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Abstract

Diesel engine airpath control is crucial for modern engine development due to in-

creasingly stringent emission regulations. This thesis aims to develop and validate

a flexible and robust control approach to this problem for specifically heavy-duty

engines. It focuses on estimation and control algorithms that are implementable

to the current and next generation commercial electronic control units (ECU).

To this end, targeting the control units in service, a data driven disturbance ob-

server (DOB) is developed and applied for mass air flow (MAF) and manifold

absolute pressure (MAP) tracking control via exhaust gas recirculation (EGR)

valve and variable geometry turbine (VGT) vane. Its performance benefits are

demonstrated on the physical engine model for concept evaluation. The proposed

DOB integrated with a discrete-time sliding mode controller is applied to the se-

rial level engine control unit. Real engine performance is validated with the legal

emission test cycle (WHTC - World Harmonized Transient Cycle) for heavy-duty

engines and comparison with a commercially available controller is performed,

and far better tracking results are obtained. Further studies are conducted in

order to utilize capabilities of the next generation control units. Gaussian pro-

cess regression (GPR) models are popular in automotive industry especially for

emissions modeling but have not found widespread applications in airpath control

yet. This thesis presents a GPR modeling of diesel engine airpath components

as well as controller designs and their applications based on the developed mod-

els. Proposed GPR based feedforward and feedback controllers are validated with

available physical engine models and the results have been very promising.
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Özet

Dizel motor geliştirme sürecinde hava yolu kontrolü, gün geçtikçe sıkılaşan emisyon

kuralları nedeniyle, önemlidir. Bu tezde, özellikle ağır vasıta araçların dizel mo-

torları için, esnek ve gürbüz bir kontrol çözümü geliştirilmesi ve doğrulanması

amaçlanmaktadır. Halihazırda kullanılan ve gelecekte kullanılması düşünülen kon-

trol üniteleri üzerinde uygulanabilir algoritmaların geliştirilmesi hedeflenmiştir.

Bu amaçla, halihazırdaki kontrol üniteleri için, veriye dayalı bozucu gözlemcisi

geliştirilmiş ve kütle hava debisinin (MAF) ve manifold mutlak basıncının (MAP)

egzoz gaz geri dönüş valfi (EGR) ve değişken geometrili türbin vanası (VGT)

vasıtasıyla takip kontrolünde uygulanmıştır. Önerilen kontrol yapısının kavram-

sal değerlendirmesi fiziksel motor modeli üzerinde yapılmıştır. Önerilen bozucu

gözlemcisi gerçek motor ve seri üretim seviyesi kontrol ünitesi üzerinde uygu-

lanmıştır. Gerçek motorda başarım doğrulaması yasal motor homologasyon testi

(WHTC) üzerinde yapılmış, ticari kontrolcü ile karşılaştırılmış ve muadile göre

üstün takip başarımı gözlemlenmiştir. Gelecekte kullanılması planlanan elek-

tronik kontrol ünitelerinin kabiliyetlerinden yararlanmak için çalışma ilerletilmiş ve

genişletilmiştir. Gaussyen proses regresyon (GPR) modelleri otomotiv endüstrisin-

de özellikle emisyon modellenmesinde yaygın olmasına rağmen hava yolu kon-

trolünde geniş bir uygulamaları yoktur. Bu çalışma GPR modelleri ile havay-

olu birleşenlerinin modellenmesini, bu modellere dayalı kontrolcü tasarımlarını ve

uygulanmasını sunmaktadır. Önerilen GPR yöntemine dayalı kontrolcüler mevcut

olan fiziksel havayolu modelleri üzerinde doğrulanmıştır ve ümit verici sonuçlar

elde edilmiştir.
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Mükerrem, and my brother, Gökhan, for their valuable support and patience.

vi



Contents

Abstract iii
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Chapter 1

Introduction

Diesel engines are the most dominant powerplants for commercial land and marine

vehicles. Its applications range from mining (Fig. 1.1) to transportation and power

generation. Main well-known drawback of the diesel engine is its combustion by

products, namely emissions. Stringent emission regulations of the diesel engines

created the need for better engine out emission control. Diesel engine emission

control can be examined under two titles: Air path and Fuel path. Air path

control consists of mainly regulating the following three actuators: throttle valve,

exhaust gas recirculation valve, variable geometry turbine vane or waste gate.

Transient control of diesel engine air path is focused on transient emissions and

torque build up. One of the most important exhaust emission gases is Nitrous

Oxide. Exhaust gas recirculation (EGR) system is the major Nitrogen Oxide

(NOx) reduction system for engine out emissions [1].

Emerging electrical engine and battery technologies are challenging the diesel en-

gine. Hybridization and aftertreatment technologies require different actuators

and system layouts. Thus, any control structure should be flexible to these up-

coming physical hardware changes. Software validation and testing for embedded

systems is a major time consuming task and its economical impact is significant.

These costs can be reduced with a flexible architecture which encompases modeling

and control library elements that can be used for different engine configurations.

Airpath control problem of vehicles is a setpoint tracking problem under dynamic

1



Introduction 2

Figure 1.1: Heavy Duty Vehicle and Engine

disturbances. Due to engine speed and torque variations with respect to vary-

ing requests from the driver and dynamic conditions of the road itself, boundary

conditions and setpoints of the control problem are variable. Additionally, com-

mercial vehicles require around 1 million kilometers service life. Serial production

of hundreds of parts creates a variability from engine to engine. Robustness to

the part variances and aging of the components is required for mobile vehicle ap-

plications. These concerns defined general overview of the problem and airpath

control system should be flexible to the hardware changes and robust to the sud-

den changes in the boundary conditions as well as part to part variance and aging

of the components to some extend. A flexible and robust control system is being

sought for heavy duty diesel engine air path problem.

This study aims to create a controller architecture for heavy duty diesel engine

air path which will be flexible to the hardware changes and robust to the defined

variations.
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1.1 Motivation

Automotive grade sensor applications require accuracy, reliability, durability and

cost effectiveness. It is not always easy to meet these expectations with solely

hardware based solutions. So, modeling of static and dynamic relations of the

airpath parameters is a common approach. Diesel engine airpath control requires

modeling of certain parameters due to control or diagnostic requirements of the

engine. These models should be implementable to the serial level electronic con-

trol units. Simplified parametric physical or amprical models are the common

approach for the problem. These models are uniquely tailored to certain hardware

architectures (e.g. pressure sensor placed throttle upstream or downstream means

totally different model equations). Creating a new software component and adapt-

ing the rest of the algorithm are costly and time consuming. However, using same

components with different parameter values requires significantly less amount of

validation effort. Therefore, indepedence from such hardware changes is one of

the driving factors for this study.

Data-driven, machine learning or black-box modeling approaches are inherently

independent of corresponding physical system configurations. However, accurate

data-driven modeling requires higher computational power in terms of both mem-

ory and runtime with respect to the simplified physical models. Automotive engine

electric control units are being enhanced but still most of the current hardware

has limits for machine learning type model implementations. This thesis aims to

develop implementable models and control approaches for available control hard-

ware on Ford-OTOSAN Ecotorq engines. There are two types of control units

that are considered: current Bosch EDC17 and prospective MED1 generation as

shown in Fig. 1.2. These constraints are dealt with two different approaches to

the problem: A flexible and implementable to current generation ECU method

and a detailed modeling that utilizes next generation hardware capabilities.
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Figure 1.2: Implementation Environments

1.2 Contributions of the thesis

Contributions of the thesis can be highlighted as follows:

• Identification of Diesel Engine Airpath: Exciting speed and fuel quantity

channels with chirp signals, MAF and MAP outputs are estimated using

nonlinear finite impulse response (NFIR) models.

• Data driven disturbance observer for Diesel Engine Airpath: A novel distur-

bance observer based on system identification is developed and applied on

real engine.

• GPR based modeling structure for Airpath: A flexible modeling structure

for diesel engine airpath is developed. Its feasbility and performance are

demonstrated with real engine data and simulations.

• Data driven disturbance observer based robust control for the Diesel En-

gine Airpath: A discrete-time sliding mode controller combined with a data

driven disturbance observer is utilized for the robust control of the airpath.

• Gaussian process feedforward modeling for Diesel Engine Airpath: Feed-

forward terms for the airpath controller are modelled via Gaussian Process
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Regression (GPR) and its benefit in the overall control is demonstrated on

validated engine model.

• GPR based sliding mode controller synthesis: A novel sliding mode controller

whose equivalent control part is estimated based on the GPR airpath model

is developed and its performance advantages are demonstrated.

1.3 Outline of the thesis

Basic knowledge on the diesel engines are presented before the literature survey

in Chapter 2. A short system identification summary and implementation on the

diesel engine airpath is explained in Chapter 3. Data driven disturbance observer

and disturbance observer basics are presented in Chapter 4. Physical component

models and Gaussian process regression models for overall diesel engine airpath are

provided in Chapter 5. Proposed DOB and GPR based controllers are developed

in Chapter 6. Simulation and experimental results related to airpath identification,

modeling and control are presented and discussed in Chapter 7. Finally, the thesis

is concluded with several remarks in Chapter 8 and possible future directions are

indicated.

1.4 Publications

• V. Aran, M. Unel, “Gaussian process regression feedforward controller for

diesel engine airpath”, International Journal of Automotive Technology 19

(4), 635-642, 2018

• V. Aran, M. Unel, “Data driven disturbance observer design and control for

diesel engine airpath”, 11th Asian Control Conference (ASCC 2017), Gold

Coast, Australia, 2017
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• V. Aran, M. Unel, “Feedforward mapping for engine control”, 42nd Annual

Conference of the IEEE Industrial Electronics Society (IECON 2016), Flo-

rence, Italy, 2016

• G. Alcan, M. Unel, V. Aran, M. Yilmaz, C. Gurel, K. Koprubasi, “Predicting

NOx emissions in diesel engines via sigmoid NARX models using a new

experiment design for combustion identification”, Measurement, Vol. 137,

Pages 71-81, 2019

• G. Alcan, M. Unel, V. Aran, M. Yilmaz, C. Gurel, K. Koprubasi, “Diesel

engine NOx emission modeling using a new experiment design and reduced

set of regressors”, IFAC-PapersOnLine, Vol. 51, Issue 15, Pages 168-173,

2018

• T. Boz, M. Unel, V. Aran, M. Yilmaz, C. Gurel, C. Bayburtlu, K. Ko-

prubasi, “Diesel engine NOx emission modeling with airpath input chan-

nels”, 41st Annual Conference of the IEEE Industrial Electronics Society

(IECON 2015), Yokohama, Japan, 2015
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Chapter 2

Diesel Engine Airpath

Background and Literature

Survey

An engine is a machine that uses energy from steam or liquid fuel to create mo-

tion. First type of them appeared as steam engines. They burn fuel outside the

“engine” and heat up the water and use steam pressure to create desired motion.

That idea triggered the well-known industrial age. Later, steam engines were re-

placed with internal combustion engines (ICE) in transportation area due to better

fuel efficiency and relatively light weight of the internal combustion engines. How-

ever, steam engines are still used primarily in power generation and some marine

propulsion applications. Internal combustion engines, unlike their steam counter-

parts, utilize combustion pressure to create the motion directly. Spark ignition

(SI) engine is the first type of them and invented by Nikolaus Otto in 1876. This

engine opened the way to the practical automobiles as we know. However, an-

other German engineer had been searching “ideal heat-driven machine” [2] and

compression ignition (CI) engine was invented by Rudolf Diesel in 1892. Now the

engine and its standard fuel are both called “Diesel”. Although it is mechanically

more complex, superior fuel efficiency of diesel engine granted its dominance in

the commercial vehicles. Diesel exhaust is classified as probably carcinogenic to

7
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humans in 1988 by United Nations International Agency for Reseach Cancer [3].

Following this result, governments set succesively stringent emission regulations

for diesel engines. Simultaneously, the classification was updated as carcinogenic

to humans in 2012. Thus, currently vehicle emission control technologies and its

audition mechanism are critical. Electric motors with increasingly efficient bat-

tery technologies are threating existence of diesel in the transportation but fuel

efficient and cost effective emission reduction technologies may elongate its life.

2.1 Diesel Engine Airpath

Background information for the diesel engine domain is presented in two main sub-

sections. First, general diesel engine information and role of airpath in the general

engine operation is presented. Then, specific airpath components are introduced.

2.1.1 Diesel Engine Basics

In order to explain the role of airpath in the engine operation, ideal thermody-

namic cycle and emission formation basics are presented in this subsection. All

heat engines follow a similar pattern; namely, compress, combust and expand. In

this thesis, four-stroke diesel engine is the focus. These four strokes are intake,

compression, expansion and exhaust. Since all these events occur in the same

cylinder but at different times (or crank angles) it is called reciprocating engine.

These set of events are called a cycle. An ideal constant pressure cycle for a typical

turbocharged engine is depicted in Fig. 2.1. In the cycle graph on the right, ideal

intake pressure Pi, ideal exhaust pressure Px, maximum cylinder pressure Pmax,

atmospheric pressure Pa, cylinder volume at crank angle zero (i.e. top dead cen-

ter) Vmin, cylinder volume at crank angle 180o Vmax are shown. The air trapped

in the Vmax is compressed to Vmin, as a result Pi reaches to the Pmax in the pro-

cess between 1-3. An ideal combustion of injected fuel in a constant pressure is

assumed between 3-4. Pressurized gases in the cylinder is expanded to Vmin in
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Figure 2.1: Ideal Constant Pressure Cycle

order to deliver torque to the crank in 4-5. Exhuast gases are emitted out in 5-6

via exhaust port. Intake port opened and cylinder is filled with air during 6-1.

The work in such a cycle can be calculated as

Work =

∮
P∂V (2.1)

and similar to [1], the described ideal cycle work is expressed as

Work = Pi(Vmax − Vmin)
Q∗

cvTi(γ − 1)
(

rc
rc − 1

)ηf,i − (Vmax − Vmin)(Px − Pi) (2.2)

where Ti is the intake temperature, rc = Vmax

Vmin
is compression ratio, Q∗ is the

heat generated by combustion of the injected fuel and ηf,i is the indicated fuel

conversion efficiency. Increased intake pressure Pi, results in increased engine

output work. Therefore, for a given engine volume and pressure ratio, increasing

charge air to the cylinder, hence increasing the inlet pressure, is desired. This

functionality is assigned to the superchargers or turbochargers which are additional

engine components outside the cylinder.

Creating mechanical work is main aim of the engine but this should be done under

certain emission constraints for the modern onroad diesel engines. Diesel engine

emission control technologies can be categorized under two headlines: Combus-

tion control and after combustion treatments (i.e. aftertreatment technologies).
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First one focuses on conditioning in cylinder thermodynamic and chemical prop-

erties. For a general hydrocarbon, which is defined as CaHb, the ideal complete

combustion equation [1] is expressed as

CaHb + (a+
b

4
)(O2 + 3.773N2) = aCO2 +

b

2
H2O + 3.773(a+

b

4
)N2 (2.3)

where there is just enough amount of the oxygen to convert all reactans to oxidized

products. This fuel/oxygen ratio defines stoichiometric (theoretical) proportions.

The stoichiometric air fuel ratio [A
F

]s is calculated from (2.3) as

[
A

F
]s =

34.56(4 + b
a
)

12.011 + 1.008 b
a

(2.4)

Two defined major cancerogenic diesel emission types are nitrogen oxides NOx

and soot. Formation of these two are characteristically closely related with com-

bustion temperature and fuel/air equivalance ratio ([A
F

]−1
s ). The exact numbers

changes with respect to the engine piston and injector design as well as internal

flow characteristics (such as swirl and tumble) but general formation trends are

similar to the characteristic depicted in Fig. 2.2 where increasing concentration of

the emission is represented with darker shades.

Figure 2.2: NOx-Soot Formation Characteristics adapted from [5].
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Overcharging of the cylinder in order to increase produced work and decreasing

the excess air is desirable for an efficient engine operation as explained above. This

dilemma is solved with exhaust gas recirculation (EGR). Exhaust gas recirculation

is implemented via connecting exhaust line to the intake line and in order to control

the flow rate on the line, a valve is introduced as depicted in Fig. 2.3.

