual settings of a virtual option is the same as
making sure that all the edges originating from the
decision nodes in the CFG are covered. That is, each
edge originating from a decision node corresponds to
a virtual setting, which is expressed as the conjunction
of all the conditions on the path from the entry node
to the destination node of the edge.

To demonstrate the proposed approach, we have
extended the ASP encoding given in Figure 5. Figure 9

37

% graph
edge (v0O, vl1, cl).
edge (vl, v2, c2).

o
R

visit (v0, true).

visit (A, Condition) :— visit (X, Guard),
edge (X, A, Decision),
Condition=@conjunct (Guard, Decision).

decisionNode (A) :— edge (A,
edge (A, Y, _),
X !=Y.

X,)y

setting (Setting) :- decisionNode (A),
visit (A, Guard),
edge (A, B, Decision),
Setting=@conjunct (Guard, Decision).

Fig. 9: An ASP encoding for determining the virtual
settings of a virtual option expressed as a control
flow graph, in which the edges originating from a

decision are associated with the conditions required

to take these edges.

presents the extended encoding. The first thing we did
was to add another parameter to edge (. .) to express
the conditions associated with edges. More specifically,
a fact edge (A, B, Condition) now indicates that
there is an edge from A to B, which can only be
taken if the condition Condition holds. Note that the
encoding in Figure 5 can be made compatible with
the new encoding by replacing all the edge (&, B)
facts by edge (A, B, true), indicating that all edge
conditions are true.

Given the control flow graph of a virtual option,
in which the entry node is v0 and the unconditional
edges are associated with true, a decision node A is
a node, from which at least two edges originate (i.e., a
node with an out-degree of at least 2):

decisionNode (A)
edge (AI Y/ _) 14
X!=Y.

:— edge (A, X, _),

The condition Condition required to visit node A
starting from v 0 is the conjunct of the condition Guard,
which is required to visit the preceding node X, and
the condition Decision, which is associated with the
edge from X to A:

visit (v0, true).

visit (A, Condition) :— visit (X, Guard),
edge (X, A, Decision),
Condition=@conjunct (Guard, Decision).

For every edge originating from a decision node, the
condition required to take the edge then becomes a
virtual setting:

setting (Setting) :- decisionNode (A),
visit (A, Guard),
edge (A, B, Decision),

% graph

node (v0, ol, 0).
node (v0, ol, 1).
node (v0, o2, 0).
node (v0, 02, 1).

o

tuple (01, S1, 02, S2) :— node (v0, 01,
node (v0, 02,
0l < 02.

s1l),
52),

Fig. 10: An ASP encoding enumerating all 2-tuples.

Setting=@conjunct (Guard, Decision).

Note that this encoding is not concerned with solv-
ing the conditions, which will indeed be carried out
by the F-CIT constructor. It rather forms the virtual
settings by joining the individual edge conditions,
each of which is expressed as a Boolean expression.
Therefore, the edge conditions can be as complex as
possible and be processed in any format desired, e.g.,
as strings. Furthermore, since virtual settings will be
Boolean expressions by construction, they can directly
be used by our F-CIT constructors without any further
processing.

With regard to Study 3. Last but not least, the
space of all valid configurations (thus, the space of
all valid t-tuples) in Study 3 can also be expressed by
using the same DAG-based modeling approach. To this
end, all we need is a single node, with which all the
configuration options of the subject application under
test are associated. Since all possible combinations of
option settings were valid in Study 3, there is no need
to leverage the reachability constraints that can be
provided by a graph-based model. The space of all
valid ¢-tuples can then be expressed as all possible
combinations of settings for ¢ distinct options.

To demonstrate the proposed approach, we have
extended the ASP encoding given in Figure 5, such that
each node can be associated with a set of configuration
options, each of which can take its value from a discrete
domain. All the configuration options of the system
under test can then be associated with a single node,
e.g., the entry node v0.

Figure 10 presents an example encoding for enu-
merating 2-tuples. In this encoding, the node v0 has
two binary options, namely ol and o2, each of which
can take on either 0 or 1. All possible 2-tuples for this
model can then be enumerated by using:

tuple (01,S1,02,5S2)
node (v0,02,82),
01<02.

