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ABSTRACT 

 

DENİZ GÜLFEM ÖZTÜRK 

Ph.D. Dissertation, July 2019 

Thesis Supervisor: Prof. Devrim Gozuacik 

 

Keywords: autophagy, cellular stress, lysosome, microRNA, MITF, mTOR, RICTOR 

 

Macroautophagy (autophagy) is an evolutionarily conserved stress response mechanism that is 

necessary for the maintenance of cellular homeostasis. Autophagic activity in cells is regulated 

by various upstream signaling pathways including mTOR. Stress-mediated inhibition of mTOR 

complex 1 (mTORC1) results in the nuclear translocation of the TFE/MITF family of 

transcriptional factors, and triggers an autophagy- and lysosomal-related gene transcription 

program. In this thesis work, we introduce a specific and rate-limiting role for MITF in 

autophagy regulation that requires transcriptional activation of MIR211. Under stress conditions 

including starvation and mTOR inhibition, a MITF-MIR211 axis constitutes a novel feed-

forward loop that controls autophagic activity in cells. Direct targeting and downregulation of 

mTORC2 binding partner RICTOR by MIR211 attenuated mTORC1 signal through AKT-

mediated crosstalk. Under these conditions, the transcription factor MITF translocated from 

cytosol to the nucleus, and amplified autophagic activity. All together, the outcome of this thesis 

is the identification of MITF-MIR211 axis as a novel autophagy amplification mechanism 

required for optimal autophagy activation under cellular stress conditions.  
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ÖZET 

 

DENİZ GÜLFEM ÖZTÜRK 

Doktora Tezi, Temmuz 2019 

Tez Danışmanı: Prof. Devrim Gözüaçık 

 

Anahtar kelimeler: otofaji, hücresel stres, lizozom, mikroRNA, MITF, mTOR, RICTOR  

 

Makrootofaji (otofaji) evrimsel olarak korunan bir geri dönüşüm ve stres yanıt mekanizmasıdır. 

Hücresel otofajik aktivite, mTOR dahil olmak üzere çeşitli sinyal yolakları ile düzenlenir. 

mTOR kompleki 1’in (mTORC1) stres kaynaklı inhibisyonu, MITF/TFE transkripsiyonel 

faktör ailesinin nükleer translokasyonu ile sonuçlanır, ve otofaji ve lizozomal ilişkili bir gen 

transkripsiyon programını tetikler. Bu tez çalışmasında, ilk defa MITF için otofaji kontrolünde 

MIR211'in transkripsiyonel düzenlemesini içeren spesifik ve oran sınırlayıcı bir rol ortaya 

koyuyoruz. Açlık ve mTOR inhibisyonu stres koşullarını altında, MITF-MIR211 ekseninin 

hücrelerde otofajik aktiviteyi kontrol eden yeni ve özgün bir ileri besleme döngüsü 

oluşturduğunu gösterdik. mTORC2 bileşeni RICTOR'un MIR211 ile doğrudan hedeflenmesi; 

mTORC1 yolağının AKT aracılığıyla inhibe edilmesine, dolayısıyla MITF’in hücre 

çekirdeğine göçüne ve otofaji amplifikasyon döngüsünün tamamlanmasına yol açmıştır. Sonuç 

olarak, bu tez çalışmasından elde edilen verilerle MITF-MIR211 ekseni yeni bir otofaji 

amplifikasyon mekanizması olarak tanımlanmıştır ve bu eksenin hücresel stres koşulları altında 

optimal otofaji aktivasyonu için gerekliliği ispatlanmıştır. 
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 1 

1. INTRODUCTION 

 

Autophagy is an evolutionarily conserved catabolic pathway to maintain cellular homeostasis 

by degrading cellular constituents such as long-lived proteins and intracellular organelles. 

These substrates are engulfed by structures called phagophores which are nucleated and 

elongated to become autophagosomes, the hallmark of autophagy. Eventually, autophagosomes 

fuse with lysosomes and form autolysosomes for degradation of autophagic substrates by the 

lysosomal hydrolases and release of degraded components in the cytoplasm by lysosomal efflux 

transporters. Being a highly complex process, autophagy is regulated through autophagy-

related ATG proteins, and also several key upstream pathways including mTOR pathway. 

Dysregulation of autophagy causes multiple human pathologies such as cancer, lysosomal 

disorder diseases, neurodegenerative diseases and infection. Thus, autophagy must be under 

strict control. 

 

Autophagy requires constant fine-tuning and is tightly regulated at multiple levels 

including transcriptional and post-transcriptional. The research on transcriptional regulation of 

autophagy has gained importance as TFEB, the member of MITF/TFE family of transcription 

factors, is identified as master regulator of lysosomal biogenesis and autophagy. Hence, TFEB 

and other factors of the MITF/TFE family, MITF and TFE3, have the ability to rapidly induce 

autophagy by transcriptionally targeting autophagy-related proteins that are involved in all steps 

of the process. Moreover, recent studies introduced microRNAs (miRNAs) as new players in 

the post-transcriptional control of autophagy. MiRNAs are 18-21 base pair protein non-coding 

small RNAs that fine tune cellular levels of transcripts. They do so through modulation of 

messenger RNA (mRNA) stability and/or through inhibition of protein translation. Indeed, 

players in various steps of autophagy, including upstream regulatory pathways and core 

autophagy components, were reported to be targets of different miRNAs. 

 

In this study, I will first briefly define autophagic machinery, and then discuss 

transcriptional and epigenetic regulation of autophagy. Finally, I will introduce a novel and 

universal mechanism required for optimal autophagy activation under cellular stress: 

MITF/MIR211 axis.  
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1.1. Autophagy 

 

Anabolic and catabolic processes are key events that are important for cellular homeostasis. 

Hence, synthetic and degradative pathways are highly regulated in cells. The two major 

catabolic mechanisms in cells are ubiquitin-proteasome system (UPS) and autophagy. The UPS 

is responsible for the degradation of ubiquitin-conjugated and short-lived proteins in the 

multimeric protease complex called “proteasome”. On the other hand, autophagy is a lysosomal 

degradation mechanism, through which long-lived proteins and organelles such as 

mitochondria, are engulfed by double membrane autophagic vesicles (autophagosomes) and 

delivered to and degraded by lysosomes, allowing recycling of cellular building blocks 

(Mizushima & Komatsu, 2011). The term “autophagy” denotes “self-eating” and derived from 

Greek words auto (self) and phagein (to eat). This concept invented by Christian de Duve, the 

Nobel Laureate of 1960 for his work on lysosomes.  

 

According to morphological and mechanistic features, autophagy is categorized into 

three subtypes: microautophagy, chaperone mediated autophagy (CMA), macroautophagy. In 

this chapter, first I will briefly introduce microautophagy and CMA, then I will mainly focus 

on macroautophagic and cytoplasmic regulation of the autophagic machinery through Atg 

genes. 

 

1.1.1 Microautophagy 

 

The non-selective lysosomal degradative process, microautophagy, involves the direct 

engulfment of cytosolic components by lysosomal action in mammalian cells and vacuolar 

action in plants/fungi. Microautophagy is originally described in yeast and conserved from 

yeast to mammals. Our understanding of microautophagy has come about almost entirely from 

studies carried out in S. Cerevisiae and detailed studies has remained limited in mammalian 

cells (Mijaljica, Prescott, & Devenish, 2011) 

 

In microautophagy, the lysosomal/vacuolar membrane is randomly invaginated or 

projected arm-like protrusions to enclose cytosolic components in vesicles that pinch off into 
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the lumen (Figure 1.1.1 1) (W. W. Li, Li, & Bao, 2012). Several organelles were identified as 

microautophagy targets such as mitochondria, nucleus, peroxisomes, the ER and lipid droplets 

(Oku et al., 2017). Coordinated with other types of autophagy, microautophagy can function in 

the control of vacuole size, membrane homeostasis and composistion, organelle degradation 

and cell survival under nitrogen deprivation. In yeast, microautophagy is regulated by TOR (the 

target of rapamycin) and EGO (exit from rapamycin-induced growth arrest) complexes 

(Dubouloz, Deloche, Wanke, Cameroni, & De Virgilio, 2005). In yeast, three different forms 

of selective microautophagy have been identified depending on the particular microautophagic 

cargo: Micropexophagy, micronucleophagy and micromitophagy (W. W. Li et al., 2012). 

Damaged peroxisomes or cluster of peroximes are engulfed and sequestered by vacuolar 

membranes during micropexophagy. In micronucleophagy, nuclear components are seperated 

from proteins, and delivered into the vacuole for turnover.  Damaged and dysfunctional 

mitochondria are selectively degraded through micromitophagy.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1.1 1: Microautophagy mechanism (retrieved from Sahu et al., 2011). 
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1.1.2 Chaperone-mediated autophagy 

 

Chaperone-mediated autophagy (CMA) is a selective type of autophagy by which specific 

soluble proteins are recognized for lysosomal delivery with the involvement of a degradation 

tag and transported across the lysosomal membrane for degradation (Majeski & Fred Dice, 

2004). Similar to and often synchronized with macroautophagy, CMA is active at basal level in 

many cell types and can be further activated upon cellular stresses leading to protein damage 

and nutritional stress or starvation (Orenstein & Cuervo, 2010). Differing from 

macroautophagy, CMA is extremely selective for cytosolic proteins and cannot degrade 

damaged or dysfunctional organelles. Moreover, it does not involve the formation of 

autophagosomes, and the cargo is directly delivered into the lysosomal lumen (Kaushik & 

Cuervo, 2012).  

 

The selectivity of CMA depends on a pentapeptide KFERQ motif present in the 

aminoacid sequences of CMA substrate proteins (Fred Dice, 1990; Wing, Chiang, Goldberg, & 

Dice, 1991). This motif is necessary for targeting unfolded or misfolded proteins to lysosomes. 

The KFERQ motif in the substrate proteins is recognized through the binding of a constitutive 

chaperone, the heat shock-cognate protein of 70 kDa (HSC70), to form the complex HSC70-

substrate (Chiang, Terlecky, Plant, & Dice, 1989). Then, HSC70 targets the CMA substrate to 

the lysosomal membrane where it interacts with the cytosolic tail of lysosome-associated 

membrane type 2A (LAMP-2A) (Cuervo & Dice, 1996; Rout, Strub, Piszczek, & Tjandra, 

2014). The assembly of LAMP-2A to HSC70-substrate complex drives the translocation of the 

substrate protein into the lysosome lumen (Detailed representation given in Figure 1.1.2 1).  

 
 

 

 

 

 

 

 

 

Figure 1.1.2 1: Chaperone-mediated autophagy (CMA) mechanism (retrieved from 

(Kaushik & Cuervo, 2012)). 
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1.1.3 Macroautophagy 

 

Macroautophagy (autophagy herein) is an evolutionarily conserved catabolic pathway that is 

necessary for the maintenance of cellular homeostasis through degrading waste materials in 

cells and recycling some cellular organelles including mitochondria and peroxisomes 

(Mizushima & Komatsu, 2011). 

 

Active at a basal level, autophagy may be upregulated in response to cellular stress 

conditions, including nutrient (e.g., amino acid) and growth factor deprivation, changes in 

ATP:ADP ratios, unfolded, misfolded or mutant protein accumulation, oxidative stress and 

hypoxia (Devrim Gozuacik & Kimchi, 2004). Following autophagy activation, double-

membrane compartments termed phagophores are formed in the cytosol, engulfing cytosolic 

components as well as organelles, such as mitochondria. The phagophores subsequently mature 

into autophagosomes. Fusion of autophagosomes with lysosomes results in the delivery of 

autophagy targets to lysosomes and allows their degradation and recycling  (Oral, Akkoc, 

Bayraktar, & Gozuacik, 2016). 

 

During autophagy, the cargo is engulfed by and delivered to lysosomes by unique 

vesicles composed of double membrane bilayers called “autophagic vesicles or 

autophagosomes”  (B. et al., 2010). Fusion of the outer bilayer with the membrane of the 

lysosomes, releases the cargo in the inner autophagosomal membrane layer to the lumen of the 

organelle and result in the formation of the so called “autolysosomes”. Together with the 

autophagy components, the cargo is then degraded as a result of the activity of lysosomal 

hydrolases. Products of degradation, for example amino acids are produced form whole 

proteins, are recycled back to the cytoplasm in order to allow the reuse of the components by 

the cell. By this way, autophagy provides nutrients and energy through the use of cells’ internal 

resources, allowing them to survive unfavorable conditions such as starvation, growth factor 

deprivation and detachment from natural environment etc. Autophagy is also the only way to 

clear and recycle bulky cellular components, including organelles, aggresomes or intracellular 

parasites, destruction of which is important for cellular health  (B. et al., 2010). For example, 

depolarized and damaged mitochondria are sources of reactive oxygen radicals that might be 

detrimental to the cell. By a specialized autophagy process called “mitophagy”, those damaged 

mitochondria are cleared and further damage to the cell is avoided. As such, autophagy is a 

cellular stress response and a mechanism protecting cellular homeostasis and well-being.  



 6 

1.1.3.1 Core autophagy proteins 

 

More than 30 ATG genes (autophagy-related genes) were identified from the baker’s yeast and 

plants to man, in all organisms that were analyzed, revealing the conservation of this process 

during evolution (Nakatogawa, Suzuki, Kamada, & Ohsumi, 2009). In addition to ATG 

proteins, several others were implicated in autophagy regulation (Dikic & Elazar, 2018). These 

proteins are essential for autophagosome formation and lysosomal delivery and serve at 

different stages of autophagy, namely, initiation and formation of the autophagosome, 

elongation, maturation and fusion with the lysosomes (See also Table 1). 

 

 

Table 1.1.3.1 1 Core autophagy proteins and their functions 

Protein Function 

Initiation and formation of the autophagosome 

ULK1 and ATG1  Serine/threonine kinase; regulates autophagy by 

phosphorylating downstream components of the autophagy 

machinery  

FIP200  Member of ULK1-kinase complex, ULK-interacting protein, 

localizes to the isolation membrane 

ATG13  Member of ULK1-kinase complex, Bridges the interaction 

between ULK1 and FIP200 

ATG101  Member of ULK1-kinase complex, Atg13-interacting protein, 

stabilizes ATG13 and ULK1 

VPS34  Lipid kinase, catalytic component of PI3K complex, generates 

PI3P in the phagophore 

Beclin-1  Regulatory subunit of VPS34 complex  

ATG14  Connector to form PI3K complex, translocates to the initiation 

site, targeting PI3K complex to the PAS 

ATG9  Transmembrane protein, directing membrane material for 

phagophore expansion 

WIPI1/2 Essential PtdIns3P effectors, recruits ATG5-12-16L complex by 

direct binding to ATG16L 
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Elongation of the autophagosome  

ATG4  Cysteine protease that processes pro-ATG8s; also, 

deconjugation of lipidated LC3 and ATG8s  

ATG7  E1-like enzyme; activation of ATG8/LC3; conjugation of 

ATG12 to ATG5  

ATG3  E2-like enzyme; conjugation of activated ATG8s to membranal 

PE  

ATG10  E2-like enzyme that conjugates ATG12 to ATG5  

ATG12~ATG5–ATG16L  E3-like complex that mediates the lipidation of ATG8/LC3 

PE-conjugated ATG8/LC3 Membrane protein of mature autophagosome, specific cargo 

recognition, adaptor protein docking, membrane tethering 

ATG9  Delivery of membrane material to the phagophore  

Maturation and fusion with the lysosomes  

SNAREs Mediate vesicular fusion events 

ATG8/LC3 Required for autophagosome formation, tethering and 

hemifusion 

ATG14  Promotes SNARE-driven methering and fusion 

RAB7 Microtubular bidirectional transport of autophagosomes 

LAMP-2 Dynein-mediated transport of lysosomes to perinuclear regions 

for autophagosome fusion 

1.1.3.2 Initiation and formation of the autophagosome 

 
The origin of the autophagosome membrane is still not clear which may be due to cell dependent 

and/or context dependent manner, yet, a number of recent studies provided the evidence that 

autophagosome formation is related to pre-existing membranous compartments. Omegasomes, 

which are enriched for PI3P and marked by the PI3P-binding protein zinc-finger FYVE 

domain-containing protein 1 (DFCP1) serve as a cradle for preautophagosome membrane 

formation and referred to as the phagophore or isolation membrane. Various different 

membrane sources from endomembrane system contribute to the further elongation of 

phagophores including ER domains, the Golgi apparatus, ERGIC, endosomes and mitochondria 

(Figure 1.1.3.2 1) (Carlsson & Simonsen, 2015; Weidberg, Shvets, & Elazar, 2011). 
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Figure 1.1.3.2 1: Membrane sources for phagophore formation (Retrieved from 

(Rubinsztein, Shpilka, & Elazar, 2012)). 

 
 

Whatever might be the origin, several upstream signals leading to autophagosome 

formation (see below) converge at the signaling complex TORC1 (mTORC1 in mammals). 

This protein complex possesses serine/threonine kinase activity due to its central kinase 

component mTOR. TORC1 was shown to play a role in cellular growth, cell cycle progression 

and protein synthesis. When cellular and organismal conditions are favorable, mTOR complex 

is active allowing protein synthesis and cellular growth. Since autophagic activity above basal 

levels is not required under favorable conditions, TORC1 directly blocks autophagy (Laplante 

& Sabatini, 2012). In fact, mTOR kinase regulates the activity of the autophagy-related ATG1 

kinase (or ULK1/2 in mammals) complex. ATG1 kinase complex consists of ATG1-13-17-29-

31 in yeast, and its mammalian counterpart, ULK1/2 complex is composed of ULK1/2-ATG13-

ATG101-FIP200 proteins (Mizushima & Komatsu, 2011). This multimeric complex is 

responsible for initiation of the autophagic activity. mTOR phosphorylation of ATG13 

regulates ULK1/2-ATG1 activity. Under stress conditions, mTORC1 is blocked leading to 

ATG13 hypophosphorylation. ATG13 binds to ULK1/2 in its hypophosphorylated state and 

mediates the interaction with FIP200, leading to the phosphorylation of FIP200 by ULK1/2. 

Under these circumstances, FIP200-ATG1-ATG13 complex triggers cascades that result in 

autophagosome initiation and nucleation.  
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The class III phosphatidylinositol 3-kinase (PI3K) complex consists of VPS34 (the 

PI3K), VPS30, ATG14/Barkor, VPS15 and ATG6 / BECN1 (Beclin1)  (Funderburk, Wang, & 

Yue, 2010). AMBRA1 was also shown as one of the regulators of the complex in the 

mammalian system (Mehrpour, Esclatine, Beau, & Codogno, 2010). The VPS34-PI3K complex 

is responsible for the formation of phosphatidylinositol 3-phosphate (PI3P) from 

phosphatidylinositols found on cellular membranes. This lipid decoration serves as a landing 

path for the recruitment of the other ATG proteins to the site of autophagosome formation (PAS 

(preautophagosomal structure) in the yeast or omegasome / cradle in mammals).  

 

ATG18 or mammalian counterparts WIPI 1-4 are PI3P-binding and WD-repeat 

containing proteins that localize to PAS or omegasomes and regulate the autophagic activity 

(Mauthe et al., 2011). ATG2 protein is also another component that interacts with ATG18 and 

it is important for ATG18 localization to PI3P-rich membranes. Although the exact role is not 

yet clear, ATG2-ATG18 complex is believed to play a role in formation of autophagosomes. In 

line with this, the mammalian WIPI1 and 2 were shown to colocalize with proteins ATG14 and 

ATG16L1 proteins involved initiation and elongation stages. Another important protein, ATG9 

(mammalian homolog: ATG9L1) is a multipass transmembrane protein that is present on 

endosomes, Golgi and also autophagic membranes (A. R. J. Young, 2006). ATG9 is believed 

to be involved in lipid delivery to the autophagosome formation centers. 

1.1.3.3 Elongation of the autophagosome 

 

Following priming of PAS or omegasomes with appropriate protein complexes mentioned 

above, autophagic membrane elongation begins. During this step, two ubiquitination-like 

conjugation systems namely the ATG12-ATG5-ATG16 and ATG8 (MAP1LC3, or briefly LC3 

in mammals) systems are involved (Mizushima & Komatsu, 2011). 

 

ATG12-ATG5-ATG16 is the system where ATG12 is conjugated to ATG5 through 

activation by ATG7 (E1-like enyzme) and followed by transfer to the E2-like enzyme, ATG10. 

Then, ATG10 triggers ATG12 conjugation to a central lysine residue of ATG5. Formation of a 

large multimeric complex (300 kDa complex in the yeast and 800 kDa complex in mammals) 

requires the coiled coil protein ATG16 (ATG16L1 in mammals). Resulting ATG12-ATG5-

ATG16 complex possesses an E3-like enzyme activity for the second conjugation system.  
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The second system involves the conjugation of LC3/ATG8 to a lipid molecule, 

phosphatidylethanolamine (PE) (Hanada et al., 2007). After cleavage of the carboxyl-terminus 

of LC3 by the cysteine protease ATG4, a glycine residue is exposed, resulting in the formation 

of so called LC3-I cytosolic form. LC3-I-lipid conjugation requires the activity of ATG7 (E1-

like) and ATG3 (E2-like), then leads to the formation of the lipid-conjugated and autophagic 

membrane-bound form, LC3-II. Consequently, detection of LC3-I conversion into LC3-II is 

commonly used as a marker of autophagy activation. There are several mammalian LC3 

orthologues with overlapping but somewhat different functions in autophagy and other 

vesicular events, including LC3A-D, GABARAP (GABA-A receptor associated protein) and 

GATE-16 (Golgi associated ATPase enhancer of 16 kDa)  (Shpilka, Weidberg, Pietrokovski, 

& Elazar, 2011). As autophagosome biogenesis and clearance is a dynamic process, LC3-II 

formation and recycling is regulated on a tight schedule, where the same ATG4 enzymes cleave 

the lipid bond to allow detachment and recycling of LC3 from mature autophagosomes 

(Kabeya, 2004; Kirisako et al., 2000). 

1.1.3.4 Maturation and fusion with the lysosomes 

 

Fully mature autophagosomes move within the cell to meet late endosomes or lysosomes 

(vacuole in the yeast) for delivering their cargo to be degraded. Homotypic fusion events play 

an important role in the autophagosome and lysosome fusion process, and proteins such as 

vacuolar syntaxin homologue Vam3, SNAP-25 homologue Vam7, the Rab family GTP-binding 

protein Ypt7 and Sec18 are required for the proceess in the yeast. In mammals, together with 

the integral lysosome membrane protein LAMP2 and the SNARE machinery, Rab7, Rab22 and 

Rab24 were shown to play important roles in fusion (Jager, 2004; Tanaka et al., 2000). 

Moreover, dyneins are necessary for the transport of autophagosomes along microtubules to 

allow them to meet acidic compartments. Following fusion, the cargo is degraded through the 

action of lysosomal enzymes including cathepsins, and the monomers that are generated such 

as aminoacids are recycled to cytosol and reused by the cell in various synthetic processes 

(Tanida, Ueno, & Kominami, 2004).  
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Figure 1.1.3.4 1: Molecular regulators involved in different stages of autophagy. (Retrieved 

from (Gozuacik et al., 2017)) 

1.1.3.5 Selective autophagy and autophagy receptors 

 

Autophagy was believed to be a non-selective phenomenon. More recent studies describe 

several selective autophagy pathways including protein aggregates (aggrephagy) (Lamark & 

Johansen, 2012), mitochondria (mitophagy) (Okamoto, Kondo-Okamoto, & Ohsumi, 2009), 

ribosomes (ribophagy), pathogens (xenophagy) (Wileman, 2013), peroxisomes (pexophagy) 

(Till, Lakhani, Burnett, & Subramani, 2012), endoplasmic reticulum (reticulophagy), nuclear 

envelope (nucleophagy), liposomes (lipophagy), and lysosomes (lysophagy). Specific cargo 

recognition is mediated through a family of proteins called autophagy receptors which are able 

to recognize degradation signals on cargo proteins and simultaneously bind ATG8-family 

proteins on the autophagosome (Zaffagnini & Martens, 2016).  

 

Several receptor proteins recognize cargos for selective autophagy through most 

prevalent autophagy-targeting signal, poly-ubiquitin chains. Indeed, autophagy receptors 

including p62/SQSTM1 (p62), optineurin (OPTN) and NDP52 (nuclear dot protein 52 kDa) 

contain both Ub-binding domains and LC3-interacting regions (LIR domain). 
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Figure 1.1.3.5 1: Model for selective autophagy of ubiquitinated substrates (Retrieved from 

(Svenning & Johansen, 2013)). 

 

The best characterized autophagy receptor, p62, serves as a sensor/scaffold for 

sequestration of aggregated proteins and pathogens by the phagophore (Pankiv et al., 2007). It 

also participates in aggregate formation by delivering misfolded aggregated proteins to the 

aggresome (Seibenhener et al., 2004). After recognizing polyubiquitinated cargo through non-

covalent binding via C-terminal UBA domain, p62 delivers the cargo to the autophagosome via 

a short LIR (LC3-interacting region) sequence responsible for LC3 interaction (Ciani, Layfield, 

Cavey, Sheppard, & Searle, 2003). Knockout studies in Drosophila and mice and mutations 

studies in the UBA domain results in impaired autophagy and in a spectrum of multisystem 

proteinopathies  (Goode et al., 2014; Komatsu et al., 2007; Nezis et al., 2008). Homeostatic 

level of p62 is regulated by autophagy since it is also a substrate during autophagic degradation.   

 

Similarly, OPTN and NDP52 have been described as autophagy receptors that drives 

the clearance of pathogens (Thurston, 2009; Wild et al., 2011), aggregates (K. Lu, Psakhye, & 

Jentsch, 2014) and mitochondria (Lazarou et al., 2015; Sarraf et al., 2013). Peroxisomes are 

recognized and sequestered by the phagophore by binding capacity of NBR1 (Deosaran et al., 

2013).  
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1.2 mTOR Regulation of Autophagy 
 

Several key adaptor pathways such as mTOR, AKT/PKB and growth factors, FOXO, AMPK, 

Inositol and p53 pathways regulate autophagy. Among them, mammalian target of rapamycin 

(mTOR) pathway have a great importance by being at the crossroad of major eukaryotic 

signaling pathways including cellular growth, cell cycle progression, proliferation and survival.  

 

Studies from dozens of labs have revealed that several major intracellular and 

extracellular signals such as growth factors, energy status, oxygen and amino acids levels are 

integrated through mTOR pathway and it plays a fundamental role in cellular physiology 

through the regulation of key metabolic events such as protein synthesis, lipid synthesis, 

autophagy, lysosomal biogenesis and energy metabolism.  

 

In this chapter, I will describe the structure of two distinct mTOR complexes, emphasize 

their functions and signaling pathways, and conclude with their roles in autophagy. 

 

1.2.1 mTOR structure and organization into complexes 

 

Evolutionary conserved serine-threonine kinase mTOR, which belongs to the phospho-inositide 

3-kinase (PI3K)-related kinase family (PIKK), comprises two structurally and functionally 

distinct multi-protein complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 

(mTORC2).  