Figure 2.3: A cooled EGR application scheme

EGR allows increasing the mass flow in the intake manifold therefore increasing

the intake pressure while keeping oxygen concentration of the intake flow under

control. For a stoichiometric combustion there is no oxygen in the exhaust gas and

mixing exhaust with fresh air decreases the total oxygen concentration. Another

property of exhaust is that its heat capacity is higher than that of the fresh air. The

mixture has higher heat capacity and less oxygen concentration with respect to

same amount of fresh air. Remembering the behaviour depicted in Fig. 2.2, EGR

is both decreasing the combustion temperature and increasing the equivalance

ratio; therefore an effective measure against NOx formation. But apperantly it

has a soot penalty. This discussion leads to complex combustion optimization

questions and this is beyond the scope of this thesis.
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Other airpath components will be discussed in detail in the following subsection

and they are mainly either manipulating inlet manifold pressure or changing inlet

manifold oxygen concentration.

2.1.2 Diesel Engine Airpath Components

A typical modern diesel engine has configuration depicted in Fig. 2.4. Different

configurations are possible but main elements of the heavy duty diesel engines are

presented here.

Figure 2.4: Common airpath components and a sample layout

The air from ambient is filtered through a generally paper filter to eliminate in-

gestion of dust and particles to the compressor. Typically a mass air flow (MAF)

sensor is placed just after air filter (where flow is uniform) and it also provides tem-

perature output. Compressors of the autmotive turbochargers are radial machines
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and their power is provided via turbines through a shaft on bearings. Temper-

ature of the compressed air increases and since the engine block is a constant

volume pump increased intake gas temperature reduces total mass flow rate. So

compressed air is cooled as well as EGR. A throttle is placed just after the charge

air cooler and it is used for low air flow requirements of certain operation modes.

Since they are affected by soot deposits of the exhaust gases, boosted air pressure

(a.k.a. manifold absolute pressure MAP) and temperature are measured after the

charge air cooler and before the EGR mixing point. Inlet and exit flow through

cylinders are regulated via intake and exhuast valves. Generally, they are con-

trolled by mechanical means but there are also variable valve timing actuator

applications. Combustion products are fed to the exhaust manifold and their ki-

netic energy is harnessed in the turbines and this is regulated via variable nozzles

(or wastegates). Finally, turbine out gasses are fed to the aftertreatment systems

for further emission reduction.

2.2 Literature Survey

Airpath control literature for diesel engines is presented here from output selection,

modeling and estimation and control algorithm selection point of views. These are

general diesel engine control papers; however, their findings are evaluated from

heavy duty diesel engine point of view.

2.2.1 Output Selection

Main airpath components of the diesel engine, turbocharger and EGR, are in-

troduced in order to increase power density and specific fuel consumption while

decreasing exhaust emissions. An airpath control system is used by a performance

and emission (P&E) calibration engineer who is reponsible for tuning the engine

parameters in order to meet legal emission limits and vehicle performance targets.

From calibration engineer point of view selection of output parameters are im-

portant. The main aims of the P&E calibration engineer can be boiled down to
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the control of particulate matter emissions (PM), Nitro Oxide compounds (NOx)

emissions and specific fuel consumption (SFC). Output selection and related sensor

layouts are dependent to the various criteria; namely, packaging of hardware, type

of applications, emission level, sensor technology, airpath and aftertreatment con-

trol, diagnostics, calibration complexity, lifetime targets etc. In the literature, the

evaluations of the outputs are naturally from the academic point of view. On the

other hand, from the industrial point of view this problem is more complex. First

academic literature will be presented. In their leading research Nieuwstadt et.al.

[20] showed that setpoint and output selection is more important for achieving

engine performance and emission outputs than the control algorithm. However,

these results are based on European driving cycle which is nearly steady test cy-

cle and recent emission cycles like WHTC (World harmonized transient cycle)

for heavy duty diesel engines have mainly composed of transient operation points.

Later, output selection problem is widely argued in the context of model predictive

control. [90].

Common selection for outputs are compressor mass flow (MAF) and intake mani-

fold absolute pressure (MAP), since these two parameters are directly measurable

and combustion related. A challange with this type of output selection with model

predictive control is discussed in [88] . The problem is that if MAF setpoint is un-

feasible than MAP setpoint tracking becomes poor. Extensions of this problem are

discussed in [90]. This paper is dedicated to output selection for Model Predictive

Controller (MPC) in diesel engines. It is stated that only case-specific solutions

to the unfeasible MAF setpoint problem are presented so far. In the paper it is

shown that MAF and MAP control is inferior in terms of keeping EGR rate intake

manifold lambda (or intake manifold oxgen concentration) at the desired values.

On the other hand, motion planning approach [89] proposes solving EGR-VGT

coupling and unreachable desired value problems via model based constraints on

setpoint trajectories.

Although MAF and MAP are combustion related parameters, there are other

measurable or calculable physical parameters which have direct relations to the

combustion outputs. Exhaust oxygen concentration is selected in [7]. Exhaust
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oxygen sensors (UEGO) are slow but strongly affected by EGR rate. NOx reduc-

tion with the use of UEGO instead of MAF is reported but setting a constant

lambda resulted in change of combustion parameters. NOx reduction is resulted

not only from the controller but also (mainly) combustion input setpoint changes.

Extensive analysis of UEGO sensor is not presented. However, performance re-

sults in terms of emission have been found comparable with commercial controller.

Similar selections are done in [25]. Air to fuel ratio and burned gas fraction pa-

rameters are selected in this work. But measured parameters are MAF and MAP.

Oxygen concentration parameters are modelled. The problem is stated as emission

reduction and because of direct relation with emissions, Air to fuel ratio (AFR)

and burned gas fraction (F1) are calculated and selected as output variables.

EGR-fraction (or EGR-rate) is another direct alternative for MAF. It is used in

[14] with MAP for the purpose of reduction of computational complexity faced in

model predictive control. Aiming minimization of the pumping work and emission

control, EGR-rate and intake manifold lambda are selected as outputs in [32].

It is stated that for pumping work minimization, using EGR-rate and lambda

instead of MAF and MAP provides direct information. However, in their recent

study [90] EGR-rate and P3-MAP (P3: exhaust manifold pressure) are selected

as outputs while using lambda as a constraint in model predictive control with

pumping loss minimization objective besides emission control objectives. Same

sensor replacement of MAF sensor with P3 sensor was also proposed previously

[90] for cost reduction purpose.

Direct emission control approach is becoming applicable with the new develop-

ments in sensor technology. This is important because of its expected superiour

emission robustness with respect to the other feedbacks or models. Recent work

in [46] has focused on the control of EGR and VGT in addition to the swirl valve

and start of injection angle with NOx and PM feedback. Industrial NOx sensor

and emission laboratuary level PM sensor are used. Aim of the research is to show

possibility of direct emission control in real engine. Significant reduction in cali-

bration complexity is reported. In another work [11] for air path control of heavy

duty diesel engines compatible with Euro 6 emission standarts, Engine out NOx
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(specific NOx ), lambda and pressure difference between exhaust and intake man-

ifolds are selected as controlled outputs. This selection is also aimed to robustly

manintain engine out emissions in the legal monitoring levels during lifetime of the

engine. However, it should be noted that the complex and increased number of

sensor application means increased costs and emission robustness problems with

aging of the sensor.

2.2.2 Modeling and Estimation

Modern diesel engine airpath is generally composed of a snorkel, air filter, com-

pressor, charge air cooler, throttle valve, egr mixer, intake manifold (sometimes

with variable swirl valve), engine block (variable valve timing can be added for

specific variants), exhaust manifold, turbine, aftertreatment system and the con-

nection pipe routing for all. For this work, system boundary is taken between

compressor inlet and turbine outlet. The focus will be on control oriented models.

Continuum fluid dynamics are represented with Navier-Stokes equations. In most

general form it is a set of Partial Differential Equations (PDE). If the flow is

accepted as incompressible, equation becomes Differential Algebraic Equation

(DAE). Under the one dimensional flow assumption resulting motion can be repre-

sented by an Ordinary Differential Equation (ODE). Models with these latter two

types of equations are compared for diesel engine air system modeling in the thesis

[37]. Application of the flow and pressure models to the real world engines showed

that the models have steady state deviations. Five papers are published from the

thesis and they are related with model augmentation from different perspectives;

namely, ODE model based EKF, Simultaneous estimation and mapping of the

bias, DAE based EKF and comparison of DAE and ODE estimators. Observabil-

ity analysis for the suggested methods are presented. Diesel engine airpath states

of intake manifold pressure, exhaust manifold pressure, turbine speed, compressor

mass airflow, volumetric efficiency are selected. All the related validation tests are

done in real world dynamometers with engines from the SCANIA. Comparison of

DAE and ODE estimators showed that for the same accuracy models, DAE based
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approach needs less computational effort in terms of step length. ODE models are

found hard to implement to the current truck ECU’s.

Core of diesel engine airpath is turbocharger and EGR. Their interaction can be

identified with intake manifold and exhaust manifold pressure states. Applica-

tion of intake manifold pressure sensor is common but exhaust manifold sensor is

not preferred due to implementation difficulties. Exhaust manifold pressure es-

timation is presented for diesel engine airpath in [36]. This modeling approach

differs from other literature with the consideration of turbine speed in the exhaust

manifold pressure estimation. A modified Newton-Raphson method is used. Mod-

ification is done for predefined number of iterations and same calculation load for

each time step. Validation and comparison with orifice based equation model is

done in simulation with higher fidelity models. Simulation results showed superior

performance of the proposed method over orifice model.

Two different in cylinder modeling based exhaust manifold pressure estimation

methods are compared in [34]. Although the research is spark ignition engine

oriented, airpath is still the same. One of the two proposed exhaust manifold

estimators is based on energy conservation during the gas exchange process in an

assumed ideal cycle. Second method is based on exhaust manifold pressure effect

on in cylinder residual exhaust gas effect. This effect will be less with increased

compression ratio (as in the diesel engines). Dynamometer step tests are used for

comparison and verification. Energy based method was found more robust and

residual gas method is over sensitive to the air mass errors.

Another truck engine model with gas flow observer design is presented in the thesis

[39]. The study aims to improve a prior MAF estimator and extend a prior diesel

engine airpath model. This study includes modeling of airpath with exhuast brake

(this is a heavy duty specific actuator). First noise charaterization and modeling

with respect to the turbine speed is tried and the presented approach is failed.

In order to avoid computational burden of model linearization Constant Gain

Extended Kalman Filter is used instead of Extended Kalman Filter.
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Using Kalman Filters to improve airpath model accuracy is shown by [9]. Based

on the results of the [37], DAE models are used in the thesis. Both Unscented

Kalman Filter and Extended Kalman Filter methods are used to predict lambda,

EGR fraction, MAF, intake and exhaust manifold pressures. UKF is tried in order

to see benefits of a gradient independent approach. Real engine tests showed that

EKF and UKF have similar accuracies but different computational characteristics.

Maximum stable time step for UKF is smaller than EKF and UKF needs more

computational load. EKF is further improved to adapt covariance matrices (Q

and R) with respect to the operating point. The reported MAF estimation is

suggested for MAF sensor replacement in case of a sensor failure.

A sensitivity analysis for simplified mean value physical models for the diesel en-

gine is presented in [35]. The study aims to design a model based diagnosis system

for diesel engine. EKF, sliding mode, open loop model and high gain observers

are compared in the thesis. For the diagnosis tests, sliding mode and adapted

open loop model observer are selected because of their superior model parameter

uncertainity robustness. Since sliding mode observer needs 5 times faster simula-

tion in comparison to the open loop model, open loop model is suggested for ECU

implementation. The experiments for the validation and parametrization are done

on heavy duty diesel engines.

In the leading study [40], problems with diesel engine mean value models and

control are shown and remarks on plant characteristics are presented. MIMO

identification linear models of EGR and VGT to MAP and MAF showed right

half plane zeros in the transfer functions from EGR valve position to MAF and

MAP; thus the later famous non-minimum phase behaviour of the EGR line is

explained. Also relative gain array analysis showed that for a decentralized control

architecture EGR valve should be selected for controlling flow and VGT for the

MAP; but for another operating point the opposite is desirable (sign reversal

property of airpath). Physical intuitions behind the phenomena are also explained.

Simple mean value engine model for complete diesel engine airpath simulation

inside ECU is presented in [44]. The model lacks EGR line only turbocharger is
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added to the modeling structure. Parameter tuning is done with physical values

and error minimization optimization from real world driving data. Simulations

are unstable over 8ms time steps and this may be problem in a ECU application

(Generally 10, 20, 100ms tasks are used). Real world truck engine data is used for

validation.

Linear parameter varying model implementation on the diesel engine airpath is

presented by [47]. Linear models are previously shown to be successfull at simu-

lating engine behaviour for limited engine operation region. Performance of the

modelled states, namely airflow and intake exhaust pressures is measured with

variance-accounted-for (VAF) criteria. Each output is modelled via MISO sub-

system model. The physical understanding of the systems are used in subsystem

identifications. VGT is excited with pseudo-random binary sequence (PRBS) sig-

nals; and EGR, fuel quantity, engine speed input signal types are white noise in

the parameter identification experiments for the models. Model is validated with

transient engine tests. Hammerstein model is used for benchmark. This model is

used in H-∞ control in [48].

Complete mean value physical modeling for the diesel engine airpath is presented

in [49]. This model aims to both simulation and analysis besides control. ODE

based model structures are used for airpath submodels. Model has states of in-

take and exhaust manifold pressures, oxygen mass fractions of both manifolds,

turbocharger speed, and actutator dynamics. The study also includes torque out-

put besides modelled outputs of manifold pressures, compressor flow and turbine

speed. Model parameter identification tests are EGR and VGT position steps

at different operation regions. ODE based model structure are used for flow

models. Model validation is done with engine tests. The model is reported to

have essential properties of the system (e.g. non-minimum phase behaviour in

the channel EGR to MAP). The model Matlab software is downloadable from

http://www.fs.isy.liu.se/Software.

Real gas dynamics behaviour is known to be represented as PDEs. In his disserta-

tion [43], Stockar presented a novel solution for PDE’s through solving decoupled
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set of ODE’s. A crank angle resolution (i.e. engine rotation frequency pulsations

are taken into account) modeling for engine is also presented as implementation.

Presented model can predict the pressure wave propagations inside the tubes.

Level of complexity is different from other mentioned literature. This approach is

alternative for current 1-D modeling of engine. Model is tuned with higher fidelity

1-D gas dynamics models (i.e. GT-Power engine models). For the validation, 1-D

gas dynamics model and the proposed model are compared with real engine re-

sults. Proposed method has similar performance with 1-D gas dynamics models.

For the assesment of computational complexity, further investiagations are needed

since only proof of concept is presented. This type of modeling is interesting from

airpath control point of view when variable valve timing is the case in a high speed

engine.

Compressor is one of the key elements of the diesel engine airpath. It is also in

the center of the turbocharger hardware protection efforts in a real world diesel

engine. Presented compressor model [41] with surge choke regions is beneficial from

hardware protection point of view. Method is based on an algorithm determining

turbocharger map in the engine test bench including surge and choke regions. A

surge control algorithm is also presented. In order to model real world scenarios,

correction characteristics with changing ambient temperature and pressure is also

investigated. Benefits of extra throttle between sequential turbocharger system is

shown. Experimental data for tuning and validation of the study is collected on a

GM SI engine.

Experiment design is a key point of modeling or finding model parameters. Op-

timal experiment design for airpath model is studied in[45]. Speed, injected fuel

quantity, EGR valve position, VGT position and swirl valve position are defined

as manipulative inputs and MAF and MAP are the model outputs. Swirl valve is

left outside in the experiment design since it has only open and close positions for

predetermined conditions. Focus of the paper is to estimate five model parameters

namely, intake and exhaust manifold volumes, turbocharger efficiencies, and time

constants for EGR, VGT, and turbocharger. Based on a nonlinear ODE diesel
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engine airpath model, optimal experiment design problem is defined with the E-

criterion (max[λmin(F )] where F is the Fischer information matrix). Total cycle

time is 20 s and frequency resolution is 0.05 Hz. Maximum designed frequencies

for the input signals are EGR valve < 10Hz, VGT < 5Hz, engine speed < 2Hz,

and fuel quantity < 4Hz. Multisine signals are used. Design optimization of input

signals are done with three different strategies: RMS, frequency and RMS with

varying ranges with respect to the frequencies. Design optimization is performed

for four different operating points. Results of three strategies with white noise

inputs showed that frequency optimization has best results for the E-criterion.