:— node (v0,01,51),

Note that the constraint 01 < 02 above is used to
put the configuration options in an order, so that only
distinct tuples are generated. The tuple weights can
then be computed as described in Section 5.3.

38

Note further that both of the encodings given in
Figures 9 and 10 can trivially be extended for different
coverage strengths.

8 THREATS TO VALIDITY

All empirical studies suffer from threats to their in-
ternal and external validity. For this work, we were
primarily concerned with threats to external validity
since they limit our ability to generalize the results of
our studies to industrial practice.

One threat concerns the representativeness of the
case studies as well as the subject applications used in
the experiments. To alleviate this issue, we addressed
a different CIT problem in each case study.

In the first study (Section 5.1), we enhanced stan-
dard CIT with a well-known structural code coverage
metric, namely decision coverage, and conducted com-
parative studies on 12 well-known software systems,
including Python, vim, and xterm. In the second
study (Section 5.2), we enhanced a number of exist-
ing order-based coverage criteria. In the third study
(Section 5.3), we developed solutions for a problem
faced by a successful consumer electronics company
and evaluated the proposed approach by using the
data collected from the field. Furthermore, not only the
CIT problems we have addressed, but also the solution
approaches we have developed were diverse. In the
first study (Section 5.1), the values of the parameters
were Boolean constraints, rather than discrete values,
and we used F-CIT with a SAT solver. In the second
study (Section 5.2), we expressed the reachability prob-
lem in DAGs as a constraint satisfaction problem (CSP)
and used a CSP solver. In the third study (Section 5.3),
we worked with parameters, each of which takes on
a value from a discrete set of values and used F-CIT
with a simple, application-specific constraint solver.

We have, however, not directly studied the fault-
detection abilities of the F-CIT objects we computed.
In the first study (Section 5.1), we developed F-CIT
objects to obtain full decision coverage. The decision
coverage criterion is, indeed, a well-known structural
code coverage criterion for measuring the adequacy
of test suites. Therefore, its fault-detection abilities are
well-studied [58]. In the second study (Section 5.2), we
enhanced a number of existing order-based coverage
criteria, which have already been shown to be effective
in testing event-driven systems [9]. In the third study
(Section 5.3), we developed usage-based CIT objects to
reduce the size of the interaction test suites by covering
only the t¢-tuples (or a fraction of them) seen in the
field. Consequently, for the test scenarios, in which
standard covering arrays are infeasible (or undesirable)
due to their sizes, usage-based CIT objects would offer
the same (or similar) fault revealing abilities for the
faults caused by the t-tuples seen in the field.

The number of times we repeated the experiments
in the paper varied depending on the cost of the
respective experiments. We, however, opted to work
on larger CIT problems with smaller repetition counts,
rather than working on smaller formulations with
larger repetition counts. Furthermore, for each study,
we have added a discussion for the costs involved
in the study. The actual costs, however, may vary
depending on the experience of the tester.

Regarding the user studies, all the participants in
these studies were students. We, however, had both
undergraduate- and graduate-level students with some
background on software testing. Furthermore, more
than half of these students had taken at least one
course where standard CIT approaches were studied.
A related threat concerns the representativeness of the
problems used in the user studies. We, however, used
the smaller instances of the very same problems we
studied in this work (Sections 5.1-5.3). Furthermore,
these problems were not known to the participants
before taking part in the study. The participants were
asked to finish working on one problem before moving
to the subsequent problem. They were also required to
finish all the studies in a single session. Had they been
given more time and/or more instances of the same
problems, more participants might have successfully
formulated them in a generalizable manner and/or
identified and fixed the issues with their formulations.

9 RELATED WORK

The basic justification for using standard ¢t-way cover-
ing arrays is that they can (under certain assumptions)
reveal the failures caused by the interactions of ¢ or
fewer parameters. As a matter of fact, the results of
many empirical studies suggest that a majority of
parameter-related failures in practice are often caused
by the interactions of only a small number of pa-
rameters [59], [2], [60], [61]. That is, ¢t is generally
much smaller than the number of parameters, typically
2 <t < 6 with t=2 (i.e., pairwise testing) being the
most common case [3]. Furthermore, for a fixed ¢, as the
input space grows (e.g., as the number of parameters
increases), the size of a covering array represents an
increasingly smaller proportion of the whole input
space. Thus, covering arrays can efficiently handle very
large input spaces.

