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ABSTRACT 

 

DEVELOPMENT OF ARTIFICIAL CELL CULTURE PLATFORMS USING 

MICROFLUIDICS  

 

HANDE KARAMAHMUTOGLU  

Mechatronics Engineering, MSc, Thesis, July 2019 

Thesis Supervisor: Assoc. Prof. Dr. Meltem Elitas 

 

Key Words: Cell Culture, Cancer, Microfluidics, Lab-on-a-chip and Single-cell resolution.  

Acquiring quantitative data about cells, cell-cell interactions and cellular responses to 

surrounding environments are crucial for medical diagnostics, treatment and cell biology 

research. Nowadays, this is possible through microfluidic cell culture platforms. These 

devices, lab-on-a-chip (LOC), are capable of culturing cells with the feature of mimicking 

in vivo cellular conditions. Through the control of fluids in small volumes, LOC closely 

mimics the nature of cells in the tissues compared to conventional cell culturing platforms 

such as flasks and cell culture plates. On the other hand, existing LOC-based cell culturing 

platforms are highly complicated to be used in clinics or laboratories without an expert who 

develops these microfluidic platforms.  

Therefore, in this thesis we developed simple and user-friendly microfluidic cell culturing 

platforms and compared our obtained data with the conventional methods. We performed 

our research on different human cancer cell lines including liver hepatocellular carcinoma, 

breast adenocarcinoma, and lymphoma cell lines; both monocytes and monocyte-

differentiated macrophages. We examined proliferation rate, morphological and 

phenotypical differences of the cells in different scales. In addition to cell culturing 

platform, we developed a microfluidic gradient generator to precisely titrate the 

concentration of chemicals and observed cellular responses to these stresses. Moreover, we 

quantitatively inspected the effect of different intravenous fluids on different human cancer 

cell lines.  

Finally, we have developed simple, low-cost and integrable microfluidic platforms, those 

can be used by untrained people, and perform cell culture experiments in a population at 

single-cell resolution. Our microfluidic cell culture platforms provide more quantitative and 

qualitative data compared to traditional batch culture assays. 
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ÖZET 

 

MIKROAKI SKALARIN KULLANIMI ILE YAPAY HÜCRE KÜLTÜRÜ 

PLAT FORMLARI NIN GELISTIRILMESI  

 

HANDE KARAMAHMUTOĴLU 

Mekatronik M¿hendisliĵi Y¿ksek Lisans Tezi, Temmuz 2019 

Tez danēĸmanē: Dr. Meltem Elitaĸ 

 

Anahtar Kelimeler: Hücre kültürü, Kanser, Mikro akēĸkanlar, ¢ip üstü laboratuvar ve Tek 

hücre ­ºz¿n¿rl¿ĵ¿  

 

Hücreler, hücre-h¿cre etkileĸimleri ve h¿crelerin etraflarēnē saran ortama verdikleri 

tepkilerle ilgili nicel bilgi elde etmek, medikal tanē, tedavi ve h¿cre biyolojisi araĸtērmalarē 

i­in olduk­a ºnemlidir. G¿n¿m¿zde bu mikro akēĸkan h¿cre platformlarē aracēlēĵēyla 

mümkündür. Bu cihazlar, çip-üstü-laboratuvar (ÇÜL), in vivo hücre koĸullarēnē taklit etme 

ºzelliĵi ile hücre kültür etme uygulamalarē i­in kullanēlmaktadērlar. Sēvēlarēn k¿­¿k 

hacimlerde kontrolü ile ÇÜL teknolojileri, kültür flask ve ĸiĸeleri gibi geleneksel hücre 

k¿lt¿r platformlarēna kēyasla dokulardaki h¿crelerin doĵasēnē yakēn bir ĸekilde taklit ederler. 

Diĵer taraftan var olan ÇÜL tabanlē hücre kültür platformlarē bu mikroakēĸkan platformlarē 

geliĸtiren bir uzman olmadan kliniklerde ve laboratuvarlarda kullanēlmak i­in çok 

karmaĸēktēr. 

