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Abstract

In this thesis, we present two approaches in order to study the expected num-

ber of real zeros of random univariate polynomials. Namely, the Kac-Rice

method and Edelman-Kostlan’s geometric approach. We derive a remarkable

result called the Kac-Rice formula concerning the expected number of real

zeros and apply this result to certain random polynomial ensembles. We also

report some basic facts from potential theory in the complex plane and its

connection to complex random polynomials. In addition, we consider cer-

tain random orthogonal polynomials associated to suitable weight functions

supported in the complex plane, and we present some known results in this

direction.



Rassal Polinomların Reel Köklerinin Istatistikleri

Afrim Bojnik
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Tez Danışmanı: Dr. Öğr. Üyesi. Turgay Bayraktar

Anahtar Kelimeler: Rassal polinomlar, Kac-Rice formülü, Potansiyel Teori,

Bergman çekirdek asimptotikleri .

Özet

Bu tez çalışmasında, rassal polinomların reel köklerinin beklenen sayısını

hesaplamak için biri Kac-Rice metodu ve diğeri Edelman-Kostlan’ın geometrik

yaklaşımı olmak üzere iki bakış açısı sunulmuştur. Reel köklerin beklenen

sayısı için Kac-Rice formülü olarak bilinen önemli bir sonuç incelenmiştir.

Bu sonuç literatürde tanınan bazı rassal polinomlar ailelerine uygulanmıştır.

Ayrıca, karmaşık düzlem üzerinde potansiyel teorisinden bazı sonuçlar ver-

ilip, bu sonuçların karmaşık rassal polinomlar ile olan ilişkisi gösterilmiştir.

Son olarak karmaşık düzlem uzerinde yaşayan, bazı belirli özelliklere sahip

olan ölçülere denk gelen rassal ortogonal polinomlar incelenmiştir ve bu

doğrultuda bilinen sonuçlar ifade edilmiştir.



ACKNOWLEDGEMENTS

Foremost, I would like to express my deepest gratitude to my thesis advisor

Prof. Turgay Bayraktar for his endless patience and support. This study

would not have been possible without his encouragement, motivation and

immense knowledge. I could not have imagined a better advisor and mentor

for my masters study.

Besides my advisor, I would like to thank my thesis committee: Prof. Sibel
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Introduction

Let Pn be the space of holomorphic polynomials with real coefficients of

degree at most n. Then, any inner product on Pn

< Pn, Qn >µ=

∫
C
Pn(z)Qn(z)dµ

associated with suitable measures supported in C induces a Gaussian proba-

bility measure dProbµn on Pn as follows: Fix an orthonormal basis pnj for Pn
with respect to <,>µ, then for any polynomial Pn ∈ Pn

Pn(z) =
n∑
j=0

ajp
n
j (z). (0.0.1)

Now assuming the coefficients of this polynomial are chosen randomly with

respect to non-degenerate centred Gaussian distribution with covariance ma-

trix Σ. Then identifying Pn by its coefficients, we obtain

dProbµn =
1√

det(2πΣ)
e−

1
2
<Σ−1a,a>da

where a = (a0, ..., an) ∈ Rn+1 and da is Lebesgue measure on Rn+1. There-

fore, the ensemble (Pn, dProbµn) consists of random polynomials of the form

(0.0.1) with the Gaussian probability measure dProbµn
1. Most of the time

1Observe that by the unitary invariance of Gaussian Distribution, dProbµn is indepen-
dent of the choice of orthonormal basis
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we will assume that aj’s are independent Gaussian random variables of mean

zero and variance one . In this case ,

dProbµn =
1

(2π)
n+1

2

e−
‖a‖2

2 da.

where ||.||µ is the norm induced by <,>µ. Some of the models that are

frequently studied in the literature are the following:

� Kac Polynomials: This model consists of the ensemble where the Gaus-

sian measure is induced by the following inner product

< Pn, Qn >=
1

2π

∫ 2π

0

Pn(eiθ)Qn(eiθ)dθ (0.0.2)

A typicall random polynomial in this ensemble is of the form 0.0.1

where pj(z) = zj and aj ∼ N (0, 1).

� Elliptic Polynomials: In this model the Gaussian measure is induced

by

< Pn, Qn >=

∫
C
PnQn

dz

(1 + |z|2)n+2

and random polynomials are of the form 0.0.1 with pj(z) =
√(

n
j

)
zj

and aj ∼ N (0, 1). Equaivalently, they are of the form 0.0.1 where

pnj (z) = zj and aj ∼ N (0,
(
n
j

)
).

� Legendre Polynomials: Here the Gaussian measure is induced by

< Pn, Qn >=
1

2

∫ 1

−1

Pn(x)Qn(x)dx

and random polynomials consists of linear combinations of

pj(x) = (j + 1
2
)1/2Lj(x) where Lj(x) = 1

2jj!
dj

dtj
(x2 − 1)j and the co-

efficients aj ∼ N (0, 1).
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We denote by Nn(R) the number of real zeros of polynomials in Pn. Therefore

Nn(R) : (Pn, dProbµn)→ {0, 1, ..., n} defines a random variable. In this thesis

we will be interested in the statistics of Nn(R). Over the years, many scien-

tists have been interested in this problem. The earliest works on this subject

dates back to 1930’s and it is focused on the Kac Polynomials. One of the

first results on this context was provided by Bloch and Polya [1], they showed

that E[Nn(R)] = O(
√
n) when aj’s uniformly distributed in {−1, 0, 1}. This

problem was also studied by Littlewood and Offord in the serries of papers

[2]-[3] for real Gaussians, Bernoulli and Uniform distributions. According to

their results E[Nn(R)] ∼ log n as n → ∞. Subsequently, in [4, 5] Mark Kac

established the following explicit formula for E[Nn(R)], when the coefficients

are standart real Gaussians

ENn(R) =
4

π

∫ 1

0

√
A(x)C(x)−B2(x)

A(x)
dx (0.0.3)

where

A(x) =
n∑
j=0

x2j, B(x) =
n∑
j=0

jx2j−1, C(x) =
n∑
j=0

j2x2j.

In addition, in [6] he also proved the following important asymptotics ,

ENn(R) = (
2

π
+ o(1)) log n.

More refined versions of this asymptotics were developed by many authors.

However, the sharpest known result is given by Wilkins [7], he established

an asymptotic series expansion for E[Nn(R)]. On the other hand, Erdos

and Offord [8] generalized the asymptotic result to many other distributions.

Finally, Ibragimov and Maslova [9, 10] extended the result to all mean-zero

distributions in the domain of attraction of the normal law. In contrast,
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Edelman&Kostlan [11] considered random functions of the form

Pn(z) =
n∑
j=0

ajfj(z)

where fj’s are suitable entire functions that take real values on the real line.

Using a nice geometric approach they have shown that if a = (a0, ..., an) ∼
N (0,Σ) and m(t) = (f0(t), ..., fn(t)) is any collection of differentiable func-

tions on R. Then the expected number of real zeros of Pn

E[Nn(R)] =
1

π

∫
R

(
∂2

∂x∂y
(logm(x)TΣm(y))

∣∣∣∣
x=y=t

)1/2

dt

In particular, if the coefficients are independent identically distriubuted (i.i.d)

Standart Gaussians and fj = tj, this specializes to 0.0.3. As an immediate

corrollary of this argument they also proved that E[Nn(R)] =
√
n for Kostlan

polynomials. The asymptotic results of Kac Polynomials are also generalized

in many other directions. For example Das in [12] proved that

E[Nn(R)] =
n√
3

+ o(n) (0.0.4)

for random linear combinations Legendre polynomials. Later, Lubinsky

Pritsker and Xie [13, 14, 15] generalized this result to random orthogonal

polynomials induced by measures with compactly suported weights on the

real line. On the otherhand, Bayraktar [16] studied random polynomials

where the probability measure on the space Pn is induced by the following

inner product

< Pn, Qn >=

∫
C
Pn(z)Qn(z)e−2nϕ(z)dz (0.0.5)
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where ϕ : C → R is a non-negative smooth circulary-symmetric weight

function which satisfies the following growth condition i.e.

ϕ(z) ≥ (1 + ε) log |z| for some ε > 0.

Assuming that the coefficients are independent copies of a random variable

satisfying certain moment condition. He showed that

lim
n→∞

1√
n
E[Nn(R)] =

1

π

∫
Bϕ∩R

√
1

2
∆ϕ(x)dx (0.0.6)

where Bϕ = {z ∈ supp(µC,ϕ) : ∆ϕ > 0} and µC,ϕ is the weighted equilibrium

measure associated to ϕ . This result is general in the sense that, if ϕ(z) = |z|2
2

we obtain the so-called Weyl polynomials. Hence it covers the results of [17]

for Weyl polynomials. As a result, one should observe that in all the models

above changing the inner product in Pn affects drastically the assymptotics

of E[Nn(R)]. In a nutshell, in this draft we will report in details the results

of Kac. Namely we derive the Kac-Rice formula in two different ways and

apply it to certain random polynomials. We also present some facts from

potential theory and the distribution of complex zeros. Finally, we report

the results of [16] and provide a conjecture in this direction for the variance

of the real roots , which is still an ongoing project.
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Chapter 1

Expected distribution of real

zeros

In this chapter we present two different approaches in order to study the

expected number of real zeros of random univariate polynomials with inde-

pendent identically distributed (i.i.d) real Gaussian coefficients. In the first

approach, we will consider certain random functions1 as the path of a real-

valued smooth stochastic process defined over some time interval I. Then,

we will investigate the number of level crossings of this stochastic process. In

particular, random polynomials arise as a special case of random functions,

and studying its real roots is equivalent to study the 0-crossings of such ran-

dom functions. In addition, we will present a remarkable result due to Kac

[4] called the Kac-Rice formula for the expected number of u-crossings of

this stochastic process. On the otherhand, in the second approach we will

obtain the same results by following a nice geometric argument provided by

Edelman and Kostlan [11]. This approach will be more elegant and compre-

hensive.

1A function of the form Fn(t) = F (t) :=
∑n
k=0 akfk(t) where the coefficients are

random variables defined over the same probability space and fk’s are real valued smooth
functions defined over some intervals in R.
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1.1 Kac-Rice

1.1.1 Basic ideas and definitions

In this section we will present some definitions and develop some notations

that we will use throughout this note.

Definition 1. Let I ⊂ R be an interval and f0, ..., fn : I → R some functions.

Then a random function F : I → R is the finite sum

F (t) := Fn(t, ω) :=
n∑
k=0

ak(ω)fk(t) (1.1.1)

where the coefficients ak = ak(ω) are random variables defined over the same

probability space (Ω,Σ,P). In particular, if fk = tk for k = 0, 1, ..., n then

Fn is called a random polynomial.

Remark 1. For the sake of simplicity, we will assume the coefficients are

Gaussian random variables. In this case (1.1.1) is called a Gaussian random

function.

Since during this section we will consider a random function as the path

of a certain stochastic process F which is defined over some time interval I,

i.e. F = {F (t) : t ∈ I}. We need the following definitons and notations.

Definition 2. The covariance kernel (function) of a stochastic process

X = {X(t) : t ∈ I} is the function K : I × I → R defined as

K(t, s) := Cov(X(t), X(s)) = E[(X(t)− E[X(t)])(X(s)− E[X(s)])]

If X = F then we denote the covariance kernel by Kn(s, t).

Note that if X is a centered stochastic process (i.e. E[X(t)] = 0 for all

t ∈ I). Then,

K(t, s) = E[X(t)X(s)]

7



For the centred stochastic process F , the linearity of expectation implies that

Kn(x, y) = E[
n∑
i=0

aifi(x)
n∑
j=0

ajfj(y)] =
n∑
i=0

n∑
j=0

fi(x)fj(y)E[aiaj]

Moreover, if the coefficients ak are independent Gaussian random variables

of mean zero and variance σ2
k, i.e. ak ∼ N (0, σk), k = 1, 2, .... We have

Kn(x, y) =
n∑
j=0

fj(x)fj(y)σ2
j

Notations: Let f : I → R be a differentiable function and u ∈ f(I), then

we denote by

� Uu(f, I) := {t ∈ I : f(t) = u, f ′(t) > 0} the set of up-crossings of f.

