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ABSTRACT 

 

 

 

GRAPHENE TEXTILES TOWARDS SOFT WEARABLE 

INTERFACES FOR ELECTROOCULAR REMOTE CONTROL OF 

OBJECTS 
 

 

ATA JEDARI GOLPARVAR 

 

 ELECTRONICS ENGINEERING M.Sc. THESIS, July 2019 

 

Thesis Supervisor: Asst. Prof. Dr. Murat Kaya Yapici 

 

 

Keywords: EOG, e-textile, graphene, HCI, wearable electronics, eye tracking  

 

Study of eye movements (EMs) and measurement of the resulting biopotentials, referred 

to as electrooculography (EOG), may find increasing use in applications within the 

domain of activity recognition, context awareness, mobile human-computer interaction 

(HCI) applications, and personalized medicine provided that the limitations of 

conventional “wet” electrodes are addressed. To overcome the limitations of conventional 

electrodes, this work, reports for the first time the use and characterization of graphene-

based electroconductive textile electrodes for EOG acquisition using a custom-designed 

embedded eye tracker. This self-contained wearable device consists of a headband with 

integrated textile electrodes and a small, pocket-worn, battery-powered hardware with 

real-time signal processing which can stream data to a remote device over Bluetooth. The 

feasibility of the developed gel-free, flexible, dry textile electrodes was experimentally 

authenticated through side-by-side comparison with pre-gelled, wet, silver/silver chloride 

(Ag/AgCl) electrodes, where the simultaneously and asynchronous recorded signals 

displayed correlation of up to ~87% and ~91% respectively over durations reaching 

hundred seconds and repeated on several participants. Additionally, an automatic EM 

detection algorithm is developed and the performance of the graphene-embedded “all-

textile” EM sensor and its application as a control element toward HCI is experimentally 

demonstrated. The excellent success rate ranging from 85% up to 100% for eleven 

different EM patterns demonstrates the applicability of the proposed algorithm in 

wearable EOG-based sensing and HCI applications with graphene textiles. The system-

level integration and the holistic design approach presented herein which starts from 

fundamental materials level up to the architecture and algorithm stage is highlighted and 

will be instrumental to advance the state-of-the-art in wearable electronic devices based 

on sensing and processing of electrooculograms.  
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ÖZET 

 

 

 

ELEKTROOKULAR NESNE KONTROLUNDE GRAFEN TEKSTIL 

ARAYUZ KULLANIMI 
 

 

ATA JEDARI GOLPARVAR 

 

ELEKTRONIK MÜHENDISLIĞI YÜKSEK LİSANS TEZİ, TEMMUZ 2019 

 

Tez Danışmanı: Dr. Öğr. Üyesi Murat Kaya Yapıcı 

 

 

Anahtar Kelimeler: EOG, e-tekstil, grafen, HCI, giyilebilir elektronikler, göz takibi 

 

 

Göz hareketlerinin incelenmesi ve bu hareketlerle beraber ortaya çıkan biopotansiyellerin 

ölçümü, klinik ıslak elektrotların kısıtlamalarının çözülmesi halinde mobil insan bilgisayar 

etkileşiminde (HCI) ve kişiye özel tıp uygulamalarında artan bir kullanım bulabilir. Bu çalışma 

klinik elektrotların elektro okülografideki (EOG) kısıtlamalarını çözmek üzere, grafen bazlı 

iletken tekstillerin ilk defa kullanılmasını ve özelliklerinin belirlenmesini içermektedir ve bu 

işlem özel tasarlanmış bir gömülü göz izleyici donanımını kullanılmıştır. Bu kendi kendine yeten 

giyilebilir cihaz, entegre tekstil elektrotlara sahip bir kafa bandından ve Bluetooth üzerinden uzak 

bir cihaza veri aktarabilen gerçek zamanlı sinyal işlemeli küçük pille çalışan bir donanımdan 

oluşmakta. Jelsiz, esnek ve kuru grafen elektrotun uygunluğu deneysel olarak ıslak gümüş/gümüş 

klorür (Ag/AgCl) elektrotlar ile karşılaştırılarak gösterilmiştir. Farklı katılımcılarla yüz saniye 

boyunca eş zamanlı ve asenkron olarak tekrar edilen ölçümler sırasıyla %87 ve %91’e varan 

korelasyonlara ulaştı. Ek olarak otamatik göz hareketi tespit algoritması geliştirildi ve böylece 

grafenli göz hareketi sensörünün HCI kontrol elemanı olarak kullanılabileceği deneysel olarak 

gösterildi. On bir farklı göz hareketi biçiminin %85 ve %100 arasında değişen başarılı tespit oranı, 

önerilen algoritmanın grafen bazlı EOG ölçüm ve HCI uygulamalarındaki kullanılabilirliğini 

gösterdi. Burada öne çıkarılan sistem seviyesinde ve bütünsel dizayn yaklaşımları gelişmiş EOG 

sistemlerinin ilerlemesinde faydalı olması beklenmektedir.  
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CHAPTER I 

 

INTRODUCTION AND MOTIVATION 

 

 

 

1.1. Motivation 

 

 

Eye tracking matters to many. For a brand leader, the prospect of seeing the world through 

their customers’ eyes, literally, as opposed to relying on traditional market research 

methods is the reason that makes eye tracking a clear step towards objectively 

understanding what really drives the shopping experience and purchase decisions, at a 

subconscious level. In virtual reality not only eye tracking does enable a whole new 

method to interact intuitive with contents, but it could also add another layer of connection 

and feedback, as well as adding a new means of privacy and security check thought retinal 

scanning. In healthcare, eye tracking enables devices that could help to better ease the 

challenging life of a disabled individual using their eye motions.  

 

Current technology for eye tracking, however, is lacking to correspond to the necessities 

of an everyday usable product by every-layers of the society and failed to take challenges 

of the current era’s electronic appliances requirement: to be minimized (both in power 

consumption and size), wearable, and aesthetic. Therefore, this work aims to suggest an 

alternative eye tracking system by presenting the first graphene textile-based wearable 

eye tracker device.  

 

 

1.2. Summary of Works 

 

 

The presented work extends the pioneering efforts on wearable graphene textiles toward 
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object control and mobile Human–Computer Interaction (HCI) and reports, for the first 

time, successful acquisition of electrooculography (EOG) signals with graphene textile 

electrodes. It also provides a systematic analysis on the possible locations on the forehead 

to record ocular biopotentials and describes the system-level integration of textile 

electrodes into an ordinary elastic sports headband with embedded electronics to realize 

a highly-integrated, light-weighted, wearable eye tracker device to worn on the body and 

particularly designed for unobtrusive and long-term daily use. 

 

The specific contributions of this work are (1) feasibility check of graphene textile 

electrodes in sensing EOG signals experimentally thought several case studies with direct 

comparison to conventional silver/silver chloride (Ag/AgCl) electrodes; (2) the design of 

a pocket-worn, battery-powered EOG-based eye tracker which implemented as headband 

and can stream data to a remote device over Bluetooth; (3) design of an automatic 

detection algorithm to differentiate between different eye movements (EMs) in real-time; 

(4) the characterization of wearable eye tracker thought several experiments as a proof-

of-concept demonstration.  

 

 

1.3. Outline 

 

 

Parts of this thesis were originally published in “IEEE Sensors 2017 proceedings” as 

Wearable Graphene Textile-Enabled EOG Sensing in [1], in “Body Sensor Networks 

2018 proceedings”, as Graphene-coated Wearable Textiles for EOG-based Human-

Computer Interaction in [2], in “IEEE Sensors Journal” as Electrooculography by 

Wearable Graphene Textiles in [3], in “MDPI Electronics” as Wearable and Flexible 

Textile Electrodes for Biopotential Signal Monitoring: A review in [4], and, in “Journal 

of The Electrochemical Society” as Graphene Smart Textile-Based Wearable Eye 

Movement Sensor for Electro-Ocular Control and Interaction with Objects in [5], and are 

reproduced in detail here.  

 

In this chapter, the target of this research was introduced along with the specific 

contributions of this work. In the next chapter, the main limitations of current EOG-based 

eye tracking technology along with some essential background information regarding 
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physiology of EMs and the state-of-the-art in EM research with particular emphasis on 

sensors and applications presented. Later on, a literature review covering dry electrodes, 

textile manufacturing technology, and similar previous work presented. In the third 

chapter, the fabrication of the textile electrodes and their integration into a wearable 

garment along with the acquisition circuitry and its design criteria discussed and followed 

by the characterization of the developed textile electrodes. In the fourth chapter, detailed 

information on signal processing algorithm to automatically detect EMs is given and the 

proof-of-concept experiments which critically designed to evaluate the performance of 

the system is covered. The challenges from fundamental material development to high-

level integration are emphasized in chapter five to highlight areas that need development 

and suggest future directions for further improving the fully integrated wearable eye 

tracker. 
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CHAPTER II 

 

BACKGROUND ON ELECTROOCULOGRAPHY 

 

 

 

2.1. Eye Tracking 

 

 

Eye stores a tremendous source of potential for the rise of new applications in human-

computer/machine interfaces (HCI/HMI), and EMs are known to possess a rich source of 

information including signatures of emotional states, psychiatric disorders or 

psychological behaviours, perception, desires, and needs which have been of much 

interest to cognitive neurosciences [6, 7]. Throughout the past century, eye tracker 

machines highly evolved and now they can be classified under either of the following 

concepts: scleral search coil-based oculography, infrared reflection-based oculography, 

video-oculography, and biopotential measurement-based oculography [8, 9]. Economic 

challenges and long-term performance of the earlier designs, however, obligates 

successful realization of casual, consumer-driven, and wearable products (figure 2.1). For 

instance, coil-based eye tracking systems are invasive and are not meeting the non-

clinical application needs (figure 2.1a) [10]. On the other hand, although camera-based 

eye tracking setups fulfil the invasivity issue and display long-term functionality, they are 

hardly affordable due to their hardware (e.g. camera) and image processing requirements. 