Dolayēsēyla, bu tezde basit ve kullanēcē dostu mikro akēĸkan h¿cre k¿lt¿r cihazlarē geliĸtirdik 

ve elde ettiĵimiz verileri geleneksel metotlar ile kēyasladēk. Araĸtērmamēzē karaciĵer 

hepatosellüler karsinom, gºĵ¿s adenokarsinom ve lenfoma h¿cre hatlarē, monosit ve 

monositlerden t¿retilmiĸ makrofajlarēn ikisini de içeren farklē insan hücre hatlarē üzerinde 

ger­ekleĸtirdik. Farklē ºl­eklerde h¿crelerin ­oĵalma oranē, morfolojik ve fenotipik 

farklēlēklarēnē inceledik. Hücre kültür platformuna ek olarak kimyasallarēn 

konsantrasyonlarēnē tam olarak titre etmek i­in bir mikroakēĸkan gradyan ¿retici geliĸtirdik 

ve bu streslere verilen h¿cresel tepkileri gºzlemledik. Bundan baĸka farklē intravenºz 

sēvēlarēn farklē insan kanser hücre hatlarēna olan etkisini nicel olarak inceledik.  

Son olarak, eĵitilmemiĸ insanlar tarafēndan kullanēlabilecek olan, basit, d¿ĸ¿k maliyetli ve 

entegre edilebilir mikroakēĸkan platformlar geliĸtirdik ve bir pop¿lasyonda tek h¿cre 

çöz¿n¿rl¿ĵ¿nde h¿cre k¿lt¿r¿ deneyleri yaptēk. Bizim mikroakēĸkan h¿cre kültürü 

platformlarēmēz konvansiyonel yöntemlerle yapēlan hücre kültürü deneylerine göre daha 

nicel ve niteliksel veri saĵlēyor. 
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ñDo you know whatôs one mistake we always make? Believing that lifeôs immutable, 

that once you get on a particular track you have to follow it to the end of the line. But it 

appears that fate has more imagination than we do. Just when you think youôre in a 

situation you canôt escape from, when youôve reached the lowest depts of total 

desperation, everything changes as fast as a gust of wind, everythingôs overturned; from 

one second to the next you find youôre living a new life.ò 

-Susanna Tamaro 
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Chapter 1 

 

INTRODUCTION  

 

1.1 Motivation  

Cell culture in vitro is essential, for both understanding of cell biology and medical 

diagnosis and treatment [1]. Through the investigation of cellular behavior in a controlled 

in vitro environment, providing proper media and gas along with appropriate temperature 

for cell growth and reproduction, experiments can be done with reduced cost and labor in 

comparison to tissue culture and animal experiments [2]. Thus, for establishing this 

controlled environment several cell culturing platforms are being used including 

macroscopic polystyrene dishes, flasks or wells. However, petri dishes and well plates as 

traditional cell culturing platforms are limited to cell analysis on a population level [3]. 

Recent studies showed alteration in cell behavior even if cells are identical and in the 

same microenvironment [4]. Therefore, there is a need to examine large number of cells 

on a single-cell resolution in a microfluidic environment to have a better insight in cellular 

function. Conventional cell culturing tools are not adequate for this purpose. To establish 

a controlled microenvironment and to be able to perform single-cell level analysis, 2D 

microfluidic cell culturing platforms have been introduced and used [5].  
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Quantification and accuracy of analyzed data from these platforms are also very 

important [6]. Therefore, for the microfluidic cell culturing platforms, 

Polydimethylsiloxane (PDMS), an optically transparent material used for molding that is 

nontoxic, biocompatible, gas permeable and, thermally and chemically stable, is preferred 

to obtain data with microscopy imaging from microfluidic chips [7]. Moreover, PDMS 

based microfluidic chips for cell culture allows researchers to analyze cells as individuals 

and as cell populations at single-cell resolution depending on their chip designs and 

experimental protocols [8]. Nevertheless, these platforms are mostly too complex and not 

adaptable for different applications. Also, 2-dimensional (2D) cell culture platforms are 

not representative of real cell environment. In this manner, 3-dimensional (3D) cell 

cultures, introduced by Ross Granville Harrison with the hanging drop method from 

bacteriology to carry out the first tissue culture increased the interest in 3D cell cultures 

started to rise due to their potential in drug development since they are considered more 

realistic compared to 2D cell culturing platforms [9]. Still, most of the 3D culture 

technologies are costly, bulky and require too much time and effort, therefore, they are 

still at their crawling period for drug development screening and research. Furthermore, 

compared to 2D cell culture platforms, imaging and analysis is harder due to their 

complexity. On the other hand, 2D cell culture systems are less expensive than most 

systems and they are easier to analyze [10].  