� Du(f, I) := {t ∈ I : f(t) = u, f ′(t) < 0} the set of down-crossings of f.

� Cu(f, I) := {t ∈ I : f(t) = u} the set of crossings of f.

� Nu(f, I) = |Cu(f, I)|, if u = 0 we denote by N(f, I).

Remark 2. In particular if Pn is a random polynomial of degree n, its number

of real zeros on an interval I will be denoted by Nn(I).

1.1.2 Kac Rice Formulas

In this subsection we present the Kac-Rice formula for the u-crossings of the

random function F . Then as a corrollary we state the Kac-Rice formula for

the number of real zeros of F . In order to derive this formula we will first

prove some lemmas like the Kac’s counting formula. During this section we

will mainly follow ([18],[19]).

Definition 3. A C1- function f : [a, b] → R is said to be convenient if the

following conditions are satisfied:

8



� f(a) 6= u and f(b) 6= u.

� {t ∈ [a, b] : f(t) = u, f ′(t) = 0} = ∅, i.e. if f(t) = u then f ′(t) 6= 0.

Lemma 1.1.1. (Kac’s counting formula) Let f : [a, b]→ R be a convenient

function, then the number of u-crossings of f in [a, b] is

Nu(f, [a, b]) = lim
ε→0

N ε
u(f, [a, b]) (1.1.2)

where N ε
u(f, [a, b]) = 1

2ε

∫
[a,b]

1{|f(t)−u|<ε}|f ′(t)|dt.

Proof. Observe that the assumption on f being convenient function, implies

that f has finite number of u-crossings i.e. Nu(f, I) = n. If n = 0, then choos-

ing ε sufficiently small we get the result. If n ≥ 1, let Cu(f, I) = {c1, ..., cn}
then since f is convenient f ′(ck) 6= 0 for all k ∈ {1, ..., k}. Choosing ε > 0

sufficiently small, f−1(u−ε, u+ε) is disjoint union of n intervals Ik = (ak, bk)

such that ck ∈ (ak, bk) for all k. Now since ak and bk are the local extremal

points of the intervals Ik, we have f(ak) = u ± ε and f(bk) = bk ∓ ε for

all k = 1, 2, ..., n. Since ε > 0 is sufficiently small Ik doesn’t contain ex-

treme points of f, hence f ′ does not change sign on each Ik. Then by using

fundamental theorem of calculus

1

2ε

∫ b

a

1{|f(t)−u|<ε} |f ′(t)|dt =
1

2ε

n∑
k=1

∫ bk

ak

|f ′(t)|dt

=
1

2ε

n∑
k=1

|f(ak)− f(bk)| =
1

2ε

n∑
k=1

2ε = n.

Remark 3. Lemma holds true also for f polygonal, even though these are

not C1- functions.

One could derive the Kac’s counting formula also in a different way by

approximating the Dirac function δ. For the detailed explanation one may

check ([19], §2).

9



Lemma 1.1.2. Let f : I → R be a convenient function such that f(t) has r,

u-crossing and s critical points. Then for ε > 0 we have

N ε
u(f, I) ≤ r + 2s (1.1.3)

Proof. Without lost of generality assume that f has r−zeros and s−critical

points and prove N ε
0(f, I) ≤ r + 2s . Observe that since f has finitely many

critical points i.e. f ′(t) = 0 for finitely many t ∈ R. Then Rolle’s theorem

implies that f(t) = c has finitely many solutions for any c ∈ R. Fix ε > 0,

then since |f(t)| = ε has finitely many solutions, the set {|f | < ε} has finitely

many connected components of the form Ij = (aj, bj), j = 1, 2, ..., n such that

|f(aj)| = |f(bj)| = ε. Now let kj be the number of the turning points of f

in the interval Ij (i.e. the points where f ′ changes sign in Ij). Then if

Ij containts no turning points, f is either increasing or decreasing on this

interval Ij, that is f(aj)f(bj) < 0 and thus Ij contains a unique zero of f . In

particular if Ij contains no turning points, then

∫
Ij

|f ′(t)|dt = |f(t)|

∣∣∣∣∣
bj

aj

= 2ε

Now let us define the following sets

S0 = {j ∈ {1, 2, ..., n} : Ij contains no turning points}

S1 = {j ∈ {1, 2, ..., n} : Ij contains turning points}

Then clearly |S0| = r, |S1| ≤ s and we have

N ε
0(f, I) =

1

2ε

∫
I

1{|f(t)|≤ε}|f ′(t)|dt =
1

2ε

n∑
j=1

∫ bj

aj

|f ′(t)|dt

10



=
1

2ε

∑
j∈S0

∫ bj

aj

|f ′(t)|dt+
1

2ε

∑
j∈S1

∫ bj

aj

|f ′(t)|dt = r +
1

2ε

∑
j∈S1

∫ bj

aj

|f ′(t)|dt

Now let j ∈ S1 and assume that t1 < ... < tkj are the turning points of f in

Ij. Then∫ bj

aj

|f ′(t)|dt = |f(aj)− f(a1)|+ |f(a1)− f(a2)|+ ...+ |f(akj)− f(bj)|

≤ 2ε(kj + 1)

Thus

N ε
0(f, I) ≤ r +

∑
j∈S1

2ε(kj + 1) =
∑
j∈S1

kj + |S1| ≤ r + 2s

where the last inequality follows from the fact that the sum of the number

of turning points is equal to s.

In the following part we will establish the Kac-Rice formula, that is the

formula for the expected number of the u-crossings of a random function F .

The rough idea will be to start from the Kac’s counting formula and take

expectation on both sides.

Let F : I → R be the random function as defined in 1.1.1 with the coeffi-

cients ak independent Gaussian random variables of mean zero and variance

σ2
k. Then let us start by assuming that F satisfies the following assumptions

(A1) F is almost surely convenient.

(A2) There exists a constant M > 0 such that Nu(F, I) + Nu(F
′, I) < M

almost surely.

By using (A2), Lemma 1.1.2 and Lebesgue’s dominated convergence theorem.

We have

E[Nu(F, I)] =

∫
Ω

Nu(F, I)dP =

∫
Ω

lim
ε→0

N ε
u(F, I)dP

11



= lim
ε→0

E[N ε
u(F, I)] = lim

ε→0
E[

1

2ε

∫
I

1{|F (t)−u|<ε}|F ′(t)|dt]

= lim
ε→0

1

2ε

∫
I

E[1{|F (t)−u|<ε}|F ′(t)|]dt

Note that in the last equality we have interchanged the expectation and the

integral. Hence we obtain

E[Nu(F, I)] = lim
ε→0

1

2ε

∫
I

E[1{|F (t)−u|<ε}|F ′(t)|]dt. (1.1.4)

So in order to calculate the expectation we first have to compute the inte-

grand E[1{|F (t)−u|<ε}|F ′(t)|]. To do this, first observe that (F (t), F ′(t)) is a

Gaussian2 random vector with mean µ = (E[F (t)],E[F ′(t)]) = (0, 0) and the

covariance matrix3 Σ, which is given by the following symmetric matrix

Σ = Σ(t) :=

(
Σ11(t) Σ12(t)

Σ12(t) Σ22(t)

)

where

Σ11(t) = Cov(F, F ) = E[F 2]− E[F ]2 = E[F 2] = Kn(t, t).

Σ12(t) = Cov(F, F ′) = E[FF ′]− E[F ]E[F ′] = E[FF ′] = K
(1,0)
n (x, y)

∣∣∣
x=y=t

Σ22(t) = Cov(F ′, F ′) = E[(F ′)2]− E[F ′]2 = E[(F ′)2] = K
(1,1)
n (x, y)

∣∣∣
x=y=t

Here K(x, y) = E[F (x)F (y)] is the covariance kernel of the random function

F , and K
(1,0)
n (x, y) := ∂K(x,y)

∂x
, K

(1,0)
n (x, y) = ∂2K(x,y)

∂x∂y
.

Let us define ∆(t) := det(Σ(t)) and suppose that the following assumption

holds, that is

2A random vector X = (X1, X2, ..., Xn) ∈ Rn is a Gaussian random vector if for all real
numbers a1, ..., an, the random variable a1X1 + ...+ anXn is a Gaussian random variable.

3The covariance matrix of a Gaussian random vector X is given by Σ = (Cov(Xi, Xj))ij
where Cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj ])].

12



(A3) For all t ∈ I, ∆(t) = Σ11(t)Σ22(t)− (Σ12(t))2 > 0.

Now in order to compute E[1{|F (t)−u|<ε}|F ′(t)|], observe that

E[1{|F (t)−u|<ε}|F ′(t)|] = E[G(F (t), F ′(t))], (1.1.5)

where G(x, y) = 1{|x−u|<ε}|y|. Then using the fact that if X and Y are

two random variables and G : R2 → R is a function then E[G(X, Y )] =∫
R

∫
RG(x, y)p(X,Y )(x, y)dxdy, where p(X,Y )(x, y) is the joint density of the

random vector (X, Y ). We have the following

E[1{|F (t)−u|<ε}|F ′(t)|] =

∫
R

∫
R
1{|x−u|<ε}|y|p(F,F ′)(x, y)dxdy

where p(F,F ′)(x, y) is the density4 of the Gaussian random vector (F (t), F ′(t))

of mean µ = (E[F ],E[F ′]) = (0, 0), that is

p(F,F ′)(x) =
1

2π
√

∆(t)
exp(−1

2
xTΣ−1x), x ∈ R2. (1.1.6)

Here xT = (x, y) , x =

(
x

y

)
, in addition since (A3) holds Σ is invertible

with

Σ−1 =
1

∆(t)

(
Σ22(t) −Σ12(t)

−Σ12(t) Σ11(t)

)
Hence the density has the form

p(F,F ′)(x) =
1

2π
√

∆(t)
exp

(
− 1

2∆(t)
Σ22(t)x2 − 2Σ12(t)xy + Σ11(t)y2

)
.

4If X = (X1, ..., Xn) is a Gaussian random vector with mean µ and non-singular covari-
ance matrix Σ then the density of X is pX(x) = 1

(2π)n/2
√

det(Σ)
exp(− 1

2 (x−µ)TΣ−1(x−µ))

13



Now after some simple algebraic manipulations we obtain

−1

2
xTΣ−1x = −Σ11(t)

2∆(t)

(
y − Σ12(t)

Σ11(t)
x

)2

− x2

2Σ11(t)

plugging this in 1.1.6, we obtain the density of (F (t), F ′(t)),

p(F,F ′)(x, y) =
1

2π
√

∆(t)
exp

[
−Σ11(t)

2∆(t)

(
y − Σ12(t)

Σ11(t)
x
)2

− x2

2Σ11(t)

]
. (1.1.7)

Substituing this expression in 1.1.2 we have

E[1{|F (t)−u|<ε}|F ′(t)|] =

∫
R

∫
R
1{|x−u|<ε}|y|p(F,F ′)(x, y)dxdy

=

∫
R

∫
R
1{|x−u|<ε}|y|

1

2π
√

∆(t)
exp

[
−Σ11(t)

2∆(t)

(
y − Σ12(t)

Σ11(t)
x

)2

− x2

2Σ11(t)

]
dydx

=

∫
R

1

2π
√

∆(t)
1{|x−u|<ε}

(∫
R
|y| exp

[
−Σ11(t)

2∆(t)

(
y − Σ12(t)

Σ11(t)
x

)2

− x2

2Σ11(t)

]
dy

)
dx

=

∫ u+ε

u−ε

1

2π
√

∆(t)
exp

[
− x2

2Σ11(t)

](∫
R
|y| exp

[
−Σ11(t)

2∆(t)
(y − Σ12(t)

Σ11(t)
x)2

]
dy

)
dx

Now setting Ω(t)= ∆(t)
Σ11(t)

and using the fact that

1

2π
√

∆(t)
=

1√
2πΣ11(t)

1√
2π∆(t)/Σ11(t)

=
1√

2πΣ11(t)

1√
2πΩ(t)

.

we get

E[1{|F (t)−u|<ε}|F ′(t)|] =

∫ u+ε

u−ε
Φt(x)dx (1.1.8)

where Φt(x) := 1√
2πΣ11

exp
[
− x2

2Σ11

](∫
R

1√
2πΩ
|y| exp

[
− 1

2Ω

(
y − Σ12

Σ11
x
)2
]
dy

)
.