For instance, SR Research’s camera-based eye tracker products cost a minimum of 

~28000 EUR (figures 2.1c and 2.1d). Additionally, in video-oculography, the camera has 

to be positioned at a location suitable to capture the EMs, which limits portability of such 

systems. Therefore, effort has been placed to fully investigate different methods to take 

possession of EMs.  
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Figure 2.1. Current technologies for tracking EMs which are either invasive, expensive, 

or bulky and are not meeting the non-clinical application needs. (a) state-of-art search 

coil-based eye tracking system called EyeContact [11]. (b) Infrared reflection-based eye 

tracker which equipped with two cameras to track two pupils and reflections of infrared 

light out of the cornea 1. Head-mounted video-based eye tracker systems: (c) SR Research 

EyeLink II used in memory performance investigation [12]; (d) SR Research EyeLink I 

and (e) Arrington Research ViewPoint PC-60 BS007 which both were used in a Virtual 

Reality study [13]; (f) the third generation of an open-source and low-cost 

(comparatively) solution called openEyes [14].  

 

Alternatively, EOG is an economical (a normal EOG set-up could be assembled under 

100 EUR [15]), non-invasive, and reliable method for acquiring biopotential signals 

around the eyes, and addresses the limitations of both coil- and camera-based systems [9] 

and has estimated precision of up to 1.5° [16]. EOG is essentially based on the simple 

model of the human eye, which is a dipole with permanent potential difference between 

its forward and backward facing spots (cornea-retinal potential, 0.4-1.0 mV: the cornea 

being positive) [17]. This potential difference sets up an electrical field in the tissues 

surrounding the eye which generates an electric field [18].  

                                                      
1 http://schorlab.berkeley.edu/research/equipment 

(a) (b) (c)

(d) (e) (f)

http://schorlab.berkeley.edu/research/equipment
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Figure 2.2. General view of an EOG measurement system where the electrode which 

cornea is approaching to incurs more positive charges than the other one and results to a 

unique voltage fluctuation which depends directly on the angle of the eye; adapted from 

[19, 20]. 

 

If a pair of electrodes is attached around the eyes, during EMs, the field vector rotates 

correspondingly and the electrode which cornea is approaching to will incur more positive 

charges than the other one and the result will be a unique voltage fluctuation which can 

be detected by the attached electrodes [20]; figure 2.2 illustrates this phenomenon. By 

analysing these deviations with signal processing techniques, the type of EM can be 

tracked and determined [21].  

 

The recorded biopotential signals are referred to as the electrooculograms, and the method 

for acquiring them is termed as EOG [22]. Electrooculograms also occurs in total 

darkness [23], when the eyes are closed [24], and even in visually impaired people [25]. 

However, as we will see later on in this work, their signal characteristics may differ. For 

instance, when the eyes closed, the amplitude of the recorded electrooculograms 

significantly increases.  

 

Although induced electrooculogram due to wink or blink is comparatively stronger in 

amplitude to the ones which occur due to lateral or horizontal EMs, the eyes only slightly 

move (approximately 5°) in winking or blinking. It’s because, in eyelid-related 

movements, such as closing or opening the eyes, the cornea is short circuits with retina 

(figuratively speaking) and thus resulting potential is actually the sum of the cornea and 

retinal potential together [24]. Despite that these eyelid-related boosts are not directly due 

to EMs, alike prior works, this work considers them as electrooculograms as well. 
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2.2. Limitations of Biopotential Sensing based Oculography 

 

 

So far, several EOG-based rehabilitation systems were developed as an assistive 

technology for people with lock-in syndromes, who have extremely limited peripheral 

mobility but still retain their eye motor coordination [26], in order to ease their daily life 

challenges and/or enable them to communicate [27-30]. Similarly, basic deliberate EM 

such as saccades (i.e. fast EMs), fixations (i.e. duration between to saccades when gaze 

fixated onto something), and blinks have been used for hands-free operation in HCI/HMI 

[31-33] and are able to facilitate mouse cursor emulation [34], type in virtual keyboard 

[35, 36], drive wheelchair [37], control robots [38], change TV channels [39], and even 

improve user experience on virtual reality gaming [40] or smartphone operation [41]. 

Additionally, visual fatigue estimation using EOG was proposed to be used in 2D/3D 

display auto-adjustment switch systems [42]. 

 

Along these lines, in the healthcare domain, as part of a hospital alarm system, EOG-

based switches provided immobile patients with a safe and reliable way of signaling an 

alarm [43]. Also, utilization of an EOG-based eye tracking system suggested for 

controlling of an artificial eye for individuals with the single-eye blind condition to 

compensate for the movement of their lost eye [44]. Furthermore, EOG found 

instrumental for diagnosis and treatment of disorders emerging due to excessive or 

insufficient amount of blinking [45, 46].  

 

Combined with other biopotentials, EOG-included hybrid biopotential monitoring 

systems are currently being investigated in a vast range of disciplines from emotional 

states classification and behavioral studies [21] to controlling prosthesis arms [47]. For 

instance, sleep scoring system based on EOG was reported [48] which later on facilitated 

to development of a practical eye mask for long-term sleep monitoring experiments [49]. 

Similarly, real-time drowsiness detection [50] and vigilance estimation were studied 

using EOG features [51].  

 

Other promising studies were also conducted by EOG-functionalized goggle in 

monitoring EMs during daily activities [52], such as reading to calculate how fast the 

reading speed is and the number of covered words [53]. Moreover, recent developments 
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in EOG research enables the direct entrance of Arabic numbers, English alphabets, and 

Japanese Katakana by EM which further facilitate users to communicate complicated 

messages in a relatively short time [54-56]. These all are in turn, strengthen the earlier 

prediction that the EOG has possibilities of exploiting new kinds of context-aware 

applications and replace current eye tracking technology  [57]. 

 

However, despite the various demonstrators of wearable EOG devices in the literature, 

which proofs that EOG is a measurement technique that is reliable, easy to operate, and 

can be made cosmetically appealing, they struggle to fulfill the needed qualities to 

become a standard market product and their full potential has not been realized due to 

limitations of the sensing electrode [57]. Typically, acquisition units for 

electrophysiological responses (EOG included) rely on the direct contact of disposable, 

pre-gelled, “wet” Ag/AgCl electrodes fixed on the subject's skin with adhesive backings. 

Although standard Ag/AgCl electrodes are low-cost, widely available, and provide 

accurate signal acquisition capabilities [58], while being less crucial for quick short-time 

measurements, the need for skin preparation severely limits their usability in wearable 

electronic applications intended for long periods of use like premature infant monitoring 

[59, 60]. The primary reason for this is due to the discomfort on the user-end caused by 

the sticky gel layer and adhesive support of the wet electrodes. For instance, the 

conductive gel dehydrates in time and degrades the electrode performance, thus, once in 

a few hours, electrodes must be changed or the gel must be re-applied, which is inefficient 

and time-consuming and not acceptable for everyday and easy to use applications. 

Moreover, the gel can cause an itching sensation [61]; as well as, red and swollen skin 

which develops immediately upon removal by mechanical peeling of the electrode. Such 

irritations and allergic reactions may only last for several hours [1] or may even lead to 

dermatitis [62]. To demonstrate the severity of the skin irritations three electrodes were 

attached to the forehead which remained intact during a ~ 6-hour EOG recording session. 

Even 12 hours after removing electrodes, skin irritation was still observable (figure 2.3).  

 

Due to the above concerns, studies have been proposing the elimination of the gel by 

developing “dry” electrodes, which are more suitable for continuous, autonomous and 

unsupervised electrophysiological monitoring, and meet the desired comfort level for 

integration with wearable devices [63]. 
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Figure 2.3. Reaction of skin to adhesive Ag/AgCl after 6 hours of EOG recording. 

 

Different materials and fabrication techniques have been investigated to realize dry 

electrodes for biopotential monitoring applications which can be classified into three 

main categories: capacitive, penetrative, and surface electrodes (figure 2.4) [58]. 

Capacitively coupled non-contact dry electrodes are isolated from the stratum corneum 

via an insulating layer (figure 2.4a). This results in high skin-electrode contact 

impedance, causing the electrodes to be more prone to noise and motion artifacts which 

place a larger burden on the design of sensitive front-end read-out circuitries [64, 65]. 

Tip-shaped penetrative contact electrodes circumvent high impedance problems 

associated with the outermost layer of the skin (i.e. stratum corneum) by piercing into it 

(figure 2.4b). Such microneedle arrays are fabricated with micromachining techniques 

and reported to be painless and mechanically stable [61, 66, 67].  