Computing standard covering arrays is an NP-hard
problem [62]. Standard covering array constructors can
be divided into four broad categories based on the
construction approach they employ: random search-
based constructors [60], [63], greedy constructors [3],
[64], [65], metaheuristic search-based constructors [66],
[67], [68], [69], [70], [71], and mathematical construc-
tors [72], [73]. Our work is different in that, while these
constructors compute standard covering arrays, the
constructors we have presented in this paper compute

39

F-CIT objects, of which the standard covering arrays
are a special instance, by solving the cov-CSP problem.

Constraints in combinatorial interaction testing have
also been of practical [15] and theoretical interest [23].
Based on their strictness, CIT constraints can be di-
vided into hard constraints and soft constraints. Hard
constraints mark combinations of option settings that
are not permitted [17]. Soft constraints, on the other
hand, mark combinations of option settings that are
permitted, but not desirable [16]. In this work, we
define two types of constraints: model constraints and
constraints representing entities to be covered. The
former types of constraints are system-wide hard con-
straints, whereas the latter types are hard constraints,
the scope of which is limited to the test case covering
the entities, i.e., only the test case that covers an entity
must satisfy the respective constraint.

A relatively recent work [24] discovers the GUI
widgets and Android Activities that interact with each
other, by using static analysis and uses this information
together with a constraint solver to reduce the number
of combinations (thus the number of test cases) re-
quired for testing mobile applications. Our work is dif-
ferent in that the aforementioned work uses constraint
solving (in a flexible manner by using Alloy [74]) solely
to enumerate the testable entities to be covered, which
in this context correspond to sequences of Android
Activities that can be visited (e.g., prime paths in
the activity transition graph of the application under
test [24]) and/or the combinations of values that can
be tested for the interacting GUI widgets. Once these
entities are enumerated, the actual test cases are gen-
erated by first computing the Cartesian product of the
values for the interacting GUI widgets in each Activity
and then by computing the Cartesian product of the
test cases generated for the interacting Activities. F-
CIT, on the other hand, takes the entities to be covered
as input and uses constraint solving for generating test
cases to cover all the required entities. And, it does so
by generalizing the construction of CIT objects in the
form of the cov-CSP problem. From this perspective,
F-CIT complements the aforementioned work (rather
than replacing it) because once the testable entities are
enumerated in [24], F-CIT can be used to generate the
test cases. Furthermore, the aforementioned work [24]
does not concern about generalizing the construction
of CIT objects, which is, indeed, the main concern
addressed in our work. For example, it is not clear at
all whether the construction approach in [24] can be
used to compute the different types of F-CIT objects
introduced in this work (Sections 5.1-5.3).

Seeding has also been frequently used in combinato-
rial interaction testing [2]. Some example uses can be
summarized as follows: 1) to guarantee the inclusion
of certain configurations by having them in the seed;
2) to reduce the cost of testing by including already

tested configurations in the seed; and 3) for incremental
construction of covering arrays by using lower strength
covering arrays as seeds to compute higher strength
covering arrays [30], [75]. In this work, we have de-
veloped a seeding mechanism for F-CIT and used it in
two different ways: 1) to combine multiple coverage
criteria and 2) to incrementally construct F-CIT objects.

10 CONCLUDING REMARKS

In this work, we have first presented F-CIT to make
combinatorial interaction testing more flexible. In F-
CIT, both the testable entities to be covered and the
space of test cases, from which the samples will be
drawn, are expressed as constraints. Consequently, the
problem of computing F-CIT objects, turns into an
interesting constraint solving problem, which we call
cov-CSP. Given a set of constraints, each representing
a testable entity to be covered, cov-CSP aims to divide
the set into a minimum number of satisfiable clusters,
such that a solution for a cluster represents a test
case, covering the testable entities included in the
cluster. The collection of all the test cases computed
for the clusters constitute the F-CIT object, covering
each required testable entity at least once.

We have then developed two constructors, namely
cover-and-generate and generate-and-cover, to solve
the cov-CSP problem, thus to compute F-CIT objects.
These constructors can work with any types of con-
straints as long as an appropriate solver, the purpose
of which is to determine whether a given set of entities
can be covered in a single test case or not, is provided.

