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Abstract

In this thesis, we compare solutions of the Camassa-Holm equation with solutions
of the Double Dispersion equation and the Hunter-Saxton equation. In the first part of
this thesis work, we determine a class of Boussinesq-type equations from which can be
asymptotically derived. We use an expansion determined by two small positive parame-
ters measuring nonlinear and dispersive effects. We then rigorously show that solutions
of the Camassa-Holm equation are well approximated by corresponding solutions of a
certain class of the Double Dispersion equation over a long time scale. Finally we show
that any solution of the Double Dispersion equation can be written as the sum of solu-
tions of the two decoupled Camassa-Holm equations moving in opposite directions up
to a small error. We observe that the approximation error for the decoupled problem
is greater than the approximation error characterized by single Camassa-Holm approx-
imation. We also obtain similar results for Benjamin-Bona-Mahony approximation
to the Double Dispersion equation in the long wave limit. In the literature, Hunter-
Saxton equation arises as high frequency limit of the Camassa-Holm equation. In the
second part of this thesis work, we establish convergence results between the solutions
of the Hunter-Saxton equations and the solutions of the Camassa-Holm equation in

periodic setting providing a precise estimate for the approximation error.
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Anahtar Kelimeler: Ikili Dispersif denklem, Camassa-Holm denklemi, periyodik
Hunter-Saxton denklemi, asimptotik acilim, ayrisma, dogrusal olmama, uzun dalga,

yiiksek frekans, uzun zamanda varlik, yaklagim hatasi, periyodik ¢6ziim.

Ozet

Bu tezde Camassa-Holm denkleminin ¢oziimleri ile Ikili Dispersif ve Hunter-Saxton
denklemlerinin ¢oziimlerini kiyasladik. Tezin ilk boliimiinde, Camassa-Holm denklem-
inin elde edilebilecegi bir Boussinesq sinifi belirledik. Acilimda dogrusal olmayan ter-
imi ve sagilmay1 olgen iki kiigiik pozitif parametre kullandik. Daha sonra Camassa-
Holm ve Ikili Dispersif denklemlerin ¢oziimlerinin uzun zaman araliginda birbirine
yakin kaldigini ispatladik. Buna ek olarak, Ikili Dispersif denklemin bir ¢oztimiintin zit
yonde giden iki Camassa-Holm denklemin ¢oziimlerine ayrigabilecegini ve bu agamada
ortaya ¢ikan hatanin tek yonlii Camassa-Holm yaklagimi ile elde edilen hatadan biiyiik
oldugunu gozlemledik. Ikili Dispersif ve Benjamin-Bona-Mahony denklemlerinin ¢oziim-
leri i¢in de benzer sonuglar elde ettik. Tezin ikinci béliimiinde, Camassa-Holm den-
kleminin yiiksek frekans limiti olan Hunter-Saxton denkleminin periyodik ¢oziimleri
ile ona karsilik gelen Camassa-Holm denkleminin periyodik ¢oziimlerinin uzun zaman
araliginda birbirine yakin kaldigini gosterdik. Yaklagimdan elde edilen hatay: net bir
sekilde hesapladik.
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Chapter 1

Introduction and Preliminaries

In this thesis, we will present some recent results regarding comparisons of solutions
of some pairs of nonlinear wave equations in asymptotic regimes.

In the literature, there are many work about rigourously relating the solutions of
asymptotic equations with the equations of the physical problem. For example, the
Korteweg-DeVries (KdV), the Benjamin-Bona-Mahony (BBM) and the Camassa-Holm
(CH) equations are derived as long wave limits of water wave equations in the scope
of fluid dynamics [6], [19] and references therein. Moreover, there are some other work
showing that bidirectional, small amplitude long wave solutions of the water wave
problem are well-approximated first by combinations of the two uncoupled KdV equa-
tions [26] and later by the CH equations by [9]. These equations are generally obtained
from either the Euler equation or the Green Naghdi equations. Then, researchers con-
sider the problem within the scope of elasticity and present the rigorous derivation
of the CH equation from the Improved Boussinesq equation (IBq) in the long wave
limit [10]. Then, they prove that solutions of the CH equations are well approximated
by the corresponding solutions of the IBq equation [11]. They also show that any
solution of the IBq equation can be written as the sum of solutions of right and left
going CH equations up to a small error [12].

In the first part of this thesis work, we also consider the problem within the scope
of elasticity. We derive the CH equation as the long wave, small amplitude limit of a
certain class of the Double Dispersion (DD) equation. We use an expansion determined
by two small positive parameters measuring nonlinear and dispersive effects. We then
prove that solutions of the CH equations are well approximated by the corresponding
solutions of the DD equation. Finally, we show that any solution of the DD equation
can be written as the sum of solutions of CH equations moving in opposite directions
up to a small error. We also obtain similar results for the Benjamin-Bona-Mahony ap-
proximation to the DD equation. All the results we obtain so far are the extensions of
the results obtained in |10], [11] and [12] to “Improved Boussinesq-like DD equations”.

In the second part of this thesis, we consider similar problems between the Hunter-
Saxton (HS) equation and CH equation. In the literature, the Hunter-Saxton equa-
tion arises as high frequency limit of the Camassa-Holm equation [7], [17] and [22].
Existence-uniqueness of the solutions of Cauchy-problem for the HS equation is also
studied in different domains. In the second part of my thesis work, we approach the



problem within the periodic setting and work on the conditions under which the solu-
tions of the CH and the HS equation remain close to each other.

The thesis is organized as follows. In the rest of this chapter, we present the main
tools and notations that are going to be used throughout the thesis. In Chapter 2,
we present the asymptotic derivation of the CH from the DD equation in the long
wave limit. We then examine the problem for the Good Boussinesq (Good Bq) and
Bad Boussinesq (Bad Bq) equations and show that the CH equation can be derived
from Bad Boussinesq equation whereas it cannot be derived from the Good Boussinesq
equation in the long wave limit. We then consider BBM and KdV approximations to
the DD equation. In Chapter 3, we first present the main convergence result between
the solutions of the DD and the CH equation. To this aim, we briefly explain the
general methodology for the comparison. Then we recall the well-posedness theorems
for Cauchy problems for both DD and CH equations before going through the details
of the proof. In Chapter 4, following the same methodology in [12], we verify that
any solution of the DD equation can be written as the sum of solutions of the two CH
equations moving in opposite directions up to a small error. Here, we mainly invoke
the theorems and their proofs obtained in Chapter 3 since they are almost parallel. As
in [12], we show that the approximation error for the decoupling problem is greater
than the approximation error characterized by the single CH equation. In Chapter
5, we first present the derivation of the HS equation from the CH equation provided
in [22]. Then, we state the convergence result between the periodic solutions of the HS
and CH equation since most of the well-posedness results on the initial problem for the
HS equation rely on the periodicity. For that reason, we recall existence uniqueness
results for Cauchy problems for both the HS and CH equation in the periodic setting
before giving the proof.

Now we present the main tools and theorems that will be used in this study.
1.1 Sobolev Spaces

In this section, we recall the definitions of Sobolev spaces and related concepts [14].
Let Q@ C R" be open set and a be multiindex. By D%u we define the a-th weak
derivative of u. Then for each k = 1,2, ..., H*(Q) is a Banach space with the norm

||U||§{k(9) = Z ||Dgu||%2(9)-

| <k

We will closely look at the two cases where 2 = Rand 2 = T = [0, 27) C R, repectively.
Let 2 = R. Assume u is an integrable function. Then define Fourier Transform and
inverse Fourier Transform by

i) = [ e utwe

1

u(z) = %/Re_”gu(f)df.



Using the Fourier Transform and Plancherel’s identity, norm on H*(R) for all real
numbers s > 0 can be equivalently defined by

||l

2 ) = / (1+ &) [a? de

where

(u, V) s = (Nu, N*v)p2 = /(1 + &350 dE

R
is the inner product on H*® and A* = (1 — D?)%/2,

1.1.1 Fourier series representation for periodic functions and Sobolev
spaces on T

Let u be periodic function with period 27 and integrable on [0, 27). Then Fourier series
of u is given by

oo
u(z) = Z Upe™.

n=—oo

We can find the Fourier coefficients precisely using the Fourier Transform:

27 ) 2r ) )
/ u(x)e "™ dr = / Z upe" e " dx
0 0 o
o 2w ) )
0

n=—oo
o0

= Z 27U Oy AT

n=—oo

= 27Uy,

where 6,,, is the Kronecker delta defined as d,,, = 1 for m = n and §,,,, = 0 for m # n.
Thus we arrive at

u, = u(n) ! /Oﬂu(x)e_mwdx. (1.1)

T o

Assume DJu € L*(T) for j =0,1,2,....,k. Then

oo
[ulffamy = D lual’

and .
Dlu(z) = Z Uy (in ) ™,



It follows that

(e 9]

1DJull 2wy = > 0¥ |ug|?

n=-—00

and
k o)

el =D D ¥ lun)”

7=0 n=—00

9]
~ 3 (1) u
n=—o00

Similarly, for all real numbers s > 0, we define

o0

o = Y (L+0°) .

n=—oo

||l

1.1.2 Some Useful Sobolev Inequalities

e For any 0 < s1 < 59 < 0o there holds
H*(R) D H**(R)

and
[[7]

@) < ||h||ms2 w)-

o Let f,g € H*(R) and s > 0. Then

LA fallm@y < C (| flm=@llgll e @) + 11f]] @ lg]
2. [|fllee < CIIf]ls if s > 1/2.

HSUR))7

1.2 Homogeneous Sobolev spaces and properties of the inverse operator
DlonT

xT

Assume u is the antiderivative of 2w-periodic function w. That is

u() = D w(x) = / " w(y)dy.



Assume moreover that w has mean zero:

1 27
wy = w(0) = %/0 w(z)dr = 0.

Then w is also 27 periodic function and we have the following relation between the
Fourier series of D, u and w:

with w,, = inu,, for n # 0 .

All the observations above imply that in order for D 'w = u to exist w should have
mean Zzero.

Let k be a positive integer. The Homogenous Sobolev Space H *(T), the subspace
of Sobolev space H*(T), is defined by

H*(T) = {u: u e H*(T); 4(0) = up = 0}.
This time norm is defined by
2k 2
lull gy = S
n#0

since uy = 0.

Lemma 1.2.1 Let w € Hk(']I‘) and D;'w = u as above. Then

1D 0l gy S ol pos gy < Nl

H¥(T)
2. ||D wl | ery < 2k/2||D;1w||Hk(T)
8D wl| e ery < Cllw]|gs-1(r)-
Proof: Firstly, note that
1 . 2k 2 2k| "l| 2

and n?* <1+ n%* < (1+ n?)*. Hence

[e.9]

[0l gy = Do Plwal? < 37 (1 0 o = [l .

n#0 n=—00



We also have

1D 0l = Y (1+n®)! Dy lwl”

n=—oo

Wy,
=D (L+n?)f =P

m
n#0

=S| () (o)t ()] e
o 1 2 k mn

< Z 2kn2k‘@‘2
e n

_ oki=1,,(|2
= 2Dl
Combining the above estimates, we obtain part 3 where C' = 2%/2, O

Note that The Homogenous Sobolev Spaces can also be defined for all real numbers
s > 0. Thus all the inequalities above are also valid for real numbers s > 0.

In the rest of the thesis we will use ||.||,]].||s and ||.||; for the L2, H* and H* norms
respectively and C' is a generic constant.

1.3 Commutator estimates

The commutator of two operators K and L is defined as [K,L] = KL — LK. In this
section, we present some commutator estimates listed from [19] for the completeness
of the work.

Proposition 1.3.2 Let gy > 1/2, s >0 and A* = (1 —D?)*/2. If —gqo <r < qo+1—s
and w € H ' then for all g € w € H™ ™1 one has

A%, wlglly < Cllwllgo1llgllrrs-1-
1. Assume ¢g = s > 1/2. Then —s < r <1 and

o [[[A% wlgl| < Cllw]|ssallgl]s
o [[[A% wlglly < Cllwl]ssallgl]s-

2. Assume s > 3/2 and g =s—1>1/2. Then —(s — 1) <7 <0 and
o [[[A% wlgll < Cllwl|as|lglls-1-
Lemma 1.3.3 Assume u and h are smooth enough, then

1. (hA*ug, Au) = =5 (heA*u, A'u),



2. (A*(hug), A*u) = ([A®, hlug, A*u) — 3 (hA*u, A*u).
Proof: Using the fact that the operator D, is skew-symmetric, we obtain
(h\°ug, N*u) = (hA°u, N°uy) = — (D, (hA%u), A°u)
= —(hN°u, A°u) — (hA°uy, Au).