 

mTORC1 have three core components: the catalytic subunit mTOR, Raptor (regulatory 

protein associated with mTOR) and mLST8 (mammalian lethal with Sec 13 protein 8). Raptor 

regulates the assembly of the complex and recruits substrate for mTOR by binding Tor signaling 

motif found on mTORC1 substrates (Hara et al., 2002; D. H. Kim et al., 2002). Although genetic 

studies proposed that mLST8 is dispensable for mTORC1 activity, it associates with the 

catalytic domain of mTOR and stabilizes the kinase activation loop (Guertin et al., 2006; Yang 

et al., 2013). In addition to the core subunits, there are two inhibitory subunits PRAS40 (proline 
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rich AKT substrate of 40 kDa) (Haar, Lee, Bandhakavi, Griffin, & Kim, 2007; Sancak et al., 

2007; Wang, Harris, Roth, & Lawrence, 2007) and DEPTOR (DEP domain containing mTOR 

interacting protein) (Peterson et al., 2009). Upon mTORC1 activation, mTORC1 directly 

phosphorylates PRAS40 and Deptor, which reduces their physical interaction with mTORC1 

and further activates mTORC1 signaling (Figure 1.2.1 1) (Peterson et al., 2009; Wang et al., 

2007).  

 

 
 

Figure 1.2.1 1: Structure of mTORC1 and domains of mTOR. Subunits of mTORC1 

complex are mTOR, Raptor, DEPTOR, PRAS40 and mLST8 (Retrieved from Bartolome et al., 

2014)). 

 

mTORC2 is characterized by its insensitivity to rapamycin treatment. Instead of Raptor, 

mTORCs contains the protein called rapamycin-insensitive companion of mTOR (Rictor). 

which is a scaffold protein playing a role in mTORC2 assembly and activation (Dos et al., 2004; 

Jacinto et al., 2006). mTORC2 also consists common proteins with mTORC1 including mTOR, 

DEPTOR and mLST8. Being the only inhibitor subunit of mTORC2, Deptor negatively 

regulates mTORC2 activity (Peterson et al., 2009). Knockout studies show that mLST8 is 

critical for mTORC2 stability and activity (Guertin et al., 2006). Unlike mTORC1, mTORC2 

also consists of mSin1 (mammalian stress-activated protein kinase interacting protein) (mSIN1) 

and Protor1/2 (protein observed with Rictor). Structure of mTORC2 is maintained by the 

stabilizing activity of two scaffold proteins in the complex, Rictor and mSIN1 onto each other 

(Figure 1.2.1 2) (Jacinto et al., 2006).  
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Figure 1.2.1 2: Structure of mTORC2 and domains of mTOR. Subunits of mTORC2 

complex are mTOR, Rictor, DEPTOR, Protor1/2, mSin1 and mLST8 (Retrieved from 

Bartolome et al., 2014)). 

 

 

mTORC1 and mTORC2 can be distinguished on the basis of their sensitivity to 

rapamycin which only inhibits mTORC1 (Sarbassov et al., 2006).The two complexes are 

responsive to different signals and produce different downstream targets. While mTORC2 

mainly regulates cytoskeleton organization and cell survival, the major cellular role of 

mTORC1 is the control of cell growth, protein synthesis and autophagy.  

 

1.2.2 mTORC1: Functions and signaling pathways 

 

mTORC1 functions in macromolecule biosynthesis, autophagy, cell cycle, growth and 

metabolism once it is activated by the amino acids, cellular energy level, oxygen, stress and 

growth factors.  

 

Upstream Regulators 

mTORC1 has several intracellular and extracellular upstream regulators. Major signals are 

growth factors, energy status, oxygen, stress and amino acids. One of the most important 

sensors involved in the regulation of mTORC1 activity is the tuberous sclerosis complex (TSC), 

which is a heterodimeric complex comprised of TSC1, TSC2 and TBC1D7 (Dibble & Manning, 

2010). TSC1/2 complex functions as a GTPase activating protein (GAP) for the small GTPase 

Rheb (Ras homolog enriched in brain) (Inoki, Li, Xu, & Guan, 2003). TSC1/2 is inactivated 
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once it is phosphorylated on multiple sites. Upon TSC1/2 inactivation, GTP-bound and 

activated Rheb directly binds and stimulates the kinase activity of mTORC1 (Long, Ortiz-Vega, 

Lin, & Avruch, 2005; Sancak et al., 2007). 

 

Stimulation of mTORC1 via TSC1/2 dependent manner includes the insulin/insulin-like 

growth factor-1 (IGF-1) pathway, which resulted in the Akt-dependent multisite 

phosphorylation of TSC2. Phosphorylated TSC dissociates from the lysosomal membrane, 

where at least some fraction of cellular Rheb localizes (Menon et al., 2014). 

 

Another road for growth factors to stimulate mTORC1 activity via TSC1/TSC2 

mechanism is the phosphorylation of TSC1 by IκB kinase β (IKKβ) and leads TSC1/2 inhibition 

(D. F. Lee et al., 2007). As a substrate of AKT, GSK3B has been also identified as a mTORC1 

upstream regulator. Glycogen synthase kinase 3β (GSK3β) phosphorylates TSC2 and promotes 

the TSC1/2 activity which in turn inhibits mTORC1 activity (Inoki et al., 2006). mTORC1 can 

also be activated by growth factors via TSC1/2 independent pathway. As AKT is 

phosphorylated and activated by growth factors; PRAS40 which is negatively regulating 

mTORC1 activity by inhibiting the substrate binding, can be phosphorylated and dissociated 

from the complex (Sancak et al., 2007).  

 

mTORC1 activity is inhibited by receiving the intracellular energy status signals 

through AMP activated protein kinase, AMPK pathway. Upon the ratio ATP/ADP decreases, 

AMPK pathway is activated. Activated adenylyl cyclase phosphorylates TSC2 and GDP bound 

RHEB reduces the activity of mTORC1 (Inoki, Zhu, & Guan, 2003). Moreover, Raptor is also 

a target for AMPK. Phosphorylation of Raptor by AMPK results in reduction of mTORC1 

activity (Gwinn et al., 2008). 

 

Intracellular aminoacid levels can also act upon mTORC1 activation through TSC1/2 

independent pathway. It has been discovered that Rag GTPases are essential for amino acid 

dependent activation of mTORC1 (Sancak et al., 2008). In response to amino acid rich 

condition, RAG GTPases are activated via GTP loading. RagA or RagB is loaded with GTP 

and RagC or RagD is loaded with GDP.  This results in translocation of mTORC1 from cytosol 

to lysosomes and, interaction and activation by GTP bound RHEB. Upon amino acid 

deprivation, Rags are inactivated. RagA or RagB is loaded with GDP and RagC or RagD is 

loaded with GTP. Thus, mTORC1 is inactivated and transported to cytosol.  
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Hypoxia is another key regulator of mTORC1. One of the major responses for hypoxia 

is the block in mitochondrial respiration. First, AMPK pathway is activated due to the low ATP 

levels, then TSC1/2 complex activity is iniated and mTORC1 activity is abolished. REDD1, 

DNA damage response 1, is also a target for hypoxia to induce TSC1/2 assembly by disrupting 

the interaction between TSC2 and cytosolic chaperone 14-3-3 (Brugarolas et al., 2004). Another 

major response to hypoxia-related stress is the stabilization of the hypoxia inducible factor-1a 

(HIF-1a) (He & Klionsky, 2009). HIF-1a induces transcription of a Bcl-2 family member 

BNIP3 which disrupts the interaction between mTOR and Rheb, thus reduces mTORC1 activity 

(Bellot et al., 2009).  

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 1.2.2 1: Upstream regulation of mTORC1 pathway (Retrieved from (Russell, Fang, 

& Guan, 2011)). 

 

Outputs of mTORC1 signaling 

 

mTORC1 regulates several highly significant cellular processes such as protein synthesis, lipid 

synthesis, autophagy, lysosomal biogenesis and energy metabolism (Sarbassov, Ali, & Sabatini, 

2005). Promoting protein synthesis which is essential for cellular growth is one of the well-
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studied functions of mTORC1 via inducing ribosomal biogenesis and mRNA translation. This 

is occurred due to the direct binding of S6K1 (ribosomal S6 kinase) on its hydrophobic motif 

site, Thr 389. This enables its subsequent phosphorylation and activation by PDK1. Active 

S6K1 promotes mRNA translation initiation via phosphorylation of several substrates including 

EIF4B, that positively controls 5’ cap binding eIF4F complex (Holz, Ballif, Gygi, & Blenis, 

2005). Moreover, an inhibitor of eIF4B, PCDC4 is also phosphorylated and degraded by 

S6K1(Dorrello et al., 2006). Additionaly, S6K1 promotes translation efficiency of spliced 

mRNAs by interacting with SKAR, an exon-junction complex member (X. M. Ma, Yoon, 

Richardson, Jülich, & Blenis, 2008). mTORC1 also promotes protein synthesis through 

targeting 4EBP1. 4EBP1, which has a translation inhibitory function, is phosphorylated at 

multiple sites and released from eIF4E, eukaryotic translation initiation factor. This allows 

5′cap-dependent mRNA translation to occur (Brunn et al., 1997; Gingras et al., 1999).  

 

Other anabolic processes, such as nucleotide and lipid synthesis are also stimulated by  

mTORC1. Pyrimidine synthesis is promoted through phosphorylation and activation of 

carbamoyl-phosphate synthetase (CAD) that is a key component of the de novo pyrimidine 

synthesis pathway (Robitaille et al., 2013). Lipid biosynthesis, which is required for cell growth 

and proliferation, is also one of the significant outputs of mTORC1 signaling pathway. 

mTORC1 takes a role in lipid synthesis via activating sterol regulatory element binding protein 

(SREBP1) through S6K1 (Düvel et al., 2010; Porstmann et al., 2008). Also, mTORC1 performs 

activating lipid biosynthesis function by inhibiting LIPIN1 translocation to nucleus which will 

downregulate SREBP1 activity (Peterson et al., 2011). 

 

In addition to the stimulatory effects on anabolic processes, mTORC1 also function as 

the major negative regulator of lysosome biogenesis and autophagy. (see below for further 

detail). 
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Figure 1.2.2 1: The major signaling pathways regulated by mTORC1 (Retrieved from 

(Saxton & Sabatini, 2017)) 

 

1.2.3 mTORC2: Functions and signaling pathways 

 

Although the signaling pathways related to mTORC1 is well-characterized, limited information 

is provided for mTORC2 functions and signaling pathways which causes mTORC2 to be 

remained as the “black box”.  

 

Upstream regulators  

Similar to mTORC1, mTORC2 activity is also regulated by various upstream stimuli, including 

insulin/PI3K signaling and growth factors. Growth factors activate mTORC2 via PI3K 

signaling. Studies in yeast and mammalian cells showed that ribosomes are required for 

mTORC2 signaling and active mTORC2 physically interacts with the ribosomes (Figure 1.2.3 

1). Their interaction is promoted by insulin-stimulated PI3K signaling (Zinzalla, Stracka, 

Oppliger, & Hall, 2011). Another PI3K-dependent mechanism for mTORC2 activation is 

dependent on the interaction between PtdIns(3,4,5)P3 and mSin1, the subunit that negatively 

regulates mTORC2 activity (Yuan & Guan, 2015). 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.3 1: Activation of mTORC2 by interaction with ribosome (Retrieved from 

(Zinzalla et al., 2011)). 
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Feedback signals from mTORC1 and its downstream target S6K1 were shown to 

negatively modulate insulin/PI3K signaling through phosphorylation of its regulators, affecting 

mTORC2 activity. For example, the negative regulator GRB10, was phosphorylated and 

activated by mTORC1 (P. P. Hsu et al., 2011; Yu et al., 2011). Moreover, S6K1, which directly 

phosphorylates and promotes the degradation of IRS1 (insulin receptor substrate 1) (Harrington 

et al., 2004; Shah, Wang, & Hunter, 2004).  

 

The TSC1-TSC2 complex plays opposing roles in the regulation of mTOR complexes 

(Figure 1.2.3 2). Surprisingly, TSC1-TSC2 complex promote mTORC2 activity. One Inhibition 

of Rheb and mTORC1 results in the relief of mTORC1-dependent feedback mechanism. 

Furthermore, TSC1-TSC2 complex physically associates with and activates mTORC2. 

Attenuation of mTORC2 kinase activity upon disruption of TSC1-TSC2 complex is 

independent of its GAP activity and Rheb, that results in reduction in Akt phosphorylation (J. 

Huang & Manning, 2008). 

 

 
 

Figure 1.2.3 2: TSC1-TSC2 complex regulates mTORC1 negatively whereas promotes 

mTORC2 activity (Retrieved from (Dibble & Manning, 2010)).  
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Outputs of mTORC2 signalling 

 

The best characterized mTORC2 substrates are components of AGC protein kinase family, 

including Akt, SGK1 (serum- and glucocorticoid-induced protein kinase 1), and PKC-α 

(protein kinase C-α) (Oh & Jacinto, 2011). mTORC2 phosphorylates Akt at Ser473 and 

increases its phoshorylation at Thr308 by PDK1 which in turn results in the Akt activation and 

cell survival (Guertin et al., 2006; Sarbassov, Guertin, Ali, & Sabatini, 2005). However, Akt 

and expression of its downstream targets are not completely blocked in the loss of mTORC2 

(Oh et al., 2010). SGK1, that controls ion transport and cellular growth, is also identified as a 

target of mTORC2 (Aoyama et al., 2005). Knockdown of mTORC2 results in the absence of 

SGK1 phosphorylation and complete blockage of its activity, and increased cell death (García-

Martínez & Alessi, 2008). Moreover, mTORC2-mediated phosphorylation of PKC prevents its 

degradation and promotes its kinase activity. PKC seems to control actin cytoskeleton 

organization by mTORC2 (Xin et al., 2014).  Similarly, animal model with Rictor knockout 

showed decreased levels of PKCα and its activity in the hypothalamus (Kocalis et al., 2014).  

 

mTORC2 is also implicated in lipid biogenesis via activation of SREBP1c through 

phosphorylated Akt (Hagiwara et al., 2012). 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 1.2.3 4: mTOR signaling pathway (Retrieved from Kim, 2015) 
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1.2.4 mTOR and autophagy 

 

Studies have shown that mTORC1 is the major inhibitor of autophagy pathway and inhibition 

of mTORC1 reduces autophagic activity. In mammals, under aminoacid-rich conditions, 

autophagy is directly regulated by mTORC1 through phosphorylation of ULK1 at Ser757.  

mTORC1 directly binds, phosphorylates and inactivates the kinase activity of ULK1 which is 

required for autophagy initiation. On sensing a decrease in amino acid levels, mTORC1 is 

inactivated and dissociates from the ULK1 complex which leads to ULK1/ATG13/FIP200 

complex formation and initiation of autophagy via ULK1 autophosphorylation and 

phosphorylation of its binding partners (Hosokawa et al., 2009; Mizushima, 2010). Hence, 

cascades that result in autophagosome initiation and nucleation are triggered. 

 

Moreover, AMPK, the energy sensor of the cell, is another player in the control of 

autophagy through ULK1 and mTORC1. AMPK is activated in response to the increase in 

AMP:ATP ratio upon energy starvation. Under these conditions, AMPK promotes autophagy 

by activating ULK1 through direct phosphorylation at Ser555, Ser317 and Ser777 residues 

(Joungmok Kim, Kundu, Viollet, & Guan, 2011; J. W. Lee, Park, Takahashi, & Wang, 2010; 

Shang & Wang, 2011). Moreover, the interaction between ULK1 and AMPK is distorted when 

active mTORC1 phosphorylates ULK1 (Joungmok Kim et al., 2011).  

 

AMPK-activated ULK1 contributes to mTORC1 inactivation through phosphorylation 

of Raptor which creates a negative feedback loop to maintain mTORC1 inhibition under 

energy-limited conditions (Dunlop, Hunt, Acosta-Jaquez, Fingar, & Tee, 2011). Another 

negative feedback loop on autophagy induction is created when active ULK1 inhibits AMPK 

activation through repressive phosphorylation (Löffler et al., 2011).  

 

In addition, mTORC1 inhibits ULK1 stability through phosphorylation of AMBRA1, 

which activates VPS34, a class III PI3K critical for autophagosome formation (Nazio et al., 

2013). A component of VPS34 complex, ATG14, is phosphorylated by mTOR to control 

autophagy level by inhibiting its lipid kinase activity under nutrient-rich conditions (Yuan, 

Russell, & Guan, 2013). Subsequent studies revealed that several other mechanisms are 

included in mTORC1-mediated autophagy regulation including death-associated protein 1 
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(DAP1), a novel mTOR substrate (Koren, Reem, & Kimchi, 2010) and WD repeat domain 

phosphoinositide-interaction protein 2 (WIPI2) (P. P. Hsu et al., 2011).  

 

Regulation of MITF/TFE transcription factors by mTORC1 will be covered in the next 

chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.4 1: Regulation of autophagy by mTORC1 (Retrieved from (Y. C. Kim & Guan, 

2015)). 

 
Although the connection between mTORC1 and autophagy is well established, much 

less is known about the role of mTORC2 effect on autophagy regulation. Yet, mTORC2-

RICTOR complex was found to be necessary for the phosphorylation of Akt at Serine 473 in 

vitro (Sarbassov, Guertin, et al., 2005). Activation of Akt/PKB effector inhibits the activation 

of transcription factor FoxO3 and consequently the transcription inhibition of autophagy related 

genes including LC3 and BNIP3 (Mammucari et al., 2007). It has been shown that silencing of 

Rictor evoked autophagy in neuroblastoma x glioma hybrid cell line (Chin et al., 2010). In 

addition, the inactivation of mTORC2 by targeted deletion of RICTOR in myocytes from adult 

heart result in increased levels of cleaved caspase-3 and LC3-II indicating the induction in both 

apoptosis and autophagy (Shende et al., 2016). mTORC2 was also reported to indirectly 

suppress autophagy through the activation of mTORC1. The PI3K signaling axis activates 

mTORC2, which, in turn, phosphorylates AKT at two different sites, leading to AKT/mTORC1 
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signaling axis activation (Oh et al., 2010; Zinzalla et al., 2011). In this context, mTORC2 can 

be defined as a negative regulator of autophagy, as mTORC1. 

 

In line with this, in the recent study of Arias et al., lysosomal mTORC2, Akt, and PHLPP 

are shown to regulate the activity of chaperone mediated autophagy, a selective type of 

lysosomal degradation that is a selective component of the cellular stress response (Arias et al., 

2015). They identified PHLPP1 and TORC2 as endogenous CMA stimulator and inhibitor, 

respectively, and unveiled how their opposite effects on Akt act coordinately in the modulation 

of basal and inducible CMA activity. The stress-induced increase in the association of the 

phosphatase with the Mb and the modulation of its stability in this compartment by the GTPase, 

Rac1, contribute to neutralize the endogenous inhibitory effect of lysosomal mTORC2/Akt on 

CMA (Arias et al., 2015). 
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1.3 Transcriptional Control of Autophagy: 
MiT/TFE Transcription Factors 

 
 
Early studies about autophagic machinery mainly focused on the cytoplasmic regulation of 

autophagy through ATG family of proteins that mediate dynamic membrane rearrangements. 

Indeed, nuclear regulation of autophagy was neglected. However, lately it has been gained 

increased attention that the control center of autophagy is found in the nucleus and several 

transcription factors function in the longer-term transcriptional regulation of autophagy. There 

are more than 20 transcription factors that have been shown to be in control of the autophagic 

process and lysosomal biogenesis (Table 1.3 1) (reviewed in (Füllgrabe, Ghislat, Cho, & 

Rubinsztein, 2016; Pietrocola et al., 2013). Some of the transcription factors promote induction 

of autophagy (E2F1, GATA1 and FOXO family members, others repress (GATA4, FXR, ATF5 

and ZKSCAN1), and a few have a dual inhibitory/activating function (TP53/p53 and NFKB) 

(Table 1.3 1).  
 
Table 1.3 1 Transcriptional regulation of autophagy 

Transcription 
factor 

Impact on autophagy Targets 

TFEB Upregulation ATG4, ATG9, BCL2, LC3, SQSTM1, Wipi1, 
UVRAG 

TFE3 Upregulation TG16L1, ATG9B, GABARAP-L1, WIPI, 
UVRAG  

ZKSCAN3 Downregulation MAPLC3B, ULK1, ATG18b, DFCP1 
FXR Downregulation ATG4, ATG7, ATG10, Wipi1, Dfcp1, ULK1, 

LAMP2, P62, PI3KCIII, Bnip3  
PPAR alpha Upregulation/Downregulation ATG2, ATG4, ATG12, ATG16, Pink1, Bnip3, 

Wipi1, LC3, P13KCIII  
NF-kappa B  Upregulation/Downregulation BCL2, Bnip3, BECN1, SQSTM1  
HIF-1alpha Upregulation Bnip3, BCL2, LC3, Beclin1, PI3KCIII  
P53  Upregulation/Downregulation ATG2, ATG4, ATG7, ATG1O, BCL2, ULKl, 

DRAM1, AMPK  
FOXO Upregulation ATG8, ATG12, ATG4B, Gabarapl1, VSP34, 

BECLINI 
E2F Upregulation/Downregulation Bnip3, LC3, ULKl, DRAM, ATG1, ATG5  
STAT Downregulation ATG3, ATG12, BCL2, Bnip3, BECN1  
GATA Upregulation/Downregulation ATG4, ATG8, LC3, ATG12, Bnip3, ATG5, 

ATG7, BECNI  
ATF4 Upregulation HRK, PUMA, NOXA, MAPLC3B, ULK1 

ATF5 Downregulation mTOR 
C/EBPb Upregulation ULK1, BNIP3, LC3, ATG4 
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In 2011, a landmark paper by Settembre and his colleagues introduced transcription 

factor EB (TFEB), that belongs to MITF/TFE transcription factor family, as a master regulator 

of wide-range of genes in autophagy in coordination with the genes involved in lysosomal 

biogenesis and function (Settembre et al., 2011) TFEB enables a rapid induction of autophagy-

related proteins that are functioning in all steps of the autophagic machinery. Considerable work 

has sought to understand the role of MITF/TFE family in cellular metabolism.  

 

In this chapter, I will describe the structure, expression pattern and functions of four 

members of MITF/TFE family of transcription factors, analyze the regulation of MITF/TFE 

activity, and summarize the current knowledge transcriptional control of autophagy and 

lysosomal biogenesis through MiT/TFE family.  

 

1.3.1 MITF/TFE Family of Transcription Factors 

 
Evolutionary conserved MITF/TFE family of transcription factors encodes four distinct genes: 

MITF (Microphtalmia-associated transcription factor), TFEB (Transcription factor EB), TFEC 

and TFE3 (Hemesath et al., 1994). Homologs of the family were identified in C. elegans (HLH-

30) (Rehli, 1999) and Drosophila (Mitf) (Figure 1.3.1 1)  (Hallsson et al., 2004). Structurally, 

all the four family members constitute three critical regions; a basic helix-loop-helix (bHLH) 

leucine zipper (LZ) motif,a transactivation domain, and a domain required for DNA binding 

(Figure 1.3.1 1) (Beckmann, Su, & Kadesch, 1990; Sato et al., 1997; Eiríkur Steingrímsson, 

Copeland, & Jenkins, 2004).  

 

 

 
Figure 1.3.1 1: Multiple sequence alignment of MITF/TFE family members (MITF, 

TFEB, TFEC and TFE3) and homologs in C. elegans (HLH-30) and D. Melanogaster (Mitf) 

(Retrieved from (Bouché et al., 2016). 
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The members of MITF/TFE family can form homodimers or heterodimers through their 

HLH-LZ motif with another member of the family to activate transcription. However, 

MITF/TFE family members cannot form homo/heterodimers with other related bHLH proteins 

including c-Myc, Max or USF (Hemesath et al., 1994; Pogenberg et al., 2012).  

 

MITF/TFE family members specifically bind to promoter region of their downstream 

target genes through E-box (CANNTG) and M-box (AGTCATGTGCT) response elements 

(Aksan & Goding, 2015). The function of MITF/TFE family members, especially TFEB 

remained unknown until a landmark paper published in 2009 that showed transcriptional 

regulation of numerous lysosomal and autophagy-related genes by TFEB via their binding to 

the E-box type element called Coordinated Lysosomal Expression and Regulation (CLEAR) 

element (GTCACGTGAC) (Sardiello & Ballabio, 2009). Several follow-up studies revealed 

that MITF and TFE3 could also bind the CLEAR element and regulate lysosome biogenesis in 

several different cell types (José A. Martina, Diab, Li, & Puertollano, 2014; Ploper & De 

Robertis, 2015). 

 

TFEB and TFE3 expression have been detected in several different cell types, hence 

they show a ubiquitous pattern of expression, whereas TFEC is the macrophage-restricted 

member of the family (Rehli, Den Elzen, Cassady, Ostrowski, & Hume, 1999). TFE3 gene 

seems to be under control of a single promoter, whereas TFEB and TFEC contain multiple 

alternative first exons.  

 

The MITF gene is expressed by alternative promoter usage from at least four promoters 

and their consecutive first exons (exons 1A, 1H, 1B and 1M) that results in several MITF 

isoforms sharing important functional domains of MITF but differing in their N termini (Udono 

et al., 2000). There are at least nine isoforms of MITF currently identified (Figure 1.3.1 2). The 

amino-termini of MITF-M is encoded by melanocyte-specific exon 1 (exon 1M). Common to 

all isoforms, exon 2-9 encode the functionally important regions, including b-HLH-Zip domain, 

transactivation domain and several phosphorylation consensus sequences (Hershey & Fisher, 

2005). However, all isoforms except B- and M-isoforms, exon 1 is formed from a unique exon 

spliced to exon 1B1b, common region of 83 amino acid residues. This domain is significantly 

similar to the one in TFEB (Amae et al., 1998) and TFE3 (Amae et al., 1998; Rehli et al., 1999). 

The M-isoform does not contain exon 1B whereas the B-isoforms has the entire exon 1B.  
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MITF isoforms except MITF-M are widely expressed in many cell types including RPE 

cells, cervical cancer, osteoclasts, and mast cells (Amae et al., 1998; Fuse et al., 1999; Udono 

et al., 2000). MITF-D is generally expressed in RPE cells and monocyte lineage (Kazuhisa 

Takeda et al., 2002), while MITF-Mc is a novel mast cell isoform (Takemoto, Yoon, & Fisher, 

2002). MITF-A and MITF-H has ubiquitous expression pattern due to their promoters lacking 

a typical TATA-box at the usual position which is commonly seen in many housekeeping genes 

(Udono et al., 2000). However, MITF-M promoter is under separate control that shows the 

melanocyte-specific function and MITF-M is highly expressed exclusively in melanocytes but 

not in other cell types. Thus, it has been identified as specific marker for melanocyte-lineage 

cells (Fuse, Yasumoto, Suzuki, Takahashi, & Shibahara, 1996; Shibahara, 2001).  

 

 

 
 

 

Figure 1.3.1 2: Alternative promoter usage and spliced mRNAs of human MITF isoforms.  

(Retrieved from (Kawakami et al., 2017)). 
 