To evaluate F-CIT, we have first carried out three
case studies, each of which focused on a different CIT
problem, demonstrating that F-CIT is more flexible
than the existing CIT approaches. We have arrived
at this conclusion by noting that, in these studies,
it was either unclear how to use the existing con-
structors (if at all possible) to compute the requested
CIT objects, or the existing constructors required non-
trivial modifications or excessive number of test cases
to guarantee full coverage. F-CIT, on the other hand,
used the same F-CIT constructor to compute all the
requested CIT objects these studies without requiring
any modifications.

We have also carried out user studies to further
evaluate F-CIT, demonstrating the usability of the
proposed approach. One thing we observed in these
studies is that some problems are more difficult to
formulate in F-CIT than others as they require some
specific background knowledge, which may not be
possessed by everybody. To alleviate these issues, we
are developing declarative modeling-based front-ends
to flexibly define both the coverage criteria to be used
and the test spaces, from which the samples are drawn.

Another avenue for future work is to develop al-
ternative approaches for solving the cov-CSP problem,

40

i.e., developing better constructors. Yet another avenue
is to capture the domain knowledge in the form of
“hints”, which are also expressed as constraints, to
develop even better constructors. We are also interested
in demonstrating the flexibility of F-CIT in different
application domains.

11 ACKNOWLEDGMENTS

This research was supported by the Scientific and
Technological Research Council of Turkey (118E204).

REFERENCES

[11 C. Yilmaz, S. Fouche, M. B. Cohen, A. Porter, G. Demiroz,
and U. Koc, “Moving forward with combinatorial interaction
testing,” Computer, vol. 47, no. 2, pp. 37-45, 2014.

[2] C.Nieand H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, p. 11, 2011.

[3] D.M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: an approach to testing based on combinatorial
design,” IEEE Trans. on Soft. Eng., vol. 23, no. 7, pp. 43744,
1997.

[4] A. W. Williams and R. L. Probert, “A practical strategy for
testing pair-wise coverage of network interfaces,” in Proceedings
of Seventh International Symposium on Software Reliability Engi-
neering. 1EEE, 1996, pp. 246-254.

[5] P.J. Schroeder, P. Faherty, and B. Korel, “Generating expected
results for automated black-box testing,” in In Proceedings of
the 17th IEEE International Conference on Automated Software
Engineering, ASE 2002. IEEE, 2002, pp. 139-148.

[6] C. Yilmaz, M. B. Cohen, and A. A. Porter, “Covering arrays
for efficient fault characterization in complex configuration
spaces,” IEEE Trans. Software Eng., vol. 32, no. 1, pp. 20-34,
2006.

[7] M. E Johansen, . Haugen, and E. Fleurey, “An algorithm for
generating t-wise covering arrays from large feature models,”
in Proceedings of the 16th International Software Product Line
Conference-Volume 1. ACM, 2012, pp. 46-55.

[8] Y. Lei, R. H. Carver, R. Kacker, and D. Kung, “A combinato-
rial testing strategy for concurrent programs,” Software Testing,
Verification and Reliability, vol. 17, no. 4, pp. 207-225, 2007.

[9] X.Yuan, M. B. Cohen, and A. M. Memon, “GUI interaction test-
ing: Incorporating event context,” IEEE Transactions on Software
Engineering, vol. 37, no. 4, pp. 559-574, 2011.

[10] C. Yilmaz, “Test case-aware combinatorial interaction testing,”
IEEE Transactions on Software Engineering, vol. 39, no. 5, pp. 684—
706, 2013.

[11] G. Demiroz and C. Yilmaz, “Cost-aware combinatorial inter-
action testing,” in Proceedings of the Internatinoal Conference on
Advances in System Testing and Validation Lifecycles, 2012, pp. 9—
16.

[12] A.Javeed and C. Yilmaz, “Combinatorial interaction testing of
tangled configuration options,” in 2015 IEEE Eight International
Conference on Software Testing, Verification and Validation Work-
shops (ICSTW). 1EEE, 2015, pp. 1-4.

[13] J. Lawrence, R. N. Kacker, Y. Lei, D. R. Kuhn, and M. Forbes,
“A survey of binary covering arrays,” the electronic journal of
combinatorics, vol. 18, no. 1, p. P84, 2011.