One can easily observe that the integrand with respect to y in the expression

of Φt can be written in a similar form as the density of a Gaussian random

14



variable say Y of mean E[Y ] = Σ12(t)x
Σ11(t)

and variance Ω(t), namely

1√
2πΩ
|y| exp

[
− 1

2Ω

(
y − Σ12

Σ11

x

)2
]

= |y| 1√
2π
√

Ω
exp

−1

2

(
y − Σ12

Σ11
x

√
Ω

)2


= |y|ΓΣ12(t)
Σ11(t)

x,Ω(t)
(y)

where

ΓΣ12(t)
Σ11(t)

x,Ω(t)
(y) =

1√
2π
√

Ω(t)
exp

−1

2

(
y − Σ12(t)

Σ11(t)
x√

Ω(t)

)2


Now using this density, Φt can be written as

Φt(x) =
1√

2πΩ(t)
exp

[
− x2

2Σ11(t)

](∫
R
|y|ΓΣ12

Σ11
x,Ω

(y)dy

)
(1.1.9)

=
1√

2πΩ(t)
exp

[
− x2

2Σ11(t)

]
E[|Y |].

Hence using 1.1.2 and 1.1.8 in 1.1.4, the expectation E[Nu(F, I)] becomes

E[Nu(F, I)] = lim
ε→0

1

2ε

∫
I

∫ u+ε

u−ε
Φt(x)dxdt. (1.1.10)

Now our goal is to apply the limit on the integral with respect to x, that is

we will have to interchange the limit with the integral with respect to t. For

this reason we need to use the Lebesgue’s dominated convergence theorem.

Thus we need to find an integrable function θ(t) such that |Φt(x)| ≤ θ(t) on

I. In order to do this, note that |Y | ≥ 0 implies E[|Y |] ≥ 0 and by 1.1.2

we obtain that Φt is a positive function that is |Φt(x)| = Φt(x). Then by

Cauchy-Schwartz inequality

E[|Y |] = E[1 · |Y |] ≤
√
E[Y 2] =

√
V ar(Y ) + E[Y ]2

15



=

√
Ω(t) +

(
Σ12(t)

Σ11(t)
x

)2

≤
√

Ω(t) +
Σ12(t)x

Σ11(t)
(1.1.11)

where the last inequlity follows from the fact that if a, b ≥ 0 then
√
a+ b ≤

√
a+
√
b. Hence by using 1.1.11 in the expression of Φt , we have

Φt(x) =
1√

2πΩ(t)
exp

[
− x2

2Σ11(t)

](√
Ω(t) +

Σ12(t)x

Σ11(t)

)

On the other hand since e−x
2 ≤ 1 for all x ∈ R, in particullar for |x| ≤ 1, we

get

Φt(x) ≤ 1√
2πΩ(t)

(√
Ω(t) +

Σ12(t)x

Σ11(t)

)
=

1

2π

(√
∆(t)

Σ11(t)
+
|Σ12(t)|

Σ11(t)3/2

)
:= θ(t)

Thus in order to use Lebesgue dominated convergence theorem we need the

integrability of θ(t), that is

(A4). The function θ(t) = 1
2π

(√
∆(t)

Σ11(t)
+ |Σ12(t)|

Σ11(t)3/2

)
is integrable on I,

i.e.
∫
I
θ(t)dt <∞.

Hence using (A4) and Lebesgue dominated convergence theorem on 1.1.4 we

have

E[Nu(F, I)] =

∫
I

lim
ε→0

1

2ε

∫ u+ε

u−ε
φt(x)dxdt =

∫
I

Φt(u)dt (1.1.12)

where

Φt(u) =
1√

2πΩ(t)
exp

[
− u2

2Σ11(t)

](∫
R
|y|ΓΣ12(t)

Σ11(t)
u,Ω(t)

(y)dy

)
.

We have just proved the following theorem.
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Theorem 1.1.1. ( Kac-Rice formula for u-crossings) Let fj : I → R, j =

0, 1, 2, .., n be smooth functions and aj’s independent Gaussian random vari-

ables defined over the same probability space (Ω,Σ,P), with mean zero and

variance σ2
j . If the random function

F (t) =
n∑
j=0

ajfj(t)

satisfies the assumptions (A1) - (A4), then

E[Nu(F, I)] =

∫
I

1√
2πΩ(t)

exp

[
− u2

2Σ11(t)

](∫
R
|y|ΓΣ12

Σ11
u,Ω(t)

(u)dy

)
dt,

where

ΓΣ12(t)
Σ11(t)

x,Ω(t)
(y) =

1√
2πΩ(t)

exp

−1

2

(
y − Σ12(t)

Σ11(t)
x√

Ω(t)

)2


Σ11(t) = Kn(t, t), Σ12(t) = K
(1,0)
n (x, y)

∣∣∣
x=y=t

, Σ22(t) = K
(1,1)
n (x, y)

∣∣∣
x=y=t

Ω(t) =
∆(t)

Σ11(t)
=

Σ11(t)Σ22(t)− Σ12(t)2

Σ11(t)
.

Remark 4. Observe that

E[1{|F (t)−u|<ε}|F ′(t)|] =

∫ u+ε

u−ε
E[F ′(t)|F (t) = x] · pF (t)(x)dx

then under certain assumptions on F and using convergence theorems one

can show that

E[Nu(F, I)] = lim
ε→0

∫
I

1

2ε

∫ u+ε

u−ε
E[F ′(t)|F (t) = x]pF (t)(x)dxdt

=

∫
I

E[F ′(t)|F (t) = u]pF (t)(u)dt (1.1.13)
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which gives rise to an equivalent form of the Kac-Rice formula. For the

details and Kac-Rice formulas in a more general setting see ([18], Chapter

2).

Since in this note we deal with the real roots of random polynomials,

henceforth we will restrict ourselves to the zero crossings. Thus, let u = 0

then we have

Φt(0) =
1√

2πΣ11(t)

(∫
R
|y|Γ0,Ω(t)(y)dy

)
(1.1.14)

where

Γ0,Ω(y) =
1√

2π
√

Ω(t)
exp

−1

2

(
y√
Ω(t)

)2
 .

By computing the integral in 1.1.14, we get∫
R
|y|Γ0,Ω(y)dy =

∫ +∞

0

y exp

−1

2

(
y√
Ω(t)

)2
 dy

=
2Ω(t)√

2π
√

Ω(t)
= 2

√
Ω(t)

2π
,

Now since Ω(t) = ∆(t)/Σ11(t), it follows that

Φt(0) =
1√

2πΣ11(t)

2
√

Ω(t)√
2π

=

√
∆(t)

πΣ11(t)
:=

1

π
ρn(t)

Here,

ρn(t) =

(
Σ11(t)Σ22(t)− Σ12(t)2

Σ11(t)2

)1/2

=

(
Kn(t, t)K

(1,1)
n (t, t)− (K

(1,0)
n (t, t))2

(Kn(t, t))2

)1/2

=

(
∂2

∂x∂y
logKn(x, y)

∣∣∣∣
x=y=t

)1/2

.

Therefore we have established the Kac-Rice theorem for 0-crossings, that is
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Theorem 1.1.2. ( Kac-Rice formula for 0-crossings) Let fj : I → R, j =

0, 1, 2, .., n be smooth functions and aj’s independent Gaussian random vari-

ables defined over the same probability space (Ω,Σ,P), with mean zero and

variance σ2
j . Then, if the random function

F (t) =
n∑
j=0

ajfj(t)

satisfies (A1) - (A4), with u=0, then the expected number of real zeros of F

in the interval I is given by

E[N(F, I)] =
1

π

∫
I

ρn(t)dt,

where

ρn(t) =

(
Kn(t, t)K

(1,1)
n (t, t)− (K

(1,0)
n (t, t))2

(Kn(t, t))2

)1/2

or equivalently in logarithmic derivative form

ρn(t) =

(
∂2

∂x∂y
logKn(x, y)

∣∣∣∣
x=y=t

)1/2

.

Remark 5. The term 1
π
ρn(t) in the expression above represents the expected

density of real zeros of F at the point t ∈ R.

A note on the factorial moments : In general it’s a demanding problem to es-

timate the higher moments of crossings of a random process, then sometimes

we prefer to investigate it’s factorial moments. Having this motivation in

mind, we state an analogue result of Rice formula for the factorial moments

of the crossings of the random process F . For the details and more general

treatments of Rice formulas see ([18], Chapter.2).

Theorem 1.1.3. (Gaussian Rice formula). Let I ⊂ R be an interval and

F = {F (t) : t ∈ I} a Gaussian stochastic process which has C1-paths. Let
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k ≥ 1 be an integer. Assume that for pairwise distinct points t1, ..., tk in I,

the random variables F (t1), ..., F (tk) have non-degenerate joint distribution.

Then

E[N [k]
u (F, I)] =

∫
Ik
E[|F ′(t1)...F ′(tk)|F (t1) = ... = F (tk) = u]

·p(F (t1),...,F (tk))(u, ..., u)dt1...dtk

where p(F (t1),...,F (tk)) is the joint density of the random vector (F (t1), ..., F (tk))

and N
[k]
u = Nu(Nu − 1)...(Nu − k + 1).

Remark 6. Under the assumptions above one can write the Rice formula for

k-factorial moment of level crossings also in the following form

E[N [k]
u ] =

∫
Ik

∫
Rk

|x1 · · · xk| · p(F (t1),...,F (tk),F ′(t1),...,F ′(tk))(u, ..., u, x1, ..., xk)

·dx1...dxkdt1...dtk.

1.2 Edelman-Kostlan

In this section we will follow a different path in order to obtain the Kac-Rice

formula for the 0-crossings of a random function F . In this approach we use

an elegant geometric argument which is provided by Edelman and Kostlan

in [11].

1.2.1 Basic Geometric Arguments and

Its relation to zeros of certain functions

Here we present some basic geometric arguments and show their relation

with real roots of certain deterministic smooth functions. Throughout the

section we will denote by Sn the surface of the unit sphere centered at the

origin in Rn+1 .
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Definition 4. Let P be a point on the sphere Sn, the corresponding equator

P⊥ is the set of points of Sn which lie on the plane through origin that is

perpendicular to the line passing through the origin and the point P .

Remark 7. This definiton is the generalization of the usual earth’s equator

which is equal to (north pole)⊥, equivalently (south pole)⊥

Definition 5. Let γ(t) be a rectifiable curve on the sphere Sn parametrized

by t ∈ R, then γ⊥ := {P⊥|P ∈ γ} is the set of equators of the curve γ.

Remark 8. (i) If the curve γ is a small part of a great circle, then the region

formed by γ⊥ is a ”lune” denoted by ∪γ⊥, and the following proportion is

true
area(∪γ⊥)

area of Sn
=
|γ|
π

(1.2.1)

(ii) If γ is not a part of a great circle, the same argument is still applicable

since we may approximate γ by small great circular arcs.

(iii) If γ is more than just half of a great circle or spirals many times around

a point then the lunes will overlap.

These observations require the following definitions.

Definition 6. The multiplicity of a point Q ∈ ∪γ⊥ is the number of equators

in γ⊥ containing Q, i.e.

mult∪γ⊥(Q) := #{t ∈ R|Q ∈ γ(t)⊥} (1.2.2)

Definition 7. We define |γ⊥| to be the area of the ”lune” (that is the area

swept out by γ(t)⊥) counting multiplicities i.e.

|γ⊥| :=
∫
∪γ⊥

mult∪γ⊥(Q)dσ(Q) (1.2.3)
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where dσ is the surface area measure on the sphere.

