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ABSTRACT 
 

 

 

Fabrication of Graphene Oxide and Graphene Foams for Li-ion Batteries 

 

Bahareh Bakhtiari 

Materials Science and Nano Engineering, M.Sc. Thesis, 2019 

 

Thesis Supervisor: Prof. Dr. Selmiye Alkan Gürsel 

Thesis Co-supervisor: Asst. Prof. Dr. Alp Yürüm 

 

Keywords: Graphene, graphene oxide, graphene foam, graphene aerogel, CVD method 

 

Graphene based materials are very promising owing to their fascinating characteristics such 

as extremely tunable surfaces, outstanding electrical conductance, good chemical stability 

and outstanding mechanical performance for energy storage applications. This project 

summarizes recent developments on 3D graphene network electrodes for Li-ion battery 

applications. A foam-like graphene material can be prepared by chemical vapor deposition 

and hydrothermal reduction of graphene oxide suspensions. The graphene foam has a much 

higher capacity than conventional graphite anode, and it possesses better rate capability as 

compared to powder like graphene active materials. 
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A new super-light graphene aerogel (GA) was effectively synthesized with a high electrical 

technique using a low cost and accessible method. More importantly, our synthesis approach 

compared to the common graphene oxide (GO) reduction temperature (180 °C) involves low 

temperature (95°C) where the promising GO reduced with different reducing agents is 

achieved through freezing. In this work, we systematically investigate the effects of various 

reducing agents including ammonia, hydro-iodic acid, and ascorbic acid at different 

hydrothermal reaction time (4, 8, 24 hours) and reducing agent dosages (0, 50, 120, 200 μL) 

on the formation of foam, electrical conductivity, and morphology of GA. The results reveal 

that graphene aerogel reduced by ascorbic acid possesses the most outstanding performance 

on mechanical strength and reutilization but has moderate electrical conductivity (9.4 S/m). 

Whereas, the sample obtained with HI exhibits the highest electrical conductivity (12.1 S/m). 

However, this sample reveals poor mechanical strength. The graphene aerogel reduced by 

ammonia is very sensitive to the reaction time and temperature and has moderate mechanical 

strength and the lowest electrical conductivity (7.5 S/m). Therefore, ascorbic acid is a very 

promising reducing agent for the hydrothermal process as the resulted graphene aerogel had 

good electrical conductivity and great mechanical strength. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

 

 

 

 

ÖZET 
 

 

 

Li-iyon Bataryalar İçin Grafen Oksit ve Grafen Köpüklerin Üretimi 
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Malzeme Bilimi ve Mühendisliği, MSc Tezi, 2019 

 

Tez Danışmanı: Prof. Dr. Selmiye Alkan Gürsel 

Ortak Tez Danışmanı: Yrd. Doç. Dr. Alp Yürüm 

 

Anahtar Kelimeler: Grafen, Grafen Oksit, Grafen köpük, Grafen aerojel, CVD metot  

 

Günümüzde grafen destekli malzemeler, ayarlanabilir yüzeylere sahip olmaları, kimyasal 

stabilizeleri, mekanik dirençlere dayanıklı olma gibi özelliklerinden dolayı umut vadeden 

malzemeler olarak bilinmektedir. Bu gibi özelliklerinin yanında grafen destekli malzemelerin 

üretim tekniklerinin geniş ve düşük maliyetli olması bu malzemelerinin kullanım alanlarının 

genişletilmesinde etkilidir. 

Bu yüksek lisans projesinde grafenin lityum iyon bataryalarına olan katkısı amaçlanmaktadır. 

Projede kimyasal buhar yöntemi kullanılarak biriktirilen grafen oksit süspansiyonlarının 

hidrotermal reaksiyonlar ile indirgenmesiyle elde edilen çoklu bir sentez metotluyla üretilen 

grafen ve grafen oksit detaylı bir şekilde anlatılmıştır. Bu metot ile üretilen grafen çok 
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türevlerine göre çok daha yüksek bir kapasiteye sahiptir. Bu özelliğinin yanında türevlerine 

göre daha hafiftir. Daha da önemlisi bu teknik ile sentezlenen grafen oksitler diğer 

yöntemlere göre üretilen grafen oksitlere; indirgenme sıcaklığı (95°C) yönünden 

kıyaslandığında çok daha düşük bir sıcaklık ile indirgenmenin tamamlandığı gözlenmiş olup, 

farklı hidrasyon süreleriyle (4, 8, ve 24 sa.) birlikte farklı miktardaki indirgenme 

reaksiyonlarındaki ajanların (0, 50, 120 ve 200 μL) etkilerinin malzemeye olan etkileri de 

incelenmiştir. 

Öte yandan elde edilen sonuçlarda askorbik asit ile indirgenmiş olan malzemenin mekanik 

mukavemet ve yeniden kullanımda en üstün performansa sahip olduğunu ancak orta derecede 

elektriksel iletkenliğe (9.4 S/m) sahip olduğunu, oysa HI ile elde edilen numune en yüksek 

elektriksel iletkenliğine (12.1 S/m) sahip olduğunu ve askorbik asitin malzeme için en iyi 

elektriksel iletkenliğe sahip olmasındaki önemini açıklamıştır. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

1.1 Lithium-Ion Batteries –Materials Development and Status 
 

A lithium-ion battery includes a cathode (such as, metal oxide) and an anode (graphite) which 

are separated by a conducting electrolyte, LiPF6-ethylene carbonate-diethyl carbonate, for 

instance. The chemical and physical properties of the positive and negative electrodes have 

a huge effect on the performance and energy density of lithium-ion battery. Some parameters 

play a vital role in improving the cathode materials, for example, high potential and structural 

stability. There is still a high capacity for new anode with reversible lithium storage capacity 

[1]. There should be some increase in the energy densities (Wh/kg) for developments in the 

mobile device sector and in other applications related to aerospace, automotive, and flexible 

electronic devices [2]. 
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In recent years, graphene as an anode material has been researched significantly due to its 

2D structure which leads to higher capacity when compared to graphite [3]. Replacing the 

carbon anode with new material is an alternative path to increase the energy density of 

lithium-ion batteries. The theoretical capacity of the graphite is 372 mAh/g, which is only 

about one-tenth of Li [4-7]. Due to the formation of the lithium anode surface, the use of 

lithium metal in the electrolyte solution is a problem which researchers are seeking a solution 

for. Nowadays, new high-capacity anode materials such as alloys, metal oxides with carbon-

based composites are being examined [8, 9]. 

To increase the power density and energy for future targets of energy storage, sort of attempts 

have been done to promote nano active materials for lithium-ion batteries. The advantages of 

the nano active materials and their solutions were investigated. On the other hand, 

disadvantages of these materials were evaluated. The main drawbacks of nano active 

materials, that limitis the total volumetric energy density of lithium-ion batteries is the low 

packing density. 

 

1.1.1 Anode Materials  
 

There are some parameters which affect the anode material based on its characteristics such 

as, quick and high insertion kinetics, and redox versus Li capacity. It is very important for 

the anode material to keep its structural abilities without any loss of electrical contact even 

after repeated charging cycles. As the lithium intercalation compounds are generally made 

by graphite, most of the anode’s changes introduced over the past century include 

carbonaceous materials [6-10, 12]. The reason behind the business achievement of carbon-

based adverse electrodes includes the comparatively small intrinsic carbon price, its 

outstanding lithium insertion reversibility, and the formation of positive surface film with 

many electrolyte alternatives. Recently, carbon and lithium alloy metals are the most 

prevalent among anode materials. The host element in the compound/alloy of graphite 

intercalation "shields" the lithium inserted, making the alloy less sensitive to electrolytes. As 

a result, in the lithiated material, the chemical potential of lithium is lower than in metallic 
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lithium. This translates into a safety benefit, but with a penalty in cell voltage and hence also 

in energy and power density [13-17]. 