Thus 2(hA%u,, Au) = —(h,A%u, A®u) and the result follows.
Note also that
(A% (hug), N*u) = ([A®, hlug, A*u) + (hA u,, A*u)
— ([A®, Blug, A — %(hw/\su, Atu)

where we use part 1 for the second term. O
1.4 Asymptotic expansion

In this section, we want to summarize some results about asymptotic expansions. We
mainly refer to |13], [18] and [30] for the definitions, examples and notations.

Let R be a set. The sequence of functions {¢,} is called an asymptotic sequence

for x — x¢ in R if for each n, ¢, is defined in R and ¢, 11 = o(¢,) as x — xy. In other
words,

1i_>m [(Ont1(2)/Pn(x))] =0 Vn=0,1,2..

For example {¢,}(z) = 2™ is an asymptotic sequence for x — 0.

The series Zi:]:o a,¢n(x) is said to be asymptotic expansion of f(x) if

Z@n¢n +o(on) asx — xp.
It is usually written
N
~ Zangbn as T — . (1.2)
n=0

Following example illustrates that an asymptotic expansion of a function can be dif-
ferent from its Taylor expansion.



Example 1.4.1 Let ¢ be an arbitrary constant. Then

1
1—+ce Ve 4ot a?+ ... as x — 0"

since e~Y/* = o(z™). However,

1
1——|—ce Ve Ll b o4+ ... as x — 0T,

Following example demonstrates a useful property of asymptotic expansions.

Example 1.4.2 Consider the error function erf(z) : R — R defined by

1 [* e
erf(x) = 2—/ e Udt.
T Jo

Its power series expansion

erf(r) = — {1:—-%;-+...+-E%i;%;;51x2”+1—%.“.}

obtained by integrating the power series expansion of e s convergent for every x € R.
For large values of x, however, the convergence is very slow for the Taylor series of
the error function at x = 0. Instead, we can use the following divergent asymptotic
expansion to obtain accurate approximations of erf(x) for large x:

S2n—1)! 1
om $n+l

erf( n+1

0

1s divergent as x — oo. For example, when x = 3, we need 31 terms in the Taylor
series at x = 0 to approzimate erf(3) to an accuracy of 107> , whereas we only need 2
terms in the asymptotic expansion.



Chapter 2

Asymptotic Derivations

In the literature, there are many work on asymptotic approximations to the Euler

equation. One of the most typical model equation is the Camassa-Holm equation
(CH) which is given by

Uy + K1V¢ + 300 — Vggr = Ka(20eUge + VUgge) (2.1)

derived for the unidirectional propagation of long water waves in the context of a
shallow water approximation to the Euler equation [6]. Also, the CH equation has
been derived as long wave limit of the Improved Boussinesq equation (IBq) over a long
time scale in [10]. In the present chapter, we consider the problem within the scope of
elasticity as in [10] and give the class of Bg-type equations from which the CH equation
can be formally derived.

2.1 Derivation of the Camassa-Holm equation from the Double
Dispersion equation

We consider the Double Dispersive equation (DD)
Ut — Ugy + QU — bu:ﬂ:ctt - <u2)xa:7 (22)

where u(z,t) is a real-valued function, the subscripts x and ¢ denote partial differen-
tiations and a and b are positive constants. Now, we will provide formal derivation
of the CH equation from the DD equation in the long wave limit. In other words, we
are going to show that right-going, small-but-finite amplitude, long wave solutions of
DD equation satisfy CH equation asymptotically. For this purpose, we introduce the
scaling transformation

u(x,t) = eU(0(x —t),0t) = eU(Y,S)

where € and § are positive small parameters measuring the effects of nonlinearity and
dispersion, respectively. Then we are going to plug this solution into (2.2]). We first

9



find all the derivatives appearing there as follows:

u = [—Uy + Ug]
uy = €6 [Uyy — 2Uys + Uss]
Diu=ed'Uy for i=1,2,34
Ugat = €0° [~Uyyy + Uyys]
Ugarr = €6” [Uyyyy — 2Uyyys + Uyyss]
(0)e = €0°(U?)yy.
Now we plug them all in equation to obtain
Uss — 2Uys + 6% [(a — b)Uyyyy + 2bUyyys — bUyyss] = e(U%)yy. (2.3)
Our aim is to seek asymptotic solution of in the form
U(Y,S;€,0) = Up(Y,S) + Uy (Y, S) + 82Us(Y, S) + e62Us(Y, S) + O(e%,6%).  (2.4)

We note that only even powers of § appear in this form since there are only even order
spatial derivatives in the DD equation.

We plug (2.4) in (2.3)). Then we obtain

Uoss — 2Usys + 0% ((a — b)Usyyyy + 2bUoyyys — bUoyyss)
+e [Uiss — 2Urys 4 0% ((a — b)Uryyyy + 2bU1yyys — bUryyss)]
+0% [Usss — 2Usys + 6 ((a — b)Usyyyy + 2bUsyyys — bUsyyss)]
€6? [Usss — 2Usys + 0° ((a — b)Usyyyy + 20Uayyys — bUsyyss))
—e [Us + €U7 + 6'U3 + €6'U5]
—2€ [eUgUy + 6°UgUs + €6°UyUs + €6°U Us + €26° Uy Us + €6*UnUs)] y + ... = 0.

We can rewrite the equation at all orders in the following way:

O1): Usss — 2Upys = 0 (2.5)

O(e): Ugs —2Urys — (U3)yy =0 (2.6)

O(8%) 1 (a—b)Usyyyy + 2bUsyyys — bUoyyss + Uzss — 2Uays = 0 (2.7)
O(e6®) = (a—b)Uyyyy + 2bU1yyys — bUryyss + Usss — 2Usys — 2(UgUs)yy = 0.

(2.8)

Now, we are going to solve these equations iteratively and find U; for ¢ = 1,2,3. We
assume that all unknowns U; and their derivatives decay to zero as |Y| tends to infinity.

10



Equation implies (Dg — 2Dy )Ups = 0. Then
Ups = 0 and Uy = Up(Y). (2.9)
If we rewrite equation ([2.6]), we get
(Ds — 2Dy)Uis — (U)yy = 0. (2.10)
Using Uy = Up(Y), we differentiate with respect to S to obtain
(Ds —2Dy)Uss = 0,

which implies that
UlSS =0 and Ulg = Uls(Y). (2.11)

From equation ([2.10)) and (2.11)) we have —2U;sy = (UZ)yy. This implies

1
Ups = —E(Ug)y. (2.12)

Rewriting equation (2.7)), we get

(Dg — 2Dy )Uss + (a — b)Upyyyy + 20Usyyys — bUpyyss = 0.

By (2.9), we have
(DS — 2Dy)UQS + (CL — b)onyyy =0. (213)

Now we differentiate this equation with respect to S and use (2.9)) to obtain

(Ds — 2Dy )Usss =0

and
UQSS =0 and UQS = Ugs(Y). (2.14)
From equation (2.13)) and (2.14) we have —2Usgy + (a — b)Upyyyy = 0 and
a—2>
Uss = ( 5 >U0YYY- (2.15)

We rewrite equation (|2.8)), we get
(Ds —2Dy)Uss + (a — b)Uryyyy + 2bUryyys — bUiyyss — 2(UoUs)yy = 0.
Using , latter equation reduces to
(Ds = 2Dy)Uss + (a — b)Uryyyy + 2bUryyys — 2(UpUs)yy = 0. (2.16)
We differentiate equation (2.16|) with respect to S and use to get
(Ds — 2Dy )Usss + (a — b)Uryyyys — 2(UpUs)yys = 0. (2.17)

If we differentiate equation (2.17)) with respect to S once again and use (2.11)), we
obtain
(DS — 2Dy)U3555 — 2(U0U2)YYSS = 0.
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However,
(UoUs)yyss = (UpsUz + UgUss)yys = (UoUss)yys = (UosUss + UpUsss)yy =0
by (2.9) and (2.14). Then it follows that
(Ds — 2Dy )Usgss = 0.

Therefore,
Ussss = 0 and Usss = Usgs(Y).

Then equation (2.17)) reduces to
—2Usssy + (a — b)Uryyyys — 2(UgUs)yys = 0

and ( b)
CI/ _
Usss = 5 Uivyys — (UoUs)ys. (2.18)
However,
(UoUz)ys = (Uoy Uz 4 UUsy ) 5
= (UoysUz + Upy Uss + UpsUsy + UgUsy )
= (UoyUss + UpUsys)
= (UoUss)y
From ([2.12)) and (2.15)), equation ([2.18)) becomes
a—>b a—>b
Usss = —( 1 >(U3)YYYY — ( 5 )(UOUOYYY>Y~ (2.19)
We now plug equation (2.19) in equation (2.16]), and solve for Ussy and obtain that
a—>b a—>b
Ussy = _{ 3 )<U§)YYYY _{ 1 >(UOU0YYY)Y
(a —b)
+ 5 Uivyyy + bUryyys — (UoUs)yy-. (2.20)
Integrating equation ([2.20]) we get
a—>b a—>b a—>b
Uss = —( 3 >(U§)yyy — ( 1 )(UOUOYYY) + ( 5 )Un/yy + bUryys — (UpgUs)y.

(2.21)
Finally we insert all results (2.9)),(2.12)),(2.15]),and (2.21)) in equation (2.4)) and obtain

Ug =Uyps + €Urs + 52U25 + 652U35 + 0(62, 54)
(a—1b)

—0— %(U@y + Dy
res? [0y - D it
e {W vy 4 b0y - <U0U2>y}
+ O(€*, 6%). (2.22)
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On the other hand,
1
5
(UoUsy )yy = 3Uoy Upyy + UoUpyyy

Us)y = Ugloy

(UoUs)y = Upy Uz + UgUsy

UlS = _UOUOY-

If we plug all these in (2.22), we get

Us = —eUpUoy + MUOYYY

e {— M0 Uy T i~ 0 Uoonyy}
+e6? {(“ Oy — By )y — Uny Us — UOUQY} +0(e,5%)

= —eUoUoy + @UOYYY
+e0? [_3(a4— ) Uoy Uoyy — (@ ; ) UoUbyyy + (a ; ) UlYYY:|
+€0? [~ Uy Uy — UgUsy — 3bUgy Ugyy — bUgUgyyy] + O(€2,6%)

= —eUoUoy + @UOYYY
+e0? {_MUOYUOYY G ;_ ) UoUoyyy + (a ; ) UlYYY:|
+€6% [~Uopy Uy — UpUsy] + O(€2, 6%)

= —eUoUoy + @UOYYY
+e0? {_MUOYUOYY G ;_ ) UoUoyyy + (a ; ) UlYYY:|
+e0? [~ Ugy Us — UgUsy | + O(€2, 5%).

We observe the following
UUy | Upy eUyy 82Usy €62Usy

Us UoUpy eUgUry 2UUyy  €62UgUsy
eU; eU Uyy U Uy e0?U Usy  €26°U Usy
62Uy | 82UsUpy  €0’UsUry 0 UxUsy  €6*UsUsy
€0?Us | €0?UsUogy  €20%UsUry  €63UsUsy  €263UsUsy

13
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Multiplying UUy by € requires multiplication of each entry by e individually. At
O(€%, %), all the entries above become

eUUy | Uy Uy  02Usy €0%Usy

el eUoUpy 0 €d’UgUsyy 0

e2U, 0 0 0 0

€0’Us | €0?UsUpy 0 0 0

€26%U3 | 0 0 0 0
Thus,

eUUy = eUgUyy + €d? [UOUQY + UQon] + O(EQ, 54)

On the other hand,

52 52
EUYYY = 5 [Uo + €Uy + 0°Us + 652U3} VYY
(52

Y [Uoyvy + eUryyy] + O(€%,6%).

Similar argument gives that
E(SQUyUyy = €§2U0yony
G(SZUUYYY = 6(52U0U0yyy.

Now we rewrite equation ([2.23)) as

% (a—b
0 = Us + eUoUoy + €6” [Uoy U + UpUsy] — % Uoyyy + €Uryyy]
52
+ ET [(361 + 9b)UvOYUvOYY + 2(@ + b)Uoonyy] + 0(62, 54)

5%(a — b) €6>

=Ug+eUUy — 5 Uyyy + T [(3a+9b)UyUyy +2(CL+b)UUyyy] .