Hence, Remark 7. and Definition 4. implies the following lemma.

Lemma 1.2.1. If γ is a rectifiable curve then

|γ⊥|
area of Sn

=
|γ|
π

After providing these interesting geometric arguments, in the subsequent

we show the connection of these results with the real roots of a deterministic

smooth function.

Let

f(x) = a0f0(x) + a1f1(x) + ...+ anfn(x) (1.2.4)

be a non-zero deterministic function where fk : R → R, k = 0, 1, 2, ..., n are

smooth functions such that fk ≡ c 6= 0 for some k, and ak ∈ R. Then we de-

fine its moment curve to be the curve m(t) = (f0(t), f1(t), f2(t), ..., fn(t)) in

Rn+1 where t runs over the real numbers. Now for the function f(x) fix t ∈ R
and define the vectors a = (a0, a1, ..., an), m(t) = (f0(t), f1(t), f2(t), ..., fn(t)) ∈
Rn+1 and a = a

‖a‖ , γ(t) = m(t)
‖m(t)‖ . Then the condition that x = t is a zero

of the function f(x) is precisely the condition that a is perpendicular to

m(t). Equivalently, a ⊥ γ(t) or a ∈ γ(t)⊥ for fixed t ∈ R. Therefore, γ(t)⊥

corresponds to all functions of the form 1.2.4 which have t as a root. More-

over, the multiplicity of a in γ⊥ is exactly the number of real zeros of the

corresponding function f(x).

1.2.2 The expected number of real zeros of a random

function.

So far we have not discussed any randomness. Here we will use the previous

geometric arguments to find an explicit formula for the expected number of

22



real roots of certain random functions. Concerning this, we need the following

lemma from the probability theory that is

Lemma 1.2.2. Let X = (X1, X2, ..., Xn) be a random vector in Rn such that

each Xi is a Standart Gaussian random variable. Then the random vector

X = X
‖X‖ , where ‖X‖ =

√
X2

1 + ...+X2
n is unifromly distributed on Sn.

Proof. Let A be any open set in Sn−1, and Â =
⋃
r>0 rA. Then,

P(X ∈ A) = P(X ∈ Â) =

∫
Â

1

(2π)
n
2

exp−
‖x‖2

2 dx

By the polar change of coordinates,

P(X ∈ A) =
1

(2π)
n
2

∫
A

∫ ∞
0

e−
r2

2 rn−1drdσ =
1

(2π)
n
2

2
n
2 Γ(n

2
+ 1)

n
σ(A)

=
Γ(n

2
+ 1)

nπ
n
2

σ(A) =
σ(A)

σ(Sn−1)

This lemma shows that if the ai, i = 0, 1, 2, ..., n are independent standart

normal random variables, then the vector a = a
‖a‖ is uniformly distributed

on the unit sphere Sn.

Now letting ak ∼ N (0, 1) in 1.2.4, we consider the random function

F (x) = Fω(x) = a0f0(x) + a1f1(x) + ...+ anfn(x). (1.2.5)

Identifying this Random Function with the random vector a (the vector gen-

erated by its coefficients). We establish that F (x) corresponds to a uniformly

distributed random point on the unit sphere Sn. By the previous section we

know that N(F,R) = multγ⊥(a). Using this fact, the expected number of

real zeros of F is

E[N(F,R)] =

∫
Sn

mult∪γ⊥(a)
dσ(a)

area ofSn
=
|γ|
π
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where dσ is the surface area measure and |γ| is the arc-length of the curve

γ(t) (recall: γ(t) is the projection of the moment curve on the unit sphere

Sn). Therefore, in order to calculate the expectation one has to compute the

length of the curve γ. To do this, firstly observe that 5

m(x)·m(y) = Kn(x, y), m′(x)·m(y) = K(1,0)
n (x, y), m′(x)·m′(y) = K(1,1)

n (x, y)

where m(t) = (f0(t), f1(t), ..., fn(t)) and Kn(x, y) is the covariance kernel of

the random function F . By the standart arclength formula we know that

|γ| =
∫ +∞

−∞
‖γ′(t)‖ dt

Now in order to calculate the norm we may proceed in two different ways.

(I) Using some basic calculus, it is not hard to show that

γ′(t) =

(
m(t)√

m(t) ·m(t)

)′
=

[m(t) ·m(t)]m′(t)− [m′(t) ·m′(t)]m(t)

[m(t) ·m(t)]3/2
,

hence

‖γ′(t)‖2
=

[m(t) ·m(t)][m′(t) ·m′(t)]− [m(t) ·m′(t)]2

[m(t) ·m(t)]2

=
Kn(t, t)K

(1,1)
n (t, t)− (K

(1,0)
n (t, t))2

(Kn(t, t))2
.

Hence, we obtain the analogue result of Kac-Rice formula

ENn(R) = E[N(F,R)] =
1

π

∫
R
ρn(t)dt (1.2.6)

where

ρn(t) =

(
Kn(t, t)K

(1,1)
n (t, t)− (K

(1,0)
n (t, t))2

(Kn(t, t))2

)1/2

.

5Here · is the usual dot product in Rn+1
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(II) Alternative way to express the expected number of real zeros is given

by introducing a logarithmic derivative. In this case we can avoid the messy

algebra in (I). It is easy to check that

‖γ′(t)‖2
=

∂2

∂x∂y
log [m(x) ·m(y)]

∣∣∣∣
x=y=t

=
∂2

∂x∂y
logKn(x, y)

∣∣∣∣
x=y=t

.

Hence

ENn(R) =
1

π

∫ +∞

−∞

√
∂2

∂x∂y
logKn(x, y)

∣∣∣∣
x=y=t

dt, (1.2.7)

Remark 9. Observe that, one can obtain the same results also when the coeffi-

cients ak are Gaussian random variables of mean zero and variance σ2
k. In this

case we simply define the moment curve asm(t) = (f0(t)σ0, f1(t)σ1, ..., fn(t)σn)

and proceed in the same way.

1.3 Random Algebraic Polynomials

In this section we will apply the previous results (i.e. Kac-Rice formula)

to certain random polynomial ensembles that are frequently studied in the

literature. Recall that, if I ⊂ R is an interval, then a random algebraic

polynomial of degree n, is a function Pn : I → R given by

Pn(t) :=
n∑
k=0

akt
k (1.3.1)

where the coefficients ak are random variables defined on the same probability

space (Ω,Σ,P). In particular if ak ∼ N (0, 1) we call Gaussian polynomial.

Remark 10. The asumptions (A1) - (A4) of the Kac-Rice theorem holds true

automatically for Gaussian random polynomials e.g (A4) is true because in

this case Σ11(t) is a polynomial of degree 2n, Σ12(t) is a polynomial of degree

2n − 1, Σ22(t) is a polynomial of degree 2n − 2 and ∆(t) is a polynomial of
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degree at most 4n− 4. Therefore√
∆(t)

Σ11(t)
+
|Σ12(t)|
Σ11(t)2

= O

(
1

t2

)
as t→∞.

In section 1.1 we derived the Kac-Rice formula for an interval I. Now in

order to extend it to the real line R we need the following lemma.

Lemma 1.3.1. Let Pn : I → R be a Gaussian random polynomial such that

ak ∼ N (0, σk). Then the following results hold

(i) E[N(Pn,R≥0)] = E[N(Pn,R≤0)].

(ii) If the variances satisfy the symmetry condition σ2
k = σ2

n−k for all k. Then

E[N(Pn, (0, 1))] = E[N(Pn, (1,∞))]. Moreover,

E[N(Pn,R)] = 4E[N(Pn, (0, 1))] = 4E[N(Pn, (1,∞))].

Proof. (i) Observe that Pn(−t) =
∑n

k=0(−1)kakt
k. The random variables

(−1)kak are i.i.d Gaussian random variables of mean 0 and variance σ2
k since

E[(−1)kak] = (−1)kE[ak] = 0 and V ar((−1)kak) = V ar(ak) = σ2
k. Hence

Pn(t) and Pn(−t) have the same law, which implies that E[N(Pn,R≤0)] =

E[N0(Pn,R≥0)].

(ii) Let P̃n(t) := tnPn(t−1), then

P̃n(t) = tn
n∑
k=0

akt
−k =

n∑
k=0

akt
n−k =

n∑
k=0

an−kt
k

The random variables an−k have mean zero and variance σ2
k, since E[ak] = 0

and V ar(an−k) = V ar(ak) = σ2
k (by the symetry condition). Hence the

random polynomials P̃n and Pn have the same law, thus E[N(Pn, (0, 1))] =

E[N(Pn, (1,∞))]. Additionally, by (i), we have

E[N(Pn,R)] = E[N(Pn,R≤0)] + E[N(Pn,R≥0)] = 2E[N(Pn,R≥0)]
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Now since R≥0 = [0, 1] ∪ [1,∞] then using (ii) we have

E[N(Pn,R)] = 2E[N(Pn,R≥0)] = 2 (E[N(Pn, (0, 1))] + E[N(Pn, (1,∞))])

= 4E[N(Pn, (0, 1))] = 4E[N(Pn, (1,∞))]

1.3.1 Kac Polynomials

A random algebraic polynomial of the form

Pn(t) :=
n∑
k=0

akt
k

where the coefficients ak are i.i.d. Gaussian random variables of mean zero

and variance one is called a Kac Polynomial.6. The covariance kernel for the

Kac polynomials is given by

Kn(x, y) =
n∑
i=0

xiyi =
1− (xy)n+1

1− xy

In order to calculate EN(Pn,R) we will use the Kac-Rice formula with the

density in the logarithmic derivative form 1.1.2. Then

logKn(x, y) = log(1− (xy)n)− log(1− xy)

∂

∂x
logKn(x, y) =

y

1− xy
− (n+ 1)(xy)ny

1− (xy)n+1
,

∂2

∂x∂y
logKn(x, y) =

1

(1− xy)2
− (n+ 1)2(xy)n

(1− (xy)n+1)2
.

6Note that Kac polynomials satisfy the symmetry condition of lemma 1.3.1(ii)
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Hence

∂2

∂x∂y
logKn(x, y)

∣∣∣∣
x=y=t

=
1

(1− t2)2
− (n+ 1)2t2n

(1− t2n+2)2
:= ρ2

n(t)

Therefore the expected number of real zeros of Pn is given by

ENn(R) =
1

π

∫ +∞

−∞
ρn(t)dt =

4

π

∫ ∞
1

ρn(t)dt (1.3.2)

Thus we have proved the following theorem:

Theorem 1.3.1. (Kac formula) The expected number of real zeros of the

Kac polynomial Pn is

ENn(R) =
1

π

∫ ∞
−∞

√
1

(t2 − 1)2
− (n+ 1)2t2n

(t2n+2 − 1)2
dt (1.3.3)

=
4

π

∫ 1

0

√
1

(1− t2)2
− (n+ 12t2n)

(1− t2n+2)2
dt. (1.3.4)

Remark 11. ρn(t) is the expected density of real zeros of Kac polynomials.

Plotting its graph we see that it has two peaks at t = −1 and t = 1 , which

shows that the real zeros of Kac polynomials tend to concetrate near t = ±1

(see Fig. 1.1).

Note that this result was first obtained by Kac [4]. Kac in [6] also showed

that ENn(R) ∼ 2
π

log n. But several researchers have sharpend the Kac’s

original estimate, one can see [20] for a rigorous treatment of this estimate.

Now we will provide a theorem without proof on the asymptotics of ENn(R),

for the detailed proof of this theorem we refer to ([11],§3.1).

Theorem 1.3.2. Let Pn be the Kac polynomial of degree n. Then as n→∞,

ENn(R) = EN(Pn,R) =
2

π
log n+ C +

2

nπ
+O(

1

n2
),
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Figure 1.1: Density of real zeros for increasing degree n = 10, 20, 30.

where

C = 0.6257358072.....