In addition, the load-discharge efficiency of these alternative anode components also relies 

on the lithium diffusion rate in the matrix of the host [18]. Lithium-storing metals are among 

the most attractive and competitive applicants in lithium-ion batteries for fresh kinds of 

anodes (adverse electrodes). Indeed, several metals and semiconductors, such as aluminum, 

tin and silicon, respond with lithium to form alloys through partly reversible and low voltage 

(relative to lithium) electrochemical procedures, require many atoms per formula unit, and 

provide a much bigger specific capacity than standard graphite [13, 19]. 

Unfortunately, accommodating so much lithium in the host metal plus phase transitions are 

followed by huge volume modifications. During the alloying/de-alloying procedures, the 

mechanical strain produced leads to the cracking and crumbling of the metal electrode and a 

marked loss of storage ability over a few cycles. While these structural modifications are 

prevalent in alloying responses, efforts have been made to restrict their side effects on the 

integrity of the electrode [14-16]. One appealing path is the active/inactive nano-composite 

idea [20]. This includes mixing two materials closely, one responding with lithium was, like 

the other, acting as an inactive confining buffer. Within this composite, the use of metallic 

nano-sized clusters as lithium hosts significantly suppresses the related strains and thus 

improves the alloying response reversibility. Table 1.1 lists the various anode material kinds. 
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Table 1. 1 Different Types of Anode Materials [21] 

 

1.1.1.1 Conversion Anodes  
 

The recent interest onto the new reactivity concept with electrochemical reaction of lithium 

which is reversible with metal oxides transitions can be referred as “conversion reaction” is 

as follow: 

MaXb + (b.n) Li+ + (b.n) e− ↔   aM +bLin X                                                             (1-1) 

Fe2O3 + 6Li+ + 6e− ↔ 2Fe0 + 3Li2O                                                         

In this reaction, M is a transition metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and X is 

going to be O, P, F, N and S [22]. In converted materials, the perfect reduction of MaXb to 

metallic nanoparticles, which has large surface, are active in LinX matrix decomposition and 

keeps them together. The size of these particles in term of nanometric scale seems to be 

maintain after several cycles [22-24]. 

Unfortunately, these materials present several issues. The most relevant are [25]:   
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• The structural reorganization induces, as for the alloy-based materials, big volume 

changes, resulting in particles de-cohesion and subsequent cell failure.  

• Unacceptable large voltage hysteresis between discharge and charge steps. 

• Large Coulombic inefficiency observed in the first cycle.  

• Low conductivity. 

 

 The reduction/conversion (lithium uptake) reaction will always occur on battery discharge, 

while the reverse will occur during charge (lithium release). 

Hence, despite the progress made with these materials, several issues persist in the way to 

making them a viable alternative [25, 26].  

 

1.1.1.2 Intercalation Materials in Batteries  
 

Intercalation can be identified as to insert among the layers in crystal lattice, geological 

formation, or other structure. Generally, the “intercalation” refers to the reversible inclusion 

or molecule insertion into layered structure compounds. During the charging and discharging 

process the Li-ion batteries intercalation is happening, such as the other batteries that include 

positive and negative electrode and electrolytes. During the discharge process, the positive 

lithium starts from the negative electrode (e.g. graphite) and enters the positive electrode (e.g 

lithium oxide) through the electron solution that is usually prepared with organic solvent in 

solid or liquid form). While charging, the reverse process is happening and that is why, it is 

called as reversible process. 

 

1.1.1.3 Foam Structured Electrode  
 

As a consequence of the charge transport limit, a typical 2D electrode with a planar current 

collector can provide sufficient charge to satisfy the charge requirement of the electrode 

material but at a limited depth. (Fig. 1.1a) 
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 For a thicker electrode with high mass loading beyond such depth limits, only a portion of 

the active material is actively used for energy (charge) storage because of insufficient charge 

delivery. By contrast, a 3D electrode architecture contains a 3D conductive scaffold acting 

as a 3D current collector and a 3D porous network for efficient ion transport. This structure 

ensures efficient charge delivery throughout the bulk volume of a thick electrode (Fig. 1.1b), 

which is desirable for the utilization of all electrode materials regardless of the electrode 

thickness and for the realization of high-rate and high-capacity energy storage. In this regard, 

3D carbon frameworks are attractive scaffolds for the efficient loading of active materials 

because of their high surface area, low density, excellent conductivity and superior 

electrochemical stability compared with other conductive materials. 

 

Figure 1. 1 (a) the charge transport pathways in a conventional electrode with a 2D current 

collector show a limited charge penetration depth. (b) The charge transport pathways in a 

3D thick electrode show efficient charge delivery throughout the entire electrode thickness 

[27] 
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1.2 Introduction to Graphene, and Graphene Oxide Properties and 
Applications 
 

Graphene is a well-known two-dimensional natural material with monolayer structure of all-

sp2 carbon atoms with some of the most fascinating properties such as lightweight, high 

thermal, mechanical, electrical properties along with a very large active surface area. 

 At desirable conditions, graphene with high mechanical strength (tensile strength of 130 GPa 

- Young’s modulus of 1 TPa), excellent thermal conductivity (5000 Wm-1K-1), and strong 

chemical durability and high electron mobility (20 m2V-1s-1) can be obtained [28]. These 

properties empower graphene and graphene-based materials to find applications in high-

performance structural nanocomposites, electronics, and environmental and energy devices 

including both energy generation and storage [29]. Table 1.2 illustrates the difference 

between single layer graphene, graphene oxide and reduced GO. 
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Table 1. 2 Chemical properties of graphene family nanomaterials [30]. 

 

The precious graphene properties can be preserved in composite or bulk material [25]. It is 

possible to observe the reduction of high conductivity and mechanical strength of graphene 

sheets due to the agglomeration. The porous structure of graphene foam and the significant 

graphene properties, the result of the 3D structure is the powerful mechanical strength, high 

specific surface area and electron transport kinetics [26]. Various methods were used to 

prepare 3D networks of graphene. 3D structure of graphene can be used in sensors, energy 

storage, conversion and catalyst [27]. The common way to provide the 3D structure is by 

linking the individual sheets to form three-dimensional (3D) networks. So, it is prevented to 

single graphene sheets form repositioning [28-30].  Figure 1.2 shows the graphene structure.  

Property Single layer graphene Graphene oxide 
(GO) 

Reduced GO 

Young's 
modulus 

1000 GPa 220 GPa Not available 

Fracture 
strength 

130 GPa 120 MPa Not available 

Optical 
transmittance 

97.7% N/A (expected to 
be lower due to 
functional groups 
and defects) 

60–90% 
depending on 
the reduction 
agent and 
fabrication 
method 

Charge carrier 
concentration 

1.4 × 1013 cm− 2 N/A (much lower 
due to more 
organic nature, 
functional groups 
and defects) 

Not available 

Room 
temperature 
mobility 

~ 200,000 cm2 V− 1 s− 1 N/A (expected 
Much lower than 
15,000 due to 
interruption in 
mobility by 
defects scattering) 

expected to be 
intermediated of 
two due to less 
defects 

Thermal 
conductivity 

~ 5000 W/mK 2000 W/mK for 
pure 
600 W/mK on 
Si/SiO2 substrate 

0.14–
0.87 W/mK 

Electrical 
conductivity 

104 S/cm 10− 1 S/cm 200–
35,000 S/cm 
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Figure 1. 2 The graphene structure: Monolayer structure of all-sp2 carbon atoms arranged in 

2D lattice. 