Remark 2.1.1 Solution of (2.2)) of the form (2.4)) satisfies

6%(a — b) €6>

Ug+ eUUy — 5 Uyyy + T [(3& + 9b)UyUyy + 2(& + b)UUyyy] =0 (2.24)

asymptotically.
Note that we require Uy, Uygg terms in the equation (2.24)) in the corresponding coordi-

nate system. On the other hand, we need scaled free form of this equation and we need
right coefficients of the terms and correct ratio for UyUyy and UUyyy as in equation

2.1).
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Step 1 We let X = mY + nS and T = rS where m,n,r are positive constants to
obtain the term Uy. Then

UlY,S)=V(mY +nS,rS)=V(X,T)
Us =VxXg+ ViTg =nVx +1rVp
DLUDLU = m™ DLV D% V.
In other words, whenever we take derivative with respect to Y we gain m as a product.

We plug all these in (2.24)), then

5%(a — b)

’I”VT + nVX + emVVX — mSVXXX

ed*m?

+ [(3@ + 9b>VXVXX + 2(@ + b)VVXX)(] =0. (225)

Step 2 Now, we need Vyrxx term in the equation. At level O(1), equation ({2.25))
becomes rVr +nVy + emVVy = 0. We solve for Vx and differentiate with respect to
X twice to obtain

Vi = =2Vr = TV Vx + O, e?)
Vixx = = Vixx = —(VVi)xx + 08, e8”). (2.26)
We plug in and keep the terms up to O(62, €6?),
Vi +nVx +emVVy + Mm?’ %VTXX + %(VVX)XX]
€d*m?

+

[(3@ + 9b)VXVXX + 2(@ -+ b)VVXX)(] =0. (227)
However,

(VVX)XX = (V)% + VVXX)X =2VxVxx + VxVxx + VVxxx = 3VxVxx + VVxxx.
We plug this in (2.27)) and divide by 7 to obtain

Pm(a — b
Vet v+ Dy 4 Sm@ by
r r 2n
6?m3 —b b
L &m [(S(a ym N (3a+9 )) VXVXX]
2r n 2
2,,3 —b
+ 652;” K(a p LN b) VVXXX] —0. (2.28)

Step 3 We need parameters-free form of (2.28). We let v =€V, X = ¢, and T' = 7.
Then we multiply equation (2.28) by €d to get

3(a — b
SVt 6™V + 26V 4 et 0)
r r 2n

L opm [(3(a—b)m+ (3a—|—9b)> VXVXX}

Vrxx

2r n 2

2r n

+ 6253@ KM +a+ b) VVXXX} =0. (2.29)
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However, we have

v=€eV(X,T) = eV (6, 0T)
vy = edVrp
Ve = E(SVX.

Note that we gain € from nonlinearity and ¢ as a product from each derivative. If we
plug all these in (2.29), we obtain

Pt P m3(a —b)
Uy + —Ug + —Vvg + ——— 0,
r 3 r 3 m 133

m? [(3(a—b)m (3a + 9b)

(a —b)m
+ ? " + 5 > VeUge + <T +a+b VVgee | = 0. (2.30)

Step 4 Now, we need to determine the coefficients in equation (2.30). Sign of v,¢
should be negative. This requires that b > a > 0. Moreover, we have to choose m,n,r
so that the following hold.

m
— = 2.31
=3 (2.31)
m3(a — b)
=—1 2.32
o (2.32)
—b b —b
3(a—bm 3a+9 _ ((a ym o b) . (2.33)
n 2 n
From ([2.33)), we get
(b—a)m  3a+9b 5b —a
. 0 vy = 2 (2.31)
which is £
m —a
. . 2.
n  2(b-—a) (2:35)
Conditions (2.32)) and (2.34) imply
(b—aym 2  bb—a 9 4
" — 5 and m - (2.36)
Moreover ([2.31)) and (2.36]) imply
n o nm n  6(b—a)
o p— — _— = 2.
roomr 3m 50 —a (2:37)
m®  m? 3 6
L ) 2.
2r 21 2"  Bbh—a (2.38)

From ([2.35) we have

3(a ;b)m | (30 ; 9%) _ 3(a ;(2)552)— a) , (3a ‘2* ) b (2.39)
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If we plug (2.31),(2.32)), (2.37)),(2.38)) and (2.39) in equation (2.30)), we get

6(b—a) 6 3(a— D)

Uy + T + 30Ve — Vrge + 5 a 3(a — b)vevee + 5 Ve | = 0
which is equivalent to
6(b — 9(b —
Vr + 5(b — Z> U{ + 3’0215 — UT& — éb — Z) (21051}& + UUggg) . (240)

Remark 2.1.2 Equation (2.40) is of CH-type with

6(b—a) ~9(b—a)
B—a’ 2T Bb—a

K1 =

if and only if b > a.

Step 5 We want to find the coordinate transformation between (¢,7) and (z,t) as
follows: We know that v = v(§, 7). On the other hand we have

X =6, Y=946@&—-t), S=dt
Therefore
X =mY +nS
06 =mo(x —t) + not
§:m(x—t)+nt:m(m— (1—ﬁ>t)

m
T=rS
OT = 1ot
T=1t

_ 2
So we need m, 1— 2, and r. We observe that m = Nt Then

_ﬁ_Bb—i—a
m  5b—a
m 2
===
3 3vob—a
All these imply that
2 3b+a 2
— T — t ; T = —1 2.41
¢ \/5b—a< 5b—a) 3vHb—a ( )

., 2 2(3b+a) 2
v(&,7) = (\/m (5b—a)\/5b—a’3\/5b—at>
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2

Uy = 0
Vbb—a ¢
.- 2(3b+a) et 2 ,
' (50 — a)v/bb —a T 3Bb—a
4
Vze = 5b — aU&
Vpzz = 8 v
(5 —a)VBb—a s
o 2(3b+ a) 4 beee 4 2 4
T (5b—a)y/Bb —adb—a T 3\/Fb—abb—a
4 (_ 2(3b+a) beee 4 2 ; )
" Bb—a\ (Bb—a)Vib—a = 3v5b—a )
Now,
Vbb—a
Ve = 5 (0
2 2(3b+ a)
—FU; =V t+ Vg
3vbb—a (5b — a)v/bb —a
. 2(3b+a) Vhb—a
o (5b—a)V/bb—a 2 ‘
. 30 + a
T sb—a "
Then
3v5b—a 3vhb—a3b+a
Vy = Vs + Uy
2 2 50 —a
Moreover
5b—av . 2B3b+a) Ve & 2 )
4 T Bhb—a)Eb—a o 3vEb—a
We solve for v, ¢:
3vbb—a 5b — 2(3b+ a) )
T€E = T~ 3v5b — TT
vrée 2 ( Ty u (56— a)VBb—a
9 _ _
_3vhb—a 5b <3m Utxar (3b+a)  (Bb—a)vbb avxm)
(50 — a)v/5b —a 8
_ 3\/5;) —a (3m5b — avtm 361— avmx) '
We put everything in m ) to obtain
3vbb —a 3\/5b—a3b+a 6(b—a)vbb—a V5b—a
Ut Uy T + 3v Vg
2 2 50 —a 50 —a 2 2
_ 3—°5§_ (3\/5[) _ a5b — aUtm ?ﬂ%%m)

9(b—a) (bb — a)v/5b —a

(2.42)

(20,V0 + VVzgy) -

B 50 —a 8
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We simplify the coefficient of v, as

3vbhb—a3b+a 6(b—a)vbb—a 3vdb—a (3b+a 2(b—a) 3vbb —a
+ = + ="
2 5b—a  Sb—a 2 2 5b—a  BSb—a 2

We divide equation ([2.42)) by 3—V52b_“ to get

b— b b—
L avtmc - %Uxmc = w (27}17’0901 -+ U'Uxm;) . (243)

Vg + Uy + VU, —

Thus, we obtain the following result.

Corollary 2.1.1 Solutions of the form (2.4) of the DD equation (2.2) with b > a
satisfy CH equation (2.43) asymptotically.

2.1.1 The case of the Improved Boussinesq equation

We consider the Improved Boussinesq equation (IBq) given as
Ut — Ugg — Uttzx = <u2)gm: (244)

Note that ([2.44) is not DD-type since a = 0,b = 1, yet the approximation above
holds. Thus the right going solutions of equation ([2.44)) satisfy the CH equation (2.43))
asymptotically. This coincides with the result obtained in [10].

2.1.2 The case of the Bad Boussinesq equation

We consider the Bad Boussinesq equation (Bad Bq) given as
Utt — Ugy — Uggaax = (u2):cx (245)

This equation is not DD-type equation for a = —1,b = 0. However, asymptotic
expansion holds also here. Thus, the right going solutions of (2.45]) of the form (2.4))
satisfy CH equation asymptotically.
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2.1.3 The case of the Good Boussinesq equation

We consider Good Boussinesq equation (Good Bq) given as
Ut — Uy + Uggze = (UQ)x:v (246)

This is the special case of the DD equation since a = 1,b = 0. Solutions of ([2.46) of
the form (2.4) satisfy

n n n m n m3
v —v —v —,
T 13 r 13 m 139

m3 3m 3 m
+ 5 |:(7 + 5) Ugvgg + (g + 1 -+ 0) UU&&} = 0 (247)

However, this is not a CH like equation since the sign of v,¢ is positive. Thus we
conclude that right-going solutions of the Good Bq equation do not satisfy any CH
equation.

Remark 2.1.3 We will call the Double Dispersion equation with b > a > 0 as “Im-
proved Boussinesq-like DD equation”.

2.2 Derivation of the Benjamin-Bona-Mahony and Korteweg-De Vries
equations

Now we can provide a result for lower order approximations:

Corollary 2.2.2 Right-going solutions of the DD equation with b > a > 0 satisfy the
KdV equation.

Proof: We consider asymptotic solution of (2.3) in the form

U(Y, S;€,0) = Up(Y,S) + €Uy (Y, S) + 82Uy (Y, S) + O(e, €62, 6%). (2.48)
Then equation (|2.24)) reduces to
5%(b —
Us + eUUy + %UWY = 0. (2.49)

We use the same coordinate transformations in step 1, step 3 and step 5 and (2.25))
becomes

52(b

Vi + —Vy + e~V + 2—_‘%3%{” — 0. (2.50)
T r T
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Letting v = €V, X = £, and T = 07 we get
(b—a)

n m
Uy + ;Ug + ?UUE + mgvggg =0. (251)

This is the KdV equation. Thus we conclude that the right-going solutions of the DD
equation of the form (2.48) satisfies the KAV equation (2.51]) asymptotically. O

Corollary 2.2.3 The right-going solutions of the DD equation with b > a > 0 satisfy
the BBM equation asymptotically.

Proof: At the order O(1), equation (2.50) becomes rVr+nVyx = 0. However, we need
the term Vyxx. So we solve for Vx and differentiate with respect to X twice to obtain

Vy = —%VT + O(e, 8%, e6?)
Vxxx = _£VTXX + O(e, 6%, €6%). (2.52)
HOWGVGI‘, VXXX = _%VTXX at O(l) . Then

52 bh— 3
Vet vy My = S0 amt, (2.53)
T T 2 n
Afterwards we use the same coordinate transformations in step 1, step 3 and step 5
and we obtain the BBM equation:

5b — 30
Up + Uy + VU — Tavta:x — #vxxx =0. (254)

|

Corollary 2.2.4 1. The right-going solutions of the Improved Boussinesq equation
satisfy the BBM equation asymptotically:

3 5
Vy + Uy + VU, — Vi + 7 Ve = 0. (2.55)

2. The right-going solutions of the Bad Bq equation satisfy the BBM equation asymp-

totically:

1 1
vy 4+ v, + vu, + 7 Vtee = Vs = 0. (2.56)
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Chapter 3

The Camassa-Holm equation as the long-wave limit of the Dou-
ble Dispersion equation

3.1 Problem setting

We consider following Cauchy problems for the Double Dispersion equation and the
Camassa-Holm equation in scaled forms respectively in the same coordinate system:

Ug — Ugy + A6 Uggzy — D0 Ugpyr — €(U*) e = 0 reR,t>0 (3.1)
w(z,0) =up(x), w(x,0)=u(z) z€R (3.2)
— 3b 3
Wy + W, + eww, — aézwtm _ bt a52wmz = Z(b — )e0? (2WpWay + WWayy)
(3.3)
w(x,0) =we(x), x€R, t>0 (3.4)

where b > a > 0, ¢ > 0 measures nonlinearity and ¢ > 0 dispersive effects. We will
show that solutions of CH equations are well approximated by solutions of DD equation
with b > a > 0 over a long time scale. In other words, we are going to show that it is
always possible to find a solution of whenever we are given the solution of

that remains close to it over a long time:

Theorem 3.1.1 Let wy € H*™%(R), s > 3/2 and suppose w° is the solution of Cauchy
problem (3.3)-(3.4). Then there exists T > 0 and & < 1 such that the solution u®’ of
the Cauchy problem (3.1))-(3.2)) with the same initial values

uo(x) = wo(z)  w(x) = w(x,0)
and b > a > 0 that satisfy

[lu(t) = w (B)]]s < C(e* + 8%t
for allt € [0,%] and all 0 < e < § <.
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There is a general methodology that is used to compare the solutions of the model
equation and parent equation in the literature [25], [2] and [11]. Firstly, we show that
model equation is derived from parent equation asymptotically. Secondly, we need
existence-uniqueness results for Cauchy problems for both equations. In addition to
that, solutions of the model equation should be uniformly bounded over a long time
for the estimation of the residual term coming from the approximation. Lastly, using
energy methods, we show that difference between solutions of the parent and model
equations remain small in some appropriate function spaces on a relevant time interval.
One can also use the scaled-free form of the equations above. However, scaled forms are
more appropriate to deal with long waves with small amplitude. Note that derivation
part of the methodology has already been discussed in the previous chapter.