Numerous studies demonstrated the significant role of MITF/TFE family of 

transcription factors in many cellular and physiological processes. TFEB is well-characterized 

as the master regulator of lysosomal function and autophagy by coordinating expression of 

lysosomal-autophagic pathway. Moreover, some studies reveal a role of TFEB in immune 

response, demonstrating TFEB function in the regulation of the innate immune response to 

pathogen infection in activated macrophages (Pastore et al., 2016), and antigen presentation 

during adaptive immune response (Samie & Cresswell, 2015). Furthermore, glucose and lipid 



 29 

metabolism also are controlled by TFEB transcriptional activity. Thereby, TFEB allows cells 

to adapt to changing environmental cues. Overexpression of TFEB improves outcomes in 

various diseases associated protein aggregation, including Parkinson’s disease, Huntington 

disease, X-linked spinal and bulbar muscular atrophy (Napolitano & Ballabio, 2016). 

Moreover, TFEB alleviates pathology in models of alpha-1-anti-trypsin deficiency, and 

lysosomal storage disorders including Pompe disease (Spampanato et al., 2013) and multiple 

sulfatase deficiency mucopolysaccharidosis type IIIA (Soria & Brunetti-Pierri, 2018). Taken 

together, TFEB has a crucial function in various pathological conditions through regulation of 

lysosomal function and autophagy (Figure 1.3.1 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.1 3: TFEB-mediated cellular clearance in diseases (Retrieved from (Ballabio, 

2016). 
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TFE3 also plays a critical role in the lysosomal function and autophagy, as well as in 

the regulation of glucose homeostasis, lipid metabolism and mitochondrial dynamics (Pastore 

et al., 2017). TFE3 knockout experiments in mice showed that it can be a novel therapeutic 

target for diet-induced obesity and diabetes. Hence, it cooperates with TFEB to ensure 

metabolic adaptation to environmental cues (Figure 1.3.1 4).  

  

 
 

Figure 1.3.1 4: Role of TFE3 in metabolic response to environmental cues (Retrieved from 

(Pastore et al., 2017). 

 

MITF, on the other hand, is mainly characterized as the regulator of melanosome 

biogenesis, and development, survival, and differentiation of neural crest-derived melanocytes 

and retinal pigmented epithelium (RPE). These processes are highly dependent on proper 

lysosomal pH and autophagic activity. Interestingly, in recent studies, MITF has been shown to 

play a role in the transcriptional regulation of lysosomal biogenesis and, to some extent, 

autophagic activity like TFEB and TFE3. In collaboration with TFE3, MITF also regulates 

osteoclastogenesis (Hershey & Fisher, 2004) and mast cell differentiation (Weilbaecher et al., 

2001). Moreover, some target genes of MITF are involved in cell proliferation and survival 

mechanisms.  
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Mutations in MITF gene can result in white coat color and deafness in mice and rats that 

also present microphthalmia (Hodgkinson et al., 1993). Heterozygous mutations in MITF can 

cause Waardenburg Syndrome type 2, which is characterized as a hypopigmentation and 

deafness disorder (Tassabehji, Newton, & Read, 1994). On the other hand, Tietz Syndrome, 

that is also characterized by generalized depigmentation and deafness, is caused by dominant-

negative mutations in human MITF gene (Smith, Kelley, Kenyon, & Hoover, 2000).  

 

Several studies argue that MITF/TFE family of transcription factors are oncogenes. 

TFEB and TFE3 are driven by translocations in pediatric renal cell carcinomas (RCC) and 

alveolar soft part sarcomas (ASPS) (Argani, 2015; Ramphal, Pappo, Zielenska, Grant, & Ngan, 

2006).  

 

However, the expression levels of MITF appear to have different downstream effects in 

melanoma. It has been shown to promote oncogenesis in melanoma by regulating key processes 

in carcinogenesis involving proliferation, invasiveness, survival, oxidative stress and DNA 

repair (Haq & Fisher, 2011). MITF amplification has been identified in 20% of melanomas as 

lineage specific oncogene (Garraway et al., 2005). Thereby, the expression of transcriptional 

targets of MITF that are involved in cell proliferation (CDK2), cell survival (BCL2), 

invasiveness (cMET) and cell-cycle arrest (p21, p16) are increased. Conversely, some studies 

suggest that high levels of MITF attenuates proliferation, invasiveness and tumor development. 

Interestingly, it has been described that, MITF, when expressed at very low levels, causes p27-

dependent cell cycle arrest with increased invasiveness properties, whereas intermediate levels 

of MITF result in proliferation and high levels of MITF activity initiate differentiation (Carreira 

et al., 2006). 

 

 

Recently, MITF, TFEB and TFE3 overexpression was detected in pancreatic 

adenoductal carcinoma (PDA) cell lines and patient tumors in which constitutive activation of 

autophagy is required to maintain metabolic homeostasis in PDA (Perera et al., 2015). 

Moreover, these transcription factors were found in nucleus constitutively, similar to that seen 

in RCC and ASPS. Importantly, MITF, TFEB and TFE3 were shown to promote lysosomal 

function and autophagy in PDA.  
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Figure 1.3.1 5: MITF is involved in the induction of melanoma, melanocyte 

differentiation, cell-cycle progression and survival (Retrieved from (Levy, Khaled, & Fisher, 

2006)) 
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1.3.2 Regulation of MITF/TFE activity 

 

MITF/TFE family of transcription factors are regulated in response to extracellular signals such 

as nutrient availability and various forms of cell stress. Such regulation mechanism involves 

shuttling of transcription factors between lysosomal membranes, the cytoplasm, and the nucleus 

that is mediated by phosphorylation of multiple conserved aminoacids (Figure 1.3.2 1). Major 

kinases responsible for MITF-TFE phosphorylation include mTOR, ERK, GSK3 and AKT.  

 

 
 

Figure 1.3.2 1: Sequence conservation of TFEB, TFE3, MITF and TFEC phosphorylation 

sites. Phosphorylation sites that inhibit nuclear translocation of TFEB are shown with red 

asterisks, while those have been found to promote TFEB nuclear localization are shown with 

green asterisks (Retrieved from (Puertollano, Ferguson, Brugarolas, & Ballabio, 2018).  
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1.3.2.1 Nutrient deprivation and mTORC-1 dependent regulation 

 

A key point in understanding the role of MITF/TFE family in lysosomal biogenesis and 

autophagy was the identification of the mechanism for TFEB activation in response to nutrient 

deprivation. Subsequent studies indicate that TFEB is regulated by mammalian target of 

rapamycin complex 1 (mTORC1) (Jose A. Martina, Chen, Gucek, & Puertollano, 2012; 

Settembre et al., 2012). Under nutrient-rich conditions, TFEB is phosphorylated by mTORC1 

at S122, S142 or S211 but only S211 phosphorylation creates a docking sites for the cytosolic 

chaperone 14-3-3 (Jose A. Martina et al., 2012; Roczniak-Ferguson et al., 2012; Settembre et 

al., 2011; Vega-Rubin-de-Celis, Peña-Llopis, Konda, & Brugarolas, 2017). Binding of 14-3-3 

causes sequestration of TFEB in the cytosol and keeps it inactive, most probably via masking 

the nuclear import signal. Mutations of S142A or S211A resulted in a constitutively active 

TFEB in nucleus which is a similar response to mTOR inhibitor Torin1 (Settembre et al., 2012).  

 

Remarkably, mTORC1 regulation in response to nutrient status is mediated by RRAG 

GTPases that sense amino acid availability and control subcellular localization of mTORC1 

(Sancak et al., 2010). In the presence of amino acids, MTORC1 complexes are recruited to 

lysosome membranes through active RRAG GTPase heterodimers (RRAGA/B-GTP and 

RRAGC/D-GDP), leading to their activation by RHEB proteins (Sancak et al., 2010; Zoncu et 

al., 2011). Interestingly, active RRAG GTPases bind and recruit TFEB to lysosomes, promoting 

its mTORC1-dependent phosphorylation (Figure 1.3.2.1 1). This suggests that mTORC1-

mediated TFEB phosphorylation can occur at the lysosomal membrane.  

 

 
 

Figure 1.3.2.1 1: Amino acid signaling to mTORC1 (Retrieved from (S. G. Kim, Buel, & 

Blenis, 2013)) 
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Conversely, starvation or lysosomal stress shuts-off RRAG proteins, resulting in the 

release of mTORC1 from the lysosomal membrane. Consequently, non-phosphorylated TFEB 

is free to translocate to the nucleus and activate the target genes in lysosomal biogenesis and 

autophagy that will assist in cellular survival during starvation conditions (Figure 1.3.2.1 2). 

Interestingly, in response to nutrient deprivation, lysosomal calcium is released through calcium 

channel mucolipin 1 (MCOLN1), which in turn activates phosphatase calcineurin (CaN) to 

directly dephosphorylate TFEB (Medina et al., 2015). Indeed, TFEB activation and autophagy 

induction upon nutrient deprivation is prevented in the absence of MCOLN1. TFEB nuclear 

localization and activation is also triggered by the TOR inhibitors rapamycin and Torin-1.  

 

Very recently, MAP4K3 was identified as a key node in the amino acid-mediated 

regulation of TFEB subcellular localization (C. L. Hsu et al., 2018). Direct phosphorylation of 

TFEB serine 3 by MAP4K3 is essential for the interaction of TFEB with the mTORC1-Rag 

GTPAse complex by likely contributing to the recruitment of TFEB to lysosomal membranes. 

Indeed, S3 phosphorylation is necessary for TFEB serine 211 phosphorylation by mTORC1 

and cytosolic sequesteration of TFEB with 14-3-3. 

 

Studies in several cellular systems revealed that similar mTORC1-dependent 

mechanism controlling TFEB activity also appear to regulate subcellular localization of other 

MITF/TFE members, MITF and TFE3, in response to nutrient starvation and mTORC1 

inhibition (José A. Martina, Diab, Lishu, et al., 2014). Indeed, TFEB serine residues 

phosphorylated by mTORC1 are conserved in MITF and TFE3. In response to the changes in 

the nutrient levels, MITF is also recruited to the lysosomal surface where mTORC1 

phosphorylates the serine 280 residue and create a binding site for 14-3-3. In the case of TFE3, 

active mTORC1 phosphorylates serine 321 residue. mTORC1-dependent phosphorylation 

results in sequestration of MITF and TFE3 in the cytosol. Conversely, when nutrients are 

deprived, mTORC1 inactivation and dephosphorylation of Ser280 for MITF and Ser321 for 

TFE3 result in the rapid accumulation of these transcription factors in the nucleus.  Similar 

activation mechanisms for different members of MITF/TFE family suggests a similar function 

for TFEB, MITF and TFE3.  
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Figure 1.3.2.1 2: mTORC1-dependent signaling mechanism that regulate TFEB nuclear 

translocation (Retrieved from (Ballabio, 2016)).  

 

1.3.2.2 Cellular Stress 

 

Several studies showed that MITF/TFE family of transcription factors, especially TFEB, 

responds to a variety of cellular stresses including lysosomal stress, mitochondrial stress, 

endoplasmic reticulum (ER) stress, and reactive oxygen species (ROS). 

 

TFEB responds to lysosomal status in mTORC1-dependent manner, as mTORC1 is 

inactivated upon lysosomal stress and released from the lysosomal membrane (Sancak et al., 

2010). Moreover, treatment with lysosomal inhibitors such as chloroquine or Bafilomycin-1 

can trigger the nuclear localization of TFEB (Roczniak-Ferguson et al., 2012; Settembre et al., 

2012). 
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Unlikely, TFEB and TFE3 responds to mitochondrial stress in a mTORC1-independent 

manner such that nuclear translocation of TFEB and TFEC upon mitophagy induction by 

oligomycin and antimycin A is dependent on PINK1, Parkin, ATG5 and ATG9A (Nezich, 

Wang, Fogel, & Youle, 2015). Further studies showed that peroxisome proliferator-activated 

receptor gamma coactivator-1 alpha (PGC-1α) transactivates TFEB expression to induce 

mitophagy and ameliorate Huntington’s Disease neurodegeneration (Tsunemi et al., 2012). 

Interestingly, a feed-forward loop has been generated through PGC-1α being a direct target 

gene for TFEB with three CLEAR sites in its promoter (Settembre et al., 2013).  

 

Furthermore, in response to endogenous and exogenous ROS treatment, TFEB is 

activated following MCOLN1 mediated lysosomal calcium release and calcineurin activation 

(X. Zhang et al., 2016).  

 

Recently, ER stress has been found to regulate TFEB and TFE3 nuclear translocation in 

an mTORC1-independent manner (Figure 1.3.2.2 1). In this case, activation of one of the key 

mediators of integrated stress response, PERK (kinase double-stranded RNA activated protein 

kinase-like ER kinase), results in upregulation of ATF4 (activating transcription factor 4), 

which in turn induces calcineurin activation and promotes nuclear translocation of TFEB and 

TFE3 (J. A. Martina, Diab, Brady, & Puertollano, 2016). However, the exact mechanism of 

PERK-dependent activation of TFEB and TFE3 is still needed to be discovered. 

 
 
Figure 1.3.2.2 1: TFEB and TFE3 respond to ER-Stress in a PERK-dependent manner. 

(Retrieved from Martina et al., 2016).  



 38 

1.3.2.3 mTORC1-independent regulation 

 

Along with mTORC1, other growth-regulating kinases glycogen synthase kinase 3 (GSK3) and 

MAPK kinase (MEK)/extracellular signal-regulated kinase (ERK) also control subcellular 

localization of MITF/TFE family members. Indeed, as shown in Fig. 1.3.2.3 1, GSK3-regulated 

phosphoproteome showed that MITF/TFE family of transcription factors consist the most 

conserved GSK3 phosphorylation sites in the carboxy-terminus (Ploper & De Robertis, 2015).  

 

 
 

Figure 1.3.2.3 1: Highly conserved GSK3 phosphorylation sites in MITF and its 

paralogues TFEB, TFE3 and TFEC (retrieved from (Ploper et al., 2015). 

 

Recently, it was shown that TFEB is phosphorylated by GSKβ at serine 134 and serine 

138, directing TFEB to the lysosomal surface by an unknown mechanism and faciliating 

mTORC1-mediated phosphorylation. Following PKCα and PKCδ-mediated inhibition of 

GSK3β, TFEB, rather than TFE3, TFEB is no longer localized at lysosomal membrane, freely 

translocates to nucleus and activated (Y. Li et al., 2016).  

 

Furthermore, nuclear export signal of TFEB was found to be regulated through a 

mechanism involving phosphorylation at S138 by GSK3β which is primed by phosphorylation 

at S142 by ERK/mTORC1. Whether TFEB is retained in the nucleus will be dependent on the 

phosphorylation status of S138 and S142. Absence of phosphorylation of S138 or S142 will 

lead to nuclear retention. Although S142 should be dephosphorylated to promote TFEB nuclear 

entry, there is no must for S138 to be dephosphorylated for nuclear translocation of TFEB. 

Moreover, glucose limitation activates mTORC2-Akt-GSK3β axis that results in the inhibitory 

phosphorylation of GSK3β, hence preventing nuclear export of TFEB (Li et al., 2018).  
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Moreover, MITF in proliferative stages of melanoma was also shown to be regulated 

through GSK3β phosphorylation via a positive-feedback loop (Figure 1.3.2.3 2). Without Wnt 

signaling, serine 405, 401 and 397 residues of MITF are phosphorylated by GSK3β promoting 

degradation of the MITF protein in proteasomes. Upon Wnt ligand binding, GSK3β is inhibited, 

phosphorylation of serine residues at MITF C-terminal is abolished, and MITF protein is 

stabilized. Hence, MITF constitutively translocate into the nucleus and expands late endosomes 

which can further sequester destruction complex components and enhance the Wnt signal 

(Ploper et al., 2015).  

 

 

 
 

 

Figure 1.3.2.3 2: Positive feedback loop between MITF and Wnt signaling in melanoma 

(Retrieved from Ploper et al., 2015) 

 
 

In addition, serine 298 residue of MITF, that is mutated in individuals with 

Waardenburg syndrome type 2 (WS2), is also a target for GSK3β phosphorylation in 

melanoma, thereby enhancing the interaction of MITF to the promoter of its target, tyrosinase 

(K. Takeda, 2000).  
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Notably, a recent study identified Akt as an mTORC1-independent regulator of TFEB 

activity through phosphorylation at serine 467. Indeed, pharmacological inhibition of Akt 

induces TFEB-mediated cellular clearance in models of lysosomal storage diseases (M. et al., 

2017). 

 

Another kinase ERK2 was also shown to phosphorylate TFEB at serine 142 that 

promotes TFEB cytoplasmic retention (Settembre et al., 2011). Similarly, ERK-mediated 

phosphorylation of the homologous serine 73 site in the melanocyte-specific MITF isoform, 

MITF-M, enhances recruitment of p300/CBP (CREB-binding protein) to MITF and modulates 

transcriptional activity (Wu et al., 2000). Moreover, activated ERK1/2 can further promote its 

downstream kinase p90-RSK1 which can also phosphorylate MITF at serine 409 (Wu, 2000). 

Additionally, another study showed that BRAF/MAPK and GSK3-mediated phosphorylation 

mechanisms converge to regulate MITF nuclear export (Ngeow et al., 2018). Phosphorylation 

of MITF-M isoform by ERK on S73 in response to BRAF/MAPK signaling primes for 

phosphorylation by GSK3β on S69. Hence, this mechanism was reported to control 

transcriptional activity and protein stability of MITF-M by regulating its ubiquitination on K201 

and proteosomal degradation.  

 

Several different kinases were shown to be involved MITF/TFE regulation in osteoclast 

differentiation. Various studies demonstrate that RANKL1, osteoclast differentiation factor, 

promotes lysosomal biogenesis in osteoclast differentiation through TFEB and MITF 

activation. For instance, RANKL induces PKCβ-mediated phosphorylation of TFEB on 

S462/S463/S467/S469 in the C-terminal region, hence stabilizes and increases the activity of 

TFEB (Ferron et al., 2013). Moreover, MITF is also phosphorylated in response to RANKL 

signaling. Phosphorylation of serine 307 residue is mediated by p38 MAPK, which promotes 

MITF activity (Mansky, Sankar, Han, & Ostrowski, 2002). Additionally, subcellular 

localization of MITF in osteoclast differentiation is also controlled by C-TAK1 (Cdc25-

associated kinase) by generating 14-3-3 binding sites and promoting cytosolic retention of 

MITF. Upon RANKL treatment, interaction between C-TAK1 and MITF is disturbed, and 

MITF freely translocates to the nucleus (Bronisz, 2006; Schwarz, Murphy, Sohn, & Mansky, 

2010). 
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1.3.3 Lysosomal and autophagy-related targets of MITF/TFE family 

  

Members of the MITF-TFE family of transcription factors have a large degree of overlap in 

their regulatory mechanisms (as described in previous section) and functions. MITF-M is the 

exception since it is melanocyte-specific isoform of MITF and constitutively localized in the 

nucleus (Selzer et al., 2002). The function of MITF-M as regulator of melanoblast survival and 

differentiation, melanosome biogenesis and eye development has been broadly explored but 

functions of other isoforms has been more subtle.  

 

Detailed insights into the function of MITF/TFE family has been revealed when TFEB 

was characterized as a major transcription factor regulating lysosomal biogenesis and further 

studies unravel its function in autophagic machinery by coordinating the expression of genes 

involved in all steps of the autophagy process, from initiation and autophagosome formation to 

autolysosomal degradation. TFEB regulates expression of lysosomal and autophagy-related 

targets through binding to the E-box type CLEAR elements (GTCACGTGAC) in their 

promoter regions (Sardiello & Ballabio, 2009). Several follow-up studies revealed that MITF 

and TFE3 display conserved regulation by mTOR, and also bind to similar CLEAR elements 

found on targets genes of TFEB. Thereby, all these factors have overlapping but not identical 

functions in lysosomal biogenesis and autophagy in several different cell types (Table 1.3.3 1).  

 

TFEB overexpression results in a significant increase in total lysosome amount in the 

cell through its contribution to the transcriptional activation of numerous lysosomal genes, 

including several subunits of the v-ATPase, lysosomal transmembrane proteins and lysosomal 

hydrolases (Sardiello & Ballabio, 2009). In addition, TFEB overexpresion leads to enhanced 

clerance of long-lived proteins (Settembre et al., 2011), lipid droplets and dysfunctional 

mitochondria (Nezich et al., 2015; Settembre et al., 2013) indicating that it also regulates 

autophagy. Furthermore, TFEB mediates lysosomal docking to the plasma membrane and 

promotes their fusion through raising Ca²⁺ levels through MCOLN1. Indeed, TFEB 

overexpression induces lysosomal exocytosis and modulate cellular clearance in lysosomal 

storage diseases (LSDs) both in vitro and in vivo (Medina et al., 2011). The ability of TFEB to 

regulate lysosomal biogenesis, autophagy and lysosomal exocytosis is of great importance 

because it reveals a transcriptional program controlling the main cellular degradative pathways.  
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More recently, Martina et al. reported that TFE3 also promoted the expression of genes 

involved in lysosomal and autophagy-related pathways in ARPE-19 cells in response to 

starvation and lysosomal stress (José A. Martina, Diab, Lishu, et al., 2014). mTORC1-

dependent regulatory mechanism of TFEB is also shared by TFE3, and upon nutrient 

deprivation TFE3 rapidly translocated to the nucleus and bound to the CLEAR elements found 

in the promoter region of its target genes. Furthermore, overexpression of TFE3 induces 

lysosomal exocytosis and promotes cellular clearance in a cell model of lysosomal storage 

disorder, Pompe disease. Despite their conserved regulation and overlapping targets, TFEB and 

TFE3 must have distinct functions in particular cell types or during development, as depletion 

of Tfeb-null mice show embronic lethality (E Steingrímsson, Tessarollo, Reid, Jenkins, & 

Copeland, 1998), whereas knockout of Tfe3 has no apparent phenotype (Steingrimsson et al., 

2002).  

 

Whereas the role of TFEB and TFE3 in this context has been studied in detail, whether 

MITF is indispensable and has a distinct function in autophagy regulation is yet to be 

established. The difficulty comes from alternative splicing and multiple isoform formation of 

MITF. A study with Drosophila melanogaster reported that the lysosomal-autophagy pathway 

is controlled by Mitf gene, the single member of MITF-TFE family in the fruit fly genome 

(Bouché et al., 2016). Mitf transcriptionally regulates genes involved in lysosomal-autophagy 

pathway such as orthologs of mammalian MCOLN1, UVRAG, GABARAP, WIPI1 and 

ATG9A, consistent with TFEB network in mammalian. Accordingly, Mitf-knockdown flies 

show impaired autophagic flux and abnormal lysosomes during nutrient deprivation.  

Moreover, overexpression of Mitf display a higher number of autophagosomes under both basal 

and starved conditions which shows that Mitf is required for starvation-induced fusion of 

autophagosomes and lysosomes. Furthermore, subcellular localization of Mitf in Drosophila is 

regulated by MTORC1-dependent mechanism similar to that in mammalian system. Another 

study using Drosophila model organism showed that Mitf directly regulates all V-ATPase 

subunits and lysosomal metabolism (T. Zhang et al., 2015).  

 

Interestingly, MITF-A overexpression in ARPE-19 cells promotes expression of several 

autophagy genes but does not effectively increase lysosomal gene expression (José A. Martina, 

Diab, Lishu, et al., 2014). Furthermore, an inducible MITF melanoma model as well as 

HEK293T cells transiently transfected with MITF, showed upregulation of many, but not all, 
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lysosomal gene transcripts including CTSA, MCOLN1, PSAP, GNS, SCPEP1, NEU1 and GLA 

through direct activation of CLEAR element in their promoters (Ploper et al., 2015). 

 
 
Table 1.3.3 1 Reported lysosomal and autophagy-related targets of TFEB, TFE3 and MITF 

  TFEB TFE3 MITF 
  TARGET CELL 

LINE METHOD TARGET CELL 
LINE METHOD TARGET CELL LINE METHOD 

  ASAH1 HeLa Chip-Seq CTSS ARPE-19 qPCR CTSS 8902 ChIP 

  CTSA HeLa Chip-Seq CTSD ARPE-19 qPCR CTSD PL18 qPCR 

  CTSB HeLa Chip-Seq GAA ARPE-19 qPCR NAGLU C32 qPCR 

  CTSD HeLa Chip-Seq GBA ARPE-19 qPCR PSAP C32 qPCR 

  CTSF HeLa Chip-Seq GLA ARPE-19 qPCR NEU1 C32 qPCR 

  GAA HeLa Chip-Seq CTSA ARPE-19 qPCR GLA C32 qPCR 

  GALNS HeLa Chip-Seq CTSF ARPE-19 qPCR GBA C32 qPCR 

  GBA HeLa Chip-Seq HEXA ARPE-19 qPCR SCPEP1 C32 qPCR 

  GLA HeLa Chip-Seq GALC 8988T RNA-Seq HPRT1 C32 qPCR 

Lysosomal GLB1 HeLa Chip-Seq GM2A 8988T RNA-Seq       

Hydrolases GNS HeLa Chip-Seq GNS 8988T RNA-Seq       
  GUSB HeLa Chip-Seq HEXB 8988T RNA-Seq       

HEXA HeLa Chip-Seq IDS 8988T RNA-Seq       
  HEXB HeLa Chip-Seq AGA 8988T RNA-Seq       
  IFI30 HeLa Chip-Seq ARL8B 8988T RNA-Seq       
  NAGLU HeLa Chip-Seq ARSA 8988T RNA-Seq       
  NEU1 HeLa Chip-Seq ASAH1 8988T RNA-Seq       
   PLBD2 HeLa Chip-Seq             
  PPT1 HeLa Chip-Seq             
  PSAP HeLa Chip-Seq             
  SCPEP1  HeLa Chip-Seq             
  SGSH HeLa Chip-Seq             
  TPP1 HeLa Chip-Seq             
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  TFEB TFE3 MITF 
  TMEM55B HeLa Chip-Seq CLCN7 ARPE-19 qPCR CLCN7 C32 qPCR 

  LAMP1 HeLa Chip-Seq CLCN3 ARPE-19 qPCR MCOLN1 C32 qPCR 

  SLC36A1 HeLa Chip-Seq LAMP1 ARPE-19 qPCR       

Lysosomal  MCOLN1 HeLa Chip-Seq CD63 ARPE-19 qPCR       

Membrane CTNS HeLa Chip-Seq MCOLN1 ARPE-19 qPCR       
  CLCN3 HeLa Chip-Seq             
  CLCN7 HeLa Chip-Seq             
  CD63 HeLa Chip-Seq             
  C1orf85 HeLa Chip-Seq             

  TFEB TFE3 MITF 
   ATP6V1H HeLa Chip-Seq ATPV1C1 8988T RNA-Seq ATP6V1H 8902 ChIP 

  ATP6V1G1 HeLa Chip-Seq ATPV1D 8988T RNA-Seq       
  ATP6V1E1 HeLa Chip-Seq ATP6V1D 8988T RNA-Seq       
  ATP6V1D HeLa Chip-Seq ATP6V1E1 8988T RNA-Seq       
  ATP6V1C1 HeLa Chip-Seq ATP6V1G1 8988T RNA-Seq       
  ATP6V1B2 HeLa Chip-Seq ATP6V1H 8988T RNA-Seq       

Lysosomal  ATP6V1A HeLa Chip-Seq             
Acidification ATP6V0E1 HeLa Chip-Seq             
  ATP6V0D2 HeLa Chip-Seq             
  ATP6V0D1 HeLa Chip-Seq             
  ATP6V0C HeLa Chip-Seq             
  ATP6V0B HeLa Chip-Seq             
  ATP6V0A1 HeLa Chip-Seq             
  ATP6AP1 HeLa Chip-Seq             
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  TFEB TFE3 MITF 
  WDR45 HeLa Chip-Seq SQSTM1 Panc1 ChIP ATG16L1 ARPE-19 qPCR 

  VPS35 HeLa Chip-Seq ATG9B Panc1 ChIP ATG3 ARPE-19 qPCR 

  VPS33A HeLa Chip-Seq ULK2 8988T RNA-Seq ATG9B ARPE-19 qPCR 

  VPS26A HeLa Chip-Seq LC3A ARPE-19 qPCR BCL2 ARPE-19 qPCR 

  VPS18 HeLa Chip-Seq ATG10 ARPE-19 qPCR UVRAG ARPE-19 qPCR 

  VPS11 HeLa Chip-Seq ATG16L1 ARPE-19 qPCR WIPI1 ARPE-19 qPCR 

  VPS8 HeLa Chip-Seq ATG9B ARPE-19 qPCR ATG4A ARPE-19 qPCR 

  UVRAG HeLa Chip-Seq UVRAG ARPE-19 qPCR SQSTM1 8902 ChIP 

  STK4 HeLa Chip-Seq GABARAPL1 ARPE-19 qPCR LC3A PL18 qPCR 

  SQSTM1 HeLa Chip-Seq WIPI ARPE-19 qPCR ATG10 PL18 qPCR 

  RRAGC HeLa Chip-Seq             
  RAB7A HeLa Chip-Seq             
  PRKAG2 HeLa Chip-Seq             
  NRBF2 HeLa Chip-Seq             
  HIF1A HeLa Chip-Seq             
Autophagy GABARAP HeLa Chip-Seq             

  BECN1 HeLa Chip-Seq             
  LC3A 8902 qPCR             
  CTSD 8902 qPCR             
  ATG10 8902 qPCR             
  ATG3 8902 qPCR             
  ATP6V1H 8902 qPCR             
  SQSTM1 8902 qPCR             
  WIPI HeLa qPCR             
  LC3B HeLa qPCR             
  ATG9B HeLa qPCR             
  ATG16L1 ARPE-19 qPCR             
  SNCA ARPE-19 qPCR             
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1.4 Epigenetic Regulation of Autophagy: microRNAs 

 

microRNAs (miRNAs) are best characterized members of the small RNA world which also 

includes small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). miRNAs 

mainly act on post-transcriptional regulation of genes by affecting messenger RNA (mRNA) 

stability and/or by blocking protein translation. 

