Goal-Oriented Hierarchical Task Networks and Its

Application on Interactive Narrative Planning

by

Emir Artar

Submitted to the Graduate School of Engineering and Natural

Sciences
in partial fulfillment of
the requirements for the degree of

Master of Science

Sabanci University

August 2019

Goal-Oriented Hierarchical Task Networks and Its Application on Interactive
Narrative Planning

APPROVED BY:

Prof. Dr. Berrin Yanikoglu
(Thesis Supervisor)

Assoc. Prof. Dr. Barbaros Bostan
(Thesis Co-Advisor)

Prof. Dr. Albert Levi

Assoc. Prof. Dr. Hiisnii Yenigiin

Asst. Prof. Dr. Reyyan Yeniterzi

byt

DATE OF APPROVAL: |6 /0 J) 2019

© Emir Artar 2019

All Rights Reserved

Abstract

GOAL-ORIENTED HIERARCHICAL TASK NETWORKS AND ITS
APPLICATION ON INTERACTIVE NARRATIVE PLANNING

Emir Artar
Computer Science and Engineering, Master Thesis, August 2019
Thesis Advisor
Prof. Berrin Yanikoglu
Thesis Co-Advisor

Assoc. Prof. Barbaros Bostan

Keywords: Artificial Intelligence, Game Design, Narrative Planning

Abstract

Two of the most commonly used Al architectures in digital games are Behavior Tree
(BT) and Goal-Oriented Action Planning (GOAP). The BT architecture is script based,
highly controllable but barely expandable. On the other hand the GOAP architecture is
planner based, barely controllable but highly expandable. This thesis proposes a hybrid
Al architecture called Goal-Oriented Hierarchical Task Network (GHTN); combining
planner based approach of GOAP with script based approach of BT. GHTN modifies
the Hierarchical Task Network (HTN) architecture by replacing its iterative planner
with a goal oriented planner, while maintaining the BT-like scripting capabilities of
HTN.

GHTN's iterative-planner hybrid architecture is suitable to be used for Interactive
Narrative Planning. Using GHTN with a previously crafted domain, it is possible to
obtain a non-repetitive and continuous narrative flow which can also be directed by
external goals. The user is presented with choices that are intelligently chosen to push
the narrative towards the goal; then, depending on the answers new choices are
generated. The initial state of the world and the goals are specified by a Scenarist who
has the knowledge of the domain. The proposed architecture is tested on Interactive
Narrative Planning task with an example domain set in the Lala Land universe, and the

architecture is tested with several initial world states and goals.

Ozet

HEDEF ODAKLI HIYERARSIK GOREV AGLARI

VE ETKILESIMLI ANLATIM PLANLAMADA UYGULAMASI

Emir Artar
Bilgisayar Bilimi ve Miihendisligi, Yiiksek Lisans Tezi, Agustos 2019
Tez Danigmant
Prof. Berrin Yanikoglu
Tez Es Danismani

Assoc. Prof. Barbaros Bostan

Keywords: Yapay Zeka, Oyun Tasarimi, Anlatim Planlama

Ozet

Dijital oyunlarin yapay zeka mimarilerinde en sik kullanilan yontemler Karar Agaclar
(BT) ve Hedef-Odakli Aksiyon Planlamadir (GOAP). Karar agaglar1 mimarisi senaryo
tabanli calistigindan 6tiirli cok kontrol edilebilirdir fakat genisletilmeye agik degildir.
Bunun aksine GOAP mimarisi planlama temellidir, dolayisiyla kontrol edilebilirligi
azdir fakat kolaylikla genisletilebilirdir. Bu tez Hedef-Odakli Hiyerarsik Gorev
Aglar’'nm1 (GHTN) ileri siirer. GHTN; Planlama temelli olan Hedef-Odakli Aksiyon
Planlama mimarisi ile senaryo temelli Karar Agact mimarisinin karmasi olarak disayn
edilmistir. GHTN, Hiyeralsik Gérev Aglar1 (HTN) yapisinin mimarisinde degisikliklere
giderek HTN’in yinelemeli planlama yapisin1 hedef odakli bir planlama yapisi ile

degistirir ve bu modifikasyon esnasinda Karar Agaclari’nda oldugu gibi bir senaryo

yazim yapisini eklemeyi hedefler.

GHTN’nin senaryo-planlama karmasi mimarisi, Etkilesimli Anlati Planlama igin
kullanilabilir. Oncesinde yaratilmis bir gorev ag1 ile beraber calistirildiginda, tekrarsiz
ve devamli bir anlati akis1 saglar ve bu anlati akisinin disaridan verilen hedefler
cergevesinde diizenler. Kullaniciya, anlatiyr hedefe gotiirmek tizere akillica segilmis
sorular sorulur ve kullanicinin yaptig1 secimler dogrultusunda hikayeyi hedefe dogru
tekrar yonlendirir. Diinyanin baslangic durumu ve hedefleri, gorev agina hakim bir
Senarist tarafindan secilir. Bu tezde, sunulan GHTN mimarisne Etkilesimli Anlati
Planlama gorevi verilmistir. Anlatida kullanilacak gorev agi, “Lala Land” diinyasindan

esinlenerek yaratilmis, ve ¢esitli baglangic ve hedef durumlar ile stnanmastir.

