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ABSTRACT

PRACTICAL AND FULLY SECURE MULTI KEYWORD RANKED SEARCH
OVER ENCRYPTED DATA WITH LIGHTWEIGHT CLIENT

TOLUN TOSUN

COMPUTER SCIENCE AND ENGINEERING M.A. THESIS, MAY 2019

Thesis Supervisor: Prof. Dr. Erkay Savaş

Keywords: cloud computing; homomorphic encryption; secure document similarity;
searchable encryption; search pattern; access pattern; secure k-NN

Cloud computing offers computing services such as data storage and computing
power and relieves its users of the burden of their direct management. While being
extremely convenient, therefore immensely popular, cloud computing instigates con-
cerns of privacy of outsourced data, for which conventional encryption is hardly a
solution as the data is meant to be accessed, used and processed in an efficient man-
ner. Multi keyword ranked search over encrypted data (MRSE) is a special form of
secure searchable encryption (SSE), which lets users to privately find out the most
similar documents to a given query using document representation methods such
as tf-idf vectors and metrics such as cosine similarity. In this work, we propose a
secure MRSE scheme that makes use of both a new secure k-NN algorithm and
somewhat homomorphic encryption (SWHE). The scheme provides data, query and
search pattern privacy and is amenable to access pattern privacy. We provide a for-
mal security analysis of the secure k-NN algorithm and rely on IND-CPA security of
the SWHE scheme to meet the strong privacy claims. The scheme provides speedup
of about two orders of magnitude over the privacy-preserving MRSE schemes us-
ing only SWHE while its overall performance is comparable to other schemes in
the literature with weaker forms of privacy claims. We present implementations
results including one from the literature pertaining to response times, storage and
bandwidth requirements and show that the scheme facilitates a lightweight client
implementation.
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ÖZET

ŞIFRELENMIŞ VERI ÜZERINDE TÜMÜYLE GÜVENLI, UYGULANABILIR,
DERECELENDIRILMIŞ VE ÇOKLU ANAHTAR KELIME DESTEKLEYEN

ARAMA METODU

TOLUN TOSUN

BİLGİSAYAR MÜHENDİSLİĞİ VE BİLİMİ YÜKSEK LİSANS TEZİ, TEMMUZ
2019

Tez Danışmanı: Prof. Dr. Erkay Savaş

Anahtar Kelimeler: bulut programlama; homomorfik şifreleme; güvenli
döküman benzerliği; sorgulanabilir şifreleme; arama örüntüsü; erişim örüntüsü;

güvenli k-NN

Veri depolama, programlama ve benzeri bulut hizmetleri, kullanıcılarını bahsi geçen
işlemlerin doğrudan yerine getirilmesinin yükünden kurtarmayı amaçlar. Bulut
hizmetleri, oldukça popüler ve zahmetsiz olmasının yanı sıra, depolanan verinin
mahremiyeti dikkat edilmesi gereken önemli bir husustur. Bu noktada, verinin
pratik ve verimli bir şekilde işlenebilmesi için, klasik şifreleme yöntemleri bir çözüm
teşkil etmez. Şifrelenmiş veriler üzerinde derecelendirilmiş Çoklu anahtar kelime
ile arama(MRSE), sorgulanabilir şifrelemenin(SSE) özel bir dalıdır. Bu yöntem,
kullanıcılarının şifrelenmiş veriler üzerinde, sorgularına karşılık gelen en yakın
sonuçları güvenli bir şekilde bulabilmelerini sağlar. Benzerlik hesaplamasında ko-
sunüs benzerliği ve tf-idf sembolizasyonu gibi araçlar kullanılır. Bu çalışmada, k-
NN ve kabaca homomorfik şifreleme(SWHE) gibi tekniklerden yardım alan özgün bir
MRSE metodu sunuyoruz. Metodumuz veri, sorgu ve sorgu örüntüsü mahremiyetini
sağlarken, erişim mahremiyetinin sağlanmasına da olanak sağlar. Bahsi geçen güçlü
güvenlik ve mahremiyet seviyelerine ulaşabilmek için, sk-NN algoritmasının usule
uygun bir güvenlik analizini sunarken, kullanılan SWHE şemasının sağladığı IND-
CPA güvenlik seviyesinden de yararlanılıyor. Şema, benzer mahremiyet seviyeleri
sağlayan ve sadece SWHE kullanan klasik MRSE modellerine nazaran 100 kattan
fazla bir performans artışı sağlarken, daha düşük seviyelerde mahremiyet seviyeleri
vad eden çalışmalarla karşılaştırılabilir performanslar ortaya koyuyor. Uygulamamız
ile şemamızı, yanıt süresi, depolama ve kota kullanımı cinsinden kıyaslarken, hafif
bir istemci tanımlandığı ortaya koyuluyor
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Chapter 1

INTRODUCTION

Cloud computing is one of the most important and popular technologies in contem-
porary times and its eminence is ever intensifying, in particular with the emergence
of big data and its applications. Organizations now hoarding immense amount of
data prefer outsourcing their data onto cloud, which reduces their management
and maintenance costs. Such data, however, may potentially contain sensitive in-
formation; e.g., e-mails, personal health records, financial reports, income tax etc.
Confidentiality of remotely stored sensitive data can be ensured by any symmetric
key encryption scheme. Nevertheless, a greater challenge is to provide facilities that
allow processing of encrypted data such as a advanced search for similar documents.
A trivial solution is to download the entire data set, decrypt and process it locally.
This is generally infeasible since it requires high bandwidth usage and violates the
basic premises of cloud service, which are preferred mainly due to the difficulty of
reliable management of data on in-house facilities.

The fully homomorphic encryption (FHE) scheme by Gentry (2009) allows the com-
putation of algebraic operations directly on encrypted data without decrypting it.
While more practical schemes than Gentry’s solution have since been introduced
such as somewhat homomorphic encryption(Brakerski, Gentry & Vaikuntanathan
(2014); Cheon, Kim, Kim & Song (2017); Fan & Vercauteren (2012)) which al-
lows batch processing of ciphertexts and they can be used for privacy-preserving
document similarity applications, FHE solutions come with a heavy computational
overhead and are not feasible in most cases. Consequently, researchers also seek
more practicle alternatives to process encrypted data.

A multi keyword ranked search over encrypted data (MRSE) scheme(Cao, Wang,
Li, Ren & Lou (2011)) is used to to compute similarity scores between encrypted
documents from a set and a given encrypted query, rank them and find the k most
similar documents to the query. Both the query and the documents are represented
as a collection of (weighted) keywords, where weights can be binary or tf-idf values.
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Particularly, they are tf-idf vectors for which similarity can be measured using one
of the metrics such as Euclidean distance and cosine similarity. Alternatively, as
a query can be a document itself MRSE is sometimes referred as secure document
similarity scheme(Orencik, Alewiwi & Savas (2015)). As the query aims to find
out k most similar documents, which are simply vectors, MRSE is also equivalent
to secure k nearest neighbor (k-NN) algorithm. Following this argument, Wong,
Cheung, Kao & Mamoulis (2009) propose a secure k-NN (Sk-NN) algorithm based
on symmetric key cryptography to find k most similar documents to a query.

Although KPA security is provided by Sk-NN(Cao et al. (2011); Wong et al. (2009))
and MRSE variants ensures the confidentiality of outsourced data set, searchable
index and query; privacy of access pattern, which concerns the data access frequency,
is intentionally not addressed. They, on the other hand, utilize query randomization
to protect the search pattern privacy which prevents linking queries. Nevertheless,
the randomization fails to ensure uniformly distributed queries and thus they are
highly influenced by the underlying plaintext. Moreover, access and pattern pri-
vacy are complementary as they can leak information about each other. Schemes
that protect both search and access patterns in addition to query, index and data
confidentiality are identified as fully secure in Pham, Woodworth & Salehi (2018).

In this work, we propose a new efficient MRSE scheme, MRSE_SWHE_SKNN,
that ensures query, index and data confidentiality as well as search pattern privacy.
Both documents in the data set and queries are represented as encrypted normalized
tf-idf vectors and we use the secure dot product by Cao et al. (2011) (referred
as Sk-NN algorithm henceforth) to compute their pairwise cosine similarity. We
encrypt queries using our own modified variant of Sk-NN from Cao et al. (2011)
while the searchable index is encrypted with both Sk-NN and SWHE. Since queries
are not encrypted with SWHE, the homomorphic computation of the dot product
is considerably simplified resulting in short user response time. It also allows a very
light client side implementation and decreases the storage requirements.

Finally, the recent advances in private information retrieval (PIR) techniques (cf.
Aguilar-Melchor, Barrier, Fousse & Killijian (2016); Angel, Chen, Laine & Setty
(2018)) help ensure access pattern privacy. Consequently, when combined with a
PIR scheme, MRSE_SWHE_SKNN provides full security.

The main contributions of this work can be summarized as follows:

1.1 We propose a novel idea to combine SWHE and Sk-NN, which simplifies the
homomorphic computation of cosine similarity resulting low client response
time.

2



1.2 We revisit the security claims of Sk-NN algorithm in Cao et al. (2011); Wong
et al. (2009) and provide their more detailed analysis. We then propose a new,
modified variant of Sk-NN (mSk-NN) used only to encrypt queries, which facil-
itates lightweight client side implementation with low storage and computation
requirements. We also show that mSk-NN is IND-CPA secure.

1.3 We provide the implementation results of the proposed scheme,
MRSE_SWHE_SkNN, as well as two other schemes; one is based only
on Sk-NN and the other only on SWHE. The implementation results
show that MRSE_SWHE_SkNN is superior to the pure SWHE based
implementation while it is comparable to the Sk-NN only implementation.

3



Chapter 2

RELATED WORK

A practical method for searching over encrypted data, first introduced by Dawn
Xiaoding Song, Wagner & Perrig (2000) comes to be referred as secure searchable
encryption (SSE). Theirs is a symmetric key solution which uses two layers of en-
cryption, scans entire data base to respond to the query and it is shown to be
secure. Curtmola, Garay, Kamara & Ostrovsky (2006) proposed the first sub-linear
searchable encryption protocols (SSE-1 and SSE-2) with respect to the number of
documents in 2006. Their protocols meet the security requirements of both IND-
CKA1 (indistinguishability against non-adaptive chosen keyword attacks) and IND-
CKA2 (indistinguishability against adaptive chosen keyword attack). Both studies
support only single keyword search.

Wong et al. (2009) propose a scheme that supports more than one keywords and
ranking in Sk-NN queries. Their method is able to find nearest neighbors of a query
point given in Euclidean Space. Afterwards Cao et al. (2011) coin the term multi
keyword ranked search over encrypted data (MRSE) and propose an efficient solution
therein. They adapt and improve the original scheme by Wong et al. (2009) and
use dot product as a similarity metric. Moreover, their solution is secure in known
background model while the original solution is only KPA secure. Subsequently,
several alternative MRSE solutions appeared in the literature; e.g. Chen, Qiu, Li,
Shi & Zhang (2017); Dhumal & Jadhav (2016); Jiang, Yu, Yan & Hao (2017); Li, Xu,
Kang, Yow & Xu (2014); Liu, Guan, Du, Wu, Abedin & Guizani (2019); Orencik,
Kantarcioglu & Savas (2013); Strizhov & Ray (2016); Xia, Wang, Sun & Wang
(2016); Zhao & Iwaihara (2017). Most of these solutions are based on the generation
of a secure searchable index extracted from the data set, using tf-idf representation
for documents in the data set. Xia et al. (2016) constructed a special, tree-based
index to achieve sub-linear searching time. The works (Chen, Zhu, Shen, Hu, Guo,
Tari & Zomaya (2016); Jiang et al. (2017); Strizhov & Ray (2016)) also investigate
techniques for searching the data set in sub-linear time by comparing the query with
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only a portion of the data set, which pertains to the features in the query. This is
implemented using a secure filtering mechanism.