 

  

Figure 2.4. (a) A capacitive coupling based dry electrode made from standard PCB [68]. 

(b) A penetrative-based needle-shaped electrode and the close-up is a scanning electron 

microscope photograph [66]. (C) Ag/AgCl coated polyurethane surface electrode in 

centimetre size [69]. 

 

Lead 1 Lead 2

Reference
Skin irritation

(a) (b) (c)
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Among dry electrodes, surface electrodes are likely to be the most widely used ones, 

where innovative strategies both from the perspective of electrode geometry and materials 

have been considered to establish direct contact with the skin surface. For instance, 

polymeric structures in the form of protruding pin arrays in centimetre scales have been 

fabricated to allow functioning over hair (figure 2.4c) [70]. Another promising approach 

that emerged in recent years is based on the use of smart textiles.  

 

 

2.3. Electroconductive Textile Electrodes 

 

 

A new trend in electronics nowadays is towards the miniaturization and integration of 

devices into wearable formats such as smartwatches, garments, and goggles, where the 

technology is collectively referred to as wearable electronics or wearable computing [71]. 

The emerging wearable electronics market is expected to grow 15.5% annually from 2016 

to 2022. This has created a new venue for researchers to investigate novel approaches and 

develop robust, compact, reliable, and cost-effective solutions to meet the growing 

demand for wearable devices. Hence, a thorough investigation of suitable materials, 

fabrication methodologies, and sensing elements needs to be carried out.  

 

Electronic textile (e-textile) or “smart textile” is an evolving technological platform in the 

field of wearable electronics that studies the integration of functional materials with 

ordinary clothing to realize devices including sensors, energy harvesters [72], antennas 

[73], advanced textiles for self-heating and cooling [74], and even fashion applications 

[75]. These are achieved by embedding materials with electrical, mechanical, and/or 

thermal properties into textiles to add desired functionalities for a given application. For 

instance, materials with unique properties have been used for chemical sensing of sweat 

[76], temperature [77], and pressure and strain [78]. Moreover, internet of things (IoT)-

friendly applications are also possible by the integration of wireless transmission modules 

into textiles to allow continuous transfer of physiological information to a remote medical 

unit or to the cloud [79]. The usage of electroconductive textiles promises to add several 

other advantages including flexibility, permeability to air and moisture, and easy 

integration to daily clothing [80]. Flexibility is important primarily to enable skin- 
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Figure 2.5. The six primary methods of realizing conductive textiles. 

 

compatible devices by matching with the natural contours of the body, to provide 

wearability, and to achieve better skin-electrode coupling, whereas permeability to air 

and moisture alleviates the possibility of skin irritations.  

 

Owing to their inherent advantages, several methods have been suggested to develop 

electroconductive textile electrodes for electrophysiological signal monitoring. The main 

challenge here is to synthesize conductive textiles from ordinary fabrics and fabrication 

of e-textiles essentially relies on the stable integration of conductive materials with fabrics 

and fibers. Commonly used conductive materials include metals, conductive polymers, 

and carbon allotropes. These materials can be used either with mainstream fabric 

manufacturing/decoration approaches (e.g. knitting, weaving, embroidery) [81], or can 

be applied onto finished textiles with various techniques like electroplating [82], physical 

vapour deposition [83], chemical polymerization [84], and printing methods [85] to coat 

the surface of the textile (figure 2.5). However, earlier methods either require dedicated 

equipment or fabrication processes that are complex, expensive, and incompatible for 

large-scale production, lack uniformity or sacrifice from the natural comfort of the fabric. 

In order to use textiles as biopotential sensors, they need to be flexible, durable, 

comfortable, and, biocompatible and have suitable electrical characteristics for signal 
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acquisition. Several advantages of graphene—a single layer of carbon atoms arranged in 

a hexagonal lattice, having excellent electrical conductivity and elasticity combined with 

high ultimate strength while being extremely lightweight [86], leads to the direct 

application of it in e-textiles. Owing to these features, the merger of graphene on a variety 

of textiles was recently demonstrated based on a low-cost, gel-free, washable, and 

scalable approach using dip-coating [87]. 

 

 

2.4. Dip-coating 

 

 

Dip-coating is one of the simplest methods to coat yarns or fabrics, and it is still used in 

the textile industry [88]. The simple and scalable nature of dip-coating allows the 

manufacturing of rolls of conductive fabrics with lower fabrication cost, and after cutting 

and sewing of the desired patch, it is also possible to attach textile electrodes onto an 

existing garment [89]. 

 

The process consists of the immersion of the substrate in a solution containing conductive 

materials such as metallic particles [90], conductive polymers [91], or carbon derivatives 

such as graphene [87] and carbon nanotubes (CNTs) [92]. Upon application of a 

conductive solution to textiles, excess material is removed [93] and a drying step, known 

as curing, is performed to evaporate the solvent and fixate the conductive particles on 

fiber surfaces. To realize a stable coating, surface properties of the textile such as 

wettability and hydrophilicity are important. Care should also be taken to limit the 

drying/curing temperatures to avoid potential damage to the textile [94]. 

 

Conductive solutions or pastes are the only feasible way to utilize graphene/CNTs in 

textile coating. Although multiple techniques such as chemical vapor deposition, 

mechanical exfoliation, epitaxial growth on silicon carbide, and chemical reduction of 

graphene oxide (GO) exist for preparing graphene [95], the latter approach (i.e., chemical 

reduction) is the most suitable and applicable for textile surfaces due to low-temperature 

processing and scalability [96]. In graphene-coated textile preparation, the desired piece 

of textile is dipped in a GO solution, and subsequent drying provides fixation on fiber 

surfaces. As for post-processing, a chemical reduction procedure is performed to convert 
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GO flakes into graphene, allowing electrical conductivity to be imparted [87]. CNT 

powders have also been used to create conductive fabrics [97]. For instance, textile 

electrodes were fabricated by cladding cotton fabrics with multi-walled CNTs (MWNT). 

To ensure their adhesion, a conductive paste made from tapioca starch and MWNT 

powder was applied to the surface and cured afterward [98]. Another aspect of wearable 

monitoring was looked into with the creation of conductive cotton yarns to use in 

biosignal transmission [92]. Regular cotton yarns became conductive with dipping in a 

single-walled carbon nanotube (SWNT) solution and drying afterward, which fixated 

SWNTs to cotton microfibrils. 

 

Regarding the biocompatibility of CNTs, while there is some concern regarding their 

cytotoxicity, the purity of the carbon nanotube (i.e. elimination of trace metals such as 

iron that get incorporated into CNTs during manufacturing) has been shown to be a 

critical factor, especially for the case of dermal administration and exposure to CNTs 

[99]. Arguably, with better control of purity, it may be possible to reduce or eliminate the 

potential toxicity of CNTs when used as part of conductive textile electrodes placed in 

direct contact with the skin. Graphene, on the other hand, has been shown to have minimal 

effects on the skin as long as the concentration and exposure are moderate [100]. 

 

 

2.5. Related work 

 

 

Using screen and stencil printing processes, an electrode network was fabricated and 

embedded on a headband and used for horizontal EOG acquisition (figure 2.6a) [101]. 

Similarly, conductive fabrics used in a headband to measure EOG have been capitalized 

on in a drowsiness detection application [50]. Additionally, a silver-coated nylon textile 

was integrated into a headband and adapted for gesture recognition (figure 2.6b) [102]. 

Silver/polyamide compound textiles have also been employed to develop a wearable eye 

mask for sleep monitoring and automatic sleep staging (figure 2.6c) [49]. Moreover, 

novel self-wetting electrodes composed of PEDOT:PSS fibers were integrated into a thin 

layer of a membrane by dip-coating and then tested in a short (~8 s) EOG experiment 

where results showed 93% correlation with those of wet electrodes [103]. Furthermore, a 

novel conductive polymer foam with a conductivity of about 0.07 Ω/square was 
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Figure 2.6. Wearable elastic garments; (a) headband developed for gesture recognition 

[101]; (b) headband used for horizontal EOG acquisition [102]; (c) eye mask developed 

for sleep monitoring [49]. 

 

fabricated and tested in forehead EOG and displayed ~84% correlation against standard 

electrodes [104]. 

 

 

 

 

 

 

 

 

 

 

 

(c)(a) (b)
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CHAPTER III 

 

DEVELOPMENT OF WEARABLE GRAPHENE TEXTILE-BASED 

EOG PROTOTYPE FROM MATERIALS UP TO SYSTEM-LEVEL 

 

 

 

The block diagram of the proposed eye tracking system consisting of graphene textile 

embedded smart headband along with front-end read-out circuitry for onboard signal 

conditioning, microcontroller unit for signal processing, and display for real-time 

monitoring and visualization is illustrated in figure 3.1. Herein here, this chapter covers 

the textile preparation and integration of it to a wearable garment, and, the required 

electronics for acquisition and conditioning of EMs whereas signal processing part will 

be covered in the next chapter, 

 

 

3.1. Synthesis and Integration of Graphene Textile Electrodes 

 

 

Conductive textiles were synthesized based on a low-cost and scalable, three-step dip-  

 

Figure 3.1. Block diagram of the proposed EOG-based eye tracker interface. 
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Figure 3.2. Schematic summary of the “dip-dry-reduce” method for the synthesis of 

graphene textiles along with an image of the prepared graphene-coated e-textile where 

the inset shows the electrode assembly for prototyping. 