[14] E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter, “Feedback
driven adaptive combinatorial testing,” in Proceedings of the
International Symposium on Software Testing and Analysis. ACM,
2011, pp. 243-253.

[15] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of
highly-configurable systems in the presence of constraints,” in
Proceedings of the 2007 International Symposium on Software Testing
and Analysis, 2007, pp. 129-139.

[16] R. C. Bryce and C.]J. Colbourn, “Prioritized interaction testing
for pair-wise coverage with seeding and constraints,” Informa-
tion and Software Technology, vol. 48, no. 10, pp. 960 — 970, 2006,
advances in Model-based Testing.

[17]

(18]

[19]
[20]
[21]
[22]

[23]

[24]

[25]

(26]

(27]

[28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

G. Mats, O. Jeff, and M. Jonas, “Handling constraints in the
input space when using combination strategies for software
testing,” University of Skvde, School of Humanities and Infor-
matics, Tech. Rep. HS- IKI -TR-06-001, 2006.

C. Yilmaz, “Test case-aware combinatorial interaction testing,”
IEEE Transactions on Software Engineering, vol. 39, no. 5, pp. 684—
706, 2013.

M. Makas, “A certain version of preservationism,” Logic and
Logical Philosophy, vol. 26, no. 1, pp. 63-77, 2016.

P. K. Schotch and R. E. Jennings, “Inference and necessity,”
Journal of Philosophical Logic, vol. 9, no. 3, pp. 327-340, 1980.
N. Rescher and R. Manor, “On inference from inconsistent
premisses,” Theory and decision, vol. 1, no. 2, pp. 179-217, 1970.
A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability.
IOS press, 2009, vol. 185.

P. Danziger, E. Mendelsohn, L. Moura, and B. Stevens, “Cov-
ering arrays avoiding forbidden edges,” Theoretical Computer
Science, vol. 410, no. 52, pp. 5403-5414, 2009.

N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Re-
ducing combinatorics in gui testing of android applications,”
in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE 16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 559570.

H. Mercan and C. Yilmaz, “A constraint solving problem to-
wards unified combinatorial interaction testing,” in Proceedings
of the 7th Workshop on Constraint Solvers in Testing, Verification,
and Analysis, vol. 1639, no. 5. CEUR, 2016, pp. 24-30.

A. Javeed, “Gray-box combinatorial interaction testing,” Mas-
ter’s thesis, 2015.

Y. T. Yu and M. F. Lau, “A comparison of mc/dc, mumcut and
several other coverage criteria for logical decisions,” Journal of
Systems and Software, vol. 79, no. 5, pp. 577-590, 2006.
“Radon.” [Online]. Available: https://radon.readthedocs.io/
en/latest/

L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “ACTS: A com-
binatorial test generation tool,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation (ICST).
IEEE, 2013, pp. 370-375.

S. Fouché, M. B. Cohen, and A. Porter, “Incremental covering
array failure characterization in large configuration spaces,” in
Proceedings of the eighteenth international symposium on Software
testing and analysis. ACM, 2009, pp. 177-188.

J. Liebig, S. Apel, C. Lengauer, C. Késtner, and M. Schulze, “An
analysis of the variability in forty preprocessor-based software
product lines,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1. ACM, 2010, pp.

105-114.

“SATisPy.” [Online]. Available: https://github.com/netom/
satispy

N. Eén and N. Sorensson, “An extensible SAT-solver,” in Inter-

national conference on theory and applications of satisfiability testing.
Springer, 2003, pp. 502-518.

P. Samuel and A. T. Joseph, “Test sequence generation from
uml sequence diagrams,” in Ninth ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2008. SNPD’08. IEEE, 2008, pp.
879-887.

F. Belli, M. Beyazit, and N. Giiler, “Event-Based GUI testing
and reliability assessment techniques—an experimental insight
and preliminary results,” in IEEE Fourth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW).
IEEE, 2011, pp. 212-221.

A. M. Memon, “An event-flow model of GUI-based applications
for testing,” Software testing, verification and reliability, vol. 17,
no. 3, pp. 137-157, 2007.

M. C. Calpur, “Interleaving coverage criteria oriented testing of
multithreaded applications,” Master’s thesis, 2012.

D. L. Bruening, “Systematic testing of multithreaded Java pro-
grams,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, 1999.