Different requirements have been defined and provided by MRSE variants from 2014
onwards. Chen et al. (2017) place emphasis on allowing efficient dynamic updates
on stored data. The scheme of Li et al. (2014) takes users search history into ac-
count while Zhao & Iwaihara (2017) presents a deep learning based approach. The
scheme by Liu et al. (2019) supports cross-lingual search environment while the tra-
ditional tf-idf representation depends on a single global dictionary. The works by
Liu et al. (2019) as well as Kim, Kim & Chang (2017) employ homomorphic encryp-
tion (Pailler’s crypto system), which only provides additive homomorphic property.
Strizhov & Ray (2016) uses both homomorphic addition and multiplication of SWHE
for secure computation of dot products of the search query and documents in the
data set. Since the homomorphic computations are overly complicated in their work,
Strizhov & Ray (2016) report timings that are hardly practicle even though they
propose a sub-linear solution. Their work among other shows clearly that SWHE
should be utilized very carefully and depth of the circuit used for homomorphic
computations must be minimized. In our work, we address this problem and mainly
focus on simplifying homomorphic operations.

Existing MRSE schemes in the literature generally do not intend to protect the
access pattern, except for Liu et al. (2019) as it is considered either a separate prob-
lem or prohibitively expensive. In the original Sk-NN scheme(Wong et al. (2009))
or similar works, query randomization is introduced to protect the search pattern.
Nevertheless, access pattern and search pattern are complementary in providing full
security. Besides, the recent impressive progress in Oblivious RAM (ORAM) and
PIR schemes suggest that access pattern privacy can be satisfied efficiently. From
Goldreich & Ostrovsky (1996) onwards, several solutions have been proposed for pri-
vate access to encrypted data using ORAMs (cf. Moataz, Mayberry, Blass & Chan
(2015); Stefanov, van Dijk, Shi, Fletcher, Ren, Yu & Devadas (2013)). The main
technique in ORAM is to shuffle the stored data after each access to prevent user
from accessing the same data in the same storage block. Solutions utilizing ORAM
require several rounds of interaction between the client and the server which can
make it inefficient in terms of bandwidth usage. Although Naveed (2015) raises con-
cerns as to whether ORAM completely hides the access pattern, it is still a promising
technology(Kushilevitz & Mour (2019)). The studies in (Banawan & Ulukus (2018);
Boneh, Kushilevitz, Ostrovsky & Skeith (2007); Mayberry, Blass & Chan (2013))
utilize PIR to ensure access pattern privacy in the searchable encryption context.
Liu et al. (2019) profitably use PIR to set up an MRSE system without access pat-
tern leakage. Works of (Kim et al. (2017), Elmehdwi, Samanthula & Jiang (2014))
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hide the access pattern in Sk-NN queries by PIR, but not in the context of MRSE.
The state of art PIR techniques are quite efficient (cf. Aguilar-Melchor et al. (2016);
Angel et al. (2018)), they can be used in many real life scenarios. By providing per-
fect search pattern privacy our proposal is amenable to full security in MRSE when
used together with a secure and efficient ORAM or PIR.
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Chapter 3

PROBLEM FORMULATION

AND PRE-ELIMINARIES

3.1 Notations
We use boldface lowercase letters for vectors and boldface uppercase letters for
matrices. We use the notation q[j] to refer to the j-th element of the vector q,
where vector index starts at 0. The notation q[i : j] stands for all the elements in
the range from q[i] to q[j] being inclusive of border elements, where j ≥ i. While
calligraphic letters are used for sets, a subscripted calligraphic letter denotes a set
element; e.g., Ii is ith element of the set I. A superscript in a mathematical object
is used to represent vectors over the object; e.g., Z` stands for vector of integers
of dimension `. A regular lowercase letter is used in other cases when the type is
unspecified or not important.

3.2 Problem Formulation
The problem is to find the k most similar documents from database of documents
to a given set of keywords as query, where both data and query privacy are of the
primary concern. Our setting involves three parties: data owner (DO), data user
(DU) and cloud server (CS). DO has a set of documents D and outsources it to a
cloud server after protected against privacy violations such as applying encryption.
DU is a party who is authorized by DO to query the data set through the use of
tokens generated by DO. CS offers its professional services to store and manage data
sets and process incoming queries such as multi-keyword ranked search. Figure 3.1
illustrates the overall system architecture. DO and DU can be the same entity. The
protocols between DO and DU, namely search and access controls, are out of the
scope of this work.
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As CS sees neither the data nor the query content in our setting, our problem is
essentially the document similarity search over encrypted data. In the literature it
is frequently referred as multi-keyword ranked search over encrypted data (MRSE),
which is a special case of document similarity and our proposal trivially solves the
problem of document similarity search over encrypted data.

Figure 3.1 System Architecture Overview

3.3 TF-IDF
In order to compute a similarity score between two documents, a data representation
methodology and a similarity metric are needed. We use the the most commonly
used technique for data representation: term frequency - inverse document frequency
(tf-idf ) vector. In this technique there is a global dictionary of words and each doc-
ument is represented as a tf-idf vector, whose elements are tf-idf values of the words
for the document. The tf value of a word in a document is directly proportional to
the number of its occurrences in the document, while its idf is inversely proportional
to the number of its occurrences in the whole data set. Finally, tf-idf value of a word
in a document is the multiplication of its tf and idf values. Note that there is a sin-
gle, global idf vector for the entire data set while each document has its separate tf
vector. Therefore, a tf-idf vector of a document can also be seen as the component
wise multiplication of the global idf vector and the tf vector corresponding to the
document. All tf-idf vectors in a data set compose the tf-idf table. For a word Wi

appearing in a document Dj , tf values can be computed as

tfWi,Dj = number of times Wi appears in Dj
number of words in Dj
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idf for Wi is computed as

idfWi
= ln

(
n

number of documents with Wi

)

tf-idf values are multiplicaton of tf and idf

tf-idfWi,Dj = tfWi,Dj · idfWi

The tf-idf vectors are always normalized throughout the work. This means the
length1 of tf-idf vectors are always 1.

Before constructing a tf-idf table for a data set, a pre-processing step is usually
applied to eliminate the stop words. Moreover, stemming is performed to merge
the words that own the same root. For example, a single token is generated for
“consult”, “consultor”, “consulting”, “consultant” and “consultantative”.

3.4 Cosine Similarity

Figure 3.2 Illustration of cosine similarity of two vectors in 2-dimensional vector
space

Cosine similarity is a metric for distance between two vectors, which is used to
compare two documents represented by their tf -idf vectors in this work. It basically
calculates the cosine of the angle between the vectors. The similarity score calculated
is in the range [0.0, 1.0]. Figure 3.2 visualizes the cosine similarity of two vectors in
2-dimensional vector space. As θ decreases, the similarity increases. For two input
vectors x and y, it is calculated using the formula

x ·y
||x||||y||

,

1length of a vector is also referred as the L2-norm
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where ||.|| stands for the L2 norm. Note that when the L2 norm of the vectors
(length of the vectors) is equal to 1, computation of cosine similarity reduces to
computation of dot product of two vectors. Therefore, we normalize vectors and
computing dot product is always equivalent to calculating their cosine similarity for
the rest of the document.

3.5 Fully Homomorphic Encryption
Homomorphic encryption allows computation over encrypted data without decryp-
tion. In particular, fully homomorphic encryption (FHE) schemes enable both mul-
tiplication and addition operations over encrypted data. As dot product requires
only additions and multiplications, homomorphic computation of cosine similarity of
two vectors can be performed efficiently. The first FHE scheme is proposed by Craig
Gentry Gentry (2009) followed by more practical schemes such as BGV(Brakerski
et al. (2014)) and FV(Fan & Vercauteren (2012)). Today, most homomorphic en-
cryption schemes provide, in fact, “somewhat" homomorphic encryption (SWHE)
capability, which simply means the number of homomorphic operations that can be
applied on ciphertext is limited and the decryption is not possible if the limit, which
is often referred as the noise budget, is exceeded. In particular, a ciphertext contains
a noise term, which increases after every homomorphic operation over the ciphertext.
For instance, homomorphic multiplication of two ciphertexts result in the multipli-
cation of noise terms of operands while ciphertext addition leads to their addition.
As homomorphic multiplication is much more costly than homomorphic addition so
far as the noise budget is concerned, we are interested in calculating the number of
sequential multiplications that are required for homomophic computations, which is
also called as the circuit depth in the literature.

In this work, we consider FV(Fan & Vercauteren (2012)), which is a SWHE variant.
Security of FV relies on the difficulty of ring learning with errors (R-LWE) problem,
which is the ring variant of learning with errors problem(Regev (2009)). In FV,
ciphertext is an element of polynomial ring, Rt = Zt/f(x), where q is the ciphertext
modulus and f(x) is a monic irreducible poynomial of degree m. In our setting,
f(x) is chosen as xm+ 1 where m is a power of two, which is the 2m-th cyclotomic
polynomial, as proposed by modern applications. The scheme provides efficient
batch encoding, where it is possible to encode m numbers into what is known as
plaintext slots and encrypt all of them into a single ciphertext; then homomorphic
operations over the ciphertext will process the numbers in the slots in SIMD fashion.
Batch encoded integers are in Zp, where p is known as plaintext modulus. Moreover,
it is possible to circularly rotate (or permute) m numbers in the plaintext slots
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homomorphically.

In this work, we see the plain text slots as m-dimensional vector space(i.e., Zmp ).
For the sake of simplicity, we assume that SWHE is able to encrypt vectors of
artbitrary dimension and when the number of slots is less than the dimensionality,
the encryption results in multiple ciphertexts. A ciphertext is a polynomial or a
polynomial vector and we use a special font style (i.e., fraktur letters) to denote
ciphertext; for example ct ∈ Rt denotes a ciphertext. Finally, the numbers (e.g.,
x0,x1, . . . ,xm−1) encrypted in ciphertext slots are denoted as ct(x0; x1; . . . ; xm−1).

We list the SWHE operations and functions used in this thesis as follows:

• SWHE.KeyGen(λ)→ {pk,sk}: The key generation function takes the se-
curity parameter λ and generates public and secret key pair of the SWHE
scheme, pk,sk.

• SWHE.Encrypt(pk,pt)→ ct: The encryption function takes the plaintext
message pt and the public key pk and returns the ciphertext, ct.

• SWHE.Decrypt(sk,ct)→ pt: The decryption function takes the ciphertext
message ct and the secret key sk and returns the plaintext, pt. Note that
decryption works correctly only if the noise budget is not exceeded.

• SWHE.Add(pk,ct1,ct2)→ ct: The homomorphic addition function takes pk,
and two ciphertexts, ct1 = SWHE.Enc(pk,pt1), ct2 = SWHE.Enc(pk,pt2)
and returns the ciphertext ct = SWHE.Enc(pk,pt1 +pt2).

• SWHE.AddPlain(pk,ct1,pt2)→ ct: The homomorphic plain addition func-
tion takes pk, a ciphertext ct = SWHE.Enc(pk,pt1), and a plaintext pt2 and
returns the ciphertext ct = SWHE.Enc(pk,pt1 +pt2).

• SWHE.Multiply(pk,ct1,ct2)→ ct: The homomorphic multiplication func-
tion takes pk, and two ciphertexts, ct1 = SWHE.Enc(pk,pt1), ct2 =
SWHE.Enc(pk,pt2) and returns the ciphertext ct = SWHE.Enc(pk,pt1 ·
pt2).

• SWHE.MultiplyPlain(pk,ct1,pt2)→ ct: The homomorphic plain multipli-
cation function takes pk, a ciphertext ct = SWHE.Enc(pk,pt1), and a plain-
text pt2 and returns the ciphertext ct = SWHE.Enc(pk,pt1 ·pt2).

• SWHE.Rotate(pk,ct,k)→ ct′: The homomorphic rotation function takes pk,
a ciphertext ct = SWHE.Enc(pk,pt), and a rotation amount and returns the
ciphertext ct′ = SWHE.Enc(pk,pt′) such that pt′[i] = pt[i+k (mod m)] for
i ∈ [0,m−1].
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Note that arithmetic operations on vectors are applied component-wise; e.g.

pt1 +pt2 = pt1[0] +pt2[0] mod p; . . . ;

pt1[m−1] +pt2[m−1] mod p

where p is the plaintext modulus.

The security level provided by the underlying R-LWE instances used in FV de-
pends, to a lager extent, on m and t. The scheme is IND-CPA secure as it pro-
vides probabilistic encryption. Higher noise budget required to compute deeper
circuits necessitates increasing t, which, in turn, leads to using larger ring de-
grees m to adjust the security level. Table 3.1 illustrates the relation between
m and t. The security estimations are made through the online lwe-estimator on
https://bitbucket.org/malb/lwe-estimator/src/master/.