As a result, 2D microfluidic cell culturing platforms are preferred more for cell 

biology research today. They provide laminar flow and large surface-to area-to-volume 

(SAV) ratio. Various aspects of the cellular microenvironment could be engineered in a 

precisely controlled manner, creating a cell microenvironment in a controllable and 

reproducible fashion to test biological questions [11]. 
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1.2 Contributions of the Thesis 

 

This thesis aims to create and test alternative cell culturing platforms that are 

adaptable, simple and integrable for different purposes including cell analysis in single-

cell resolution and under different microenvironments. We propose two microfluidic 

platforms; one of them aims cell culturing and second one generates gradients of drugs. 

In these artificial devices breast cancer cells were grown. Then, culturing platforms were 

connected to a microfluidic gradient generator. Next. Sodium dodecyl sulfate (SDS), as a 

drug representative, was flown through the gradient chip, supplying different gradients of 

SDS to the microfluidic chip with grown cells to mimic drug effect.  Thus, a microfluidic 

cell culturing platform and a microfluidic gradient generator was established for the 

investigation of drug concentration in personalize medicine in vitro allowing cell culturing 

in flow, live cell imaging and high-throughput analysis. Then, new chip designs were 

developed for investigating cell behavior and morphology using cancer and immune 

system cell lines. This thesis presents novel cell culturing platforms to culture cells for 

personalized medicine, medical diagnostics and cell biology research. 

 

 

1.3 Thesis Outline 

 

Chapter 2 presents the literature survey about cellular microenvironment, batch 

culture and microfluidic cell culture platforms. Chapter 3 introduces artificial cell 

culturing platforms, experimental procedures and illustrates setups for cell loading and 

culturing. Preparation of cells, fabrication of microfluidic devices and image acquisition 

techniques are also explained. In Chapter 4, the results of experiments in conventional 

culturing devices and in artificial cell culturing platforms are demonstrated along with 

discussions. Finally, thesis is concluded in Chapter 5 with possible future applications 

of microfluidic cell culturing platforms. 
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Chapter 2 

 

BACKGROUND/THEORY  

 

Microenvironment of a cell is created by factors that directly determine conditions 

around a cell or a group of cells, such as; cells, interstitial fluid and extracellular matrix 

(ECM) including tissue-specific proteins and polysaccharides [12] [13] [14]. They 

physically, mechanically and biomechanically affect cellular phenotype [15]. Also, they 

can considerably alter cell behavior and fate by manipulating microenvironmental 

features [16] [17]. For instance, Satyam et al. demonstrated that with macromolecular 

crowding in the cell microenvironment the secretion of ECM molecules could be 

developed for corneal fibroblasts [18]. The changes in the microenvironment of cells 

influence cell proliferation as well.  Generation of new cells is important since it is 

essential for tissue growth and propagation and is considered as one of the hallmarks of 

cancer (Figure 2.1) [19] [20].  

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124711/#B2
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Figure 2.1. The hallmarks of cancer [20]. 

 

 

Surgery, chemotherapy, and radiotherapy have been the most common cancer 

treatment methods for a long time [21]. These conventional cancer therapies have been 

considerably beneficial in the elimination of primary tumors. Nevertheless, there is a 

cancer recurrence issue due to tumor metastases [22]. Furthermore, the number of new 

cancer cases has become approximately 18.1 million and almost 9.6 million people lost 

their life due to cancer in 2018 [23]. Thus, new cancer therapies for the eradication of 

tumor cells have been investigated [24]. Latest research has revealed multiple functions 

of the tumor microenvironment (TME) in the adjustment of therapeutic efficacy. Even 

though the effect TME activities have on cancer initiation and metastasis are well known, 

our insight of the TME's impact on treatment results is still inadequate [25]. Hence, the 

trend in cancer research has changed from the examination of fatal cancer cells themselves 

to the investigation of tumor microenvironment and the interactions within [26].  

TME consists of resident fibroblasts, endothelial cells, pericytes, leukocytes and 

extracellular matrix, and causes to the progression of cancer (Figure 2.2.) [27].  It is well 

established that non-tumor cells are genetically more balanced compared to tumor cells 

[26] [28]. Therefore, treatments targeting the TME have a very low possibility for 

generating adaptive mutations and fast metastasis. Still, since cells can both initiate and 

prevent tumor cell growth, treatments targeting the TME for cancer therapy should be 

discriminative [26]. Recently, for the investigation of TME, in vitro cell culturing 

techniques are being preferred preliminary for in vivo experiments. This is partly because 
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in vivo tests are very costly and ethical problems due to animal testing [29] [30] [31]. 