Tuned model performance is shown for validation of the modeling.

Gaussian process regression (GPR) has gained popularity in dynamical systems

modeling and estimation in the last decade. An up-to-date GPR related dynamic

systems literature can be found in [56]. One of the most useful recent updates of

the system identification theory is accepted as “kernel methods” which are imple-

mented as Gaussian process models [57]. In this study, GPR estimations for linear

time invariant and stable systems are presented. It is stated that such methods

improve the estimation accuracy significantly. A new concept called numerical

Gaussian process (GP) is discussed in [58]. This new definition of GP aims to

model physical processes that are described by partial differential equations via

GPR method. This method utilized physical knowledge in the model construc-

tion but it has a cubic computational complexity with respect to the size of the

training set. Another dynamical system modeling study which is based on GPR

is presented in [59]. Rotorcraft dynamics GPR-NARX model is constructed for

the estimation of pitch, roll and yaw rates. It is compared with the previous

physical law based modeling software and shown that the GPR-NARX approach

has better estimation performance. Similary, robotic motion modeling is popular

in the literature and a recent example can be found in [60]. This study utilized

GPR for modeling human motions in 6D. Resulting model accuracies are found

significantly better than the state-of-the-art methods. There is also an automo-

tive specific modeling software for specifically emissions modeling based on GPR

methods [61]. This is one of the best emission modeling tools in the industry.
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2.2.3 Control Algorithm Selection

PI(D) based industrial control algorithms are common. With the variations in

the application, PID control is one of the standard methods in the airpath control

literature ([20], [25], [8], [21], [32], [13], [23]) besides increasingly popular model

predictive control ([88], [12], [26], [27], [18], [90], [19], [14]). Other control methods

such as: Sliding Mode Control ([30], [29], [33], [6]) , H-∞ control ([17] ,[87]), LQG-

LTR [7], Adaptive Control [24] and Control Lyapunov Functions [86] are also found

in the airpath control literature with lower frequency. Setpoint selection and

controller architecture interactions are reported to be remained unexplored[25].

Latter the discussion is done only in the model predictive control (MPC) context

[90].

Aiming the objective comparison of control methods on diesel engine airpath, PI

control schemes are implemented in order to compare output and sensor archi-

tecture selection benefits [20]. This paper includes 4 different PI controllers and

one Lyapunov based controller. Differences between PI controls are their feedback

sensors and control outputs. Controller performances are evaluated via resultant

feedgas emissions (i.e. NOx, HC, CO, PM) on European drive cycle dynamometer

tests. But the results of the work were inconclusive in terms of control algorithm

comparison between Lyapunov, Rank one PI and PI, since the used drive cycle

was mainly steady and tuning of each one of the controller was not in the same

maturity. It was reported that change of setpoints is dominant over change of

controller for the tested conditions.

Although measured variables are commonly intake manifold sensor and mass air-

flow sensor outputs for commercial diesel engines with EGR and VGT, perfor-

mance variables are selected as intake burned gas fraction (F1) and air to fuel ratio

(AFR) in [25]. Nonlinear plant is modelled with respect to the engine speed, fuel

quantity, EGR and VGT positions using steady state models. System is linearized

around certain operating points of speed and MAF. Robust control problem is de-

fined for a linear controller. Fuel quantity and speed disturbance effects are taken

as inputs to the setpoint generation only. Resulting system is found rank deficient
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for the optimized values of the selected performance outputs. LQG control for

linearized plant around one operating point is presented. The design is aimed

to solve the plant singularity and setpoint generation errors by applying singular

value decomposition of the plant DC gain matrix. Dynamometer fuel step test

results showed faster responses in AFR and slower responses in F1 .

Transient performance of airpath has gained more importance with introduction of

new combustion concepts like Homogeneous Charge Compressed Ignition (HCCI)

and new emission regulations. Another side of the solution for the problems related

with the setpoint trajectories are presented in [8] [89]. The implementation is done

in HCCI engine and this type of engines are known to have critical combustion

characteristics which needs precise control of the transients of the airpath. Feed-

forward motion planning and control has inputs of intake airflow and EGR flow.

Feedforward controller also takes constraints into account in this trajectory gen-

eration stage. In the second stage, control for realizing flow trajectories via EGR

and VGT position is done with seperate SISO PI controls on EGR and VGT.

Luenberger type EGR flow observer is used to estimate EGR flow on the valve.

PI control loops acted on normalized areas of the valves. ECE cycle transient

dynamometer experimental results are presented for performance validation.

Optimum control for emission and performance is the main objective for most of

the engine control applications. VGT position control based on a neural network

which is trained with explicit optimization results for the best SFC and NOx is

presented in[21]. This control is replacement of open-loop position control maps

with a neural network (NN). The ouput of NN model, optimum VGT positions

for maximum power and minimum emissions are directly sent to the actuator.

Comparison with a commercial controller is presented with dynamometer mea-

surements. Stability and robustness of the proposed method are not discussed.

Another relatively simpler (in terms of calculation effort) online optimum control is

presented in [32]. Control problem is formulated as SISO EGR and VGT controls

for EGR-rate and lambda outputs. Pumping loss minimization, turbocharger

overspeed protection, desired value limitation control objectives are handled with
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additional feedback loops (total 4 PIDs). In addition to the airpath regulation

via EGR and VGT, engine torque control using airpath outputs is proposed. Also

an automatic tuning method with least squares regression is realized on ETC

simulations. In order to calibrate trade off between EGR errors and boost building

up, weighting factors to the objective function of the automatic controller tuning

are added. Finally, ETC dynamometer tests to compare the proposed controller

with current production regulator (Scania) showed pumping loss decrease when

lambda and EGR rates for the both controllers are the same.

Airpath control literature is dominated by model based control approaches. Appli-

cation of directly data-driven techniques such as Virtual Reference Feedback Tun-

ing (VRFT)[13] is rare. This novel method aims to identify controller parameters

(i.e. PI gains) directly from a training data. An optimum prefilter to the data and

extended instrumental variables with variance weighting are the contributions to

the standard VRFT method. In order to validate the proposed strategy of MIMO

VRFT method, diesel engine airpath control problem of MAF, MAP tracking is

selected as the case. Valve position PRBS signals are used for identification of

the system. Comparison of MIMO VRFT results with SISO VRFT showed that

MIMO design has expectedly better decoupling and better overall tracking per-

formance. Compared to the model based design method, proposed technique is

shown to be preferable if modeling errors are expected as in the simplified diesel

engine airpath models.

Model uncertainity problem of the diesel engine airpath is treated with Qualitative

Feedback Theory (QFT) and MIMO PID structure in [23]. System is modelled

using 15 points selected (i.e. operating points are based on speed and fuel quan-

tity) in the NEDC region with EGT and VGT step tests. For the selected 15

operating points variation in the first order delayed model parameters of MIMO

system is accepted as plant model parameter uncertainity. The controller design is

based on QFT framework. Since the resulting system becomes ill-conditioned for

decentralized control, a static forward path decoupler is designed. Dynamometer

step test showed dramatic difference in the step responses between controllers with

and without decoupler.
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Although industrial implementation of model predictive control is not as common

as PID control, it is very popular in the recent airpath control literature. In a

leading application paper of model predictive control for diesel engine airpath[88],

constrained optimal control using multilinear model is presented. Local models

are identified with 4 inputs (i.e. EGR and VGT setpoints, Speed and Fuel). Input

signals are created based on the idea of fixing an operating point for each region

and superposing stochastic deviations which have a system compatible frequency.

Explicit model predictive control is proposed for online application. Actuator po-

sition limitations are regarded as constraints. Model states are estimated using

a Kalman filter. Region switching behaviour is tested and smooth behaviour is

observed at dynamometer. FTP and NEDC tests showed superior tracking perfor-

mance and better resultant emission output of proposed control over production

ECU control of the selected engine. Controller robustness against environmental

conditions is seen as a risk.

Online optimization is proposed in [12] for diesel engine mode predictive control.

Their unique online active set strategy is extended for nonlinear system and applied

to the diesel engine airpath. Model identification of the work is similar to the

model of the [88] with difference of second order local model structure instead of

first order system with delay. A smaller region, that consists of two local models,

is considered. Authors have developed online quadratic programming for linear

models and this work adds multi model switching therefore, variation in the related

matrices (e.g. Hessian and constraint matrices). Nonlinear optimization problem

is handled via solving a varying quadratic program (QP). The complete algorithm

for diesel engine airpath is implemented on the dSPACE Autobox to run with

50ms sampling time. Implemented algorithm used control horizon of 0.25s and

prediction horizon of 5s. Real engine tests showed that QP iterations are around

at most 10 and all of the calculations are finished in one sampling time. MAF and

MAP tracking performances of the controller were fast but there were oscillations

in the steady region. Aim was the realization of the online model predictive control

on the real engine. Although it is not implemented on the real engine ECU and
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the local models were limited with two regions, realizability of the algorihm is

presented.

Practical implementation on current real world engine hardware is focus of the

model predictive control study of [26]. Piecewise affine models are used for the

given model predictive control framework. General derivation and application

of model predictive control for diesel engine airpath is discussed. Explicit opti-

mization method is followed in order to reduce calculation time burden (with the

cost of increasing memory consumption [27]). The paper is focused on satisfy-

ing constraints under steady state disturbances. The algorithm is implemented

on real engine ECU. Actuator position limitations and engine out NOx emission

constraints are imposed. By facilitation of a soft constraint, actuator position

agressiveness is calibrated. Results of different tuning are presented and result of

constraint violations under steady state disturbance showed that NOx constraint

is highly affecting the actuator stability. Model uncertainity is discussed as cause

of measured instabilities with constraints. Later a more generic discussion on

model predictive controller for diesel engine airpaths with results in two stage

turbocharger engines are presented in a book chapter [27]. Latter work includes

transient cycle tracking results of the controller in the first paper. Trade-offs of

ECU memory and computation time are compared for explicit and implicit model

predictive controllers. Model predictive controllers are found powerful as an air-

path controller because of MIMO controller behaviour (i.e. Handling with VGT

EGR coupled dynamics), ability to impose hardware limitations and compatibility

with higher level constraints such as emissions. Its problematic sides are weakness

to the model uncertainity and computational complexity.

Stability problems are reported for MPCs in the previous works. Considering dead

time as one of the sources of instability for the system, [18] added a state observer

for compensating dead time. They used 6th order state space model for MAF and

MAP with respect to the EGR and VGT positions and included a Pade approx-

imation for the dead time. Simulation of the proposed explicit MPC algorithm

showed effectiveness of the dead time compensation. Shown responses are also

notable from transient surge and smoke avoidance points of view. The algorithm
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is implemented on rapid prototyping ECU of a disel engine and tuning of the hori-

zon depths (i.e. Control horizon and prediction horizon), dead time compensation

effects and transient set point tracking are investigated experimentally. Results of

the horizon tuning confirmed the computational applicability of algortihm to the

real world engine. Similar to the simulation results, experimental results showed

the improvement gained by the dead time compensation at transient setpoint

tracking. At the end, implemented controller’s transient performance is compared

with the reference engine PID controller. Better overall tracking errors are re-

ported in the tested transient cycle. It is reported to have drastic improvements

on certain sections of the test.

Output selection effects on MPC is discussed in [90]. Two candidate sets were

MAP, MAF and EGR fraction(rate) (xegr), pumping loss (pmep). Implicit MPCs

are designed for both control outputs with an additional integral action for EGR

rate. Minimization of the changes in the control signal is added to the cost function

to avoid oscillations. This publication also includes an extensive set of constraints

on model predictive control with respect to the previous MPC airpath literature.

Pumping loss minimization is one of them. Authors have a previous work for

pumping loss minimization with air control in which the controller is PID and

they compared results with this work [32]. The solver described in [12] is used in

the study. Only simulation results are presented for comparison and evaluation

of the performances. Two simulations are performed to see the modeling error

effect: additional 10% modeling error in EGR and VGT areas and with a baseline

model. For the presented model and problem formulations, overall ETC simu-

lation performance of MPC xegr, pmep control has 6% lower average pumping

losses with respect to the previous PID design and 3% better average xegr track-

ing performance. Although MPC controller results are still better, the difference

between PID and MPC xegr, pmep controller error averages decreased in the 10%

modelling error simulation and xegr and pmep performance differences become 3%

and 1%, respectively. Proposed MAF, MAP MPC has the worst results in terms

of xegr and pmep for both simulations with a dramatic difference. Real engine

implementation for the MPC xegr, pmep controller is found feasible with a need
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of total 1.7 MB memory and comparable run times with a reference implemented

MPC algorithm.

Linearization of nonlinear models or using local multi-linear models simultaneously

is common in the MPC airpath literature. Nonlinear model predictive control was

accepted as infeasible to implement on diesel engine control before the work of [19].

Based on the Nonlinear Model Predictive Control NMPC scheme of [4] an online

NMPC controller for diesel engine airpath with a generic NMPC approach is pre-

sented. For the stability discussion of the method reader is directed to the [4]. The

method is model independent and a particular sequential quadratic programming

routine is used in the solver. The open loop stable charateristic of diesel engine

airpath is utilized to reduce complexity of the optimization problem. Simulations

and experiments showed that there exist unstable valve position results due to the

impossible set points of MAF and MAP (i.e. achieving both of the targets are not

possible at the same time and resultant valve positions are chattering around the

closest of the two). Calibration parameters of weighting for MAF and MAP errors

are shown as tunability characteristics of the method in the simulations. Overall

experimental NEDC tracking performance showed maximum 5% MAP overshoot.

When it is compared with other MPC approaches, computational efficiency and

nonlinear model usage ability are important. Previously reported weakness of the

MPC was the performance problems due to the model inaccuracies. This approach

overcomes the model complexity barrier of the MPC.

In order to decrease the effects of the disturbances (i.e. measured disturbances of

engine speed and fuel quantiy) on the control, rate based tube MPC is proposed

by [14] for the diesel engine airpath. It is noted that, because of the physical

limitations, rates of the speed and quantity are limited with respect to the absolute

values. Rate based modeling uses state increments (so-called rates) instead of

absolute state values. The tube-mpc scheme is first introduced by Mayne in 2005

[28]. Basic idea is to limit state trajectories into a tube by introducing relevant

contraints to the optimization. Approximate algorithm is implemented on real

engine and in simulation for computational simplicity. NEDC test simulations and

steady state tests showed that controllers can track the setpoints while honoring
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the constraints. Promised robustness advantage of the controller is not analyzed or

tested. Costs of the approximations in terms of the accuracy and the performance

are not discussed and left for the future work.

An initial Sliding Mode Control (SMC) design to the diesel engine airpath was

focused on VGT only [30]. EGR flow is accepted as an external input. Reduced

order models are used for constructing the regular form and the actuator dynamics

are included in the control design. Compressor flow observer is used for calculating

equivalent control and controller performance is shown in the simulation step tests.

An example of SMC MIMO airpath control design can be found in [29]. Regular

form could not be found for MIMO model of EGR and VGT. Same observer in a

previous paper [30] is used for the compressor flow. Because of sensitivity of the

model inversion on EGR valve to the manifold pressure ratio, simulated perfor-

mance of the controller on EGR flow has more overshoots and undershoots than

compressor flow. Coupled effects caused non-monotonic flow and EGR position

responses in the step tests.

Motivated by Low Temperature Combustion (LTC) modes in the diesel engine,

[33] designed another set of MIMO SMC for intake manifold fresh air fraction (F1),

MAP and MAF, exhaust manifold pressure and compressor outlet pressure control

outputs. Throttle valve is added to the conventional control input set of EGR and

VGT. In addition to the two sliding mode controller design for different combustion

modes, an intermediate state and a supervisory controller is designed and their

stabilities are proven in the text. Since LTC modes require low intake flow, this

mode requires a controller for EGR and Throttle valves. Due to the MAF sensor

noise issues, exhaust manifold AFR sensor is used for calculation of the system

output F1. An interesting trick for unstable characteristics of the throttle equation

around pressure ratio of one is increasing VGT position. Normal combustion mode

controller calculates EGR, VGT and throttle vane positions. Switching of the

controllers are regulated via supervisory controller. Experimantal results showed

the known trade off between tracking performance and chatter tendency of the

SMC on EGR position control. Stable and smooth controller switching is achieved
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in the tests. Robustness against speed and quantity disturbances are shown via

step tests.