Table 3.1 Security levels of R-LWE instances for varying m and t

m log2 t

54 75 109 146

1024 63 49 45 45
2048 129 90 62 50
4096 282 194 128 93
8192 629 433 281 201

3.6 Secure kNN Computation
The secure kNN (S-kNN) algorithm is proposed by Wong et al. (2009) to find the
k nearest neighbors of encrypted data points, where the similarity metric is the
Euclidean distance. Cao et al. (2011) show how to use S-kNN algorithm to calculate
“dot product similarity". Next paragraphs explain the adaption of S-kNN which
works in a vector space as similarity is measured by dot product similarity.

The aim of the S-kNN algorithm is to find the k nearest neighbors of a query in a
data set D. The data set consists of n vectors, which will referred as data vectors
henceforth. Namely, D = {d0,d1, . . . ,dn−1} and di ∈ Rw. The query is also a w-
dimensional vector over real numbers, q ∈Rw. Since the k nearest neighbors will be
detected over the encryptions of the data vectors and queries, the algorithm defines
a dot product preserving encryption such that Eq(q) ·Ed(di) = q ·di for 0≤ i < n.
Then, it simply calculates the dot product of a data vector q and the query di ∈Rw
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using Eq(q) and Ed(di), and returns the ids of k documents with highest similarity
scores.

Encryption of data vectors and queries are asymmetric. They are encrypted in a
similar fashion, but the process diverges at specific points. The secret key comprises
a bit string s of size w and two invertible, randomly generated w×w-dimensional
matrices,M1 andM2. Let us continue the discussion with data vector encryption.
The first step is the random splitting operation. Random splitting aims to randomly
share the information in di to d′i ∈ Rw and d′′i ∈ Rw. The splitting operation is
performed as follows for j = 0, . . . ,w−1: if s[j] is 1, then d′i[j]← di[j] and d′′i [j]←
di[j]. Otherwise, d′i[j] and d′′i [j] are randomly selected so that

di[j] = d′i[j] +d′′i [j].

Encryption of di is then concluded as

Ed(di) = {M1
Td′i,M2

Td′′i }.

The query q is encrypted in a similar fashion. The same splitting operation is
applied to the extended q except the roles of 1s and 0s in s are reversed. Finally,
the encryption of q is performed as

Eq(q) = {M1
−1q′,M2

−1q′′}.

The dot product can be computed over the encryptions of query and data vectors
as follows:

Eq(q) ·Ed(di) = (MT
1 d
′
i) · (M−1

1 q′) + (MT
1 d
′′
i ) · (M−1

2 q′′)

= (d′i
T
M1)(M−1

1 q′) + (d′′i
T
M2)(M−1

2 q′′)

= d′i
T
q′+d′′i

T
q′′ = d′i ·q′+d′′i ·q′′

Note that we have

d′i[j]q′[j] +d′′i [j]q′′[j] = di[j]q[j] for 0≤ j < w

Then, we obtain

(3.1) d′i ·q′+d′′i ·q′′ = di ·q
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3.6.1 First MRSE scheme utilizing S-kNN Algorithm: MRSEIITF

Cao et al. (2011) defines the problem of Multi Keyword Ranked Search over En-
crypted Data(MRSE) for the first time and solves it utilizing Secure kNN algorithm.
Here, we briefly explain the problem and their final solution(MRSEIITF ) from the
paper. MRSEIITF is compared with MRSE_SWHE_SkNN in chapter 6.

The data owner (DO) has a set of documents D with size n. D is represented as tf-idf
vectors. The dictionary for D is denoted byW while |W|=w. DO extracts a secure
searchable index I from D and stores it in cloud server (CS). The data user (DU)
is authorized to search D with a selected keywords of interestW . CS calculates and
returns the top-k results among D to DU, using I. Overall secure search protocol
of MRSEIITF consists of four stages: Key generation, Index Generation, Query
Generation, Search.

• MRSEIITF .KeyGen(U) →M1,M2,s: The key generation function gen-
erates secret keys of MRSE_TF_II scheme, M1,M2,s such that |M i| =
(w+U +1)× (w+U +1) and |s|= w+U +1. U can be thought as a security
parameter.

• MRSEIITF .BuildIndex(D,M1,M2,s)→ I: Index generation is done by
encrypting every di by S-kNN algorithm with some modifications. For each
document, di is extended to (w+U+1) dimension first. During the dimension
extension, (w+ j)-th dimensions are set to random numbers εj for 1≥ j ≥ U
while the last dimension is set to 1. Denote the extended vector by dEi. Then
the splitting operation is applied to dEi w.r.t s as explained in the previous
section. Finally, the sub index Ii is {MT

1 d
E
i
′
,MT

2 d
E
i
′′}.

• MRSEIITF .GenerateQuery(W ,M1,M2,s)→ q: Let q is w-dimensional
vector and L =

∣∣∣W∣∣∣. The function sets q[i] = 1/
√
L if Wi ∈ W and q[i] = 0

otherwise. Note that length of q is 1. For encryption, first a binary vector of
length U is generated by choosing V dimensions randomly and setting V out of
U dimensions to 1 while the other dimension are 0. Let b denotes the random
vector. q is concatenated with b, and then the resulting vector is multiplied
by a random factor r. The result is again extended to w+U + 1 dimension
by setting the last dimension to a random number, τ . Let qE denotes the
extended q. Secure search query q = {M−1

1 qE
′
,M−1

2 qE
′′} is returned.

• MRSEIITF .Search(I,q): The dot product between q and each Ii is cal-
culated as an approximation of cosine similarity between the query and the
documents. Then documents with top-k scores are returned.
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Note that, the final similarity score for each document is equal to

(3.2) r(q ·di+
U∑
j=1
b[j]εj) + τ

According to Cao et al. (2011), the scheme is secure against scale analysis attack,
which is a known background attack model, as similarity scores are randomized
by adding artificial dimensions. For more information about scale analysis attack,
please refer to Cao et al. (2011). On the other hand, the intentionally added error
term defines a trade-off between the accuracy and privacy. This way, CS does not
learn the actual similarity scores or exact document rank in the sorted similarity
list, but can still find top-k documents with relatively high accuracy.

The weigthining of data and query vectors in the above scheme is slightly different
than the original explanataion of Cao et al. (2011). Particularly, Cao et al. (2011) use
tf vectors instead of tf-idf for data vectors and idf values of the selected keywords for
the query vector. We applied the same weighting logic with our proposed solution
to MRSEIITF and explained in the above functions to perform a fair comparison.
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Chapter 4

PROPOSED SOLUTION

In this section, we explain our proposal for efficient computation of the cosine simi-
larity between a document and a query, both of which are encrypted. We combine
the S-kNN algorithm and SWHE schemes to provide enhanced security and privacy
for both documents and query. We first introduce our framework as a collection
of functions. Then, we provide the privacy model that outlines the privacy and
security requirements the solution aims to satisfy.

We introduce two algorithms for secure multi-keyword ranked search; namely multi
keyword ranked search encryption with SWHE (MRSE_SWHE) and multi keyword
ranked search encryption with both SkNN and SWHE (MRSE_SWHE_SkNN).
The former is a trivial solution, which utilizes a SWHE scheme to homomorphically
compute dot product similarity between two encrypted tf-idf vectors, and inefficient.
The latter is our most important contribution and proves to be much more efficient
and practicable.
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4.1 Framework

Table 4.1 The notation used in the solutions

D Data set of documents |D|= n

W Dictionary and |W|= w

di tf-idf vector of document Di ∈ D
I Secure searchable index for D
W Set of interested keywords to search in D,

∣∣∣W∣∣∣= L

q Query vector for W
q Secure search query, encryption of q
λ Security parameter
M secret key of mS-kNN algorithm |M |= η×η

pk,sk public and secret keys of the SWHE scheme, respectively

m
degree of the polynomial modulus in SWHE, number of slots in
batch mode for our settings

p plaintext modulus in SWHE
t ciphertext modulus in SWHE

Zmp plain text space defined in SWHE scheme
H : R→ Zp Scale function H(x) = bςxe

The proposed framework consists of six functions as explained in the following.

• KeyGen(λ) → {SK,PK}: DO runs the key generation function that takes
security parameter λ selected for a desired security level and returns a secret
and public key pair {PK,SK}.

• BuildIndex(PK(SK),D)→ I: DO runs the function that takes the data
vectors in D and public (and/or secret) keys and returns a secure searchable
index I.

• GenerateQuery(PK(SK),W) → q: DU (with the help of DO) runs the
function that takes a subset of words vector and public (and/or secret) keys
and returns a secure search query → q.

• CalculateSimilarity(PK,q,I)→ ss: CS runs the function that takes PK,
the secure index I, secure search query q; and returns the encrypted list of
similarity scores ss.

• DecryptAndRank(sk,ss) → {ID1, . . . , IDK}: After getting the encrypted
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results ss from CS, DU decrypts them using the secret key and ranks the most
similar k documents IDs, IDi ∈ Zn.

• PIR(IDi)→ DID: Run between DU and the CS to privately retrieve the
documents in top-k list using a state-of-art PIR protocol (e.g., Angel et al.
(2018)).

Table 4.1 lists some of the notations used in the framework and solutinos. Note that
PIR is beyond the scope of this work. Note that PIR is beyond the scope of this
work.

4.2 Privacy Model
In this section, privacy goals are defined. We are using a honest-but-curious adver-
sary model and our proposed scheme is designed to reveal nothing to the adversary,
which is essentially CS that stores encrypted document set D and secure searchable
index I, observes queries q, and performs the CalculateSimilarity function. In
honest-but-curious adversary model, the operations are performed as specified in
the protocol definitions while the adversary can do some extra analyses to extract
any meaningful information regarding the data set and queries. Confidentiality of
the document collection D can be provided by any symmetric key cryptographic
scheme and it is out of the scope of this thesis. We focus on the following security
definitions:
Definition 1 (Index Confidentiality). No polynomial time adversary can decrypt
the secure searchable index I.
Definition 2 (Query Confidentiality). No polynomial time adversary can decrypt
any secure search query q.
Definition 3 (Search Pattern Confidentiality). Let Q = {q1, q2, . . . , qτ} be a set
of secure search queries. Search pattern Sp(Q) is a symmetric binary matrix of
dimensions-(τ×τ) such that its element in i-th row and j-th column is 1 if and only
if qi = qj and 0 otherwise. No polynomial time adversary is able to guess any bit of
Sp(Q) with chance better than 1/2 probability.
Definition 4 (Similarity Pattern Confidentiality). Let Q = {q1, q2, . . . , qτ} be a set
of secure search queries. Similarity pattern Simp(Q) is a 3-D binary matrix of
dimensions-(τ × τ ×w) such that its element with index (i, j,k) is 1 if and only
both if qi and qj contain keyword Wk or none of them does, and 0 otherwise. No
polynomial time adversary is able to guess any bit of Simp(Q) with chance better
than 1/2 probability.
Definition 5 (Access Pattern Confidentiality). Let D(qi) be the subset of documents
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that match the secure search query qi and Q= {q1, q2, . . . , qτ}. Then, access pattern
of Q is defined as Ap(Q) = {D(q1),D(q2), ..,D(qτ )}. Any polynomial time adver-
sary is unable to guess any document from Ap(Q) with a chance better than 1/n
probability.

Many MRSE schemes in the literature such as (Cao et al. (2011); Chen et al. (2017);
Jiang et al. (2017); Orencik et al. (2013); Strizhov & Ray (2016); Xia et al. (2016))
employ query randomization to hide search or similarity patterns. However, search
pattern can still leak when a response to a query is in plain. Unless the document
collection changes frequently the matching documents to two queries q̇ and q̈, that
are different randomizations of the same query q, will be the same. Also, most
of the schemes in the literature do not protect the access pattern due to its high
cost as a private access requires processing all documents in the whole document
collection (e.g., utilizing a PIR (private information retrieval) scheme). Therefore,
protecting the search pattern without protecting the response and the access pattern
is meaningless since the search results will immediately enable an observer to link
search queries.

Consequently, our solution hides both the query response and access pattern in order
to realize stronger security claims for search and similarity pattern confidentiality.
This requires that all similarity scores have to be calculated homomorphically by
CS on encrypted queries and the resulting ciphertext containing similarity scores,
ss, are sent to DU. While this is costly as far as the bandwidth and client side
computation are concerned, the batching technique in SWHE helps enable efficient
implementation. Also, recent efficient state-of-the-art PIR schemes such as (Aguilar-
Melchor et al. (2016); Angel et al. (2018)) can be profitably used to hide access
pattern, which is a concern when the actual similar documents are retrieved from
CS. In this work, we provide implementation results to demonstrate that all our
security requirements are met in an efficient manner.