On the other hand Ibragimov&Maslova[9][10] established the asymptotics

for the variance of real zeros. They showed that

Var(Nn(R)) = Var[N(Pn,R)] ∼ 4

π

(
1− 2

π

)
log n. (1.3.5)

Apart of this, they also established a CLT for the number of real roots of

Kac polynomials.

1.3.2 Kostlan-Shub-Smale Polynomials

A random algebraic polynomial of the form

Pn(t) :=
n∑
k=0

akt
k
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where the coefficients ak are Gaussian random variables of mean zero and

variance σ2
k = V ar(ak) =

(
n
k

)
is called the Kostlan-Shub-Smale polynomial

(KSS).

Remark 12. Also in this ensemble the variances of the coefficients satisfy the

symmetry condition of Lemma 1.3.1 since
(
n
k

)
=
(
n−k
k

)
for all k ∈ {0, 1, ..., n}.

The covariance kernel for the KSS polynomials is given by

Kn(x, y) =
n∑
i=0

(
n

i

)
xiyi = (1 + xy)n

The corresponding derivates are

∂

∂x
logKn(x, y) = n

∂

∂x
log(1 + xy) =

ny

1 + xy

∂2

∂x∂y
logKn(x, y) =

∂

∂y

(
∂

∂x
logKn(x, y)

)
=

n

(1 + xy)2

Then the density of real zeros is

ρn(t) =

√
∂2

∂x∂y
logK(x, y)

∣∣∣∣
x=y=t

=

√
n

(1 + t2)2
=

√
n

1 + t2

Therefore, the Kac-Rice formula implies that expected number of real zeros

of the KSS polynomials of degree n is

E[N(Pn,R)] =
1

π

∫ +∞

−∞

√
n

1 + t2
dt =

√
n. (1.3.6)

Remark 13. One need to observe that the KSS polynomials have on average

more real zeros than the Kac polynomials. In addition, we have an exact

value for the expected number of real zeros.

On the other hand Dalmao in [21] provided an asymptotic estimate for

the variance of real roots of KSS polynomials and developed a CLT. More
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precisely he showed that

Var(Nn(R))√
n

→ C2 (1.3.7)

where C2 = 2
π

∫∞
0

(
B(t)

[√
1− A2(t) + A(t) arctan

(
A(t)√

1−A2(t)

)
− 1

])
dt+1

and A(t) = 1−(1+t2)e−t2

(1−e−t2)3/2 , B(t) = 1−t2−e−t2

1−e−t2−t2e−t2
e−t

2/2.

1.3.3 Weyl Polynomials

A random algebraic polynomial of the form,

Pn(t) :=
n∑
k=0

akt
k

where the coefficients ak are Gaussian random variables of mean zero and

variance σ2
k = 1

k!
is called a Weyl polynomial.

The covariance kernel for this type of polynomials is

Kn(x, y) =
n∑
i=0

1

i!
xiyi

Then using the Kac-Rice formula together with the Stirling’s formula, one

can show that (see [22],[11] for details)

ENn(R) =

(
2

π
+ o(1)

)√
n (1.3.8)

Moreover, Do&Vu [17] provided variance estimates and a CLT for the number

of real roots. More explicitly, they proved that

Var(Nn(R)) = (2C + o(1))
√
n (1.3.9)

where C = 0.1819... is a positive consant.
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1.3.4 Random Legendre Polynomials

Let µ be a Borel measure on the real line such that dµ(x) = dx on [−1, 1]

where dx is the Lebesgue measure. Applying Gram-Schmidt to monomials

{1, t, t2, ...} with respect to inner product < f, g >:= 1
2

∫ 1

−1
f(x)g(x)dx we

obtain the normalized Legendre polynomials

pk(t) = (k +
1

2
)1/2Lk(t), where Lk(t) =

1

2kk!

dk

dtk
(t2 − 1)k (1.3.10)

Using {pk(t)} we consider the following ensemble of random polynomials

Pn(t) =
n∑
k=0

akpk(t), n ∈ N (1.3.11)

where aj’s are i.i.d random variables. This ensemble of random polynomials

are called Random Legendre Polynomials. In this setting the covariance

kernel is given by the so-called Christoffel-Darboux formula which states

that

Kn(x, y) =
n∑
k=0

pk(x)pk(y) =
n+ 1

2

Ln+1(x)Ln(y)− Ln+1(y)Ln(x)

x− y
(1.3.12)

As a result Das in [23] considered this type of random polynomials and he

showed that

E[Nn(−1, 1)] ∼ n√
3

Later on Wilkins [24] improved this result by showing that

E[Nn(−1, 1)] = n√
3

+ o(nε) for any ε > 0. Finally, Lubinsky, Pritsker and Xie

in [13] generalized the result of Das by proving that for compactly supported

weights on the real line the corresponding random orthogonal polynomials

have n√
3

+ o(n) expected number of real zeros, under suitable conditions.
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Chapter 2

Distribution of Complex zeros

2.1 Basics of Potential Theory in C

Since potential theory in C plays an important role on the zero distribution

of complex random polynomials, we present some basic facts that we will use

later.

Definition 8. Let D ⊂ C be a domain in C and u : D → [−∞,∞). We say

that the function u is subharmonic on D if :

(i) u is upper-semicontinous on D. i.e. {z ∈ D : u(z) < α} is open for all

α ∈ R. Equivalently for each z0 ∈ D , lim supz→z0 u(z) ≤ u(z0).

(ii) u satisfies the submean value inequatliy on D, that is, given z0 ∈ D and

r > 0 with {z : |z − z0| < r} ⊂ D,

u(z0) ≤ 1

2π

∫ 2π

0

u(z0 + reiθ)dθ

We say that u is superharmonic if −u is subharmonic.

Examples: (1) If f is holomorphic on D, then u = |f | is subharmonic on

D. (2) If f is holomorphic on D, then u = log |f | is subharmonic on D.

Theorem 2.1.1. (Properties of subharmonic functions)
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(1) Let u and v be subharmonic functions on a domain D. Then

a) max{u, v} is subharmonic on D.

b) If α, β > 0, then αu+ βv is a subharmonic function on D.

(2) If {un} is a decreasing sequence of subharmonic functions on a domain

D in C. Then u = limn→∞ un is subharmonic on D.

(3) u ∈ C2(D), then u is subharmonic on D if and only if ∆u ≥ 0 on D.

(4) Let {uα} be any family of subharmonic functions of D which is uniformly

bounded on compact subsets of D, and let u(z) = supα uα(z). Then the upper

semicontinous regularization of u is subharmonic on D, i.e.

u∗(z) = lim sup
ξ→z

u(ξ) is subharmonic on D.

Similarly if {vn} is subharmonic on D which is uniformly bounded on compact

subsets of D and v(z) = lim supn→∞ vn(z). Then

v∗(z) := lim sup
ξ→z

v(ξ) is subharmonic on D.

(5) (Max.Principle) Let u be a subharmonic function on a domain D ⊂ C.

a) If u attains global max in D then u is constant. i.e. if u(z0) = supz∈D u(z)

for some z0 ∈ D, then u(z) ≡ u(z0).

b) If for all ξ ∈ ∂D,

lim sup
z→ξ

u(z) ≤ 0

then u ≤ 0 on D. (If D is unbounded, this boundary condition includes

ξ =∞)

(6) (Gluing) Let u be a subharmonic function on an open set U ⊂ C, and let

v be a subharmonic function on an open subset V of U such that

lim sup
z→ξ

v(z) ≤ u(ξ) for all ξ ∈ U ∩ ∂V. Then the function
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ũ =

{
max(u, v) on V

u on U \ V

is subharmonic on U .

(7) (Integrability) Let u be a subharmonic function on a domain D ∈ C, with

u 6≡ −∞ on D. Then u is locally integrable on D, that is∫
K

|u(z)|dm(z) <∞ for each compact subset K ⊂ D.

(8) (Convex increasing function of a subharmonic function is subharmonic)

Let −∞ ≤ a ≤ b ≤ ∞, and let u : U → [a, b) be a subharmonic function

on an open set U ∈ C. Let ψ : (a, b) → R be an increasing convex function.

Then ψ ◦ u is subharmonic on U , where we define ψ(a) = limt→a ψ(t).

Proof. (cf. [25], Chp.2).

Remark 14. i) Note that (2) is not true if un is increasing, because if un(z) =
1
n

log |z| on ∆(0, 1). Then

un(z)→ u(z) =

{
0, if 0 < |z| < 1

−∞, if z = 0
which is not usc at 0.

ii) In (5) u can attain a global minimum without being constant on D. For

example for D = C and u(z) = max{<(z), 0}. Clearly u is subharmonic

on D by (1.a) and u attains a global minimum at any point in the closed

left-half plane Rez ≤ 0.

ii) If u is a subharmonic function on D ⊂ C, then eu is subharmonic on D

because ex : R→ R>0 is incresing convex function. Moreover, |f |p, for p > 0

is subharmonic, since

|f |p = exp(p log |f |) = ψ(log |f |) where ψ(t) = exp(pt),

is a convex increasing function. One may also generate other example of
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subharmonic functions using the properties above.

Now using some basic multivariable calculus in particular Green’s identity,

one can prove a fundametal result on the Laplace operator in R2 = C ([25]

§3.7), which will be quite useful.

Theorem 2.1.2. ∆( 1
2π

log |z|) = δ0 in the sense of distributions. That is∫
D

∆φ(z) · ( 1

2π
log |z|)dm(z) = φ(0), for all φ ∈ C∞0

where D is a neighborhood of the origin and dm- is the Lebesgue measure.

Note, since the function u(z) = log |z| is subharmonic i.e. locally inte-

grable, then for a given measure µ of finite total mass and compact support,

one can form the following convolution

Vµ(z) := −pµ(z) := (u ∗ µ)(z) :=

∫
C

log |z − ω|dµ(ω).

Then

∆Vµ = ∆(u ∗ µ) = ∆u ∗ µ = 2πδ0 ∗ µ = 2πµ (2.1.1)

since δ0 acts like identity1 under convolution.

Definition 9. Let µ be a finite Borel measure on C with compact support,

the function pµ : C→ R defined by

pµ(z) =

∫
C

log
1

|z − ω|
dµ(ω) = −

∫
C

log |z − ω|dµ(ω).

is called the logarithmic potential of µ.

Remark 15. The name arises from physical considerations. If we think of

µ representing a charge distribution, then pµ represents the potential at the

point z due to charge µ.
1For measures µ, ν of finite total mass, their convolution is defined as µ ∗ ν(B) :=∫
ν(B − x)dµ(x) for any measurable set B.
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Theorem 2.1.3. (Properties of logarithmic potential)

Let Vµ be as above. Then

a) Vµ is subharmonic in C, (i.e. pµ is superharmonic).

b) Vµ is harmonic in C \ supp[µ].

c) As |z| → ∞,

Vµ = µ(C) log |z|+O(
1

|z|
).

d) ∆Vµ = 2πµ.

e) Let K=supp[µ], then for z0 ∈ K,

lim inf
z→z0

Vµ(z) = lim inf
z→z0z∈K

Vµ(z).

In particular, if Vµ|K is continous, then Vµ is continous on C.

Proof. ([25], §3).

Examples:

(1) If µ = δ0, then Vµ = log |z|.
(2) If µ = 1

n

∑n
j=1 δzj , then

Vµ(z) =
1

n

n∑
j=1

log |z − zj| =
1

n
log

n∏
j=1

|z − zj| =
1

n
log |pn(z)|

where pn(z) =
∏n

j=1(z − zj).
(3) If µ = dθ

2π
on |z| = 1 , then Vµ(z) = log+ |z| = max{log |z|, 0}.

Sol: If |z| > 1, consider the function log |z− t| which is harmonic for |t| ≤ 1,

then by mean-value property at t = 0 we have 1
2π

∫ 2π

0
log |z− eiθ|dθ = log |z|.