 

Being endogenous regulators of gene expression, several miRNAs were recently shown 

to play a role in the regulation of cellular pathways. Indeed, independent studies demonstrated 

that, core autophagy-related genes (ATG genes) and upstream mediators were targeted by 

microRNAs, revealing the presence of a novel and intricate miRNA network that is tightly 

regulating autophagy under physiological conditions. Moreover, dysregulation of miRNA 

expression was reported under various pathological conditions, including cancer, 

neurodegenerative diseases, cardiac and metabolic disorders. Most autophagy-related miRNAs 

were shown to be up or down-regulated in response to autophagy-inducing stress signals. In 

order to achieve a dynamic and context-dependent regulation, stress responsiveness may be an 

important property of autophagy modulation by miRNAs. 

 

In this chapter, I will describe post-transcriptional control of autophagy through 

microRNAs and give details about microRNA biogenesis as well as autophagy-regulating 

microRNAs and their implications in cancer, and finally will focus on MIR211.  

 

1.4.1 microRNAs 

 

miRNAs are evolutionary conserved family of single stranded non-coding RNA molecules of 

17-25 nucleotides in length.  They regulate biological events through post-transcriptional gene 

silencing (Bartel, 2004). These endogenous regulators of gene expression are coded by the 

genome of various organisms ranging from C. elegans to mammals (John Kim et al., 2004). 

The first microRNA, lin-4, is discovered in Caenorhabditis elegans by the Ambros and Ruvkun 

groups in 1993 (R. C. Lee, Feinbaum, & Ambros, 1993; Wightman, Ha, & Ruvkun, 1993). The 

miRNA repository miRBase database (v22), updated in 2018, currently contains 1917 
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annotated precursor miRNAs (pre-miRNAs), and 2654 mature miRNA sequences for human 

genome (Kozomara, Birgaoanu, & Griffiths-Jones, 2019). Computational predictions revealed 

that more than 60% of human protein-coding genes contain conserved miRNA-binding site. 

Considering that various non-conserved miRNA binding sites also exist, most protein-coding 

genes may be under the control of miRNAs (Friedman, Farh, Burge, & Bartel, 2009).  

 

In the genome, miRNAs are encoded as individual genes (monocistronic), as gene 

clusters (polycistronic) or in introns of host genes (intronic)  (MacFarlane & R. Murphy, 2010). 

MiRNAs residing in the same cluster might share same transcriptional regulatory units. Hence, 

miRNAs may be expressed as polycistronic transcripts, allowing a coordinated expression 

pattern for functionally-related miRNAs (Mathelier & Carbone, 2013). Cellular levels of 

intronic miRNAs usually depend on the expression of the host protein-coding gene. Isolated 

miRNA genes exist as well; these genes possess their own promoters and can be expressed 

independently (Monteys et al., 2010; Ozsolak et al., 2008). 

 

1.4.2 microRNA Biogenesis 

 

miRNAs are generally transcribed in an RNA polymerase II (Pol II)-dependent manner as 

capped and polyadenylated primary miRNAs (pri-miRNAs) which are 60-70 nucleotides length 

RNA transcripts (Y. Lee et al., 2003). However, transcription of some miRNA types may 

depend on RNA polymerase III (Pol III) (Borchert, Lanier, & Davidson, 2006). Following 

transcription, protein complexes showing ribonuclease III activity lead to the processing of pri-

miRNAs into small hairpin-shaped pre-miRNAs in the nucleus (Denli, Tops, Plasterk, Ketting, 

& Hannon, 2004). The core ribonuclease complex (The microprocessor complex) consists of a 

heterotetramer of Drosha and DGCR8 (DiGeorge syndrome critical region gene 8 or Pasha) 

proteins (Han et al., 2004; Y. Lee et al., 2003). Pre-miRNAs are then exported to the cytoplasm 

by an exportin 5(XPO5)/RanGTP complex (Okada et al., 2009). Following transport to the 

cytoplasm, DICER protein further cleaves the hairpin, leading to the formation of a double-

stranded 21–22-nt-long mature miRNA/miRNA* duplex (Koscianska, Starega-Roslan, & 

Krzyzosiak, 2011). Then, one of the mature miRNA strands is loaded onto RNA Induced 

Silencing Complex (RISC) containing an Argonaute protein (AGO), that guides the mature 

miRNA strand to its target messenger RNAs (mRNAs). Both 5p and 3p strands derived from 

the mature miRNA duplex can be loaded into the AGO proteins (AGO 1-4 in human) in an 
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ATP-dependent manner (Yoda et al., 2010). Thermodynamic stability at the 5’ ends of the 

miRNA duplex determines the fate of 5p or 3p strand to be loaded (Khvorova, Reynolds, & 

Jayasena, 2003). Loaded strand is named as the guide strand whereas the unloaded one is called 

the passenger strand. Passenger strand is generally removed and degraded by cellular 

machinery. 

  

Matching between a functionally important region of the miRNA, namely ‘‘the seed 

sequence’’ consisting of around 6–8 nucleotides, and complementary ‘‘miRNA response 

elements’’ (MRE) on the target mRNA sequences (mainly in the 3’ UTR regions) determines 

the target specificity of the miRNA. Depending on the complementarity, the end result is a 

translational repression (partial complementarity) and/or mRNA cleavage (near perfect 

complementarity) (MacFarlane & R. Murphy, 2010). In near perfect complementarity, base-

pairing with the guide miRNA result in an endonuclease-dependent cleavage of the target 

mRNA. MiRNA-directed deadenylation of the target mRNA may precede the degradation 

process. If the complementarity between the seed sequence and MRE on the target mRNA is 

partial, which is in the most cases, miRNAs inhibit translation of target mRNAs into proteins 

at translation initiation and elongation steps (Huntzinger & Izaurralde, 2011). Both mechanisms 

result in the downregulation of target protein levels and affect cellular functions that they 

control (Figure 1.4.1 1).   
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Figure 1.4.1: microRNA biogenesis and mechanism of action. The long primary miRNA 

transcript (pri-miRNA) are transcribed from miRNA genes in an RNA polymerase II (Pol II)-

dependent manner and form a local hairpin structure called pri-miRNA. Following 

transcription, evolutionarily conserved mechanisms of human miRNA biogenesis give rise to 

mature miRNAs following nuclear and subsequent cytoplasmic cleavage events: Following 

transcription, the nuclear RNase III Drosha cleaves and forms pre-miRNAs with a ~60–100 nt 

hairpin structures. Pre-miRNAs are then trans- ported into the cytoplasm through exportin-5-

dependent nuclear export. In the cytoplasm, pre-miRNAs are subject to a second processing 

event that is catalyzed by Dicer enzymes. Double-stranded ~22 ntRNAs are then produced. 

They consist of a mature miRNA guide strand and a miRNA* passenger strand. The mature 

miRNA guide strand is chosen by the RNA-induced silencing complex (RISC). MiRNAs guide 

the RISC to mRNA targets and eventually lead to gene silencing through their degradation or 

translation inhibition. (Retrieved from (Tekirdag et al., 2013)). 
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1.4.3 Autophagy-regulating microRNAs 

 

Studies over the last decade introduced miRNAs as new players in the regulation of autophagy. 

mRNA of proteins playing a role in various steps of autophagy, from proteins functioning in 

the upstream stimulatory or inhibitory pathways to the final stages of autophagic degradation, 

were reported to be miRNA targets (Frankel & Lund, 2012). microRNA studies so far reveal 

that we are only beginning to understand stress-related miRNA networks controlling cellular 

responses, including autophagy. Several autophagy-related miRNAs were also shown to affect 

other biological responses, such as apoptosis, growth or proliferation. Moreover, while only 

one autophagy-related target was reported for some miRNAs, others affected intracellular levels 

of proteins playing key roles in more than one stage of the autophagy pathway.  

 

The first study about microRNA regulation of autophagy was published in 2009 (Zhu et 

al., 2009). Zhu et al. first revealed a role for MIR30A in the regulation of rapamycin-induced 

autophagy. They showed that the miRNA targeted BECN1 and inhibited autophagy in MCF-7 

cells. Since then, huge amount of data has been published about microRNAs and autophagy. 

 

Previous studies in our lab unravel that microRNAs have direct implications in 

autophagy through regulating core known components of autophagic machinery. The members 

of the MIR376 family, MIR376A and MIR376B, were shown to regulate autophagy through 

their effect on BECN1 and ATG4C in breast and liver cancer cells (Korkmaz et al., 2013; 

Korkmaz, Le Sage, Tekirdag, Agami, & Gozuacik, 2012). MIR376A and B directly targeted the 

3′UTR sequences of BECN1 (has a role in autophagosome initiation and formation) and 

ATG4C (has a role in autophagosome elongation) and regulate starvation and mTOR inhibition-

related autophagy (Tekirdag, Akkoc, Kosar, & Gozuacik, 2016). Moreover, we have showed 

that ubiquitin-like conjugation system components functioning in autophagosome elongation 

step were also shown to be miRNA targets. MIR181A was shown to regulate cellular levels of 

the Atg5 protein. mTOR-dependent autophagy was blocked by the overexpression of MIR181A 

in different cell lines, including breast cancer, hepatocellular carcinoma and leukemia cells. 

MIR181A was directly targeting the ATG5 3′UTR (Tekirdag, Korkmaz, Ozturk, Agami, & 

Gozuacik, 2013). 
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It is highly critical to understand the physiological role of the miRNA-autophagy 

interconnection in stress response, adaptation and in the development of human diseases such 

as cancer, neurodegenerative diseases, cardiac diseases and metabolic disorders.  

1.4.4 Autophagy-regulating microRNAs and cancer 

 

Among autophagy-related microRNAs, many of them were involved in different stages of 

cancer formation and progression (Devrim Gozuacik, Akkoc, Ozturk, & Kocak, 2017). These 

miRNAs were shown to influence cancer growth, cancer cell metabolism, hypoxia responses 

and neovascularization, cancer cell migration and metastasis, and even response to drugs and 

radiotherapy. Moreover, some autophagy-related microRNAs were tested as anticancer agents 

or cancer biomarkers. In many studies, it was suggested that the effects miRNAs on autophagy 

genes and proteins were critical for cancer-related outcomes. Moreover, targeting of miRNAs 

or miRNA-related components by autophagic degradation systems were decisive in the control 

of cancer progression. Autophagy competence is important for the growth and survival of 

cancer cells. A number of miRNAs were shown to regulate autophagy and control tumor cell 

growth and proliferation. Several studies in the literature implicated autophagy-related miRNAs 

in the regulation of metabolism and metabolic stress responses of cancer cells. Furthermore, 

miRNAs can result in growth inhibition in different cancer cell types. Tumor cells face hypoxia 

as a result of abnormal vascularization and irregular blood supply. Under these circumstances, 

hypoxic tumor cells rely on autophagy for survival. A number of microRNAs were reported to 

control hypoxia-induced responses in cancer cells, including those that regulated autophagy in 

this context. Additionally, many microRNAs were reported to affect cell motility, invasion and 

metastatic spread of cancer cells. Some of the miRNAs that regulate autophagy also had an 

influence on cancer cell migration and metastasis. 

 

In the following table, I summarize the existing literature that mainly implicates 

autophagy-related roles of these microRNAs in cancer biology and clinical outcomes (Table 

1.4.4 1) (Devrim Gozuacik et al., 2017). 
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1.4.5 MIR211 

 

Following an unbiased screen that was performed using a microRNA library provided by 

Reuven Agami from Netherlands Cancer Institute (NKI), several microRNAs were revealed as 

a potential candidate to regulate stress-induced autophagy in Gozuacik laboratory. Under either 

fed or starved condition, miRNAs that induce autophagy in fed state or inhibit starvation 

induced autophagy were searched in that screen and MIR211 was identified as an autophagy-

inducer miRNA under fed conditions.  

 

The microRNA MIR211 is embedded in intron 6 of TRPM1 gene, melastanin, at locus 

15q13-q14 (Mazar et al., 2010). Melastanin is a member of the transient receptor potential 

(TRPM) cation channel family and a target gene of MITF (microphtalmia associated 

transcription factor) (Miller et al., 2004; Zhiqi et al., 2004). TRPM1 has been shown to greatly 

downregulated in invasive melanomas compared to benign and dysplastic nevi and 

melanocytes. Its expression is inversely correlated with melanoma progression.  

 

Stem-loop sequence, structure and mature sequences for MIR211 is given in Figure 1.4.5 

1. 

MIR211 stem-loop sequence 

 

 

 

Mature Strand MIR211 (hsa-miR-211-5p) 

Mature Strand MIR211 (hsa-miR-211-3p) 

 



 53 

Figure 1.4.5 1: Stem-loop sequence of MIR211 and mature sequences. Sequences of 

MIR211 were taken from MIRBASE http://www.mirbase.org/. Accession number: 

MI0000287.   

 

Several studies point out the functions and the effect of loss-of-function for MIR211 in 

normal and cancer cells and tissues. Both oncogenic and tumor-suppressive functions and 

dysregulated expression pattern in various cancer types have been shown for MIR211. In most 

melanoma cases, MIR211 was down-regulated in melanoma cells and melanoblasts compared 

to melanocytes. Previous studies demonstrated that upregulation of MIR211 in melanoma cells 

caused suppression of tumor invasion of cells by targeting KCNMA1 (Levy et al., 2010), 

IGF2R, TGFBR2, NFAT5 (Mazar et al., 2010), BRN2 (Boyle et al., 2011) and NUAK1 (Bell 

et al., 2014). Furthermore, dysregulation of MIR211 expression has been also found in epithelial 

ovarian cancer. In EOC cells, MIR211 inhibited proliferation and induced apoptosis by directly 

targeting Cyclin D1 and CDK6, thereby reduced EOC tumorigenesis in vivo (Xia, Yang, Liu, 

& Lou, 2015). Moreover, in glioblastoma multiforme, MIR211 induced glioma cell apoptosis 

by directly targeting of MMP-9, an important oncogene that enhances invasiveness (Asuthkar, 

Velpula, Chetty, Gorantla, & Rao, 2012). Their results revealed that either restoring MIR211 or 

downregulating MMP-9 could have therapeutic applications. Conversely, others reported that 

MIR211 promoted cell proliferation, tumor growth and cell migration in vitro and in vivo by 

directly targeting CHD5 mRNA in colorectal cancer (Cai et al., 2012), while upregulated 

MIR211 enhanced invasion and migration of colorectal cancer cells by targeting FABP4, a fatty 

acid binding protein (Zhao, Ma, Li, & Lu, 2019). Moreover, enforced MIR211 expression 

increased migration, proliferation and anchorage-independent colony formation of oral 

carcinoma cells (Chang et al., 2008). Furthermore, functional screening assay using a library of 

miRNA inhibitors showed MIR211 inhibition decreased cell growth in HeLa cells (Cheng, 

Byrom, Shelton, & Ford, 2005). Also, ectopically induced MIR211 was shown to stimulate 
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cellular proliferation and its down-regulation decreased colony number and size of MCF-10A, 

MCF-7 and MDA-MB-231 breast cancer cells (H. Lee, Lee, Bae, Kang, & Kim, 2016). 

Interestingly, Chitnis et al. proposed a model in which MIR211 is a pro-survival miRNA that is 

expressed in PERK (aka EIF2AK3, Eukaryotic translation initiation factor 2-alpha kinase)-

ATF4-dependent manner and decreases ER-stress-dependent expression of the proapoptotic 

transcription factor chop/gadd153 in mouse embryonic fibroblasts (Chitnis et al., 2012). 

MIR211 prevented temporal accumulation of chop and thereby function as a key regulator of 

PERK-dependent pro-survival signaling. 
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1.5 Role of autophagy in cancer development and progression 

 

 

Studies in the literature draw a complex picture about the involvement of autophagy in cancer 

formation and progression. The role of autophagy seems to be context- and tumor type-

dependent such that early versus late stage disease or slow versus fast growing tumors show of 

different degrees of autophagy dependence. Autophagy exerts inhibitory effect on cancer by 

limiting cell proliferation and genomic instability before the onset of tumorigenesis. Yet, in 

well-established tumors autophagy plays a protective role in cancer cells to satisfy the metabolic 

needs of proliferating tumorigenic cells (Figure 1.5 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 1: Autophagy impacts several aspects of cancer progression (Retrieved from 

(Dikic & Elazar, 2018)). 

1.5.1 Autophagy as a tumor suppressor 

   

Studies focusing on early stages of cancer formation indicate a tumor-suppressor role of 

autophagy during malignant transformation. For example, haploinsufficiency of ATG6/BECN1 

in genetically modified mice resulted in the formation of tumors in several tissues, including 

lung adenocarcinomas, hepatocellular carcinomas (HCCs), and lymphomas (Qu et al., 2003; 
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Yue, Jin, Yang, Levine, & Heintz, 2003). Similarly, ATG5 and ATG7 deletions in the liver 

resulted in the formation of liver adenomas (Takamura et al., 2011). Atg4C-deficient mice were 

prone to develop fibrosarcomas that were induced by chemical carcinogens (Mariño et al., 

2007). In line with these results, UVRAG expression suppressed and Bif1 deletion enhanced 

tumor formation in mice (Liang et al., 2006; Takahashi et al., 2007). Analysis of a series of 

human tumors confirmed these experimental results. Monoallelic deletions and lower BECN1 

protein levels were found in human prostate, breast, and ovarian cancers tissues that were 

analyzed (Qu et al., 2003; Yue et al., 2003). Similarly, ATG5 expression was lost in human 

gastric, colorectal, and hepatocellular carcinoma specimen and monoallelic mutations of 

UVRAG were reported to be frequent in human colon cancers (Ionov, Nowak, Perucho, 

Markowitz, & Cowell, 2004). 

 

Mechanisms of cancer suppression by autophagy were studied as well. Autophagy is 

responsible for the degradation of abnormally folded and/or mutant proteins and damaged 

organelles (e.g mitochondria) that in fact constitute a major source of reactive oxygen species 

(ROS). Consequently, elimination of these sources of ROS induction by autophagy was shown 

to alleviate DNA damage accumulation and prevent genomic instability (Mathew et al., 2009). 

Targeted elimination of some cancer-related proteins by autophagy was also reported. 

Autophagy-dependent selective elimination of oncogenic p62, PML-RARA, mutant p53 and 

BCR-ABL1 proteins may be cited as prominent examples (Choudhury, Kolukula, Preet, 

Albanese, & Avantaggiati, 2013; Duran et al., 2008; Goussetis et al., 2012). Autophagic 

degradation of hypoxia-inducible and proangiogenic HIF2α protein in a constitutive manner 

was also reported to suppresses kidney tumorigenesis (Liu et al., 2015). 

 

Moreover, while autophagy mainly acts as a pro-survival mechanism and a stress 

response, autophagy activation under certain conditions was connected to cell death (Berry & 

Baehrecke, 2007; Devrim Gozuacik & Kimchi, 2004; Levine & Yuan, 2005). Hence at least in 

some contexts, autophagic cell death might also contribute to the tumor-suppressive function. 

In line with this view, blockage of autophagy in some contexts prevented death of cancer cells 

(e.g. (Elgendy, Sheridan, Brumatti, & Martin, 2011; Lamy et al., 2013). Furthermore, several 

tumor suppressor and death-related proteins, including DAPK, DRP1, ZIPk, and a p19ARF 

form triggered a non-apoptotic and autophagy dependent cell death in cancer cells (D. Gozuacik 

et al., 2008; Inbal, Bialik, Sabanay, Shani, & Kimchi, 2002). Oncogene-induced senescence 
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that eventually lead to cell death was also shown to depend on autophagy (Andrew R.J. Young 

et al., 2009). 

 

Anticancer immunosurveillance that involves recognition and elimination of nascent 

cancerous cells by the immune system may be dually regulated by autophagy in different cell 

types (e.g. development and maturation of immune system components versus hijacking of the 

immune system by tumor autophagy) (Y. Ma, Chen, Xu, & Lin, 2013; Viry et al., 2014). 

Additionally, autophagy was shown to limit inflammation that, in especially a chronic form, is 

a major trigger form some types of cancer like HCC. Elimination of inflammasomes and 

limitation of pro-inflammatory interleukins (Nakahira et al., 2011; Zitvogel, Kepp, Galluzzi, & 

Kroemer, 2012), and NF-kB signaling (Paul et al., 2012) as well as inhibition of pro-

inflammatory signals controlled by pattern recognition receptors (Jounai et al., 2007; Saitoh et 

al., 2009) and prevention metabolic stress and inflammatory cell infiltration to tissues 

(Degenhardt et al., 2006) depended on intact autophagy function. 

 

1.5.2 Autophagy as a tumor promoter 

 

In established and especially fast-growing tumors, survival-related role of autophagy 

predominates. Cancer cells face with unfavorable conditions that challenge their endurance to 

stress. Abnormal and insufficient tumor vascularization leads to hypoxia, changes in local pH, 

scarce nutrient, growth factor and hormone supply, while energy and oxygen demands increase 

due to fast proliferation. Therefore, the tumor environment imposes high levels of metabolic 

stress upon malignant cells. Autophagy supports tumor cell survival and growth under these 

harsh conditions. For example, in oncogenic RAS- or RAF-driven fast-growing tumors, 

autophagy allowed tumor cell proliferation and survival, and mitochondrial quality control and 

maintenance of energy and building block levels by autophagy were crucial to support 

metabolic activities of cancer cells (Strohecker et al., 2013). Elevation of basal autophagy levels 

was especially indispensable for the survival of tumor cells that were found in the interior parts 

of solid tumors (Degenhardt et al., 2006).  

 

Cells from invasive and metastatic tumors face with conditions that are related to 

detachment from neighboring cells in the tissue and from the basal lamina, evasion from the 

primary sites, shear forces in the blood stream, invasion and spread (Levine et al., 2007). Under 
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these conditions, autophagy provided resistance to metabolic stress and anoikis (detachment-

induced cell death) allowing cancer cell survival (Fung, Lock, Gao, Salas, & Debnath, 2007). 

Autophagic capacity of tumor cells was reported as a determining factor during epithelial-

mesenchymal transition (EMT), metastasis and dormancy of tumor cells in some contexts 

(Gewirtz, 2009; Gugnoni, Sancisi, Manzotti, Gandolfi, & Ciarrocchi, 2016). Yet in 

hepatocellular carcinoma cells, EMT and migration properties was not affected but anoikis 

resistance and distant metastasis capacity was reduced when autophagy was suppressed (Peng 

et al., 2013).In another study, knockdown of ATG5 in melanoma cells decreased their capacity 

to survive metabolic stress and to colonize lungs in mice following intravenous injection (Maes 

et al., 2014). Similarly, depletion of ATG12 decreased the invasive capacity of glioma cells 

(Macintosh et al., 2012). But, motility, invasion and metastatic capacity of oncogenic RAS-

transformed tumor cells depended on their autophagy competence and autophagy-dependent 

production of secreted factors (Lock, Kenific, Leidal, Salas, & Debnath, 2014). Establishment 

of the dormancy state and survival of dormant cancer cells seem to depend on autophagy 

competence. For example, induction of autophagy by ARHI/DIRAS3 was essential for 

dormancy of ovarian cancer cell micro metastases in xenograft models (Z. Lu et al., 2008). 

 

Autophagy plays a critical role in endothelial cell biology as well as tumor 

vascularization. Although endothelial deletion of the key autophagy gene Atg7 in mice did not 

result in any prominent vascular abnormality or vascular density change, but there were 

abnormalities in endothelial cell function such as defect in the maturation and secretion of von 

Willebrand factor (Torisu et al., 2013). In the context of cancer, selective degradation of 

angiogenesis regulators such as gastrin-releasing peptide or HIF2α by autophagy affected tumor 

vasculature and limited tumor growth (K. W. Kim, Paul, Qiao, Lee, & Chung, 2013; Liu et al., 

2015). In line with these observations, BECN1/Beclin1 heterozygous mice had higher levels of 

circulating erythropoietin and HIF2α that led to an increase in angiogenesis under hypoxia and 

enhance in tumor growth compared to wild-type mice (S. J. Lee, Kim, Jin, Choi, & Ryter, 2011). 

ATG5 knockdown in B16-F10 melanoma cells increased tumor vessel tortuosity; on the other 

hand, endothelial cell-specific deletion of ATG5 led to formation of smaller and less mature 

tumor vasculature with endothelial cell lining and perfusion defects (Maes et al., 2014). 