M. Musuvathi, S. Qadeer, T. Ball, M. Musuvathi, S. Qadeer, and
T. Ball, “Chess: A systematic testing tool for concurrent soft-
ware,” Technical Report MSR-TR-2007-149, Microsoft Research,
Tech. Rep., 2007.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

[48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

41

S. Lu, W. Jiang, and Y. Zhou, “A study of interleaving coverage
criteria,” in the 6th joint meeting on European software engineering
conference and the ACM SIGSOFT symposium on the foundations of
software engineering: companion papers. ACM, 2007, pp. 533-536.
D. R. Kuhn, J. M. Higdon,]J. F. Lawrence, R. N. Kacker, and
Y. Lei, “Combinatorial methods for event sequence testing,” in
Proceedings of the 5th IEEE International Conference on Software
Testing, Verification and Validation, 2012, pp. 601-609.

“Apache ActiveMQ.” [Online]. Available: http://activemq.
apache.org/

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu et al.,
“Bounded model checking.” Advances in computers, vol. 58,
no. 11, pp. 117-148, 2003.

R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network in-
formation flow,” IEEE Transactions on information theory, vol. 46,
no. 4, pp. 1204-1216, 2000.

J. E. Hopcroft, Introduction to Automata Theory, Languages and
Computation: For VTU, 3/e. Pearson Education India, 2013.

S. Lombardy, Y. Régis-Gianas, and J. Sakarovitch, “Introducing
vaucanson,” Theoretical Computer Science, vol. 328, no. 1-2, pp.
77-96, 2004.

V. W. Marek and M. Truszczynski, “Stable models and an alter-
native logic programming paradigm,” in The Logic Programming
Paradigm. Springer, 1999, pp. 375-398.

L. Niemeld, “Logic programs with stable model semantics as a
constraint programming paradigm,” Annals of Mathematics and
Artificial Intelligence, vol. 25, no. 3-4, pp. 241-273, 1999.

T. Eiter, G. Ianni, and T. Krennwallner, “Answer set program-
ming: A primer,” in Reasoning Web International Summer School.
Springer, 2009, pp. 40-110.

C. Baral, Knowledge representation, reasoning and declarative prob-
lem solving. Cambridge university press, 2003.

N. Tamura and M. Banbara, “Sugar: A CSP to SAT translator
based on order encoding,” Proceedings of the Second International
CSP Solver Competition, pp. 65-69, 2008.

B. Jenkins, “jenny: A pairwise testing tool,” http://www.
burtleburtle.net/bob/index.html, 2005.

J. Czerwonka, “Pairwise testing in the real world: Practical
extensions to test-case scenarios,” Microsoft Corporation, Software
Testing Technical Articles, 2008.

H. Katebi, K. Sakallah, and J. Marques-Silva, “Empirical study
of the anatomy of modern sat solvers,” Theory and Applications
of Satisfiability Testing-SAT 2011, pp. 343-356, 2011.

L. M. de Moura and N. Bjerner, “Satisfiability modulo theories:
An appetizer,” SBMF, vol. 5902, pp. 23-36, 2009.

M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C.]. Colbourn, and
J. S. Collofello, “A variable strength interaction testing of com-
ponents,” in Proceedings of 27th IEEE Annual International Com-
puter Software and Applications Conference, (COMPSAC). 1EEE,
2003, pp. 413-418.

M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear programming
and network flows. John Wiley & Sons, 2011.

X. Cai and M. R. Lyu, “The effect of code coverage on fault de-
tection under different testing profiles,” ACM SIGSOFT software
engineering notes, vol. 30, no. 4, pp. 1-7, 2005.

R. Kuhn, Y. Lei, and R. Kacker, “Practical combinatorial testing:
Beyond pairwise,” It Professional, vol. 10, no. 3, 2008.

P. J. Schroeder, P. Bolaki, and V. Gopu, “Comparing the fault
detection effectiveness of n-way and random test suites,” in
Proc. of the 2004 Int’l Symp. on Empirical Software Engineering,
2004, pp. 49-59.