There are many work on well-posedness of the Cauchy problem for the Double Dis-
persion equation. One of them is stated in [28]. The researchers in 1] also obtained
well-posedness of the solutions of the Cauchy problem for a generalized form of the
Double Dispersion equation.

On the other hand, there are many work on wellposedness of Cauchy problem for dif-
ferent forms of Camassa-Holm equation in both perodic and non-periodic cases. Most
of them are on Cauchy problem for (2.1)) with x; = 0. In 1997, Constantin [3] showed
the local well-posedness in the Sobolev spaces H*(T) for s > 4. Then, Constantin and
Escher [5] improved the result in 1998 with s > 3. Then, Danchin [8] considered the
same problem with initial conditions in Besov spaces in 2001. In 2002, Misiolek [23]
proved local well-posedness in the space of continuously differentiable functions again
in periodic setting by viewing the equation as an ODE in a Banach space using the
geometric interpretation. On the other hand, Li and Olver [21] obtained results for
s > 3/2 in non-periodic setting using regularization technique in 2000. Then, in 2001,
Rodriguez-Blanco obtained the same result by using Kato semigroup theory for the
quasilinear differential equations [24]. In 2016, Lee and Preston [20] obtained well-
posedness results in the space of continuously differentiable functions by using group
diffeomorphisms.

The equation involves the term w,,,. Besides this, we will need uniform bounds
for the solutions of Cauchy problem for on the real line. For that reason, we
consider the work (Proposition 4 in [6]) on well-posedness of the Cauchy problem for a
more generalized form of the Camassa-Holm equation which covers as well. It not
only provides existence-uniqueness results but also provides information about uniform
bounds of the solutions. As in [11], we will use rephrased form of the result to adapt
it to our problem:

Theorem 3.1.2 (Corollary 1 in [11]) Let wy € H*"*(R), s > 1/2, k > 1. Then
there exists T' > 0, C' > 0 and a unique family of solutions

T T
w’ el ([o, z],H”’“(R)) nc! ([0, z],IW’H(R))
to (3.3) with the initial value w(z,0) = wo(z), satisfying

1w @)l ssr + Jwr” (Ollssp-1 < C,

forall0<e<o6<1 anth[O,%].
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In the next section, we are going to concentrate on the remaining steps of the method-
ology.

3.2 Energy for the Double Dispersion Equation

In other to make the rest of the steps more clear, we are going to first consider
Tt — Tag + A0 gppe — b0 Tupy — €(1? 4 207 ) e = —F, (3.5)
r(z,0) =0, 7r(z,0)=q(x), (3.6)
where r,w € C([0,T], H**Y(R)) N CY([0,T], H*(R)), F € C([0,T], H*(R)) for s > 3/2.
We are going to find the energy for equation and an estimate for it. Note that

r¢(z,0) is derivative of some function and nonhomogenous part of (3.5)) is of the form
F,. Then we can take r = p, for some function p(z,t) and equation (3.5)) becomes

pttac — Przx + a52px$zx:v - b52pacacactt - 6((T2 + 2wr)pac)acac - _F:c (37)

We integrate over x
Pit — Pxx + a52pxz:m - b52p:c:ctt - 6(T2 + 211}7’):5 - _F- (38)
We multiply (3.8) by A®p; and integrate the equation over R:
<As/2pt7 AS/2 (Ptt — Pz + a62pzmxw - b52pxxtt)> - €<AS/2M; AS/2 (Tz + 2wr>m>
_ _<As/2pt7 As/2F>
Now we use integration by parts to obtain
<AS/2pt7 AS/zptt> + <AS/2IOtma AS/QP:c> + CL52 <As/2pt:c;m AS/2pa::z:> + b52<A5/2pt$7 AS/2/0;ttt>

+ (N2 ppy, NP2 (1% + 2wr)) = —(A?p,, A2 F).

Use the fact that p, = r to get

<AS/2pt7 AS/tht> + <AS/2rt7 AS/2T> + a(SQ <AS/2TtCC7 AS/2T$> + b62<AS/2rt7 AS/2rtt>

+ €<As/2Tt,AS/2(T2 + 2w7“)> _ —<As/2pt,As/2F>.

Finally we have

| =

(loe O + N (D112 + ad®|[ra (0] 12 + b0%[[re(2)][2)

N | —
QL

t
Fe(A5(r® 4 2wr) (), Ay (t)) + (ASF(t), A*py(t)) = 0. (3.9)
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Thus, we define the modified energy as follows:
E{(t) = 5 (eIl + [ @11 + ad®|[ra@)[17 + 00%|Ir:(£)]]7)

(As(r + 2wr)(t), A°r(t)). (3.10)

er—k

(o) I

3.3 Energy Estimate for the Double Dispersion Equation

Lemma 3.3.3 Assume s > 3/2 and r,w € C([0,T], H*(R)). Let [[r(t)||s < 1 for
0<t<Tande< , then the energy (3.10) for the Cauchy problem

1
2 sup (1+2[lw(t)]]s)
0<t<T

- 1s equivalent to
Ey(t) = [|pe()|]s + |[r(t)]]s + Vad| [ra(t)]]s + VB3| re(t)|s

for0<t<T.
Proof: Note that

[(A*(r® + 2wr) (2), Ar ()] < [[r(@)][2+ 2w @]l lrOF < (1 + 2l Ol @OIf2

Then
eI + ()13 + ad®[lre (O] + 0% [ ()][) — %W(TQ + 2wr)(t), A°r(t))

1
> 5 (
> <% - goitf (1 + 2fw(t )Hs)> (oS + (O] + ad®|[ra (@)]1S + b0*[[re(B)]]3) -

Since € < we have

2 sup (14+2[lw(®)ls)’
0<t<T

EZ(t) = 7 (@IS + I @1F + ad®[Ira(@I]3 + b0% [ (1)]]7) -

MH

o112 + 1Ir (I3 + ad®[[ra (0)II7 + 08%|Ir(1)]12) + %(AS(T’2 + 2wr)(t), Ar(t))

(
(% + e sup (1+2w(t )||s)) (loe @12 + [ OII2 + ad®|[ra(O)I]Z + b3*[|r(£)]]2)
|

< llpe()IIZ + IIT(t)Ili +ad®| [ (1)] 12 + b0%[[re(B)][3-

Taking square roots of the expressions we complete the proof. O
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Lemma 3.3.4 Assume s > 3/2 and r,w € C([0,T], H*(R)) N C'([0,T], H*(R)) and
F e C(0,T), H*(R)). Let|lrt)||ls <1 fort <T and e < , then there

1
2 sup_ (12[w(®)]s)
0<t<

exists some C such that the energy (3.10|) for the Cauchy Problem (13.5))-(3.6]) satisfies

0<t<T

()<C< ()+tsupHF()Hs>

for0<t<T <Tle.
Proof: We differentiate the energy defined in ((3.10)):

d
L) =N p, A py) - (A2, APr) 4 0N g, A2 4 b0 (A7, A Pry)
+ dtQ(AS(T + 2wr), A°r).
We eliminate the term p;; by using (3.8]) as follows
d

EEE( ) <AS/2pt7 AS/Q (pm& _ a'52pxxac:c + b(szpoc:ctt + E(rz + 2’LUT)$ - F)>

+ (NP, NPr) 4 ad® (N Pryg, NPry) + 06% (N Pry, A% Pry,)

dt 2(/\5(7“ + 2wr), A°r)

=— (AS/Qrt, AS/2T> — a52<AS/2rm, As/Qrz) — b52<A5/27“t, AS/Qrtt)
o+ (NPry, NPr) + ad® (N Pry, APry) + 06° (NP1, A Pry)

— e(A*(r* + 2wr), A*r,) — (N°F, A°p,) + %%(AS(TQ + 2wr), A°r)

(jt;(/\s(r 4 2wr), A1) — e(A%(r® 4 2wr), A®r,) — (ASF, A*p,)
jt —(N572), ASr) 4 e(ASwr, A°r) | — e(A*(r® + 2wr), A°r,) — (ASF, A®p,)

:§<Asr2, A7)y + e(NSwr, A1)y — e(A5(r® + 2wr), A®ry) — (ASF, A¥p,).
Thus we obtain that
%EQ( t) =e(Arry, A°r) + %(ASTQ, A°ry) + e(A°(wr)y, A°r)y + e(Awr, A°ry)
— (AT A1) — 2e(ASwr, A°ry) — (A°F, A®p,)
=e(N°rry, N°r) — %(ASTQ,ASTQ + e(A*(wr)y, A°r) — (N wr, A1) — (A°F, A°py)
=e(N°rry, A°r) — §<A5r2, A1) — e(Nwr, Ary)
+ e(Nwyr, A1) + (N wry, N°ry — (N F, N py).
Hence we get

[(Atwer, Ar)] < [fwel|oo| |72 < Hwells—a[AF|[* < Tl [A%F ]2 < ClIr][7 < CEZ()

[(AE, Ap)| < [[AF(Apul| = [[F]sllpel s < 1] Es(2)
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since s — 1 > 1/2. We observe that
(Nwry, A°r)y = ([A°, w]ry, A°r) — (wA®r, A°ry)
—(Nwr, N°ry) = —([A°, w]r, A°ry) + (wA®ry, A1)
and (wA®r, A*ry) = (wA®ry, A®r). Moreover,
(A%, wlre, A7) | < [l s] el [s-al [l < CEZ()
([A% wr, A*ry) = [(A[A®, w]r, A )|
< [lwllsllrllsllrells—1 < CEX(2)
by Proposition [I.3.2] On the other hand,
(N, ASr) = (A*7PA%r A5 rry)
= (A1 (1 — D2)r, A5 )
= (A AT ey — (A g, AN )

1
5 (Asrz, Ary) = <AS*1A2r2, A3*1Tt>

(A2 Ay — (A2 AT ) — (A5 g, A5,

We now find estimates for all of them in terms of ||r||s and ||r¢||s—1 using Proposition

Lo 2

(A A e | < lrllsallrrellse < Ol rells—y < ClrllE el |-
(A2, A | < 12 soallrells—a < ClIr[E]Irells-1

(A2, Al < lrllsallrells—s < Cllrallallrells—y < ClIlElIrel s

For the terms with r,, we see that
(N rr g, A5 ) = ([N e, A5 ) — (P AT, ASTy)
(N, ATy = — (AT ), AT ) A+ (P AT, AT )

and (rA* o, AS7lry) = (rA*7 e, A*r,, ). Moreover using commutator estimates in
Proposition [1.3.2| we get

A e, A7) | < sl sl ls—alrellsma < CllrlErells—s
(A e, A )| = (AN e, A7)

< Cllirllsllrells-1llraslls—2 < Clirlllrells-1-
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Thus,
IrlElrells—1 < Cllrllslirels-1 < CEZ(2)
since ||r||, < 1 for t < T and

[Iells—1 = Hpatlls—1 < Clllpells < Es(2).