TABLE OF CONTENTS

CHAPTER L. bbbttt bttt n e b e e r s 1
INEFOAUCTION ...ttt bbb 1
1.1, TRESIS STIUCTUIEeviieieie ettt 5
CHAPTER 2.t bbbttt ne st e e r s 6
Background INFOrMationcovoiiiiiiice e e 6
2.1, INtEraCtive NAITAtIVEooveieie i 6
2.1.1. Key requirements of Interactive Narrativecccccocevveveiiciieie e, 11

2.2. Al ATCNITECIUIES ..ottt sttt re et aneenrees 12
2.2.1. BENAVIOT TTES ...cviiiiieieeiiesieeie et et ee ettt et e sne e ae e nnees 12
2.2.2. GOAP ..o e 15
2.2.3. Hierarchical Task Networks (HTN) ..o 19

(O o A o I OSSPSR 23
100 KSR 23
3.1. Goal Oriented Hierarchical Task Networks (GHTN)ccccoevirininininneenen, 25
3.1.1. Base HTN Algorithm Simplificationsccccooereiinenininiieeeeen 25
200 T - | SRS 26
3.1.3. Tasks and MEthOUScoeiieieiieieee e 27
3.1.4. Preparing Behavior Space for GOals...........cccceoeeieninenininieeeee 27
TS0 T I o o 1= USSP 29
3.1.6. TASK QUETIESevvecereectie ettt ettt st et be e ere e e be e s b e re e 31
0 B R 0% 1 (=T [0 4 - 11 o] o PSP PRSPPI 31
3.1.8. Preparing the Behavior Space for Planning............cccocvevvievieiiiiciiecnen, 31
3.1.9. Planner’s World States.........ccccvviiiieiiiiieiiiie e ssieessiee e siee e snne e 33
3.1.10. Interactive Planning (Interactive Narrative Only)cccccooevviiiieennnne, 35

3.2. Designing Task Network SPacecccocveiieeiieiie s 37
3.2.1. Ordering Tasks and Methods...........cccevvvieiiiiiiciie e 37
3.2.2. Designing World STatescccevveiieiieciie e 37
3.2.3. Trigger Selection and DESIQNccveiiieiiiiiii e 39
3.2.4. Designing When To USe QUETIEScccuereerieeieiieieeieseesieesie e saneneesns 39
3.2.5. A* and The Integer Problems ..o 40

3.3. GHTN in Interactive NarratiVe.........cccceiereiiienisiseseeeie e 42

3.3.1. Setting Initial States in Interactive Narrative............c.cccevvevveieiieeseennennn 42

3.3.2. Setting Goal States in Interactive Narrativecccoccevvvevveiesievnesnene 42
3.3.3. Tasks and MEthOUSccccueiiieriiniiie e 43
3L3L4. SCRNAIIST....cevveiiite ittt bbbt 45
3.3.5. Scenarist and Task Preparation............ccoceevieieienencnesese e 47
3.3.6. Interactive Planning (Asking QUESLIONS)cccovriereriienienieie e 47
3.4, FUINEr RESEAICN.......coiiieiiiie ettt e 50
3.4.1. Bidirectional SEArCh..........ccocveiiiiieice e s 50
3.4.2. NOVEILY PrUNING ..ottt 51
3.4.3. Interactive Narrative QUalILYcccooiiiiiiiiiieeee e 52
3.4.4. Guarantee of FINdiNg @ PIaNncocoiiiiiiiiiceeee 54
3.5. Full Algorithm Overview in a Test ENVIrONMENt.........ccooevereneneninineeeeen, 56
BIDHOGrAPNY ... e 67

vii

LIST OF TABLES
Table 1: Every plan is different and there are no milestones

Table 2: Every plan is different but there are milestones; (Assume A, B, J are

milestones)
Table 3: Plans overlap and there are no milestones
Table 4: Plans overlap and there are milestones.

Table 5: Glaive & BFS Algorithm comparison in different domains

LIST OF FIGURES
Figure 1: Dwarf Fortress
Figure 2: The unfolding of the story through tree graph representation
Figure 3: different paths leading to a same outcome at a later stage
Figure 4: A Generic Behavior Tree
Figure 5: Oversaturated Behavior Tree with a Thousand Tasks
Figure 6: GOAP explanation from its creator, Orkin
Figure 7: Planning to Eat with GOAP, Domain Figure
Figure 8: Planning to Eat with GOAP, Expansion Figure
Figure 9: HTN Visualization of Tasks
Figure 10: Preparation Algorithm
Figure 11: Relations of Tasks (yellow) with Green (world states).

Figure 12: The ending story node takes the events that happened in the story into

consideration and create an ending.

viii

LIST OF ABBREVATIONS

Al

BT
GOAP
HTN

GHTN

Artificial Intelligence
Behavior Tree

Goal Oriented Action Planning
Hierarchical Task Network

Goal-Oriented Hierarchical Task Network

CHAPTER 1

Introduction

In modern video games both the game world and the action space available to the player
Is massive. Because of the unpredictable nature of the player, it is very costly if not
impossible to design for every possible event chains in the game. Artificial Intelligence
(Al) as a dynamic decision mechanism; provides a practical solution to this problem.
Game Al's are designed to predict and counter player inputs. Al is a valuable tool used

to enrich the experience and provide fair challenge to the player.