Thus, studies with in vitro cell culture models has gained a growing attention [32].  

 

 

Figure 2.2. Detailed illustration of the tumor microenvironment showing representative 

cell types, tissues, and signaling factors involved [27]. 

 

 

Conventional cell culture platforms are macroscopic polystyrene dishes, flasks or 

wells [3]. Using these vessels and novel microfluidic platforms, cells can be cultured in 

vitro. However, researchers accepted failure in reproducibility of their own assays using 

batch culture and microfluidic cell culture [7] [33]. Different outcomes were obtained 

after repeating an assay in the same way it was performed before because of the changes 
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within the cell environment [34]. This inconsistency in conventional and microfluidic 

platforms is a solvable problem using the right tools [35]. Additionally, in conventional 

cell culturing platforms cells remain in static condition, yet this is not the case for cells 

inside human body. This means that the dynamic physiological conditions for cells 

cannot be monitored in conventional cell culturing vessels with gradients of 

temperature and CO2 concentrations that are not optimal [36]. Therefore, it is important 

to provide sensitive cell culture platforms in which cellular microenvironment can be 

controlled allowing cell analysis.  

Novel in vitro cell culturing platforms assists in the examination of various 

culturing properties that have been investigated with conventional culturing platforms for 

centuries such as cell proliferation to show drug efficacy in stopping tumor cell 

proliferation [37]. Investigation of cell proliferation with the likelihood of metastases lead 

to a better understanding of the influence that culturing elements have on tumor 

progression [26]. These platforms are microfluidic cell culturing platforms. They allow 

the manipulation of spatial and temporal gradients and patterns that cannot be obtained 

and controlled in conventional platforms (Figure 2.3) [38]. Compared to traditional batch 

culture, microfluidic devices require smaller volumes of materials and thus shorter 

experiment time due to parallelization and lower cost of assays 

[39], [40], [41]. Microfluidic cell culture is also proficient for advancing precision 

medicine focused studies [42]. These works have generated a significant effect on 

knowledge about cellular activities that is essential in regulating disease features and 

responses to stimuli [43] [44] [45]. 

Figure 2.3. Microenvironmental parameters for cell culture [38]. 

https://www.sciencedirect.com/topics/physics-and-astronomy/statics
https://www.sciencedirect.com/topics/engineering/physiological-condition
https://www.sciencedirect.com/science/article/pii/S016793171930019X#bb0075
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In last decades, through the culturing of cells inside novel microfluidic devices a 

better insight about the cellular microenvironment was obtained and these platforms were 

used for various purposes. With the control of the mitotic mechanisms by trapping cells 

inside a microfluidic platform, it was discovered that the behavior of HeLa cells altered 

substantially during mitosis due to the entrapment of cells (Figure 2.4). Additionally, 

researchers observed that new cells produced after the entrapment had different sizes from 

each other [46] [47]. For trapping nonadherent cells, another microfluidic chip was 

fabricated in which the immunostaining and labeling of THP-1 cell membranes was 

shown. This platform allowed cells to be captured without the need for centrifuging and 

resuspension [48]. In another study, miniaturized fiber-based optical tweezers were used 

in integration with microfluidic chip for single-cell trapping using red blood cells and 

colon cancer cells (Figure 2.5). Researchers were able to obtain fluorescence and Raman 

measurements of single cells [49]. 

Figure 2.4. The effect of microlevel trapping on the division of HeLa cells. (a) The 

macroscopic structure of the microfluidic PDMS platform. (b) The cross-section of the 

microfluidic PDMS platform posts. With the utilization of pressure on the posts, cells can 

be trapped within the area between the posts. (The distance between the posts is 40ɛm). 

(c) The trapping generated substantial shifts in the behavior of the cells during mitosis and 

led to the production of new cells with different sizes [46].  
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Figure 2.5. Optical micro-tweezer integrated in a microfluidic chip. (a) Isometric view of 

the optical tweezers integrated in the microfluidic system (b) Top view picture of the 

device. (c) Enlarged picture of the optical tweezers inside the microfluidic channel (d) 

Enlarged view of the microprisms on the optical tweezers [49]. 