Therefore, autophagic activity is important for angiogenesis under physiological conditions and 

affects tumor neovascularization.  
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1.5.3 Autophagy and cancer treatment 

 

An important response of cancer cells to treatment with anticancer agents and radiation is 

autophagy activation. In most cases, autophagy confers resistance to anticancer therapy, yet in 

some tumor types activation of autophagy was reported to have lethal effects on cancer cells. 

In any case, strategies aiming at the modulation of autophagy have the potential to improve 

responses to classical anticancer approaches. Choice of the best strategy seems to depend on 

tumor type, stage and specific treatment. Additionally, autophagy manipulation renders 

otherwise resistant cancer types to therapeutic agents and might be used to overcome drug 

resistance (Zhou et al., 2012). 

 

Sensitization to chemotherapy is of the most studied topics in the autophagy field. In 

the scientific literature, beneficial effects of the combination of autophagy modulators on 

chemotherapy or radiotherapy was extensively studied. In many cancer types, usage of the PI3K 

inhibitors (e.g. 3-MA or LY294002) in experimental systems enhanced the efficacy of various 

chemotherapeutic agents and radiation therapy thorough their autophagy blocking effects. For 

example, treatment with 3-MA sensitized esophageal squamous carcinoma cells to radiation 

therapy (Chen et al., 2011). Similarly, administration of 3-MA enhanced the efficacy of 5-

Fluorouracil and cisplatin and promoted apoptosis in colon and lung cancer cells (J. Li et al., 

2009). On the other hand, lysosomotropic agents (e.g. Chloroquine (CQ) or hydroychloroquine 

(HQ)) that neutralize the pH of lysosomes and prevent autolysosome formation were shown in 

numerous publications to exert anticancer effects and/or enhance the efficacy of antineoplastic 

treatments  (Selvakumaran, Amaravadi, Vasilevskaya, & O’Dwyer, 2013; Sotelo, Briceño, & 

López-González, 2006). For instance, in non-small-cell lung cancer bevacizumab plus CQ 

combination was found to increase the efficacy of cancer treatment (Selvakumaran et al., 2013). 

Concomitantly, CQ and HCQ potentiated cytotoxic effects of p53 and alkylating agents in a 

mouse model of lymphoma (Amaravadi et al., 2007). siRNA-based depletion of autophagy 

modulators was also able to sensitize carcinoma cells from different origins to chemotherapy 

and radiation treatment (Apel, Herr, Schwarz, Rodemann, & Mayer, 2008)
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2. MATERIALS AND METHODS 
 

2.1 Plasmid and constructs 

The pMSCV–miR plasmids containing 443 different human miRNA minigene sequences 

mimicking primiRNAs including MIR211 were constructed as described previously 

(Voorhoeve et al., 2007). The plasmid encoding the control human telomerase (hTR) genomic 

region (a nontranslated RNA coding for hTR RNA) was used as control for (MIR-CNT) 

(Voorhoeve et al., 2007). pEGFP-1-N1-MITF-A (38132) (Roczniak-Ferguson et al., 2012),  

pEGFP-N1-TFEB (38119) (Roczniak-Ferguson et al., 2012), pRK-5-MYC-RICTOR (11367) 

(Dos et al., 2004), pLKO.1-RICTOR shRNA (1853) (Sarbassov, Guertin, et al., 2005), and 

LAMP1-RFP (1817) (Sherer et al., 2003) were purchased from Addgene. GFP-LC3 and RFP 

tandemly tagged LC3 (tfLC3 or RFP-GFP-LC3) were also described (Kabeya, 2000; Kimura, 

Fujita, Noda, & Yoshimori, 2009). 

For luciferase tests, 3' UTR segments containing MRE sequences of RICTOR and 

mutant versions were synthesized as sense and antisense linkers. The linker primers were: 

RICTOR primers 5’ CTAGACCTGAAGCATAATCTTATCAAAGGGATGTTAACT-3’, 5'-

CTAGAGTTAACATCCCTTTGATAAGATTATGCTTCAGGT-3’. Mutant RICTOR primers 

5’-CTAGACCTCTACCAAAATCTTATGTTACCCATGTTAACT-3’, 5'-

CTAGAGTTAACATGGGTAACATAAGATTTTGGTAGAGGT-3’.  

Double-stranded DNA linkers with added sticky XbaI sites were created by annealing 

complementary strands following incubation at 95°C and slow cooling at RT. Linkers were 

cloned into the luciferase reporter pGL3-control vector (Promega, E1741) in the 3' UTR region 

of the luciferase gene into XbaI sites between the stop codon and the polyadenylation signal.  

2.2 Cell Culture 

2.2.1 Cell Line Maintenance 

 

HeLa cervix cancer cells, HEK293T human embryonic kidney cells and MCF-7 breast cancer 

cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Biological Industries, 

BI01-050-1A) supplemented with 10% (v:v) fetal bovine serum (PAN, P30-3302), antibiotics 
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(penicillin/streptomycin; Biological Industries, BI03-031-1B) and L-glutamine (Biological 

Industries, BI03-020-1B) in a 5% CO2 humidified incubator at 37°C. The melanoma cell line 

SK-MEL-28 and breast cancer cell line MDA-MB-231 were cultured in DMEM medium 

additionally supplemented with 1% non-essential amino acids (Gibco, 11140-035). SHSY-5Y 

neuroblastoma cells were cultured in fully supplemented DMEM low glucose (1000 mg/l) 

medium. 

2.2.2 Transient and stable transfections 

 

HeLa and HEK293T cells were transiently transfected using the calcium phosphate method 

according to standard protocols (Jordan, 1996). SK-MEL-28 and MCF-7 cells were transiently 

transfected using the polyethylenimine (PolySciences Inc., 23966) transfection method 

according to Foley et al (Foley et al., 2008). Stable RFP-GFP-LC3 HeLa monoclones were 

created by 4 weeks of G418 (Roche, 04727894001) selection following transfection of cells 

with the construct. 

2.2.3 Autophagy induction in cell culture 

For induction of autophagy, cells were incubated in culture media containing torin1 (200 nM; 

Tocris, 4247) dissolved in DMSO (Sigma, VWRSAD2650), or cells were starved in Earle’s 

Balanced Salt solution (Biological Industries, BI02-010-1A) for 4 h. Autophagic flux 

experiments were performed in the presence or absence of lysosomal protease inhibitors E64D 

(10μg/ml; Santa Cruz Biotechnology, SC201280A) and pepstatin A (10μg/ml; Sigma, P5318) 

for 4 h. 

2.3 Protein isolation and immunoblotting 

Cells were lysed at the indicated time points in RIPA buffer (50 mM TRIS-HCl, pH 7.4, 150 

mM NaCl [Applichem, A2942], 1% NP40 [Sigma, 74385], 0.25% Na-deoxycholate [Sigma, 

30970]) supplemented with a complete protease inhibitor cocktail (Sigma, P8340) and 1 mM 

phenylmethylsulfonyl fluoride (Sigma, P7626). Protein extracts (30 µg per well for autophagy 

assays, and 80 µg per well for MTOR pathway assays) were separated using 6-15% SDS-

polyacrylamide gels, and then transferred onto nitrocellulose membranes (Millipore, 
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IPVH00010). Membranes were blocked in 5% nonfat milk (Applichem, A0830) or in 3% BSA 

(Capricorn, BSA-1T) in PBS-T (3.2 mM Na2HPO4[Sigma, S5136], 0.5 mM KH2PO4[Sigma, 

4243], 1.3 mM KCl [Sigma, P9333], 135 mM NaCl, 0.05% Tween 20[Sigma, P5927], pH 7.4) 

for 1 h, and then incubated with primary antibodies in a 3% BSA-PBS-T solution. Following 

PBS-T washes, membranes were incubated with horseradish peroxidase-coupled secondary 

anti-mouse (Jackson Immunoresearch Laboratories, 115035003) or anti-rabbit (Jackson 

Immunoresearch Laboratories, 111035144) antibodies. Anti-LC3B (Novus, 2331), anti-

RICTOR (Cell Signaling Technology, 2114S), anti-phospho-MTOR (Ser2448; Cell Signaling 

Technology, 5536), anti-MTOR (Cell Signaling Technology, 2972), anti-RPS6KB/p70S6K 

(Cell Signaling Technology, 2708), anti-phospho-RPS6KB/p70S6K (Thr389; Cell Signaling 

Technology, 9205), anti-AKT (Cell Signaling Technology, 9272S), anti-phospho-AKT 

(Ser473;Cell Signaling Technology, 587F11), anti-MITF clone 5 (Millipore, MAB3747-I), 

anti-TFEB (Cell Signaling Technology, 4240), anti-GFP (Roche, 11814460001), anti-ACT/β-

ACTIN (Sigma, A5441) or anti-VIM/vimentin (Sigma, V6630) antibodies were used. ImageJ 

software was used to quantify protein band intensities (Abràmoff, Magalhães, & Ram, 2004). 

 

2.4 Immunofluorescence tests 

2.4.1 Immunofluorescence analyses 

Cells were cultured on cover slides and fixed in an ice-cold 4% paraformaldehyde-PBS solution 

(pH 7.4). For indirect immunostaining experiments, following fixation, cells were 

permeabilized in PBS containing 0.1% BSA (Sigma, A4503) and 0.1% saponin (Sigma, 84510). 

As primary antibodies, anti-MITF clone 5, and anti-TFEB were used. Anti-mouse Alexa Fluor 

594 (Invitrogen, A11005) and anti-rabbit Alexa Fluor 594 (Invitrogen, A11002) were used as 

secondary antibodies. When indicated, nuclei were stained using Hoechst dye in 1x PBS. 

Coverslides were mounted onto glass slides, and samples were analyzed using a BX60 

fluorescence microscope (Olympus, BX60).  

 

For experiments with fluorescent protein fusions, cells stably expressing RFP-GFP-LC3 

or cells transiently transfected with a plasmid encoding GFP-LC3, RFP-LAMP1, or GFP-

MITF-A, GFP-TFEB or GFP-WIPI1 plasmids were used. After 48 h, cells were fixed in ice-
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cold 4% paraformaldehyde-PBS. Coverslides were then mounted onto glass slides, and samples 

were analyzed using a BX60 fluorescence microscope (Olympus, BX60) or a Carl Zeiss LSM 

710 confocal microscope (Zeiss, Germany). 

2.4.2 Quantitative GFP-LC3, GFP-WIPI1, RFP-GFP-LC3, RFP-LAMP1 analyses 

Dot counts were performed in RFP-GFP-LC3 stable HeLa cells or GFP-LC3-transfected SK-

MEL-28 cells or GFP-WIPI1-transfected HeLa cells. Basal autophagy threshold was 

determined as 15 GFP-LC3 dots per RFP-GFP-LC3 stable HeLa cell, and 5 GFP-LC3 dots per 

SK-MEL-28 cell. At least 150 GFP-positive cells per condition were analyzed, and results were 

expressed as percentage of GFP-LC3 dot-positive cells (above the thresholds) versus total 

number of transfected cells. For GFP-WIPI1 tests, at least 40 GFP-positive cells per condition 

were analyzed and quantified by ImageJ analyses, and results were expressed as number of 

GFP-WIPI1 puncta per cell. 

For RFP-GFP-LC3 tests, at least 30 RFP-GFP-positive HeLa cells for each experimental 

condition were analyzed under a fluorescence microscope (Olympus BX60, Japan) using a 60x 

magnification. Autophagosomes gave both RFP and GFP signals, while autolysosomes were 

defined as RFP-positive dots. The number of autolysosomes was calculated by subtracting 

GFP-positive dot numbers from RFP-positive dot numbers. For GFP-LC3 and RFP-LAMP1 

colocalization tests, at least 20 cells for each experimental condition were analyzed under a Carl 

Zeiss LSM 710 confocal microscope (Zeiss, Germany). 

2.5 Bioinformatics analyses 

miRNA targets were identified using publicly available bioinformatics tools FindTar3 

(http://bio.sz.tsinghua.edu.cn), TargetScan Human (www.targetscan.org/), miRanda 

(www.microrna.org), miRDB (http://mirdb.org/) and RNA22 (cm.jefferson.edu/rna22). 

Pearson correlation analysis of MITF and MIR211 expression across NCI-60 cell lines was 

performed using bioinformatic tools available on the CellMiner  website 

(https://discover.nci.nih.gov/cellminer/analysis.do). Detailed information on multiple platform 

analysis tools were previously published (Reinhold et al., 2012).  
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For TCGA analyses (http://cancergenome.nih.gov/), datasets of MITF and MIR211 

expression were downloaded using FireBrowse RESTful API (http://firebrowse.org/api-docs/). 

Datasets were selected according to the following criteria: (i) the number of samples that have 

missing values for MIR211 expression less than 40% of all samples; and (ii) the number of 

samples with both MITF and MIR211 expression larger than 100. Pearson correlation analyses 

were performed using datasets meeting the criteria above: Skin Cutaneous Melanoma, Glioma, 

Pan-kidney Cohort, Testicular Germ Cell Tumors, and Ovarian Serous Cystadenocarcinoma. 

2.6 RNA isolation and RT-PCR analyses  

Total RNA was extracted using TRIzol reagent (Sigma, T9424) according to the manufacturer’s 

instructions. cDNA was reverse transcribed from DNase 1 (Thermo Fischer Scientific, 

EN0521)-treated total RNA using M-MuLV reverse transcriptase (Fermentas, EP0351) and 

random hexamers (Invitrogen, 48190-011). For real-time RT-PCR quantification of mRNA 

levels, the SYBR Green Quantitative RT-PCR kit (Roche, 04-913-914-001) and LightCycler 

480 (Roche) were used. To activate the SYBR Green, an initial cycle of 95°C, 10 min was 

performed. PCR reactions were as follows: 95°C for 15 sec and 60°C for 1 min. (40 cycles). 

Then a thermal denaturation protocol was used to generate the dissociation curves for the 

verification of amplification specificity (a single cycle of 95°C for 60 sec, 55°C for 60 sec and 

80 cycles of 55°C for 10 sec). Changes in mRNA levels were quantified using the 2-ΔΔCT method 

using GAPDH (glyceraldehyde-3-phosphate dehydrogenase) mRNA as control. Primers used 

were: RICTOR primers 5'-AGTGAATCTGTGCCATCGAGT -3', 5'-

AGTAGAGCTGCTGCCAAACC -3'; Pan-MITF primers 5’-

TTCACGAGCGTCCTGTATGCAGAT-3’, 5’-TTGCAAAGCAGGATCCATCAAGCC-3’; 

MITF-M primers 5’-TCTACCGTCTCTCACTGGATTGG-3’, 5’-

GCTTTACCTGCTGCCGTTGG-3’; MITF-A primers 5’-GCAGTGGAAGGACGGGAAG-3’, 

5’-CAGGATGCTCGGCGGAAC-3’; ATG10 primers 5'- GTCACATCTAGGAGCATCT 

ACCC-3', 5'-CATCCAAGGGTAGCTCGAAA-3'; LC3B primers 5'-

GAGAAGCAGCTTCCTGTTCTGG-3', 5'-GTGTCCGTTCACCAACAGGAAG-3'; GAPDH 

primers 5'-AGCCACATCGCTCAGACAC-3', 5'-GCCCAATACGACCAAATCC-3'; MIR155 

stem-loop primer, 5’-

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCCCTA-3’, 
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MIR155 forward primer, 5’-GTTGGGTTAATGCTAATCGTGA-3’; MIR15A stem-loop 

primer, 5’-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGG 

ATACGACCACAAAC-3’, MIR15A forward primer, 5’-GGGTAGCAGCACATAATG-3’; 

MIR16 stem-loop primer, 5’-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGA 

TACGACCGCCAAT-3’, MIR16 forward primer, 5’-GTTTGGTAGCAGCACGTAAAT-3’; 

MIR185 stem-loop primer, 5’-

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCAGGAA-3’, 

MIR185 forward primer, 5’-GTGTGGAGAGAAAGGCAG-3’; Universal reverse primer, 5’-

GTGCAGGGTCCGAGGT-3’.  

 

TaqMan RT-qPCR reactions were performed using FastStart Universal Probe Master 

kit (Roche, 04913957001) and LightCycler 480 according to previously described protocols 

(Korkmaz, 2013). Primers and the probe used during the study were: MIR211 stem-loop primer, 

5’- GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGGCGA-3’; 

MIR211 forward primer, 5’-GGGTTCCCTTTGTCATCCT-3’; Universal reverse primer, 5’-

GTGCAGGGTCCGAGGT-3’; MIR211 TaqMan Probe, 5'-(6-FAM)-

CGCACTGGATACGACAGGCGAAG-(TAMRA-sp)-3’. 

2.7 Dual luciferase reporter assay  

Luciferase vectors containing wild-type or mutant MIR211 MREs from the RICTOR 3’ UTR 

were co-transfected with MIR211 or ANT211 and a Renilla luciferase construct into HeLa and 

SK-MEL-28 cells. HEK293T cells were co-transfected with MIR211 and a Renilla luciferase 

construct. After 48 h, cells were lysed. Firefly and Renilla luciferase activities were measured 

using a dual luciferase-reporter assay system (Promega, E1910) and a luminometer (Thermo 

Fischer Scientific, Fluoroskan Ascent FL). Results were calculated following normalization of 

the firefly luciferase activity to the renilla luciferase activity.  

2.8 Antagomir and siRNA tests 

miRIDIAN microRNA Hairpin Inhibitors (antagomirs) against MIR211 (hsa-MIR211, IH-

300566-05-0005) and a control antagomir (miRIDIAN microRNA hairpin inhibitor negative 

control, IN001005-01-05) were purchased from Dharmacon. The control antagomir sequence 
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was based on miR-67 C. elegans microRNA which has minimal sequence similarity with known 

human miRNAs. Transfection of antagomirs (200 nM per point) was performed using either 

the polyethylenimine transfection or calcium phosphate protocols as previously explained [23]. 

Pan-MITF siRNA (siGenome SMARTPool Human MITFsiRNA, M-008674-00-0005) and 

control siRNA (D-001210-01-20) were purchased from Dharmacon, and 40 nM/well siRNA 

was transfected. 

2.9 Chromatin immunoprecipitation (ChIP) and ChIP-qPCR  

 

For ChIP, HeLa and SK-MEL-28 cells were cultured for 48 h and either incubated for 4 h with 

DMSO or torin1 (200 nM) and subsequently crosslinked in 1% formaldehyde (Sigma, F8775) 

at room temperature for 10 min. Fixation was stopped by adding 125 mM glycine (Applichem, 

A1067). Cells were then harvested and lysed in 2 ml of ChIP lysis buffer (50 mM HEPES 

[Sigma, 54457], 150 mM NaCl, 1% Triton X-100 [Applichem, A4975], 0.1% Na-deoxycholate, 

1 mM EDTA [Calbiochem, 324503] containing 0.25% SDS [Applichem, A2572] and protease 

inhibitor cocktail[Sigma, P8340]). The lysates were subjected to sonication to shear DNA to 

the length of approximately 150-900 base pairs using a Q700 Sonicator (QSonica). An aliquot 

(20%) of the supernatant fraction from the chromatin was used as the “input sample”. For IP, 

MITF antibody (5 μg/sample; Millipore, MAB3747-I) was incubated with 50 μL of protein-G 

Dynabeads (Invitrogen, 10003D) overnight at 4°C and washed 3 times with ChIP lysis buffer 

containing protease inhibitor cocktail. A fraction (500 µg) of the resulting sheared chromatin 

samples were incubated with MITF antibody-coupled magnetic beads or with beads only (for 

background control) for 2 h at room temperature. Beads were washed 2x with ChIP lysis buffer, 

2x with high salt wash buffer (ChIP lysis buffer containing 500 mM NaCl) and 2x with Tris-

EDTA (10 mM Tris-Cl, 1 mM EDTA, pH 8). Immunocomplexes were eluted using 100 μL 

Tris-EDTA at 95°C for 10 min. After elution, crosslink was reversed by adding NaCl of 

200 mM final concentration and incubated with proteinase K (Thermo Fisher Scientific, 

EO0491) overnight at 65°C. DNA fragments were purified by phenol-chloroform extraction, 

air-dried, and redissolved in H2O. Quantitative real-time PCR was performed using a SYBR 

Green Quantitative RT-PCR kit (Roche, 04-913-914-001) and a LightCycler 480. Primers used 

were: MIR211 promoter-specific primers, 5’-CATCGCTTCACAGCAATCATGAGG-3’, 5’-

ATCTGAGCTTACCTGCCACAGCA-3’; LC3B promoter-specific primers, 5’-CATGCC 

TTGGGACACCAGAT-3’, 5’-ACCTTCTTCAAGTGCTGTTTGT-3’; HSPA/HSP70 
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promoter-specific primers, 5’-CCTCCAGTGAATCCCAGAAGACTCT-3’, 5’-

TGGGACAACGGGAGTCACTCTC-3’. The results are presented as percentage of input. 

2.10 Human tissue samples 

Human tissue sample collection and experiments were conducted in accordance with the 

guidelines set by the Turkish Republic Ministry of Health,and approved by the Ethics 

Committee of Dr. Sadi Konuk Research and Training Hospital and Sabanci University. Samples 

were drop frozen in liquid nitrogen shortly after admission of cadavers to the Council of 

Forensic Medicine. RNA isolation and protein analyses were performed from frozen tissue 

powders according to the protocols above. 

2.11 Statistical analyses 

Statistical analyses were performed using Student’s two-tailed t-test. Data were represented as 

means of ±SD of n independent experiments (biological replicates). Values of p<0.05 were 

considered as significant. 
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3. RESULTS 
 

Proposed novel autophagy-regulating axis during cellular stress: MITF/MIR211 

 

In this PhD study, previously unidentified and novel pathway of autophagy amplification was 

investigated under basal and cellular stress-inducing conditions. Along with this thesis, rate-

limiting function of MITF was verified in starvation and mTOR inhibition-mediated autophagy 

through knockdown studies. Furthermore, MIR211, previously reported direct transcriptional 

target of MITF, was discovered as a novel autophagy-regulating microRNA in melanoma and 

epithelial cells. Several independent autophagy assays confirmed that overexpression of 

MIR211 potentiated both basal and MTOR-dependent autophagy, and its downregulation 

resulted in a decrease in the amplitude of autophagy. Functional analysis was carried out to 

understrand the mechanism behind the regulatory role of MIR211 on autophagy through 

identification and validation of its direct target, RICTOR. The effect of MIR211 on mTORC1 

pathway and nuclear translocation of MITF were also evaluated. In silico data showing co-

expression of MITF and MIR211 in various cancer types was also verified in the molecular data 

obtained in vitro.  

Altogether, findings of this thesis suggest an intriguing and new molecular system 

amplifying autophagy involving MITF/MIR211 axis. The proposed feed-forward amplification 

mechanism, that is MITF-specific and MIR211-dependent, is required for optimal autophagy 

activation under cellular stress conditions.  

 

This novel mechanism could suggest an extra layer of importance for understanding the 

role of transcriptional control and epigenetics in autophagy regulation.  
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3.1 MITF is required for starvation and mTOR- dependent autophagy 

Recent evidences suggest that MITF/TFE family of transcription factors play a critical role in 

organelle biogenesis and cellular homeostasis. Under nutrient-rich conditions, TFEB and MITF 

transcription factors are phosphorylated by mTORC1 and sequestered in the cytosol (Martina, 

2014). Conversely, upon cellular stress such as starvation or lysosomal stress, mTORC1 

dissociates from the lysosomal membrane and becomes inactivate. Then, non-phosphorylated 

TFEB and MITF translocate to the nucleus and activate several lysosome and autophagy-related 

target genes. In subsequent studies, TFEB was characterized as the master regulator of 

lysosomal biogenesis through transcriptionally regulating numerous lysosomal genes. 

(Sardiello, 2009; Napolitano, 2016). Along with TFEB and TFE3 that can also coordinate 

autophagosome formation, some studies indicate that MITF contributes to autophagy regulation 

(Martina, 2013; Perara, 2015; Bouche, 2016). Yet, detailed analyses are missing.  Several 

independent autophagy tests were performed in order to evaluate whether MITF is 

indispensable for autophagy and that it has a specific function in autophagy regulation (Figure 

3.1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.1:  The pipeline of the experiments performed for MITF regulation of 

autophagy analysis. 
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3.1.1 Effect of MITF overexpression on autophagy 

 
 
In order to confirm nuclear translocation of MITF in our experimental conditions, 

immunofluorescence analyses were performed. First, GFP-fused constructs of MITF-A were 

overexpressed in HeLa cells. MITF proteins were cytosolic, and they were excluded from the 

nucleus under fed conditions (Figure 3.1.1 1 and Figure 3.1.1 2). MITF translocated to nuclei 

of HeLa cells following mTOR inhibitor torin1 treatment (Figure 3.1.1 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.1 1: Nuclear translocation of MITF-A upon torin1 treatment.  

(A) MITF translocated to nuclei of cells following torin1 (MTOR inhibitor) treatment. HeLa 

cells were transiently transfected with GFP-MITF-A vector and incubated with torin1 (200 nM, 

4 h) and analyzed under a fluorescence microscope. DMSO, carrier control. Hoechst dye was 

used to stain the nuclei (blue). Scale bar, 10 µm. (B) Quantitative analysis of MITF nuclear 

translocation in the experimental set-up shown in A and B (mean±SD of n=3 independent 

experiments, ***p<0.01) 

A 
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Similar immunofluorescence analysis was performed with starvation as an autophagy-

inducer. According to the results in Figure 3.1.1 2, nutrient deprivation also promotes nuclear 

translocation of overexpressed MITF-A isoform in HeLa cells.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.1 2: Nuclear translocation of MITF-A upon starvation. (A) MITF translocated 

to nuclei of cells following starvation treatment. HeLa cells were transiently transfected with 

GFP-MITF-A vector and incubated with starvation medium (Earle’s Balanced Salt solution, 4 

h, STV) and analyzed under a fluorescence microscope. Non-STV, non-starved. Hoechst dye 

was used to stain the nuclei (blue). Scale bar, 10 µm. (B) Quantitative analysis of MITF nuclear 

translocation in the experimental set-up shown in A and B (mean±SD of n=3 independent 

experiments, ***p<0.01) 
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Moreover, similar results were observed in immunofluorescence experiments 

performed in another cell line, SK-MEL-28. Upon torin1 treatment, overexpressed GFP-MITF-

A constructs translocated to the nuclei of cells as can be seen in Figure 3.1.1 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.1 3: Nuclear translocation of MITF-A upon torin1 treatment in SK-MEL-28 

cells. (A) MITF translocated to nuclei of cells following torin1 (MTOR inhibitor) treatment. 

SK-MEL-28 cells were transiently transfected with GFP-MITF-A vector and incubated with 

torin1 (200 nM, 4 h) and analyzed under a fluorescence microscope. DMSO, carrier control. 

Hoechst dye was used to stain the nuclei (blue). Scale bar, 10 µm. (B) Quantitative analysis of 

MITF nuclear translocation in the experimental set-up shown in A and B (mean±SD of n=3 

independent experiments, ***p<0.01) 

 

 

 

Hence, in response to the changes in the nutrient levels and mTORC1 inhibition, 

MITF is translocated to the cell nucleus.    
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Autophagic activity in HeLa cells was analyzed in order to elucidate the role of MITF 

in autophagy context. The effect of the overexpression of MITF-A (an alternative splicing 

isoform of MITF) in HeLa cells was tested using the LC3 shift assay. As it is mentioned above, 

cysteine protease ATG4 enzymes cleave cytosolic pro-LC3 protein into LC3-I cytosolic form. 