If |z| < 1 then using the previous part we have

1

2π

∫ 2π

0

log |z − eiθ|dθ =
1

2π

∫ 2π

0

log |1− zeiθ|dθ = log 1 = 0
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Now if |z| = 1 then for 0 < r < 1 we have

1

2π

∫ 2π

0

log |z − eiθ|dθ = lim
r→1−

1

2π

∫ 2π

0

log |z − reiθ|dθ = log 1 = 0.

Therefore

Vµ(z) =
1

2π
=

1

2π

∫ 2π

0

log |z − eiθ|dθ = log+ |z|.

Now let us introduce the notion of energy corresponding to a measure µ.

Definition 10. (Energy Integrals) Let µ be a finite Borel measure in C with

compact support. Then its logarithmic energy I(µ) is given by

I(µ) := −
∫ ∫

log |z − ω|dµ(ω)dµ(z) =

∫
pµ(z)dµ(z)

Remark 16. Physically I(µ) means the total energy due to the charge µ.

Definition 11. (Polar Set)

a) A subset E of C is called polar if I(µ) = +∞ for every finite Borel measure

µ with compact support in E.

b) A propery P is said to hold quasi-everywhere (q.e) on a set S ⊂ C, if it

holds on S except a polar subset of S.

Remark 17. The simplest example of a polar set is a set with finitely many

points. For simplicity, consider a set with single point E = {a}. If µ is a

finite Borel measure on E that is not a zero measure i.e. µ(E) > 0. Then

I(µ) = −
∫ ∫

log |z − ω|dµ(z)dµ(ω) = −(log |a− a|)(µ({a}))2 =∞.

which shows that E is polar.

One can prove the following theorem which characterizes polar sets ([25],§3.5).

Theorem 2.1.4. Let E ⊂ C, then E is a polar set if there exists a subhar-

monic function u 6≡ −∞, with E ⊂ {u(z) = −∞}.
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Since u(z) = log |f(z)| is subharmonic for f holomorphic, then using the

fact that the zeros of holomorphic functions are discrete, we obtain that any

discrete set in C is polar.

Theorem 2.1.5. (Properties of Polar sets)

(1) Let µ be a finite Borel measure in C with compact support, and I(µ) <∞.

Then, µ(E) = 0 for every polar set E.

(2) Every polar set has Lebesgue measure zero.

(3) A countable union of polar sets is polar.

Proof. [25], §3.2

Remark 18. In fact polar sets are much thinner than sets of Lebesgue mea-

sure. For example, the Cantor ternary set in [0, 1] has zero Lebesgue measure,

but it is not polar.

It’s of both mathematical and physical importance to define the following

energy minimization problem.

Definition 12. Let K ⊂ C be a compact set and let P(K) denote the set

of all probability measures on K. If there exists µK ∈ P(K) such that

I(µK) = inf
µ∈P(K)

I(µ)

then µK is called an equilibrium measure for K.

Theorem 2.1.6. If K is a non-polar compact set in C, then there exists a

unique equilibrium measure µK ∈ P(K) i.e. infµ∈P(K) I(µ) = I(µK) <∞.

Proof. [25], §3.3.

In order to characterize the measure µK for a non-polar compact set K.

We present the following result due to Frostman which is known as one of

the most fundamental theorems of potential theory,
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Theorem 2.1.7. (Frostman) Let K ⊂ C be a non-polar compact set. Then

(1) pµK (z) ≤ I(µK) for all z ∈ C;

(2) pµK (z) = I(µK) q.e on K.

Proof. [25], §3.3.

Now let us define the following important class of subharmonic functions

in C, that is the global subharmonic functions of at most logarithmic growth

i.e.

L(C) := {u shm on C : u(z)− log |z| = O(1), |z| → ∞} (2.1.2)

Also let L+(C) := {u ∈ L(C) : u(z) ≥ log+ |z| + Cu} be the restricted

subclass of L(C). A typical example in this class is the function u(z) =
1
n

log |pn(z)| where pn(z) =
∑n

j=1 ajz
j. Moreover, if µ(C) = 1 then Vµ ∈

L(C), in particular the examples above belong to this class.

Let us also state the global domination principle, which plays an essential

role in the relation of V ∗K and pµK . The proof of this principle can be found

in ([26], Chp.2 Theorem 3.2).

Proposition 2.1.1. (GDP) Let u ∈ L(C) and v ∈ L+(C), if u ≤ v a.e. ∆v.

Then u ≤ v on C.

Definition 13. Let K be a compact subset of C, and let

VK(z) := sup{u(z) ∈ L(C), u ≤ 0 on K}

then V ∗K(z) := lim supξ→z VK(ξ) is called the global extremal function of K.

Remark 19. (i) VK also can be obtained as follows

VK(z) = sup{ 1

deg(p)
log |p(z)| : p is a polynomial and ‖p‖K = sup

K
|p| ≤ 1}
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where the supremum is taken over all non-constant holomorphic polynomials.

(ii) Either V ∗K ≡ +∞ (which happens if K is polar), or else V ∗K ∈ L+(C).

(for details see [25], §4).

Observe that for a non-polar compact set K Frostman’s theorem implies

that pµK = I(µK) q.e on K. Thus ,

VµK + I(µK) = 0 q.e on K

So the function VµK + I(µK) ∈ L(C), indeed by Frostman theorem since

VµK ≥ −I(µK) on C we have VµK + I(µK) ∈ L+(C). Then it turns out that

(see [27] for details)

VµK (z) + I(µK) = V ∗K(z) on C

Moreover,

µK =
1

2π
∆V ∗K and supp(µK) = supp(∆V ∗K) ⊂ K.

Remark 20. Often gK is used for V ∗K , known as the Green function for K,

that is the unique subharmonic function in C which is in L+(C), harmonic

in C \K, and equals 0 q.e on K. In particular if gK = 0 on all of K we say

that K has a classical Green function.

Examples:

(1) If K = S1 = {z ∈ C : |z| = 1} we have VK(z) = max[log |z|, 0] and

µK = dθ
2π

. To see this, let u(z) := log+ |z| ∈ L+(C). Then u is a harmonic

function outside of K and vanishes on K. Moreover, ∆u is supported on

K. For any v ∈ L(C) with v ≤ 0 on K we have v ≤ u on K = supp(∆u),

hence by GDP v ≤ u on C which implies that V ∗K = log+ |z|. Note that here

VK = V ∗K since log+ |z| is continous.

(2) If K = B(a, r) = {z : |z − a| ≤ r} or K = ∂B(a, r), then VK(z) =

V ∗K(z) = log+ |z−a|
r

.
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2.2 Basics of Weighted Potential theory in C

Let K ⊂ C be a closed set, then the function w : K → [0,∞) is said to be

the weight function of K.

Definition 14. A weight function w on K is said to be admissible if it

satisfies the following conditions:

(i) w is upper semi-continous;

(ii) K0 := {z ∈ K : w(z) > 0} is non-polar;

(iii) if K is unbounded, then |z|w(z)→ 0 as |z| → ∞, z ∈ K;

Writing ϕ := − logw, then we have ϕ : K → (−∞,∞] and

(i) ϕ is lower semi-continous;

(ii) ϕ <∞ on a non-polar set;

(iii) If K is unbounded, then

ϕ(z)− log |z| → ∞ as |z| → ∞, z ∈ K.

Denote the collection of such functions ϕ by A(K).

Let P(K) be the collection of probability measures ν with supp(ν) ⊂ K,

then we define the weighted energy integral

Iϕ(ν) :=

∫ ∫
log

1

|z − t|w(z)w(t)
dν(t)dν(z) = I(ν) + 2

∫
ϕdν.

Note that the classical case corresponds to choosing K compact and w = 1

on K. The existence and uniqueness of a weighted energy minimizer measure

µK,ϕ ∈ P(K) that is, the measure which satisfies

Iϕ(µK,ϕ) = inf
ν∈P(K)

Iϕ(ν) =: Vϕ

follows like in the unweighted case and it is called the weighted equilibrium

or extremal measure. Moreover, condition (iii) implies that supp(µK,ϕ) is

compact and supp(µK,ϕ) ⊂ K0, in particular supp(µK,ϕ) ⊂ Kε where Kε =
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{z : w(z) ≥ ε} for some ε > 0. The problem of finding the probability

measure that minimizes the weighted energy integral in literature is known is

known as the logarithmic energy minimization in the presence of an external

field ϕ. Next we present the weighted version of Frostman’s theorem. Given

a closed set K ⊂ C and ϕ 6≡ 0 ∈ A(K), let us define

Fϕ := Iϕ(µK,ϕ)−
∫
K

ϕdµK,ϕ = Vϕ −
∫
K

ϕdµK,ϕ.

Then we have

Fϕ = I(µK,ϕ) + 2

∫
K

ϕdµK,ϕ −
∫
K

ϕdµK,ϕ

= I(µK,ϕ) +

∫
K

ϕdµK,ϕ =

∫
K

[pµK,ϕ
+ ϕ]dµK,ϕ.

The constant Fϕ is called the modified Robin constant for ϕ. Note that if

ϕ ≡ 0, then for K compact and non-polar F = I(µK).

Theorem 2.2.1. Let K ⊂ C be a closed set and ϕ ∈ A(K). Then

pµK,ϕ
+ ϕ ≥ F q.e on K;

pµK,ϕ
+ ϕ ≤ F on Sϕ := supp(µK,ϕ).

In particular, pµK,ϕ
+ ϕ = F q.e on Sϕ.

We note that F − pµK,ϕ
= F +VµK,ϕ

∈ L(C) and F +VµK,ϕ
= ϕ q.e on K.

Now as in the unweighted case we define the weighted extremal function

VK,ϕ(z) := sup{u(z) : u ∈ L(C), u ≤ ϕ on K}

Let K ⊆ C compact, we say that K is locally regular if for each z ∈ K the

unweighted Green function for the sets K ∩ B(z, r) , r > 0 are continous at

z. Here B(z, r) is the Euclidean disk with center at z and radius r. In the

one variable case the local regularity of K is equivalent to global regularity
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that is VK = V ∗K is continous. If K is regular and ϕ is continous one can

show that VK,ϕ is continous, that is VK,ϕ = V ∗K,ϕ(z) ≤ ϕ on K. In addition,

by GDP applied to V ∗K,ϕ, F + VµK ,ϕ turns out that (see [26]for details)

V ∗K,ϕ = F + VµK,ϕ
on C and V ∗K,ϕ ∈ L(C)

Moreover,

µK,ϕ =
1

2π
∆V ∗K,ϕ and supp(∆V ∗K,ϕ) ⊂ {z ∈ K : V ∗K,ϕ ≥ ϕ(z)}

Indeed V ∗K,ϕ = ϕ on Sϕ = supp(µK,ϕ) except perhaps a polar set.

Now let’s look at some concrete examples.

Examples:

(1) Let K = B(0, 1). In this case we know that µK = dθ
2π

on S1 = ∂B(0, 1).

Now take ϕ(z) = |z|2, i.e., w(z) = e−|z|
2
.Then V ∗K,ϕ = VK,ϕ this follows since

ϕ is continous on K and K is locally regular. Then

VK,ϕ(z) =

{
|z|2 if |z| ≤ 1√

2

log |z|+ 1
2
− log 1√

2
if |z| ≥ 1√

2

In particular supp(µK,ϕ) = B(0, 1√
2
). To see this let V (z) be the function

defined as above. Then V ≤ VK,ϕ since V ∈ L(C) and V ≤ ϕ on K. Now

since ∆V is supported on B(0, 1√
2
) and V = ϕ on this set, we have VK,ϕ ≤ V

on supp(∆V ). Then by GDP, VK,ϕ ≤ V on C, hence V = VK,ϕ. Indeed,

taking K = C and ϕ(z) = |z|2, one obtains the same result.

More generally for radially symmetric weight functions of super-logarithmic

growth we have the following.

� Let ϕ(z) = ϕ(|z|) = ϕ(r) be a weight function on C which is convex

on r > 0. Let r0 be the smallest number for which ϕ′(r) > 0 for all

r > r0, and let R0 be the smallest solution of R0ϕ
′(R0) = 1. Then

Sϕ = {z : r0 ≤ |z| ≤ R0} and dµK,ϕ = 1
2π

(rϕ′(r))′drdθ.
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This result is a part of Theorem 6.2 pg.265, [26].