There are many aspects to a game that can be improved with the use of Al. Among
these features most commonly known is Al controlled agents also known as bots. Bots
can benefit or hinder the progress of player. By using a rubber-band Al approach,
difficulty provided by these bots can change real-time, resulting in a challenging game
independent from the skill of the player. Al can also be used as a hidden assistance tool,
as in the use of Al in kinematic animations. In complex animations, predicting the
player inputs result in fluent animations, a feat only possible because the use of Al.
Another field that makes use of Al is Interactive Narrative, where systems can be
designed to take on the role of a narrator, such as the popular culture examples of Black

Mirror: Bandersnatch or dungeon masters in table top D&D games.

Repetitiveness and discontinuity must be avoided in Interactive Narrative. Stories where
repetition happens often, or causality relationships are not established strongly appear
unbelievable and artificial. Interactive Narrative planning is the arrangement of story
content with the context of chronological relation; in order to create a continuous and
non-repetitive narrative. The categories that test interactive narratives are robustness,

controllability and the ability to keep the user engaged.

Creating an Intractable Narrative is the equivalent work for creating several non-
interactive works, due to the large domain size required from which different narratives
are born; which is a burdensome overhead. Automating the process of story generation
is commonly used in video game industries, since most domains are limited in size. The
procedural algorithms are not only used in narrative creation but can even be used in
conjunction with other aspects of the game. Some examples of procedural generation
used in games are: procedurally generated worlds (Minecraft, Elite Dangerous),
procedurally generated world items (Borderlands), procedural generated audio ques
(Half-life), procedural generated characters (No Mans Sky). The provided benefit of
automation processes is to make each player’s experience of the same game or narrative
differently and uniquely. Developing a domain where different stories can be generated
from is costly in terms of designer and developer time. However once the framework is
established, the Al architecture can generate exponentially many content then the hand-

crafted approach.

Critically acclaimed game Skyrim (Bethesda Softworks, 2011) has a hand written
narrative for its main story. However optional missions are generated through
procedural generation techniques, these missions are called Radiant Missions. The
world can generate infinite amounts of these Radiant Missions. Radiant Missions are
generated by the request of the player, and the game chooses a location and a target for
the mission and alters the game world; creating a new mission and creating the illusion
as if the mission was already in the game. Resulting mission can be in any number of
locations in the game world and any number of characters can be a part of the mission.
Radiant Missions generate a unique mission for the player to partake in. By embarking
the mission’s journey, the player may encounter new areas or characters by simply
trying to reach to the objective. These missions being infinitely generateable, Radiant
Missions encourages the player to explore, thus enriching the gameplay experience. It

extends the lifetime of the product through content generation.

While being a solid system, Radiant Mission system lacks in few aspects. In Skyrim, the
main plot is hand crafted and Radiant Missions are a side addition. To be able to coexist
with the already existing hand crafted main plot, Radiant Missions cannot affect the
main story line in any way or form. If an assassination mission is generated through a
Radiant Mission; its target cannot be any of the key characters from the main plot. Their

demise would break the main plot, since the main plot isn’t designed to handle scenarios

where any of the essential characters can have an untimely death. Therefore the game
simply forbids such key characters and items to be targeted by the Radiant Mission
system. Another lacking point of Radiant Mission system is its repetitive nature. Two
missions generated by Radiant Mission system only differs by the location and the
target. Because of these lacking points of Radiant Missions, players figured out the
artificiality of the system, and the player feedback on Radiant Missions were negative;
otherwise a very critically acclaimed game title. The negative reception would be
opposite if Radiant Missions had some effect on the main story, thus players would take
feedback from the game world as if the time and effort put into accomplishing the
Radiant Mission would have repercussions on the world, assuming the player could kill

a key figure in the narrative and change the whole plot of the story.

Dwarf Fortress is a prime example of how narrative planning can make a successful
product. Unlike modern games where graphical fidelity is achieved using complex 3D
models, animation capture software and high fidelity sound effects to captivate the
audience; Dwarf Fortress has none of this, and is one of the games featured on Museum
of Modern Arts in 2012. Dwarf Fortress being an ASCII game only communicates with
its user by ASCII characters. It shows a bird’s eye view to the land and its inhabitants
only using ASCII and colors, where different ASCII characters such as may
represent a dwarf and the character may represent a goblin. From an interview with its
creator studio Bay 12 Games, “For instance, when you travel to certain cities in the
game and speak to a merchant they might tell you that their leather caps are made in an
elvish city half a world away. And it will be true. They really were made there, during
world creation, and traveled to this market for you to buy before you even started

playing.”[l].

The captivating aspect of the Dwarf Fortress comes purely from the narrative
experience it offers. Dwarf Fortress is a game which is built on top of an astounding
world generation algorithm. Before the player starts the game, a world must be
generated. This world creation process generates entire continents, mountains, caves,
wildlife and mineral deposits. Game simulates geological events and records these
generated data to be used later in the game and generation process. After world
generation, narrative planning takes place where the game places civilizations on the
created world; humans, elves, goblins, dwarfs. These factions wage war with each other
prosper and fall, kingdoms are formed and trade routes are established, heroes with

legendary deeds are generated and betrayals are made, natural disasters occur. The
whole generation process simulates thousands of years of time in the generated game
world. All of this history is stored in the world for the player to discover. Only after the
world generation is complete the player can embark upon a new journey in this rich
environment ready to be explored. In Dwarf fortress player takes control of a dwarf
colony. Where player must make decisions to expand, secure and prosper the colony.
Other factions may decide to wage war on player or make a trade deal, all dependent on

the actions of the player and the events that take place in the simulated game world.