D. R. Kuhn and V. Okum, “Pseudo-exhaustive testing for soft-
ware,” in 30th Annual IEEE/NASA Software Engineering Work-
shop. SEW’06. 1EEE, 2006, pp. 153-158.

E. Maltais and L. Moura, “Hardness results for covering arrays
avoiding forbidden edges and error-locating arrays,” Theoretical
Computer Science, vol. 412, no. 46, pp. 6517-6530, 2011.

R. Huang, X. Xie, T. Y. Chen, and Y. Lu, “Adaptive random test
case generation for combinatorial testing,” in Proceedings of 36th
IEEE Annual International Computer Software and Applications
Conference, (COMPSAC). 1IEEE, 2012, pp. 52-61.

Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,
“IPOG/IPOG-D: efficient test generation for multi-way combi-
natorial testing,” Softw. Test. Verif. Reliab., vol. 18, pp. 125-148,
September 2008.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Z. Wang and H. He, “Generating variable strength covering
array for combinatorial software testing with greedy strategy.”
JSW, vol. 8, no. 12, pp. 3173-3181, 2013.

M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn,
“Constructing test suites for interaction testing,” in Proceedings
of the 25th International Conference on Software Engineering, 2003,
pp. 38-48.

R. C. Bryce and C.]J. Colbourn, “One-test-at-a-time heuristic
search for interaction test suites,” in Proceedings of the 9th annual
conference on Genetic and evolutionary computation. New York,
NY, USA: ACM, 2007, pp. 1082-1089.

H. Wu, C. Nie, E-C. Kuo, H. Leung, and C. J. Colbourn, “A
discrete particle swarm optimization for covering array gener-
ation,” IEEE Transactions on Evolutionary Computation, vol. 19,
no. 4, pp. 575-591, 2015.

P. Galinier, S. Kpodjedo, and G. Antoniol, “A penalty-based
Tabu search for constrained covering arrays,” in Proceedings of
the Genetic and Evolutionary Computation Conference. ACM, 2017,
pp. 1288-1294.

Y. Jia, M. B. Cohen, M. Harman, and]. Petke, “Learning
combinatorial interaction test generation strategies using hy-
perheuristic search,” in Proceedings of the 37th IEEE International
Conference on Software Engineering (ICSE), vol. 1. IEEE, 2015,
pp. 540-550.

J. Torres-Jimenez and E. Rodriguez-Tello, “New bounds for
binary covering arrays using simulated annealing,” Information
Sciences, vol. 185, no. 1, pp. 137-152, 2012.

N. Kobayashi, “Design and evaluation of automatic test gen-
eration strategies for functional testing of software,” Ph.D.
dissertation, Osaka University, Osaka, Japan, 2002.

C. J. Colbourn, “Combinatorial aspects of covering arrays,” Le
Matematiche (Catania), vol. 58, no. 121-167, pp. 0-10, 2004.

D. Jackson, “Alloy: a lightweight object modelling notation,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 11, no. 2, pp. 256-290, 2002.

C. Yilmaz, E. Dumlu, M. B. Cohen, and A. Porter, “Reducing
masking effects in combinatorial interaction testing: A feedback
driven adaptive approach,” IEEE Transactions on Software Engi-
neering, vol. 40, no. 1, pp. 43-66, 2014.

Hanefi Mercan received the BS degree in
mathematics and the MS degree in computer
science in 2012 and 2015, respectively. He is
currently a PhD student in Sabanci University.
His research interests include software testing
and parallel computing.

Arsalan Javeed received BS degree in
Telecommunication Engineering and MS in
Computer Science and Engineering in 2011
and 2015 respectively. He is currently a PhD
student at Sabanci University, Turkey. His re-
search interests include Software Engineer-
ing, Testing and Security.

42

Cemal Yilmaz received the BS and MS de-
grees in computer engineering and informa-
tion science from Bilkent University, Ankara,
Turkey, in 1997 and 1999, respectively. In
2005, he received the PhD degree in com-
puter science from the University of Maryland
at College Park. Between 2005 and 2008,
he worked as a post-doctoral researcher at
IBM Thomas J. Watson Research Center,
Hawthorne, New York. He is currently an as-
sistant professor of computer science in the

Faculty of Engineering and Natural Sciences, Sabanci University,
Istanbul, Turkey. His current research interests include software en-
gineering and software quality assurance.