We invoke Gronwall’s Lemma and all these calculations above imply that

CE2t) < CeB2(1) + sup || (1) E.)
£ < o (B0 + sl IO (- o))

1
< LB (0) + sup | F(1)~ (70— 1)

T <

IN

< C(E(0)+ tsup ||F()]],) for ¢ L
€

3.4 Residual term corresponding to Camassa-Holm approximation

Let w*® be the family of solutions for the Cauchy problem of the CH equation
with w(z,0) = wy(z) and u° be the family of solution of the Cauchy problem for DD
equation such that u(z,0) = w(z,0) = we(x) and u(z,0) = w(z,0) where we
dropped the indices for simplicity and w;(z,0) is function obtained from

3b+a 3(b—a)
4

w, =Q (—wx — eww, + 6(52(2wxwm + wwxm))

at t = 0 and it is a function in terms of wy where Q = (1 — 557_“52D3)_1.

Let r = w — w. Then r(z,0) = ry(x,0) = 0. We substitute the function r into
the equation ([2.2) and observe that

0 =ty — Upy + 0% Uppze — DI Upary — €(U?) 4o
=(r+w)y — (1 + W) + a0* (1 + W) gaze — bO* (1 4+ W) gore — €(r + w)2,
=Tt — Tog + 00 Tagze — b0 Togn
+ (Wit — W + A6 Wagy — b0 Waatr) — €(r® + 2wr) 4y — €(W?) 4.
Then we have Cauchy problem for function r
Tet — Tz + 00T gzze — D0 agy — €(r? 4 207 ) gy = — f (3.11)

r(xz,0) =0, 7r(x,0)=0, (3.12)
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where
f =Wy — Waa + a0°Wagze — DI Wy — €(W?)4a. (3.13)

We will show that f = F, for some F' € C([0,Z], H*(R)) under some reasonable con-
ditions.

We rewrite equation (3.3]) as follows

— 3bz_a52wxzm+g(b—a)€52<2wxw$$+wwm$m> (314)

We continue with inserting (3.14)) in (3.13):

f :<Dt - D.’,E)(wt + wx) + aézw:m:xx - b52wx:ctt - e(wQ):L‘a:
3b+a

52wta:;r +

Wi+ Wy = —€EWW,+

50 — a

3
8 Wy + 8 Wapw + Z(b - a)652(2wxwm + wwmx))

—(D; — D,) (—ewwx +

2 2 2
+CL5 Wyrzy — bé Wyxtt — €(U) )a:x

5b — 3b
=€ [(Dt - Dm)wwx + (wg)xx} + (Dt - Dx) ( 4 a52wt1‘x + I a52wzxx)

3
+ a0 Wapre — b Wygr — e(w2)m + (Dy — Dx)zl(b — a)e52(2w$wm + WWysy )

5b — 5b —
= —€ [(wwx)t - (wwx)a: + 2(wwx)x] + a52wtta:a: - 4 a52wt:caca:
3b 3b
2_ aéQU}thx - Z_ &52w$$$$ + a52wxxcm: - b52wzxtt
3
+ (Dy — D$>Z<b — )ed? (2WpWay + WWaay)
5b —
= — e [ww, + Wwy + Wew, + W] + ( . a b) 8 Witpr
3b+a bb—a 3b+a
+ ( 4 - 4 ) 52wtzzw + <a - 4 ) 62wxx:v:c
3
+ (D, — Dx)z(b — 0)€6* (2w Wap + WWapy)
—b —b 3(a—>b
=—¢ [wx(wt + w:v) + w<wx + wt)x] - - 52wttazx + - 9 (52wtxmc + (a4 >62wxazxx

+ (D — Dx)z(b — )ed? (2WpWay + WWaay)
—b —b
=—€ [w(wx + wt)]x + CLT(SQ (wtxxx + wxzxa:) + aT52 (w:cxxac - wttxx)
+ (D, - Dx)Z(b )68 (20 + Wiy
—b —b
= — D, [w(w, +w)] + %62D2(wm +wy) + GT(SQ [D2(D, — Dy)(w, + w)]
3
+ (Dy — DI)Z(b — )6 (2WpWep + WWapy)
—b
= — D, [wlw, + w,)] + aT52 [3D% — D2D,] [w, + w] (3.15)

+ (D — Dz)z(b — )ed? (2WpWay + WWaay).
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We continue by using (3.14)) one more time:
5b — 3b
f=—¢€D, [w (—ewwx + 1 a52wtm + 2— a52wxm)]

—eD, [w%(b — a)ed? (2WpWey + wwrm)}

+ 2l 300 - p2p)) (—eww + 2 P+ 2
4 4 4
a—>bg, 3 2 3 2
+ Td [3Dw — D:L,Dt] é_l(b — a)€6” (2W Wy + WWesy )
+ (D, - Dm)%(b )8 (2 + Wiy
52
= (W w,), — %Dm [(5b — a)wwyizy + (30 + @) WW,py]

3
—eD, wz(b — )ed? (2WpWay + WWaay)

b—a
+

€6’D, [3D2 — D, Dy)ww,]

b—a
16

a—>b

3
+ T52 [BDS; — Dth} Z(b — )e0? (2WpWay + WWyyy)

+ (D, - Dx)Z(b )68 (20 + Wiy

54 [(DiDt - 3D2) [(5b - a)wa:act + (3b + a)wzxacH

wd ed?

=eD?>— + —D, [(b —a)(3D2 — DD, )ww, — (5b — a)ww, — (3b+ a)wwxm]

3 4
3
—eD, wz(b — )ed? (2WpWay + WWaay)

h—
6a54 [(DiDt —3D3) [(5b — @)Wy + (30 + a)wme

—b 3
+ CLT52 [3D? — D2Dy] Z(b — )e0? (2WpWay + WWayy)

+ (D — Da:>§<b — 0)€6* (2WWar + Wy ).

Now we continue as
2 12 w® b—a 4 2 3
€6?

+ IDQC [(b —a)(3D? — D, D )ww, — (5b — a)wwz, — (3b+ a)wwzm}

3

+ 16252(a —b) D, [w(2WaWey + WWeyy )]
3

+ 1—6654(19 —a)? (DiDt — 3D2) (2w, Wep + WWepy)
3

+ 1—1652(1) —a)(Dy — D) (2w wey + Wyyy)-
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Now, we use the fact that D, (w2 + 2ww,,) = 2(2WWer + WWeee ).

3 b .
f—eD? (%) + D58 (02D, — 8D2) (56 — @) + (3 -+ ]
€6?

+ TD_,,; [(b —a)(3D? — DD, )ww, — (5b — a)ww, — (3b+ a)wwxm}

+ 26262@ ~b)D, [wD, (w? + 2ww,,)]

+ 3%6(54(17 —a)’D, (DZD; — 3D3) (w2 + 2ww,,)

+ 2652(5 —a)Dy(Dy — D,) (w3 4 2wwy,) - (3.16)
At O(ed?):
€d* 9
< De [2(b — a)(3D; — Dy) Dy (ww,) + 3(b — a)(Dy — D,) (w? + 2ww,,)]
€d?
+ TD:E [—(5b — a)wwizy — (3b 4 @) WW,yy]
2
:%Dw [2(b — a)(3D; — Dy)(w? 4+ wwy,) + 3(b — a)(Dy — Dy) (w4 2ww,,)]
€2
- TDx [—(5b — a)wwyzy — (3b 4 @) WWyyy]
€0> 9
:?DI (b — a)(3D, + Dy)w? + 4(b — a) Dy (wwy,)]
€d?
— TDI [(5b — a)wwizy + (3b + a)ww,y,]
2
:%DI [3(b— a)w,wyey + (b — a)wpwys + 2(b — a)wiwey + 2(b — @) wWw,e
€02
— TDI [(5b — a)wwizy + (3b + a)ww,y,]
52
:%DI [(—3b — a)w(wy + Wi)zz + (2b — 2a)Wep(Wy + wy) + (b — @)W (Wy + wy)y] -

(3.17)

We then obtain

3

=2 (%) + D5 (02D, — 8D2) (56 — @) + (35-+ ]

+ 28— b)D [wD, (w? + 2uw,)]

+ ;’_2654(19 4D, (DD, — 3D?) (w? + 2ww,,)

2
+ %Dw [(=3b — a)wD2 + (2b — 2a)wy, + (b — a)w,D,] (w, + w;)
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3 bh—
—e2D? (%) + Wa(s‘* [(D2Dy — 3D2) [(5b — a)wyer + (3b + @) wyyy)]
+ 26252@ —b)D, [w (wi + wwm)z]

+ 3%654(19 —a)’D, (DZDy — 3D3) (w? + 2ww,,)

252
4
+ %Dm [(—3() —a)wD? + (2b — 2a)wy, + (b — a)szx] [(5b — a)wWyy]
4
+ %Dm [(—Bb —a)wD? + (2b — 2a)wy, + (b — a)szx] [(3b 4+ a)Wypy]
3e25* )
T D, [(—3b — a)wD; + (2b — 2a)wy, + (b — a)wIDI] [(b— a) (2Qwyw,y)]
3e25% )
o Do [(=3b — @)wD; + (2b = 20)wpe + (b — )w D] (b — @) (W)

All the terms in the above expression contains D, as a multiplication. Thus, we can
write f = F,:

3 bh—
F =éD, (%) + 16a54 (D, Dy — 3D2) [(5b — @)Wyt + (3D + a)Wyys)]

€262
e [S(b —a)w (wi + wwm)w}
€262
e [(—3() — a)w(w?)gze + (20 — 20) Wy (W?), + (b — a)me(w2)m]
4
+ O[30 — ) (D2, — 3D2) (u? + 2w
54
+ 63—2 [2(=3b — a)wD3 + (2b — 2a)wy, + (b — a)w,Dy] [(5b — a)waer + (3D + a)Wygs]
24
+ % [(b —a)(—=9b — 3a)wD? 4+ 6(b — a)*w,, + 3(b — a)zwxDm] (2w Wy + WWaay )] -

(3.18)

3.5 Estimate for the residual term corresponding to Camassa-Holm
approximation

Lemma 3.5.5 Let wy € H*'5(R), s > 3/2. Then there is some C' > 0 so that the
family of solutions w® to the CH (3.3) equation with initial value w(x,0) = wo(z),
satisfy

Wyt — Wy + a52wmxw:v - b52wzmtt - 6(’(1)2)3333 = Fx
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with
IF(@)]]s < C(e® + 6%

forall0<e<d<1landte [O,a.

Proof: We observe that F in (3.18) is a combination of terms of the form DJw with
7<5or D;wt with [ < 4. We only need to check the term w,,.+;. We first recall that
we rewrite the CH equation as

3b+a 3(b

w, = Q (—wm — ewwy +

where Q = (1 — 5117_“52D§)_1. We then apply D3D; to (3.19)) and get

Witpee = D2D,Q (—wm — eww, + 3bF a(52wzm + 3(b4_ @) €62 (2WpWye + wwzm)>
= DiQ (—Warzw — €(WW; ) z)
+ D;Q (362— a52D§wmm + 652D§3(b4_ %) (2w, Wy + wwmx)m) , (3.20)
which implies that
[ Waraitlls < C ([|Qarzatlls + [10°QD3Wrrzatl]s) - (3.21)

Note that the operator @ and 62Q D? are bounded on the H*(R):
IQulft = [ (1+2)(@ve
R
b_ —2
< /(1 + %) (1 + 5—“5252) v2de
R 4
< [ epitds = ol (322
R
On the other hand,

— 2
§*QD3vl|3 = 2)* |(02QD2v)| d
QDI = [ (14 ¢y (57002 de

)
< /R (1+ €2yt (1+5IZT_“5252) o2

<L) Javeria— (5 el G2
= v . .

—\5b—a R 5b —a s

Now (3.22) and ([3.23]) both imply that

4
s <1 d [|0°QD?||, < .
IRl <1 and [#QD2), < o —
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Thus
szxcpttHs S C (HQHusmx:m:tHs + H52QD;12;H5mezxxtHs)

4

S C‘ |w:pxmct|’s
< O |wi[s14, (3.24)

where C is generic constant.