Now let K ⊂ C be a closed set and ϕ an admissible weight on K. We

define the weighted sup-norm on Pn as follows

‖pn‖K,ϕ :=
∥∥pne−nϕ∥∥K := sup

z∈K
|pn(z)e−nϕ(z)|

It is easy to check that ‖pn‖K,ϕ < ∞ for pn ∈ Pn simply by using the fact

that lim|z|→∞z∈K |z|e−ϕ(z) = 0 implies that lim|z|→∞z∈K |z|ne−nϕ(z) = 0.

Example. Let K = C, ϕ(z) = |z|2 and consider pn(z) = zn. Then

‖pn‖K,ϕ = sup
z∈C
|z|ne−n|z|2 =

1√
2n
e−

n
2 <∞, n ∈ N

Because if g(r) = rne−nr
2

then g′(r) = nrn−1e−nr
2 − 2nrn+1e−nr

2
= 0 implies

that r = 0, 1√
2
. That is maxr≥0 g(r) = g( 1√

2
) = 1√

2n
e−

n
2 . It follows that the

supremum is attained on |z| = 1√
2
, which shows that ‖pn‖K,ϕ = ‖pn‖Sϕ,ϕ

.

One may show that the weighted extremal function Vk,ϕ can be obtained

as an upper envelope of certain polynomials only i.e.,

VK,ϕ = sup{ 1

deg(p)
log |p(z)| : p polynomial and ‖pn‖K,ϕ =

∥∥wdeg(p)p∥∥
K
≤ 1}.

Let µ be a measure on K such that

supp(µ) ∩ {z ∈ K : e−ϕ(z) > 0}

contains infinitely many points. Then for each n ∈ N we can define the

weighted L2(µ) norms on Pn as follows

‖pn‖2
L2
ϕ,n(K) :=

∥∥e−nϕpn∥∥2

L2(K,µ)
:=

∫
K

|pn(z)|2e−2nϕ(z)dµ(z)

provided that it is finite.
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Note: If K is not compact we assume strong decay condition on w(z) =

e−ϕ(z) as |z| → ∞, to ensure that ‖pn‖L2
ϕ,n(K) <∞

Example. If K = C, ϕ(z) = |z|2 and dµ = dm wehere dm is the Lebesgue

measure on C. Then µ(C) = ∞, but for each n ∈ N the measures dµn =

e−2n|z|2dm(z) have finite total mass and ‖pn‖L2
ϕ,n(K) <∞ for pn ∈ Pn.

Note:We obtained two different norms on Pn, but since it is finite dimen-

sional vector space there exists a possitive constant Mn such that ‖pn‖K,ϕ ≤
Mn ‖pn‖L2

ϕ,n(K) for all pn ∈ Pn.

2.3 Random Polynomials in C

Let Pn(z) =
∑n

j=0 ajz
j be a random polynomial, where the coefficients

a0, ..., an are i.i.d complex Gaussian random variables with E[aj] = E[ajak] =

0 and E[aj āk] = δjk; i.e. each aj has distribution

φ(t)dm(t) =
1

π
e−|t|

2

dm(t)

where dm is the Lebesgue measure in C. Let Pn be the vector space of

polynomials of degree at most n. Now identifying pn with a random vector

(a0, ..., an) ∈ Cn+1, we endow Pn with a probability measure Probn that is

for G ⊂ Cn+1

Probn(G) =

∫
G

φ(a0)...φ(an)dm(a0)...dm(an)

=
1

πn+1

∫
G

e−
∑n

j=0 |aj |2dm(a0)...dm(an).

Thus (Pn, P robn) forms a probability space whose elements are random poly-

nomials of degree n. We also form the product probability space of sequences
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of polynomials:

P :=
∞⊗
n=1

(Pn, P robn) =
∞⊗
n=1

(Cn+1, P robn)

For each Pn ∈ Pn we may write Pn(z) = an
∏n

j=1(z − ξj) where (ξ1, ..., ξn)

are zeros of Pn, then we define the new measure valued random variable

ZPn := 1
n

∑n
j=1 δξj and call the normalized zero measure of Pn. Note that

ZPn = ∆( 1
n

log |pn|) where ∆ log |z| = δ0 and ∆ = 1
2π

( ∂2

∂x2 + ∂2

∂y2 ). We are

interseted in the asymptotics of:

� E[ZPn ]

� { 1
n

log |Pn|} for random sequences of polynomials {Pn} ∈ P .

Let us start start with defining E[ZPn ].

E[ZPn ] is a measure on C defined as follows, for ψ ∈ Cc(C)

(E[ZPn ], ψ) :=

∫
Cn+1

(Zpn , ψ)dProbn(an)

where an = (a0, ..., an) and (ZPn , ψ) = 1
n

∑n
j=1 ψ(ξj). Thus,

(E[ZPn ], ψ) =
1

πn+1

∫
Cn+1

1

n

n∑
j=1

ψ(ξj)e
−

∑n
j=0 |aj |2dm(a0)...dm(an).

Now in order to investigate the asymptotics stated above we need the notion

of Bergman Kernels.

Bergman Kernel: Let L2(µS1) = {f : S1 → C :
∫ 2π

0
|f |2 dθ

2π
< ∞} be

the space of square integrable functions on the unit circle S1 in C. Also let

Pn = span{1, z, ..., zn} then, since Pn is a closed subspace the orthogonal

projection operator Πn : L2(µS1) → Pn is bounded and linear. However,
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since {zj}nj=0 forms an orthonormal basis for Pn. We have

Πnf(z) =
n∑
j=0

< f, zj > zj =

∫
S1

f(w)

(
n∑
j=0

zjwj

)
dµS1(w)

=

∫
S1

f(w)Kn(z, w)dµS1(w).

Here, Kn(z, w) =
∑n

j=0 z
jwj is called Bergman Kernel (or Reproducing kernel

for point evaluation at z on Pn). On the diagonal ∆ = {z = w} if :

(1) z = w = eiθ , then Kn(eiθ, eiθ) = n+ 1 = dim(Pn).

(2) z = w 6= eiθ, then Kn(z, z) =
∑n

j=0 |z|2j = |z|2n+2−1
|z|−1

.

Thus we have
1

2n
logKn(z, z)→ log+ |z| (2.3.1)

locally uniformly in C. Hence

∆(
1

2n
Kn(z, z))→ µS1 (2.3.2)

So we have the following result.

Theorem 2.3.1. E[ZPn ]→ µS1 = dθ
2π

as n→∞.

Proof. Let us start by writing

Pn(z) = |
n∑
j=0

ajz
j| =: | < an, zn > | = Kn(z, z)1/2| < an,un(z) > |

where an = (a0, ..., an), zn = (1, z, ..., zn) and un(z) = zn(z)
‖zn(z)‖ = zn(z)

Kn(z,z)1/2

Then for ψ ∈ Cc(C)

(E[ZPn ], ψ) =

∫
Cn+1

(∆
1

n
log |Pn(z)|, ψ(z))dProbn(an)

=

∫
Cn+1

(∆
1

2n
log |Kn(z, z)|, ψ(z))dProbn(an)
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+

∫
Cn+1

(
1

n
log | < an,un(z) > |, ψ(z))dProbn(an)

The first term in the expression above goes to
∫
S1 ψdµS1 as n→∞ and the

second term can be written as∫
Cn+1

(
1

n
log | < an,un(z) > |,∆ψ(z))dProbn(an)

=

∫
C

∆ψ(z)[
1

n

∫
Cn+1

log | < an,un(z) > |dProbn(an)]dm(z)

Note that in the last equality we used Fubini. Now since Gaussian measure

dProbn(an) is unitary invariant then by mapping un → (1, 0, ..., 0) we have∫
Cn+1

log | < an,un(z) > |dProbn(an)

=

∫
Cn+1

1

πn+1
log | < an,un(z) > |e−

∑n
j=0 |aj |2dm(a0)...dm(an)

− 1

π

∫
C

log |a0|e−|a0|2dm(a0)

Thus the second term is O( 1
n
). Therefore E[ZPn ]→ dθ

2π
.

Note that the main point in the proof of the theorem is the fact that
1

2n
logKn(z, z) → log+ |z| locally uniformly in C. Now for K ⊂ C compact

we know that the extremal function is

VK(z) = sup{ 1

deg(p)
log |p(z)| : ‖p‖K ≤ 1} and µK = ∆VK .

Then if K is regular that is, VK is continous i.e. V ∗K = VK , then defining

φn(z) := sup{|p(z)| : p ∈ Pn and ‖p‖K ≤ 1}

we have
1

n
log φn(z)→ VK(z) locally uniformly on C (2.3.3)
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(If K = S1 then VK = log+ |z| and µK = µS1 = dθ
2π

). We can recover VK and

µK using L2- methods. For this we need the following definiton

Definition 15. (Bernstein Markov measure) Let τ be a measure on K such

that for n = 1, 2, ...

‖p‖K ≤Mn ‖p‖L2(τ) for all p ∈ Pn with lim sup
n→∞

M1/n
n = 1

Then we say τ is a Bernstein Markov (BM) measure for K.

Remark 21. A simple example is the normalized arc-length measure dµS1 =
dθ
2π

on the unit circle K = S1 = {z : |z| = 1} in the complex plane. Indeed

for any compact set K in the complex plane there is a finite measure which

satisfies the Bernstein-Markov property on K check ( [28], Corrollary 3.5)

for details. In particular for any non-polar compact set the corresponding

equilibrium measure µK satisfies the Bernstein-Markov inequality.

Lemma 2.3.1. If τ is a (BM) measure on K. Then

1

n+ 1
≤ Kn(z, z)

φn(z)2
≤M2

n(n+ 1) (2.3.4)

where Kn(z, w) :=
∑n

j=0 pj(z)pj(w) and {pj(z)}nj=0 orthonormal basis for Pn
with the inner product comming from L2(τ).

Remark 22. The left-hand side of this inequality follows from the reproducing

property of the Bergman Kernel and the Cauchy-Schwarz inequalty. But for

the right-hand side one needs to use the (BM)- property (cf. Lemma 2.2,

[29]) for details.

Then by 2.3.3 and 2.3.4 we have the following result.

Corollary 2.3.1. If VK is continous, limn→∞
1

2n
logKn(z, z) = VK(z) locally

uniformly on C.
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Thus we have the following universality result which a is generalization

of Theorem 2.3.1 .

Theorem 2.3.2. Let τ be a (BM) measaure on a compact set K with VK

continous. Consider random polynomials of the form Pn(z) =
∑n

j=0 ajpj(z)

where pj(z) form an orthonormal basis for Pn in L2(τ) and a0, ..., an are i.i.d

standart complex Gaussian random variables. Then

lim
n→∞

E[Zpn ] = µK .

Additionally, the same asymptotics holds for the sequence of normalized

measures.

Theorem 2.3.3. Let K be a compact set with VK continous and let τ be a

(BM) measure on K. Consider the random polynomials Pn(z) =
∑n

j=0 ajpj(z)

where {pj(z)}nj=0 is an orthonormal basis for Pn in L2(τ) and the coefficients

{aj}nj=0 are i.i.d complex Gaussian random variables. Then almost surely in

P we have

(lim sup
n→∞

1

n
log |Pn(z)|)∗ = V ∗K(z)

pointwise for all z ∈ C and 1
n

log |Pn(z)| → VK(z) in L1
loc(C). Hence almost

surely

∆(
1

n
log |Pn|)→ µK .

Remark 23. This result holds true also for more general distributions satis-

fying certain tail condition, for details see (cf. [27], Theorem 4.2 and [30],

§2.2).

Now in the weighted setting for ϕ ∈ A we also have.

Definition 16. The measure τ is said to be weighted Bernstein-Markov(BM)

measure for K,ϕ if for all pn ∈ Pn

‖pn‖K,ϕ ≤Mn ‖pn‖L2
ϕ,n(K) with lim sup

n→∞
M

1
n
n = 1
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Example. For K = C and ϕ(z) = |z|2, dτ = dm, which is the Lebesgue

measure in C is a weighted BM measure for K,ϕ.