 

coating approach (figure 3.2) where graphene clads around a variety of ordinary fabrics  

(e.g. nylon,   cotton,   polyester) forms a conformal layer [87]. The process involved 

preparation of GO suspension based on the modified Hummer’s method, followed by 

dipping of plain textiles into GO solution. Next, the wetted textile was left to dry at 

moderate temperatures (∼80°C) which allowed layering of GO around individual textile 

fibers. The GO-coated textile was then chemically treated with reducing agents like 

hydrazine or hydrogen iodide and rinsed in deionized water to form stable, conductive, 

reduced graphene oxide (rGO) cladding on textiles. The sheet resistance of the prepared 

textiles was measured as ∼ 20 k /sq which was determined to be suitable for the required 

signal levels in the front-end sensor interface circuit. For different applications, it is 

possible to tune the conductivity by introducing various process modifications [105].  

 

In order to detect electrooculograms from different spots on the forehead, the prepared 

graphene textile piece was cut into desired dimensions (∼ 3 × 3 cm) and mounted on an 

elastic headband with flexible sticky foams which were sandwiched between metallic 

snap fasteners in order to establish electrical connection with the front-end circuitry 

(figure 3.3). To acquire ocular biopotentials, electrodes should be positioned on the skin 

surface and have stable contact. In commercial electrodes, this is achieved by gels and 

adhesives; which, on the other hand, limit their use in wearable applications. 
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Figure 3.3. EOG headband with graphene textile electrodes for HCI/HMI applications; 

insets show flexible graphene textiles after synthesis (bottom right) and the stand-alone 

version of a pair of graphene textile electrodes with foam padding and snap fasteners prior 

to headband integration (top left).  

 

Alternatively, we have used elastic bands with Velcro straps and foam paddings  

(polyethylene-based) to provide pressures in the range of few mmHg (up to 5 mmHg) 

[106], which supported the contact of graphene textile electrodes on the skin surface and 

ensured interface stability, and at the same time lowers the contact impedance by reducing 

the air gap between the electrodes and the skin [107].  

 

As we will see later on, the amplitude of the EOG signal is sensitive to relatively small 

variations in electrode positioning [18], depending on the application, different electrode  

 

Figure 3.4. Typical electrode placements for hEOG and vEOG. 
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counts and locations were investigated [19, 25]. Commonly in clinical monitoring, a 

signal acquisition unit with two channels, one for horizontal EOG (hEOG) and the other 

for vertical EOG (vEOG), is used to record raw biopotential signal (figure 3.4) [108]. In 

this configuration, five electrodes are used, where one electrode is placed at the outer 

canthus of the left and right eye for detecting lateral EMs; whereas the remaining two are 

attached above and below an eye for picking up transverse eye activity and the last 

electrode is either placed centrally on the forehead or on the mastoid as a reference [109]. 

 

 

Figure 3.5. Systematic analysis of electrode positioning in forehead EOG. The fabricated 

electrodes were cut into ∼3 × 3 cm dimension to test different placement configurations. 

Waveforms show the induced electrooculograms from (a) locations 4, 6, 8; (b) locations 

5, 6, 7; (c) locations 1, 2, 3; (d) locations 5, 6, 8; (e) locations 4, 6, 7; where the first, 

second, and third digit corresponds to the location of the left, reference, and the right lead, 

respectively. The performed EMs were: (I) voluntary blink, (II) slow left, (III) slow right, 

(IV) swift left, and (V) swift right.  
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Although in literature, it was suggested that a natural choice for EOG-based wearable 

garment are goggles and claimed that they minimize distraction to the user [57], 

alternatively, mask [36, 49], headband [50, 110], and headphones [111] was proposed as 

host garments as well. Probably considering overall comfort and operability by everybody 

(i.e., including bespectacled individuals) the most comfortable approach on the user-end 

for wearable devices to record electrooculograms is only from locations on the forehead 

and “forehead EOG” is preferred easily by integrating electrodes into elastic headbands.  

 

Mostly, forehead EOG uses two-channel configuration by having four electrodes where 

one of the electrodes is shared between channels and detects 4 different saccadic 

movement patterns (i.e. left, right, up, and down EMs) to execute various control 

commands [110, 112]. Here, we propose a new electrode positioning configuration to 

detect the same number of differing EM patterns, hence control commands, with only 

three electrodes and one channel. In this electrode placement, three electrodes are to be 

fixed on the forehead where two of the electrodes were placed roughly above the left and 

right eye toward the temples (figure 3.5, locations 4 and 8), and a reference electrode was 

placed halfway in between (figure 3.5, location 6). This configuration is chosen through 

an experiment where a volunteer was asked to perform different blink, saccadic and 

fixation EMs; induced waveforms are included in figure 3.5. First configuration (I) is 

selected to be the most appropriate one to be automatically identified with thresholding 

algorithms since amplitudes and patterns of EMs differ a lot in comparison with other 

configurations and they are stronger in terms of magnitude. A direct benefited of inducing 

the sufficient amount of comments from a single channel and only three electrodes is the 

elimination of crosstalk noise between vertical and horizontal channels. 

 

Similar to dry electrodes, textile electrodes generate a high impedance which makes the 

signal susceptible to physical movements and power line interference. One method to 

minimize this effect is by reducing the signal-source impedance by utilizing a buffer 

amplifier which essentially converts the high-impedance signal to a low-impedance one 

[113]. Figure. 3.6 illustrates the components for building an “active” electrodes which are 

only an op-amp (OPA2365, Texas Instruments, USA) having high input impedance, two 

resistors, and one capacitor. Regardless of the merit of active electrodes, there has been 

some reluctance to use them since they require a power supply [114].  
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Figure 3.6. Fabric active electrode; zoomed-in shows a front-side of the electrode where 

the graphene-based textile electrode is and the size of the designed buffer circuitry with 

its component values. 

 

 

3.2. System-level Architecture 

 

 

Biopotential electrodes can be used to sense the weak, heavily noise-contaminated, and 

rarely deterministic physiological signals when fixed around the eyes. To identify the 

unique EOG patterns, first, the raw signal must be segregated from its noise components. 

Electromagnetic radiation, RF, mains hum, 1/f, fluctuations in the electrode-skin 

interface, motion-related artifacts (e.g. cable or head movement), and other physiological 

signals such as cardiac (electrocardiography, ECG), neural (electroencephalography, 

EEG), and muscular (electromyography, EMG) are all considered as noise components 

in EOG [58]. Second, since EOG signals are small in magnitude (typically less than 500 

μV) in order to be properly processed, amplification is needed. Third, the desired features 

are usually observed in the frequency range of DC to 10 Hz. All these requirements, in 

turn, necessitate a careful design of the biopotential amplifier. 

 

Typical signal conditioning units for biopotential measurements include distinct hardware 
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and software stages. Having only a sophisticated analog front-end will create a massive 

electronic circuitry; which is hardly usable in wearable technologies. On the other hand, 

leaving all the filtering stages to the software, a complicated digital signal processing 

(DSP) algorithm will be required. Usually, the filtering algorithms should be run with 

feature extraction and classification algorithms simultaneously in real-time which makes 

schedulability tough for slow processors. Faster processors could be used to address this 

problem; however, this approach would also increase the circuit complexity and cost. 

Therefore, in the presented signal acquisition circuitry, a fine balance is maintained 

between the hardware and software sections to realize a robust, cost-effective system for 

point-of-care, wearable sensing. 

 

The system-level block diagram of the developed prototype is shown in figure 3.7 along 

with a summary of component specifications in table I. In the analog front-end, the read-

out circuitry receives the surface biopotentials from the graphene textile electrodes 

thought sensor cables, which were twisted to reduce the magnetic pickups, and upon 

denoising with onboard filtering, signals are digitized in the microcontroller unit for 

further software filtering. Later on, data is sent to a personal computer for storage and 

real-time monitoring where it can be displayed through a graphical user interface (GUI) 

enabled by various platforms (e.g. LabVIEW®, Microsoft Excel®). For demonstration 

purposes and to simplify the circuit, we have focused on single-channel EOG acquisition 

and captured horizontal EMs which required bipolar montage of electrodes (i.e. two 

electrodes for differential amplification and one reference electrode). To amplify the 

weak and noisy surface biopotential signals, one of the key components in the analog 

front-end (figure 3.7) is the instrumentation amplifier (INA), which should reject the 

majority of the common-mode signals and must have high input impedance to minimize 

possible signal loss due to the skin-electrode contact impedance. The selected chip 

(INA128, Texas Instruments, USA) fulfills these requirements by having very high 

common-mode rejection ratio (CMRR) of 120 dB and input impedance of 10 GΩ. To 

significantly suppress the effect of high-frequency noise, an RC low pass filter (LPF) with 

a cut-off frequency of 780 Hz was included at the inputs. This is mainly because INA’s 

CMRR is lower in high frequencies (e.g. according to INA128 datasheet CMRR drops to 

80 dB in 1 kHz). Additionally, two antiparallel Schottky diodes supplemented the inputs 

to serve as further protection against electrostatic discharges and any other overvoltage 

peaks which could pose danger to the user and the circuitry. 
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Figure 3.7. The hardware-level schematic of the analog section of the signal conditioning 

unit (frequency bandwidth: 0.3–10 Hz, adjustable gain: 600–4600 V/V) for the successful 

acquisition of the EMs, along with experimentally measured signals at the output of each 

block. 