Idlorss 13

Figure 1: Dwarf Fortress

Since Dwarf Fortress is a game of a constant struggle for survival, it lacks an end to its
story. The ending for Dwarf Fortress is either the death of the dwarf colony or the
player choses to stop playing. It’s an unending test of endurance, where all world events
are generated without a final goal in mind. Since the playtime of the game is
significantly less than the simulation time of the world generation algorithm, the

interactions of the user does not affects the narrative in an interesting way.

In our thesis we are proposing a hybrid Al architecture, Goal-oriented Hierarchical Task
Networks (GHTN), combining different approaches of the two most popular Al
architectures in gaming industry; Behavior Trees and Goal Oriented Action Planning.
GHTN is a Hierarchical Task Network (HTN) based architecture, where Behavior Tree-

like approach to scripting and Goal Oriented Action Planning-like planning mechanisms

Is combined in harmony.

With GHTN we designed a case study for Interactive Narrative to explore the
capabilities of the architecture. GHTN is also applicable to other domains of such as
procedural generation and behavior planning. Interactive Narrative is one of the more
challenging domains for study since it fully utilizes both the iterative and planning
features.

1.1. Thesis Structure

The rest of this thesis is organized as follows.

Chapter 2 provides an introduction to Interactive Narrative as well as requirements from
a good Interactive Narrative system. Chapter 2 continues on with Al architectures
Behavior Tree, GOAP and Hierarchical Task Networks, their advantages and

disadvantages.

Chapter 3 describes the modifications proposed to HTN, details the designing process
for behavioral tasks, and discusses how Interactive Narrative can be applied to the

proposed system.

Chapter 3.4 goes over the pre-planning and planning algorithms by simulating the
algorithm on a predesigned task space, visualizing interactions and inner workings of

the algorithm’s planning system.

CHAPTER 2

Background Information

2.1. Interactive Narrative

It has been witnessed during the recent years that there has been an increase in the
development of training systems that are simulation based and has the capacity to
engage multiple spectrums under it in order to cater the needs of the market (Magerko,
Stensrud and Holt). For example in order for a pilot to learn properly how to fly an
aircraft, simulation based training system would allow the pilot to learn flying an
aircraft without having the need to practice over a real aeroplane. The simulation based
training system would act like a real world aircraft which would help the pilots to
enhance to learn or even to enhance their flying skills. These kinds of simulation
systems has already been introduced in the market and has been catering different kinds
of industries such as health care, business management, education, military etc. “human
in the loop” simulation system is another name for simulation based training where
synthetic environment is created for trainee in order for them to acquire the necessary
skills and education through the use of the simulation system. Traditionally, the way of
training people was very different as compared to the ways of current era. In the past
there were no training systems as such or even if they were in place, they were not
comprehensive enough to teach a trainee the necessary skills. Therefore trainees were
provided real world scenarios and real world application to test their skills and increase
their knowledge which was also very expensive (Hill, Gratch and Marsella) (Faria,
Hutchinson and Wellington). Compared to the current situation, such costs can be
avoided through the use of comprehensive simulation systems which would allow
trainees to gain necessary skills and knowledge affordably and in the least expensive
ways. Such a simulation systems would also allow interactive virtual experience which

not only enhances the skills of the trainee but also gives the trainee room for committing

errors which would not be possible when being exposed to a physical environment
where the margin for errors is next to none. Hence better learning opportunities are
available for the trainees leading to developing better skills and performance. Although
the simulation systems have gained increasing popularity over the years yet there are a
lot of challenges being faced for developing a comprehensible simulation based
systems. Training refers to exposing a person to different number of scenarios or
sequence of events where a trainee could enhance their multiple skills. This is one of the
most critical elements of a simulation system since through the use of it, multiple
objectives of training are achieved. Being able to be exposed to different scenarios,
trainee is able to undertake multiple training sessions and certain training missions to be
able to enhance their skills effectively. However ensuring that the trainee is able to
achieve the desired objectives, it takes a lot of time since manual authoring of multiple
scenarios is one of the bottlenecks being faced during the training sessions. Moreover,
care has to be taken about how the scenarios will be executed while ensuring the actions
taken by the trainee influences the outcomes of the scenarios and helps to progress the

training accordingly (Zee, Holkenborg and Robinson) (Riedl, Stern and Dini).

The other name for Interactive narrative is known to be interactive story telling which
has now gained certain grounds as digital entertainment around the globe. Training
domains are very actively taking interactive narrative into consideration where trainee
or a player has the choice to unfold the story of the scenarios according to the actions
which they take in the virtual world. The virtual environments now created are highly
immersed which is also one of the visions of the interactive storytelling and allows
creating dramatic experiences for the trainee by allowing them to influence and unfold
the story according to their actions. Such an experience is also termed as Holodeck
experience. Certain automated means like Al planning are also employed by most
interactive narrative systems in order for them to generating narratives due to which the
burden of authoring is alleviated. Although multiple areas of interactive storytelling are
in their infancy and a lot of research is being conducted in this regard as well in order to
improvise and improve the interactive narrative systems (Kato). Over the last twenty
(20) years multiple interactive narrative systems are being developed and multiple
techniques has also been offered in this regard over the years (Faria, Hutchinson and
Wellington). The foremost challenge which has been observed during these years has

been about balancing the need to coherently progress the story with the user agency.