Lipid-conjugated and autophagic membrane-bound form, LC3-II is formed upon conjugation 

of a lipid molecule (PE). The PE-conjugated form of LC3-II shows faster electrophoretic 

mobility in SDS-PAGE gels. Consequently, LC3-II is the only protein marker associated with 

growing and mature autophagosomes and used as gold-standard and widely used autophagic 

test.  

 

In order to enlighten whether the observed accumulation of the LC3-II form of the 

protein was a result of increased autophagic activity, and not a result of a block in 

autophagosome-lysosome fusion, the experiments were performed in the presence or absence 

of the lysosomal protease inhibitors E64D-pepstatin A (E+P).  

 

Following mTOR inhibition by torin1 treatment, extracts from cells that overexpressed 

MITF had higher levels of LC3-II and further accumulation was observed upon lysosomal 

inhibition by E64D+pepstatin A. Hence, these results are presented in Figure 3.1.1 4 and 

confirm that MITF stimulated autophagosome formation and did not prominently affect 

autophagosome-lysosome fusion. 
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Figure 3.1.1 4: Effect of MITF-A overexpression on torin1-induced autophagy. (A) 

Overexpression of MITF-A amplified torin1-induced LC3-II (lipid-conjugated and 

autophagosome-associated LC3 form) formation in HeLa cells. LC3-I, free LC3 form. E+P, 

E64D (10µg/ml) and pepstatin A (10µg/ml) were used as lysosomal protease inhibitors. (B) 

Graph depicting quantification of LC3-II:ACTB ratios in the experimental set-up shown in E 

(mean±SD, n=3 independent experiments, **p<0.03, *p<0.05). 

 

 

 

Similar with the effect on torin1-induced autophagy, overexpression of MITF-A 

increased starvation-induced LC3-II formation in HeLa cells and further accumulation was 

observed upon lysosomal inhibition (Figure 3.1.1 5). 
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Figure 3.1.1 5: Effect of MITF-A overexpression on starvation-induced autophagy. (A) 

Overexpression of MITF-A amplified starvation-induced LC3-II (lipid-conjugated and 

autophagosome-associated LC3 form) formation in HeLa cells. STV, 4 hr. LC3-I, free LC3 

form. E+P, E64D (10µg/ml) and pepstatin A (10µg/ml) were used as lysosomal protease 

inhibitors. (B) Graph depicting quantification of LC3-II:ACTB ratios in the experimental set-

up shown in E (mean±SD, n=3 independent experiments, **p<0.03, *p<0.05). 

 

 

To conclude, classical autophagic tests revealed that MITF-A overexpression further 

amplifies mTOR-inhibition-mediated and starvation-induced autophagosome formation.  
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3.1.2 Effect of MITF silencing on autophagy 

To check whether endogenous MITF was a rate-limiting factor in autophagy activation by 

stress, HeLa and SK-MEL-28 cells were transfected with siRNAs targeting MITF (siMITF) or 

non-targeting control siRNAs (siCNT). First, we confirmed that pan-MITF siRNAs that were 

used in following experiments could target all endogenous isoforms of MITF in HeLa (Figure 

3.1.2 1A). and SK-MEL-28 (human skin malignant melanoma cell line) (Figure 3.1.2 1B).   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.1.2 1: Effect of siRNA against MITF on MITF mRNA. MITF mRNA expression 

levels were quantified by RT-qPCR in HeLa (A) and SK-MEL-28 (B) cells transfected with 

siCNT or siMITF. Pan-MITF-, MITF-A- or MITF-M-specific primer pairs were used. Data were 

normalized to GAPDH (mean±SD of n=3 independent experiments, ***p<0.01). 
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After confirmation of efficiency of MITF silencing by siRNAs, autophagy levels were 

checked under basal conditions or with autophagy inducers and in the presence or absence of 

the lysosomal inhibitors E64D-pepstatin A. 

 

The effect of MITF knockdown on torin1-induced autophagy was evaluated in HeLa 

cells and SK-MEL-28 cells by GFP-LC3 dot formation assay. GFP-LC3 shows a punctuate 

pattern and localized in autophagosome membranes in the cell upon autophagy activation and 

lipid conjugation. Moreover, larger autophagosomes are detected due to autophagosome-

lysosome fusion when autophagosome-lysosome fusion is blocked by lysosomal inhibitors. 

 

First, threshold dot number was determined by counting the number of GFP-LC3 dots 

in each cell under basal condition. For stable HeLa-GFP-LC3 cells, basal dot number was 

identified as 15. For transiently-transfected SK-MEL-28 cells, 5 GFP-LC3 dots per cell was 

identified as threshold. 

 

GFP-LC3 dot formation analysis showed that knockdown of MITF significantly 

attenuated autophagy that was stimulated by torin1 in HeLa (Figure 3.1.2 2). Interestingly, 

MITF downregulation could even suppress autophagy at basal levels. 
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Figure 3.1.2 2: Effect of siMITF on GFP-LC3 dot formation following torin1 treatment in 

HeLa cells. (A) HeLa-GFP-LC3 stable cells transfected with either siCNT (control siRNA) or 

siMITF, incubated with torin1 (200 nM, 4 h) and analyzed under a fluorescence microscope. 

DMSO, carrier control. White arrows indicate the GFP-LC3 dots in the cells. Scale bar, 10 µm.  

(B) Quantitative analysis of GFP-LC3 dots in the experimental set-up shown in A (mean±SD 

of n=3 independent experiments, **p<0.03, *p<0.05). 
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Similarly, MITF knockdown by siMITF attenuated torin1-induced GFP-LC3 dot 

formation compared to control siRNA (siCNT)-transfected SK-MEL-28 cells (Figure 3.1.2 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.2 3: Effect of siMITF on GFP-LC3 dot formation following torin1 treatment in 

SK-MEL-28 cells. (A) SK-MEL-28 cells transiently transfected with either siCNT (control 

siRNA) or siMITF, incubated with torin1 (200 nM, 4 h) and analyzed under a fluorescence 

microscope. DMSO, carrier control. White arrows indicate the GFP-LC3 dots in the cells. Scale 

bar, 10 µm.  (B) Quantitative analysis of GFP-LC3 dots in the experimental set-up shown in A 

(mean±SD of n=3 independent experiments, **p<0.03, *p<0.05). 
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Moreover, MITF-dependence of autophagy was confirmed by LC3-II shift assays that 

were performed in torin1-treated HeLa cells in the presence or absence of E64D-pepstatin A 

(Figure 3.1.2 4).  Knockdown of MITF significantly abolished LC3-II accumulation in torin1-

induced autophagy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.2 4: Effect of siMITF on LC3-II accumulation following torin1 treatment in 

HeLa cells. (A) Immunoblots of siCNT- or siMITF-transfected HeLa cells that were treated 

with DMSO or torin1 (200 nM, 4h). (B) Graph depicting quantification of LC3-II:ACTB ratios 

in the experimental set-up shown in A (mean±SD, n=3 independent experiments, ***p<0.01).  
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Additionally, the inhibitory effect of MITF knockdown on torin1-induced autophagy 

was confirmed in SK-MEL-28 cells using LC3-II shift assay (Figure 3.1.2 5). 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.2 5: Effect of siMITF on LC3-II accumulation following torin1 treatment in 

SK-MEL-28 cells. (A) Immunoblots of siCNT- or siMITF-transfected SK-MEL-28 cells that 

were treated with DMSO or torin1 (200 nM, 4h). (B) Graph depicting quantification of LC3-

II:ACTB ratios in the experimental set-up shown in A (mean±SD, n=3 independent 

experiments, ***p<0.01).  

 

 

 

A 

B 



82 
 

In order to verify the above results with another autophagy-inducing signal, the effect 

of MITF knockdown was analyzed under starvation conditions. Indeed, LC3-II shift analyses 

showed that MITF knockdown significantly attenuated both basal and starvation-induced 

autophagy in HeLa (Figure 3.1.2 6) and SK-MEL-28 (Figure 3.1.2.7) cells in the presence or 

absence of E64D-pepstatin A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.2 6: Effect of siMITF on LC3-II accumulation following starvation treatment 

in HeLa cells. (A) Immunoblots of siCNT- or siMITF-transfected HeLa cells that were non-

starved or starved (EBSS, 4h). (B) Graph depicting quantification of LC3-II:ACTB ratios in 

the experimental set-up shown in A (mean±SD, n=3 independent experiments, ***p<0.01).  
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Figure 3.1.2 7: Effect of siMITF on LC3-II accumulation following starvation treatment 

in SK-MEL-28 cells. (A) Immunoblots of siCNT- or siMITF-transfected HeLa cells that were 

non-starved or starved (EBSS, 4h). (B) Graph depicting quantification of LC3-II:ACTB ratios 

in the experimental set-up shown in A (mean±SD, n=3 independent experiments, ***p<0.01).  

 

 

 

Moreover, siRNA knockdown of MITF protein levels were confirmed and quantified 

for each and every experiment presented above and their triple replicates (Figure 3.1.2 8).  
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Figure 3.1.2 8: Confirmation of MITF knockdown using siRNA on MITF protein level. 

(A and B) Graph depicting quantification of MITF:ACTB protein ratios in the HeLa 

experiments shown in Figure 3.1.2 4 and Figure 3.1.2 6 (mean±SD, n=3 independent 

experiments,***p<0.01). (C and D) Graph depicting quantification of MITF:ACTB protein 

ratios in the SK-MEL-28 experiments shown in Figure 3.1.2 5 and Figure 3.1.2 7 (mean±SD, 

n=3 independent experiments,***p<0.01). 

 

In addition to GFP-LC3 dot formation and LC3-II shift assays, effect of MITF 

knockdown on autophagy was also monitored through analysis of WIPI1 puncta formation. 

During autophagy activation, the phosphatidylinositol-3-phosphate (PtdIns3P) effector WIPI1 

proteins are recruited to phagophores and form punctate patterns (Proikas-Cezanne, 2007). In 

line with LC3 tests, MITF knockdown significantly decreased GFP-WIPI1 dot formation 
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following torin1 treatment (Figure 3.1.2 9) or starvation (Figure 3.1.2 10). All these results 

clearly showed that MITF is required for the upregulation of autophagy in cells under stress.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.2.9: Effect of MITF knockdown on GFP-WIPI1 puncta formation following 

torin1 treatment. (A) HeLa cells transiently transfected with GFP-WIPI1 plasmid construct 

and either siCNT (control siRNA) or siMITF, then incubated with torin1 (200 nM, 4 h) and 

analyzed under a fluorescence microscope. DMSO, carrier control. White arrows indicate the 

GFP-WIPI1 dots in the cells. Scale bar, 10 µm.  (B) Quantitative analysis of GFP-WIPI1 puncta 

in the experimental set-up shown in A (mean±SD of n=3 independent experiments, ***p<0.01). 
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Figure 3.1.2.10: Effect of MITF knockdown on GFP-WIPI1 puncta formation following 

starvation treatment. (A) HeLa cells transiently transfected with GFP-WIPI1 plasmid 

construct and either siCNT (control siRNA) or siMITF, then incubated with torin1 (EBSS, 4 h) 

and analyzed under a fluorescence microscope. DMSO, carrier control. White arrows indicate 

the GFP-WIPI1 dots in the cells. Scale bar, 10 µm.  (B) Quantitative analysis of GFP-WIPI1 

puncta in the experimental set-up shown in A (mean±SD of n=3 independent experiments, 

***p<0.01). 

All these results clearly showed that MITF is required for the upregulation of autophagy 

in cells under stress.  
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To further confirm that MITF did not block autophagosome-lysosome fusion and 

increased the autophagic flux, 2 independent approaches were used. The GFP-RFP-LC3 tandem 

fusion construct is commonly used to assess autophagosome and autolysosome numbers. 

Whereas GFP and RFP label autophagosomes, the GFP signal quenches in the lysosomes while 

the RFP signal remains, marking autolysosomes. Quantitative analysis of autophagosome and 

autolysosome numbers using this test showed that torin1 led to an increase in both 

autophagosome and autolysosome numbers, and the knockdown of MITF significantly 

decreased the numbers of both vesicle types (Figure 3.1.2 11).  
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Figure 3.1.2 11: Effect of MITF knockdown on GFP-RFP-LC3 colocalization following 

torin1 treatment. (A) siMITF, but not siCNT, decreased the number of RFP+ GFP+ (yellow) 

and RFP+ GFP- (red) dots per cell in torin1-treated HeLa cells. Yellow, autophagosomes; red, 

autolysosomes; merged, overlay of GFP-LC3 and RFP-LC3 signals; focused, higher 

magnification of a relevant region of the same cell. Scale bar, 10µm. (B) Quantitative analysis 

of autophagosome and autolysosome numbers in the experimental set-up shown in A 

(mean±SD, n=3 independent experiments, **p<0.03). 

Additionally, we used another flux test that was suggested in the autophagy guidelines 

article (Klionsky, 2016), the GFP-LC3 lysosomal delivery and proteolysis test.  Here, when 

GFP-LC3 is delivered to lysosomes, the LC3 part of the chimera is degraded, whereas the GFP 

protein that is relatively resistant to hydrolysis accumulates. Therefore, the appearance of free 

GFP on western blots can be used to monitor breakdown of the autophagosomal cargo. Using 

this test, we observed a robust accumulation of free GFP in torin1-treated cells, indicating 

increased flux and degradation. Knockdown of MITF almost completely abolished free GFP 

accumulation under these conditions.  

 

 

 

 

 

 

 

Figure 1.3.2 12: Effect of MITF knockdown on GFP-LC3 lysosomal delivery and 

proteolysis. HeLa cells were transiently co-transfected with a plasmid encoding GFP-LC3 and 

siCNT or siMITF and treated with DMSO (-) or torin1. Appearance of free GFP was analyzed 

in immunoblots. ACTB was used as a loading control. ImageJ analyses of free GFP:ACTB 

ratios are shown. 

 

All of these results showed that MITF is required for autophagic activity in cells. 

Therefore, MITF is a key regulator of MTOR inhibition- and starvation-induced autophagy. 
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3.2 Role of MITF-dependent transcriptional activation in autophagy control 

As presented in Section 3.1, MITF overexpression in various cell lines increases the number of 

autophagosomes, whereas depletion of endogenous MITF by RNAi reduces autophagosome 

numbers. Previous studies indicated that transcription of some autophagy-related genes, 

including LC3B and ATG10, are regulated in a MITF-dependent manner (Perera, 2015).  

 

To confirm previous findings in our experimental conditions and to further analyze 

MITF-dependent transcriptional control of LC3B and ATG10, the expression of these 

autophagy-related genes following MITF knockdown under control, torin1 or starvation 

conditions were evaluated. Upon MITF knockdown, basal expression levels of ATG10 and 

LC3B were significantly attenuated. Moreover, expression of these genes was increased upon 

autophagy induction by torin1 treatment and starvation, and knockdown of MITF significantly 

downregulated torin1- and starvation-induced expression of ATG10 (Figure 3.2 1A and C) and 

LC3B (Figure 3.2 1B and D).  
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Figure 3.2 1: Effect of MITF silencing on expression of autophagy-related genes. (A-D) 

RT-qPCR analysis of mRNA levels of ATG10 (A and C) and LC3B (B and D) in control siRNA 

(siCNT)- or siMITF-transfected HeLa cells following torin1 (A and B) or starvation (C and D) 

treatment (mean±SD of n=5 independent experiments ***p<0.01, **<0.03, *p<0.05). DMSO, 

carrier control. Data were normalized to GAPDH. 

 

 MIR211 was reported to be a direct transcriptional target of MITF in a melanoma 

invasion and metastasis context (Miller, 2004; Mazar 2010). Yet, whether MITF regulates 

MIR211 under autophagy-inducing conditions in melanoma and epithelial cells, and whether it 

contributes to general autophagy control is not known. To confirm that MIR211 was expressed 

in HeLa cells, qPCR analysis was performed following control, torin1 or starvation treatment. 

Torin1 treatment significantly induced MIR211 expression in HeLa cells (Figure 3.2 2A). 

Under these conditions, introduction of MITF siRNA significantly decreased both basal and 

torin1-induced expression of MIR211 (Figure 3.2 2A). Similar results were obtained when 

starvation used was used as an autophagy inducer (Figure 3.2 2B). 

 

 

 

 

 

 

 

 

 

Figure 3.2 2: Effect of MITF silencing on MIR211 expression. (A) TaqMan RT-qPCR 

analysis of MIR211 expression in DMSO or torin1-treated (200 nm, 4h) HeLa cells (mean±SD 

of n=3 independent experiments, **p<0.03, *p<0.05). Data were normalized to RNU6-1 (RNA, 

U6 small nuclear 1) (U6). (F) TaqMan RT-qPCR analysis of MIR211 expression in non-starved 

(Non-STV) or starved (STV) (EBSS, 4h) HeLa cells (mean±SD of n=3 independent 

experiments, ***p<0.01, *p<0.05). Data were normalized to RNU6-1. 
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To confirm direct binding of MITF transcription factor to the promoter region of 

MIR211, chromatin immunoprecipitation (ChIP) experiments were performed. Chromatin IP 

identifies specific protein-DNA interactions within the cell, and to quantitate these interactions 

PCR or real-time PCR can be performed (Orlando V, 2000). Along with monitoring 

transcription regulation through histone modifications, ChIP can be also used to analyze the 

interaction of a transcription factor with a candidate target gene within the natural chromatin 

context of the cell. The overall protocol consists of various steps including crosslinking, cell 

lysis, chromatin shearing, immunoprecipitation with specific antibodies, DNA sample-clean up 

and PCR.  

 ChIP experiments performed in two different cell lines confirmed that MITF 

transcription factor interacts with the MIR211 promoter region. Moreover, the amount of MITF 

protein bound to the MIR211 promoter region was significantly increased upon autophagy 

induction by torin1 in HeLa (Figure 3.2 A) and SK-MEL-28 (Figure 3.2 B) cells.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 3: MITF-MIR211 promoter interaction analysis using ChIP assays. ChIP assays 

showing specific association of MITF with the MIR211 promoter region in HeLa (A) and SK-

MEL-28 (B) cells under DMSO or torin1-treated conditions. qPCR results of MIR211 promoter 

primers were obtained from input (pre-IP) samples or following ChIP with MITF antibodies. 

Ct (threshold cycle) ratios were normalized (CtChIP/Ctinput). In control (CNT) ChIP experiments, 

no antibody was added. HSPA/HSP70 promoter primers were used as negative control 

(mean±SD of n=3 independent experiments, ***p<0.01, **p<0.03). 
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As presented in Figure 3.2 3, it was shown for the first time that MITF controlled basal 

and autophagic stress-induced MIR211 levels in cells. 

 

Moreover, in ChIP experiments, MITF could bind to the promoter of LC3B and, when 

autophagy was stimulated, MITF binding to the promoter was significantly increased in 2 

different cell lines (Figure 3.2 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 4: MITF-LC3 promoter interaction analysis using ChIP. Chromatin 

immunoprecipitation (ChIP). (A and B) ChIP assays showing specific association of MITF with 

the LC3B promoterregion in HeLa (A) and SK-MEL-28 (B) cells under DMSO-or torin1-

treated conditions. qPCR results of LC3B promoter primers were obtained from input (pre-IP) 

samples or following ChIP with MITF antibodies. Ct (threshold cycle) ratios were normalized 

(CtChIP/Ctinput). In control ChIP experiments, no antibody was added (MITF ab [-]). 

HSPA/HSP70 promoter primers were used as a negative control (mean±SD of n=3 independent 

experiments, ***p<0.01, **p<0.03). 

 

Next, to check whether the expression of MITF and its target MIR211 is in correlation 

MITF and MIR211 co-expression was analyzed in several cell lines originating from different 

tissue types. A positive correlation (r=0.983, p=0.0004) was found between MIR211 and MITF 

mRNA expression in cell lines including MCF-7, SH-SY5, HEK293T, MDA-MB-231, HeLa 

A B 
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and SK-MEL-28 (Figure 3.2 5A). Moreover, MITF protein expression in all these cell lines 

was also confirmed by immunoblotting analysis with pan-MITF antibody which recognizes all 

isoforms (Figure 3.2 5B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 5: Correlation of endogenous MIR211 and MITF mRNA levels in various cell 

lines. (A) A positive correlation between endogenous MIR211 and MITF mRNA levels was 

determined by RT-qPCR in MDA-MB-231 (MDA), MCF-7 (M7), SH-SY5Y (SH-SY), 

HEK293T (HEK), HeLa and SK-MEL-28 cells. r, Pearson’s correlation coefficient. (r>0, 

positive correlation; p value=0.004). (B) Expression of MITF protein was detected in MDA-

MB-231, HeLa, SH-SY5Y, HEK293T, SK-MEL-28, MCF-7 cells using a pan-MITF antibody. 
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Additionally, analyses of RNAs that were isolated from various human tissues showed 

a positive correlation (r=0.729, p=0.0165) between MIR211 and MITF (Figure 3.2 6A). MITF 

protein expression was demonstrated in all studied human tissues as well (Figure 3.2 6B) and 

Fig. S3C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 6: Correlation of endogenous MIR211 and MITF mRNA levels in human  

tissues from 4 different cadavers. (A) A positive correlation between endogenous MIR211 

and MITF mRNA levels was determined by RT-qPCR in the indicated tissues (Pearson’s r 

coefficient (r)=0.729, p value (p)=0.0165). (B) Immunoblot analysis of tissue protein extracts 

from a cadaver using a pan-MITF antibody. ACTB was used as loading control. 
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To confirm our experimental results in larger datasets, correlation of MIR211 and MITF 

expression was checked in publicly available expression data in different tissues and cell lines. 

First of all, NCI-60 datasets obtained from 60 different cancer cell lines showed that MIR211 

expression positively correlated with MITF expression in these cell lines (Figure 3.2 7) 

(r=0.762, p<0.0001).  

 

 

Figure 3.2 7: Correlation of MIR211 and MITF mRNA expression using NCI-60 

expression dataset. The correlation between miRNA and gene expression profile is quantified 

by computing the correlation coefficient using the NCI-60 expression profiling data (M) 

(Pearson’s r coefficient (r)=0.762, p value (p)<0.0001) 

 

The Cancer Genome Atlas (TCGA) cancer tissue data subsets were also analyzed. 

Subsets providing suitable sample size (see Materials and Methods) were skin cutaneous 

melanoma, pan-kidney cohort, testicular germ cell tumors, glioma and ovarian serous 

cystadenocarcinoma datasets. While a high correlation of MIR211-MITF expression was 

observed in the skin cutaneous melanoma subset (r=0.745, p<0.0001) (Figure 3.2 8), a variable 

but positive correlation was present in the pan-kidney cohort (r= 0.11, p=0.0052), testicular 

germ cell tumors (r=0.26, p=0.0034) and glioma (r=0.22, p<0.0001) subsets. A similar tendency 
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was observed in the ovarian serous cystadenocarcinoma dataset (r=0.13, p=0.0661) (Figure 3.2 

9. 

 

 

 

Figure 3.2 8: Correlation of MIR211 and MITF mRNA expression using TCGA SKCM 

expression dataset. The correlation between miRNA and gene expression profile is quantified 

by computing the correlation coefficient using TCGA Skin Cutaneous Melanoma (N) 

(Pearson’s r coefficient (r)=0.745, p value (p)<0.0001) microRNA and gene expression data.  
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Figure 3.2 9: Correlation of MIR211 and MITF mRNA expression using various TCGA 

expression datasets. Analysis of TCGA pan-kidney cohort (KIPAN) (A), testicular germ cell 

tumors (TGCT) (B), glioma (GBMLGG) (C), ovarian serous cystadenocarcinoma (OV) (D) 

datasets for MIR211 and MITF mRNA expression correlation.  

 

 

 

Therefore, all of the above data demonstrated for the first time that, in addition to LC3B 

and ATG10, MITF regulated MIR211 expression under autophagy-inducing conditions. 

Because both MITF and MIR211 are co-expressed in cell lines and human tissues that were 

tested in this study, a MITF-MIR211 axis might play a role in general autophagy control. 
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3.3 MIR211 induced autophagy 

 
Our results showed that MITF is indispensable for mTOR-mediated and starvation-induced 

autophagy. To clarify the role of MIR211 in MITF-dependent autophagy regulation, several 

independent autophagy tests were performed (Figure 3.3 1) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 1: The pipeline of experiments demonstrating the effect MIR211 

overexpression on autophagy. 
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3.3.1 Effect of MIR211 on basal autophagy  

 
In order to test the effect of MIR211 on autophagy, we overexpressed miRNA mimic and 

control constructs in cells and checked for autophagic flux. Overexpression of MIR211 but not 

the control construct (MIR-CNT) induced GFP-LC3 dot formation (Figure 3.3.1 1) under fed 

conditions in HeLa cells. Moreover, MIR211 overexpression further increased GFP-LC3 dot 

formation upon lysosomal inhibition by E64D and pepstatin A. These results showed that 

MIR211 stimulated autophagosome formation and did not prominently affect autophagosome-

lysosome fusion (Figure 3.31 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1 1: Effect of MIR211 on GFP-LC3 dot formation following lysosomal 

inhibition in HeLa cells. (A) HeLa-GFP-LC3 stable cells transfected with MIR211 or a control 

construct (MIR-CNT), and autophagy was assessed in the presence and absence of lysosomal 

inhibitors. (Scale bar, 10 µm. (B) Quantitative analysis of GFP-LC3 dots in the experimental 

set-up shown in A (mean±SD of n=3 independent experiments, ***p<0.01). 
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Similarly, immunoblotting experiments confirmed that MIR211 overexpression 

promotes LC3-II accumulation in the presence of lysosomal inhibition, hence induces 

autophagosome-lysosome fusion in HeLa cells (Figure 3.3.1 2). 

 

 

 

 

Figure 3.3.1 2: Effect of MIR211 on LC3-II accumulation following lysosomal inhibition 

in HeLa cells. (A) Autophagy-related LC3-II levels were analyzed in immunoblots of MIR-

CNT-or MIR211-overexpressing HeLa cell extracts. (B) Graph depicting quantification of LC3-

II:ACTB ratios in the experimental set-up shown in A (mean±SD, n=3 independent 

experiments, ***p<0.01, **p<0.03). 

 

Next, the effect of MIR211 overexpression on autophagic activity was also analyzed in 

SK-MEL-28 cells using immunofluorescence- and immunoblotting-based autophagy assays 

and the results are presented in Figure 3.3.1 3 and Figure 3.3.1 4, respectively.  
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Figure 3.3.1 3: Effect of MIR211 on GFP-LC3 dot formation following lysosomal 

inhibition in SK-MEL-28 cells. (A) SK-MEL-28 cells transiently transfected with GFP-LC3 

plasmid and MIR211 or a control construct (MIR-CNT), and autophagy was assessed in the 

presence and absence of lysosomal inhibitors. MIR211 overexpression increased GFP-LC3 dot 

formation. Scale bar, 10 µm. (B) Quantitative analysis of GFP-LC3 dots in the experimental 

set-up shown in A (mean±SD of n=3 independent experiments, ***p<0.01). 