Since all the terms of F' have coefficients €2, €52, 6%, we get the following estimate:

1E@Ils < C (e + %) (lw®)lls+s + [[we()ls4a) (3.25)
for 0 <t < T/e. By Theorem [3.1.2) the solutions w of Cauchy problem for (3.3)) are
bounded with k£ = 5 and this completes the proof. O

3.6 Convergence result with Camassa-Holm approximation

Now we are ready to prove Theorem |3.1.1]

3.6.1 Proof of the Theorem [3.1.1]

Let w®’ be the solution of CH equation with w(x,0) = wy. So we consider the Cauchy
problem for the DD equation with u“°(x,0) = w(z,0) = we(x) and u,(x,0) =
wy(x,0). Note that solution w® of CH equation exists for all times ¢ < T'/¢ by Theo-
rem |3.1.2] Therefore r = u —w will exist over the same interval as long as the solution
u of DD does not blow up in a shorter time. Note that we have r(z,0) = 0. Therefore,
by continuity there exists some ¢ such that ||r(¢)||s < 1 forall 0 < ¢ <t < T/e. We
define

T —
Ty =sup{t < —:|Ir(@®)ll. <1 forall t€[0,f]}. (3.26)

Note that difference r satisfies - ) with F 1n . Consider the energy
(3.10). We observe that E,(0) = O Choose €< 3 (1+2Hw( 75 = €o- Then by Lemma
ogzgt’

the energy satisfies
E,(t) <C(E+ 0"t for t<t<T/e

for some generic constant C' and 0 < e < <1 and € < ¢y. We now choose ¢ so that
0<e<d<d <e <1. Then C(? + 54)T0€’(S < Cet + 5§)T5’5 = ¢ << 1. Then
[ud(t) — v ()]s = [|r(t)]]s < CEs(t) < C(e2 + 63T = ¢ << 1 remains very small
for 0 <t <T/e. O
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Remark 3.6.1 Initially we know that us® exists locally for some t < T%°. However,
the estimate above shows that u<® stays bounded and so exists for [0,T/e].

3.7 Convergence result with Benjamin-Bona-Mahony approximation

Theorem 3.7.6 Let wy € H**(R), s > 3/2 and suppose w’ is the solution of the
BBM equation with initial value w(x,0) = wo(x). Then there exists T > 0 and dy < 1
such that the solution u® of the Cauchy problem for the DD equation, with the same
initial values, satisfies

[Ju® — w||, < C(* + 6M)t
for allt € [0,%} and all 0 < e < § <.

Proof: Note that the proof will be the same with proof of Theorem [3.1.1, But we
need to find the residual term arising when we plug the solution of BBM equation into
DD equation. Method is the same but we are going to obtain less terms in f since we
do not have higher powers of €,9. The residual term f for the DD is

f = Wy — Wy + aégwxmfxp - b52wxxtt - €<w2)x:c) (327)

where we dropped the indices €,0 for simplicity. We rewrite the BBM equation as

follows:

5 — a 3b+a

Wy + Wy = —eww, + 0 Wips + 8% W - (3.28)

Now we plug (3.28) in (3.27) and get (3.15)

f :<Dt - Dx)(wt + wx) + G(Swaaﬁazx - bémeztt - 6<w2>xcp

-
= — D, [w(w, +wy)] + ~——=0” [3D3 — D2D] [w, +w]. (3.29)
We plug (3.28) in (3.29)) and obtain
-
f=—eD, [wlw, +w)] + “Té2 3D° — D2D,] [w, + w] (3.30)
b— b
=—eD, |w| —eww, + 0 a52wtm + b+ a52wxm
4 4
—b b— b
+a—52 (SDi — DiDt) (—ewwx + > 1 a52wtm + %521%“)
20,2 €d” b—a o 2
= (W wy), — IDI [(5b — a)wwzy + (3 + @) Wwepy] + €0°D, [3DI — Dth)wwx]
b—
+ 6“54 (DD, — 3D%) [(5b — a)waas + (3b + 0)waaal]
w?  ed?
ZGQDEE? + IDm [(b—a)(3D2 — DD, )ww, — (5b — a)wwizy — (3b + a)wiwyy, |
b—
+ 6“54 [(D2D, — 3D%) [(5b — a)waas + (3b + 0)waaal] (3.31)
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and we see that f = Fj:

w3 €2

F :€2DI? + Ve [(b —a)(3D2 — DD, )ww, — (5b — a)wwize — (3b + a)wwzm]

b—

16a54 [(D2Dy — 3D3) [(5b — a)waat + (3b + a)waqa]] -

+

(3.32)

We observe that F is a combination of terms of the form Diw with j <5 or DLw; with
[ < 4. Thus all the terms of F' are uniformly bounded according to Constantin and
Lannes [6]. We only need to check the term wy,.4: We first rewrite BBM equation as

50 — a
4

5b — - 3b
wy = (1 — Ta52D§> (—wm — eww, + Ia52wmx) (3.33)

3b+a 52wxm

8P Wppy = —Wy — EWW, +

Wy —

3b
Witzzr = DiDtQ (_wx — EWW, + Z_ adzU}xazx)

3b
= D,Q <—wmm — e(WWy ) ggw + i a62Diwmm> . (3.34)
Thus,
IE@OIls < C (e + %) ([lw(®)lls+s + [[we () ls4a) (3.35)
for 0 <t < T/e. By Theorem |3.1.2] the solutions w of Cauchy problem for (3.3)) are
bounded with £ = 5 and this completes the proof. O
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Chapter 4

Decoupling of the Double Dispersion equation into two uncou-
pled Camassa-Holm equations

In the previous chapter, we have shown that solutions of

. 5b—

+ + +
w, +w, +eww, —

3b 3
U, — S, = S0 — e el +wtal,)

(4.1)

are well-approximated by associated solutions of Cauchy problem for the DD equation

Uy — Uy + A0 Uy — DO> Uyt — (—:(u2)m =0 (4.2)

w(z,0) =0, w(z,0)=u(x) (4.3)

with a proper choice of initial data where we placed w by w™ to emphasize the direction
of the wave. Now, we are going to concentrate on the solutions of the Cauchy Problem
for the DD equation traveling both sides. For this aim, we replace ¢t by —t to obtain
CH equations for left going waves:

5b — 3b
wt_ —@U; - ew‘w; - a52 tq:ac %5221];33
3
= 4(b — a)ed® (2w w, + w w,,,). (4.4)
We are going to show that any solution u of Cauchy Problem can be ap-
proximated by the sum of solutions of CH equations 1 and In other words,

we are going to establish the conditions for the ex1stence of solutlons wt and w™ of
Cauchy Problems (4.1]) and (4.4]) with initial values w™(z,0) = wy and w™(z,0) = wy
satisfying v = w™ + w™ up to a small error.
Naturally, we would like to select wg and w, so that

ug(r) = wh(z,0) + w (z,0) = wy +wy (4.5)

uy(z) = w; (z,0) + w; (z,0). (4.6)
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hold. We see from (4.1))-(4.4) that

wh +w, =—wi +w, —e(wtw —w w)
ob—a 3b+a
0 (Wi + W) + =0 (Why — W)
3
+ Z(b —a)ed® (2wiwl, + whwl,, — 2w w,, +ww,,) (4.7)

and w;” +w; = —w} +w; + O(e, 62, €6?).
We take uy(x) = —w; (z,0) + w; (x,0) and assume that u; = (vg),. Then

ug = wy +wy, Vo= —wg +wp. (4.8)
Solving for wy and w, yields

+

wy = (U —vg), wy = %(Uo + o). (4.9)

l\DI»—t

Assume that » = v — (w™ +w™). This gives r(x,0) = 0 but r,(z,0) # 0 because of the
approximation. Let us calculate r4(z,0). Recall that Q = (1 — E’lﬂT’“ézDg)_l. Then

3b
w +w; =9 <—w; +w, — e(whw! —w w]) + %52(1@” + w;m))

+ QZ(b — a)ed” (2wiwl, + whw,, — 2w w,, —ww,,)
=0 (=i uz = a7 = ) + D2t - )
+ Qz(b —a)ed’D, (%((w;)z — (w;)*)2 + whw), — w_w;x) . (4.10)

We write (4.10)) in terms of ug, vy by using (4.8) and obtain:

r(x,0) =u(z,0) — (w; (x,0) + w, (x,0))

w, (2,0) — (wy (x,0) + wy (x,0))

30
=D + Vo — Q (vao + ;D UoVy — ZaészU())

3 2 (u0)e(—v0)e (o + o) (Uo + V0)za
_ Z(b —a)ed“QD, ( — )

(
(x,0) +

2 4
30— g, (=l ),

4

We write vy = QQ ™'y, then Q'vy = vy — 25%6%(vg)4e and
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5b — 3b
aéz(vo)m — vy — %uovo + 2— ¢

ri(z,0) =D, Q (vo —
+ Dng(b —a)ed? (ug) (Vo) e + Qg(b —a)ed? (—uo(Vo)ee — vo(Uo)az)

b—a €
- 9 52(Uo)m - §U0U0)

~n.0(
+ 0,0 (50 @6d® (w)a(w): + tales + to(uo)er)

=q. (). (4.11)

4.1 Estimate for the residual term corresponding to two uncoupled
Camassa-Holm approximation

Lemma 4.1.1 Let wi,w, € H*"%(R),s > 1/2. Then there is some C > 0 so that the
family of solutions (w*)*°, (w™)¢° to the CH equations (4.1),(4.4) with initial values
wh(z,0) = wg (), and w™(z,0) = wy () satisfy

R 2, + 2, + 2 ot
Wy — Wy + ad Wypwe — bo Waatt — E(w )cca: - F:c

- - 2 2 N2 -
Wy — Wyy + ad Wygga — bo Wagtt — G(U) )a:x - Fa: :

Moreover ~
|F(t)]]s < C(e+6*)

forall0<e<dé<1landte [O, a where F = F+ + F~ — 2e(wtw™),.
Proof: We know that

w;; - w;—x + a52w;_acaca: - bazw;—xtt - E(w+)ia} = Faj—
with F+ as in (3.18).
Replace t by —t, then we have
- - 2 2 N2 e
Wy — Wyy + ad Wygga — bo Wagtt — e(w )xr - Fx )
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3 _
F~ =€é’D, (%) + b 16a54 [(—DIDt —3D?) [~ (5b — @)Wy + (3b+ a)wmx]}
6252
- [3(b — a)w (w? + Wiyy) ]
6252
—5 [(—31) — a)w(w?) pes + (20 — 20)Wep (W?), + (b — a)wx(wQ)m]
4
+ 0 (30— ) (~D2D, — 3D2) (u? + 2w,)]
4
+ 63% [2(—31) —a)wD? 4 (2b — 2a)wy, + (b — a)wxDx] [—(5b — @)Wy
4
+ 63% [2(—31) —a)wD? 4 (2b — 2a)wy, + (b — a)wxDx] [(3b + @)Wypy]
6254
+ 5 [(b —a)(=9b — 3a)wD? + 6(b — a)2wm] Dy (2w, wey + Wy )]
6254
+ 6 [S(b — a)waDw} (D, (2w, Wy + WWeey)] (4.12)

Then by Lemma there exist some C7, Cy > 0 so that
1l = IF* + F~ = 2(whw ™).l
< IET@Os + [~ @) + 2eCollw™ sl [[s41
< Oy 4 6%) 4 (2 4 6%) + Cs(e + %)
< Cle+ 6

forall()<e§5§1andt€[0,a.

4.2 Convergence result for the Double Dispersion equation with
uncoupled Camassa-Holm equations

Plugging u = r +w™ + w™ into equation ({3.1)) gives
0 =Upt — Ugg T a52u:r:p:vx - b52umxtt - €(u2)zm

=(r 4w+ 0 ) — (0t 0 )+ 0B+ W 0 g

— b8 (r+w Fw )pen — e(r +wt +w)2,

=ry — Tyw + Q0T pypy — DO T puts — 6(7’2 + 2(wt + wT)r) 4

2 2 2
+w —wl, +ad*w),,, — b w 2

TTITT zatt — € (w

- - —\2

+ wt_t - w;z + a52wxac$m - bézwzxtt - E(w )mm - 26(w+w_)xﬂc‘
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It follows that the function r is the solution of the Cauchy Problem

Tt — Taw + 02T gpgn — b2 Tagy — €(12 4+ 2w + w7 )r) gy = —F), (4.13)
r(z,0) =0, 7r(z,0)=q.(x), (4.14)
where F = F* + F~ — 2e(wtw™), and ¢, (z) in [{11).