Since progression of a story in multiple directions due to influential actions taken by a
trainee requires deep understanding of what actions might certainly be taken by the
trainee hence designing the outcomes for those scenarios requires comprehensive
understanding to unfold the story and reach a conclusion. There are no best ways of
knowing the intensions of a user since user has the options to act in a way which they
feel would be best for them. Designing scenarios accordingly is one of the most
challenging aspects of interactive narrative systems or interactive storytelling. The users
are not determined to take predefined steps to unfold a story but they are more prone
towards testing the limits of the story telling to learn how vividly a story might unfold
and in which directions therefore such an uncertain situation creates challenges. These
challenges are to be catered by balancing the competing needs of the individuals and
allowing them to feel that they have the control over unfolding the story in the most
appropriate manner while ensuring that the coherency of their experiences are
maintained (Hill, Gratch and Marsella) (Riedl, Stern and Dini).

One of the solutions to cater to these challenges has been through the use of drama
manager who ensures that the narrative is being driven forward according to certain
models in place which ensures quality and experience for the player. The drama
manager is also known as the experience manager who plays a vital role in influencing
the actions of the character which are being controlled by the user. The drama manager
ensures by way of intervening that the actions undertaken by the user are being
implemented in the narrative. The drama manager actually interprets the future actions
of the user controlled activities by way of future projections. The projections are not
made randomly but through narratological principles and other criteria’s through which

the quality of the user experiences are ensured (Zee, Holkenborg and Robinson).

The fictional world can be in different states due to the actions being performed by the
NPC’s, users and drama manager. Considering the fact that NPC’s had not been
discussed previously therefore it would be feasible to understand the concept behind
what NPC’s are. Basically NPC’s can be defined as the transitioning of the virtual world
through the transitioning of the virtual world in different states by means of the actions
of the NPC’s just the way a virtual world would transition by the actions taken by the
user. NPC’s are more basically helping the user to implement their actions in the virtual
world and drama manager is there to ensure that appropriate outcomes and experience is

being generated by such actions being undertaken. All these criteria and agents are

being built by the human author in controlling the virtual since it is necessary to shape
the experience of the user and since human author will not be present their to ensure
such quality of experience therefore such agents are in place to implement the actions
and shape the user experience accordingly. Considering the importance of the human
author and drama manager, it is necessary that a relationship exists between them in
order to ensure that the concerns of the interactive narrative research are being catered
vividly (Riedl, Stern and Dini). The whole scenario can be explained through the figure
1 which shows various transitioning states and outcomes of multiple actions being taken

by the user to unfold the story while ensuring quality of their experience.

Figure 2: The unfolding of the story through tree graph representation

The figure shows different outcomes of a single story due to multiple actions being
taken by different users. Since these outcomes vary widely due to having users to
pursue different kinds of tactics to explore the dynamic nature of the interactive
narrative systems therefore multiple scenarios are being created to overcome that
challenge. Also in order to ensure the quality of the user experience, drama managers
are built in place to ensure that the outcome of an action doesn’t skips a path and lead to
a farther outcome for an action hence drama manager ensures that the story unfolds in a

logical manner and not jump from path 3 to path 8 directly or from path 3 jump to path

7. If such drama manager were not being put in place then the quality of the user
experience would have been compromised since the outcome of an action to pursue path
5 would be against it and path 7 would be pursued. In such a situation drama manager
ensurs that the outcome of path 5 should be path 8 or path 9 only. Also it is not
necessary that the story unfolding from path 5 will have an entirely different outcome
and different story if being pursued. Different paths could lead to a same story as well

which can be explained through figure 2 as follows

Figure 3: different paths leading to a same outcome at a later stage

Figure 2 explains the fact that the conclusion of different paths could be the same but in
certain situations they could be different as well. Hence it is not obvious that different
paths will have entirely a different story but the story could unfold in entirely a different
way while leading to a similar or same conclusion at the end. All these paths and
trajectories are being designed by the human author but as drama manager acts as a

replacement for the human author in interactive narrative systems.

10

2.1.1. Key requirements of Interactive Narrative

For the purpose of the development of the interactive narrative system, there are certain
key considerations that need to be followed to ensure quality experience of the user.
Two categories have been found for the purpose of key requirements in developing

interactive narrative systems which are as follows:

The first category deals with the perspective of the trainers about how they would want
an interactive narrative system to help them achieve their desired goals. In this regards

robustness and controllability of the system are being tested.

The second category deals with the perspective of the trainee in which the trainee
considers how much engaging the experiences could be through the use of interactive
narrative system. In this regard personalization and interaction is being taken under

consideration.

Under the first category, controllability is focused towards how the desired outcomes
are being achieved through the use of the interactive narrative system to meet certain
training goals. Whereas robustness is considered as the robustness of the outcomes in a
virtual world. Since it is a known fact that there are multiple actions that could possibly
be performed by the user which has different outcomes but just to explore that
possibility of achieving exceptional outcomes, users may perform certain actions which
could lead to outcomes not being considered by the interactive narrative system and has
might lead to undesired outcomes. Such undesired outcomes are to be avoided at all
costs and such considerations are called robustness.

Under the second category personalization refers to outcomes that are being preferred
by the individual users or trainers according to their needs whereas interaction refers to
influencing the storyline of the interactive narrative system for unfolding the story
(Kato) (Riedl, Stern and Dini) (Zee, Holkenborg and Robinson).