4.3 Multi keyword ranked search with SWHE:
MRSE_SWHE

Multi keyword ranked search using only a SWHE scheme (MRSE_SWHE) is a
straightforward solution for secure document similarity, which trivially satisfies se-
curity requirements. It essentially employs an efficient SWHE scheme to perform
homomorphic computations of the similarity scores between a query and documents
in the data set, all of which are homomorphically encrypted and finds most similar
k documents securely.
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Algorithms 1, 2, 3, 4, and 5 illustrate all the stages of MRSE_SWHE from the key
generation to the client side decryption operations excluding the PIR stage, which
is necessary for access pattern privacy. The key generation function in Algorithm 1,
given the security parameter λ, generates a public and secret key pair for encryption
of the index as well as queries under the chosen SWHE scheme.

Algorithm 1 MrseSwhe.KeyGen
Require: λ
Ensure: {pk,sk}
{pk,sk}← SWHE.KeyGen(λ)

The index and query generation operations, given in Algorithm 2 and Algorithm 3,
respectively, are quite straightforward. The tf-idf vectors of the documents in the
data set and of query are encrypted by the SWHE scheme in batch mode. Before
the encryption operation in both index generation and query generation, real valued
tf-idf values are mapped to integers in Zp that are encoded as SWHE plaintexts.
Steps 5-7 of Algorithm 2 and Steps 10-12 of Algorithm 3 illustrates the opera-
tion. The function H : R→ Zp is a simple function defined as H(x) = bςxe, where
x ∈ [0.0,1.0], the scale ς ∈ Z, and b·e stands for rounding to the nearest integer.
Depending on the values of the scale ς, there will be a loss of accuracy because the
precision of the tf-idf values is now bounded. The original cosine similarity score
between a document and a query is bounded by 1. Therefore, setting scale param-
eter ς < √p guarantees that the similarity scores do not exceed p. Affect of ς is
discussed in the section 6.2. Generally speaking, setting sigma as close to √p as
possible gives the best results.

Algorithm 2 MrseSwhe.BuildIndex
Require: pk, D
Ensure: I

1: for j from 0 to n−1 do
2: dj ← tf-idf vector of Dj .
3: end for
4: for i from 0 to w−1 do
5: for j from 0 to n−1 do
6: dH [j] = H(dj [i])
7: end for
8: Ii← SWHE.Encrypt(pk,dH)
9: end for

Consequently, Ii is a SWHE encryption of {d1[i],d2[i], ..,dn[i]} as a result of Al-
gorithm 2 while Algorithm 3 returns q as a SWHE encryption of q by the SWHE
scheme.
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Algorithm 3 MrseSwhe.GenerateQuery
Require: pk, W ∈ Rw
Ensure: q ∈Rq

1: L←
∣∣∣W∣∣∣

2: q ∈ Rw, plain query vector
3: for i from 0 to w−1 do
4: if Wi ∈W then
5: q[i] = 1/

√
L

6: else
7: q[i] = 0
8: end if
9: end for

10: for i from 0 to w−1 do
11: qH [i]←H(q[i]).
12: end for
13: q← SWHE.Encrypt(pk,qH)

In Algorithm 4, the cosine similarity of q to each di is homomorphically computed
with the help of I and q̄. Thus, the main loop iterates exactly w times. Steps 2-
11 homomorphically compute a new ciphertext q′i, each slot of which encrypts q[i].
maski is a simple binary vector in which only the i-th dimension is 1 while the
rest is 0. It is used to choose q[i] among the underlying plaintext slots of q̄ by
the plaintext multiplication. Then, q′i is homorphically multiplied with dj [i] for
0≤ j < n in Step 12, which are encrypted in Ii. Thanks to batch mode of SWHE,
this is done in dn/me homomorphic multiplications. The ciphertext ti, containing a
partial result of the cosine similarity between the query and all documents, is then
homomorphically added to similarity scores ciphertext ss in Step 13. After the main
loop is completed, each slot of ss contains the similarity score between the query
and a document. Namely, the i-th slot contains an approximation of the cosine
similarity between q and di as H(q) ·H(di).

For sake of simplicity, we can think the number of slots m is greater than the
number of words and the number of documents, namely m>w,n; therefore a single
ciphertext can encrypt a query q, an index element Ii or the similarity scores ss.
In case this does not hold, we need to use more than one ciphertext to provision
for the necessary number of slots. For instance, when n > m, then we need ` =
dn/me ciphertexts to hold similarity scores ss. On the other hand, w >m requires
`= dw/me ciphertexts to represent q̄. However, the loop in Step 12 of Algorithm 4
iterates dlog2(m)e times in the worst case as this many iterations are enough to
produce a ciphertext with q[i] at every slot.

The final stage of the scheme is straightforward as demonstrated in Algorithm 5; the
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Algorithm 4 MrseSwhe.CalculateSimilarity
Require: pk, q̄ ∈Rq, I ∈Rwq
Ensure: ss ∈Rq

1: ss← SWHE.Encrypt(pk,{0}n)
2: for i from 1 to w do
3: for j from 0 to w do
4: maski[j]← 0
5: end for
6: maski[i]← 1
7: q′i← SWHE.MultiplyPlain(pk,maski, q̄)
8: for k from 0 to dlog2(n)e−1 do
9: t′← SWHE.Rotate(pk,q′i,2k)

10: q′i← SWHE.Add(pk,q′i, t′))
11: end for
12: ti← SWHE.Multiply(pk,q′i,Ii)
13: ss← SWHE.Add(pk,ss, ti)
14: end for

client decrypts ss using secret key sk and extract the ids of the documents that are
in the top-k in the list. This is done by finding the k-th best score(>k), partitioning
around >k to find out the list of top-k similar documents and sorting it. Note that
computational complexity of overall ranking is O(n+k logk), which is very close to
O(n) as k is generally a small integer in practice. Note that, the search result ss is
composed of dn/me SWHE ciphertexts each of which carries similarity information
for disjoint parts of the data set and can be processed individually. Therefore, most
of the workload of Algorithm 5 can be overlapped with Algorithm 4 for n >>m.

Algorithm 5 MrseSwhe.DecryptandRank
Require: sk, ss
Ensure: Indices of top-k elements in r after sorting
r← SWHE.Decrypt(sk,ss)
>k← k-th largest score in r
top-k←scores greater than or equal to >k
sort top-k

As mentioned previously, the implementation of the MRSE_SWHE scheme is quite
straightforward while it is not efficient as we demonstrate in this work. A much
more efficient scheme is explained in the next section.

4.4 Second Scheme: MRSE_SWHE_SkNN
MRSE_SWHE_SkNN is an improved version of MRSE_SWHE that combines
SWHE scheme with our modified version of the secure k-NN (mS-kNN) encryp-
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tion algorithm introduced in Section 3.6.1. In particular, the new scheme signif-
icantly accelerates the CalculateSimilarity algorithm. In the MRSE_SWHE
scheme, both searchable index and query are encrypted under a SWHE scheme. In
MRSE_SWHE_SkNN, we use both SWHE and S-kNN schemes for encryption. We
first explain the new, modified secure k-NN (mS-kNN) encryption algorithm in the
next section.

4.4.1 Modified Secure-kNN Encryption Scheme: mS-kNN

The modified S-kNN (mS-kNN) algorithm uses a secret key, which is a non-singular
matrix M of η× η, whose elements are uniformly randomly sampled in the field
Zp as illustrated in Algorithm 6. Here, the modulus p, which is also the plaintext
modulus in the SWHE scheme, is appropriately chosen for similarity computations.
We explain as to how the matrix dimension η is determined based on our security
analysis in Section 5.1.2.

Algorithm 6 mSkNN.KeyGen
Require: η
Ensure: M ∈ Fη×ηp

M ← Fη×ηp , if M is singular, sample again

We have two encryption algorithms; one for the data set and the other for queries
as given in Algorithm 7 and Algorithm 8, respectively. Algorithm 7 takes the secret
matrixM and a w-dimensional data vector d, and outputs a 2w-dimensional vector
d̄ as encryption of the input. The input d is originally a vector of real numbers and
therefore it is mapped to Zwp using the function H : R→Zp. Algorithm 7 is repeated
for every document in D. Here we assume w = k ·η for some integer k without loss
of generality.

Algorithm 7 mSkNN.EncryptData
Require: M ∈ Zη×ηp , d ∈ Rw

Ensure: Ed(d) = d ∈ Z2w
p

1: for j from 0 to w−1 do
2: d′[2j]←H(d[j])
3: d′[2j+ 1]←H(d[j])
4: end for
5: for j from 0 to 2w/η−1 do
6: d̄[jη : (j+ 1)η−1] =M−1Td′[jη : (j+ 1)η−1]
7: end for

Algorithm 8, similarly takesM and a w-dimensional query vector q over real num-
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bers, and outputs a 2w-dimensional vector over Zp as encryption of the input. Note
that the query is randomized by a uniformly chosen ρ ∈ Zp, that supports query
unlinkability.

Algorithm 8 mSkNN.EncryptQuery
Require: M ∈ Zη×ηp , q ∈ Rw

Ensure: Eq(q) = q̄ ∈ Z2w
p

1: for j from 0 to w−1 do
2: ρ← Zp
3: q′[2j]← ρ
4: q′[2j+ 1]←H(q[j])−ρ
5: end for
6: for j from 0 to 2w/η−1 do
7: q̄[jη : (j+ 1)η−1] =Mq′[jη : (j+ 1)η−1]
8: end for

The main idea in the modified version remains the same as the original S-kNN
algorithm, and both data vectors and query vectors are splitted first, then multiplied
by the transpose and the inverse of a secret matrix, respectively. The splitting is
deterministic for data vectors (see Steps 2-5 of Algorithm 7) while a random splitting
is applied to queries (see Steps 2-6 of Algorithm 8). As the output of Algorithm 7
will be re-encrypted as shown in Algorithm 10 for index construction, the splitting
is based on simple repetition of each dimension. All operations are done in the field
Zp which is identical to the plaintext space of the SWHE scheme.

For correctness, we can show the dot product of encrypted query and tf-idf vector
of a document gives an approximation of cosine similarity of these two vectors:

Ed(d) ·Eq(q) =
2w/η−1∑
j=0

(M−1d′[jη : (j+ 1)η−1]) · (MTq′[jη : (j+ 1)η−1])

=
2w−1∑
j=0

d′[j]q′[j]

=
w−1∑
j=0

(H(d[j])ρ+ H(d[j])((H(q[j])−ρ))

=
w−1∑
j=0

H(d[j])H(q[j]).

The security of modified S-kNN scheme is meaningful when it is used in conjunction
with the homomorphic encryption. Therefore, we defer its thorough security analysis
to Section 5 after we provide all algorithmic details of the second scheme in next
section.
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4.4.2 Combining SWHE Scheme and Modified Secure-kNN Algorithms

In the proposed scheme, mS-kNN algorithm is used to encrypt queries as well as
the index. The index is also encrypted under the SWHE scheme before sent to CS.
Therefore, the key generation operation generates both a public and secret key pair
for SWHE scheme and secret key SK.M for S-kNN scheme as shown in Algorithm 9.
Here, the secret key comprises the secret key for SWHE, SK.sk, and the secret key
for mS-kNN, SK.M .

Algorithm 9 MrseSwheSkNN.Keygen
Require: λ
Ensure: {PK,SK}

1: {pk,SK.sk}← SWHE.KeyGen(λ)
2: SK.M ←mSkNN.KeyGen(λ)

For index generation, tf-idf vectors of documents are encrypted first using mS-kNN
algorithm as in Steps 1-4 of Algorithm 10. Then, the resulting ciphertexts ci are
encrypted again under SWHE in Step 9 of Algorithm 10.

Algorithm 10 MrseSwheSkNN.BuildIndex
Require: pk, sk, D
Ensure: I ∈R2w

q

1: for i= 1 to n do
2: di← tf-idf vector of Di
3: ci←mSkNN.EncryptData(sk.M , di)
4: end for
5: for i from 0 to 2w−1 do
6: for j from 0 to n−1 do
7: ti[j] = cj [i]
8: end for
9: Ii← SWHE.Encrypt(pk,ti)

10: end for

Query generation is explained in Algorithm 11, where only the mSkNN algorithm
is used for encryption. Simply speaking, the probabilistic nature of Algorithm 8
provides both security and unlinkability of queries.