 

During measurements, an unpredictable DC baseline was observed in the EOG signal 

showed variations among different individuals. This offset variation is due to non-

deterministic fluctuations in head shape, skin thickness, skin conductivity, skin moisture, 

electrode locations, ambient lighting [37] and overall mood of the users (e.g. tired, sleepy, 

just awaked) [115]. To reduce these anonymous, non-controllable parameters, some 

strategies were implemented. 

TABLE I 

COMPONENT VALUES AND SPECIFICATIONS FOR THE FRONT-END CIRCUITRY 

Sections Parts and Specifications 

EOG front-end circuit 

 

R1–R2 (1 kΩ),  R3–R4 (2.2 kΩ),  R5 (10 kΩ), 

R6–R8 (390 kΩ),  R14–R23–R24 (100 Ω), 

R9–R18 (2.4 MΩ),  R10 (1 MΩ),  R11 (1.2 MΩ), 

R15–R16 (330 kΩ),  R17 (100 kΩ),  R19 (56 kΩ), 

R20 (1.4 MΩ),  R21 (12 kΩ),  R22 (470 kΩ) 

 

R12–R13 (potentiometer): 1 kΩ 

 

C1A–C1B (1 nF), C2 (100 nF), C3–C4 (560 nF), 

C5–C6 (470 nF), C7–C8 (270 nF), C9 (150 nF), 

C10 (15 nF), C11 (180 nF), C12 (18 nF), 

C13 (680 nF), C14 (68 nF) 

 

D1–D6: 1N5819 

 

Microcontroller 

 

ATmega328, ADC sampling frequency: 100 Hz, UART baud rate: 128000 b/s 

 

Power regulators 

 

UA79M05, KA7805 (Texas Instruments) 
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First, the shifting resting potential (i.e. drift) was eliminated with the use of a 4th order 

Butterworth high-pass filter (HPF) based on Sallen-Key topology with a cut-off 

frequency at 0.3 Hz. In order to avoid op-amp saturation in the HPF stage, the gain of the 

pre-amplifier was kept low (∼ 10 V/V).  Second, a calibration procedure was 

implemented to configure the post-amplification stage gain and DC offset, both of which 

were designed to be variable within the range of 60-460 V/V and ±5 V, respectively. 

Adding a specific DC voltage is primarily due to the requirements of the analog-to-digital 

converter (ADC) which accepts only positive values up to 5 V. Additionally, the option 

of adjusting gain and offset is instrumental for faster configuration of wearable EOG 

devices functioning on thresholding-based algorithms for automatic EM detection. The 

offset was achieved by a simple voltage divider connected to a buffer and instrumentation 

amplifier. The purpose of the buffer was to ensure that the reference pin of the INA was 

driven by low impedance. In order to further improve the CMRR and avoid potential 

dangers due to direct connection of the reference lead to the body, driven-right leg (DRL) 

circuit was designed and added to the system [22]. 

 

To limit the range of frequencies to 10 Hz a very sharp roll-off, 8th order, Butterworth 

LPF with Sallen-Key topology was implemented at the last stage before ADC which also 

served as an anti-aliasing filter prior to sampling.  Additionally, placement of a sharp LPF 

at the last stage proved to significantly lower 50 Hz magnetic coupling noise compared 

to any other configuration. For all the filtering stages, op-amps (Op27, Analog Devices, 

USA) with low noise characteristics were selected;  whereas, for the buffer stages, a 

general purpose op-amp (LM358, Texas Instruments,  USA)  was chosen. The circuit was 

realized in a printed circuit board (PCB) format with off-the-shelf surface mount 

components (SMD) and its operation was verified by using a multiple channel 

oscilloscope to monitor the output of each block. EOG waveforms after passing through 

the pre-amplification (V1), HPF (V2), post-amplification (V3) and LPF (V4) stages are 

plotted in figure 3.7; where the offset and gain were set to ∼ 1.5 V and ∼ 4200 V/V, 

respectively.  

 

For achieving digitization,  built-in ADC of the microcontroller unit  (μCU)  having  10-

bit  resolution was used with a sampling rate of 100 Hz based on the Nyquist theorem,  

and clamp diodes were placed at the ADC’s input to limit the input signal amplitude 

within a specific voltage range. The digitized signal was then smoothed by Kolmogorov 
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Figure 3.7. EOG signal after smoothing in the μCU which is displayed in real-time 

thought the preliminary Microsoft Excel-based GUI. 

 

Zurbenko filter, which executes a rolling average for eliminating the small variations in 

the output EOG due to stabilization of the eyes (i.e. microsaccades). In order to be 

monitored in real-time, data was continuously streamed via USB port to a computer with 

UART baud rate of 128000 b/s and displayed in Microsoft Excel through the use of a 

software add-in tool (PLX-DAQ, Parallel Inc., USA) illustrated in figure 3.8. Power 

consumption was estimated as ∼39 mW, which was supplied by a ±9 V DC source.  

 

By the advancements in this work, front-end circuitry modified to better address the 

wearability concerns of the system. The 4 generations of the biopotential acquisition 

circuitry are shown in figure 3.9 which starts from a simple breadboard prototype to a 

pocket worn battery-powered circuit. One of the points which were missing in the 

previous acquisition units before the 4th one was the fact that they were not designed to 

be battery-powered and data communication with a general purpose computer on them 

was by the means of a USB cable. So afford has been placed to fulfills these drawbacks.  

 

Therefore, a better miniaturized and compact circuitry was designed (figure 3.10). 

Compared with the previous design, the new one has 2nd step and 4th step Butterworth 

HPF and LPF with cut-off frequencies of 0.5 Hz and 10 Hz, accordingly both based on 
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Figure 3.9. 4 generations of designed hardware’s for EOG acquisition starting from 

breadboard prototype, to single-sided PCB, to SMD components assembled PCB, and the 

final smaller version where microcontroller is also mounted on the system. 

 

Sallen-Key topology. The selected INA (INA122, Texas Instruments, USA) is designed 

for battery-powered applications with the capability of running with a single supply. 

Similarly, the other op-amps are also changed with single-supply rail-to-rail ones 

(OPA2365, Texas Instruments, USA). The volume for adjusting the gain in post-

amplification stage replaced by a digitally programmable voltage divider (MAX5421, 

Maxim, USA) so that it can be configured in software level thought GUI. As a usual 

practice in portable devices nowadays, a Lithium-ion/polymer battery having 3.7v and 

500 mAh chosen to supply the system. The battery charger manager circuitry and DC to 

DC boost converter are based on MCP73831 (Microchip, USA) and TPS61090 (Texas 

Instruments, USA), accordingly. In order to split the regulated 5V, a rail-splitter 

(TLE2426, Texas Instruments, USA) was used. It is basically a glorified voltage divider, 

so it replaces the resistors in the simple resistor-divider but unlike a simple resistor 

divider, though, it has some buffering circuitry inside to prevent it from becoming 

unbalanced. The main problem with the power splitters usually is that they can handle 

http://www.adafruit.com/datasheets/tps61090.pdf
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Figure 3.10. The hardware-level schematic of the portable, battery-powered, EOG 

acquisition unit including onboard filtering and gain stages, power management section, 

microcontroller unit to process and stream data wirelessly to a computer, and a costume-

design GUI in LabVIEW.  

 

only 20-40 mA of current. Although is this application the circuit will not draw too much 

current but standing in the safe side additional buffers are used which can handle current 

in the range of hundreds of milliamps. For streaming data to a computer, a popular off-

the-shelf Bluetooth module (HC06) is used and in the receiving-end, a custom-designed 

GUI based on LabVIEW is prepared which enabled mainly for easier operation, 

calibration, gain manipulation, event monitoring in compared with the previous 

preliminary one.  

 

 

3.3. Experimental Performance Characterization 

 

 

In order to verify the feasibility of the developed graphene textile electrodes in sensing 

electrooculogram, they were benchmarked against the clinical standard, pre-gelled 
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Ag/AgCl electrodes (Ref 2228, 3M™Red Dot™, USA) in three different sets of 

experiments.   

 

 

3.3.1. Simultaneous Experiments from Single Subject 

 

In the first set of experiments, both graphene-coated textile and standard Ag/AgCl 

electrodes were positioned side-by-side, around the same location on the subject’s 

forehead and tested simultaneously. EOG recordings from a total of 8 voluntary 

participants (2 female, 6 male) aged between 20 and 30 years (average = 25, SD = 3.2 

years) were acquired in this study. Among the participants, four had vision problems 

(three participants had myopic, one had hyperopic eyes) of which two were wearing 

glasses during the experiments and the remaining two were asked to remove glasses or 

contact lenses during the EOG recordings. The rest of the volunteers were healthy and 

without any obvious signs of eye or vision conditions. 