 

Significant attempts have also been made to create 3D graphene networks (3DGNs) synthesis 

and applications with different morphologies, structures, and characteristics. The common 

3D graphene networks were investigated in different studies are graphene foams (GFs), 

graphene sponges (GSs) and graphene aerogels (GA) [31].  

GFs (see Fig.1.3a) were synthesized as the template for the first time by using nickel foam. 

Thus, with a constant and interconnected 3DGN, the GFs acquired the nickel foam's Micron-

sized structure. GSs have a comparable porous structure to GFs, but the graphene sheets are 

almost aligned to each other or partly oriented, producing an anisotropic lamellar structure 

[32-33]. GSs are named like sponges because of their highly efficient and recyclable 

absorption performance [34]. 

GAs (see Fig.1.3b) are generally manufactured using sol gel chemistry that includes lowering 

graphene oxide to create a highly cross-linked graphene hydrogel, followed by freeze-drying 

or supercritical drying to remove the water absorbed. Although their structures and 

characteristics differ, GFs, GSs and GAs all have outstanding characteristics, such as high 
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electrical conductivity, high surface area, low density, high porosity, and good mechanical 

characteristics [35].  

 
 

Figure 1. 3 Graphene (a) foam, (b) aerogel 

 

1.3 Reducing Agents 
 

Chemical reduction of GO is usually occurred in standard room temperature or by applying 

moderate heating and can be accomplished through chemical reagent reduction, photo 

catalyst reduction, electrochemical reduction, and solvo-thermal reduction methods. 

Chemical reduction of GO is more affordable and accessible for mass production of rGO 

compared to other methods like thermal reduction. Reducing agent in the form of gas and 

liquid is the main component of this method and by adding this agent to the GO, some 

functional groups can be eliminated. The known reducing agents are Phenyl hydrazine, 

hydroxylamine, hydroquinone, glucose, sodium borohydride, alkaline solution and pyrrole. 

In this study, it is attempted to control the other three agents’ effect and their applicability. 

Ascorbic Acid, HI and NH3 are the used reducing agents that are evaluated in this study.  
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1.3.1 Ascorbic Acid  
 

One of the known reducing agents, is Ascorbic Acid which is also calls as C vitamin. This 

material is nontoxic, natural antioxidant that is using for GO reduction. 

 

 
Figure 1. 4  The molecules of ascorbic acid and dehydroascorbic acid [34] 

 

Fernandez-Merino et al [35] represents that AA can reduce GO as well as affecting on 

electrical conductivity of the same time as GO reduced by hydrazine. This findings reveals 

that it is not necessary to have a lower redox potential than AA to reduce GO. AA includes 

the standard redox potential E ◦ = −0.39 V [37] that is roughly one fourth for that of hydrazine 

with E ◦ = −1.49 V [38]. 

De Silva et al. [36] found out about two different regions of reduction of GO using AA. They 

are chased the GO reduction by utilizing UV-Vis and XPS. By employing these methods, 

they found that the primary regime of reduction lead to a reduction in CO-bonds and that the 

second regime reduces the amount of CO-Bonds. This findings confirm the results reported 

by Guex et al [40]. By reduction of GO which provide rGO the remained molecules ate not 

AA but dehydroascorbic acid (DHA) which is shown in figure 1.4b. Besides, the proposed 

reduction paradigm of hydroxyl and epoxide group present in GO using AA is illustrated in 

figure 1.5. AA greatly absorbs ultraviolet-light, evident from figure 1.6, but does not absorb 

visible light cause’s transparent liquid.  
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Figure 1. 5 The reduction mechanisms of ascorbic acid suggested by Gao et al [46] 



13 
 

 

Figure 1. 6 UV-Vis absorption spectra of ascorbic acid [41] 

 

1.3.2 HI 
 

Hydroiodic acid (HI) is acidic solution of hydrogen iodide. It is one of the strong acid in 

hydrohalic acid group commonly use as chemical reagent. Several studies believe that HI has 

a reducing ability much higher than other reducing agents, in term of conductivity and 

mechanical properties. Hence, it is the proper reducing agent for GO to provide rGO [37]. 

The usual method is to immerse the GO sheet directly into hydroiodic acid (HI) solution in a 

sealed cuvette at room temperature for 1 hour. Then by washing the rGO-Hi sheet with DI 

water for several times and dried is room temperature, the final sheet electrode will be 

obtained. The average resistivity for GO samples which reduced by HI is to be in the range 

of 0.003 to 0.022 Ω.cm [44]. The XPS analysis results for GO sheets before and after 

reduction for evaluation of oxygen-containing groups’ removal by HI acid can be interpreted. 

The C1s XPS spectrum of the as-prepared GO sheets significantly illustrate oxygen content 

with two components that correspond to carbon atoms in different functional groups. The CO 

bond carbon bonds (hydroxyl and epoxy, 286.4 eV), and the carbonyl carbon (CAO, 288.5 
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eV), in addition to the non-oxygenated ring carbon (CC, 284.6 eV), and carbon to oxygen 

(C/O) ratio (12) is more than any other reduction method. It seems that almost all of the 

oxygen-containing groups will be reduced during the HI reduction. This idea will give this 

hypothesis that for synthesis of large-area rGO sheets with good electrical conductivity is 

possible. This may ease the way for electrical property associated applications of large-area 

GO sheets.   

The increment in interlayer spacing of graphite oxide is caused by oxygen-containing groups 

on the surface of graphene layers. This will also decrease the van der waals interlayer 

interactions and makes easier cleave of layered graphite oxide. Simultaneously, on carbon 

atoms the oxygen-containing groups binding would change the graphene layer from planar 

sp2-hybridized to a distorted sp3-hybridized geometry [34-37]. It is investigated that the 

oxygen atom in triangular epoxy groups (COC) perform as minuscule wedge, pushing apart 

the bridge carbon atom and stretching the CC bond [35-38]. Consequently, the oxygen-

containing formation significantly decrease the bond energy among carbon atoms through 

the carbon network. Wu et al., figured out the graphene sheets which derived chemically can 

be sono-chemically cut along parallel line faults on their surface to effectively fabricate 

graphene nanoribbons [37]. These nanoribbons will reveal the weaker interactions of 

stretched CC bonds or COC bonds than the normal CC bond [54]. By using the ultrasonic 

treatment, it is possible the separate the de-coupled graphene layers in graphite oxide. This 

will cause the formation of individual GO sheets. At the same time, the sono-chemicall 

effects and ultra-hot gas bubbles could break the stretched CC bonds or COC bonds, leading 

to the cracking of graphene layers. Therefore, it is feasible to assume that the higher CO 

content in graphite oxide cause the layer cracking much easier. This is due to the more 

stretched CC bonds or COC bonds. The GO sheet with high CO content clearly shows the 

cracking of whole GO sheets after mild sonication while the low CO content behave vice 

versa. According to these findings, it could be assumed that the CO group’s content of 

graphite oxide, can have a drastic role on controlling the area of the obtained GO sheets. This 

is also provide applicable data about the area-controlled synthesis of GO sheets by chemical 

exfoliation.  
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1.3.3 NH3 
 

Ammonia is basically the compound of nitrogen and hydrogen which can be shown by NH3 