Theorem 4.2.2 Let ug € H¥"%(R), and vy € HS+7(R), s > 3/2. Assume u’ be the
solution of DD equation (4.2)-(4.3).Let

1 _ 1
= §(u0 — ), w, = §(u0 + ).

w

Then for any given to there exists §y < 1 so that the solutions (w)°, (w™)° of the

CH equations (4.1))-(#.4) with initial values w*(z,0) = wq (z), and w™(z,0) = wy (z)
satisfy

[Ju® = (@)™ = (w)[|s < ((e+6%) + (e + 61)1)

for allt € [0,to] and all 0 < € < § < .

Proof: Note that uy € H**%(R), and u; € H*™"(R). Let r = u — w" —w™. Then
wT,w™ and hence r,w are in H*T%(R) since ||w0||sy6 < (||w™||st6 + |[w||s16). More-
over, 7(z,0) = 0 and r(z,0) = (¢(z)), for ¢(z) described in ([£.11)). Then r satisfies
the Dispersive Equation (4.13)-([4.14). We can consider the energy as in for
w=w" +w”". We know from Lemma {4.1.1] that

I1E@®)]ls < Cle +6")

forall 0 < e <6 < 1andt € [O ] Using the same argument in the proof
of Theorem [3.1.1) we use the same set (3:26). Note that sup (1 + 2|jw(t)||s) =
0<t<f

sup (1 +2|[(wT + w™)(¢)]
0<t<i

sup ||w=(t)||s. Assume that € <

energy in (3.10)) satisfies

o)) < 1+ 2(My + M) where My = sup ||w™(t)|]s, Mz =

m = ¢y, then by Lemma (3.3.4] the modified

B0 <0 (E <>+tsup||F<>||s)

0<t<t

for 0 <t <t <T/e. Let us find an estimate for F¢(0). We know that
E3(0) 25 (1o O + [l (0)]1Z + ad®|[r4 (0)[[Z + b3 | (0)]]7)
+ = <AS(T + 2wr)(0), A°r(0))
for some p with r = p,. Note that r,(z,0) = 0. Then

EZ(0) = 5 (llpe(0)[]2 + b3%[|r:(0)]13) -

l\DI»—t

We know from (4.11)) that

[ (0)[s < 11Q[s[luol e+ (e +6%)

Hs+3 | |UO|
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and
Hs+2 (E + (52).

Hs+2 ’ |UQ ’

mo-1]| Q||| |uol

w1 = [[4(0)]

1pe(0)]]s < C|lpa(0)]

Since Q is bounded operator on H?, it follows that

E,(0) < Ci(e+ 6*) 4+ 6Cy(e + 6*) < Cle+ 6* + €6 + 6°) < C(e + 67). (4.15)

Then energy satisfies
E,(t) < C((e+8) +t(e+dY) < C ((e +62) + T (e + 54))

by (4.15) and Lemma {4.1.1| Choose dy so that 0 < e < 9§ < §y < ¢y < 1, then
e = we ||, = @)l < CB(t) < € (80 + 03) + T5 (0 +08)) = ¢ << 1

for t <T/e.

4.3 Convergence result for the Double Dispersion equation with
uncoupled Benjamin-Bona-Mahony equations

We consider right-going and left-going BBM equations

5b — 3b
w4+ wi 4+ ewTw) — n aézw;;x - %52111;;90 =0, (4.16)
and
5b — 3b
w, —w, —ew w, + 1 a§2w;m + Ia52wmx = 0. (4.17)

Theorem 4.3.3 Let ug € H**5(R), and u; € H**"(R), s > 3/2. Assume u*® be the
solution of DD equation (4.2)) with initial data

u(z,0) = ug(x), uz,0) = (vo(x))s.

Let
w1 |
wy = §(u0 — ), wy = §(U0+’U0).

Then for any given to there exists 8 < 1 so that the solutions (wt)*?, (w™)%° of the

BBM equations (4.16)-(4.17) with initial values w*(z,0) = wg(z), and w(z,0) =
wy () satisfy
[Ju® = (W)™ = (w)[|s < ((e+6%) + (e +61)1)

for allt € [0,to] and all 0 < € < § < .
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Proof: We will follow the same argument as in the proof of Theorem .2.2 We just
take the residues F'*, F~ in F as

T+ _ 2 wt® | es? 2 +,F
F7 =e DxT + R [((b—a)(3D2 — DD, )wtw™,]

+ — [~ (5b — a)wtw* iy — (3b+ a)wTw ]

b _6“54 [(D.D; —3D2) [(5b — a)w" 4 + (3b + @)w ™ 0s] |

w? es?
F~ :EQDIT T [(b—a)(3D2 + DyDy)w w™ ]
€02 _ o
+ e [(5b — Q)W W e — B0+ a)w™w mx}
bh—

16

+

264 [(=DuDy — 3D2) [—(5b — a)w ™ gat + (3b+ Q)W pee] | (4.18)

where we find F'~ by just replacing t by —t in (3.32)). |
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Chapter 5

The Hunter-Saxton equation as high frequency limit of the
Camassa-Holm equation

The Hunter-Saxton (HS) equation is given by

Uppe + 2UgpUpy + Ullpyy = 0 (5.1)

where u(z,t) is a real-valued function and subscripts x and ¢ denote partial differ-
entiations. The equation arises as high frequency (or short wave) limit of the
CH equation in the case of water waves [17] and elastic waves [7]. This asymptotic re-
lation between the CH equation and the HS equation also provided by Matsuno in [22].

In Section 5.1, we present the derivation of the HS equation from the CH equation
given in [22] for the convenience of the reader. Then, in Section 5.2, we first state the
main result, Theorem for convergence of the solutions of the HS and the CH
equations. To this end, we state local well-posedness results for the CH equation [23]
and the HS equation [29], estimate the residual term, and finally show that the error
term in the approximation remains small and complete the proof.

5.1 Derivation of the Hunter-Saxton equation from the Camassa-Holm
equation

Consider the CH equation

VT + BVVX — VTXX = QVXVXX -+ VVXX)(. (52)

To obtain the high frequency limit of the CH equation, we introduce the short wave
scaling [22]

X
V<X7 T) = 72W<€7 T) = ’72W(77 PYT)
where ~ is a positive small parameter. Plug this into the CH equation to obtain

VW, + 3V WWe — Wiee = 2WeWee + W Wege.

44



Thus for W = Wy + W, + ..., we get at O(1)

Wng + 2W§W§§ + WW&& =0, (53)

where we replace Wy by W afterwards. Thus, high frequency limit of the CH equa-
tion satisfies the HS equation asymptotically. By this scaling, equation may be
considered as short wave limit of the CH equation. This equation, called as the HS
equation, was already obtained by Hunter and Saxton in [16] as an asymptotic equation
for weakly nonlinear waves.

Since we will compare the solutions of the CH and HS equations rigorously, we carry
both equations into the same coordinate system. The solution V(X,T) for the CH
equation (}5.2))

1 1.« t
€,0
V1) = TV T) = V(5 5, (5.4)
takes the form
vy + 3€0V; — 0% Vige = €62 (20,000 + VVgnz)- (5.5)
Similarly, with the transformation
W) = W(%, ) = u(a, 1),
the HS equation (j5.3)) takes the form
Wigz + 72 (2WeWay + Wagy ) = 0. (5.6)

Note that we drop the superscripts in (5.5 and (5.6) afterwards.

5.2 Convergence result in periodic setting

In the present section, we compare periodic solutions of the CH and HS equations,
rigorously, and provide an estimate for the error term in the HS approximation.
We consider the Cauchy problem for the CH equation

Uy + 3€00, — 0% Vipe = €67 (20,V00 + VVsae) t>0,zeR
v(z,0) = vo(z) reR
v(z,t) =v(x+2m,t) t>0,z€eR (5.7)

and the Cauchy problem for the HS equation
w(z,0) = wo(x) reR

w(z, t) = w(x + 2w, t) t>0,z€eR (5.8)
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where v5°(z) = 7;wg"s(az:) and dependence of the parameter v on € and ¢ are to be

determined later.

Given the solution w”° of the Cauchy problem for the HS equation (5.8)), we prove
that it is possible to find a solution v of the Cauchy problem for the CH (5.7) such

that [[v° — l:wWH is small over a long time in suitable function spaces. The main
result of this section is the following.

Theorem 5.2.1 Let s > 3/2. Assume wy € H**(T). Suppose w? is the solution of
the Cauchy problem for the periodic HS equation (5.8). Then there exists T > 0 and
81 so that the solution v of the Cauchy problem for the periodic CH equation (5.7)

satisfies
4

2
[0 (8) = Zu(1)]|, < Ot

for all t € |0, %] and sufficiently small positive parameters €, § and .

As in the previous chapters, we will follow the same methodology for the conver-
gence. To this end, we first recall well-posedness results for both Cauchy problems in
parameters-free forms in Section 5.2.1. In the same section, we rewrite the theorems
for the Cauchy problems and . In Section 5.2.2; we find an estimate for the
residual term in suitable Sobolev Spaces, and finally we find an estimate for the energy
of the equation satisfied by the error term, and complete the proof.

5.2.1 Well-posedness results for the periodic Hunter Saxton and
Camassa-Holm equations

The initial value problem for the Hunter-Saxton equation

2
wfmmgﬁz% t>0,z€R (5.9)
u(z,0) = ug reR (5.10)

was studied over the real line by Hunter and Saxton in [16]. Using the method of
characteristics, a formula for the solution is provided. However, it is not possible to
work with H*(R) spaces, as the formula involves a term that is not an L?(R) function.
Thus, most of the problems for the HS equation are considered in periodic setting.
The Cauchy problem for the periodic Hunter-Saxton equation was first studied by Yin
in 2004 [29]:

2

Uy + u, = Dt (%—i—d(t))—i—h(t), t>0,zeR

u(z,0) = ug reR

u(z,t) = u(z + 2m,t) t>0,z€eR (5.11)
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where d and h are continuous functions. Using the Kato semigroup method, it is shown
that strong solutions to the periodic HS equation exist locally in time in H*® for s > 3/2.
Following is the well-posedness result for the Cauchy problem of the periodic HS equa-
tion ((5.11]) given in [29]:

Theorem 5.2.2 ( [29]) Given h, a continuous function, and uy € H*(T), s > 3/2 .
Then there exists a mazimal T = T(d, h(t), uo) > 0, and a unique solution u to (5.11]),
such that v € C([0,T), H*(T)) N C*([0,T), H*"Y(T)). Moreover, the solution depends
continuously on the initial data.

If we take t = 7127, then (/5.8]) reduces to

Urgy + 2UpUyy + Ulyyy = 0 (5.12)

with a relation
w(x,t) = u(z,7) = Uz, 7*t)

between the solution w?°(z,t) of (5.8)) and the solution u(z, 7) of (5.12).

According to Theorem 2.12 in [29] and the discussion in [15], solutions to the Cauchy
problem for the HS equation (5.11]) are also solutions to the twice differentiated form
of the HS equation (5.12)). Thus, solution @ exists and lives in C([0,T), H***(T)) for
0 <7 < T and we can rephrase Theorem for as follows:

Thus we have not only long time existence-uniquness of the solutions (5.8)) but also
uniform bounds over a long time interval.

As we are working on periodic problems, we need the well-posedness result for the
periodic CH equation ([5.7]) as well. For this reason, we will recall well-posedness result
for the Cauchy problem for periodic Camassa-Holm equation

Uy + 3€0, — 02Uy — €62 (203Vpg + VVgze) =0, T ER, >0

v(x,0) = vo(x) reR

v(x,t) =v(x + 27, t) t>0 (5.13)
provided in [23].

Theorem 5.2.4 ( [23]) If s > 3/2, then given any vy € H*(T) there exists a T“° > 0
and a unique solution v*° to the Cauchy problem (5.13)) such that v&° € C([0,T*?), H*(T))
N CY([0,T<°), H*~Y(T)) and which depends continuously on the initial data vo.

Remark 5.2.1 The proof in s actually parameter-free form of . Howewver,
coefficients do not affect the proof of well-posedness. We note that the existence time
T may be different for each value of the parameter. Moreover Theorem does not
say anything about uniform bounds for v:°. However, this is not crucial since uniform
bounds for the solutions are necessary only for the model equation, namely for equation

(5.8).
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5.2.2 Estimate for the residual term

Assume v be the solution of (5.7) and w?? be the solution of (5.8). Let r = v —

2
”’?uﬂ"s. Then we have

2 2 2 2

(r + %w)t—i—?)e(r + 7?w)(r + %w)w — 8 (r + %w>ta¢x
2 2 2 2
—€e® (Q(r + 7?w)az(r + 7?w)m +(r+ %w)(r + %’@mm) =0.