The similarity calculation operation in the new scheme, performed as described in
Algorithm 12, differs from the method in Algorithm 4 in two important aspects.
Firstly, as the query is not encrypted under SWHE, all the expensive homomor-
phic operations over the query in Steps 7-11 of Algorithm 4 are now eliminated.
Especially, there may be up to dlog2me sequential homomorphic rotations and ad-
ditions in Steps 8-11. This can be prohibitively expensive even for data sets with
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Algorithm 11 MrseSwheSkNN.GenerateQuery
Require: pk, W ∈ Rw
Ensure: q ∈Rq

1: L←
∣∣∣W∣∣∣

2: q ∈ Rw, plain query vector
3: for i from 0 to w−1 do
4: if Wi ∈W then
5: q[i] = 1/

√
L

6: else
7: q[i] = 0
8: end if
9: end for

10: q̄←mSkNN.EncryptQuery(SK.M ,q)

moderately many documents. For instance, m = 4096 requires 12 such operations
performed sequentially, all of which are eliminated in the new scheme.

Algorithm 12 MrseSwheSkNN.CalculateSimilarity
Require: q̄ ∈ Z2w

p , I ∈R2w
q

Ensure: ss ∈Rq
1: ss← Swhe.Encrypt(pk,{0}n)
2: for i= 1 to 2w do
3: t← Swhe.MulPlain(q̄[i],Ii)
4: ss← Swhe.Add(ss, t)
5: end for

Secondly, compared to the homomorphic multiplication in Step 12 of Algorithm 4,
the homomorphic multiplication in Step 3 of Algorithm 12 is inexpensive as one of
its operand is not homomorphically encrypted. As this multiplication increases the
noise only linearly (in comparison to quadratic increase in Step 12 of Algorithm 4),
we need much lower noise budget. This, in turn, leads to much smaller ciphertext
modulus t. Consequently, the new similarity calculation operation turns out to be
much faster than done in Algorithm 4 as shown in the subsequent sections.

The similarity calculation in Algorithm 12 is also different from MRSEIITF (Cao
et al. (2011)) algorithm in several fundamental aspects. Firstly, in the MRSEIITF
algorithm, results of the cosine similarity calculations are not encrypted as can
be observed in Eq. (3.2), where they are only translated by random factor r and
partially hidden by the noise term εi. As r is the same for all documents in the
data set, their ranks in the similarity list are not expected to be affected by the
translation operation. Therefore, while two randomized queries corresponding to the
same tf-idf vector appear to be unrelated they will most probably result in identical
similarity lists; hence the original S-kNN algorithm leaks the search pattern to CS
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unless the data set changes. The similarity list ss in Algorithm 12, however, is
homomorphically encrypted that can be decrypted only with the secret key of the
SWHE scheme. Consequently, CS has not access to the similarity list, and therefore
the privacy leak is trivially eliminated. However, ss comprises the similarity of each
document to the query that needs to be sent to DU, which leads to an increase in the
bandwidth. The overhead is somewhat alleviated due to the fact that one SWHE
ciphertext can encrypt m similarity result. The number of ciphertext needed for all
similarity scores is then `= dn/me.

Secondly, when ss is decrypted by DU via

r← SWHE.Decrypt(sk.sk,ss)

we obtain the similarity list in plaintext, in which each element approximates (de-
pending on the function H) the exact computation of the dot product of the query
vector and the tf-idf vector of the corresponding document

r[i] =
2w−1∑
j=0

H(q[j])H(di[j])≈H(CosSim(di,q))

for i= 0,1, . . . ,n−1. This is in contrast to the MRSEIITF algorithm that computes
r · (CosSim(di,q)) + εi, where the similarity score is translated by random factor r
and perturbed by εi, (see Eq. (3.2)). The randomization is needed in the original
S-kNN algorithm as a partial protection against leakage to CS that has access to r.
The translation operation by the random factor and the noise introduced by εi is
eliminated in the new scheme, where CS cannot decrypt ss and access r.
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Chapter 5

SECURITY AND PRIVACY

ANALYSIS

In this section, we discuss the security and privacy of the proposed scheme. First,
the security of the original S-kNN scheme will be revisited and the security claims in
the literature will be re-examined. Then, we provide the security analysis of the new
mS-kNN scheme in Section 4.4.1. In particular, we show that Algorithm 8 used for
query encryption is secure. Finally, we prove that the security and privacy claims
in Section 4.2 are satisfied by the proposed scheme.

5.1 Security of the Original S-kNN Scheme Re-
visited

(Wong et al. (2009), Cao et al. (2011)) claim that the original S-kNN scheme is KPA-
secure; i.e., secure against known plaintext attacks. The security analysis assumes
that adversary has access to µ pairs of plaintext and ciphertext for the query vector,
q (plaintext) and corresponding c (ciphertext), respectively. Recalling that q′ and
q′′ are the random splits of q with dimension of w each in the encryption phase we
have c= (c1,c2) = (M−1

1 q′,M−1
2 q′′). Since the secret binary vector s of w is used

for the splitting operation, the analysis take the elements of the vectors q′ and q′′ as
unknowns. Consequently, adversary can obtain 2µw equations from µ pairs of q and
c, but the total number of unknowns is 2w2 +2µw. As the number of unknowns will
always be larger than the number of equations independent of number of plaintext,
ciphertext pairs, adversary can never solve the equation system and find the secret
key.

One potential issue with this analysis is about the number of unknowns. Recall that
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the splitting operation is performed as

q′[i] = (1−s[i])q[i] +s[i]ρ

q′′[i] = (1−s[i])q[i] +s[i](q[i]−ρ),(5.1)

for i = 0, . . . ,w− 1 and where ρ is randomly chosen. Then, the actual number of
unknowns can be computed as 2(w)2 +w+µ(w+ 1), where 2(w)2 stands for the
unknowns coming fromM1 andM2, w stands for the confidentiality of s and µ(w)
stands for the random numbers generated during the encryption. Consequently, we
can construct an equation system where the number of unknowns is less than or
equal to the number of equations for certain value of µ. However, the equation
system becomes more complicated resulting in a costly solution. Therefore, we can
sketch another security analysis based on hypothesis testing explained in the next
section.

5.1.1 Hypothesis Testing on Secret Key s

Following the security analysis given by Wong et al. (2009), we assume that there
are 2µw equations and 2w2 + 2µw unknowns in the equation system. However, we
can decrease the number of unknowns by hypothesis testing on one bit of s.

Let our hypothesis be s[i] = 1 for i = [0,w − 1]. Then Eq. (5.1) simplifies to
q′[i] = q′′[i] = q[i], which will reduce the number of unknowns by one to 2w2 +
2µ(w−1). Then, the following inequality holds

2w2 + 2µ(w−1)≤ 2µw

for w2≤ µ. This indicates that if adversary collects at least w2 pairs of plaintext and
ciphertext, the equation system can be solved and thus secret keys are recovered.
For testing our hypothesis, additional control pairs are used to check if the solution
is correct. If the control pair is consistent with the solution, then the hypothesis is
correct and s[i] is indeed 1; otherwise 0. This procedure can be repeated for all bits
of s.

This result suggests that the S-kNN scheme requires a more rigorous security analysis
that should be based on the difficulty of solving the equation system. Once the
security analysis helps quantify the security level we can optimize the key sizes,
which are prohibitively large in S-kNN. For instance, we can eliminate s as secret
key if the secret matrices M1 and M2 already suffice for a desired security level.
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Indeed, the equation system is non-linear and can be very difficult to solve even
for moderate sizes of the secret matrices. In the next section, we provide a secu-
rity analysis of our modified version of S-kNN scheme using the results from the
work (Courtois, Klimov, Patarin & Shamir (2000)) that provides an analysis for the
computational complexity of solving multivariate polynomial equations.

5.1.2 Security of the Modified S-kNN Scheme

As the index and the similarity scores in the proposed scheme are always encrypted
using SWHE, which provides IND-CPA security, we only discuss the query security
in this section.

The secret binary vector s does not play an essential role in the security as shown in
Section 5.1.1. Also in the original scheme, the dimensions ofM1 andM2 are w×w,
which can be prohibitively large as w is the number of words in the dictionary W
and usually very large (e.g. w > 1000). Thus, to decrease the secret key size the
modified S-kNN scheme eliminates s and employs only a single, sufficiently large
secret key matrix M of dimension η× η. It turns out that η can be much smaller
than w and taken as w = kη for some positive integer k.

In query encryption by Algorithm 8, the random splitted query vector q′ is multiplied
by M to obtain the ciphertext vector

q̄[i] =
η−1∑
j=0
M [i mod η][j]q′[bi/ηcη+ j](5.2)

for 0 ≤ i ≤ 2w− 1. Eq.(5.2) can be generically written as a system of multivariate
quadratic polynomial equations

bk =
∑

1≤i≤j≤ν′
aijkxixj(5.3)

for k = 1,2, ..,µ′, which are investigated by Courtois et al. (2000). The problem of
solving quadratic polynomial equations system is known to be NP-hard over any
field. Here, the system has µ′ equations for ν ′ unknowns; namely x1,x2, ..,xν′ ∈ Zp
(Zp = Fp when p is prime). In case µ′ ≈ ν ′, the so called working factor (WF) for
solving Eq.(5.3) is given as WF ≥ eα

√
ν′(lnν′/2+1)), where α in the exponent is the

complexity of solving linear equation systems(Courtois et al. (2000)). For instance,
α= 3 for Gaussian elimination and α= 2.3766 for improved methods(Courtois et al.
(2000)).
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η security level (λ) # of multiplications in Fp
8 57 16384
12 102 24576
16 152 32768
20 205 40960
24 261 49152

1024 24336 2097152

Table 5.1 Security level of Algorithm 8 for various values of η with α = 2.3766 and
the number of multiplications in query encryption with w = 1024
.

For µ pairs of q and q̄ vectors in Eq. (5.2), the equation system results in η2 +µw

unknowns and 2µw equations. When 2µw = η2 +µw+2 (slightly over-determined),
the equation system can be solved and WF ≥ ηαη (see Appendix for the details).
Consequently, the security levels provided by Algorithm 8 for query encryption de-
pending on the matrix size η can be approximated as shown in Table 5.1. As seen
in the table, with even moderate dimensions of secret matrix M we can achieve
sufficiently high security; e.g., η = 16 provides approximately 152 bit of security.

Here we provide only a sketch of security analysis to demonstrate the query confi-
dentiality described in Def 2. A stronger security analysis for Def 2, we prove that
Algorithm 8 is in fact CPA secure in Theorem 6 in Appendix. Similarly, for search
and similarity pattern confidentiality (Definitions 3 and 4, respectively ) Algorithm 8
should be also IND-CPA, which is proved by Theorem 7 in Appendix.

Note that a smaller matrix size accelerates the query encryption operation signif-
icantly. Table 5.1 enumerates the number of multiplications in Fp during a query
encryption operation (Step 7 of Algorithm 8). While the original S-kNN algorithm
requires prohibitively large number of Fp multiplications even for moderate size
dictionaries (e.g., 2,097,152 for w = 1024 in the last row of Table 5.1), mS-kNN re-
quires much fewer number of such operations (e.g., only 32768 for λ= 152). Finally,
mS-kNN reduces the storage requirement for secret key from O(w2) to O(η2).

5.1.3 Privacy Claims

This section shows that the proposed scheme in Section 4.4.1 (namely
MRSE_SWHE_SkNN scheme) satisfies all the privacy goals (given in Definitions 1-
4) in Section 4.2.
Theorem 1. The MRSE_SWHE_SkNN scheme provides confidentiality for the
index I of a document collection D in accordance with Definition 1.

31



Proof: The index I of a document collection D is encrypted by the FV scheme (Fan
& Vercauteren (2012)), which is one of the most efficient SWHE schemes and pro-
vides IND-CPA security. Therefore, no polynomial time adversary with access to
index encryption oracle can decrypt I and learns the tf-idf values of documents in
D without the secret key of the SWHE scheme except with negligible probability.
Theorem 2. The MRSE_SWHE_SkNN scheme provides confidentiality for en-
crypted query q̄ in accordance with Definition 2.