as chemical formula. It is also an active reducing agent because of presence of nitrogen atoms 

that include the “-3” oxidation number. Restorative properties of nitrogen are shown in term 

of ammonia combustion on air. The most stable nitrogen oxidation number is 0, the results 

is the free nitrogen. The ammonia and graphene oxide (GO) interaction is investigated by 

density functional theory calculations. The findings illustrate that the adsorption of ammonia 

and GO is usually more powerful than that on graphene. This is due to the existence of diverse 

active defect sites, such as the hydroxyl and epoxy functional groups and their neighboring 

carbon atoms. These surface oxygen sites can form OH…N and O…HN hydrogen bonds 

with ammonia and enhance charge transfers form ammonia to the graphene oxide. The 

absorbed ammonia is dissociating into a chemisorbed NH2 or NH species through the H atom 

abstractions leads to hydroxyl group hydrogenation and ring-opening of epoxy group. It is 

believed that the reaction of ammonia, epoxy and hydroxyl is going to be exothermic with 

various energy barriers. This is depending on the atomic arrangement and oxidation species 

of these groups. Generally, the hydroxyl group exhibits shows the higher reactivity through 

hydrogen abstraction from the adsorbed ammonia comparing to the epoxy group in GO with 

single oxygen group. The OH group as neighborhood could activate the oxygen group to 

form the surface reaction on ammonia [38]. Pursuing the ring-opening of the epoxy group, 

the second H atom abstraction of NH2 can remove the formed hydroxyl group. The evaluated 

state density of the adsorbed systems also represents strong interaction among ammonia and 

GO. The calculated results shows proper adjustment with experimental observation.  
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Figure 1.7 (a) Graphene, (b) graphene oxides containing one epoxy functional group. (c) 
Charge transfer dependence on the applied electric field in +E along graphene. (d) The net 

electron-charge transfers from NH3 to graphene 

 

 

1.4 Preparation Methods of 3D Graphene Networks  
 
3D graphene materials have been mostly synthesized in various forms, namely graphene 

fibers, graphene tubes, graphene foams, graphene networks, and graphene sponges, graphene 

aerogels, and graphene with other 3D architectures. In order to obtain all of these structures, 

different methods of synthetic processing were used, which can usually be classified as direct 

synthesis of 3D-Graphene (chemical vapor deposition growth methods), self-assembly 

methods (hydrothermal-Reduction-Induced Self-Assembly, Direct Self-Assembly of 

Graphene Oxide) and other methods. In this project, two techniques are done: CVD method 

and the Self-assembly of GO through hydrothermal reduction [36]. 

Recently, the self-assembly of GO through hydrothermal reduction has attracted considerable 

attention due to low cost, high efficiency and non-pollution [37]. At the same time, three-

dimensional (3D) graphene foam provides a possibility to solve the problem of low energy 



17 
 

density, which not only inherits the excellent properties of two-dimensional (2D) graphene, 

but also possesses some advantages involving light weight and higher porosity [38]. 

Therefore, the preparation and application of 3D graphene foam have become a hot research 

topic for both lab research and industrial production. 

 

1.4.1 Chemical Vapor Deposition (CVD) Growth Methods 
 

Chemical Vapor Deposition is one of the ways to grow 3D graphene which includes, using 

3D metal substrates such as Ni or Cu foam that it is acting as both a catalyst and a template 

here.  Porous nickel or Cu foam was exposed at 800-1000 ° C to carbon sources gases or 

liquids like methane gas, and at a steady pressure. In our work, at high temperatures on the 

surface of the Ni, carbon atoms are produced via the process of methane deposition [39-40]. 

Methane decomposition is described by the chemical reaction as following:  

 

CH4 (g) →2H2 (g) + C(s)                                                                                                  (1-2) 

 

To remove the nickel, HCl or FeCl3 solutions is used to produce freestanding graphene. 

The CVD method can be divided into three categories: 1) atmospheric pressure CVD, 2) low-

pressure CVD and 3) ultra-high vacuum CVD, according to its operating pressure. 

One of the features of the typical CVD experiment is that the substrate is in the middle of a 

vacuum chamber or tube furnace. To make it possible to enable the reaction of volatile 

precursors to react on the surface of the substrate, it is important for the presence of additional 

catalysts and high-temperature treatment. According to Figure 4, in the case of sensitive 

materials to oxygen, a high vacuum environment and inert gases like Argon are applied for 

the protection of the products from oxidation.  
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Figure 1. 8 Synthesis procedure of template-directed CVD approach for GFs. 

 

1.4.2 Direct Self-Assembly Of Graphene Oxide 
 

The most effective method for designing 3D graphene networks is the self-assembly of GO 

sheets [41]. In fact, due to GO electrostatic repulsion from the functional groups on GO sheets 

and van der Waals attraction from the basal planes of GO sheets, in GO suspension, 

individual GO sheets are well distributed [42]. When the equilibrium between these forces is 

lost, the gelation of a GO suspension begins which resulting in the interconnection of the GO 

sheets to form a hydrogel, which produces 3D porous architecture after freeze drying.  

During the hydrogel graphene formation, the various supramolecular interaction like van der 

Waals forces, π–π stacking interactions, electrostatic interactions, hydrogen bonding, and 

dipole interaction of graphene sheets. Obviously, based on the smaller interlayer spacing of 

the GO (6.94 Å) comparing to the hydrogel (3.76 Å), the existence of π–π stacking 

interactions of graphene sheets are investigated [42]. This was triggered by recovering the 

GO sheets after gelation from π-conjugation. If the dispersion surpassed a certain 

concentration, chemically converted graphene was discovered to be self-gelated without any 

extra gelators. Repulsive forces were launched by the hydrophilic, oxygen-containing groups 

on the surface of the GO [43]. H-bond interaction between functional groups and 

Hydrophobic interaction between basal planes, together with these forces, led to the self-

assembly of GO solution.  

The critical concentration of the gel is also a significant parameter in the gelation of GO 

suspensions. GO concentration was 25 mg mL−1 during the dispersion of GO by sonication 
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is reported by Qin et al. [33]. Although, even when the concentration of GO was 0.065–0.135 

mg mL−1 hydrogel will be fabricated – but the mechanical strength of the aerogel is weak. 

Another study, ammonia was used as a reducing agent in 180 ⁰C for 12 hours. Low density 

and high mechanical strength are therefore difficult to accomplish at the same time. In this 

condition, the most common methods for forming hydrogels are self-assembly by means of 

hydrothermal and chemical reductions [44]. 

Using the self-assembly strategy, Wu et al [34], are prepared graphene oxide aerogel 

followed by hydrogen reduction of graphene oxide aerogel to create GA. This graphene 

aerogel had a large pore size and high surface area. Some various physical treatments such 

as hydrothermal treatment, direct freeze-drying, controlled centrifugation/filtration, 

electrochemical deposition was followed by gelation of a GO suspension which takes place 

by self-assembly of GO sheets. The surface tension inside the gel resists the fluid flow that 

could interrupt the bonds. There are several methods to initiate GO suspension gelation, such 

as introducing cross-linkers, altering the pH value of the distributed GO solution, and using 

chemical reactions [45]. 