 

Participants were instructed to sit and face straight ahead a pre-determined center point 

(primary position) from which two other points were located ∼ 72 cm to the left and right 

sides, such that the participants had to make ∼ 30° saccadic EMs when asked to look 

towards these gaze points. Prior to the experiments, the participants were informed of the 

three-stage testing protocol (figure 3.11) which consisted of several horizontal saccadic 

movements, fixations, and voluntary blinks. The subjects were asked to avoid 

spontaneous (involuntary) blinks as much as they could; but if such cases occurred, the 

trial was not interrupted. Therefore, the recorded electrooculograms inevitably contain 

waveforms due to involuntary blinks which are for example identified in figures 3.14a 

and 3.14b and as appeared in participants 1, 3, and 5 in figure 3.12. 

 

The first stage begins with a voluntary blink while maintaining eyes in the primary 

position, then a levoversion (left gaze) is performed where both eyes are moved to the 

left and fixed for 10 s, after which eyes are brought back to the primary position. 

Continuing with the second stage, a dextroversion (right gaze) is performed where eyes 

are now moved from the primary position to the right and fixed for 10 s, and subsequently 

returned to the primary position. The third stage begins with a blink followed by swift 

left and right movements (levoversion and dextroversion) without waiting on the sides 



28 

 

(i.e. no fixations), and the protocol is concluded by a blink as eyes return to the primary 

position. Throughout this thesis, saccadic moves with a fixation duration on sides are 

called “slow movements” and moves with no fixation on the sides are called “swift 

movements”. To clearly distinguish the different EM patterns from the recorded 

electrooculograms, the duration between subsequent movements was maintained at 

approximately 10 s by timing the participant and alerting with a beep sound for each 

movement. Additionally, the ambient lighting was adjusted not to be dark nor bright. 

During experiments, it was observed that the best patterns are induced when volunteers 

have taken enough rest and without bearing physical tiredness. Therefore, morning to 

noon period was chosen for the recording of the EOG activity. During the pre-determined 

gaze points as defined in the protocol. 

 

Total of five rounds of recording sessions were performed on each subject. In the first 

round, the system was calibrated wherein an offset was added to the signals by directing 

the participant to hold their gaze at the center point and fixate eyes at the primary position.   

 

 

Figure 3.11. Schematic diagram showing the position of the eyeballs with respect to 

specific gaze points located straight ahead in the center (X0), towards the left (X1) and 

right (X2), along with a tabular summary of the sequence of EMs in the three-stage testing 

protocol. 
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Once the desired offset was ensured, the gain level was adjusted by taking only voluntary 

blinks into consideration. During the calibration procedure, EOG signals from most 

participants were acquired with the same gain configuration, with the exception of 

subjects having hyperopic or myopic eyes who displayed a clear difference in the gain 

requirement. This variation is attributed to higher EOG potentials in myopic eyes 

compared to non-myopic eyes and lower in hyperopic eyes [116]. After the calibration, 

two practice runs were performed to determine if the subject mastered the protocol or not. 

Upon successful completion of the practice runs, two more rounds were conducted where 

the electrooculograms were actually recorded for further analysis. To quantify the overlap 

between signals obtained with the graphene textile dry electrodes and conventional 

Ag/AgCl wet electrodes, the built-in linear correlation function of MATLAB® 

(Mathworks, USA) was used. The correlation coefficients (table II) between signals 

recorded from eight participants during the two trials reveal the maximum correlation of 

87% for a 95 s recording (trial 1— participant 2) and a minimum of 57% for an 87 s 

recording (trial 2—participant 4). Average of signal correlations for eight participants 

was 79% and 78% in trial 1 and trial 2, with a standard deviation of 6% and 10%, 

respectively. 

 

For each participant, the set of signals that displayed the highest overlap were plotted in 

figure 3.12a, along with detailed comparison and interpretation of different EMs in a 

representative EOG recording obtained with graphene textile (figure 3.12b) and  Ag/AgCl 

(figure 3.12c) electrodes from the first participant. Comparison of the recorded signals 

reveals that the characteristic EOG biopotentials due to horizontal saccadic EMs 

including levoversion and dextroversion; as well as, voluntary blinks and fixations were 

accurately captured by both electrodes. Correlation of the signals for the entire recording 

period of 100 s illustrate high overlap of 86% which demonstrates the functionality of the 

developed graphene textile electrode in EOG measurements.  
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Figure 3.12. (a) Subset of EOG recordings obtained using graphene textile and Ag/AgCl 

electrodes that displayed the highest correlation among the 2 trials on 8 different 

participants; (b) zoom-in EOG signals showing the unique EM patterns acquired from 

participant 1 using graphene textile electrodes; and (c) Ag/AgCl electrode.  

 

TABLE II 

CORRELATION COEFFICIENTS BETWEEN SIGNALS ACQUIRED WITH GRAPHENE TEXTILE AND 

AG/AGCL ELECTRODES 

Subjects Correlation Coefficient Duration (s) 

 Trial 1 Trial 2  

1 0.86 0.85 100 

2 0.87 0.84 95 

3 0.71 0.78 90 

4 0.73 0.57 87 

5 0.76 0.86 90 

6 0.77 0.78 100 

7 0.82 0.71 90 

8 0.80 0.82 95 

Average 0.79 0.78 93 

Standard Deviation 0.06 0.10 4.90 
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3.3.2. Simultaneous Experiments from Two Subjects 

 

In biopotential measurements, the actual location of the electrodes placed on the body has 

a direct effect on the characteristics of the acquired signal, as such the second experiment  

 

Figure 3.13. (a) Experimental setup showing the simultaneous acquisition of 

electrooculograms from two subjects where one is attached with graphene textile 

electrodes and the other with Ag/AgCl electrodes; (b) plot of the recorded signals. 

 

was designed to keep the position of the electrodes constant during EOG acquisition. 

However, it is physically not possible to place two different electrodes on the same point 

at the same time. Therefore, two participants who displayed the highest overlap 

coefficients in the first set of trials (same person, different locations) were selected for a 

simultaneous demo (figure 3.13a) where graphene textile electrodes were attached to one 

participant, while the other person had pre-gelled, Ag/AgCl electrodes. This experimental 
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configuration allowed simultaneous acquisition of EOG biopotentials from two channels 

using the custom-designed read-out circuit (figure 3.13a inset). The participants were 

again instructed with a beeper to synchronize their eye activities and asked to follow the 

same protocol that included saccadic EMs, fixations, and blinks. Even though graphene 

textile and Ag/AgCl electrodes were positioned on two different persons which inevitably 

introduces physiological variations and therefore differences in individual biopotentials, 

the recorded electrooculograms were in very good agreement and exhibited 73% 

correlation over a duration of 90 s (figure 3.13b). 

 

 

3.3.3. Asynchronous Experiments from Single Subject 

 

In the third evaluation experiments, locations of both embedded textile electrodes and wet 

electrodes kept the same, and measurements were taken at different times but from the 

same location with two different types of electrodes. Signals from the forehead of the 

participant 1 were first collected using the headband without any prior skin preparation. 

After mounting, 5-minute wait period was allocated to allow electrode stabilization [117].  

 

Approximately 10 minutes after completion of the first measurement, textile electrodes 

were removed and Ag/AgCl electrodes were placed around the same spots and the second 

part of the experiment was performed. Figures 3.14a and 3.14b display the recorded 

electrooculogram signals from the smart headband and Ag/AgCl electrodes respectively, 

along with the interpretation of the performed EMs. For both electrode types, the same 

 

Figure 3.14. EOG signal acquired from (a) the developed smart headband showing the 

unique EM patterns, and (b) Ag/AgCl electrodes. 
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Figure 3.15. The plot of EOG signals acquired from three different sizes of graphene 

textile electrodes; inset shows an image of the fabricated electrode samples. 

 

acquisition unit was used and gain and offset values were kept constant for a better 

comparison of the recorded signals (i.e. ∼4400 V/V and 1.5 V). The overlap between 

obtained signals was calculated to have a correlation of 91.3% for the entire measurement 

period of 100 seconds which was the highest obtained correlation in the reported three 

evaluation experiments and thus stresses out the fact that slight changes in the electrode 

positioning significantly affects electrooculograms.  

 

 

3.3.4. Electrode Size Tuning Characterization  

 

In experiments mentioned earlier, slight differences in amplitude are observed between 

the signals recorded with graphene textile and Ag/AgCl electrodes due to mismatches in 

measurement conditions and electrode characteristics. Additionally, as graphene textile 

electrodes are manually-sized, this causes inevitable size variations from textile to textile, 

and also between textiles to Ag/AgCl electrodes, which can potentially affect the signal 

quality. With automated handling, closer size match between electrodes could be 

achieved. To better assess the effect of electrode size on the recorded electrooculograms, 

we have fabricated and tested electrodes of varying contact areas of 1 cm2, 4 cm2, and 9 
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cm2. Figure 3.15 shows the acquired waveforms from different electrode sizes as a result 

of saccadic EMs and blinks. It has been suggested that textile electrodes with larger 

contact areas could achieve better signal quality (i.e. less noise contamination) due to the 

smaller skin-electrode impedance [118]. In our measurements, this phenomena was not 

apparent due to sharp onboard filtering, and minimal to virtually no respiration-related 

change in contact conditions in EOG, unlike typical ECG applications. Moreover, while 

there are slight differences in the waveforms recorded by different electrode sizes, this is 

attributed primarily due to mismatches in experimental conditions and amplitude 

variations due to electrode size were observed to be insignificant, which is also in 

alignment with earlier studies on ECG [119].  
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CHAPTER IV 

 

REMOTE CONTROL OF OBJECTS FOR HCI/HMI 

APPLICATIONS 

 

 

 

A quick visual analysis of the recorded EOG waveforms shows that there is an exclusive 

signal pattern for each and every defined EM. These patterns mainly alter in shape, 

magnitude, and duration. By hard-coding, the unique signature of each EM pattern into 

the software, automatic detection of EMs can be accomplished. To do so, a unique 

sequential, multi-step, fixed thresholding algorithm was developed. Although other 

algorithms such as hidden Markov model and dynamic time warping has been reported 

to be instrumental with classifying complex EMs [54, 55], thresholding-based algorithms 

are more popular for single-directional EMs due to (probably) their simplicity in 

implementation.  