Proof: A query vector in the MRSE_SWHE_SkNN scheme is encrypted using a
secret matrix M of dimension η× η as described in Algorithm 8. As claimed in
Section 5.1.2 and proved by Theorem 6 in Appendix, encryption in Algorithm 8
provides CPA security. Therefore, no polynomial time adversary with access to
query encryption oracle can decrypt an encrypted query q̄ and learns the tf-idf
values of the query q without the secret matrix M provided that η is sufficiently
large except with negligible probability.
Theorem 3. The MRSE_SWHE_SkNN scheme provides search pattern confiden-
tiality for an arbitrary set of query vectors Q = {q1,q2, . . . ,qt} in accordance with
Definition 3.

Proof: Theorem 7 in Appendix shows that query encryption scheme in Algorithm 8
is IND-CPA secure. Namely, given two arbitrarily chosen queries q0 and q1 and the
encryption of one of them q̄b = E(qb) for uniformly randomly chosen b ∈ {0,1},
adversary that has access to encryption oracle cannot guess b with a probability
significantly better than 0.5. Let Q̄ = {q̄1, q̄2, . . . , q̄t} be a randomly permuted set
of encryption of queries in Q. Suppose also qi = qj for a pair of i and j (i 6= j). Due
to IND-CPA security, no adversary can tell which elements in Q̄ correspond to qi
and qj except with the probability of random guess (which is 1

t(t−1)). This is due
the fact that every dimension of both q̄i and q̄j is uniformly distributed in Fp as
explained in Theorem 7 in Appendix.
Theorem 4. The MRSE_SWHE_SkNN scheme provides similarity pattern con-
fidentiality for an arbitrary set of query vectors Q = {q1,q2, . . . ,qt} in accordance
with Definition 4.

Proof: The proof follows directly from Theorem 3. Let Q̄ = {q̄1, q̄2, . . . , q̄t} be a
randomly permuted set of encryption of queries in Q. Suppose also, for a pair of i
and j (i 6= j), two queries qi and qj does not contain a word Wk for an arbitrary
k; namely qi[k] = qj [k] = 0. Due to IND-CPA security, no adversary can tell which
elements in Q̄ correspond to qi and qj except with the probability of random guess
(which is 1

t(t−1)). We can make the same arguments for two queries having a word
Wk in common with identical or different tf-idf values.
Theorem 5. The MRSE_SWHE_SkNN scheme is amenable to access pattern con-
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fidentiality for an arbitrary set of query vectors Q = {q1,q2, . . . ,qt} in accordance
with Definition 5.

Proof: Let Q̄= {q̄1, q̄2, . . . , q̄t} denotes the secure search queries correspond to Q.
The access pattern is defined as Ap(Q̄) = {D(q̄1),D(q̄2), ..,D(q̄τ )}, where D(q̄i) is
the subset of documents that match the secure search query q̄i. The similarity search
results are encrypted by FV(Fan & Vercauteren (2012)) as SWHE scheme and it is
IND-CPA secure. Therefore, any leakage can only happen during the retrieval of
D(q̄i). Any IND-CPA PIR protocol such as (Aguilar-Melchor et al. (2016),Angel
et al. (2018)) avoids leakage from retrieval of resulting documents from the cloud
server. Thus, no polynomial time adversary can tell any document in Ap(Q̄) except
with the probability of random guess 1/n.
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Chapter 6

IMPLEMENTATION RESULTS

AND EVALUATION

section, we investigate the second MRSE scheme (MRSE_SWHE_SkNN in Sec-
tion 4.4) in terms of efficiency and accuracy. The method is compared with our first
solution (i.e., MRSE_SWHE in Section 4.3) and one of the existing solutions in
the literature (MRSEIITF Cao et al. (2011)). MRSEIITF (Cao et al. (2011)) utilizes
the secure kNN algorithm explained in Section 3.6.1. For test purposes, we use
Enron E-mail data set(Shetty & Adibi (2004)). As the number of words depends
on the number of documents used in our experiments, we include Figure 6.1 that
illustrates the relation between w (number of keywords extracted) and n (number
of documents) in the test data set.

6.1 Implementation Details
Implementing MRSE schemes including MRSE_SWHE, MRSE_SWHE_SkNN and
MRSEIITF ( Cao et al. (2011)) requires programming using different software tech-

Table 6.1 Number of keywords (w) extracted from Enron data set for varying number
of documents(n)

n w
2048 2445
4096 3605
6144 5545
8192 6315
10240 6862
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nologies. The test data set is pre-processed using Python gensim1 library to trans-
form it from bag-of-words to tf-idf vector representation. The stop words are filtered
out and rest of the dictionary is stemmed by nltk tools2. Homomorphic operations
required by both methods are carried out in Microsoft SEAL3 in C++. Operations
over real valued matrices and vectors are performed using Apache Math Library4,
which provides necessary operations for matrix, vector multiplications, matrix in-
versions over real numbers. On the other hand, matrix operations over Zp needed
by mSkNN are implemented in-house using Java programming language. The test-
ing framework for all three schemes is assembled using Scala programming language
which connects all the modules of the project. As we work in Zp in both of our
schemes MRSE_SWHE and MRSE_SWHE_SkNN, we use the BFV implementa-
tion in the SEAL library. The following parameter selection ensures correct de-
cryption after the homomorphic evaluation for MRSE_SWHE: S1 = {m = 8192,
log2(t) = 152,p = 65537}. As for the MRSE_SWHE_SkNN, the parameter selec-
tion is as follows: S2 = {m = 2048, log2(t) = 54,p = 40961}, which meets the noise
budget requirements of the circuit for the computations. For S1 and S2, the under-
lying R-LWE instance provides 192-bit and 128-bit security, respectively. The scale
parameter in the function H (See Section 6.2) used to map tf-idf values to Fp is
chosen as ς = 200 since ς <√p guaranteeing that plaintext after homomorphic com-
putations will never exceed the plaintext modulus p. As for mS-kNN configurations,
η is chosen as 15 that provides ≈138-bit security.

6.2 Accuracy
As pointed out in Section 5.1.3, the MRSEIITF ( Cao et al. (2011)) scheme claims
to provide rank privacy and there is a trade-off between rank privacy and accuracy.
Both the MRSE_SWHE and the MRSE_SWHE_SkNN schemes provide perfect
rank privacy as the similarity scores are encrypted by SWHE.

The ranking of documents in the decrypted similarity results can be different than
the grand truth due to the precision loss in MRSE_SWHE_SkNN. On the other
hand, the trade-off between privacy and accuracy in MRSEIITF is controlled by
a system parameter, denoted as σ, which is simply the standard deviation of the
normal distribution used to sample the noise terms ε and εi (See Section 3.6.1) .

1See https://pypi.org/project/gensim/

2See https://www.nltk.org/

3See https://www.microsoft.com/en-us/research/project/microsoft-seal/

4See https://commons.apache.org/proper/commons-math/
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Therefore, we investigate the accuracy of both methods in more detail and observe
how they are affected by parameters ς and σ. First, we define a metric, used in our
experiments, to better capture the performance of the MRSE schemes.

Accuracy Metric: Correctly measuring the accuracy of the system is important
in order to properly optimize the system parameters. A straightforward approach
is compare the top-k document IDs returned by a MRSE scheme with those in the
grand truth. A better approach is to consider the documents returned by a MRSE
scheme and use their correct similarity scores obtained in the ground truth. Thus,
given a query q, we formulate the accuracy of MRSE scheme as

acc =
∑k
i=1ss[DMRSE

q,i ]∑k
i=1ss[DGTq,i ]

×100(6.1)

where ss[Di] denotes the correct similarity between the document Di and the query
q. Also DMRSE

q and DGTq are sorted sets of similar documents returned by the
MRSE scheme and the ground truth, respectively.

As mentioned in the Section 4.3, ς is chosen deterministicly depending on the value
of p. To increase ς, one should increase p, which requires increasing t in order to meet
the noise budget requirements of homomorphic evaluation circuit. However, setting
ς = 200 as mentioned in section 6.1 results in about %99.999 percent accuracy in
our tests for varying n and w values as can be observed in Figure 6.1(for w values,
see Table 6.1). For MRSEIITF , we use two values of standard deviation; namely
σ = 0.02 and σ = 0.05. As results clearly suggest, MRSE_SWHE_SkNN is more
accurate that MRSEIITF without compromising privacy, whereas the accuracy of
MRSEIITF is highly sensitive to σ. Note that higher values of σ that is employed
against background attacks decrease accuracy while MRSE_SWHE_SkNN is not
vulnerable to those attacks as it is CPA secure.

6.3 Performance
For performance evaluations, we use as metrics bandwidth usage, memory require-
ment and response times. The results are the average of 100 runs with randomly
chosen input values whereby the test results with unusually high standard deviations
are not taken into account for average computations.

In order to perform a better simulation of the client-server architecture, we have
used a client and a server machine located in the university. The client has Intel(R)
Core(TM) i5-6200U CPU @ 2.30GHz as processing unit with up to 3GB RAM
access. All the experiments regarding DU/DO is run by the mentioned machine.
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Figure 6.1 Accuracy of MRSEIITF and MRSE_SWHE_SkNN with varying values
of n and w

0.2 0.4 0.6 0.8 1
·104

40

60

80

100

n

ac
cu
ra
cy
(%

)

MRSE_SWHE_SkNN
MRSEIITF (σ = 0.02)
MRSEIITF (σ = 0.05)

On the other hand, server is a supercomputer with 16 Intel(R) Xeon(R) CPU E5-
2609 v4 @ 1.70GHz processors. The server program is allowed to use 50GB of RAM.
The link between the client and the server is 10MB/s in practise, which is measured
by SCP5.

6.3.1 Time Performance

The most important operation is the secure computation of similarity scores given
a query q as far as the execution times are concerned as CS performs it in response
to potentially overly many queries submitted online. Therefore, we first obtain the
execution times of Algorithm 12 used in MRSE_SWHE_SkNN for secure similarity
calculations in server side and compare them against those of Algorithm 4 used
in MRSE_SWHE in Table 6.2. The latter scheme, MRSE_SWHE, represents the
approach taken by many works in the literature such as (Strizhov & Ray (2016)),
which basically requires homomorphically encrypting the query as well. Table 6.2,
which reports a speedup of at least 199 times, demonstrates the advantage of our
approach. This is natural due to the fact that the query is not homomorphically
encrypted in MRSE_SWHE_SkNN simplifying the homomorphic computations in
Algorithm 12 in comparison with those of Algorithm 4.

We next compare the execution times of Algorithm 12 with that of MRSEIITF (Cao
et al. (2011)) used for similarity calculation. The latter scheme uses much weaker
privacy claims and therefore provides faster computation of similarity scores in gen-

5Secure Copy Protocol
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Table 6.2 Execution times of similarity score computation for MRSE_SWHE and
MRSE_SWHE_SkNN in milliseconds with varying values of n and w

n w Algorithm 4 Algorithm 12 speedup
8192 1000 172265 863 199 ×
8192 1500 252469 1263 199 ×
8192 2000 344143 1704 201 ×
8192 2500 410530 2039 201 ×
16384 1500 496932 2480 200 ×

Table 6.3 Execution times of similarity score computation for of MRSEIITF and
MRSE_SWHE_SkNN in milliseconds for varying values of n and w

n, w = 2000 2048 4096 6144 8192 10240
MRSEIITF (Cao et al. (2011)) 16 31 47 64 80

Algorithm 12 419 830 1280 1627 2159
w, n = 4096 2000 4000 6000 8000 10000

MRSEIITF (Cao et al. (2011)) 31 63 92 122 152
Algorithm 12 830 1618 2439 3271 4318

eral. Table 6.3, which lists the execution times of Algorithm 12 and the algorithm
used in MRSEIITF (Cao et al. (2011)) for similarity computation, shows the over-
head incurred due to the stronger privacy claims in our proposal. Nevertheless, the
server side execution times, while important, does not suffice to evaluate the overall
performance of a scheme as the execution times of other operations such those spent
on client side can be important. To this end, we measure the client response time
as the time experienced by the client; i.e., DO and/or DU in our scenario. And we
show that the performance of our scheme is comparable to that of Cao et al. (2011),
if not better for certain parameters, as long as the client response time is concerned.
This is due the fact that the performance of the query generation algorithm of Cao
et al. (2011) is highly sensitive to the number of words in the dictionary w as the
dimension of secret matrices are determined solely by w.