 

1.4.3 Hydrothermal Reduction Induced Self Assembly  
 

Xu et al. [46], originally developed a hydrothermal one-step technique to make hydrogel 

graphene. Qin et al [33], reported that hydrogel graphene was able to assist 100 g of weight 

with little deformation and the GO concentration was smaller (2 mg mL−1) than (30 mg mL−1) 

for direct gelation. It was thermally stable, electrically conductive, mechanically strong, 

highly specific capacity. They added ascorbic acid as a reducing agent to the GO solution, 

then put in a steel autoclave. Afterwards they heated it in 120 ⁰C for 6 hours. They used 

ascorbic acid as a reducing agent in 120 ⁰C for 6 hours. The mechanical strength of the 

standard hydrogels is lower than the strong graphene skeleton. Most significantly, the 

concentration of GO is another factor that influences the morphology and features of 3D 

graphene. Inspiringly, with increasing hydrothermal reaction time, the degree of GO 

decreases which has been improved with electrical conductivity, compressive elastic 

modulus, improved storage modules. Though, the complete graphene aerogel pore quantity 
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and BET surface area and were decreased after drying as reported by Nguyen et al. Thus, 3D 

graphene could be used as an optimal framework for creating hierarchical macro-and 

mesoporous structures by incorporating other functional visitors [47].  
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CHAPTER 2 
 

 

MATERIALS & METHODS 
 

 

 

 

2.1 Materials  
 

Potassium permanganate (KMnO4), sulfuric acid (H2SO4), Graphite flakes, phosphoric acid 

(H3PO4), hydrochloric acid (HCl), hydrogen peroxide (H2O2), Iron (III) chloride (FeCl3), 

ammonia, ascorbic acid, hydroiodic acid (HI). 

 

2.1.1 Graphene Oxide Synthesis with Chemical Exfoliation Technique  
 

Firstly, the synthesis of graphene oxide by modified Hummer’s method starts with the 

mechanically mixture of KMnO4 with natural graphite flakes. As the sulfuric acid in this 

mentioned concentration is safer in terms of the concentration, in this new method nitric acid 

(HNO3) is substituted by H3PO4 / H2SO4 acid solution mixture. The mixture of KMnO4 and 

graphite flakes with 6:1 mass ratio were added to the one equivalent mass of graphite powder 
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was put into a glass flask placed in oil bath respectively. It is important to notice that the 

premixing of the potassium permanganate (KMnO4) and graphite in the case of the oxidation 

process [48]. Then, with respect to graphite mass, 9:1 and 1:1 mass ratio of H2SO4 and H3PO4, 

were added to the solid mixture. To prevent a sudden temperature increase, acids should be 

poured slowly [49]. The mixture solution was followed in an ice bath and then refluxed. The 

reaction has proceeded for 24 hours in the reflux [50]. After completion of the reaction, the 

reaction mixture was combined with hydrogen peroxide (H2O2), and ice and 20:1 (v:v) ice-

H2O2 mixture for further neutralization. Washing the solution is the last step in the graphene 

oxide synthesis after the oxidation process was carried out by centrifugation. To reach to the 

pH around 3.5, the solution was washed several times with Ethanol-Water. Washed GO was 

collected by filtration on filters and dried in an oven for 24 hours at 60°C [49-51]. Figure 2.1 

represented the stages of material processing in different steps (a to f).  

 

 

Figure 2. 1 (a) GO synthesis setup, (b) GO suspension before washing, (c) GO suspension 

after precipitation, (d) Washing process with special centrifuge tube, (e) Collection of the 

sample, (f) Dried final GO product. 

 

 



23 
 

2.2 Fabrication of Graphene Networks  
 

In this study, two techniques were employed: (i) CVD method and the (ii) self-assembly of 

GO through hydrothermal reduction. There are different techniques of synthesis for 3D 

graphene including direct synthesis of 3D-Graphene (Template-assisted chemical vapor 

deposition growth), assembly of Graphene Oxide sheets (Self-assembly of GO through 

electrochemical reduction, self-assembly of GO through a hydrothermal reduction) and 

template-assisted assembly [52, 53].  

 

2.2.1 Template-Assisted Chemical Vapor Deposition Growth (CVD) 
 

This method called CVD to grow 3D graphene which is needed to use metal substrates of 

pre-fabricated 3D such as Ni foam. The Ni foam, in this case, acts as both a template and a 

catalyst. Then nickel foam was subjected to (CH4) at 1000°C at constant rates.  

First, nickel foams were cut into pieces of 10×10 mm2 and then placed in a quartz tube. The 

nickel foams were heated to 1000 °C in a horizontal tube furnace under Ar (250 s.c.c.m.) and 

H2(100 s.c.c.m.) and CH4(50 s.c.c.m.) annealed for 20 min to clean their surfaces and 

eliminate a thin surface oxide layer which was followed by adding a small amount of CH4 

into the reaction tube. After 5, 10, 20 min of reaction mixture flow, the samples were cooled 

to room temperature under Ar and H2.  

Then the graphene-nickel foam was put into the mixture of HCl (1M) and FeCl3 (1M) for 24 

hours to completely dissolve the nickel to obtain GF [54]. When the nickel was etched away, 

the GF should be in DI water for 24 hours. In the last step, the GF was dried in the oven. 

Figure 2.2 showed the steps in different steps.  
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Figure 2. 2 (a) Ni foam, (b) Ni-Graphene foam before etching in FeCl3/HCL solution, (c) 

Graphene foam after etching in DI water, (d) Drying Ni foam in 55 C, (e) Graphene foam 

 

2.2.2 Graphene Aerogel (GA) Synthesis  
 

In this work, graphene hydrogel is fabricated via a one-step hydrothermal process in a bottle 

glasses at 95°C. Since this method generally involves moderate temperature and pressure, 

graphene sheets self-assemble into 3D graphene occurs by using reduction agents such as 

hydroiodic acid, hydroquinone, ammonia, Na2S, ascorbic acid, NaBH4. By assembling GO 

sheets and metal oxide nanoparticles, we prepared a graphene-based aerogel. Graphene 

aerogel synthesis by simultaneously assembling and reduction GO with ascorbic acid, 

ammonia, and Hydroiodic acid (HI) as a reduction agent with high electrical conductivity 

and mechanical characteristics is stated. As one of the most common amine chemicals, 

Ammonia solution can be used as a GO reducer and stabilizer at the same time. Consequently, 

ascorbic acid and ammonia solutions are anticipated to cause self-assembly of graphene 

sheets to form 3D graphene structures under appropriate circumstances by reduction GO.  

A new class of ultra-lightweight, extremely compressive 3D Graphene aerogels is being 

produced with high electrical conductivity. More importantly, the attitude we have reached 

is highly viable for industry, and low cost and, the temperature (95 ° C), lower than the GO 

reduction temperature that reported in the literatures [55-57], aided by freeze-drying 

procedures to reduce GO with ammonia solution effectively. Furthermore, it can be 

concluded that the graphene aerogel had extremely reproducible compressibility, high 

electrical conductivity and surface area. 
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GO suspensions at different concentrations with different types of reducing agents were 

prepared. Reducing agents used were Ammonia, HI, Ascorbic Acid and the GO 

concentrations included in 2, 4, 5, 10, 20, 30 mg.mL−1. For graphene aerogel preparation, 

200 μL of reducing agents (ammonia, HI, and ascorbic acid) with a mass percentage of 25% 

were added gradually into 50 mL of a GO solution. Each sample after adding a reducing 

agent was sonicated for 10 min in sonication bath to achieve a homogeneous dispersion. 

Then, the mixed solution was transferred into a bottle glass and heated at 95 ° C for 24 hours. 