Another diesel engine airpath controller output set of exhaust manifold and in-

take manifold pressures are selected in [6]. In order to reduce the chatter of SMC

and improve disturbance rejection characteristics Super Twisting method and Ex-

tended State Observer are implemented with SMC. This is a kind of disturbance

observer based sliding mode controller. Controller performance is evaluated via

engine simulation. Disturbance rejection performances of the traditional SMC and

designed SMC are compared and higher chattering effects are seen in the tradi-

tional one. Also the proposed controller was found better in nominal performance

recovery after disturbances.

The work in [17] contributes to the airpath control problem by using Linear Pa-

rameter Varying (LPV) models and H-∞ loop shaping control design. For stabil-

ity unlike other model based approaches, their controller can be calibrated with

respect to the operating points while keeping the robustness guarantees. The

quasi-LPV airpath model is tuned for NEDC region. For the study, experimental

NEDC data showed that exhaust manifold pressure is mostly higher than intake

manifold pressure and the model is neglected reverse flow on the EGR line. The

quasi-LPV loop shaping controller is designed with the help of MATLAB Linear

Matrix Inequalities toolbox. In the real engine implementation, controller ma-

trices are calculated in the ECU sample time of 16ms. A part of the NEDC is

used for validation. Compared with ECU controller, LPV controller showed bet-

ter transient performance on MAF with nearly similar MAP results. In order to

achieve such behaviour, a gain-scheduled post compensator is introduced. The

implementation drawback of the method is calculation of the controller matrices

at each time step. Robustness with respect to the speed and torque is shown

but other hardware or model related disturbances such as wear on compressor or

sensor drifts are not tested. Uncertainty parametrization is important in terms

of stability and robustness of the H-∞ loopshaping controller [17]. Different un-

certainty parametrizations (i.e. coprime factor uncertainity, additive uncertainity,
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parametric state space uncertainity) are compared for diesel engine airpath con-

trol.

One of the leading research for exhaust gas oxygen (EGO) sensor based airpath

control is provided in [7]. In this work, control is limited to the EGR valve poi-

sition command output. Their design is based on keeping actual exhaust lambda

constant. Assuming dynamic range of the input is limited, the Linear Quadratic

Gaussian (LQG) method with Linear Transfer Recovery (LTR) is implemented.

The designed controller is tested on a real 2 liter diesel engine at FTP cycle.

Results showed comparable emission performance with commercial controller in

terms of NOx+HC and PM. Dynamic performance improvement in comparison to

the commercial MAF controller is not observed. Especially boost dynamic perfor-

mance becomes poor. Also airpath is reported to have non-minimum phase [32]

and nonlinear behaviours which challanges the LQG-LTR design.

Dynamic feedback linearisation (DFL) control design is selected by [24] for heavy

duty diesel engine airpath control. Uncertainity analysis showed that feedback lin-

earized system lacks robustness. In order to have a stable system with low outer

loop gains, adaptive parameter estimation is utilized. Online parameter estimation

for identifying third order model is based on a T-S Fuzzy algorithm. Algorithm

performance is tested on SIL system in real time. DFL and adapted DFL results

are compared on AFR and EGR rate output trajectory tracking control. Adap-

tation resulted in lower tracking error on low transients but aggressive maneuvers

caused inferior tracking performance.

Aiming the robust control for the diesel engine airpath, domination redesign of

the Sontag’s formula with Control Lyapunov Function (CLF) is implemented in

[86]. Robustness property is defined in gain and phase margins. Dynamometer

step tests showed tracking performance of the controller. However, robustness to

the model or sensor errors are not shown with tests.

Gaussian process adaptive control is an emerging approach. This approach is

shown to be providing smoother transients than previous Model Reference Adap-

tive Control (MRAC) approaches [50]. Gaussian process online estimation is being
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computionally effective and promising for the embedded applications [51]. An-

other adaptive and cautious (caution term is used for regularization of control

signal with respect to the model uncertainity) is presented in [62]. GPR based

computed-torque control is proposed for the robot arm control problem in [63].

Stochastic boundedness of the sample path is guaranteed in the study. GPR-

NMPC method is applied for autonomous miniature race cars in [64]. Track is

learned after each lap and its performance is improved significantly after the first

lap. According to GP bibliography presented in [56], GPR application on diesel

engine airpath control first appeared in [70].



Chapter 3

Identification of Diesel Engine

Airpath

Identification of the dynamical system between EGR and VGT inputs and MAF

and MAP outputs is the main focus of this chapter. Ford OTOSAN Ecotorq engine

with configuration depicted in Fig. 2.4 is the target system for the identification

study. Theoretical system identification summary, design of experiment for the

diesel engine airpath system and related model details will be presented. This

chapter aims to develop the base model structure which will be used for the data

driven observer in the subsequent chapter. The process of system identification

as Ljung defines [54] composed of three main elements: data, candidate model set

and candidate model evaluation criterium. Another critical information input to

the process is prior knowledge about the targeted system. Their interactions and

a basic flow chart of the system identification is depicted in Fig. 3.1. Specific

utilization of a priori knowledge for the diesel engine airpath on each steps and

related details are presented in the following sections.

33
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Figure 3.1: Generic System Identification Process adapted from [54]

3.1 Inputs/Outputs and Candidate Model Set

for Diesel Engine Airpath

The diesel engine airpath system dynamics model in [86] is one of the most popular

models for airpath control systems design in the literature and used in [17] and

[6]. Following this model, system dynamics can be written as follows.

Ṗi = G1(Pi) + F1(Pi, Pc, Px, ArEGR) (3.1)

Ṗx = G2(Pi,Wf ) + F2(Pi, Pc, Px, ArEGR) (3.2)

Ṗc = G3(Pc) + F3(Px, ArV GT ) (3.3)

Wci = F4(Pi, Pc) (3.4)

where Pi is MAP, Pc is compressor power, Px is exhaust manifold pressure, ArEGR

is EGR Valve area, ArV GT is turbine inlet vane area, Wci is MAF, Gj (j = 1, 2, 3)

are linear and Fk (k = 1, 2, 3, 4) are nonlinear mappings. There are two types

of EGR valves, namely, poppet type and butterfly type. Their position to area

relations are diffent and the first one is used for light duty vehicles while the latter
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is common in heavy duty engines. Neglecting shaft diameter, a typical area to

valve position relation of a butterflow type valve is given as

Ar(θ) =
πD2

4
(1− cos(θ)

cos(θ0)
) (3.5)

where θ is the valve position angle measured from vertical axis in the clockwise

direction, D is the throttle plate diameter and θ0 is the valve position angle in the

fully closed position. There is also internal dynamics of the actuator and actuator

position controller but this is out of the scope of this section. These effects will be

taken into account in Chapter 6. In this study, we assumed an NFIR (Nonlinear

Finite Impulse Response) system which is separable into linear and nonlinear parts

and identified these two parts separately.

Based on prior information whic is obtained from the physical model ((3.1)-(3.5)),

controlled outputs MAF (Wci) and MAP (Pi) are identified with inputs Pi, Px,

Pc, θEGR and Pc, Px, θV GT , respectively. A generic NFIR model with one layer

sigmoid network nonlinearity is used for representation of both MAP and MAF

outputs as MISO models; i.e.

ŷ(k) = LT (X(k − 1)− X̄) + δ +
ms∑
i=1

(ai
1

1 + e−(X(k−1)−X̄)TQbi−ci
) (3.6)

where X ∈ RN is the regressor vector, X̄ ∈ RN mean regressor vector, L ∈ RN is

a vector of linear subspace parameters, δ is a scalar output offset, Q ∈ RN×N is

a matrix of nonlinear subspace parameters, bi ∈ RN is dilation and ci is a scalar

translations parameter and ms is the number of sigmoid elements. Summation

is from one to the number of sigmoid units. For the MAF output modeling, the

regressor vector XMAF is defined as

XMAF (k − 1) , [Pi(k − 1) Pi(k − 2)... Pi(k − n1)...

Px(k − 1) Px(k − 2)... Px(k − n2)...

Pc(k − 1) Pc(k − 2)... Pc(k − n3)...

θEGR(k − 1) θEGR(k − 2)... θEGR(k − n4)] (3.7)
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where n1 + n2 + n3 + n4 = N . Similarly, for the MAP output modeling, the

regressor vector XMAP can be introduced as

XMAP (k − 1) , [Pc(k − 1) Pc(k − 2)... Pc(k − n1)...

Px(k − 1) Px(k − 2)... Px(k − n2)...

θV GT (k − 1) θV GT (k − 2)... θV GT (k − n3)] (3.8)

where n1 + n2 + n3 = N . Linear and nonlinear parts of the identified system can

be written as

ŷ(k) = GidX(k − 1)−GidX̄ + δ +
ms∑
i=1

(ai
1

1 + e−(X(k−1)−X̄)Qbi−ci
) (3.9)

where Gid ∈ R1×N represents identified linear part of the MAF or MAP output.

The model set is composed of the models of the form (3.9) and the goal of the

identification process is determining parameters of the best fitting model to the

data.

3.2 Design of Experiments for Diesel Engine Air-

path

Experiments are the source of the data. An experiment should be designed such

that output data is maximum informative. Design of experiment includes deter-

mining inputs signals, their time and frequency domain characteristics, sampling

ratios and presampling filters [55]. Design problem is defined as determining op-

timum values for these parameters with respect to selected design criteria while

respecting the system constraints. Design criteria are generated for the assesment

of the maximum informative or better experiment.
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3.2.1 Generic Design of Experiment Criteria for Identifi-

cation

A data set is defined as informative if it can discriminate the best model from

candidate model set with respect to the evaluation criterion. A general advice

is selecting input and output set such that the output prediction is sensitive to

the important parameters of the intended application. This can be defined as

(in)validation power of the data as well. System shall represented all its charas-

teristics in the output signal when the ideal input design is applied. This also can

be stated as minimum model output covariance is sought for candidate model sets

with designed input data.

An open loop system identification is required to identify the best fitting model

from the candidate model set described in the previous subsection. Candidate

model has both linear and nonlinear parts. The bias and variance of the estimate

are dependent to the input spectrum but not to the signal waveform for linear

open loop identification and periodic signals has persistency advantages.

High correlation between input channels in the experiment design creates an am-

biguity in terms of contribution of each input channel to the output. Pairwise

correlation between input channels can be measured with Pearson factor which is

calculated as

p(x, y) =

∑n
i=1 (xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
(3.10)

for n element x and y arrays. Since the covariance matrix of the candidate model

set outputs is inversely proportional to the input power [54], maximum input power

for the designed inputs are sought. This property is measured with crest factor

and defined as

C2
r =

maxt u
2(k)

limN→∞
1
N

∑N
k=1 u

2(k)
(3.11)
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where u is the input signal of N samples. Minimum value of the crest factor is the

better and the minimum value is 1. Binary type of signals are advantageous in this

metric. However, it should be noted that binary type signals do not cover a wide

amplitude range and this weakens their valdiation capability against nonlinear

models.

3.2.2 Proposed Experiment Design and Application

Engine control system has two external inputs in general. They are acceleration

pedal position and engine speed. Based on given pedal position and engine speed

pre-calibrated desired values for all sub-components are calculated. Identification

tests are conducted at engine dynamometers and this test platform allows simu-

lation of various kinds of the load scenarios, i.e. road conditions in terms of speed

and load. A dynamometer airpath system flowchart is depicted in Fig. 3.2.

Figure 3.2: A diesel engine dynomameter airpath system flowchart

Experiment is designed for dynamometer and certain calibration sets. A cali-

bration set means certain fixed fuel and air setpoins and controller parameters.

Besides physical engine behavior, these parameters define prior probabilities of

the inputs and outputs. Airpath control aims to follow desired flow and pressure

setpoints so that a control oriented model with fixed calibration parameters in-

creases accuracy of the model. However, this appraoch requires repeating the tests
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again after changes in the calibration and this is found acceptable since the test is

simple and rather short, and does not require extensive set of instruments. Thus,

manipulated inputs for the experiment are selected as engine speed and torque

but the regressors defined in (3.7) and (3.8) are used as model inputs.

Chirp signals which are periodic signals with varying frequencies are popular in

the nonlinear dynamic system identification due to their persistent excitation ca-

pabilities. Besides, they have a good amplitude space coverage. Chirp signals are

selected as input signal waveform and they are defined as

y = A sin(2π(f(t))) (3.12)

f(t) = fo + kt (3.13)

k =
fmax − f0

T
(3.14)

where minimum frequency is f0, maximum frequency is fmax, duration between

maximum and minimum frequencies is T and the frequency slope or the chirp ratio

is k. Frequency coverage is one of the most important properties of a good exper-

iment design. Target cycle for the engine modeling is called World Harmonized

Transient Cycle. It is generated to represent typical heavy duty vehicle behaviour

in the dynamometer environment. A sample Fast Fourier Transform results are

depicted in Fig. 3.3. Its maximum and minimum frequencies can be taken as

0.05Hz and 5Hz since WHTC is defined in 10Hz.

Figure 3.3: A sample WHTC speed and torque frequencies
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Frequency coverage and crest factor minimization were discussed but input cor-

relation and amplitude coverage are also important. In order to minimize input

correlation frequencies, ramps of each channel are selected as inverse. Time do-

main, signal coverage and frequency vs time plots are depicted in Fig. 3.4.

Figure 3.4: DoE Input Signals, Coverage and Frequencies

Designed inputs signals has a Pearson coefficient value of p(Speed, Load) = 0.03.

These inputs are applied to the dynamometer controller and resulting model inputs

are recorded and used for respective models as shown in Fig. 3.5

Figure 3.5: Calibration Dependent Airpath Identification Process

Finally, a half hour test cycle is designed and it can be run in any phase of

the engine development project without any prior preperation such as hardware

limitation or DoE boundary checks.
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3.3 Model Evaluation Criterion

Candidate models are compared with their validation test cycle performance. Val-

idation test cycle is selected as WHTC. A common performance metric is the

normalized root mean square error (nrmse) fitness value, which is defined as

nrmse fitness = 100× (1− ||y − ŷ||
||y − ȳ||

) (3.15)

where y is the real value, ŷ is the estimated value and ȳ is the average value of the

output. Best model in the candidate set is evaluated with the highest fit value in

the WHTC data.



Chapter 4

Data Driven Disturbance

Observer

This section focuses on disturbance observer design for limited capability engine

control units. Next chapter revisits the problem with a higher fidelity estimation

structure but with more complex calculations. As stated in Section 1.1, this the-

sis has two target electronic control units. Disturbance observer based control

approach is designed for commercially available control units.

4.1 Disturbance Observer Overview

Real world control engineering problems generally require certain robustness mea-

sures against external disturbances to the system as well as parameter variations

and uncertainties of the system. Robust feedback control approaches are developed

in order to deal with these problems. The most popular approach is proportional

integral derivative (PID) control and certain disturbance attenuation characteris-

tics are gained from the integral term. Online model estimation techniques are

developed in order to overcome model uncertainties and tuning control parame-

ters with respect to the these models are main ideas of adaptive control. Robust

control techniques have focused on worst case scenarios of model uncertainties and

42
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control ability to cope with these uncertainties is researched. Sliding mode control

is popular for its external disturbance rejection capabilities and suppression of pa-

rameter uncertainty effects. High frequency switching nature of this approach is

both its source of robustness and actuator chatter risk. Internal model control is

another approach with practical popularity due to its intuitive nature and simple

application philosophy. These approaches are categorized as passive antidistur-

bance control (PADC) methods [66]. These feedback driven disturbance rejection

methods have a general trade off between control tracking performance and dis-

turbance rejection capability. Rising share of the integral part of PID control

increases tendency to overshoot or undershoot; fast identification or gain regular-

ization of adaptive controllers makes system less reliable; overconsertive design of

robust controllers deteriorate system nominal response; chatter alleviation reme-

dies for sliding mode control weakens the disturbance rejection capabilities; and

high dimensional internal model control requires sophisticated matrix inversions.

Active antidisturbance control (AADC) methods are feedforward approaches and

they depend on estimation or measurement of the disturbance [66]. Traditional

feedforward control and disturbance modeling or estimation methods aim to com-

pensate disturbances without comprimising the nominal performance.