The client response time includes the execution times of query generation (Algo-
rithm 11), similarity calculation (Algorithm 12), decryption and ranking of the re-
sults (Algorithm 5) as well the time spent on communication. In particular, the
query generation time in MRSE_SWHE_SkNN outperforms that of MRSEIITF as
can be observed in Table 6.4. The table indicates that the client side computation in
MRSEIITF does not scale well as the prohibitively large dimension of secret matrices
are involved in the computation. We did not include the timing results of MRSEIITF
for w≥ 8000 as operating with such large matrices is not practical; especially storing
them as secret keys is infeasible for many real world scenarios as discussed subse-
quently. The dimension of the secret matrix in MRSE_SWHE_SkNN, on the other
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Table 6.4 Query generation times of MRSEIITF and MRSE_SWHE_SkNN in mil-
liseconds for various values of w

w MRSEIIT F (Cao et al. (2011)) MRSE_SWHE_SkNN
2000 97 4
4000 463 9
6000 1243 13
8000 NA 18
10000 NA 22

hand, depends only the security level and thus remains the same for larger values of
w.

The last operation that affects the client response times is the result decryption
and ranking. This phase does not exist in MRSEIITF since the results are returned
as plain texts. Figure 6.2 illustrates the result decryption and ranking overhead
for various values of n as it is in dependent of w. Although the timings increase
linearly with n, most of it can be overlapped with the similarity calculation which is
executed by CS. In the client response time experiments, the queries are processed
by CS in overlapping fashion with the DU.

Figure 6.3 plots the client response times when the code for server side computations
(i.e., similarity score computation) are parallelized and tasks are distributed over
different number of cores in the server CPU. For client side computation, multi-core
implementation is not used as we assume client hardware is resource constrained.
We set n = 2048 and use the number of words returned by the tool set, which is
w = 2445. As can be observed in Figure 6.3, for certain cases, the proposed scheme
can outperform MRSEIITF , which is the one of the fastest secure MRSE algorithm
in the literature. For larger values of n, MRSEIITF can outperform the proposed
scheme; but parallelization will always favor the proposed scheme.

Another operation, albeit less important than query generation and similarity score
computation, is setup which will be needed in the setup phase or whenever the key
is updated. More precisely, setup consists of Algorithms 6 and 7 that are used to
find an invertible matrixM and encrypt the index, respectively. It is not explicitly
shown in Algorithms 6, but the execution time of computing the inverse ofM is also
included in the setup time. We measured the setup times for both MRSEIITF and
MRSE_SWHE_SkNN for different values of n and w and summarized the results
in Tables 6.5. The proposed scheme time performance is superior to MRSEIITF so
fast as setup is concerned, which is due to the fact that the latter employs extremely
large secret matrices.
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Figure 6.2 Result decryption and ranking times of MRSE_SWHE_SkNN with var-
ious values of n
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Figure 6.3 Client response times of MRSEIITF and MRSE_SWHE_SkNN for var-
ious number of cores used in the server with n=2048 and w = 2445
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6.3.2 Storage Requirements

We also compare MRSE schemes in terms of storage requirements for index,
secret key and query response. We first plot index sizes of MRSEIITF and
MRSE_SWHE_SkNN for varying values of n and w in Figures 6.5 and 6.6. As
figures clearly show, the index size of MRSE_SWHE_SkNN is larger, which is due
to the ciphertext expansion in SWHE encryption. The increase in index size, how-
ever, can be tolerated as it is stored at server (CS) which is generally assumed to
posses ample storage.

Next, we compare sizes of the secret keys needed for query generation, which do
not include SWHE keys as they are not used in query generation. The results
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Figure 6.4 Client response times of MRSEIITF and MRSE_SWHE_SkNN for var-
ious number of cores used in the server with n=4096 and w = 3615
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Table 6.5 Setup times of MRSEIITF and MRSE_SWHE_SkNN for varying values
of w and n

n, w = 2000 MRSEIIT F (Cao et al. (2011)) MRSE_SWHE_SkNN
2048 9m 6s
4096 17m 12s
6144 25m 18s
8192 34m 24s
10240 43m 31s

w, n = 4096 MRSEIIT F (Cao et al. (2011)) MRSE_SWHE_SkNN
4000 87m 23s
6000 256m 34s
8000 NA 46s
10000 NA 58s

are presented in Table 6.6, which shows that the key size of MRSEIITF (Cao et al.
(2011)) increases with the number of words in the dictionary. The key size of
MRSE_SWHE_SkNN is affected by neither w nor n; but only with security pa-
rameter. Considering that the secret keys are kept at client side (either DO or DU),
key sizes in the order of mega bytes in MRSEIITF are prohibitively high.

Finally, we inspect the keys sizes for decrypting query results, which applies only
in MRSE_SWHE_SkNN since the query results in MRSEIITF are not encrypted.
The size of the decryption keys in MRSE_SWHE_SkNN is 17 KB, as S2 is used
for SWHE purposes. For larger values of w, decryption key size can increase as the
noise budget requirements will increase. However, S2 is sufficient for all our test
scenarios as mentioned in Section 6.1.
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Figure 6.5 Index sizes of MRSEIITF and MRSE_SWHE_SkNN for varying values
of n with w = 2000
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Figure 6.6 Index sizes of MRSEIITF and MRSE_SWHE_SkNN for varying values
of w with n= 4096
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The key size is only affected by w and the parameter set S3 is sufficient for all values
of w used in our experiments.

6.3.3 Bandwidth Requirements

We also investigate the sizes of data exchanged between CS and DU during the proto-
col that includes the query and the response. The results for various values of n and
w are presented in Table 6.7. In MRSEIITF the query size is only affected w. Natu-
rally, neither w nor n has any influence on response size. In MRSE_SWHE_SkNN,
the query size depends on w, while the response size is heavily influenced by n.
MRSEIITF outperforms MRSE_SWHE_SkNN due to the ciphertext expansion in
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Table 6.6 Key sizes of MRSEIITF and MRSE_SWHE_SkNN, used for query gen-
eration for various values of w

w MRSEIIT F (Cao et al. (2011)) MRSE_SWHE_SkNN
2000 70 MB 1 KB
4000 267 MB 1 KB
6000 586 MB 1 KB
8000 NA 1 KB
10000 NA 1 KB

homomorphic encryption. However, bandwidth usage of MRSEIITF grows faster
with w comparing to MRSE_SWHE_SkNN. Because each element in the query
vector is a 8-byte double instead of a 4-byte integer. The bandwidth requirements
of MRSE_SWHE_SkNN can be tolerated in practical applications.

Table 6.7 Bandwidth usage of MRSEIITF and MRSE_SWHE_SkNN for varying
values of n and w

n, w= 2000 MRSEIIT F (Cao et al. (2011)) MRSE_SWHE_SkNN
2048 33KB 47KB
4096 33KB 79KB
6144 33KB 111KB
8192 33KB 143KB
10240 33KB 175KB

w, n = 4096 MRSEIIT F (Cao et al. (2011)) MRSE_SWHE_SkNN
2000 33KB 79KB
4000 64KB 95KB
6000 95KB 110KB
8000 127KB 126KB
10000 158KB 142KB
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Chapter 7

CONCLUSION

In this work, we present an efficient, highly accurate and secure scheme for multi-
keyword ranked searching over encrypted data. The documents in the data set as
well as the search queries are represented as tf -idf vectors while the comparison
metric is cosine similarity. The scheme utilizes a modified variant of secure kNN
algorithm and SWHE as the most important building blocks. The proposed scheme
proved to produce highly accurate results, and there is no trade-off between accuracy
and privacy. Our implementation results shown that server side computations are
two orders of magnitude faster that the existing schemes in the literature using only
of SWHE.

We give an in-depth security analysis of S-kNN schemes in the literature and discuss
a theoretical attack to better evaluate their security. Our analysis helps construct
a simplified variant of S-kNN scheme that uses much shorter keys. As a result, a
smaller key size and limited use of homomorphic cryptography (only decryption)
allow much more lightweight client implementations with faster client side compu-
tations and reduced storage requirement. Our security analysis concludes that the
new S-kNN scheme is IND-CPA secure.

As future work, we will concentrate on reducing the impact of the dictionary size
and the number of documents on the performance of the proposed system. As tf -idf
representation of documents are sparse vectors, the documents can be represented
as encrypted key-value pairs, encrypted by SWHE. This may reduce the space com-
plexity of both secure search query and the secure searchable index significantly
while it potentially increases the time complexity of the search as string comparison
is an expensive operation to perform in cipher text form. On the other hand, the
bandwidth usage of the proposed protocol increases with the number of documents
as space complexity of the search results are O(n). By applying a clustering strategy
on the outsourced data set, this can drop to O(|C|max) where |C|max denotes the
size of the largest cluster. Again it decreases the accuracy of the search in return.

44



BIBLIOGRAPHY

Aguilar-Melchor, C., Barrier, J., Fousse, L., & Killijian, M.-O. (2016). Xpir : Pri-
vate information retrieval for everyone. Proceedings on Privacy Enhancing
Technologies, 2016 (2), 155–174.

Angel, S., Chen, H., Laine, K., & Setty, S. (2018). Pir with compressed queries
and amortized query processing. In 2018 IEEE Symposium on Security and
Privacy (SP), (pp. 962–979).

Banawan, K. & Ulukus, S. (2018). The capacity of private information retrieval
from coded databases. IEEE Transactions on Information Theory, 64 (3),
1945–1956.

Boneh, D., Kushilevitz, E., Ostrovsky, R., & Skeith, W. E. (2007). Public key en-
cryption that allows pir queries. In Menezes, A. (Ed.), Advances in Cryptology
- CRYPTO 2007, (pp. 50–67)., Berlin, Heidelberg. Springer Berlin Heidelberg.

Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2014). (leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory, 6 (3), 13:1–
13:36.

Cao, N., Wang, C., Li, M., Ren, K., & Lou, W. (2011). Privacy-preserving multi-
keyword ranked search over encrypted cloud data. In 2011 Proceedings IEEE
INFOCOM, (pp. 829–837).

Chen, C., Zhu, X., Shen, P., Hu, J., Guo, S., Tari, Z., & Zomaya, A. Y. (2016). An
efficient privacy-preserving ranked keyword search method. IEEE Transactions
on Parallel and Distributed Systems, 27 (4), 951–963.

Chen, L., Qiu, L., Li, K.-C., Shi, W., & Zhang, N. (2017). Dmrs: an efficient
dynamic multi-keyword ranked search over encrypted cloud data. Soft Com-
puting, 21 (16), 4829–4841.

Cheon, J. H., Kim, A., Kim, M., & Song, Y. (2017). Homomorphic encryption
for arithmetic of approximate numbers. In Takagi, T. & Peyrin, T. (Eds.),
Advances in Cryptology – ASIACRYPT 2017, (pp. 409–437)., Cham. Springer
International Publishing.

Courtois, N., Klimov, A., Patarin, J., & Shamir, A. (2000). Efficient algorithms
for solving overdefined systems of multivariate polynomial equations. In Pre-
neel, B. (Ed.), Advances in Cryptology — EUROCRYPT 2000, (pp. 392–407).,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Curtmola, R., Garay, J., Kamara, S., & Ostrovsky, R. (2006). Searchable symmetric
encryption: Improved definitions and efficient constructions. In Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS
’06, (pp. 79–88)., New York, NY, USA. ACM.

Dawn Xiaoding Song, Wagner, D., & Perrig, A. (2000). Practical techniques for
searches on encrypted data. In Proceeding 2000 IEEE Symposium on Security
and Privacy. S P 2000, (pp. 44–55).

Dhumal, A. A. & Jadhav, S. (2016). Confidentiality-conserving multi-keyword
ranked search above encrypted cloud data. Procedia Computer Science, 79,
845 – 851. Proceedings of International Conference on Communication, Com-
puting and Virtualization (ICCCV) 2016.

Elmehdwi, Y., Samanthula, B. K., & Jiang, W. (2014). Secure k-nearest neighbor
45



query over encrypted data in outsourced environments. In 2014 IEEE 30th
International Conference on Data Engineering, (pp. 664–675).

Fan, J. & Vercauteren, F. (2012). Somewhat practical fully homomorphic encryp-
tion. Cryptology ePrint Archive, Report 2012/144. https://eprint.iacr
.org/2012/144.

Gentry, C. (2009). A fully homomorphic encryption scheme. PhD thesis, Stanford
University. crypto.stanford.edu/craig.