The reactor was cooled down naturally at room temperature. The obtained hydrogel was 

subsequently taken out, washed until a pH value of 7 was reached, and freeze-dried to prepare 

GA. Also, the different temperature was considered as a parameter to explore the formation 

of 3D graphene structure. After reaction, temperature reaches over 95 °C, the black monolith 

can be observed. The process of preparation of the graphene hydrogel is used in 

characterization based on the following conditions: The solution of 4 mg mL−1 GO with the 

200 μL ammonia solution were mixed and then heated to 95°C and kept for 24 h. By the 

freeze-drying method graphene hydrogel graphene aerogel was produced. 

 

 

Figure 2. 3 Synthesis of graphene aerogels: (a) GO aqueous dispersion, (b) graphene 

hydrogel, (c) washed graphene aerogels and (d) dried graphene aerogels. 
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2.3 Self-Assembled Fe2O3/Graphene Aerogel 
 

2.3.1 Preparation of Fe2O3-Graphene Composites 
 

FeCl3.6H2O (135 mg) and ascorbic acid (400 mg) were dissolved in 20 mL deionized water.  

Due to the high mechanical strength and moderate electrical conductivity compared to other 

materials, ascorbic acid was chosen as a reducing agent. 

After that, 80 mg graphene sheets were also dispersed in 20 mL deionized water to prepare 

4 mg mL−1 GO suspension, and the GO suspension was ultrasonicated for 1 h. Then the GO 

solution was added slowly to the previous FeCl3 precursor solution. The mixture suspension 

was sealed in a Teflon lined stainless steel autoclave. The mixture hydrothermally treated at 

95 °C and kept at this temperature for 6 h [61-63].  

After cooling to room temperature, the precipitate Fe2O3-graphene hydrogel was collected 

after copious washing by deionized water. Next, the as-prepared hydrogel was freeze-dried 

for one day. 

  

2.4 Electrochemical Characterization Studies  
 

Graphene foam prepared with CVD method was used as working electrodes to investigate 

the Li-ion storage characteristics graphene foam. The battery was made of 3D-graphene foam 

as the anode, lithium chip as reference electrode, Li-ion battery separator and lithium 

Hexafluorophosphate solution in ethylene carbonate and dimethyl carbonate, 1.0 M LiPF6 in 

EC / DMC=50/50 (v / v) as electrolyte. 

The cell with graphene foam anode was tested for comparison of electrochemical behavior 

by cyclic voltammetry (CV). CV was recorded at a scan rate of 0.1 mV s-1 in a potential 

range of 0–3 V [64].  Galvanostatic charge-discharge measurements were conducted within 

cut-off potentials 0.1–4 V at the current density of 0.4 mA cm-2 at ambient temperature on a 

battery testing system. 
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CHAPTER 3 
 

 

RESULTS & DISSCUSSION  
 

 

 

 

3.1 Structural and Electrochemical Properties of Graphene Aerogel 
(Part I)  
 

3.1.1 Thermal Characterization 
 

Thermogravimetric analysis was performed at temperature range from 30 ° C to 1100 ° C to 

evaluate the thermal stability of the graphene foam [65]. Figure 3.1 shows GF analytical 

thermogravimetric profiles. The initial temperature of the pristine GF sample is about 290 ° 

C. A small weight loss of graphene foam observed before 250 ° C. After 350 ° C, the first 

significant weight loss was occur due to the oxidation of carbon. No significant weight loss 

at temperatures above 550 ° C was noted. The same associated weight loss typically can be 

observed around 690 ⁰C in other studies. 
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The initial weight of Fe2O3/GA was 28.01 mg and after finishing the process at 1099.4 °C 

the residual mass was 7.69 mg. According to the weight loss, it is estimated that the mass 

percentage of Fe2O3 particles in the composite is about 27.5%. 

 

 

Figure 3. 1 Thermogravimetric analysis of 3D graphene foam/ Fe2O3 prepared with 

hydrothermal reduction method. 

 

The iron oxide (II) in gamma and alpha polymorphs can be decomposed to form iron (III) 

oxide-hydroxide. The magnitude of this thermal decomposition is directly associate to the 

particle size. The difference between two graphs represents the impurity in chemical phases 

and the effect of iron oxide (II) on decomposition of GO.  

 

3.1.2 XRD and Raman Characterization 
 

Raman spectroscopy measurements were carried out using a 532 nm laser source in a 

Renishaw InVia Reflex Raman microscopy system at Sabanci University. Figure 3.2 shows 
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the ammonia, HI and ascorbic acid peaks of GO and GAs. For all measured samples, two 

distinctive bands were noted at 1347 cm-1 and 1588 cm-1 corresponding to the D and G 

bands.  

These bands represent the defects and disorders in the graphite-like materials. The intensity 

ratio of D and G bands (ID / IG) of the GAs reduced by ammonia (1.01), Ascorbic acid (1.05) 

and HI (1.08) is larger than that of the GO (0.98), indicating that the disordered graphene 

sheets and defective structures have been improved for the obtained GAs. 

 

 

Figure 3. 2 Raman spectra of GO and GAs reduced by ammonia, ascorbic acid, and HI at 

95°C. 

 

Figure 3.3 shows the Raman spectra of the graphene and iron oxide graphene aerogel 

samples. As it is shown, in the graphene aerogel sample, two peaks at 1347 and 1588 cm-1 

were found, showing the existence of the D band and G band. IG band was supposed to be 

the E2 g mode for sp2 graphitic carbon, and D band was associated with carbon indicating 
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structural defects. Consequently, the ID / IG intensity ratio may represent the degree of 

disorder in the crystal structure. 

The D and G band intensity ratio (ID / IG) is a helpful measure for evaluating the carbon 

crystal structures that are ordered or disordered. Raman's Fe2O3/GA sample analysis showed 

a slight increase in D and G graphene ID / IG bands in Fe2O3/GA (1.09) compared to GAs 

(1.01, 1.05, 1.08). Furthermore, the 580 cm-1 Raman band shows the existence of 

nanoparticles from Fe2O3. The Raman band is assigned to A1 g mode at 214 cm-1 and the 

Eg mode band at 271 cm-1. Fe2O3/GA aerogels provides proof that Fe is attached to the 

reduced GO sheets.  

 

 

Figure 3. 3 Raman spectra of GA and Fe2O3/GA prepared with ascorbic as a reducing agent 

in 95 °C. 

 

X-ray Diffraction (XRD) were performed to reveal crystal structure of samples, between 2θ 

values of 2–90° with Bruker AXS D8 Advance diffractometer (Cu-K line λ= 1.5406 Å). As 

it is shown in Figure 3.3, the related XRD pattern, the graphene aerogel's main XRD peak 
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backs up to 25.1° after hydrothermal reaction and then drying. This indicates the recovery of 

graphitic crystal structure. 

The X-ray diffract-gram of graphene aerogel with Fe2O3/GA by similar processing shows 

that: (I) the graphene sheets peaks are going to disappear which represent that the graphene 

sheets are homogenously dispersed in Fe2O3 matrix and the sheets overlap did not happen at 

25.1 (2θ) and (II) the x-ray spectrum of the hybrid aerogel are same as Fe2O3 Powder [66-

68]. As it can be seen in figure 3.4, the formation of α- Fe2O3 / GA is verified by peaks of 

24.1, 33.5, 35.8 and 41°, that indexed to (012), (104), (110) and (113) crystal planes of α- 

Fe2O3 respectively. The x-ray spectra proves the crystalline form of α- Fe2O3 particles that 

are anchored on FLG sheets. The 25.1° peak can be allocated to (002) plane of the graphene 

sheets illustrate that the presence of graphene sheets cannot effect on iron oxide 

crystallization [69]. 