Original disturbance observer concept is proposed by Ohnishi [67]. This was a

frequency domain development based on the single input single output system

depicted in Fig. 4.1 where d(s) denotes external input disturbance, n(s) is the

measurement uncertainty and Gn(s) is the estimated nominal plant. Ohnishi’s

disturbance observer aims to estimate measurement uncertainties and input dis-

turbances as a lumped disturbance d̂l.

Figure 4.1: Conceptual Diagram of Original DOB Scheme from [68]
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The lumped, total disturbance on the input and the input can be represented as

dl(s) = ȳ(s)G−1
n (s)− u(s) (4.1)

u(s) = G−1(s)y(s)− d(s) (4.2)

By substituting (4.2) into (4.1), it follows that

dl(s) = [G−1
n (s)(y(s)− n(s))]− [G−1(s)y(s)− d(s)] (4.3)

Rearranging (4.3) one can obtain

dl(s) = [G−1
n (s)−G−1(s)]y(s)−G−1

n (s)n(s) + d(s) (4.4)

where the first term represents inverse nominal model error contribution, the sec-

ond term accounts for measurement uncertainty and the last term is the external

input disturbance. Thus, Ohnishi’s proposed disturbance observer scheme covers

all the related uncertainties and disturbances but it is not effective to measure-

ment uncertainties as shown below. However, implementation of the inverse plant

is not generally feasible and a filter transfer function Q(s) is required. Estimated

lumped disturbance d̂l is calculated as

d̂l(s) = Q(s)[(G−1
n (s)−G−1(s))y(s)−G−1

n (s)n(s) + d(s)] (4.5)

and when it is fed to the system, control input becomes

u(s) = c(s)−Q(s)[(G−1
n (s)−G−1(s))y(s)−G−1

n (s)n(s) + d(s)] (4.6)

For a frequency range that makes Q(s) ≈ 1, (4.6) implies

y(s) = G(s)(c(s)− (G−1
n (s)−G−1(s))y(s) +G−1

n (s)n(s)− d(s) + d(s)) (4.7)

=⇒ y(s)G(s)G−1
n (s) = c(s)G(s) +G(s)G−1

n (s)n(s) (4.8)

=⇒ y(s) = c(s)Gn(s) + n(s) (4.9)
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In (4.9), it is seen that the system is forced to behave like the nominal plant and

input disturbance effect and model uncertainty are diminished; however output

measurement uncertainty is still effective. Filter design and its effects on the per-

formance and stability of the system are active reseach topics in the disturbance

observer area and have a major effect on the disturbance observer performance.

Although the disturbance observer is aimed to reject disturbances without any

compromise, the filter Q limits disturbance attenuation capability of the distur-

bance observer.

4.2 Data Driven Disturbance Observer Design

Disturbance observer designs in the literature use nominal physical plant informa-

tion. Original DOB scheme is proposed by Ohnishi et. al. [67] based on frequency

domain analysis. In the classic DOB control structure, estimated disturbances are

fedback to the control loop. Classic DOB design requires two main steps: finding

a nominal inverse model (G−1
n ) and applying the required filter (Q) for causality.

Further overview on disturbance observer methods can be found in [68]. In our

approach, the disturbance rejection control is developed from time domain FIR

system models which are obtained via system identification. This distinguishes our

approach from other methods like state space based uncertainty and disturbance

estimator (UDE) design in [69].

Figure 4.2: Conceptual Diagram of Designed DOB Scheme
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It is assumed that the airpath system is separable into nonlinear and linear parts

and nonlinear part is deliberately ignored, since it creates computational com-

plexity for the aimed embedded application. Overall system with proposed DOB

structure can be shown as in Fig. 4.2.

The output (y) of a nonlinear separable system with nonlinearities F (x, u), output

disturbance (de) and measurement uncertainties (n) can be represented in terms

of state x ∈ RN−1 in discrete-time as

y(k) = Ĝ(x(k − 1), u(k − 1)) + . . .

· · ·+ G̃(x(k − 1), u(k − 1)) + F (x(k − 1), u(k − 1)) + de(k − 1) + n(k − 1)︸ ︷︷ ︸
,d(k−1)

(4.10)

where Ĝ is the estimated linear part of the system with the estimation error G̃

and d is the total disturbance. Let the estimated nominal linear part be defined

as Gid = [Â B̂] with Â ∈ R1×(N−1) and B̂ ∈ R. In light of (4.10), it follows that

y(k) = [Â B̂]

x(k − 1)

u(k − 1)

 + d(k − 1) (4.11)

We assume existence of a disturbance compensation control such that B̂ud(k) =

d(k) and it linearizes the nonlinear system as

y(k) = [Â B̂]

 x(k − 1)

u(k − 1) + ud(k − 1)

 (4.12)

Rearranging (4.12), one obtains

ud(k − 1) = (y(k)− Âx(k − 1))/B̂ − u(k − 1) (4.13)

In order to compute ud(k) from (4.13), one needs previous control (i.e. u(k− 1) =

θEGR(k−1))), previous state and the current output. The equation can be written
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in terms of current state and current control signal as follows:

ud(k)−∆y(k)/B̂ = (y(k)− Âx(k)/B̂ − u(k) (4.14)

where ∆y(k) , y(k+1)−y(k). Similar to the literature [69], we assume that there

exists a low-pass filter Q(s) with impulse response q(k) and the total disturbance

d(k) is significant over the bandwith of the filter. Applying Q filter to both sides

of (4.14), one can write

ûd(k) = ((y(k)− Âx(k))/B̂ − u(k)) ? q(k) (4.15)

where ? denotes the convolution operator and the estimated disturbance compen-

sation control is ûd(k) = (ud(k) − ∆y(k)/B̂) ? q(k). Estimation error (eud(k) =

ud(k)− ûd(k)) for the disturbance compensation control will be given as

eud(k) = ud(k)− (ud(k)−∆y(k)/B̂) ? q(k) (4.16)

The estimation error can be diminished with an optimum filter design if the output

and the disturbance signals have distinct frequency ranges.



Chapter 5

Gaussian Process Regression

Modeling of Airpath

This chapter presents development of a data-driven flexible modeling for diesel

engine airpath system for embedded model based control utilization. Turbine,

compressor, engine block, exhaust gas recirculation (EGR) valve, variable geome-

try nozzle assembly (VNT or VGT) are main components of the airpath system. In

this chapter, modeling will be presented for each component and at the end of the

chapter, overall model of the system will be presented. This modeling approach

aims to create a flexible framework for the airpath system that can be used with

different hardware combinations without having a major change in the embedded

software. Modern diesel engines have major components and typical layout in Fig

5.1. There are other engine arhitectures with combinations of the same elements

such as two cascaded turbocharger or one additional EGR line which connects

the compressor inlet to the turbine outlet. Also emerging technologies like elec-

trically asisted turbochargers are becoming popular. This vibrant nature of the

airpath architecture alternatives makes it more complex to develop model based

control software for manufacturers. Although a data driven and flexible modeling

structure is sought, a priori information based on physical modeling is cruical for

the assesment of the model fitting to the system. Complex thermodynamics of

the internal combustion engine manifests itself in the static relationships of the

48
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Figure 5.1: Diesel Engine Airpath Elements

engine. In this thesis, a mean value model is considered for the all components.

The following discussion presents physical motivations behind the selected input

variables of the respective component models and practical aspects of gathering

the data.

Radial air compressors are one of the most complex aerodynamic machines. Its

design and analysis process require both intensive finite element method simula-

tions [78] and tests (related test standard SAE J1723) [77]. Final characteristics

of a turbocharger compressor is represented via so called compressor map. A com-

pressor map gives compressor speed, flow, pressure ratio and (generally) isentropic

efficiency relations. This map includes boundaries of feasible operation (i.e. surge

and choke lines) whose details can be found in [78]. Compressor map also includes

isentropic efficiency and speed, flow, pressure ratio surfaces. It represents a 4-D

surface and it is generally represented as two seperate 3-D maps with (flow, pres-

sure ratio, efficiency) and (flow, pressure ratio, speed) groups. One of the popular

methods [79],[80] is using ellipse functions for approximating compressor efficiency

and quadratic polynomials for volumetric flow functions. These approaches have

accuracy problems in near boundary regions due to their simplified nature. In this

study, it is assumed that compressor bench test data or engine dynamometer data

are available. Compressor test is simulated with the compressor model in [80].

Inputs to the model are compressor inlet pressure Pci, compressor outlet pressure

Pi, compressor outlet mass flow rate Wco and compressor inlet temperature Tci.

Compressor outlet to inlet pressure ratio (PR = Pi/Pci) is used in the simulation.

Similarly, Pco is modelled utilizing ω, Pci and Wco, or Wco is modelled utilizing ω,
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Pci and Pco.

Turbines are identified with a similar characterization process similar to compres-

sors [77] and the resulting turbine map contains symmetrical information with the

compressor map. By using related corrected coordinates [81], the turbine map

represents a pressure ratio (PRt = Px/Pxo ) surface in terms of turbine outlet

pressure Pxo, turbine inlet temperature Tx, turbine inlet mass flow Wit and VGT

vane position θV GT . Therefore turbine inlet pressure Px can be represented in

terms of the following parameters.

Px ≈ Pxof(Pxo,Wti, Tx, θV GT ) (5.1)

where Pxo is the turbine outlet pressure, Wti is the turbine inlet flow, Tx is turbine

exit temperature and θV GT is the VGT vane position. A contemporary turbine

power Pt model based on Euler turbine equation is derived in [82] as

Pt =
2π

15
ω(Wti)

2 Dt1

D2
t2 −D2

tn

RTxo
Pxo

tan θV GT (5.2)

where Pxo, Txo are the turbine outlet pressure and temperature, Dt1, Dt2, Dtn are

the turbine wheel diameter, the turbine outer diameter and the turbine nut diam-

eter, and ω is the turbine shaft angular speed. But this model is limited with low

turbine inlet Mach numbers with full energy recovery assumption. Also incidence

angle effects, pulsation, secondary flows and loss factors are omitted in the deriva-

tion [81]. For wider range of applicability especially for high load cases model

should include compressibility relations and this may lead to an iterative solution

as seen in gas turbine performance models [83]. Thus data driven interpolation

modeling is still required.

Unlike radial compressors, constant volume compressor with a piston and cylinder

is simpler to model for its mass flow rate. However, an internal combustion engine

piston and cylinder interaction is more complex than a standard air compressor

due to dynamic external and internal variables. A mean value model deals with

average values of an in cylinder event during one crank rotation. Basic airflow rate
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to a four-stroke turbocharged engine flow through the inlet ports can be find as

Wie = ηv
PiVcylN

2RgasTi
(5.3)

where Vcyl is the displacement volume of the engine, ηv is the volumetric effi-

ciency, N is the engine rotational speed, Pi is the intake manifold pressure, Ti is

the intake manifold temperature and Rgas is the ideal gas constant. Volumetric

efficiency is known to be related with the following factors [84]: air/fuel ratio, fuel

type, fuel latent heat, mixture temperature, exhaust to intake manifold pressure

ratio, compression ratio, engine speed, intake and exhaust manifold port design,

intake and exhaust valve geometry, lift and timings. Fuel type and related fuel

properties, geometries, timings, compression ratio are mostly fixed variables for

an engine. In practice, efficiency values are determined with engine dynamometer

tests. Considering (5.3) and volumetric efficiency dependencies stated in [84], we

selected engine speed N , intake manifold pressure Pi, intake manifold temperature

Ti, fuel flow rate Wf as inputs to the GPR flow rate model of the cylinder block.

These data can be measured simultaneously with engine inlet flow (which can be

measured via onboard mass airflow sensor while EGR line is blocked). Butterfly

type EGR valves are used in the target Ecotorq engine. Butterfly valve modeling

is studied in the literature [84], [85] focusing on throttle valves. Similarly, mass

flow through a butterfly EGR valve can be calculated with the following equation

if exhaust to inlet pressure ratio is less than the critical value (Pi/Px < 0.528).

Wxi =
CD AEGR Px√

R Tx
(
Pi
Px

)1/γ(
2γ

γ − 1
[1− (

Pi
Px

)(γ−1)/γ])1/2 (5.4)

where CD is discharge coefficient that is found experimentally, γ is the specific heat

ratio of the exhasut gas, Ath is the geometric opening of the flow area. Since it

changes with the area itself [85], it is practical to use effective area Aeff = CDAEGR

as an empirical parameter. Characterization of flow depends on complex relation

with the related design aspects; dominant inputs to the flow are Px, Pi, ArEGR.

These are used for the GPR modeling of the mass flow rate through the EGR

valve Wxi.
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5.1 Gaussian Process Regression (GPR)

Gaussian process regression (GPR) or Kriging (named after Daniel Krige a famous

mining engineer) is a major engineering approach for geostatistics since 1951[91].

Its application is initiated as a spatial interpolation tool and found wider appli-

cations with increasing theoretical development in other engineering disciplines as

well. Gaussian process regression (GPR) models are being used for online inverse

modeling of the robotic systems [96]. In an automotive application, inner loop

dynamics of the throttle valve is represented by nonlinear autoregressive with ex-

ogenous inputs (NARX) model whose nonlinear part is a GPR [93]. Diesel engine

fuel systems dynamics are modelled with local gaussian process regression in [94]

for offline model based calibration. Recently, an ECU supplier has introduced an

advanced modeling unit in its ECU and online simulation of GPR models become

practical for the automotive industry. This is a new capability for the powertrain

control development and its application areas are expected to be broadening.

Gaussian process (GP) models are selected as a flexible modeling approach for all

components due its non-parametric and data preserving nature. Gaussian process

models store its training data in itself and learns the distribution (interpolation)

characteristics between them. Other parametric machine learning approaches like

neural networks do not store the training data and that creates a difficulty in their

validations.

Well known Gaussian probability distribution is a specific form of a Gaussian pro-

cess. A probability distribution characterizes random variables of scalars or vectors

but the properties of functions are defined with a stochastic process. Informally, a

function can be accepted as an infinitely long vector with input x to output f(x)

couples. If one samples a finite number of points and searches for the properties of

the function, then the same answer will be found with Gaussian process inference

as if all points were considered [92].
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Formally, each y observation is assumed to be a sample of underlying function

f(x) with a Gaussian noise model as follows.

y = f(x) +N(0, σ2
n) (5.5)

where σn is the standard deviation of the measurement noise. Prior covariance on

the noisy observations yi and yj is defined as

cov(yi, yj) = k(xi, xj) + σ2δij (5.6)

Covariance function k(xi, xj) is defined over input samples xi and xj, and δij is

the Kronecker delta function. Definition of k(xi, xj) for the squared exponential

covariance term is given as

k(xi, xj) = σde
−0.5rT r (5.7)

where σd is so-called horizontal scale parameter and r is a scaled input sample

given by

r = [
xi1 − xj1

l1

xi2 − xj2
l2

. . .
xin − xjn

ln
]T (5.8)

where so-called length scale parameters lj determine weights between input chan-

nels.

For an experiment of m samples, one can construct the following covariance matrix

that will be used in subsequent analysis:

K(X,X) =


k(x1, x1) k(x1, x2) . . . k(x1, xm)

...
. . .

...
...

...
...

...
...

...
...

... k(xm, xm)

 (5.9)

The length scale l and the horizontal scale σd are the main parameters of the model

and they are called hyperparameters. These parameters are found by maximum
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likelihood estimation. Training values are used for finding hyperparameters and

they are also embedded into the model through K matrix. The test values are

denoted by x?. The covariance vector between the test point and the training

points is defined as

k? = [k(x?, x1) k(x?, x2) . . . k(x?, xm)]T (5.10)

Predicted output y? is then calculated as

y? = kT? (K + Iσ2
n)−1y (5.11)

Since the term (K + Iσ2
n)−1 is fixed, an efficient form of (5.11) is given as

y? = kT? α (5.12)

where α ∈ Rm and α = (K + Iσ2
n)−1y.

Maximum likelihood optimization cost function is defined as

logp(y|X) = −0.5Tα− trace(log(L))− n/2log(2π) (5.13)

where L is retrieved through the cholesky decomposition; i.e.