Goldreich, O. & Ostrovsky, R. (1996). Software protection and simulation on obliv-
ious rams. J. ACM, 43 (3), 431–473.

Jiang, X., Yu, J., Yan, J., & Hao, R. (2017). Enabling efficient and verifiable multi-
keyword ranked search over encrypted cloud data. Information Sciences, 403-
404, 22 – 41.

Kim, H.-I., Kim, H.-J., & Chang, J.-W. (2017). A secure knn query processing
algorithm using homomorphic encryption on outsourced database. Data &
Knowledge Engineering.

Kipnis, A. & Shamir, A. (1999). Cryptanalysis of the hfe public key cryptosystem
by relinearization. In Wiener, M. (Ed.), Advances in Cryptology — CRYPTO’
99, (pp. 19–30)., Berlin, Heidelberg. Springer Berlin Heidelberg.

Kushilevitz, E. & Mour, T. (2019). Sub-logarithmic distributed oblivious ram with
small block size. In Public-Key Cryptography – PKC 2019, volume 11442 of
Lecture Notes in Computer Science, (pp. 3–33). Springer.

Li, R., Xu, Z., Kang, W., Yow, K. C., & Xu, C.-Z. (2014). Efficient multi-keyword
ranked query over encrypted data in cloud computing. Future Generation
Computer Systems, 30, 179 – 190. Special Issue on Extreme Scale Parallel
Architectures and Systems, Cryptography in Cloud Computing and Recent
Advances in Parallel and Distributed Systems, ICPADS 2012 Selected Papers.

Liu, X., Guan, Z., Du, X., Wu, L., Abedin, Z. U., & Guizani, M. (2019). Achieving
secure and efficient cloud search services: Cross-lingual multi-keyword rank
search over encrypted cloud data. In ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), (pp. 1–6).

Mayberry, T., Blass, E.-O., & Chan, A. H. (2013). Efficient private file retrieval
by combining oram and pir. Cryptology ePrint Archive, Report 2013/086.
https://eprint.iacr.org/2013/086.

Moataz, T., Mayberry, T., Blass, E.-O., & Chan, A. H. (2015). Resizable tree-based
oblivious ram. In Böhme, R. & Okamoto, T. (Eds.), Financial Cryptography
and Data Security, (pp. 147–167)., Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Naveed, M. (2015). The fallacy of composition of oblivious ram and searchable
encryption. IACR Cryptology ePrint Archive, 2015, 668.

Orencik, C., Alewiwi, M., & Savas, E. (2015). Secure sketch search for document
similarity. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, (pp. 1102–
1107).

Orencik, C., Kantarcioglu, M., & Savas, E. (2013). A practical and secure multi-
keyword search method over encrypted cloud data. In 2013 IEEE Sixth Inter-
national Conference on Cloud Computing, (pp. 390–397).

Pham, H., Woodworth, J. W., & Salehi, M. A. (2018). Survey on secure search over
encrypted data on the cloud. CoRR, abs/1811.09767.

Regev, O. (2009). On lattices, learning with errors, random linear codes, and cryp-

46

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
crypto.stanford.edu/craig
https://eprint.iacr.org/2013/086


tography. J. ACM, 56 (6), 34:1–34:40.
Shetty, J. & Adibi, J. (2004). The enron email dataset database schema and brief

statistical report. Technical report.
Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., & Devadas, S.

(2013). Path oram: An extremely simple oblivious ram protocol. In Proceed-
ings of the 2013 ACM SIGSAC Conference on Computer &#38; Communica-
tions Security, CCS ’13, (pp. 299–310)., New York, NY, USA. ACM.

Strizhov, M. & Ray, I. (2016). Secure multi-keyword similarity search over encrypted
cloud data supporting efficient multi-user setup. Transactions on Data Pri-
vacy, 9, 131–159.

Wong, W. K., Cheung, D. W.-l., Kao, B., & Mamoulis, N. (2009). Secure knn
computation on encrypted databases. In Proceedings of the 2009 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’09, (pp.
139–152)., New York, NY, USA. ACM.

Xia, Z., Wang, X., Sun, X., & Wang, Q. (2016). A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data. IEEE Transactions
on Parallel and Distributed Systems, 27 (2), 340–352.

Zhao, R. & Iwaihara, M. (2017). Lightweight efficient multi-keyword ranked
search over encrypted cloud data using dual word embeddings. ArXiv,
abs/1708.09719.

47



APPENDIX A: SECURITY PROOFS

Our security claims rely on the difficulty of solving multivariate polynomial equations
generated during the matrix-vector multiplications between the randomized query q̄
and the secret matrixM . We use the results from Courtois et al. (2000) extensively
in our security analysis.
Theorem 6. The query encryption scheme mSkNN.EncryptQuery presented in
Algorithm 8 is CPA secure.

Proof: Assume adversary has access to µ pairs of plaintext of q and ciphertext q̄,
namely Q = {q0, . . . ,qµ−1} and Q̄ = {q̄0, . . . , q̄µ−1}. Recall q′ is a 2w-dimensional
vector, which is the random split of q. Q′= {q′0, . . . ,q′µ−1} denotes the set of random
splits of q̄k. A ciphertext vector q̄k can be formulated as

(A.1) q̄k[i] =
η−1∑
j=0
M [i mod η][j]q′k[bi/ηcη+ j]

for 0≤ k < µ and 0≤ i < 2w. Note that exactly half of the dimensions of the vector
q′k are independently random due to the random splitting process and the other half
are dependent (see lines 1-5 in Algorithm 8). In Eq.(A.1), there are η2 unknowns
due to M and µw due to Q′, resulting in a quadratic equation system with a total
of η2 +µw unknowns and 2µw equations.

Courtois et al. (2000) investigate the best strategies for solving quadratic equations
of the form,

bk =
∑

1≤i≤j≤ν′
aijkxixj

for k = 1,2, . . . ,µ′. As the equation system in(Courtois et al. (2000)), with µ′ equa-
tions for ν ′ unknowns x1,x2, ..,xν′ , is in identical form to ours in Eq.(A.1), we can
directly adopt the results from Courtois et al. (2000) in our security analysis.

Courtois et al. (2000) propose a method known as XL(extended linearization), which
is the improved version of the relinearization technique proposed by Kipnis & Shamir
(1999) and investigate the computation complexity of XL. Among various results
given, we adapt those for the cases relevant in our analysis:
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• Case 1: µ′ > ν ′+C with C ≥ 2 represents the case when the number of equa-
tions is slightly larger than the number of unknowns. The authors formulate
the computational difficulty of solving the equation system as the working
factor and give WF1 ≥ eα

√
ν′( lnν′

2 +1), where α stands for the complexity of
solving linear equation systems. For instance, α = 3 for Gaussian elimination
and α = 2.3766 for improved methods(Courtois et al. (2000)).

• Case 2: Alternatively, µ′ > εν ′2 for ε > 0 represents the case when the number
of equations is much larger than the number of unknowns. The goal here is
to see whether the computational complexity decreases with insertion of new
equations; which means in our case to observe more plaintext-ciphertext pairs.
The formula given by the authors for the working factor is WF2 ≈ ν

′ α√
ε .

In our analysis for both cases the number of equations is µ′ = 2µw and the number
of unknowns is ν ′ = η2 +µw. In the first case, we set 2µw > η2 +µw+2 with C = 2,
smallest possible value for the number of equations. Then, we have µ > (η2 +2)/w.
As ν ′ = η2 +µw, we can obtain ν ′ > 2η2 + 2. Consequently,

WF1 ≥ eα
√
ν′( lnν′

2 +1) > eαη(lnη+1) > eαη lnη

WF1 > (elnη)αη = ηαη.(A.2)

Thus, WF1 is lower bounded by ηαη.

In the second case, µ′ = εν ′2 means 2µw = ε(η2 +µw)2. Expanding its right hand
side, the equation becomes 2µw = ε(η4 + 2η2µw+ (µw)2) leading to the following
second degree equation

ε(µw)2 + (2η2ε−2)µw+η4ε= 0.(A.3)

Eq.(A.3) is a second power polynomial in the form of ax2 + bx+ c, where x = µw,
a = ε, b = (2η2ε−2) and c = η4ε. In order for Eq.(A.3) to have solution for µw, its
discriminant must be larger than or equal to 0

∆ = (2η2ε−2)2−4ε2η4 = (2η2ε−2)2− (2η2ε)2.

Otherwise, adversary is not able to attack to the system through by collecting more
plaintext-ciphertext pairs, which is not meaningful. Then,

4η4ε2−8η2ε+ 4−4η4ε2 > 0

4> 8η2ε⇒ ε < 1/(2η2)⇒ 1/ε > 2η2.
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Finally, we obtain the inequality

1/
√
ε >
√

2η(A.4)

Consequently, for the working factor of the second case we have

WF2 ≈ ν
′ α√
ε = (η2 +µw)

α√
ε

(η2 +µw)
α√
ε > η

2α√
ε > η2

√
2αη.

Clearly, WF2 is also lower bounded by ηαη and we can conclude that solving the
equation system in Eq.(A.1) is infeasible for sufficiently large η values.

Also observe that, our analysis suggests that liberty of using special queries (i.e., cho-
sen plaintext) does not decrease the number of unknowns. Hence, we do not expect
that solving Eq.(A.1) gets easier in chosen plaintext attack scenario. Consequently,
we conclude that the query encryption algorithm mSkNN.EncryptQuery is CPA
secure. �

Theorem 7. The query encryption scheme mSkNN.EncryptQuery presented in
Algorithm 8 is IND-CPA secure.

Proof: To show an encryption algorithm is IND-CPA secure is harder in general.
To this end, the following IND_CPA security game is played between adversary
and challenger, in which adversary has access to the encryption oracle (i.e., she can
obtain a ciphertext corresponding to arbitrarily chosen plaintext).

Adversary:
Picks two arbitrary queries q0 and q1

Challenger:
b←{0,1} (e.g., flips a coin)
c←mSkNN.EncryptQuery(M ,qb)

Adversary:
Outputs b′

Adversary wins if b= b′

As the adversary can always make a random guess of b, the advantage of the adver-
sary (A) in the game can be defined as

AdvIND-CPA
mSkNN.EncryptQuery(A) = 2 ·

∣∣∣∣Pr[A wins]− 1
2

∣∣∣∣
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The encryption scheme is said to be IND-CPA secure if AdvIND-CPA
mSkNN.EncryptQuery(A)

is “small" for all polynomial adversaries A.

Theorem 6 states that no polynomially bounded adversary is able to decrypt a
ciphertext and learn to b as mSkNN.EncryptQuery is CPA-secure. The adver-
sary, on the other hand, can make use of the probability distributions of cipher-
texts to increase its advantage. Here, we show that the ciphertexts generated by
mSkNN.EncryptQuery are uniformly randomly distributed in Z2w

p and indepen-
dent of the corresponding plaintexts.

Suppose q̄ = mSkNN.EncryptQuery(q) for an arbitrary query vector q. Let
ρ = (ρ0,ρ1, . . . ,ρw−1) be the vector, whose elements are random values sampled in
Step 2 of Algorithm 8. Then, Eq.(5.2) can be re-arranged into the form

q̄[i] =
η/2−1∑
j=0

M [i mod η][2j+ 1]q[bi/ηcη/2 + j]

+
η/2−1∑
j=0

ρ[bi/ηcη/2 + j](M [i mod η][2j]−M [i mod η][2j+ 1])

for k = 0, . . . ,2w− 1. Since each element of ρ is uniformly randomly distributed in
Zp, the equation becomes

q̄[i] = ρ′+
η/2−1∑
j=0

M [k][2j+ 1]q[bi/ηcη/2 + j],

where ρ′ is also uniformly randomly distributed in Zp as kZp ' Zp for any k ∈ Zp,
where p is prime. Moreover, a variable u ∈ Zp is uniform in Zp if u = ρ+ θ for an
arbitrary θ ∈ Zp and uniformly random ρ ∈ Zp. In conclusion, q̄[i] in Eq.(5.2) is
uniformly randomly distributed in Zp and therefore independent from the plaintext
query q. �

Note that the proof of Theorem 7 does not hold if we work with real numbers in
Algorithms 7 and 8 as they cannot always be sampled uniformly randomly in R.
Therefore, the function H : Rw→ Zwp in those algorithms plays an essential role in
our proofs.
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