11

2.2. Al Architectures

Al research starts with asking a question to figure out which Al architecture is the most
feasible solution to the problem at hand. In the process of considering different
architectures, Behavior Trees are the first architecture to consider. The following

section explores Behavior Trees and other the most frequently used Al architectures.

2.2.1. Behavior Trees

Behavior Tree (BT) is an Al architecture, which is used to implement complex

sequences of events. BTs consist of two parts; the BlackBoard and the tree.

The BlackBoard is a globally accessible bundle of states, which represents the current
state of the world. The nodes in the tree updates BlackBoard globally, the BlackBoard

never has a local copy anywhere.

The tree is a branching list of nodes, originating from root to leaves, where branching
appears in the presence of multiple paths from a single node. The tree is not balanced

and number of children varies from node to node. In the most common implementation;
e The root node is insignificant, is mostly used as a pointer to the tree

e The internal nodes are a bundle of expected BlackBoard conditions. They may

contain other internal nodes or leaf nodes as their children.
e The leaf nodes represent actions, which can be taken.

BT is a reactive system, which takes the BlackBoard as a parameter, and iteratively
works from the root to the leaves. The iterations work very similarly to depth first
search (DFS). At the start of every depth level, every children of the current node is
evaluated left to right until one with valid preconditions (with respect to BlackBoard) is
found. When the preconditions match, the depth is increased and search is done for the
matching node. When no preconditions match on that level, the recursion returns false
and search is continued on the parent node again. In the most common implementation,

the search stops when a leaf node is executed. In more advanced implementations, there

12

are modifier nodes (selector and sequence) so that the search may last until a leaf is

executed, or a sequence of leaves is executed.

Behavior Trees have no Goals, they work once or they are run multiple times until an

external stop command is given.

A Behavior Tree
Roat = Run faway

- Fight - Melee - Close

=

= Range = Aim

| Approach Sh::rt

- Iedle ' Scratch
Eat | Eat Soft Taco
Take Nap L Eat Fajita
Figure 4: A Generic Behavior Tree
Advantages of BTs

BTs are often the most suitable architecture to solve the problem in hand due to the fact

that they are simple to code, easy to design and somewhat scalable.

It is relatively easy to prototype a design in BTs due to its simplicity and
straightforward nature. Behavior trees also have many different implementations being
available widely over the game engines, most of which support GUI and drag and drop
features, which enable non-coding background designers to design a system with ease.
BTs are also the go-to Al architecture in most computer games due to the nature of

game Al having a low count of behaviors and cause and effect relations being simple.

13

Disadvantages of BTs

BTs can scale from tens of nodes to few hundreds of nodes; however it is very
infeasible to develop a behavior tree further in the node count. In an oversaturated
Behavior Tree, the tree itself becomes unmaintainable since it becomes harder and
harder to read, understand and create relations in. When a new node is designed to be
added, its preconditions should be decided and the newly designed node should be
attached to another node in the behavior tree. The attaching operation is complex, since
the whole tree should be considered while adding; the node may require to be added
multiple times to different parts of the tree. While attaching to its parent, the location of
the new node with respect to its sister nodes is also important due to the fact that the

nodes are evaluated left to right.

™ \

, — e
Tt o el wei T r A 3 mE
el ity v r ey A W S
2 '-E:g : fgz-m BT® G g

i : L == i
s = = -
& 1 :
r :
—— - - LGS e = . LL4] 4 'Y
wESNE (I O B
" E R e BM L
F 1 H = ﬁ -‘;;‘-E—‘ﬁ—
4 p PP
B H
= - g eune ol
H n 'i. -';.;E-f- --S-L:';;:—
s -- g B
-r --.-—El';'- .‘:‘
..:.l' o

ll-.'ll-I.il
L%

Figure 5: Oversaturated Behavior Tree with a Thousand Tasks

Since the BT algorithm works iteratively; the algorithm cannot undo operations and go
back to previous world states. Imagine the ruleset of Towers of Hanoi; this task is
unsolvable in BTs unless you give the mathematical solution in the format of a tree. If a
new disk is added to the ruleset, the whole mathematical solution must be updated in
order to meet with the new requirements. BTs cannot solve such a problem without the
full mathematical solution since they are not capable of planning. BTs are best used in

iterative problems where it can act reactively to the BlackBoard.

14

According to Damian Isla, Lead Al Developer at Bungie, “Hackability is key” when
dealing with BTs. In his proceeding in Game Developers Conference, a very prestigious
conference for its domain; Isla explains different approaches to BTs and how to modify
BT’s flow with modifiers he calls “Stimulus Behavior” and “Behavior Impulses”. These
implementations create callbacks within the BT and force it to handle certain cases.
Whilst his propositions are perfectly valid and solve main problems of BTs, they do not
contribute to scalability factor, creating what he calls the “Parameter Creep”; rendering

the maintenance of the BT tougher over time.

2.2.2. GOAP

Goal Oriented Action Planning is proposed by Jeff Orkin in 2006, and was used widely
on many classic computer games until 2012. Orkin’s research was phenomenal in its
time, taking the focus off of script-like architectures (BTs), and putting it into planners
(GOAP) in Game Al development. Orkin states that “The planning system that we
implemented for F.E.A.R. most closely resembles the STRIPS planning system from
academia.” Orkin states 4 main differences between the algorithms, however we will

not explicitly cover these due to our scope.
GOAP consists of three parts; the world state, actions and a planner.