L = cholesky(K + Iσ2
n) (5.14)

Overall training process can be summarized as follows. For given measurements of

inputs X, output y and measurement noise σn, select a covariance function (e.g.

squared exponential). Minimize expected variance (or maximize likelihood) on

training points via varying the hyperparameters (parameters of the kernel or co-

variance function). After finding the optimum hyperparameters, one can estimate

the output for any given input x? via (5.11).
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5.2 Overall GPR Dynamic Model for Diesel En-

gine Airpath

The following static equations define the engine airpath behaviour of the configu-

ration depicted in Fig. 5.1. Nonlinear static relations are modelled as

Wco = G0(ω, Pci, Pco) (5.15)

Wxi = G1(Px, Pi, rEGRact) (5.16)

Wie = G2(N,Pi, Ti,Wf ) (5.17)

Wxt = G3(Px, Pxo, Tx, rV GTact) (5.18)

Px = G4(Wco,Wf , Tx, Pxo, θV GTact) (5.19)

Tt = G5(Wco,Wf , Px, Pxo, θV GTact) (5.20)

Tc = G6(Wco, Pi, Pci) (5.21)

where Gis are respective GPR functions. Applying the chain rule to (5.15), the

following equation is obtained.

Ẇco = G
(ω)
0 ω̇ +G

(Pci)
0 Ṗci +G

(Pco)
0 Ṗco (5.22)

where G(x) = ∂G
∂x

. Actuator dynamics and charge air cooler volume dynamics are

generally neglected in the literature [86], [87], [79]. For a control oriented model,

similar to [86], temperatures, compressor inlet and turbine outlet pressures are

assumed to be constant (i.e. Ṫx = 0, Ṫi = 0, Ṗci = 0, Ṗxo = 0).

Since mean value modeling is assumed for the engine cylinder, airpath dynamics

does not include pulsation effects caused by inlet or exhaust valves of the cylinders.

So, volume filling and emptying, actuator inner loop response and turbocharger

acceleration and deceleration are remaining dynamics to be considered. Static

relations are modelled with GPR and physical dynamic state equations are used

as follows. Charge air cooler (intercooler), intake and exhuast manifolds are main

volume elements of a typical diesel engine system. For a constant volume with
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input flows Win and output flows Wout, time derivative of the ideal gas law can be

written as

ΣWin − ΣWout =
Ṗ V

R T
(5.23)

where the temperature is assumed to be constant, i.e. Ṫ = 0. Similarly, the charge

air cooler (CAC) pressure Pco can be calculated with

Ṗco =
RTco
Vcac

(Wco −Wcoo) (5.24)

where Tco is CAC temperature, Vcac is CAC volume, Wco is compressor outlet

flow and Wcoo is intercooler exit flow. Similar equations for intake and exhaust

manifolds can be written as

Ṗi =
RTi
Vi

(Wcoo +Wxi −Wie) (5.25)

Ṗx =
RTx
Vx

(Wxe −Wxt −Wxi) (5.26)

where Ti, Pi, Vi and Tx, Px, Vx are intake and exhaust manifold temperatures, pres-

sures and volumes, respectively; and Wxi,Wie,Wxe,Wxt are EGR, cylinder inlet,

turbine inlet and cylinder outlet flows.

Automotive airpath actuators are generally DC motors with position feedback

sensors. Pneumatic actuators with solenoid pressure control valves also exist. But

for the highest emission standards with transient homologation cycles, electrical

actuators became dominant. These motor drives are connected to the valves, vanes

or gates via a spring loaded gear or linkage mechanism. In the scope of this work,

position control of the actuators are not included but its response is assumed to

be a first order dynamics as follows.

θ̇act =
1

τ
(θdes − θact) (5.27)
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where θdes is the desired valve position, θact is the measured valve position and τ

is the inner loop time constant. Typical expected values for τθ are 50− 200ms.

Aside from gas dynamics, mechanically, turbocharger is simply a rigid rotating

inertia. Its rotational can be written as

ω̇ =
1

Iω
(Pt − Pc(1 + cf )) (5.28)

where I is the total rotational inertia. Turbocharger spool up is generally the

slowest of the presented dynamic processes.

In this study, intercooler volume dynamics is neglected (Pco = Pi) but the actuator

inner loop response is included. Overall system dynamics can be represented as

Ṗi =
RTi
Vi

(G0 +G1 −G2) (5.29)

Ṗx =
RTx
Vx

(Wf +G2 −G3 −G1) (5.30)

ω̇ =
1

I
(G5 −G6 − cfω) (5.31)

Ẇco = G
(ω)
0

1

I
(G5 −G6 − cfω) +G

(Pi)
0

RTi
Vi

(G0 +G1 −G2) (5.32)

θ̇EGRact =
1

τEGR
(θEGRdes − θEGRact) (5.33)

θ̇V GTact =
1

τV GT
(θV GTdes − θV GTact) (5.34)

It should be noted that (5.32) is linearly dependent on (5.29) and (5.31) if G
(ω)
0 and

G
(Pi)
0 are constant. Recall that, inputs of GPR functions ,Gis, are given explicitly

in (5.15)-(5.21). Therefore, (5.29)-(5.34) can be recast as

ẋ = F (x, d) +Bu (5.35)
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where the state vector x, the control input u and the measured disturbance vector

d are defined as

x = [Pi Px ω Wco θEGRact θV GTact]
T (5.36)

u = [θEGRdes θV GTdes]
T (5.37)

d = [N Wf ]
T (5.38)

The measured disturbances are the engine speed (N) provided by the sensor and

the fuel mass flow rate (Wf ) controlled by the fuel path. The input matrix B is

defined as

B =



0 0

0 0

0 0

0 0

1
τEGR

0

0 1
τV GT


(5.39)

This model is used for control system design in Chapter 6 and component model

validation results are presented in Chapter 7.



Chapter 6

Flexible and Robust Airpath

Control

Main focus of the airpath control is disturbance alleviation and different active

disturbance control methods (i.e. disturbance observer and feedforward control)

are developed in this thesis. Two different solution paths are followed in this study

as depicted in Fig. 6.1.

Figure 6.1: Implementation Hardware and Control Solutions Diagram

These approaches are tailored for two different target control platforms. Exten-

sive modeling of the disturbances are not feasible with available engine control

59
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units; so disturbance observer based solution is utilized for this type of target

platforms. However, new generation control units with advanced features are be-

ing introduced and they made possible to use machine learning techniques in the

embedded systems.

6.1 Data Driven Disturbance Observer Based Diesel

Engine Airpath Robust Control

A general data driven disturbance observer design was presented in Chapter 4.

Application details on MAF and MAP channels are presented in the following.

EGR and VGT controls are designed independently but their physical coupling

is reflected to the control on the DOB design.In the light of (4.15), disturbance

compensation control signals for EGR and VGT are calculated as

ûd(EGR)(k) = ((MAF (k)− ÂMAFxMAF (k))/B̂MAF − θEGRdes(k)) ? qMAF (k)

(6.1)

ûd(V GT )(k) = ((MAP (k)− ÂMAPxMAP (k))/B̂MAP − θV GTdes(k)) ? qMAP (k)

(6.2)

where ÂMAF , ÂMAP , B̂MAF , B̂MAP are obtained via system identification. Recall

that xMAF and xMAP are defined as

xMAF , [Pi(k − 1) Pi(k − 2)... Pi(k − n1)...

Px(k − 1) Px(k − 2)... Px(k − n2)...

Pc(k − 1) Pc(k − 2)... Pc(k − n3)...

θEGR(k − 2) θEGR(k − 3)... θEGR(k − n4)] (6.3)
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and

xMAP , [Px(k − 1) Px(k − 2)... Px(k − n1)...

Pc(k − 1) Pc(k − 2)... Pc(k − n2)...

θV GT (k − 2) θV GT (k − 3)... θV GT (k − n3)] (6.4)

Overall disturbance control signal flow is depicted in Fig. 6.2. In the implemented

engine configuration, there are sensors for MAP (Pi), MAF (Wci) and valve posi-

tions θEGR θV GT . Other inputs such as exhaust manifold pressure and compressor

power are calculated with ECU built-in simple models.

Figure 6.2: DOB Signal Flow for EGR and VGT implementation

In this study, a discrete-time sliding mode controller (DTSMC) in [95] is utilized.

Noting that the airpath system given by (5.35) is affine in control, the error dy-

namics can be written as

ξ̇ = F (ξ) +B(ξ)u (6.5)

where ξ is defined as ξ = [Pid − Pi Pxd − Px Pcd − Pc]
T , F and B are smooth

nonlinear mappings, and u = [θEGR θV GT ]. A sliding surface can be defined as

σ = Gξ (6.6)
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where G is a 2 × 3 design matrix which makes GB invertible. The equivalent

control is calculated by σ̇ = 0; more specifically,

σ̇ = Gξ̇ = GF +GBu = 0⇒ ueq = −(GB)−1GF (6.7)

Since we do not know F (ξ) and B(ξ) precisely, ueq control obtained via (19) can

not be used directly in sliding mode control. In light of (6.7), it follows that

σ̇ = GB(u− ueq)⇒ u− ueq = (GB)−1σ̇ (6.8)

Selecting a Lyapunov function as V = 1/2σTσ ≥ 0 and taking its time derivative

leads to

V̇ = σT σ̇ (6.9)

V̇ can be made negative definite with a D > 0 by enforcing

σ̇ = −Dσ ⇒ V̇ = −σTDσ (6.10)

In light of (6.8) and (6.10), one obtains

−Dσ = GB(u− ueq)⇒ u− ueq = −(GB)−1Dσ (6.11)

Computation of (6.8) and (6.11) at two different sample instants, i.e. t = kT and

t = (k − 1)T , leads to

u(kT )− ueq(kT ) = (GB)−1σ̇(kT ) (6.12)

u((k − 1)T )− ueq((k − 1)T ) =

· · · − (GB)−1Dσ((k − 1)T ) (6.13)
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Continuity of equivalent control implies that

lim
∆→0

ueq(t−∆) = ueq(t) (6.14)

Assuming T ≈ ∆,

ueq((k − 1)T ) = ueq(kT ) (6.15)

Substracting (6.13) from (6.12) by taking (6.12) into account and approximating

σ̇ with Euler’s backward difference, one obtains the following recursive control law

u(k) = u(k − 1) + . . .

· · ·+ (GB)−1(
σ(k) + (TD − 1)σ(k − 1)

T
) (6.16)

In applying this control to the system, the right hand side of (6.16) is usually

saturated. However, since the control input u(k − 1) can be observed with the

valve position feedback sensor, (6.16) can be implemented as

u(k) = uact(k − 1) + . . .

· · ·+ (GB)−1(
σ(k) + (TD − 1)σ(k − 1)

T
) (6.17)

where uact(k− 1) is the valve position read by the sensor at time k− 1. Thus, the

role of saturation function is naturally taken by the system itself.

Disturbance observer integrated control system is depicted in Fig. 6.3. Desired

MAF and MAP values are interpolated from the pre-calibrated engine maps and

appropriately saturated and filtered. Desired MAF values are limited with max-

imum possible flow via total flow calculation. Resultant references are then used

in the feedback controller.
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Figure 6.3: Overall Control Scheme with Data Driven Disturbance Observer,
Airpath Outer Loop Controller (DTSMC) and Trajectory Generator

6.2 GPR Modeling Based Diesel Engine Airpath

Robust Control

A calibratable and physical model free control approach is sought in our work.

Singularity free and accurate inverse model for the airpath is known to be a

hard problem; therefore a data driven inherently smooth modeling approach is

favorable. On the other hand, mapping feedforward terms with respect to the

physical states rather than operation points makes calibration procedure robust

to the boundary condition variations such as backpressure. GPR can be seen as

a gray-box modeling procedure since it is physically interpretable and contains

prior information itself instead of a total abstraction. This nature of the model

distinguishes from other modeling approaches from calibratability point of view.

6.2.1 GPR Feedforward Control

Mapping of the operation region of an engine in terms of speed and torque is

possible in the engine development phase. Therefore, a priori information for the

operation points and relevant states can be obtained. Mappings of the engine

operation points (or fuel loops) are executed for steady state operation region.
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Especially, emission modeling experiments cover the whole feasible operation zone.

Since the steady state fuel loops, i.e. states for which ẋ = 0, are measurable

with complete state and controlled values, the control effort which is required to

conserve the states are also known. Thus, the feedforward control can be found

by setting ẋ = 0 as

0 = f(x) + b(x)uff =⇒ ûff = − f̂(x)

b̂(x)
(6.18)

Speed and inner torque based maps are commonly utilized in the automotive

industry for the prediction of the feedforward term. This thesis proposes a GPR

model based on physically related inputs Px, Pi, Wxi. Inverse model for EGR line

in [79], which is based on normal operation conditions, is given by (6.19).

ArEGR =
Wxi

√
RTx

Pi[1− (
1− Pi

Px

Πopt
− 1)2]

(6.19)

In this equation of ArEGR shows that the area of the EGR valve, which is directly

related to the EGR valve position (θEGR), is the output of the inverse actuator

model. In order to achieve desired accuracy, introduction of additional parameters

and related tuning effort are required. Details for this simplified physical modeling

is given in [79]. VGT inverse model can be constructed based on energy flow from

the turbine to the compressor. Utilizing steady state energy balance, the total

efficiency for VGT based on vane position can be defined as

ηT (θV GT ) =
Pc

Wxthxt
Tx (6.20)

An equation of compressor work can be rewritten in terms of efficiency as

Ṗc =
1

τ
(WxthxtTxηT (θV GT )−Wcicair(

Pi
Pa

)µ) (6.21)

The following input and output channels are selected based on the physical mod-

eling presented above. Input channels for the inverse EGR line model are selected

as Pi/Px, Pi, Wxi. Inverse VGT model inputs are Wci, Pi and Tx respectively, and
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its output is the VGT vane position, θV GT . A space filling design of experiment

(DoE) for the inputs is commonly used for GPR modeling. The test data is col-

lected in the following steps. Transient engine mapping simulations are executed

with a basic general engine controller by setting speed and desired torque to the

grid points. First 10 seconds of the settling time is not used and average of the

following 30 seconds are recorded. The test grid used for the design, which consists

of 417 points of the engine operation region, is shown in Fig. 6.4.

Figure 6.4: Engine Mapping Region

In order to model delayed boost characteristics of the turbocharger system, tests

are repeated with 90% and 80% of the base calibration values as shown in Fig.

6.5.

Figure 6.5: Three mapping boost values
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In order to refine overlapping data, training points are selected via a bin logic. In-

put data space is divided into bins of equal intervals. Three values (i.e. minimum,

maximum and median) of the each bin is selected as training samples. A sample

bin for EGR model is depicted in Fig. 6.6.

Figure 6.6: A sample training data selection bin

Total number of 179 training samples are utilized in training for VGT and 1252

points are used for validation. Due to increase calculation complexity of GPR

quadraticly with increasing number of training points, minimum number of train-

ing points is sought. However, due to lower fit values, EGR modeling required

more training data (i.e. 312 training and 1164 validation) but resulted in a lower

accuracy than the inverse VGT model. Model training is executed with fitrgp func-

tion of MATLAB. Exact GPR modeling method is used with squared exponential

kernel configuration.

This feedforward controller is applied along with the discrete-time sliding mode

controller (DTSMC) presented in Section 6.1.
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6.2.2 GPR Feedback Control

Three feedback controllers based on control affine system given in (5.35) is ex-

plained in this section. A unique error term is defined for the subsequent control

synthesis as

eGPR , [(θ̂EGRdes − θ̂EGRact) (θ̂V GTdes − θ̂V GTact)]T (6.22)

Estimation of θ̂ values requires a mapping from system outputs and states to the

inputs. These models can be accepted as static inverse plant models and they

are similar to the feedforward models presented in the previous section. Inverse

models θ̂EGRdes, θ̂EGRact, θ̂V GTdes, θ̂V GTact are estimated as

θ̂EGRdes = GEGR(Pi, Px, Tx, Ŵxi−des) (6.23)

θ̂EGRact = GEGR(Pi, Px, Tx, Ŵxi) (6.24)

θ̂V GTdes = GV GT (Ŵxt−des, Px, Tx, ) (6.25)

θ̂V GTact = GV GT (Ŵxt, Px, Tx, ) (6.26)

where GEGR and GV GT functions are GPR inverse models for EGR and turbine.