 

 

Figure 3. 4 XRD patterns of GA and Fe2O3/GA prepared with ascorbic as a reducing agent 

in 95 °C. 
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3.1.3 SEM Characterization  
 

Scanning electron microscopy (SEM) images were provided on a field emission scanning 

electron micro analyzer (Zeiss LEO Supra 35 VP) at an acceleration voltage 5 kV in order to 

monitor the orientation and packing degree of GO fibers. 

By means of electron microscopy, it was shown that pore sizes of the graphene aerogel (40 

μm) reduced by ammonia with 4 mg / mL concentration are more uniform and the pore walls 

consisting of graphene sheets are thinner (Figure 3.5a) than that of the GAs reduced by 

ascorbic acid (Figure 3.5b). The pore walls consisting of graphene sheets are markedly dense 

and the surface is occupied by some small graphene fragments. In a typical hydrothermal 

process, the hydrophobic graphene sheets are gradually restored from the GO solution and 

assemble into a hydrogel. 

 

 

Figure 3. 5 SEM images of the GAs prepared by (a) ammonia, (b) ascorbic acid at 95°C. 
 

Compared to the graphene aerogel which is prepared from 4 mg mL−1 GO aqueous dispersion 

with ascorbic acid as a reducing agent (Figure 3.6a), the GAs prepared from other 

concentrations of GO aqueous dispersion also show abundant pore structure. It’s worth 

noting that the pore size gradually reduced with the increased GO concentration from 4 mg 

mL−1 to 30 mg mL−1 (Figure 3.6b & 3.6c), and the pore structure of graphene aerogel were 

prepared from 30 mg mL−1 GO was more closely and disorderly (Figure 3.6d). 
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Figure 3. 6 SEM images of graphene aerogel prepared using GO dispersions at different 

concentration of (a) 4 (b) 5, (c) 10 (d) 30 mg mL−1. 

 

Figure 3.7 shows SEM images of Fe2O3/Graphene aerogel. A large amount of pristine Fe2O3 

nanoparticles is shown. It can be shown that Fe2O3 nanoparticles (300 – 500 nm) and 

nanosheets are spread on nanosheets of graphene. Fig. 16d demonstrates obviously that Fe2O3 

nano particles are joined with graphene nanosheets and therefore graphene nanosheets are 

divided by Fe2O3 nano particles as well [69]. 

Obviously, the Fe2O3 particles were anchored evenly on both sides of the graphene sheets, 

and the morphology and microstructure of the as-prepared Fe2O3 graphene aerogel was also 

elucidated by the Fe2O3/GAs SEM cross-section. It is worth noting that within the sheets of 

graphene some Fe2O3 particles can be summarized, which can effectively help Fe2O3 

particles and electrolyte prevent aggregation and avoid direct contact between them. The 

results also revealed graphene aerogel as a rather thin, interconnected 3D microstructure with 

multiple micrometer uniformly distributed pores, suggesting an efficient assembly between 

particles and graphene sheets during hydrothermal treatment. 
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Figure 3. 7 Typical SEM images of Fe2O3/GAs revealing the 3D microporous structure and 

uniform distribution of Fe2O3particles. 

 

3.1.4 Electrical Conductivity Analysis  
 

The electrical conductivity of graphene aerogels was measured by the four-probe method 

with metal electrodes attached to the ends of samples. The current was passed through metal 

electrodes attached to either end of the graphene aerogel, and the voltage drop was measured 

over the aerogel [70]. 

The measurement of bulk conductivity is like that of sheet conductivity except that a 

conduction in cm-3 is reported using the compact graphene foam as a disc with the thickness,      

t: 

 

                                                                            (3-1) 
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Where t is 0.7 mm. 

The bulk electrical conductivity of 3D graphene networks were less than 1 S/m. The electrical 

conductivity of graphene aerogels increased after hydrothermal process. The effect of 

ammonia, ascorbic acid, and HI as reducing agents on the electrical conductivity of the 

graphene aerogels is considered. It has been found that the electrical conductivity of the 

hydrogel prepared by using ascorbic acid has higher value compared to others [70]. 

The GAs ' electrical conductivity was evaluated using a four-probe technique and calculated 

from the linear voltage-current curve. The GAs reduced by HI has the highest electrical 

conductivity (12.1S/m), but the ammonia and AA-reduced GAs had relatively lower 

electrical conductivities of 9.4 and 7.5 S/m, respectively (Figure 3.8). The variations in GAs 

' electrical conductivity reduced by different reduction agents can be explained by the 

variations in morphology. Due to the more tightly packed nanostructure that enhances 

electron transport, the graphene aerogel with a reduced surface area has greater electrical 

conductivity [40, 42]. 

 

 

 Figure 3. 8 GAs ' electrical conductivity with different reducing agents. 
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3.1.5 Mechanical Characterization  
 

Firstly, the mechanical strength of graphene aerogel prepared with ascorbic acid as reducing 

agent and concentrated GO (4 mg mL-1)   is evaluated with the 102 g loading weight to 

investigate its compressive strength, compressibility, and recoverability. After putting the 

sample under the load of 102g, which was over 1000 times more than its own weight 

(compared in Figure 3.9 a, b), it can recover to its initial form after the static load after release 

(see Figure 3.9 c, d, e). This specification is exclusively associated to the sample that is 

prepared with ascorbic acid as reducing agent. The results indicated that the graphene aerogel 

has an excellent compressive mechanical strength.  

 

 

Figure 3. 9 Optical images showing high compressibility of graphene aerogel. 
 

3.1.6 Effect of Different Reducing Agent on Graphene Aerogel Properties  
  
In this study, we systematically investigate the effects of various reducing agents including 

ammonia, HI, and ascorbic acid. Based on our previous reaction conditions, we first set the 

temperature to 95 ⁰C with a 24-hour reaction period to examine the role of the reduction 



37 
 

agent. In terms of mechanical properties, the foam prepared with ascorbic acid had better 

compressibility but worth electrical properties. The foam made by ammonia had better 

electrical conductivity than the previous one, but the mechanical properties is worse. Then, 

we examine HI as a reducing agent, the electrical properties, in this case, was the best, but in 

terms of mechanical properties, it was worse case among other reducing agents. 

 

3.1.7 Effect of synthesis time on Graphene Aerogel Properties  
 

As can be seen in Figure 3.10, the synthesis time has a significant effect on the shape of the 

graphene hydrogel. Chemical reduction occurs when the mixture of GO and reducing agent’s 

solution was heated to 95 °C [58], and after 4 h the suspension got dark and homogeneous 

which follows by the formation of a cylindrical aggregate after 8 h. As the reaction 

continuous, the π-π conjugated and the hydrophobic structures of the reduced GO sheets 

increases which results in a compact 3D structure which can be formed because of the steric 

hindrance effect [59]. Furthermore, the graphene hydrogel could not be obtained when the 

initial concentration of GO was less than 2.0 mg mL−1. 

 

 

Figure 3. 10 Appearance of the prepared graphene hydrogel after the GO (4 mg mL−1) 

reacted with ammonia solution at 95°C for different reaction times. 
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3.1.8 Effect of Reducing Agent Dosage on Graphene Aerogel Properties  
 

After adding the 200 μL of ammonia solution to the GO, the graphene aerogel begins to form. 