 

Figure 4.1 illustrates a summarized flowchart of the developed algorithm. The algorithm 

is responsible to implement the following tasks: 1) maintain synchronize with the GUI, 

2) digitize the denoised signal, 3) normalize the data, 4) extract information and features 

from the signal, 5) compare the extracted data with the hard-coded patterns, 6) classify 

the signal, and finally, 7) the algorithm should generate control signals according to 

specific application requirements (e.g. generating clock pulses or control comments). 

Since all of the mentioned tasks are “soft” real-time and they do not have critical 

deadlines, they can be scheduled by a periodic approach with the microcontroller's 

internal timer. During algorithm development, special emphasis was placed on avoiding 

the use of real-time operating system, or complicated DSP techniques, feature extraction 

or classification algorithms to ensure that the developed embedded “software” can 

operate on slow processing speeds (e.g. max ∼20 MHz) and implemented on general 

purpose, small size, and low-cost microcontrollers.  
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A timer interrupt service routine is programmed to perform several tasks which include, 

triggering of an A/D conversion according to the desired sampling rate (e.g. 100 Hz), 

measuring the duration of potential EMs, running a time window and continuously 

checking and controlling the inputs and outputs (figure S1). 

 

 

 

Figure 4.1. Summarized flowchart of the developed algorithm for automatic detection of 

blink along with four different saccadic EMs in single-channel forehead EOG. 
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4.1. Pattern Recognition 

 

 

In order to construct a pattern model, one of the primary tasks is to regularly track the 

location of the real-time EOG signal which may include various EMs (figure 4.2a). Five 

threshold levels were defined and named as “up margin” (UM), “baseline up-margin” 

(BUM), “baseline”, “baseline down-margin” (BDM) and “down margin” (DM) (figure 

4.2b). These threshold lines along with the duration and peak to peak amplitude of defined 

EMs are measured and hardcoded to the system in advance during the calibration session.  

 

In the literature, most calibration methods either adjust thresholds at the software level 

and leaves hardware-level parameters untouched or, the operator adjusts signals at the 

hardware level according to the software threshold needs and always leave software 

parameters constant. Here, we do a mixture of both where the system is calibrated during 

training sessions with the addition of an offset to the signals by directing the participant 

to hold their gaze at the central point and fixate eyes at the primary position. The baseline 

value should guarantee the signal to be in the positive domain below 5 V level; here it is 

fixed at 1.5 V. Once the desired offset was ensured, several EMs of each type were 

performed so that the gain level could be adjusted accordingly to prevent output 

saturation. 

 

Meanwhile, at the software level thresholds for UM and DM are configured based on 

several constraints. First, blinks, swift moves, and right gaze must pass through and 

intersect the UM but left gaze must not. Second, all moves must pass through and intersect 

DM but right gaze must not. Here, UM and DM were found as 2.1 V and 1 V, respectively. 

Third, BUM and BDM levels with respect to the baseline were selected according to 

baseline fluctuation; which through measurements was determined to be ±0.1 V. During 

experiments there was no need to re-adjust BUM and BDM, and the artificial baseline set 

at the beginning was hardly changed during weeks of experiments. However, especially 

in long-term use, variation of signal amplitude due to environmental, physiological or 

physical factors such as feeling of tiredness or change in skin-electrode impedance could 

be critical and require recalibration of gain and offset parameters. 
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4.2. Feature Extraction 

 

 

In feature extraction (figure S2), right after normalizing the signal using a rolling average 

filter, which is implemented for minimizing the effect of stabilization phenomena of 

fixation [120], if the signal appears to have a large value than UM, the system will label 

the location of it as “up”, whereas if it lies in between BUM and BDM the location will 

be as designated as “center” and, if the data value is less than DM, the system will name 

the location of the signal as “down”. The location operator will not be changed if the 

signal is in between UM and BUM, or DM and BDM, to avoid oscillation of location 

operator in critical cases near margins. If the location operator changes, a flag will be set 

to alert the algorithm to implement the necessary actions in the classification section. 

 

While the algorithm detects the defined EMs, it must also avoid detection of undefined 

EMs and response as one of the defined patterns. For instance, spontaneous or reflex 

blinks (which can have several shapes, durations, or amplitudes depending on the 

context), or small degree saccadic EMs (mainly resembling left/right moves but with a 

smaller magnitude may occur during office activities like reading or writing), and must 

be excluded from detection. Additionally, the main parameter which distinguishes the 

swift left-right move and different types of blinks from each other is their amplitude levels 

[121]. Therefore, measurement of the signal amplitude is critical for reliably constructing 

the pattern model. 

 

 

4.3. Classification 

 

 

In case of a flag alert for a signal location change, the system enters the classification 

section (figures S3 and S4); where the algorithm tracks the signal that occurred to identify 

its pattern. The volunteer blink complex (figure 4.2b) first changes its location from centre 

to down (stage 1), then returns to the centre (stage 2), then rises to up (stage 3), and 

eventually returns to primary central position (stage 4) with the following of an 

undershoot [121]. As soon as the signal enters stage 1 (marked as (1) in figure 4.2b), a 

counter starts keeping the time and stops when the signal reaches stage 4 (marked as (2) 
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in figure 4.2b). The interval between time 1 and 2 is measured as the signal duration and 

it must be lower than a set threshold. 

 

Swift left-right gaze (figure 4.2c) and the volunteer blink patterns are nearly identical in 

terms of the locations at when a change in signal pattern occurs. Therefore, the 

 

Figure 4.2. (a) EOG trace showing the different types of auto-detected EMs by the 

proposed algorithm, zoom-in images of the five exclusive signal patterns corresponding 

to (b) voluntary blink; (c) swift left-right saccadic gaze; (d) swift right-left saccadic gaze; 

(e) left gaze; and (f) right gaze. The labels “UM” (up margin), “BUM” (baseline up 

margin), “BDM” (baseline down margin), and “DM” (down margin) represent the critical 

threshold levels. The notations (I) to (IV) stand for amplitudes of blink, swift left-right, 

left and right movements, respectively; and the labels (1) to (8) correspond to data points 

between which the duration is measured. 
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stage indicator for a swift left-right gaze moves like the stage variable of a volunteer blink, 

but with a significantly different amplitude. Its amplitude (noted as “II” in figure 4.2c) 

must be lower than its threshold and definitely, it is smaller than the threshold introduced 

for the blink amplitude (noted as “I” in figure 4.2b). Swift right-left gaze (figure 4.2d) 

signal changes its pattern opposite to the behaviour of a blink, where it first starts by rising 

to up position (stage 1), then returns to center (stage 2), then falls down (stage 3), and 

finally returns to center (stage 4) with the following of an overshoot. Since the unique 

pattern of swift right-left gaze differs it from all other movements, no other threshold is 

required for building its model. 

 

Left gaze (figure 4.2e) first changes its location from center to down (stage 1) and then 

returns to center (stage 2) with following of an overshoot which never reaches the UM 

level. The algorithm for detecting left gaze relies on two timer counters, one counts the 

duration between “3” and “4” which should not pass a specific threshold, and the other is 

a countdown timer which gives the system a short duration to check and find if the signal 

goes to “up” location or not. The same detection system stands for the right gaze (figure 

4.2f), which is essentially the reverse pattern of a left gaze. In the right gaze signal first 

rises up (stage 1) and then returns to center with a following of undershooting which must 

not intersect DM. Before detecting the pattern as a valid EM, its timer counters control 

the duration threshold between its stage 1 and 2, and its down counter provides an interval 

to check if the signal will pass UM or not.  

 

Then, the algorithm computes the amplitude of the signal and compares it with its 

respective threshold value. For calculating the amplitude of the pattern, ultimate high 

hillock and ultimate low valley points are found out by continuously comparing the 

maximum and minimum data values with each other in a pre-defined time window. If the 

system detects a specific attribute of the EOG signal as one of the five defined EMs, it 

will initiate a unit pulse with different amplitude for each detected pattern. Additionally, 

GUI displays the detected EM's name, amplitude, and duration. Moreover, a buzz sound 

is generated by the GUI to alert the operator of an EM detection event. 

 

 

 

 



41 

 

4.4. Proof of Concept Experiments  

 

 

Rather than testing the feasibility of the developed wearable EM detector on a single 

application, we decided to investigate the fundamental needs of different applications in 

multiple testing scenarios.  