 

 

Figure 3.3.1 4: Effect of MIR211 on LC3-II accumulation following lysosomal inhibition 

in SK-MEL-28 cells. (A) Autophagy-related LC3-II levels were analyzed in immunoblots of 

MIR-CNT- or MIR211-overexpressing SK-MEL-28 cell extracts. (B) Graph depicting 

quantification of LC3-II:ACTB ratios in the experimental set-up shown in A (mean±SD, n=3 

independent experiments, ***p<0.01). 

3.3.2 Effect of MIR211 on torin1-induced autophagy 

Moreover, the effect of MIR211 on autophagy that was stimulated by torin1 treatment was 

checked in two different cell lines using LC3 shift assay. Torin1-induced autophagy was further 

induced in both HeLa (Figure 3.3.2 1) and SK-MEL-28 (Figure 3.3.2 2) cells following MIR211 

overexpression. Following lysosomal inhibition, LC3-II accumulation was further increased 

under these conditions upon MIR211 overexpression.  
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Figure 3.3.2 1: Effect of MIR211 on LC3-II accumulation following torin1 treatment in 

HeLa cells. (A) Immunoblots of MIR-CNT- or MIR211-transfected HeLa cells that were treated 

with DMSO or torin1 (200 nM, 4h). (B) Graph depicting quantification of LC3-II:ACTB ratios 

in the experimental set-up shown in A (mean±SD, n=4 independent experiments, ***p<0.01, 

**<0.03, *p<0.05). 
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Figure 3.3.2 2: Effect of MIR211 on LC3-II accumulation following torin1 treatment in 

SK-MEL-28 cells. (A) Immunoblots of MIR-CNT- or MIR211-transfected HeLa cells that were 

treated with DMSO or torin1 (200 nM, 4h). E+P, E64D and pepstatin A. (B) Graph depicting 

quantification of LC3-II:ACTB ratios in the experimental set-up shown in A (mean±SD, n=5 

independent experiments, **p<0.03, *p<0.01). 
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 To confirm the overexpression of MIR211 in the above-mentioned immunoblotting 

experiments (Figure 3.3.2 1 and 3.3.2 2), RT-qPCR analyses were performed. Results for both 

HeLa and SK-MEL-28 cells are presented in Figure 3.3.2 3.  

 

 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.2 3: Confirmation of MIR211 overexpression in Figure 3.3.2 1 and 3.3.2 2. 

MIR211 levels were increased in HeLa (A, Figure 3.3.2 1) and SK-MEL-28 (B, Figure 3.3.2 2) 

cells following transfection with the MIR211 expression plasmid (mean±SD, n=3 independent 

experiments, ***p<0.01).  
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Further analysis of the effect of MIR211 on torin1-induced autophagy was carried out 

by GFP-WIPI1 dot formation assay. In line with LC3 tests, MIR211 overexpression 

significantly increased GFP-WIPI1 dot formation following torin1 treatment (Figure 3.3.2 4) 

in HeLa cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.2 4: Effect of MIR211 overexpression on GFP-WIPI1 puncta formation 

following torin1 treatment. (A) HeLa cells transiently transfected with GFP-WIPI1 plasmid 

construct and either MIR-CNT or MIR211, then incubated with torin1 (200 nM, 4 h) and 

analyzed under a fluorescence microscope. DMSO, carrier control. White arrows indicate the 

GFP-WIPI1 dots in the cells. Scale bar, 10 µm.  (B) Quantitative analysis of GFP-WIPI1 puncta 

in the experimental set-up shown in A (mean±SD of n=3 independent experiments, ***p<0.01, 

**<0.03). 
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3.3.3 Effect of MIR211 on starvation-induced autophagy 

Similar effect on LC3 shift in the presence of MIR211 was obtained in starvation-induced 

autophagy. Autophagy that was stimulated by starvation was further upregulated in both HeLa 

(Figure 3.3.3 1) and SK-MEL-28 (Figure 3.3.3 2) cells when MIR211 is introduced to the 

system. Following addition of lysosomal inhibitors, starvation-induced LC3-II was further 

accumulated upon MIR211 overexpression.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.3 1: Effect of MIR211 on LC3-II accumulation following starvation treatment 

in HeLa cells. (A) Immunoblots of HeLa cells transiently transfectd with MIR-CNT- or MIR211 

and then non-starved or starved (STV) (EBSS, 4h). (B) Graph depicting quantification of LC3-

II:ACTB ratios in the experimental set-up shown in A (mean±SD, n=3 independent 

experiments, ***p<0.01, **p<0.03, *<0.05). 
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Figure 3.3.3 2 Effect of MIR211 on LC3-II accumulation following starvation treatment 

in SK-MEL-28 cells. (A) Immunoblots of SK-MEL-28 cells transiently transfected with MIR-

CNT- or MIR211 and then non-starved or starved (STV) (EBSS, 4h). (B) Graph depicting 

quantification of LC3-II:ACTB ratios in the experimental set-up shown in A (mean±SD, n=3 

independent experiments, ***p<0.01, *<0.05). 
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Moreover, overexpression of MIR211 in the above-mentioned immunoblotting 

experiments (Figure 3.3.3 1 and 3.3.3 2) were confirmed using RT-qPCR. Results for both 

HeLa and SK-MEL-28 cells are presented in Figure 3.3.3 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.3 3: Confirmation of MIR211 overexpression in Figure 3.3.3 1 and 3.3.3 2. 

MIR211 levels were increased in HeLa (A) and SK-MEL-28 (B) cells following transfection 

with the MIR211 expression plasmid (mean±SD, n=3 independent experiments, ***p<0.01). 
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These LC3 shift assay results were confirmed using another independent autophagy test, 

a GFP-WIPI1 puncta formation assay following starvation treatment in HeLa cells (Figure 3.3.3 

4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.3 4: Effect of MIR211 overexpression on GFP-WIPI1 puncta formation 

following starvation. (A) HeLa cells transiently transfected with GFP-WIPI1 plasmid 

construct and either MIR-CNT or MIR211, then non-starved or starved (EBSS, 4 h) and 

analyzed under a fluorescence microscope. STV, starvation. White arrows indicate the GFP-

WIPI1 dots in the cells. Scale bar, 10 µm.  (B) Quantitative analysis of GFP-WIPI1 puncta in 

the experimental set-up shown in A (mean±SD of n=3 independent experiments, ***p<0.01, 

*<0.05). 
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To further provide evidence that MIR211 stimulated productive autophagy that resulted 

in autophagosome-lysosome fusion and autophagic flux, quantitative GFP-RFP-LC3 analyses 

and GFP-LC3 and RFP-LAMP1 colocalization analyses were performed. MIR211 

overexpression stimulated an increase in both autophagosome and autolysosome numbers both 

in GFP-RFP-LC3 tests (Figure 3.3.3 5) and GFP-LC3 and RFP-LAMP1 colocalization analyses 

(Figure 3.3.3 6). All of these data showed that MIR211 did not block autophagosome-lysosome 

fusion but rather stimulated autolysosome formation.  
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Figure 3.3.3 5: Effect of MIR211 overexpression on GFP-RFP-LC3 colocalization 

following torin1 treatment. (A) MIR211 overexpression increased the number of RFP+ GFP+ 

(yellow) and RFP+ GFP- (red) dots per cell in DMSO- or torin1-treated HeLa cells. Yellow, 

autophagosomes; red, autolysosomes; merged, overlay of GFP-LC3 and RFP-LC3 signals; 

focused, higher magnification of a relevant region of the same cell. Scale bar, 10 µm. (B) 

Quantitative analysis of autophagosome and autolysosome numbers in the experimental set-up 

shown in A (mean±SD, n=3 independent experiments, *p<0.01). 
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Figure 3.3.3 6: Effect of MIR211 overexpression on GFP-LC3 and RFP-LAMP1 

colocalization. (A) Colocalization of GFP-LC3 (autophagosomes) and RFP-LAMP1 

(lysosomes) was stimulated by MIR211 overexpression. Representative confocal microscopy 

images of MIR-CNT or MIR211 transfected HeLa cells. Merged, overlay of GFP-LC3 and RFP-

LAMP1 signals; yellow signal, colocalization; focused, higher magnification of a relevant 

region of the same cell. Scale bar, 10 µm. (B) Quantitative analysis of colocalized 

autophagosomes and lysosomes in the experimental set-up shown in A (mean±SD, n=3 

independent experiments, *p<0.05) 
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Finally, to monitor the effect of MIR211 on breakdown of the autophagosomal cargo, 

GFP-LC3 lysosomal delivery and proteolysis tests were performed in the presence or absence 

of lysosomal inhibitors. These analyses showed that MIR211 stimulated lysosome-dependent 

degradation of GFP-LC3. Free GFP accumulation was observed following MIR211 

overexpression, whereas inhibition of lysosomal proteases prominently decreased this 

accumulation (Figure 3.3.3 7).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.3 7: Effect of MIR211 on GFP-LC3 lysosomal delivery and proteolysis. (A and 

B) HeLa cells were transiently co-transfected with GFP-LC3 and MIR-CNT or MIR211 

andtreated with torin1 in the presence or absence of E64d and pepstatin A (E+P). Appearance 

of free GFP was analyzed in immunoblots. ACTB was used as a loading control. Results of 2 

independent experiments (A and B) and ImageJ analyses of free GFP:ACTB ratios are shown. 

 

 

Therefore, MIR211 stimulated autophagosome and autolysosome formation and 

autophagic flux.  
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3.4 Inhibition of MIR211 suppressed starvation- and MTOR-dependent autophagy. 

 
To reveal the importance of endogenous MIR211 in autophagy regulation, we inhibited 

endogenous miRNAs using chemically synthesized anti-MIR211 antagomir oligonucleotides 

(ANT211) and checked torin1- or starvation-induced autophagy with GFP-LC3 and GFP-WIPI1 

dot formation tests and LC3 shift assay in the presence or absence of E64D-pepstatin A (Figure 

3.4 1).  

 

 

 

 

 

 

 

 

 

 

Figure 3.4 1: The pipeline of experiments demonstrating the effect of antagomir-mediated 

MIR211 silencing on autophagy 
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First of all, introduction of specific antagomir nucleotides against MIR211 was 

confirmed by checking endogenous MIR211 expression levels in HeLa (Figure 3.4 2A) and 

SK-MEL28 (Figure 3.4 2B) cells.  

 

 

 
 

Figure 3.4 2: Confirmation of MIR211 overexpression and antagomir (ANT211)-mediated 

silencing. MIR211 levels were increased in HeLa (A) and SK-MEL-28 (B) cells following 

transfection with the MIR211 construct whereas antagomir ANT211 transfection significantly 

decreased endogenous MIR211 levels in HeLa (A) and SK-MEL-28 (B) cells (mean±SD, n=3 

independent experiments,***p<0.01).  

 

3.4.1 Effect of ANT211 on torin1-induced autophagy 

 

It was observed that introduction of ANT211, but not ANT-CNT, led to a decrease in GFP-LC3 

dot numbers following torin1 treatment in HeLa (Figure 3.4.1 1) and SK-MEL-28 cells (Figure 

3.4.1 2).  
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Figure 3.4.1 1: Effect of ANT211 on GFP-LC3 dot formation following torin1 treatment 

in HeLa cells. (A) HeLa-GFP-LC3 stable cells transfected with either ANT-CNT (control 

antagomir) or ANT211, incubated with torin1 (200 nM, 4 h) and analyzed under a fluorescence 

microscope. DMSO, carrier control. White arrows indicate the GFP-LC3 dots in the cells. Scale 

bar, 10 µm.  (B) Quantitative analysis of GFP-LC3 dots in the experimental set-up shown in A 

(mean±SD of n=3 independent experiments, ***p<0.01, **p<0.03). 
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Figure 3.4.1 2: Effect of ANT211 on GFP-LC3 dot formation following torin1 treatment 

in SK-MEL-28 cells. (A) SK-MEL-28 cells transiently transfected with either ANT-CNT 

(control antagomir) or ANT211, incubated with torin1 (200 nM, 4 h) and analyzed under a 

fluorescence microscope. DMSO, carrier control. White arrows indicate the GFP-LC3 dots in 

the cells. Scale bar, 10 µm.  (B) Quantitative analysis of GFP-LC3 dots in the experimental set-

up shown in A (mean±SD of n=3 independent experiments, ***p<0.01, *p<0.05). 
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In line with GFP-LC3 dot formation results, the inhibitory effect of antagomir-mediated 

MIR211 silencing on torin1-induced autophagy was confirmed using LC3 shift assay in HeLa 

(3.4.1 3) and SK-MEL-28 cells (Figure 3.4.1 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.1 3: Effect of ANT211 on LC3-II accumulation following torin1 treatment in 

HeLa cells. (A) Immunoblots of HeLa cells transiently transfected with either ANT-CNT 

(control antagomir) or ANT211, then incubated with DMSO or torin1 (200 nM, 4 h). (B) Graph 

depicting quantification of LC3-II:ACTB ratios in the experimental set-up shown in A 

(mean±SD, n=3 independent experiments, ***p<0.01). 
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Figure 3.4.1 4: Effect of ANT211 on LC3-II accumulation following torin1 treatment in 

SK-MEL-28 cells. (A) Immunoblots of SK-MEL-28 cells transiently transfected with either 

ANT-CNT (control antagomir) or ANT211, then incubated with DMSO or torin1 (200 nM, 4 h) 

(B) Graph depicting quantification of LC3-II:ACTB ratios in the experimental set-up shown in 

A (mean±SD, n=3 independent experiments, **p<0.03, *<0.05).  

 

 

 

MIR211-dependence of torin1-induced autophagy was also confirmed using GFP-

WIPI1 puncta formation tests (Figure 3.4.1 5).  
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Figure 3.4.1 5: Effect of ANT211 on GFP-WIPI1 puncta formation following torin1 

treatment. (A) HeLa cells transiently transfected with GFP-WIPI1 plasmid construct and either 

ANT-CNT or ANT211, then incubated with torin1 (200 nM, 4 h) and analyzed under a 

fluorescence microscope. DMSO, carrier control. White arrows indicate the GFP-WIPI1 dots 

in the cells. Scale bar, 10 µm.  (B) Quantitative analysis of GFP-WIPI1 puncta in the 

experimental set-up shown in A (mean±SD of n=3 independent experiments, ***p<0.01). 
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3.4.2 Effect of ANT211 on starvation-induced autophagy 

When nutrient deprivation was used as an autophagy inducer, the level of LC3-II decreased in 

ANT211-transfected cells compared to control transfected counterparts in both HeLa (Figure 

3.4.2 1) and SK-MEL-28 cells (Figure 3.4.2 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.2 1: Effect of ANT211 on LC3-II accumulation following starvation treatment 

in HeLa cells. (A) Immunoblots of ANT-CNT (control antagomir) or ANT211- transfected 

HeLa cells that were non-starved or starved (EBSS, 4h) (B) Graph depicting quantification of 

LC3-II:ACTB ratios in the experimental set-up shown in A (mean±SD, n=3 independent 

experiments, ***p<0.01, **p<0.03). 
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Figure 3.4.2 2: Effect of ANT211 on LC3-II accumulation following starvation in SK-

MEL-28 cells. (A) Immunoblots of ANT-CNT (control antagomir) or ANT211- transfected SK-

MEL-28 cells that were non-starved or starved (EBSS, 4h) (B) Graph depicting quantification 

of LC3-II:ACTB ratios in the experimental set-up shown in A (mean±SD, n=3 independent 

experiments, ***p<0.01, **<0.03, *p<0.05). 
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Similarly, it was observed that starvation-induced accumulation of GFP-WIPI1 dots was 

attenuated in HeLa cells when endogenous MIR211 is silenced (Figure 3.4.2 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.2 3: Effect of ANT211 on GFP-WIPI1 puncta formation following starvation. 

(A) HeLa cells transiently transfected with GFP-WIPI1 plasmid construct and either ANT-CNT 

or ANT211, then non-starved or starved (EBSS, 4h) and analyzed under a fluorescence 

microscope. White arrows indicate the GFP-WIPI1 dots in the cells. Scale bar, 10 µm.  (B) 

Quantitative analysis of GFP-WIPI1 puncta in the experimental set-up shown in A (mean±SD 

of n=3 independent experiments, ***p<0.01). 
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3.4.3 Regulation of autophagy through MITF/MIR211 axis 

The most critical finding about the role of MITF and MIR211 on autophagic activity was that 

MIR211 silencing limited the increase in the amplitude of autophagy when MITF was 

overexpressed. This result clarified the critical role of this miRNA in MITF-dependent 

autophagy regulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.3 1: MITF regulates autophagy through MIR211. (A) Autophagy-related LC3-II 

levels were analyzed in immunoblots of HeLa cells that were co-transfected with a MITF-A-

encoding plasmid, ANT211 or controls as indicated in the presence or absence of E64D and 

pepstatin A (E+P). (B) Graph depicting quantification of LC3-II:ACTB ratios in the 

experimental set-up shown in A (mean±SD, n=4 independent experiments, ***p<0.01, 

**p<0.03).  

 

These results indicate that endogenous MIR211 levels are critical cellular factors 

regulating autophagy activation under cellular stress. 
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3.5 RICTOR was an autophagy-related target of MIR211 

 

In order to understand the mechanism behind MIR211 regulation of starvation and torin1 

induced autophagy, autophagy-related target of the miRNA should be predicted and validated. 

Bioinformatics analysis was performed for miRNA-target interaction prediction. Then, the 

effect of MIR211 on predicted target was validated through cellular analyses. To clarify whether 

the interaction is direct and target is the rate-limiting factor in the autophagy context, luciferase 

activity assay and rescue assay were performed, respectively (Figure 3.5 1).   

 

 

Figure 3.5 1: The pipeline of experiments demonstrating target prediction and validation 

for MIR211 functional analysis. 
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3.5.1 Target prediction using bioinformatics tools 

Autophagy-related genes with potential binding sites of MIR211 in their 3’UTR were searched 

using the bioinformatics tools miRanda, FindTar3, TargetScan, miRDB and RNA22. All of 

these tools identified RICTOR (GenBank accession number: NM_152756) as a potential direct 

target of MIR211. Indeed, we could identify a MIR211 miRNA response element (MRE) in the 

3’ UTR of the RICTOR mRNA (Base numbers: 4343-4349, Figure 3.5.1 1). 

 

 

 

 

 

 

 

Figure 3.5.1 1: Target prediction using bioinformatics tools. MIR211 target sequence in the 

3' UTR of RICTOR mRNA. The MIR211 seed sequence was marked in italics. 

 

3.5.2 Effect of MIR211 on target mRNA and protein levels 

To confirm the bioinformatic prediction, RICTOR mRNA and protein levels were analyzed 

by real time PCR and immunoblotting, respectively.  

MIR211 overexpression but not MIR-CNT resulted in the downregulation of RICTOR 

mRNA levels in both HeLa and SK-MEL-28 cells (Figure 3.5.2 1). 
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Figure 3.5.2 1: Effect of MIR211 overexpression on RICTOR mRNA levels. RT-qPCR 

analysis of RICTOR mRNA levels in control (MIR-CNT)- or MIR211-transfected HeLa or SK-

MEL-28 cells (mean±SD, n=3 independent experiments, **p<0.03, ***p<0.01). Data were 

normalized using GAPDH mRNA as a control. 

 

 

 

Moreover, protein extracts from either control or MIR211-overexpressed cells were 

immunoblotted for RICTOR. It was found that overexpression of the miRNA decreased 

RICTOR protein levels (Figure 3.5.2 2) and downregulation of endogenous MIR211 using 

antagomirs resulted in the accumulation of RICTOR protein level in cells (Figure 3.5.2 3). 
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Figure 3.5.2 2: Effect of MIR211 overexpression on RICTOR protein levels. Effect of 

Immunoblots of MIR-CNT or MIR211 transfected cells. RICTOR protein levels decreased 

following MIR211 overexpression in HeLa or SK-MEL-28 cells. (B) Graph depicting 

quantification of RICTOR:ACTB ratios in the experimental set-up shown in A (mean±SD, n=3 

independent experiments, ***p<0.01). 
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Figure 3.5.2 3: Effect of ANT211 on RICTOR protein levels. (A) Immunoblots of ANT-CNT 

or ANT211 transfected cells. RICTOR protein levels decreased following ANT211 in HeLa or 

SK-MEL-28 cells. (B) Graph depicting quantification of RICTOR:VIM ratios in the 

experimental set-up shown in A (mean±SD, n=3 independent experiments, **p<0.03, *p<0.05). 

 

  

As a conclusion, RICTOR transcript and protein levels in cells are regulated through 

MIR211. 
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3.5.3 Luciferase activity assay to demonstrate direct binding of MIR211 to RICTOR 

To validate that the MRE sequence in the 3’UTR of RICTOR mRNA was responsive to 

MIR211, the region of 3’UTR of RICTOR mRNA containing a potential MIR211 binding site 

was cloned to luciferase vector. Linker primer cloning method was used (Figure 3.5.3 1). 

Additionally, a mutant version of this construct by introducing base changes to putative miRNA 

seed sequence binding region was created (Figure 3.5.3 2) 

 

 

 
 

 

Figure 3.5.3 1: Linker primer cloning strategy for RICTOR 3’UTR into luciferase vector. 

pGL3 control vector was used for cloning of the portion of 3’UTR of RICTOR that MIR211 

binds. (Promega-pGL3-Control Vector map) 

 

 

 

3’ UTR MIR211 MRE 
sequences of RICTOR 
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Figure 3.5.3 2: A scheme representing luciferase constructs.  Wild-type (WT) or mutant 

MIR211 target3' UTR MRE sequences of RICTOR. Mutations were marked in lowercase letters. 

 

Co-transfection of MIR211 together with the wild-type luciferase construct into 

HEK293T (Figure 3.5.3 3), HeLa and SK-MEL-28 (Figure 3.5.3 4) cells resulted in a significant 

decrease in luciferase activity. However, when MIR211 was co-transfected with the mutant 

construct, luciferase activity was similar to control levels.  

 

Moreover, luciferase activity assay was performed after suppression of endogenous 

MIR211 by ANT211 in HeLa and SK-MEL-28 cells. A significant increase above control levels 

was observed in the luciferase activity of ANT211-transfected cells, while this effect was not 

observed in cells transfected with the mutant construct (Figure 3.5.3 4). 

 

 

 

 

 

 

 

 

 

Figure 3.5.3 3: Luciferase activity assay in HEK293T cells. Normalized luciferase activity 

in lysates from HEK293T cells that were co-transfected with wild-type or mutant RICTOR-

luciferase constructs and MIR211 or MIR-CNT (mean±SD, n=5 independent experiments, 

***p<0.01). 
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Figure 3.5.3 4: Luciferase activity assay in HeLa and SK-MEL28. Normalized luciferase 

activity in lysates from HeLa and SK-MEL-28 cells that were co-transfected with wild-type or 

mutant RICTOR-luciferase constructs and MIR211 or ANT211 (mean ± SD of independent 

experiments, n=4, *p<0.05, **p<0.03, ***p<0.01, N.S., not significant). 

 

 These results indicated that MIR211 controlled RICTOR gene expression through 

directly binding to its 3’UTR.  
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3.5.4 Rescue assay to demonstrate RICTOR is a rate-limiting target 

 

Since microRNAs may target at least dozens of genes at once. In order to prove that a gene is 

a rate-limiting target in a defined biological event, rescue experiment should be performed. 

Here, a miRNA-resistant expression construct encoding the target protein is introduced to the 

system that overexpresses the miRNA. If the effect of miRNA on the biological event is 

reversed, then it can be concluded that target protein of interest is a key player in the miRNA-

mediated effect.  

 

Hence, rescue experiments were performed to validate that RICTOR downregulation 

was responsible for the autophagy-related effects of MIR211. For this purpose, RICTOR protein 

was overexpressed from a plasmid lacking the MRE region, and therefore resistant to miRNA-

mediated silencing. Then, for autophagy analysis, GFP-LC3 puncta formation assays were 

performed in HeLa cells in the presence or absence of E64D-pepstatin A. Under these 

conditions, GFP-LC3 dot formation assay revealed that MIR211-induced autophagy could be 

reversed by reintroduction of the RICTOR protein (Figure 3.5.4 1).  
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Figure 3.5.4 1: Rescue assay and GFP-LC3 dot formation assay. (A) RICTOR 

overexpression was sufficient to revert MIR211-mediated autophagy induction. HeLa cells 

were co-transfected with MIR211 or MIR-CNT and a RICTOR expression plasmid lacking the 

MIR211 target MRE region (MIR211-resistant RICTOR plasmid). GFP-LC3 dot formation was 

evaluated in the presence or absence of E64D and pepstatin A (E+P). Scale bar, 10 µm. (B) 

Quantitative analysis of GFP-LC3 dots in the experimental set-up shown in A (mean±SD of 

n=3 independent experiments, ***p<0.01, **p<0.03). 

 

 

In line with these results, an increase in LC3-II protein levels that was observed upon 

MIR211 overexpression, was attenuated when the RICTOR protein was reintroduced, and these 

effects were enhanced by lysosomal inhibitors (Figure 3.5.4 2).  
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Figure 3.5.4 2: Rescue assay and LC3 shift assay. (A) Immunoblots of extracts from cells 

transfected with MIR-CNT, MIR211 or MIR211 together with the MIR211-resistant RICTOR 

expression plasmid. (B) Graph depicting quantification of LC3B:ACTB ratios in the 

experimental set-up shown in B (mean±SD, n=3 independent experiments, **<0.03, *p<0.05)  

 

Hence, expression of RICTOR alone was sufficient for autophagy suppression even in 

the presence of elevated MIR211 levels. 

 

The above presented data demonstrated for the first time that RICTOR is a rate-limiting 

target of the MITF-regulated microRNA MIR211, in the context of autophagy. 
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3.6 MIR211 regulated the mTORC1 pathway through RICTOR 

mTORC2 was directly linked to mTORC1 regulation and autophagy control through AKT 

phosphorylation. The serine 473 (Ser473) residue on the AKT protein was identified as a direct 

target of the mTORC2-associated mTOR Ser/Thr kinase (Sarbassov, 2005). Because it was 

established that RICTOR, a major regulator of mTORC2 activity, was directly downregulated 

by MIR211, we checked whether AKT Ser473 phosphorylation was affected by overexpression 

of the miRNA.  

 

Figure 3.6.1 shows that MIR211 overexpression prominently decreased AKT 

phosphorylation. Torin1 was used as a positive control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 1: Effect of MIR211 overexpression on AKT phosphorylation. (A) MTORC2-

mediated AKT Ser473 phosphorylation was decreased in HeLa cells overexpressing MIR211. 