Desired and actual EGR flows Ŵxi−des, Ŵxi and desired and actual turbine flows

Ŵxt−des, Ŵxt are also estimated with the following inputs as

Ŵxi−des = MAFdes −GWie(N, MAP, Wf ) (6.27)

Ŵxi = MAF −GWie(N, MAP, Wf ) (6.28)

Ŵxt−des = GWie(N, MAPdes, Wf ) +Wf (6.29)

Ŵxt = GWie(N, MAP, Wf ) +Wf (6.30)

where MAF is the compressor inlet flow (i.e. Wci), Ŵie = GWie is the engine inlet

total flow and Wf is the fuel flow.
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6.2.2.1 GPR Based PI Control

Based on the error defined in (6.22) conventional PI controllers are proposed as

θEGRdes = KpEGR(θ̂EGRdes − θ̂EGRact) +KiEGR

∫
(θ̂EGRdes − θ̂EGRact)dt (6.31)

θV GTdes = KpV GT (θ̂V GTdes − θ̂V GTact) +KiV GT

∫
(θ̂V GTdes − θ̂V GTact)dt (6.32)

These controllers are compared with GPR based feedforward controllers on the

WHTC simulation and results are presented in Chapter 7.

6.2.2.2 GPR Feedforward and Saturated Integral Control

Another application of GPR feedforward control presented in Section 6.2.1 is in

Pco and MAP control via wastegate and throttle using the physical engine model

published in [98]. This time, integral (I) term is saturated with respect to the

estimated feedforward standard deviations of the wastegate and the throttle (

σWG and σThr).

θWGdes = θ̂WGdes + sat(KiWG

∫
(Pcodes − P̂co)dt) (6.33)

θThrdes = θ̂Thrdes + sat(KiThr

∫
(MAPdes −MAP )dt) (6.34)

where sat(.) is defined such that the values inside the paranthesis are saturated

with the upper limits of 3σWG, 3σThr and the lower limits of −3σWG, −3σThr

for the wastegate and the throttle; respectively. Results of this controller are also

shared in Chapter 7.

6.2.2.3 GPR Based Sliding Mode Control

Considering the system presented in the (5.35), sliding variable can be defined as

s(x) = S(xd − x) (6.35)
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where xd is the desired state vector and S is designed as

S =

0 0 0 0 S1 0

0 0 0 0 0 S2

 (6.36)

where S1 > 0 and S2 > 0. Assume that the control sensitivity matrix, B ∈ R6×2, is

precisely known but the nonlinear part of the system, F ∈ R6, is to be estimated.

In light of (5.39), one can select S1 = τEGR and S2 = τV GT . With these choices,

SB will be simply a 2×2 identity matrix, i.e. SB = I. The sliding mode controller

with equivalent control can be written as

ṡ(x) = 0 =⇒ ûeq = (SB)−1(Sẋd − SF̂ ) (6.37)

=⇒ u = (SB)−1(Sẋd − SF̂ (x, d)) +Ksign(S(xd − x)) (6.38)

where the sliding control gain is K > 0. Stability of the closed-loop system can

be proven as follows. Selecting a positive definite Lyapunov function as V =

1
2
s(x)T s(x), its time derivative can be written as

V̇ = s(x)T ṡ(x) (6.39)

V̇ = s(x)TS(ẋd − ẋ) = s(x)T (Sẋd − S(F +Bu)) (6.40)

Plugging (6.38) into (6.40) implies

V̇ = s(x)T (SF̂ − SF )− SBKsign(s(x))) (6.41)

Recalling SB = I2×2 and K > 0 is a scalar, (6.41) implies

V̇ = s(x)T (SF̂ − SF )−Ks(x)T sign(s(x)) (6.42)

Using |aT b| ≤ ||a|| ||b|| (Cauchy-Schwarz inequality) and the fact that s(x)T sign(s(x)) =

||s(x)||, (6.42) can be rewritten as

V̇ ≤ ||s(x)|| ||S(F̂ − F )|| −K||s(x)|| (6.43)
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For a given bound on the estimation error, ||S(F̂ − F )|| < δ, one obtains

V̇ ≤ −(K − δ)||s(x)|| (6.44)

Selecting K = γ + δ, γ > 0, it follows that

V̇ ≤ −γ||s(x)|| (6.45)

Since V̇ is negative definite, the closed-loop system is globally asymptotically

stable.

GPR based system models or equivalent control estimations create the following

opportunities for the controller:

• If all the nonlinearities are estimated using GPR models, then online predic-

tion of the estimation error bound (δ̂) can be obtained directly. GPR models

of the airpath components provide their variance estimates (e.g. σ̂F ∈ RN

for N components) as an output, and these values can be utilized for deter-

mining online values of the error bound (e.g. δ̂ = 3||σ̂F ||). But this type

of error bound estimation involves more than one GPR model, so variances

will be accumulated.

• Alternatively, static part of the equivalent control (ueqs = (SB)−1(−SF ))

can be estimated with a GPR model. For the design presented above, SB =

I, the estimation error bound can be rewritten as

||(ueqs − ûeqs)|| ≤ δ (6.46)

so that standard deviation outputs of the GPR models (σ̂ueqs ∈ R2) can be

used for determining the error bound (e.g. δ̂ = 3||σ̂ueqs||).

Accurate prediction of the error bound enables selection of just enough amplitude

of the control gain K = δ̂ + γ. Therefore actuator effort can be minimized.
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Results and Discussions

Proposed modeling and control approaches are trained and validated in various

environments. Data driven disturbance observer based discrete time sliding mode

control is implemented to the serial level controller and engine hardware. Part

of the Gaussian process modeling is validated with real data. Gaussian process

regression based modeling and control methods are implemented on the previously

validated engine models. These models are based on simplified physical equations

and they are calibrated with respect to a certain engine hardware in their original

development. Details of the models, test environments and controller hardware

are presented in the following subsections. Training, validation and controller

performance results are given in detail after the preleminary information on the

data sources.

7.1 Engine ECU Implementation

Model based software development is used in the implementation of the algorithms.

Developed embedded control algorithms are implemented in two stages. First

proof of concept is demonstrated with the prototype software tools. Specifically, in

this study ETAS-Ehooks is used. All models are developed via MATLAB-Simulink

using specialized libraries for the target environment. Functional by-pass is used

72
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for implementation of new algorithms instead of existing ones. Final implementa-

tion of the models are done with software sharing interfaces between OTOSAN and

BOSCH using related Simulink libraries and ETAS-ISOLAR toolchain. Developed

software is integrated to serial level software; so the final implementation steps are

the same as serial level software implementation process. So, the implemented

algortihms are validated for resource consumption and feasibility aspects.

7.2 Engine Simulation Environments

Two types of engine models are used in this thesis. The first one is the OTOSAN

in-house engine model which is developed for Hardware in the Loop (HIL) tests

for the Ecotorq engines. The second one is the open-source engine model released

by the Linkoping Vehicular System Laboratory. Both models are developed for

heavy duty diesel engines. Latter one is validated on the Scania 13L diesel engines

and the first one is validated on Ford-OTOSAN 12.7L diesel engines. Both models

are mean value engine models (MVEM). A mean value model deals with average

values of in cylinder events; therefore intake and exhaust pulsations or crank angle

domain events are out of their scope.

7.2.1 OTOSAN Engine Model

This model is an extended form of the model presented in [32], [79]. Actuator

dynamics and combustion modeling are the main differences of the OTOSAN

engine model structure from the cited literature. Block diagram of the model is

depicted in Fig. 7.1 and details of the functions and their training can be found

in [80]. This model is first tuned for each component (i.e. turbine, compressor,

valve...) and the overall engine model is then fitted to reference data. Model

training required both transient and steady state measurements from the engine

dynamometer tests.
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Figure 7.1: OTOSAN Engine Model Block Diagram

After this two step training, the error margin in terms of mean absolute relative

error, ērel (similar to normalized mean squared error) is less than 10%. This model

is used for engine control and modeling simulations with EGR and VGT hardware.

Since parameters of the model and unpublished details are Ford-OTOSAN pro-

prietary, the open source model which is decribed below is also used for further

validation and publications.

7.2.2 Linkoping Engine Model

There are two open-source available diesel engine models in Linkoping vehicular

systems laboratory website (www.fs.isy.liu.se/Software/ ). Details of the original

model are presented in [32], [79] and used for controller development studies.

This first model is Simulink based simplified physical model and it is updated

recently and validated with real engine data [98]. The latter model is generated

with extensive data including simulation results from higher fidelity gas dynamics

analysis tools, transient and steady real engine tests. It is used in this thesis

and it is reported in [98] that the maximum of its output errors is ērel < 8%. The

model simulates a Scania 12.7 liter heavy-duty engine with throttle and waste-gate

(WG) turbine. Typically this type of engines have MAP sensor, throttle and WG

position sensor, and engine speed sensor. Turbine control hardware is different
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from OTOSAN model. Hardware configuration flexibility claim of the proposed

methods are demonstrated with application on both OTOSAN and Linkoping

models.

7.3 Engine Testing

Ecotorq 12.7L is a heavy duty diesel engine developed by Ford-OTOSAN in Turkey

for on road transportation and it was introduced in 2016. Its target vehicles are

Ford Cargo and F-MAX. E6 variant of this engine has common-rail diesel injection

system with maximum rail pressure capability of 250 Bar. Its airpath is composed

of turbocharger with VGT, intercooler, throttle valve, cooled EGR as shown in

Fig. 7.2. Its compression ratio is 17. This engine has power variants for 420-500

PS.

Figure 7.2: Ecotorq E6 engine and aftertreatment system

A dynamometer is a load measurement device in general. However, in automo-

tive, this word is used for load simulation and measurement systems for vehicles

or engines. Dynamometer data which are used in this thesis are taken from Ford-

OTOSAN Golcuk test cells. Test cell is composed of all external instrumentations,

environmental conditions control systems, data acquisition and load control assem-

bly. Active dynamometers are used in this study and they are capable of delivering
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both positive and negative torques. The engine dynamometer setup is depicted in

Fig. 7.3. In order to simulate the vehicle behaviour, engine dynamometer creates

resistance torque.

Figure 7.3: Test Setup

Heavy duty diesel engines are homologated with the standard test cycle WHTC

on engine dynamometers. The test cycle is defined in terms of speed and torque

trajectories. These two trajectories are controlled via test cell computer. AVL

test cell control system is used for the experiments. Desired torque is controlled

via engine accelerator pedal position and the dynamometer unit (electrical mo-

tor/generator) controls the desired speed.

7.4 Identification Results

Designed data driven disturbance observer requires identification of the airpath.

System identification results based on simulation data and real engine dynamome-

ter data are presented in this section.
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7.4.1 OTOSAN Engine Model Implementation

Preliminary feasibility analysis is executed on OTOSAN engine model. This is

done for only MAF to EGR channel. The inputs-output scheme used for identifi-

cation is depicted in Fig. 7.4. For the specific model used in the study, all inputs

Figure 7.4: EGR Model inputs and output

have 5 past values and no output term is added to regressors for both linear and

nonlinear part. 5 sigmoid units are used for modeling nonlinear dynamics. Model

training best fit value is 82% and validation on the WHTC cycle is 70% as shown

in Fig. 7.5.

Figure 7.5: Training (Top) and Validation (Bottom) Results
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7.4.2 Real Engine Implementation

Chirp signals are used for training both MAF and MAP channels. Model orders

and delays are chosen as na = 0 for both channels, nb is [5 5 5 5] for MAF and

[5 5 1] for MAP, and nk = [1 1 1] for both channels. Training fit value of MAF

channel is 81%, and measured and modelled signals are shown in Fig. 7.6.

Figure 7.6: MAF training test overall

Validation of the models are done with the WHTC test. Best fit value of 80% is

achieved in the validation test. Signal traces are depicted in Fig. 7.7.

Figure 7.7: MAF validation test overall
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Similar to the MAF channel, the same tests are used for MAP modeling and

training fit accuracy of 78% is attained. Model and measurement signals are

depicted in Fig. 7.8. Contrary to the MAF model, intermittent peaks are observed

in this model.

Figure 7.8: MAP training test overall

WHTC fit of the MAP model is 77%; but as can be seen from Fig. 7.9, model

response is not as aggresive as in the training test. This difference is expected to

be a result of the excitation of a singular mode in the training set which includes

wide combination of input amplitudes.

Figure 7.9: MAP validation test overall
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Linear and nonlinear parts of the identification models are examined first and

inverse model results are shared afterwards. Proposed disturbance observer utilizes

only the linear part of the models; therefore representation capability of the linear

part is an important factor on DOB performance. Linear and nonlinear parts are

depicted in Figs. 7.10 and 7.11 for a selected interval (from 760 sec to 860 sec) of

1800 seconds WHTC.

Figure 7.10: MAF model contributions

A 100 seconds transient section is selected for the representation of the linear and

nonlinear dynamics. Significant nonlinear contributions are evident from these fig-

ures. Variations of linear and nonlinear model outputs are compared for MAF and

MAP channels. This calculation indicates that MAF has higher nonlinearity with

this modeling approach (i.e. var(MAFnonlinear)/var(MAFlinear = 0.20) whereas

var(MAPnonlinear)/var(MAPlinear = 0.16) ).
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Figure 7.11: MAP model contributions

Inverse linear models are compared with the current commercial feedforward struc-

tures. Commercial software utilizes a speed torque table based feedforward values

for VGT and a simplified physical model based feedforward for EGR. Proposed

linear inverse VGT model output, commercial feedforward values and the proposed

controlled valve position are presented in Fig. 7.12. Same information is depicted

in Fig. 7.13 for VGT channel. Model based feedforward for the EGR channel is

very close to the control signal. But inverse model has a similar dynamic with

a slowly varying offset. VGT inverse model is more responsive to the trajectory

changes with respect to the legacy feedforward term.

Figure 7.12: Feedforward and inverse model comparison for EGR
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Figure 7.13: Feedforward and inverse model comparison for VGT

7.5 GPR Modeling Results

Results of the airpath component modeling and feedforward control studies are

presented in this section. The same modeling methodologies described before are

applied to the different environments (i.e. OTOSAN Model, Linkoping Model

and Real Engine). The following subsections are organized with respect to the

environment and the model type.

7.5.1 OTOSAN Engine Model

7.5.1.1 Airpath Components

Selected airpath model has 5 main parts namely, compressor, turbine, engine cylin-

ders, EGR line and turbine inlet nozzle. Outputs of these subassemblies are repre-

sented with Pc, Pt,Wie,Wxi,Wxt. For each component, a Latin-hypercube space-

filling experiment is designed in the feasible input limits, and DoE is designed

with the minimum number of data points that satisfies R2 > 0.95 on the valida-

tion data set. Created space-filling data set is shared as 2/3 for training and 1/3

for validation. For each model, validation plots are presented in Fig. 7.14 to Fig.

7.18. Their corresponding R2 values are provided under the plots.
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Figure 7.14: Wxi validation plot R2 = 0.95

Figure 7.15: Wie validation plot R2 = 0.97

Figure 7.16: Wxt validation plot R2 = 0.98
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Figure 7.17: Pt validation plot R2 = 0.99

Figure 7.18: Pc validation plot R2 = 0.98

All models are obtained with the number of points less than 800. Gaussian process

(GP) models with these number of elements can be embedded into modern engine

control units such as Bosch MD-1 generation.

7.5.1.2 Feedforward

Total number of 179 training samples are selected for VGT and 1252 points are

left for validation. EGR modeling required more training data (i.e. 312 samples

for training and 1164 samples for validation) yet resulted in lower accuracy than

the VGT inverse model. Model training is done with fitrgp function in MATLAB.

Validation results for VGT and EGR valve position estimations are depicted in

Fig. 7.19 and Fig. 7.20, respectively.
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Figure 7.19: Validation Fit Results for VGT with 95% validation confidence
regions

Figure 7.20: Validation Fit Results for EGR with 95% validation confidence
regions

Although less training samples are used for VGT inverse model fitting (feedfor-

ward for MAP control), its validation accuracy is higher than EGR inverse model

(feedforward for MAF control). Since our covariance function assumes smoothness

on the EGR, accuracy is suffered from the singular behavior of the inverse plant

when pressure difference is near zero as shown in Figure 7.21.
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Figure 7.21: EGR Model Error vs. Pressure Difference on the EGR Line

7.5.2 Linkoping Engine Model

The latest Linkoping engine model (LiEM) is based on a no EGR waste-gate and

throttle engine. Without EGR line, airpath simplifies in a great deal and this is

also observed in the following model accuracies. In this modeling study, 1000 point

Lattice hypercube type DoE is used for model inputs. This type of engine experi-

ments are implemented during engine development process for emissions modeling;

so using this data for control can be accepted as virtually free. Some of the input

combinations resulted in infeasible results and they are filtered. Different training

and validation sets are selected for respective models. A sample implementation

of 496 point DoE is depicted in Fig. 7.22.