Straightforward calculations imply that the error term r satisfies the differential equa-
tion

T¢ + 3€TT33 — 52Ttxx_652(271x7nxx + r/r:l‘x:)?) + 372 (rw)m

— (27 Wag + 2WaT ey + TWaze + Wyne) = — f,
where
2 4 2 4
F=Lwn 13 ww, — 2 — L 62(2wtw0n + W)
€ € € €
o8 4

= —w; + 3—ww,
€ €

is the residual term. Note that the last two terms in the above expression disappear
as w is the solution of ((5.8)):

The following lemma gives an estimate for H® norm of the residual term.

Lemma 5.2.5 Let wy € H*™(R), s > 3/2. Then there is some C > 0 so that the
family of solutions w"° to the periodic HS equation (5.6)) with initial value w?°(z,0) =
wo(x), satisfy

2 4

f= lwt + 31wwx
€ €

with
4

Hs(T) < C%

17(2)]

fort e [0, %] and sufficiently small positive parameters €, & and .
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Proof: We need an expression for w;. We observe that

2

We integrate with respect to x
2
w
Wiy = —7> (TI + WWgy + d(t))

== (% + (w2 )

where use the fact that ww,, = (ww,), — wg and d is to be determined later. Thus,
2

(wi + Yww,)y = (% — d(t)) .

We integrate once more
2

wy + YPww, =2 (Dxl (% - d(t)) + h(t))

where h(t) is a continuous function. Then residual term f can be expressed as

f= %2 (—'wawx + 2 (D;l (%‘5 - d(t)) + h(t))) + 3%4wwx
4

4 2 4
-1 p (% - d(t)) + Lh(t) + 2w, (5.14)
€ € €

In order for D! (%32” - d(t)) to be defined %“2” — d(t) must have mean zero. To do so,

we choose d(t) = L+ [*"w2dz. As shown in Lemma 3.2 of Yin [29], when w, € H*,

4m JO
27 27
2 5 _ 2
/ w; dr = / (wp); dx
0 0

s > 3, then w(z,t) satisfies
and d(t) = £ [7"(w,)? dz = d becomes a constant. Thus %:% — d has mean zero:

4m JO
1 27 2 1 27 2
—/ Y Ndr=— [ YZdgr—a
2m Jo 2 2 Jo 2
1 2T 2 1 21
= — Y gy — — wy dx = 0.
2 Jo 2 dr J,

Now, we are ready to find an estimate for the residual term:

4 2 4 4
1o [ g v
Il < 2z (% = a) o+ 2R + 22 o,

€
4 2
v Wi
<C— (||— —d|s—1 + ||w||s||w||s+1>
€ 2
A4 )
< C? ([lw][3 + [|w|]s|w]]s+1)

4
<ol
€
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where we use the fact that H® norms of w are uniformly bounded by Theorem [5.2.3|
O

5.2.3 Enmergy Estimate

The error term r satisfies

7o+ 3€rry — 0% ign — €02 (274 pp + TTewe) + 372 (rw),
- 5272<2rxwxz + zwxrxx + waxz + wrxzx) — _f (515)

r(z,0) =0 (5.16)

Define the energy as in [6]:

1
EX(t) = 5 (Ir@I[5 + 8l (0I[2) - (5.17)
Then we have the following estimate for the energy:

Lemma 5.2.6 Assume s > 3/2 and let w° and v*° be solutions of (5.8) and (5.7),

respectively and let r = v — V w?®. Assume that ||r(t)||ms < 1 fort < T Then
there exists some C such that the enerqy (| - 3.10)) for the Cauchy Problem -

satisfies

()<C( s(0) + ¢ sup ||f()||s>

0<t<T
for0<t<T< min{%, %} and sufficiently small positive parameters €, § and ~y.
Proof: Take derivative of the energy with respect to t

%EZ( t) =(A%ry, A1) + 82 (A°ry, Aoryy)
= — 3e(A*(rry), A1) 4 €0% (A (2reTpe + TTae), A°T)
— 3V (A (1w) 5, A1) + Y22 (A% (20 pWas + 2WaT g, AT)
P8 (A (P W), A°T) — (AL A%P). (5.13)

Now, we are going to find an estimate for H® norm of each term in (5.18]). Note that
whenever we have ||r,||s , we need § as a multiplier. This is as same as to say we can
use ||r]|%, if we have 6% as a coefficient.

e We start with the last term of equation ([5.18)) and we obtained that

(A, M) < [ fsl Il (5.19)
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e Now we estimate the first term of equation ([5.18)).

We use first property of Lemma for the second term with h = r and u = r.

(Norry, A1) = ([A°, r|re, A1) + (rAN°ry, A7)

1
= ([A®, r]ry, A°r) — 5(7@/\37”, A°r).

Thus the condition s — 1 > 1/2 leads:

[(A*(rre), A)] < C ([l lralls—alIrls + [lrallool 7112
< C (Il + lrallsalIrl2)
< C|Jr| 2. (5.20)
e Now we estimate third term of equation (5.18). We see that

(A (rw) g, Ar) = (N°rw,, A°r) + (Nrpw, A°r).

Note that
(N°rwg, Ar) = ([A°, we|r, A°r) + (wA°r, A°r).

On the other hand ]
(N wr,, A°r) = —§<waST, A°r)

with h = w and v = r in Lemma [[.3.3l Thus
(A2 (rw) e, A7) | < C (Nlwa sl ls—1ll7l]s + wa][ool[7]12)
< C ([lwllssallr 1 + [Jwel[s—1|7][2)
< C([|wl]ssr + [[w]|)]|r]]? (5.21)

since s —1>1/2> 0.

e We estimate the second term of equation ((5.18). Note that

2 2
(A3 (27T + TTags), AT) = (AS(%’” ¥ 1a0)e, AST) = —<AS(% b rrag), ATy).

We consider the sum separately. We see that
(Norpry, Nory) = ([A° rg|re) + (roANory, Aory).
Thus
(A (r2), A7) < C(Irallsllrells—illralls + [lrallool7allslre]ls)
< C([lrllsllrallz + lralls—allrl12)

< Cllrllsllrall; (5.22)
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where we use s — 1 > 1/2. For the second term, we use the second property of Lemma

with h = r and u = r,. It follows that
(N1, Nor)y = ([A°, 7]rpe, Ars) — %(rxAer,Aer>.
Thus we get
(AT 70, A1) < C ([Pl 7ael ls—al17alls + rellool 2l [2)
< C(llrllsllralls + lrolls—allrall?)
< Cllrllsllra[3- (5.23)

e Lastly we estimate the forth and fifth term of equation (5.18) together. We
observe that

21 Way + 2WaT g + TWapy + Wrpgy = (FWgy + Wryy + TpWy) 4.

Therefore
(N°(2rpwe 4 2WaT ey + TWage + Wrage ), No1) = —(A°(rwee + Wree + rowy), A°r,).
Now we estimate the three sum separately. For the first term we have
(N°rwee, Nory) = ([A°, wep]r, Aory) + (W Aor, Ary)
and therefore
(AT Wea, A0)| < C ([lwae| |l ls—allre[ls + lweallso|rls]Ir2[]s)
< O ([[wllssallrllsllrells + llwealls—1llr{lslrz]ls)
< C([[wllsrz + [lwllsta) [Irllsllr2]]s. (5.24)
For the second term we use second property of Lemma [1.3.3| with A = w and u = r,:
(N wrye, Ny = ([A°, w]ree, A°ry) — %(szsrm Ary).
Thus
(A Wz, A1) < C ([Jwl[s]|raells=1 7zl |s + [[we] ool l72][3)
< C (lwllsllral I3 + Nwss-1llr2[7)
< Cllwlls|lra|l: (5.25)

where we use the fact s —1 > 1/2 once again. For the last term we have
(N°rpwe, Nory) = ([A°, we]re, Ary) + (W A1y, Ary)

and hence
|(A*rpw,, Aory)| < C (waHSHTIHS—lHWHS + waHoourcng)
< C ([lwllssallrllslr2lls + Nwe|ls=1l7=]7)

< Cllwllser (rllsllralls + 117a[2) - (5.26)
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Using inequalities ((5.19)),(5.20)),(5.21)),(5.22)),(5.23)),(5.24)),(5.25) and (5.26) altogether
we get

d
T EL@) =C (ellrlfs + e0[[rllslralls + 7 (lwllssn + [l Ir]])

+Cy*0% ([[wl]ssz + [wllsen) [I7 1]l Iralls
+ Cy 07wl ol
+ Cy* 0% ||wllssr ([Irllsllrells + lIra]I5)

TN (5.27)

We are given that ||r(¢)||, < 1 for t < Tw € H*(T). Using the fact that ||r||, < CE(t)
and 0||r,||s < CE4(t) for t < T, we get

d
EEf(t) =C(e+ e+ +7 0+ +720+°) EX(t) + || || Es(t)

C (e+7" +7°0) EX(t) + || £ ()] B (2) (5.28)

Thus

d

DE(1) <O (e +72+%) B(0) + 170l

< C(e+7?) E(t) + [1F )]s

We use Gronwall’s inequality to obtain

d

(B < e supl o),

t
E,(t) < e~ Cler?) {ES(O) +sup || £ ()]s / e_o(€+72)sds]
0

E¢(0) = 0 since r(z,0) = 0. It follows that

E(t) < sup

Clety®)t _q
€+ 72

< tsup[[f(1)][s

VAN
N

for ¢ < min{

ﬂLH
leﬂ
—

5.2.4 Proof of Theorem [5.2.1]

Let wo € H*?(T). Note that solution w of the HS equation (5.8)) exists for all times
t < T/~? by the discussion above. We consider the Cauchy problem for periodic CH
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equation with v(z,0) = aw(z,0) = vo(x). Therefore r = v — aw will exist over the
same interval as long as the solution v of CH equation does not blow up in shorter
time. Moreover, we have r(x,0) = 0. Therefore, by continuity there exists some ¢ such
that ||7(t)||zs < 1forall 0 < ¢ <t <T/y% We define

T —
T =sup{t < = [r(®)| | < 1 forall ¢ €[0,7]} (5.29)
v

Note that the error r satisfies ([5.15))-(5.16) with f in Lemma Consider the energy
(5.17)). We observe that Fs(0) = 0. Then by Lemma the energy satisfies

4

~ T T
E,(t) <CLt t <t<min{—, =
() =C—t for t<t<min{- 72}

for some generic constant C'. We choose parameters small enough then

2 4
s 6) = Zu(0)l, = ()], < CE() < Lt << 1,

Therefore existence time 7° of v becomes min{Z, 712}

Remark 5.2.2 Initially we know that v° exists locally in time for somet < T<°. How-
ever, the estimate above shows that v° stays bounded and so exists fort < min{%, % )

Remark 5.2.3 Assume v = € and consider Cauchy problem for the periodic CH equa-
tion

Vg + 3€00; — 0% Uiy = €6%(20Vpg + VVgae) t >0, 7 €R
v(x,0) = evp(x), reR
v(x,t) = v(z + 27, t) t>0,zeR (5.30)
and Cauchy problem for the periodic HS equation
Wigy = € (2WaWae + Waey) t>0, 7 €R
w(x,0) = wy(x) reR
w(x,t) = w(x + 2m,t) t>0,z€eR (5.31)

and
[0 (1) — ew™ (t)||s < Cét.

Note that the order of the error is related to the order of the residual term and the
residual term is the combination of the solutions of the model equation . We
observe that this estimation is good since the order of the error term is greater than
the order of the parameters appearing in the equation .

Remark 5.2.4 Assume v = +/e¢ and consider Cauchy problem for the periodic CH
equation

Uy + 3€0v, — 0%Vt = €02 (204Vpp + VUpge) t >0, 2 €R
v(x,0) = evy(x), reR

v(z,t) = v(x + 27, t) t>0,z€eR (5.32)
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and Cauchy problem for the periodic HS equation

Wiz = €(2QWpWep + WW,yy) t >0, x €R

w(x,0) = wo(x) reR
w(x,t) = w(x + 27, t) t>0,z€eR (5.33)

[0 () — W (¢)||s < Cet.
We observe that the order of parameters in the equation (5.33) and the order of the
error are the same. However, we need higher orders in the error. However, it is not
possible to use the HS iteratively in derivation of the residual term (5.14). Thus this

estimation is not good for v = /€.
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