Since GO cannot be properly reduced at low ammonia levels, partly decreased graphene is 

not powerful enough to create a 3D structure [60]. The reduction of some graphene sheets 

occur in several steps which the first one is coming from partially reduced GO, and then 

hydrophobicity of the graphene sheets which causes aggregation [61]. Figure 3.11 illustrate 

the appearance of the graphene aerogel with different ammonia amounts.  

 

 

Figure 3. 11 Appearance of the prepared graphene hydrogel after the GO (4 mg mL−1) 

reacted with different dosage of ammonia at 95 °C. 

 

GO suspensions at different concentrations with different types of reducing agents were 

prepared. Reducing agents that is used contains Ammonia, HI, Ascorbic Acid and the GO 

concentrations: 2, 4, 5, 10, 20, 30 mg mL−1. For graphene aerogel preparation, 200 mL of 

reducing agents (ammonia, HI, and ascorbic acid) with a mass percentage of 25% were added 

gradually into 50 mL of a GO solution.  
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3.2 Structural and Electrochemical Properties of Graphene Foam 
Prepared with CVD Method (Part 2) 
 

3.2.1 XRD and Raman Characterization 
 

Figure 3.12 shows the diffractogram of the deposited multilayered graphene foam growth on 

the Ni-foam and etched afterward comparing to pure nickel foam.  As it is shown, a low 

Bragg angle crystalline peak (2θ = 26.6°) emerged that is corresponding to the typical 

multilayered graphene peak (002). It can be inferred that the formation of multilayered 

graphene on the Ni-foam surface was successful.  

 

 

Figure 3. 10 XRD patterns of graphene foam and pure nickel foam. 
 

Figure 3.13 illustrates typical Raman spectra of graphene foam prepared in two different 

growth time (10 and 20 min). Both spectrum indicated the D, G, and 2D bands. The D-band 

Raman scattering peak, centered at 1346 cm-1, shows the existence of structural defects in 

graphene, including point defects, dislocation-like defects, bending of bilayers or multilayers, 

replacement impurities and carbon atoms, etc. The second peak at around 1570 cm-1 is the 
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G band contributing to the doubly degenerate phonon mode of carbon sp2 bonds, and this 

band certifies the presence of graphene. The third peak that is located at approximately 2700 

cm-1 is the known 2D band induced by the second zone-boundary phonon order. The 2D/G 

ratios for 10- and 20-min growth are 0.4 and 0.53 respectively. I2D/IG is an indication about 

layer of graphene to calculate them. The quality of graphene is modified by intercalation and 

will tend to enhancing of I2D/IG. The I2D/IG intensity ratio, G band peak position and the 

shape of the 2D band evolve with the number of graphene layers. 

 

 

Figure 3. 11 Raman spectra of graphene foam prepared with CVD method in 10 and 20 

minutes. 

 

3.2.2 SEM Characterization CVD 
 

The SEM micrographs in figure 3.14a show that the 3D Ni-foam is a porous, soft surface 

structure. On the surface of the Ni-foam (Figure 3.14b) graphene layers with distinct wrinkles 

were coated after the CVD process. Because of the structural template effect, the Ni-foam 

3D configuration was preserved in all cases. There are a number of wrinkles and ripples 
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created on the nickel foam that may be due to the distinction between the graphene and nickel 

thermal expansion coefficients. 

As it is shown in figure 3.14c, after etching the nickel, the 3D graphene shaped remained as 

nickel template's interconnected 3D scaffold structure. This is demonstrating structural 

integrity and stability. These materials’ pore size primarily distributed within the range of 

300μm that is resembling the nickel foam pore size. 

 

 

Figure 3. 12 SEM images of (a) bare 3D Ni foam, (b) Nickel-Graphene foam (graphene 

deposited on the Ni foam), and (c) Graphene foam. 

 

3.2.3 Electrochemical Characterization  
 

Figure 3.15 shows CV curves of the graphene foam prepared with CVD methods, measured 

at a scan rate of 0.1 mVs-1 within a potential range of 0.01–3 V. As it can be seen the graphene 

foam peak shows the lithiation/delithiation. The initial electrolyte interface layer formation 

reflected by a peak at 0.8 V, the main reduction peaks at around 0.15 V and 0.02 V, and the 

oxidation peak at around 0.27 V. Thus, in the prepared anode system, GF was recorded to be 

electrochemical active against lithium.  
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Figure 3. 15 Cyclic voltammetry of graphene foam at a scan rate of 0.1 mV s-1. 

 

Figure  3.16  shows  the  galvanostatic  cycling  results  of  the  as-prepared  GF sample  

recorded at a current rate of 0.4 mA cm-2 within 0.1–3 V. It demonstrates the potential profiles 

with a magnified inset of the potential curves for the 1st, 20th, 50th, and 100th cycles. The 

lithiation/delithiation plateaus correspond to the obtained CV data and were revealed to be 

similar for all cycles. In general, lithium ions have the insertion reactions with GF at the 

potential onset around 0.27 V. The delithiation from GF can be seen to start at around 0.27 

V. The GF has a significant contribution to the capacity during the initial 50 cycles. The GF 

intercalation ability increases upon cycling as well that can be evidenced by extension of the 

GF delithiation plateau.  Thus the overall capacity of the first charge constituted of around 

250 mAh/g, where GF contributed.  In  fact,  in  the  initial  cycles, the  capacity  from  GF  

was  around  250  mAh/g , corresponding to that of graphite, and  increases  up  to  280 mAh/g  

upon  a  prolonged  cycling.  
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Figure 3. 16 Discharge/charge profiles of graphene foam at current rate of 0.4 mA cm-2 

between 0.01 and 3 V: the discharge curves in the first, 20th, 50th, 100th. 

 

Figure 3.17 shows the cycling performance of the GF anode system, a reversible capability 

of up to 280 mA h g–1 could still be maintained at the end of 100 charge – discharge cycles. 

In the first cycle the capacity that was about 370 mA h g–1, after 4 cycles it follows a slight 

decrease to 260 mA h g–1, but could be maintained at a steady value around 270 mA h g–1 till 

end of 100 charge – discharge cycles. 

 

Figure 3. 17 cycling performance of graphene foam at the current density of 185 mA g–1. 
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CHAPTER 4 
 

 

CONCLUSION 
 

 

 

4.1 Conclusion  
 

In summary, the ultra-light weight 3D Graphene foams were prepared using CVD technique 

and a chemical reaction by reducing ammonia, ascorbic acid, and HI solutions. The results 

indicated that the GAs synthesized with a more effective reducing agent showed good 

electrical conductivity, whereas those with low-efficiency reducing agent had low electrical 

conductivity. The HI-reduced graphene aerogel shows the worst mechanical strength, and the 

ammonia-reduced graphene aerogel is very sensitive to the time and temperature of the 

reaction compared to other reduction agents. Although there was the greatest mechanical 

strength and excellent electrical conductivity in the graphene aerogel reduced by ascorbic 

acid. These findings provide insight into the optimization of graphene aerogel nanostructure 

sand characteristics for different applications, including electrode growth, energy storage 

devices, and Nano-composites. 



45 
 

Considering multiple variables, ascorbic acid is a promising reduction agent for the 

hydrothermal process, as the graphene aerogel produced does not only have outstanding 

mechanical characteristics but also reveals a broad hydrothermal preparation window.  

On the other side, CVD is an advanced path of synthesis, involving the use of costly 

equipment, limiting huge manufacturing. The hydrothermal technique is very prominent 

compared to the CVD method, which provides many benefits such as mild circumstances and 

adjustable parameters of response to prepare a graphene aerogel with great mechanical 

strength, low density, super-elasticity and potential for reuse. 
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