  

 

There are various microfluidic platforms fabricated for single-cell investigations. 

For example, Ono et al. developed a single-cell and feeder-free culture system for primate 

pluripotent stem cells. Researchers suggested that monkey embryonic cells cultured in 

this system can be used for in vitro differentiation and gene manipulation [50]. There are 

various other culturing platforms designed for singe-cell analysis in which cells are 

isolated, trapped and manipulated in several ways. These isolation and capture methods 

include droplet-based microfluidics, hydrodynamics, magnetic forces, acoustics, optics 

and dielectrophoretic traps (Figure 2.6) [51].  For instance, scientists used a droplet-based 

microfluidic device to separate cells to examine cell growth in a monodisperse nanoliter 

aqueous droplets surrounded by an immiscible fluorinated oil phase (Figure 2.7). Thus, 

they were able to obtain high throughput using Saccharomyces cerevisiae cells for gene 

identification [52]. 
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Figure 2.6. Schematic demonstrating various approaches for cell isolation, capture and 

control of single cells in a microfluidic device [51]. 

 

 

Figure 2.7. Microfluidic high-throughput screening platform. Droplets are obtained 

through the combination of aqueous stream with two streams including a fluorinated oil 

and surfactant mixture [52]. 
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 Detection of biomarkers is another important application of microfluidic devices. 

For the detection of biomarkers multiple platforms have been used and tested [53] [54]. 

Moreover, microfluidic platforms have been used for personalized medicine through drug 

screening and discovery as well [55] [56]. Figure 2.8 demonstrates a microfluidic chip 

developed for monitoring of drug screening and cancer research. Scientists used T98G 

human brain cancer cells inside the microfluidic cell culture platform to investigate cancer 

cell metabolism [57]. There are a lot of other microfluidic culturing devices used with 

tumor cells [58] [59], stem cells [60] [61] and other cell types as well [62] [63] [64]. 

 

Figure 2.8. A microfluidic chip for monitoring drug screening and cancer research [57]. 

 

 

The cell culture platforms that are mentioned above are mostly 2D cell culturing 

platforms with short construction time, mimicking the in vivo environment. Still, recently 

some researchers started to suggest the use of 3D cell culturing devices [65]. In 2D 

microfluidic cell culturing platforms, cell growth occurs on flat surfaces. Cells attach to 

surface, then start spreading. With 2D culturing chips, cell behaviors can be examined 

through inexpensive and transparent materials. Also, these systems are expected 

worldwide. Still these devices have limitations about mimicking culture environment. 

Because, in vivo environment includes cells surrounded by other cells and extracellular 

matrix (ECM) and 2D cell culture is not enough in mimicking this whole 3D environment. 

Therefore, cell growth, spreading and migration based research can give misleading 

results. Yet mostly 2D cell culture outcomes supplies suitable data with in vivo studies 

[66] [38]. 

https://www.sciencedirect.com/topics/materials-science/cell-growth
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Like 2D, establishing a 3D cell culture platform is a rapid process and the 

homeostasis compatibility of the 3D device with cells provides long-term stability [67]. 

Nevertheless, despite all advantages 3D culture techniques offer, there are technical 

problems in microscopy imaging of these devices. Compared to 2D structures, in 3D 

cultures there can be cases in which live cells cannot be visualized with bright field and 

phase microscopy. This is because bright field and phase microscopy depends on light 

transmission through the sample and in 3D cultures the samples may be simply too thick 

for light passage [68]. Therefore, alternative imaging techniques are required and being 

developed for 3D cultures. In addition to low throughput in cell imaging in 3D models 

there is difficulty in maneuverability [69]. Also, due to inconsistencies in between 

biologically derived matrices, assay outcomes may not be reproducible in 3D culture 

which is an issue for 2D culture as well [70]. In some 3D constructs, spheroids that differ 

highly in size are formed, leading to diversity within the same well/flask which is a 

disadvantage lowering the accuracy of an assay [71]. Another important weakness of 3D 

culture is that, vasculature, crucial for tumor growth/survival and drug delivery, is 

deficient in 3D models [72] [73]. Furthermore, 3D cultures are more costly for performing 

high throughput experiments in comparison to conventional 2D culture [71]. Hence, 2D 

microfluidic cultures are still being used often. Even though 3D systems are better for 

mimicking in-vivo organisms, they are very complicated while 2D microfluidic devices 

are simple and acknowledged by a bigger scientific community. 