Figure 7.22: Manifold absolute pressure vs. time simulation result wih LiEM
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For each simulation of DoE test points, 20 seconds is waited and the last value is

taken for steady state modeling. For this model 10 second is generally enough for

settling of the output states with 1ms sampling time.

7.5.2.1 Airpath Components

MAF, throttle flow, compressor power, manifold absolute pressure (MAP) are

modelled for control development on LiEM. Different inputs and training data size

are utilized for these models. Each are presented in the following. Since LiEM

assumes constant intake manifold temperature, mass air flow (MAF) through the

cylinder is modelled with engine speed and manifold pressure inputs. Engine flow

modeling results are depicted in Fig. 7.23.

Figure 7.23: MAF modeling results

Engine cylinder flow is modelled with 99 points and validated on remaining 397

points. Since the models for this flow are generally accurate, a non-EGR engine

does not utilize MAF sensors. Both of the training and validationR2 u 1, and their

nrmse values are 0.0002 and 0.0003, respectively. Mass flow though the throttle

valve is modelled with its upstream and downstream pressure and valve position

inputs. Training set consists of 99 points and the rest are left for validation.

Training and validation results are depicted in Fig. 7.24 and their nrmse values

are 0.006 and 0.023, respectively.
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Figure 7.24: Throttle flow modeling results

Similarly, compressor power is modelled with 99 training points and its inputs are

MAP, throttle position and engine speed. Results are plotted in Fig. 7.25 and its

nrmse values for training and validation are 0.007 and 0.027, respectively.

Figure 7.25: Compressor power modeling results

Manifold absolute pressure, which is also measurable via its sensor, is modelled

with 99 training points and its inputs are fuel quantity, throttle position, WG

position, and engine speed.
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Figure 7.26: MAP modeling results

The results are depicted in Fig. 7.26 and their nrmse values are 0.024 in training

and 0.037 in validation. Compressor outlet pressure or throttle inlet pressure is

modelled with throttle position, MAP and MAF inputs. Training data has 99

points and results are depicted in Fig. 7.27. Training and validation nrmse values

are 0.001 and 0.004.

Figure 7.27: Compressor outlet pressure modeling results

Exhaust manifold temperature is required for feedforward modeling for LiEM im-

plementation. It is modelled using MAP, MAF, injected fuel quantity inputs, and

245 points are used for the training set.
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Figure 7.28: Exhaust manifold temperature modeling results

Exhaust manifold temperature training and validation results are depicted in Fig.

7.28. The nrmse error metrics are 0.006 for training and 0.009 for validation.

7.5.2.2 Feedforward

Similar to component models, waste-gate and throttle feedforward are estimated

with GPR models using the same data set. Throttle inverse model is built with

WG position, compressor outlet pressure, fuel injection quantity and engine speed

inputs. Training set included 295 points and its results and validation variance

estimation are depicted in Fig. 7.29.

Figure 7.29: Inverse throttle model results

Throttle model training and validation nrmse values are 0.092 and 0.139, respec-

tively.
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Figure 7.30: Inverse WG model results

Inverse waste-gate model is constructed with throttle position, MAP, fuel injection

quantity and engine speed inputs. Similar to the throttle, training set included

295 points and its results and validation variance estimation are illustrated in

Fig. 7.30. WG model training and validation nrmse values are 0.017 and 0.043,

respectively.

7.6 Disturbance Observer Based Control Results

7.6.1 OTOSAN Engine Model Implementation

Controller performance evaluation is done via acceleration pedal position steps

(load step). MAF setpoints are interpolated from desired value maps and they are

limited with maximum possible flow to create feasible setpoints. In this maneuver,

good tracking behaviour is achieved when there is no external disturbance (Fig.

7.31) . External disturbances in the form of sinusoidal and pulse waveforms are

then applied to the EGR valve positon and the system is simulated. Applied

disturbances and their estimated values by DOB are presented in Figs. 7.32 and

7.33. DOB output may include any real plant behaviour that can not be captured

by the nominal inverse plant. It should be noted that only disturbances that are

in the bandwith of the low-pass filter can reliably be estimated. It can be observed

from these figures that while sinusoidal disturbance waveform is preserved with
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Figure 7.31: MAF control result for 20% to 80% load step test

Figure 7.32: Sinusoidal disturbance vs. DOB output

only a slight phase shift in the estimation, pulse disturbance is estimated with

some significant deterioration in the waveform. Disturbance observer effect in

the closed-loop control under sinuisoidal disturbance can be seen by comparing

results without DOB (Fig. 7.34) and with DOB (Fig. 7.35). Similar to the

previous results, DOB improves overshoot and undershoots as can be seen from

the difference of the results depicted in Fig. 7.36 and Fig. 7.37. However, for

both type of disturbances simulation results provided in Figs. 7.34-7.37 show that

using DOB improves the performance of the system.
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Figure 7.33: Pulse array disturbance vs. DOB output

Figure 7.34: The step test - sinusoidal disturbance and DOB inactive

7.6.2 Real Engine Implementation

Current Ecotorq engine is Eu6 certified and uses a well tuned controller. In order to

show performance of the proposed control system, the same speed&torque profile

cycle was run back to back in the same engine. Since it is hard to visualize all

of the 30 minutes cycle, a 100 sec dynamic part is shown throughout the thesis.

Overall performance metrics will be shared at the end of the section.
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Figure 7.35: The step test - sinusoidal disturbance and DOB active

Figure 7.36: The step test - pulse disturbance and DOB inactive

Figure 7.37: The step test - pulse disturbance and DOB active
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Figure 7.38: Proposed MAF controller performance on WHTC

MAF tracking results for the proposed controller is given in Fig. 7.38. Since

maximum available airflow is limited with the boost pressure, desired trajectories

are not exactly the same with the reference test shown in Fig. 7.39. It is seen

from the new controller results in Fig. 7.38 that sharp trajectory changes are

followed with the increased performance of the proposed controller with respect

to the commercial one.

Figure 7.39: Commercial MAF controller performance on WHTC

MAF and MAP controls are closely coupled. The sudden changes in the MAF

trajectory in Fig. 7.38 is related with MAP control in Fig. 7.40. Proposed control

scheme has more agressive control behaviour with respect to the commercial one.

Since MAP is related with the maximum value of the desired MAF value, new
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MAP controller helps MAF control to have higher setpoint values and more sudden

changes with respect to the commercial control results depicted in Fig. 7.41.

Figure 7.40: Proposed MAP controller performance on WHTC

Figure 7.41: Commercial MAP controller performance on WHTC

MAF control is achieved with EGR position manipulation. EGR valve inlet pres-

sure is a function of VGT position. On the other hand, VGT flow is strongly

correlated with MAF and therefore it is the result of EGR position. So these

valves create disturbances for each other. Traditional control structures choose to

slow down one of the controllers and use significantly faster control in the other

channel. Proposed DOB scheme allows us to use fast valve actions in each channel

without deterioration in the other channel. EGR valve positions in Fig. 7.42 show

significant more action with respect to the commercial controller valve position

demands in Fig. 7.43.
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Figure 7.42: Proposed controller for EGR valve actuation on WHTC

Figure 7.43: Commercial controller for EGR valve actuation on WHTC

Figures 7.38-7.43 describe control details for a selected interval of the WHTC.

Overall performances are compared with the original map values. These two con-

trollers use the same control setpoint maps but dynamic adaptations are unique.

So in order to make a fair comparison, the difference between table values and the

sensor readings are defined as the errors. The overall performances for the whole

cycle are compared in Table 7.1 where Prop. and Com. denote proposed and

commercial controllers. Proposed controllers provide better tracking performance

in all metrics. MAP channel performances are close but the proposed controller

requires less control effort. However, higher tracking performance of the MAF

controller requires more control effort.
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Table 7.1: MAF & MAP Control Performance Metrics

Metric
Prop.

MAF

Com.

MAF

Prop.

MAP

Com.

MAP

nRMS Error 0.046 0.056 0.034 0.053

Max Absolute Error 346 343 668 801

RMS Control Effort 41.9 29.8 45.4 45.7

Max Control Effort 99.5 99.5 65.2 69.6

7.7 GPR Based Control Results and Discussions

All GPR based control simulations are done on OTOSAN and Linkoping engine

models. GPR feedforward with discrete time sliding mode control results are

presented first.

7.7.1 GPR Feedforward with Discrete Time Sliding Mode

Control

Reference conventional controllers for the airpath benchmark are PID controllers

for both EGR and VGT with a look-up table based feedforward. Conventional

controller (look-up table based feedforward plus PID) performance on the WHTC

cycle is presented in Figs. 7.44-7.46.

Figure 7.44: MAP tracking with look-up FF + PID on a WHTC section
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Figure 7.45: MAF tracking with look-up FF + PID on a WHTC section

Figure 7.46: Actuator efforts with look-up FF + PID on a WHTC section

Performance of the GPR feedforward plus DTSMC controller on the WHTC cycle

is presented in Figs. 7.47-7.49. Thanks to the accurate estimation of GPR feed-

forward model, better tracking results are observed as in Fig. 7.47 and it requires

less control effort than the feedback as depicted in Fig. 7.49.
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Figure 7.47: MAP tracking with GPR FF + DTSMC on a WHTC section

Figure 7.48: MAF tracking with GPR FF + DTSMC on a WHTC section

Figure 7.49: Actuator efforts with GPR FF + DTSMC on a WHTC section
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Overall reference tracking errors of the controllers are evaluated using various met-

rics on WHTC test cycle which has a duration of 1800 seconds. The performance

metrics are presented in Table 7.2.

Table 7.2: MAF & MAP Control Performance Metrics

Metric
PID+FF

MAF

GPR-FF

+DTSMC

MAF

PID+FF

MAP

GPR-FF

+DTSMC

MAP

nRMS Error 0.045 0.041 0.080 0.061

Max Absolute Error 478 478 1290 1277

RMS Control Effort 23 18 83 80

Max Control Effort 100 100 100 100

The MAF performance of the conventional approach is significantly less in best

fit metric although nrmse indicates less significant difference. This difference

between the metrics is caused by a few error peaks of the PID controller results in

certain intervals of the cycle. Such behavior significantly affects soot formation,

thus, SMC controller is superior for airpath control in terms of soot. MAP control

performance results show more clear separation in all types of metrics. GPR

feedforward achieves this result with limited feedback controller contribution.

7.7.2 GPR PI Control

This controller is tested with the same setpoints and the simulation model in the

previous subsection. In comparison to the performance depicted in Fig. 7.47,

GPR PI control result shown in Fig. 7.50 is superior in terms of MAP tracking

error. On the other hand MAF responses in Fig. 7.50 are similar with the response

depicted in Fig. 7.48, and VGT actuator positions are more agressive in Fig. 7.50.
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Figure 7.50: MAF (left), MAP (middle) tracking and actuator positions
(right) at a selected transient section of WHTC

The downside of this controller is its steady state error around certain idle points

as depicted in Fig. 7.51. This may require an additional adaptation logic on the

desired and actual position model.

Figure 7.51: MAF (left), MAP (middle) tracking and actuator positions
(right) at another selected transient section of WHTC

In the overall performance metrics, GPR PI has better performance in all cate-

gories as presented in the Table 7.3.
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Table 7.3: MAF & MAP Control Performance Metrics for GPR-PI and GPR-
FF +DTSMC

Metric
GPR-PI

MAF

GPR-FF

+DTSMC

MAF

GPR-PI

MAP

GPR-FF

+DTSMC

MAP

nRMS Error 0.041 0.017 0.061 0.040

Max Absolute Error 478 478 1277 1120

RMS Control Effort 18 21 80 79

Max Control Effort 100 100 100 100

7.7.3 GPR-FF Saturated Integral Control

GPR feedforward (GPR-FF) saturated integral control is implemented on LiEM

model. Compressor outlet pressure (pc) and MAP is controlled with throttle and

waste-gate. It is assumed that MAP sensor is available but there is no compres-

sor outlet pressure sensor. Very good responses are obtained with GPR-FF and

variance saturated I term application. Its step test accuracy is presented in Fig.

7.52. As can be seen from the figure, variance saturation of I term is very effective

against overshoots. Steady state error of MAP in the second step is caused by the

error in Pco and since there is no compressor outlet sensor in the assumption, this

error is in the acceptable range.

Figure 7.52: Compressor outlet pressure and MAP step responses of GPR
FF+sat(I)
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7.7.4 GPR Based Sliding Mode Control

Same tests are conducted with the GPR based SMC for throttle and wastegate

control. Although better steady state overall error is achieved severe chatter is

observed as seen in Fig. 7.53.

Figure 7.53: Compressor outlet pressure and MAP step responses of GPR
based SMC

The chatter can be alleviated using boundary layer techniques with the expense

of steady state error as depicted in Fig. 7.54.

Figure 7.54: Compressor outlet pressure and MAP step responses of GPR
based SMC

The steady state errors can be diminished with online training of GPR algorithm

but it is infeasible for the next generation ECU implementation.
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Conclusions

This thesis presents two different solution approaches for flexible and robust control

of the diesel engine airpath. Data driven disturbance observer and discrete time

sliding mode controller is proposed for available electronic control units. Gaussian

process regression based modeling and control approaches are studied for next

generation engine control units.

The proposed disturbance observer is based on dynamic identification of the air-

path. The experiment is designed for real engine tests. Same identification process

is first applied on the physical engine model and than to the real engine at dy-

namometer test cell. Dynamometer experiments are conducted at Ford OTOSAN

Gölcük Test Cells. Identified models have training and validation fit accuracies

around 80% and 70% respectively on reference physical models. However, training

and validation fit values for the real engine test results are more consistent. Real

engine fit results for MAF channel for training and validation tests are 81% and

80%, respectively. MAP channel training accuracy is 78% and validation fit reaches

to 77%. This difference between model and real engine is due to simplifications

in the physical engines. It is encouraging that the data driven model has higher

consistency in real engine implementation. These models are used for the design of

data driven disturbance observer. Data driven disturbance observer is first evalu-

ated with engine model simulations and periodic input disturbances. Simulations

demonstrated tracking performance improvement under simulated disturbances.

105
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After verification on the simulation models, same control architecture is applied

to Ecotorq 13L engine for EGR and VGT control. Controller application is done

via standard commercial software toolchain and a serial level code is generated.

The standard commercial controller and the proposed controller co-existed in the

test software and activated via calibratable switches. Therefore feasibility of the

application is proven. Back to back WHTC tests are conducted with proposed

DOB assisted controller and commercial controller. Since disturbance observer is

an active disturbance control device, its output is compared with physical model

based controller feedforward values and similar waveforms are observed. Tracking

performances of the proposed and commercial controllers are compared with their

overall WHTC error metrics. Tracking error, nrmse, is improved by 2% for MAF

and by 1% for MAP for overall WHTC.

Feedforward control values are modelled with an easy to implement engine map-

ping based experiment design on the physical model. This type of experiment

design resulted in high validation accuracy for VGT 95% but lower accuracy for

EGR 83%. The reason behind this validation performance deterioration is found

as low pressure difference on the EGR line. VGT feedforward model is utilized

with DTSMC and tested on the physical engine model. Simulation results indi-

cated that feedforward model resulted in a smooth valve actuation and superior

tracking performance with respect to the conventional PID control. It is also noted

that GPR feedforward control contribution is dominant over feedback control con-

tribution along the WHTC simulation. Apart from feedforward control, airpath

components are modelled with GPR method on physical model with steady state

and dynamic test data. GPR validation and training fit R2 values are higher than

95% on the physical model data. A data driven modeling approach will give the

required flexibility for the engine manufacturer or the control software developer

to shorten development and validation time for new engine configurations by using

prevalidated building blocks for new hardware layouts. Using these models, two

types of closed-loop controllers are designed. GPR based closed-loop control is

compared with GPR feedforward control and significant improvement is observed.
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nrmse value is improved by 1% for MAF and by 4% for MAP for the overall

WHTC.

Finally, data-driven models and respective controllers are designed and validated

which are flexible and robust thanks to the disturbance observer and GPR feed-

forward terms.

As a future direction, online adaption of models and validation of online adapted

controllers can be studied. Electric assisted airpath hardware and model appli-

cations are also important. Designed architecture can be easily adapted to those

type of implementations.
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