(B) Graph depicting quantification of p-AKT:AKT ratios in the experimental set-up shown in 

A (mean±SD, n=3 independent experiments, ***p<0.01). 
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In the same experimental context, MIR211 overexpression blocked the activation of 

mTORC1 by AKT through mTOR Ser2448 phosphorylation (Figure 3.6.2). Furthermore, the 

miRNA also led to a decrease in RPS6KB1 phosphorylation by mTORC1 at Thr389, 

confirming the inhibition of mTORC1 activity under these conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 2: Effect of MIR211 overexpression on MTOR pathway. MTOR phospho-

Ser2448 (p-MTOR) and RPS6KB1 phospho-Thr389 levels were decreased following MIR211 

overexpression in HeLa cells. (D) Graph depicting quantification of p-MTOR:MTOR and p-

RPS6KB1:RPS6KB1 ratios in the experimental set-up shown in C (mean±SD, n=3 independent 

experiments, ***p<0.01, **<0.03). 
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Above-mentioned results were confirmed by checking the effect of RICTOR on mTOR 

pathway.  It was clarified that RICTOR downregulation per se was responsible for mTORC1 

inhibition by the miRNA. Indeed, introduction of an shRNA against RICTOR (shRICTOR) 

resulted in mTOR Ser2448 and RPS6KB1 Thr389 dephosphorylation, and hence mTORC1 

inhibition (Figure 3.6.3).  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 3: Effect of shRICTOR on mTOR pathway. (A) Knockdown of RICTOR by 

shRNA (shRICTOR) decreased p-mTOR and p-RPS6KB1 levels. Torin1, positive control. (B) 

Graph depicting quantification of p-mTOR:mTOR and p-RPS6KB1:RPS6KB1 ratios in the 

experimental set-up shown in E (mean±SD, n=3 independent experiments, ***p<0.01). 
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Similarly, overexpression of RICTOR from a MIR211-resistant construct increased 

mTORC2-related AKT Ser 473 phosphorylation (Figure 3.6 4).  

 

 

 

Figure 3.6 4: Determination of RICTOR activity on AKT phosphorylation. RICTOR 

activity was determined as AKT Ser473 phosphorylation following MIR211 overexpression or 

MIR211-resistant RICTOR plasmid co-overexpression with the miRNA. MIR211 

overexpression led to a decrease in p-AKT levels, whereas AKT Ser473 phosphorylation 

increased following overexpression of RICTOR from plasmid lacking the MIR211 target MRE 

region, indicating that overexpressed RICTOR indeed stimulated MTORC2 activity.  

Finally, autophagy-related consequences of mTORC1 inhibition upon RICTOR 

downregulation were explored. Indeed, transfection of shRICTOR alone stimulated GFP-LC3 

puncta formation in the presence of lysosomal inhibitors, hence autophagic flux (Figure 3.6 5).  
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Figure 3.6 5 Effect of RICTOR knockdown on GFP-LC3 puncta formation. (A) 

Knockdown of RICTOR increased GFP-LC3 dot formation. Torin1, positive control. E+P, 

E64D and pepstatin A. Scale bar, 10 µm. (B) Quantitative analysis of GFP-LC3 dots in the 

experimental set-up shown in A (mean±SD of n=3 independent experiments, **p<0.03, 

*p<0.05).  

 

Furthermore, to support GFP-LC3 formation experiment results, LC3 shift test was also 

performed in HeLa cells. As illustrated in Figure 3.6 6, RICTOR downregulation by shRICTOR 

promoted LC3-II accumulation.  Considering that the knockdown efficiency was approximately 

50%, we can conclude that shRICTOR activated autophagy to a comparable level as mTORC1 

and mTORC2 inhibitor torin1 treatment (Figure 3.6.6). 
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Figure 3.6 6 Effect of RICTOR knockdown on LC3-II accumulation. (A) Immunoblots of 

HeLa cells following knockdown of RICTOR. Torin1, positive control. (B) Graph depicting 

quantification of LC3B:ACTB ratios in the experimental set-up shown in A (mean±SD, n=3 

independent experiments, ***p<0.01, **p<0.03). 

 

All of these data conclude that MIR211-mediated RICTOR downregulation resulted in 

a strong inhibition of the mTORC2-AKT-mTORC1 pathway, leading to the stimulation of 

autophagy.  
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3.7 MIR211 overexpression resulted in MITF translocation to the nucleus. 

 

As previously shown in literature and also in our results, mTORC1 inhibition led to the 

translocation of TFEB and MITF to the nucleus under autophagy-inducing stress conditions 

(Figure 3.1.1 1 and Figure 3.1.1 2 and as shown in reference Martina, 2013). Having 

demonstrated that MIR211 inhibited mTORC1 pathway, immunofluorescence experiments 

were performed to clarify whether mere overexpression of the miRNA would lead to a similar 

outcome. As illustrated in Figure 3.7 1, endogenous TFEB proteins translocated to the nuclei 

in a significant fraction of cells following MIR211 overexpression (Figure 3.7 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 1: Effect of MIR211 overexpression of TFEB nuclear translocation. (A) 

Endogenous TFEB subcellular localizations were analyzed using indirect immunostaining with 

specific antibodies in HeLa cells transfected with MIR-CNT or MIR211. Scale bar, 10 µm. (B) 

Quantification of endogenous TFEB (nuclear localization (mean±SD, n=3 independent 

experiments, ***p<0.01). 
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Moreover, it was found that MIR211 overexpression also led to MITF nuclear 

translocation in more than 50% of cells.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 2: Effect of MIR211 overexpression of MITF nuclear translocation. (A) 

Endogenous MITF subcellular localizations were analyzed using indirect immunostaining with 

specific antibodies in HeLa cells transfected with MIR-CNT or MIR211. Scale bar, 10 µm. (B) 

Quantification of endogenous MITF (nuclear localization (mean±SD, n=3 independent 

experiments, ***p<0.01). 

Of note, miRNA transfection efficiency was approximately 60% for HeLa cells, 

indicating that translocation occurred in most of the transfected cells (Figure 3.7 1 and 3.7 2).  

 

MIR211 overexpression was sufficient for the stimulation of TFEB and MITF 

translocation to nuclei, and it did so through direct targeting of RICTOR and inhibition of the 

mTORC2 and mTORC1 pathways. 
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3.8 Other autophagy-related miRNAs targeting RICTOR 

Up to now, 4 different miRNAs, namely MIR155 (Wan et al., 2014), MIR15A (N. Huang et al., 

2015), MIR16 (N. Huang et al., 2015) and MIR185 (Zhou et al., 2017) were shown to target 

RICTOR in an autophagy context.  

 

MIR155 was shown to have a role in hypoxia-induced autophagy through inhibition of 

mTOR pathway components (Wan et al., 2014). Direct targets of MIR155 were described as 

RHEB, RICTOR and RPS6KB2, and dysregulation of the mTOR pathway by miRNA resulted 

in autophagic activation and conducted cell cycle arrest. MIR15A/MIR16 was reported to be 

directly targeting RICTOR and decreasing the phosphorylation of mTOR and p70S6K in HeLa 

cells. Overexpression of these miRNAs also inhibited cell proliferation and G1/S cell cycle 

transition (N. Huang et al., 2015). MIR185 was shown to directly interact with 3’ UTRs of 

several genes in AKT pathway, including AKT1, RICTOR and RHEB, and its overexpression 

induced autophagy in hepatocellular carcinoma cell (Zhou et al., 2017).  

 

In none of the studies was RICTOR shown as a rate-limiting target for autophagy 

induction. Moreover, binding regions of these miRNAs in the 3’UTR region of RICTOR mRNA 

were different and non-overlapping with that of the MIR211 binding region that we have 

identified (Figure 3.5.1 1).  

 

Furthermore, in our hands, none of these miRNAs were shown to be regulated by 

starvation or MTOR-inhibition (Figure 3.8 1), indicating that MIR211 plays a special and 

specific role that is different from other RICTOR-targeting miRNAs in autophagy control. 
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Figure 3.8 1: Regulation of other RICTOR targeting miRNAs upon torin1 treatment and 

starvation. (A and B) Expression of previously identified RICTOR-targeting microRNAs 

MIR16, MIR15A, MIR185 and MIR155 were determined by RT-qPCR and compared to that of 

MIR211 following torin1 (A) or starvation (B) treatment. Data were normalized to RNU6-1 

(mean±SD, n=4 independent experiments, ***p<0.01, NS, not significant). 

 

RICTOR targeting miRNAs other than MIR211 are not regulated by torin1- or 

starvation-induced autophagy. 
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3.9 Model for novel autophagy-regulating axis during cellular stress: MITF/MIR211 

 
 
All of these data proposed that MITF-MIR211 axis is a universal amplifier of the autophagy 

signal in cells, through a feed-forward mechanism involving the MITF-MIR211-RICTOR-

MTORC1 axis (Figure 3.9 1). Downregulation of RICTOR by MIR211 blocks MTORC2 

activity, leading to AKT inhibition that is followed by MTORC1 blockage. Under these 

conditions, MITF that was sequestered in the cytosol migrates to the nucleus and contributes to 

the transactivation of autophagy-related genes as well as MIR211. Upregulation of the miRNA 

under these conditions creates a feed-forward loop that amplifies and sustains autophagy during 

stress. Although, we have shown here that RICTOR was a direct and rate-limiting target of 

MIR211 in autophagy control, additional direct or indirect connections involving other MIR211 

targets (e.g., ATG14) might also be contributing to the further amplification of the autophagic 

activity. 

 

 
 
 
Figure 3.9 1: A model depicting the MITF-MIR211 autophagy feed-forward regulation 

pathway.  
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4. DISCUSSION 

 

Autophagy is an evolutionarily conserved catabolic pathway to maintain cellular homeostasis 

by degrading cellular constituents such as long-lived proteins and intracellular organelles. 

Being a highly complex process, autophagy is mediated through autophagy-related ATG 

proteins, and also several key upstream pathways regulate including mTOR pathway regulate 

autophagy. Dysregulation of autophagy causes multiple human pathologies such as cancer, 

lysosomal disorder diseases, neurodegenerative diseases and infection. Thus, autophagy 

requires constant fine-tuning and tight regulation at multiple levels including transcriptional 

and post-transcriptional. The research on transcriptional regulation of autophagy has gained 

importance as TFEB, the member of MITF/TFE family of transcription factors, is identified as 

master regulator of lysosomal biogenesis and autophagy. Hence, TFEB and other factors of the 

MITF/TFE family, MITF and TFE3, have the ability to rapidly induce autophagy by 

transcriptionally targeting autophagy-related proteins that are involved in all steps of the 

process. 

 

miRNAs are important regulators in various biological processes by targeting genes in 

different signaling pathways including autophagy. Indeed, independent studies demonstrated 

that, core autophagy-related genes (ATG genes) and upstream mediators were targeted by 

microRNAs, revealing the presence of a novel and intricate miRNA network that is tightly 

regulating autophagy under physiological conditions. Moreover, dysregulation of miRNA 

expression was reported under various pathological conditions, including cancer, 

neurodegenerative diseases, cardiac and metabolic disorders. Most autophagy-related miRNAs 

were shown to be up or down-regulated in response to autophagy-inducing stress signals. In 

order to achieve a dynamic and context-dependent regulation, stress responsiveness may be an 

important property of autophagy modulation by miRNAs. 

 

 In this thesis, we demonstrated that MITF plays a crucial role in starvation and MTOR 

inhibition mediated autophagy. In addition to controlling the expression of lysosome-related 

genes, we showed that MITF is a key regulator of autophagic signal amplification through a 

MITF-MIR211 axis.  
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We showed that:  

 

i. Following autophagy-inducing stress, TFEB as well as MITF translocated to the 

nuclei of cells.  

ii. MITF knockdown significantly downregulated the amplitude of autophagy that was 

activated by starvation and torin1.  

iii. MITF overexpression potentiated starvation- and torin1-stimulated autophagy.  

iv. Following translocation to the nuclei, MITF transactivated autophagy-related targets 

as well as MIR211 expression.  

v. Both MITF and MIR211 were co-expressed in tested cell lines, human tissue samples 

and in various tumor datasets.  

vi. Overexpression of MIR211 stimulated autophagosome and autolysosome formation, 

and autophagic degradation.  

vii. Knockdown of endogenous MIR211 limited the increase in the amplitude of 

autophagy under these conditions, indicating a key role for this miRNA in autophagy 

regulation.  

viii. MIR211 overexpression was sufficient for the stimulation of TFEB and MITF 

translocation to nuclei, and it did so through direct targeting of RICTOR and inhibition of the 

MTORC2 and MTORC1 pathways.  

 

All of these data demonstrated that MITF is a universal amplifier of the autophagy signal 

in cells, through a feed-forward mechanism involving the MITF-MIR211-RICTOR-MTORC1 

axis.  

MITF is a member of the MITF/TFE family of bHLH-Zip transcription factors, that 

include TFEB, TFEC, and TFE3. Studies until now implicated TFEB, and to a certain extent 

TFE3, in the transcriptional regulation of autophagosome and lysosome biogenesis via 

activation of the genes of crucial proteins, including subunits of the v-ATPase, lysosomal 

transporters and hydrolases. Additionally, some autophagy-related genes such as BECN1, 

WIPI, GABARAP, HIF1A, VPS11 and VPS18 were also reported to be transcriptional targets of 

TFEB (Palmieri et al., 2011; Perera et al., 2015; Settembre et al., 2011). Similar to TFEB, TFE3 

was shown to perform overlapping gene regulatory functions (José A. Martina, Diab, Lishu, et 

al., 2014; Palmieri et al., 2011).  
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In contrast, study of MITF function in an autophagy context was limited to the analysis 

of MITF transcriptional targets, and most studies in the literature on MITF concentrated on its 

function in melanocyte differentiation and melanoma invasion (Hartman & Czyz, 2015). 

Although MITF has been implicated in lysosomal biogenesis and shown to regulate some 

overlapping genes with TFEB and TFE3, including autophagy genes ATG10, ATG16L1, 

SQSTM1, ATG9B and UVRAG, whether MITF played a non-redundant and specific function in 

autophagy regulation was not established so far. Strikingly, none of the studies that were 

published to date clearly showed the importance of independent contribution of MITF to 

autophagy regulation. Based on several independent autophagy assays performed under basal 

conditions or with autophagy inducers and in the presence or absence of the lysosomal 

inhibitors, MITF is required for autophagic activity in cells.  Therefore, our study establishes 

for the first time a MITF-specific role in autophagic control through a feed-forward autophagy 

amplification loop involving a MITF-MIR211 axis. 

 

Transcriptional activation of MIR211 by MITF was previously reported in a melanoma 

invasion and metastasis context (Levy et al., 2010; Mazar et al., 2010; Miller et al., 2004), we 

confirmed by chromatin IP experiments that MIR211 expression was dependent on MITF 

expression because MITF moved to the nuclei and bound to the MIR211 promoter under 

autophagy-stimulating conditions. Furthermore, knockdown of MITF led to a drop in 

endogenous MIR211 levels. Conversely, antagomir-mediated silencing of MIR211 limited the 

increase in the amplitude of autophagy when MITF was overexpressed, demonstrating the 

critical role of this miRNA in MITF-dependent autophagy regulation. This data demonstrated 

for the first time that, in addition to LC3B and ATG10, MITF regulated MIR211 expression 

under autophagy-inducing conditions. The results obtained from several independent 

autophagy assays indicate that endogenous MIR211 levels are critical cellular factors regulating 

autophagy activation. 

 

MITF is subject to alternative splicing and differential promoter usage, giving rise to 

multiple isoforms. A tissue-specific expression pattern was reported for different MITF 

isoforms. For example, MITF-M is preferentially expressed in melanoblasts and melanocytes, 

while MITF-A is more ubiquitously expressed in several tissues and cell lines including HeLa 

and SK-MEL-28 cells. MIR211 was previously reported to be a MITF-M target. In this study, 

we used a pan-MITF antibody that recognized all isoforms, including MITF-A and MITF-M. 

Since the M isoform is not expressed in HeLa cells, MITF-A that is strongly expressed in this 
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cell type, was responsible for autophagy-related phenotype that we observed. On the other hand, 

MITF-A and MITF-M are present in SK-MEL-28 cells, and both isoforms possibly contribute 

to autophagy regulation in this cell type. In spite of sequence variations, since domains that are 

responsible for DNA binding are shared between the different isoforms, they all seem to target 

similar genes (Hemesath et al., 1994). While MITF-A was cytosolic under basal conditions, 

and its nuclear translocation was directly regulated by mTORC1, melanocyte-specific MITF-

M was reported to be in the nucleus at all times because it lacks the N-terminal interaction site 

with mTORC1. Yet, mTORC1 also controls indirectly MITF-M transcription, and hence active 

nuclear protein levels (Ho, Kapadia, Al-Tahan, Ahmad, & Ganesan, 2011). 

Although mTORC1 was the focus of majority of studies on autophagy control, 

mTORC2 was also shown to be involved under certain settings. In most cases, mTORC2 exerts 

its autophagy-related effects through mTORC1 regulation. AKT activation through Ser473 

phosphorylation by mTORC2 is among key connections between the two mTOR complexes. 

(Sarbassov, Ali, et al., 2005). AKT can mediate multi-site phosphorylation, and inactivation of 

TSC2, an inhibitor of RHEB, thus leading to mTORC1 phosphorylation at Ser 2448 and 

activation (Inoki, Li, Zhu, Wu, & Guan, 2002). Moreover, GSK3, a kinase that activates 

TSC1/2 and that inhibits mTORC1, is directly phosphorylated and inactivated by AKT (Cross, 

Alessi, Cohen, Andjelkovich, & Hemmings, 1995; Inoki et al., 2006). AKT can also activate 

mTORC1 in a TSC1/2-independent manner through phosphorylation PRAS40, an mTORC1 

inhibitor, and causing its dissociation from the complex (Sancak et al., 2007). Therefore, 

inhibition of AKT is directly connected to mTORC1 inhibition through various upstream 

regulatory proteins and complex components.  

Here, RICTOR was identified as a direct and rate-limiting target of MIR211 in an 

autophagy context because the 3’UTR region of the gene contained a MIR211-responsive 

sequence element, and, in rescue assays, reintroduction of RICTOR protein attenuated 

autophagy activation by the miRNA. Moreover, we showed that RICTOR downregulation by 

MIR211 or specific shRNAs, resulted in the attenuation of the mTORC2 activity and decreased 

AKT Ser473 phosphorylation. mTOR Ser2448 phosphorylation as well as phosphorylation of 

the downstream effector p70S6K1 were prominently suppressed by MIR211 or shRICTOR. 

Under these conditions, TFEB and MITF translocated to the nuclei of cells, further increasing 

MIR211 levels in a MITF-dependent manner, and activating a gene expression program that 

determines the amplitude of the autophagic signal. In line with our results, RICTOR 
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downregulation and/or inhibition of mTORC2/AKT was associated with autophagy stimulation 

in several independent studies under different experimental conditions (Arias et al., 2015; Chin 

et al., 2010; Dhar, Batinic-Haberle, & Clair, 2019; N. Huang et al., 2015; Seo et al., 2018; Zhou 

et al., 2017). Therefore, mTORC2 is a universal negative regulator of autophagy. Our results 

confirm and underline the importance of the mTORC2/AKT axis in autophagy control and 

introduce MIR211 as a key regulator of cellular RICTOR levels, and hence autophagy. During 

the osteogenic differentiation of human induced pluripotent stem cells, a correlation between 

MIR211 expression and ATG14 upregulation was suggested, but relevance of this observation 

for autophagy regulation so far remained obscure (Ozeki et al., 2017).  

 

There are 4 different miRNAs targeting RICTOR in an autophagy context: MIR155, 

MIR15A, MIR16 and MIR185. In none of the studies was RICTOR shown as a rate-limiting 

target for autophagy induction. Moreover, binding regions of these miRNAs in the 3’UTR 

region of RICTOR mRNA were different and non-overlapping with that of the MIR211 binding 

region that we have identified. Furthermore, in our hands, none of these miRNAs were shown 

to be regulated by starvation or MTOR-inhibition indicating that MIR211 plays a special and 

specific role that is different from other RICTOR-targeting miRNAs in autophagy control. 

 

Here we showed for the first time, the role of a MITF-specific axis, the MITF-MIR211 

axis, in the control of starvation- and MTOR-inhibition-mediated autophagy. Considering the 

co-existence of MITF and MIR211 in various cell lines and tissues, our results suggest that the 

MITF-MIR211 axis is a universal determinant of autophagy amplitude under stress conditions. 
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5. CONCLUSION and FUTURE PROSPECTS 

 
In this thesis, MITF/MIR211 axis was introduced as a novel feed-forward mechanism that 

amplifies autophagy under cellular stress. Detailed analysis of MITF function in mTOR 

inhibition- and starvation-induced autophagy was shown for the first time. Further analysis 

revealed for the first time that, in addition to autophagy-related genes LC3B and ATG10, MITF 

regulated MIR211 expression under autophagy-inducing conditions. Several independent 

autophagic activity analyses showed that endogenous MIR211 is a critical component of stress-

induced autophagy activation. Functional analyses identified mTORC2 component RICTOR, 

as a rate limiting direct target of MIR211. RICTOR downregulation by the MIR211 attenuated 

mTORC1 signal through AKT-mediated crosstalk, and stimulated autophagy. Under these 

conditions, MITF translocated to the nucleus and activate autophagy transcriptional network 

and MIR211. Downregulation of either MITF or MIR211 resulted in a decrease in the amplitude 

of stress induced autophagy. Therefore, we can conclude that the MITF-MIR211-MTORC2-

AKT-MTORC1 axis is functional and important for autophagy regulation under various 

biological contexts, and in different cell and tissue types. 

 

We believe that findings from this thesis will first clarify the rate-limiting function of 

MITF in autophagy regulation. Since MITF is involved in cellular clearance pathway, it should 

be an attractive therapeutic target for human diseases associated with cellular storage disorders 

such as Parkinson’s and Alzheimer’s. Although there are multiple studies providing compelling 

evidence that stimulation of autophagy through genetic or pharmacological TFEB activation is 

a critical therapeutic approach, there are still remaining questions about MITF. In vivo 

preclinical studies should be carried out for several diseases to provide promising perspectives 

for MITF in robust protection and disease modifying effect.  

 

Although MITF/TFE family of transcription factors still share a group of target genes, 

the individual family members, MITF, TFEB and TFE3, each have acquired more specific roles 

by targeting different subset of genes. Morover, the role and significance of localization and 

heterodimerization of MITF isoforms, TFEB and TFE3 remains to be explored.  
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Autophagy-related miRNAs constitute a very important control layer on top of all other 

autophagy regulatory mechanisms that were described so far. In the last few years, there is an 

exponential increase in the number of articles studying miRNA-autophagy connection. These 

efforts will eventually result in the construction of a detailed and functional map of autophagy-

related miRNA networks. Accumulation of knowledge on miRNA-mediated control of 

autophagy under physiological and pathological conditions might lead to the development of 

new approaches that can be used for the diagnosis, treatment and follow-up of serious health 

problems involving autophagy abnormalities, including cancer. Therefore, considering the 

emerging role of autophagy abnormalities in cancer and other diseases, determination of the 

contribution of autophagy regulation problems arising from miRNA dysregulation under 

disease-related conditions, might contribute to a better understanding of the mechanisms of 

major health problems, and provide new disease markers and/or drug-targets.  
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APPENDIX A – Chemical and material list 

 

Name of Material/ Equipment  Company  Catalog Number  

Acrylamide/Bis-Acrylamide Solution Sigma  A3574 
Anti mouse IgG, HRP conjugated  Jackson Immuno.  115035003 
Anti-Mouse IgG Alexa Fluor 594  Invitrogen  A11005 
Anti-rabbit IgG HRP conjugated  Jackson Immuno.  1110305144 
Anti-Rabbit IgG Alexa Fluor 594  Invitrogen  A11002 

Anti-LC3B Novus 2331 
Anti-RICTOR CST 2114S 

Anti-phospho-mTOR (Ser2448) CST 5336 
Anti-mTOR CST 2972 

Anti-phospho-RPS6KB/p70S6K (Thr389) CST 9205 

Anti-RPS6KB/p70S6K CST 2708 
Anti-phospho-AKT CST 587F11 

Anti-AKT CST 9272S 
Anti-MITF clone 5 Millipore MAB3747-I 

Anti-TFEB CST 4240 
Anti-GFP Roche 11814460001 

Anti-ACTB Sigma  A5441  
Anti-Vimentin Sigma  V6630 

Ampicillin Roche 10835269001 
Bradford Solution  Sigma  B6916 
Bromophenol blue  Applichem  A3640.0005  

BSA  Sigma  A4503 
Coumeric Acid  Sigma  C9008  

Coverslides  Jena Bioscience  CSL-103 
DMEM (high glucose)  PAN Biotech P04-03500 
DMEM (low glucose) PAN Biotech P04-03501 

DMSO  Sigma  VWRSAD2650 
Dual luciferase reporter assay kit Promega E1910 

E64D Santa Cruz SC201280A 
Ethanol Sigma  32221 
EBSS  Biological Industries  BI02-010-1A  

Fetal bovine serum (FBS)  Biowest S1810-500 
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G418 Sigma  A1720 
Glutaraldehyde Sigma  G5882 

Glycerol  Applichem  A4453  
Hoechst 33342 Invitrogen  H3570 

Hydrogen Peroxide  Merck  K35522500604  
Isopropanol Sigma  24137 
Kanamycin Promega A1493 

LB Agar Sigma  L2897 
LB Broth Sigma  L302214 

L-glutamine  Biological Industries  BI03-020-1B  
Luminol  Fluka  9253 
MOPS Sigma  M1254 

Methanol Sigma  24229 
Nitocellulose membrane  GE Healthcare  A10083108  

Non-essential aminoacids Gibco 11140-035 
Nonfat milk powder Applichem  A0830  

NP-40  Applichem  A16694.0250 
Pepstatin A Sigma  P5318 

Paraformaldehyde (PFA)  Sigma  15812-7  
PBS  PAN Biotech P04-36500 

Penicillin/streptomycin solution  Biological Industries  03-031-1B  
PEI Polysciences Inc 23966 

Phenol red  Sigma  114537-5G  
PMSF Sigma  P7627 

Poly-L-Lysine  Sigma   P8920  
Potassium Chloride Sigma  P9333 

Protease inhibitor cocktail Sigma  P8340  
Propidium iodide Invitrogen  P3566 

Proteinase K Promega V302B 
RNAse Away Sigma  83931 

Saponin  Sigma  84510 
siRNA MITF Dharmacon M-010347-02-0005 5 

siRNA Non-targeting Dharmacon D-0011210-02-20 
Slides  Isolab   I.075.02.005 

Sodium azide  Riedel de Haen  13412 
Sodium chloride  Applichem  A9242.5000  



179 
 

Sodium deoxycholate  Sigma  30970 
Sodium hydroxide Merck  1.064.625.000 

Sodium dodecyl sulphate (SDS)  Biochemika  A2572 
Sodium orthovanadate  Sigma  450243 

Sucrose Sigma  S0389 
SYBR Green qRT-PCR Kit Roche 04-913-914-001 

Taqman Universal PCR Master Mix Roche 4304437 
TEMED Sigma  T7024 

Torin  Tocris  4247 
TRIzol Reagent Sigma  T9424 

Triton-X  Applichem  4975 
Trizma Base  Sigma  T1503  
Trypan Blue  Sigma  A4503 

Trypsin EDTA Solution A  Biological Industries  BI03-050-1A  
Tween 20  Sigma  P5927  

X-ray Films  Fujifilm  47410 19289  
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