Figure 2.9  Schematic of different cell culture models: Static 2D or 3D cell culture 

models, 2D microfluidic culture models, 3D microfluidic culture models [38]. 

https://www.sciencedirect.com/topics/physics-and-astronomy/homeostasis
https://www.sciencedirect.com/topics/engineering/technical-challenge
https://www.sciencedirect.com/topics/engineering/technical-challenge
https://www.sciencedirect.com/topics/physics-and-astronomy/statics
https://www.sciencedirect.com/topics/materials-science/microfluidics
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Chapter 3 

 

MATERIALS AND METHODS  

 

3.1 Design, simulation and fabrication of microfluidic chip 

 

Microfluidic chips in Figures 3.1 and 3.2 were designed with Layout Editor® and 

chips in Figures 3.3 and 3.4 were drawn with CleWin Layout Editor®. The microfluidic 

cell culture chip in Figure 3.1 consists of six identical cell culturing platforms that are 

independent of each other. These platforms were constructed as flexible designs that can 

be used for various cell lines. Also, these culturing chambers can be utilized with same 

type of cells given chemical titration through the microfluidic gradient generator chip in 

Figure 3.2. The butterfly shaped structures in Figure 3.1 represents pillars and they were 

placed in order to prevent polydimethylsiloxane (PDMS) collapse. These V-shaped pillars 

were created with smaller flow passages compared to the diameter of cells. This was done 

to hold the cells on these designs and to enclose the cells inside the chamber once they 

enter to the chamber. The bottom of the butterfly structure has passages to prevent the cell 

movement to outlets as well. Thus, when cells gather at the bottom of the V-shaped pillars, 
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the flow in the center of the culturing chamber is prevented. As a result, the system pushes 

surplus cells towards the outlet channel of the chamber. 

All culturing platforms on the microfluidic chip in Figure 3.1 consists of a single 

inlet and a single outlet connected through a channel with a microchamber in between in 

which cells loaded to the platforms can be grown and observed under microscopy. The 

diameters of inlet and outlets are 1 mm, the width of the inlet connection channel is 100 

ɛm and the width of the outlet connection channel decreases in width bit by bit to 50 ɛm. 

The main culturing chamber in each platform has 530 ɛm length and 444 ɛm width 

(Figure 3.1.b). The minimum gap between the pillars is 10 ɛm. 

Figure 3.1: Design of the microfluidic cell culture chip in Layout Editor®. (a) Cell culture 

platforms on a single chip with inlet (gray circles) and outlet (blue circles) diameters as 1 

mm, inlet connection channels gradually decreasing in width to 50 ɛm. Outlet connection 

channels are 100 ɛm wide. (b) Magnified view of the microchambers. (c) The white 

butterfly shaped pillars with 90 ɛm width to eliminate PDMS collapse [74]. 

Figure 3.2: The design of the microfluidic gradient generator device in Layout Editor®. 

a) The complete device with two inlets (blue circles) and six outlets (gray) with 1 mm 

diameter. b) Magnified view of mixing channels demonstrating the length and width of 

mixing channels [74]. 
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Figure 3.3: Design of the microfluidic cell culturing chip with dimensions. Inlet, outlets 

and cell loading hole are demonstrated with blue circles. White circles represent pillar 

structures [75]. 

 

Figure 3.4: Design of the microfluidic co-culture chip with 3 cell culturing platforms. 

Each platform consists of two inlets (red circles), outlets (blue circles) and cell loading 

points (green circles). White structures in the design were placed as pillar representatives.  

 

 

The design for the chemical gradient generator in Figure 3.2, was created based 

on the ñChristmas treeò design, which is a famous design due to its accurate concentration 

dosing and gradient generation [76]. The gradient generator has two different inlets (blue 

circles) for obtaining gradients of chemical concentrations from six outlets (gray) with 

distribution rates of  0 %, 20 %, 40 %, 60 %, 80 % and 100 % (Fig. 3.2.a). With connection 

to microfluidic cell culturing platforms in Figure 3.1 through tubings the gradient 

generator was designed to be used for supplying different concentrations of a chemical as 

a drug representative to an adherent cell line for drug efficacy investigation. Thanks to 

microchannels being longer than their width, the gradients of the chemical produced 