World State is a bundle of state variables bundled together. Initial World State is the
world state at the beginning of the algorithm, and Goal World State is the expected
world state at the end of the algorithm. It serves the same purpose as BlackBoard serves
to Behavior Trees, however while a BT has one and only one BlackBoard, GOAP can

have multiple World States.

Actions are nodes available in the planning space. Each action has a precondition, an
effect, and cost. In order for an action to execute, its preconditions must be satisfied.
When the preconditions are satisfied, the world state is locally updated. The cost of an
action is higher for difficult tasks, and it is an arbitrary number greater than or equal to
0. GOAP algorithm does not have any physical structure such as trees; there are no

connections between nodes.

15

T
Dodge Covered| o Attack Males | — ' Dodge Coferad:

Attack Ranged | | Dodge Shuffle l &Aﬂsclﬂ. Ranged | ’ Dodge Shuffie
Blind Fira | Gote | Bind Fire Jﬁ Gela
We do this. But we never have to do this.

Figure 6: GOAP explanation from its creator, Orkin

The planner in GOAP uses A* search algorithm, to find a “path” between the Initial
World State and the Goal World State. The A* algorithm utilizes the costs of the actions
as a heuristic, and at every expansion utilizes the lowest cost action. In order to find a
path, the algorithm starts from the Goal World State, and backtracks into the Initial
World State. The path is the ordering of actions, there can be a path between two

actions if the precondition of the one action is satisfied after the action is executed on

World State.

———
plzzaOnRoute
S E

“
]
2
E
-]
z
(7
c
g
v
=
=

g Phone
For Pizza

pizzaOnRoute
true

[=——
foodMixed
= true

World State

hasingredients
= true
£
x

hasPhoneNumber=true Goal

Hungry = false

hasingredients = true

Figure 7: Planning to Eat with GOAP, Domain Figure

Since the algorithm works in reverse, planning starts from the Goal World State, and
picks the first action which creates this state. Runtime of the example above is a

following:

16

World State:

e hasPhoneNumber = true

e haslngredients = true

Goal:

e Hungry = false

The algorithm starts with the Goal, and finds a path backwards to the initial world state.

1. The action “Eat” is chosen and added to the plan because its post conditions

(Hungry = false) is satisfied.

a.
b.

C.

Local Goal State is updated to (Hungry = true, hasFood = true)

Plan is [Eat]

Algorithm continues, The Local Goal cannot be satisfied by some subset
of Initial World State

2. The action “Serve” is chosen and added to the plan. In parallel, “Wait for

Delivery” can also be added to the plan instead, we are not exploring that path

for the sake of simplicity. Assume that the “Wait for Delivery” task is a high

weight task so it is ignored.

a.

Local Goal State is updated to (Hungry = true, hasFood = true,
foodCooked = true)

Plan is [Eat, Serve]

Algorithm continues, The Local Goal cannot be satisfied by some subset
of Initial World State

3. The action “Bake” is chosen and added to the plan.

a.

Local Goal State is updated to (Hungry = true, hasFood = true,
foodCooked = true, foodMixed = true)

Plan is [Eat, Serve, Bake]

Algorithm continues, The Local Goal cannot be satisfied by some subset
of Initial World State

4. The action “Mix” is chosen and added to the plan.

a.

Local Goal State is updated to (Hungry = true, hasFood = true,

foodCooked = true, foodMixed = true, hasingredients = true)

b. Planis [Eat, Serve, Bake, Mix]

17

c. Algorithm continues, The Local Goal cannot be satisfied by some subset
of Initial World State
5. The Local Goal can now be satisfied by some subset of Initial World State, the

planning algorithm stops.

hasPhoneiumber = true

World State Hungry = false

§ Bl 3 z
hasingredients = true |%§.ggl§§ Bake %;I%?;gl%;;?l

Figure 8: Planning to Eat with GOAP, Expansion Figure

At the end of execution, the algorithm returns the shortest path to the Goal from the
World State.

Advantages of GOAP

It is an effortless task to add a new action to the planning domain. The action’s
preconditions and its effect should be decided, which is a trivial task; considering the
fact that each action can be initially designed independent from each other. Determining
the cost of the action is experimental since the cost should be in line with other tasks’
costs, and the cost is the only parameter which determines the likelihood of the action
being planned. An action with a very high cost would be chosen rarely by the planner,
while an action with a low cost would be picked more often; since it does not
dramatically worsen the heuristic. Related to this topic, Orkin gives the following
example: Consider a new action TurnOnLights with the effect LightsOn=true is
designed. If the TurnOnLights action is to be added to our planning domain, all that is
required is to add LightsOn==true as a precondition to another action MoveAround.
Therefore, actor will make sure to call TurnOnLights before calling MoveAround, to be
able to navigate when they are in a dark environment. For every Goal which requires
MoveAround action, it can be guaranteed that TurnOnLights action is called; meaning

the lights are turned on, if they were not already on.

18

Disadvantages of GOAP

In GOAP, when an action is selected, it is removed from the list of available actions to
prevent the repetition problem, however this is a two edged sword. Simple different
tasks would require implementation differences to be solvable by the algorithm.
Consider the case where the Al is required to collect 3 indifferent stones, and there is an
PickOneStone action the available actions. If the planner picks the action
PickOneStone, it will be removed from the available actions, and the plan would be
unsolvable, even though there is a simple solution through repetition. Another approach
would be implementing PickFirstStone, PickSecondStone and PickThirdStone actions;

however such approach is not scalable.