In a similar way, we construct an orthonormal basis {pnj }nj=0 for Pn in the

weighted L2- space namely in L2
K,ϕ(τ) = L2(e−2nϕdτ). Then

Kϕ
n (z, w) :=

n∑
j=0

pnj (z)pnj (w)

is the weighted Bergman Kernel or reproducing kernel for point evaluation

at z on Pn. That is for Pn ∈ Pn,

Pn(z) =

∫
K

Pn(w)Kϕ
n (z, w)e−2nϕ(z)dτ(w)

Let

φϕ,n := sup{|p(z)| : p ∈ Pn, ‖p‖K,ϕ =
∥∥e−nϕp∥∥

K
≤ 1}

then as in the unweighted case if VK,ϕ is continous. Then

lim
n→∞

1

n
log φϕ,n(z) = VK,ϕ(z) locally uniformly in C.

Moreover, the analogue of 2.3.1 holds true also in this setting, that is

1

n+ 1
≤ Kϕ

n (z.z)

φ2
ϕ,n

≤M2
n(n+ 1)

As a result we have the analogue of the Theorems 2.3.2 and 2.3.3 in the

weighted setting.

Example. (Scaled Weyl Polynomial) Let us consider the scaled Weyl poly-

nomial

Wn(z) =
n∑
j=0

aj
zj
√
nj√
j!

where aj are i.i.d complex or real Gaussian random variables. Let ϕ(z) = |z|2
2
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on K = C be our weight function and let dτ = dz be the Lebesgue measure

in C. Then since the function ϕ(z) is super-logarithmic and radial by the

result we had pg. 46, the weighted equilibrium measure is the normalized

Lebesgue mesure on the unit disc D = {z ∈ C : |z| ≤ 1}. Applying Gram-

Schmidt to monomials in L2(C, e−2nϕdz) we obtain an orthonormal basis

pnj (z) =
√

nj+1

πj!
zj. Hence by the weighted version of Theorem 2.3.3, we

obtain that zeros of Wn(z) are equidistributed with respect to the Lebesgue

measure on the unit disc in the complex plane.

Figure 2.1: The zeros of Weyl Polynomials scaled by 1/
√
n for degree n =

2000.

Remark 24. In fact this is an example of how one can modify random poly-

nomials so that the zeros are uniformly distributed on compact sets K with

distribution other than µK .
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Chapter 3

Variance of the number of real

zeros

In this chapter we set up an ensemble of random polynomials arising from

certain weight functions supported in the complex plane. We state some

statistical results for the real roots of random polynomials in this ensemble.

In particular we investigate the asymptotics concerning the variance of real

roots and we provide a conjecture in this direction.

3.1 Setting the problem and Bergman Kernel

Asymptotics

3.1.1 Setting of the problem

Let ϕ : C→ R be a C2- weight function satisfying the following conditions

(1) ϕ is radially symetric i.e. ϕ(z) = ϕ(|z|) for all z ∈ C.

(2) ϕ(z) ≥ (1 + ε) log |z| for |z| >> 1 and ε > 0.

Then for each fixed n ∈ N define the corresponding weighted L2-space of
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square integrable functions. Namely

L2
ϕ,n(C) = L2(C, e−2nϕdz) = {f : C→ R :

∫
C
|f |2e−2nϕ(z)dz <∞}

where dz is te Lebesgue measure in C. Now let Pn = span{1, z, ..., zn} be

the space of polynomials of degree at most n. The growth condition (2)

ensures that every polynomial in Pn has finite weighted L2-norm. Hence

(Pn, ||.||L2
ϕ,n(C)) has a Hilbert space structure. Applying Gram-Schmidt or-

thogonalization algorithm to the monomials {zj}nj=0 we obtain an orthonor-

mal basis for Pn, denoted by {pnj (z)}nj=0. Therefore, the ensemble that we

will consider consists of the random linear combinations of {pnj (z)}, that is

Pn(z) =
n∑
j=0

ajp
n
j (z) (3.1.1)

where aj ∼ NR(0, 1). In particular, if ϕ(z) = |z|2
2

, then pnj (z) =
√

nj+1

πj!
zj

which gives rise to scaled version of Weyl ensemble. Moreover if ϕ(z) =
1
2

log(1 + |z|2) then pnj (z) =
√(

n
j

)
zj which gives the Elliptic polynomials.

Thus the ensemble above is more general in the sense that it covers ensemles

like (Kac, Weyl, Elliptic). According to Bayraktar (cf. [16], Theorem 1.1),

the asymptotics for the expected number of real zeros in this setting is known

even for more general distributions. In contrast of this we will investigate

the asymptotics of the variance of real roots.

3.1.2 Bergman Kernel Asymptotics

Consider Pn the space of polynomials of degree at most n. We know that

it is a closed subspace of L2
ϕ,n(C). Hence the orthogonal projection Πn :

L2
ϕ,n(C) → Pn is a bounded and linear operator. In particular, for a fixed
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orthonormal basis {pnj (z)}, and a function f ∈ L2
ϕ,n(C) we have

Πnf(z) =
n∑
j=0

< f, pnj (z) > pnj (z) =
n∑
j=0

∫
C
f(w)pnj (w)e−2nϕ(w)dwpnj (z)

=

∫
C
f(w)

(
n∑
j=0

pnj (z)pnj (w)

)
e−2nϕ(w)dw =

∫
C
f(w)Kn(z, w)e−2nϕ(w)dw

The integral kernel Kn(z, w) of the projection operator Πn is called the

Bergman Kernel or Reproducing Kernel for point evaluation on Pn. We

denote its derivatives by

K(1,0)
n (z, w) =

n∑
j=0

(pnj (z))′(pnj (w)) and K(1,1)
n (z, w) =

n∑
j=0

(pnj (z))′(pnj (w))′

We also denote the Bergman function by

Bn(z) := Kn(z, z)e−2nϕ(z) =
n∑
j=0

|P n
j (z)|2e−2nϕ(z) (3.1.2)

Note, Bn has the following extremal property,

Bn(z) = sup
pn∈Pn

|pn(z)|2e−2nϕ(z)

||pn||2ϕ,n

Moreover, it also has the following dimensional density property∫
C
Bn(z)dz = dim(Pn) = n+ 1

On the otherhand, for the weight function ϕ satisfying (1), (2) we define its

Bulk, Bϕ as

Bϕ := {z ∈ Sϕ : ∆ϕ(z) > 0} (3.1.3)
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where Sϕ = {z ∈ C : VC,ϕ(z) = ϕ(z)} is the compact set where the corre-

sponding equilibrium measure µC,ϕ is supported.

Now, by the results of ([31], Theorem 2.2), we have the following near diag-

onal asymptotics of Bergman Kernel.

Theorem 3.1.1. If ϕ : C → R is a C2−weight function satisfying (1),(2)

and z is a fixed point in the Bulk Bϕ. Then as n→∞

1

n
Kn(z +

u√
n
, z +

v√
n

)In(u, v)→ 1

2π
∆ϕ(z) exp

(
1

2
∆ϕ(z)uv

)
(3.1.4)

in C∞ topology on compact sets in Cu × Cv.

Remark 25. Here, In(u, v) = exp

(
−n
[
g
(
z + u√

n

)
+ g

(
z + v√

n

)])
and

g : C → C is the holomorphic function g(w) = ϕ(z) + 2 ∂ϕ
∂w

(z)(w − z) where

z ∈ Bϕ is a fixed point.

Now using the theorem above, simply by differentiating we obtain the

following diagonal asymptotics for Kn(z, z) and its derivatives.

Corollary 3.1.1. Let ϕ be the weight function as above, then

Kn(z, z) ∼
(

1

2π
∆ϕ(z)

)
ne2nϕ(z) (3.1.5)

K(1,0)
n (z, z) ∼

(
1

π
∆ϕ(z)

∂ϕ

∂z

)
n2e2nϕ(z) (3.1.6)

K(1,1)
n (z, z) ∼

(
2

π
∆ϕ(z)

∂ϕ

∂z

∂ϕ

∂z

)
n3e2nϕ(z) +

(
1

4π
(∆ϕ(z))2

)
n2e2nϕ(z)

(3.1.7)

uniformly on compact subsets of Bϕ.

On the otherhand by adapting the results of [31] in our setting, in par-

ticular Theorem 2.4. We have the following off-diagonal asymptotics of Kn.
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Theorem 3.1.2. Assume that ϕ is as above and ∆ϕ(z) > c for some c > 0.

Then for any z, w ∈ K ⊂⊂ Bϕ

1

n
|Kn(z, w)|e−nϕ(z)−nϕ(w) ≤ Ce−T

√
n|z−w| (3.1.8)

where C, T > 0 are independent of n.

3.2 Asymptotics of Variance

In this setting due to ([16],Theorem 1.1 ) it is know that

1√
n
E[N(Pn,R)] =

1

π

∫
Bϕ∩R

√
1

2
∆ϕ(x)dx (3.2.1)

Now, using the fact that V ar(X) = E[X(X − 1)] − E[X]2 + E[X] for any

random variable X. We see that it’s enough to study the factorial moment

term i.e. E[X(X−1)]1. According to Fradhmand ([32],Theorem 2.9) we have

the following result for the expectation of factorial moments

Lemma 3.2.1. Let [a, b] ∈ R, then

E[Nn(a, b)(Nn(a, b)−1)] = lim
ε→0

∫∫
D(ε)

∫
R

∫
R
|x1x2|p(x,y)(0, 0, x1, x2)dx1dx2dxdy

where p(t1, t2, x1, x2) is the density of the random vector (Pn(x), Pn(y), P ′n(x), P ′n(y)),

and D(ε) = {(x, y) ∈ R2 : x, y ∈ (a, b), |x− y| > ε}.

Computing the density p(x,y) and performing the integration over R2 with

respect to dx1dx2, we obtain the following explicit formula for the factorial

moment (cf. [33], §5.3) for details.

1We also denote as E[X [2]]
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Theorem 3.2.1. Let (a, b) and D(ε) be as above. Then

E[N [2]
n (a, b)] =

1

π2
lim
ε→0

∫∫
D(ε)

∫
R

∫
R

(√
AC −B2 +B arcsin

(
B√
AC

))
dxdy√

∆

where

∆(x, y) := Kn(x, x)Kn(y, y)− (Kn(x, y))2

and

Σ =

[
A B

B C

]
is the covariance matrix of the random vector (Pn(x), P ′n(y)), conditioned on

Pn(x) = Pn(y) = 0, with

A(x, y) = K(1,1)
n (x, y) − 1

∆
[Kn(y, y)(Kn(x, x))2

−2Kn(x, y)K(0,1)
n (x, y)K(0,1)

n (y, x) +Kn(x, x)(K0,1
n (y, y))2],

C(x, y) = K(1,1)
n (y, y) − 1

∆
[Kn(y, y)(K(0,1))

n (x, y)2

−2Kn(x, y)K(0,1)
n (x, y)K(0,1)

n (y, y) +Kn(x, x)(Kn(y, y))2],

B(x, y) = K(1,1)
n (x, y)

− 1

∆
[Kn(y, y)K(0,1)

n (x, x)K(0,1)
n (x, y)Kn(x, y)K(0,1)

n (x, y)K(0,1)
n (y, x)

− Kn(x, y)Kn(x, y)K(0,1)
n (x, x)K(0,1)

n (y, y) +Kn(x, x)K(0,1)
n (y, x)K(0,1)

n (y, y)].

Remark 26. Observe that in order to find the asymptotics of Var[N(Pn,R)],

we need to study the asymptotics of Bergman Kernel and its derivatives.

The asymptotics of variance in this ensemble is ongoing project of this

masters thesis. However, the following conjecture is expected, but the con-

stant C below is not determined yet, explicitly.

Conjecture: 1√
n
Var[N(Pn,R)]→ C.
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