In GOAP, creating new actions and adding them to the planning space is an effortless
task. The absence of a real structure, such as not being in the form of a tree or a state
machine, causes complexities if the designer wants to give some input to the planning
process. Since there is a lack of higher structure, it is not possible to intervene and
dynamically modify the search space. The designer can always edit weights for the
heuristic dynamically; however this is not a trivial task since all the actions are only
weighted by that one single metric. Such approach is very problematic since the
planning ambiguity of the system makes it very fragile, modifying a weight value of an
action will affect many actions that rely on the modified action, without the intention.
GOAP is a black box in this sense, and tinkering with the ambiguity will cause more

harm than good in a domain with high number of tasks.

2.2.3. Hierarchical Task Networks (HTN)

Hierarchical Task Networks (HTN) is a planning based, Goal oriented Al architecture.
While having limited applications in the Game Al research, HTN is an architecture
which is a good mix of the two most popular algorithms, BT and GOAP. Structurally,
HTN is composed of multiple trees with height 1; and the planner algorithm jumps from
tree to tree to find a solution, depending on the ongoing internal state. In video game
industry HTN is used in many franchises such as Killzone, Max Payne, Total War and
Dark Souls.

19

Buld

House
I

"_ decomposes to

Obtain
Permuat
Construct — | Pay
// Builder
Hire !
Builder I
________________]
| decomposes to
Build !
/ Roof \ |
Buld Build Buld :
Foundation Frame = | Intenior !
\ Build / |
Walls !

Figure 9: HTN Visualization of Tasks

HTN consists of multiple parts; World State, Primitive Tasks, Operators, Compound
Tasks, Methods and the Planner.

World state is a bunch of states bundled together, which represents the current state of
the world. In HTN, there is a single World State throughout the entire execution. The
World State is changed by Operators.

Primitive Tasks are basic tasks which includes one or more Operators. All the Operators

in a Primitive Task are called sequentially.

Compound Tasks consists of Methods, which are possible ways for solving that
Compound Task. A Compound Task can have one or multiple Methods. When a
Compound Task is executed, the algorithm tries to find a Method where its conditions
are satisfied. Similar to BTs, HTN algorithm starts from the leftmost child Method and
moves towards the rightmost Method until it can successfully run a Method. If there are
no methods in a Compound Task that are satisfiable, the Compound Task does nothing.
Compound Tasks are 1 height trees. The root node has the name of the Compound Task,

and each of the leaf nodes correspond to a method.

20

The planner is given an Initial World State, a Task Array to start running from and an
optional Goal State. The planner stops execution when the Task Array at hand is
emptied; meaning that all the tasks that this planning operation was responsible for, are
completed. If a Goal State is given, the planner will stop if its World State reaches to the
Goal State. It is also possible to limit the planner by iteration count. At the end of
execution, the planner returns the list of Primitive Tasks(These include Operators) so
the World State changes can be applied one by one.

If the Compound Task “Eat” has two methods, CallPizzaDelivery and BakeCake, the
leftmost child of the parent will have the first opportunity to work, in this case
CallPizzaDelivery’s preconditions will be checked first. If the preconditions do not
match, BakeCake’s preconditions will be tested. If the preconditions do not match for
BakeCake as well, nothing will be done in this method. However if one of these

Methods execute, they will add new tasks to the Task Array.
Advantages of HTN

The HTN algorithm is extendable due to the constant tree depth of 1 and extensive
decoupling of tasks, methods and operators. Being able to group Methods under
Compound Tasks allows the designer to create an internal order of execution
mechanism inside Compound Tasks. Also, Compound Task, Primitive Task and
Operator decoupling from each other allows the designer to freely implement any new
task or operator without having to worry about previously implemented ones, and ease

the complexity of debugging.

Hierarchical Task Networks are composed of 1 height trees; therefore they keep the
initial ordering between nodes that is set by the designer. This allows the designer to
create an order of importance to Methods sharing the same Compound Task before the

planning phase, which will be kept and respected throughout the planning phase.

Expanding the search space in HTNs can be done through implementing a new Method
to an already existing Compound Task, Creating a new Compound or Primitive Task or
implementing a new operator. Adding newly implemented features require a single pass
through the whole domain. Tasks are very easily debug-able since starting Task Array

can be set to start with the newly implemented task, or the task that calls the new task.

21

Disadvantages of HTN

A planner exists in HTN; however the planner is not a heavy-duty planner as in GOAP.
The HTN planner iterates over the network and checks conditions, accumulates the
methods and updates a local copy of the initial world state until the local copy matches
the Goal State. Wrong ordering of Tasks and Methods may cause the planner to never
come up with a valid plan to reach the Goal State, even if logically the Goal State looks

possible given the domain.

22

CHAPTER 3

Methods

The proposed algorithm Goal Oriented Hierarchical Task Network (GHTN) is a hybrid
architecture for Al programming, utilizing both BT-like and GOAP-like approaches
together. Unlike BTs, GHTN algorithm is fully fledged in capabilities. The unmodified
BT algorithm is not plug-n-play level usable, and most real world implementations
(such as Unreal Engine 4) implement parallel tasks, callbacks and other function