 

 

4.4.1. Blink Controlled Clock Transaction Experiment 

 

The first experiment involves translating volunteer blinks into a trail of pulses that can be 

used to trigger output commands for various control purposes such as selecting a button  

or implement a switching action in an HCI interface. The blink command was instructed 

by the participant according to a prescribed protocol which involved blinking at different 

time intervals; including 2.5, 5, 10, 15 s intervals such that the duty cycle of generated 

pulses was kept constant at ∼ 50%, and once 15 s interval was reached the blink 

repetitions were sequentially decremented back to 2.5 s (figure 4.3). During 5 minutes of 

continuous experimentation, 40 blinks occurred, where the algorithm was able to detect 

all and achieved a perfect success rate (SR) of 100%. 

 

Figure 4.3. EOG signals acquired with the smart garment (blue trace), where the recorded 

signal includes several voluntary blink patterns which can be translated into a series of 

digital pulses (red trace) to effectively implement blink-controlled clock transitions in 

real-time for enabling switching requirements of HCI devices. Detection of the 

spontaneous blinks that occurred in the 22nd, 33rd, and 69th seconds were avoided. 
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4.4.2. Pattern of “8” Trace Experiment 

 

In the second experimental scenario, LEDs were turned on sequentially in a 5 by 5 LED 

matrix to trace certain patterns like “S”, “5”, and “8” (figure 4.4). The swift EMs cause 

the “on-LED” (i.e. lit-up LED) to move in horizontal directions while slow horizontal 

saccades move the on-LED in the vertical direction and voluntary blinks cause flashing 

of the on-LED. As illustrated in figure 4.2a, if right after hearing the alert for detection of 

a slow left or right gaze, the user follows a natural flow and makes a reverse gaze to bring 

eyes back to the primary position, the induced signal complex will be a combination two 

gazes. In most cases, this return does not satisfy the conditions to be considered as a 

separate left or right gaze and therefore will not be detected by the algorithm. However, 

after hearing the alert if the gaze is fixated on the sides longer than a natural detection, 

the algorithm will categorize the second gaze as a valid EM. For the particular switching 

applications like this one or the 3rd experiment, this could be problematic because the 

second eye gaze, that is also a reverse of the first one, will cause the on-LED to return to 

its previous position and effectively cancel the intended move. Thus, for the demonstrated 

application, the extra measures were implemented at the software level to eliminate the 

second EM in case of its detection. 

 

 

4.4.3. Long term Durability Experiment 

 

Another important consideration for successful development of wearable electronics is 

their long-term performance which is fundamentally related to both hardware and 

algorithm design. In order to test the long-term performance and reliability of the 

developed algorithm, a multi-segment EOG, which included performing of various EMs 

and indoor activities was conducted for a duration exceeding 1 hour. Figure 4.5 illustrates 

the induced electrooculograms along with the unit pulses generated by the algorithm to 

identify the detected EMs. In the first and last segments of this experiment, a similar 

protocol of the one introduced in figure 3.11 which the volunteer had mastered earlier, 

was carried out. In the second, fourth, fifth, and seventh segments a single type from one 

of the defined EMs was performed; namely, they are voluntary blink, swift left, swift 

right, slow left, and slow right movements, respectively. In the third segment, an English 

text having 32 lines was read from a laptop display. In the sixth segment, the participant 
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Figure 4.4. Plot of the induced EOG signal with inserted interpretations for each 

movement and their issued direction changes, which are used to control an array of LED 

by turning them on sequentially to trace a pattern of “8”. 

 

was reading text on a smartphone, watching short video clips and messaging. In the eighth 

segment, the participant was requested to relax and stare at a single point and, in the tenth 

segment, the same task was implemented with eyelids closed. Finally, in between some 

of the segments, the participant was asked to watch a neutral video.  
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Table III summarizes the performed activities including their duration, the total number 

of EMs (either voluntary, reflex, or spontaneous), and the algorithm's SR in EM detection 

throughout for each segment and for every EM. While performing this experiment the 

participant's eyes were being recorded so that later on, the recorded EMs could be tracked 

visually to verify the performance of the algorithm in automatic detection of EMs. 

Additionally, the threshold calibration was conducted only once at the beginning of the 

1-hour EOG session. 

 

Throughout the 1-hour-long EOG session, the algorithm correctly detected 70 voluntary 

blinks out of 72 (SR = 97.2%), 60 left gazes out of 62 (SR = 96.7%), 50 right gazes out 

of 61 (SR = 81.9%), 58 swift left gazes out of 59 (SR = 98.3%), and 64 swift right gazes 

out of 64 (SR = 100%), also it successfully avoided detection of 462 spontaneous and 

reflex blinks out of 507 occurrences (SR = 91.1%). 

 

Data indicates that most of the miss detected EMs were involuntary blinks which were 

interpreted by the algorithm as slow left moves. The number of spontaneous blinks 

occurred while watching a video (∼20 minutes) is more than double of the other segments 

combined and also most of the misdetection of spontaneous blinks happened while 

watching the video. The higher number of involuntary blinks while watching the video is 

attributed to reflex blinks. In this context, the reflex is not due to an external signal 

stimulus rather we are referring to the visual stimulus in the break of senses or luminance 

change during the video [122]. The reason for larger number of miss detected involuntary 

blinks could be due to the difference in the overall shape and magnitude of reflex blinks 

compared to spontaneous blinks [121], wherein our experiments the reflex blinks were 

observed to resemble a slow left gaze pattern and were misinterpreted by the algorithm. 

This could be addressed simply in calibration session by increasing the threshold value 

for the left gaze. 

 

An interesting observation was made for the recorded EOG signals when eyes were 

closed. Simple visual comparison of the induced signals in segment 8 (i.e. eyes open and 

staring at a single point) with those of segment 10 (i.e. eyes closed and at the primary 

position) reveal that variations and magnitudes of electrooculogram when eyes are closed 

are higher than the case where eyes are open. This also suggests that the same calibration 
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Figure 4.5. (a) Zoom-in samples from each performed activity (b) 1 hour-long 

electrooculogram (c) virtual unit pulses generated by the algorithm displaying different 

amplitudes according to the detected EMs. 0.1 V and 0.2 V pulses are for slow and swift 

right EMs, respectively; whereas, pulses with the same amplitude but with negative sign 

are indicators of slow and swift left EMs. Pulses with the highest amplitude correspond 

to the detection of voluntary blinks. 

 

parameters cannot be used for detection of slow and/or swift saccadic EMs for cases when 

eyes are open versus closed. As for the reading activity, the recorded electrooculograms 

display 30 low-amplitude saccadic left moves due to focusing on different lines of the 

text while the algorithm successfully avoids their detection owing to the fact that left gaze 

pattern for saccadic moves was modeled for ∼ 30° displacements, not for smaller changes 

like ∼10° which typically occur while reading. 

 

In the 1-hour EOG session, a decline in the SR from 97% (first segment) to 87.1% (last 

segment) is observed where both segments roughly contain the same number of EMs. The 

reason for the decline in SR is the high number of miss detection or completely missing 
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of slow right gazes (nearly half) due to the insufficiency of their amplitude thresholds, 

indicating that the system needs recalibration session in long runs, which could be 

addressed by dynamic thresholding approaches [121]. 

 

4.4.4. Eye Mouse Experiment 

 

 

In the fourth experiment, the developed embedded software for the second experiment 

modified to send x-y coordinates of the curser to GUI. In the computer-end, the GUI calls 

Microsoft Windows User32.dll library and uses SetCursorPos and mouse_event functions 

to control cursor movement and blink actions, respectively. The swift EMs facilitates 

horizontal cursor movements, whereas slow EMs control vertical directions and volunteer 

blink mimic the click action. When an EM occurs cursor starts to move in the defined 

direction with a configured speed until the arrival of another command or reaching to the 

edge of the display. For instance, it will be moving toward the left side with swift left EM 

and will be stopping if blink occurs and perform clicking. Some addition actions are also 

implemented in the software-level to ease the curser control experience. For instance, 

when the cursor is in motion both swift EMs can stop the movement. Speed of the curser, 

its initial starting point, and several other options are configurable in GUI settings. Figure 

4.6. shows a demo with the developed eye mouse along with the recorded 

electrooculograms and their interpretation. The aim here is to first open Microsoft Word 

Office and virtual keyboard, then to write a word, and finally to stop the GUI. For the 

first trail, the speed kept slow, 1 pixel every 30 msec which is translated to 1 character 

every ~20 sec, but after a few exercises, the speed increased to 1 character per ~ 10 sec 

which is a fairly good speed for a thresholding-based algorithm approach having 100% 

accuracy in detection.  
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Figure 4.6. Plot of the induced EOG signal with inserted interpretations for each 

movement, which are used to mimic movements of a mouse cursor to write “SUMEMS”. 
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CHAPTER V 

 

CONCLUSIONS 

 

 

 

In contrast to well-established vision-based gaze tracking, EOG can be measured with 

body-worn sensors and can be implemented as an effective, cost-efficient, and low-power 

embedded system to estimate EMs. The approach involves recording under any light 

condition, and there is no influence from the presence of obstacles, even when the 

subject’s eyes are closed. However, despite its merits, the number of studies on this 

subject is limited, and many topics and issues have been left unaddressed. Tackling its 

issues, it is expected that EOG becomes a useful source of communication in virtual 

reality environments and can act as a valuable communication tool for people with 

amyotrophic lateral sclerosis.  

 

Following these lines, unlike traditional “wet” electrodes which profoundly hinder the 

development of wearable EOG sensors, this work employee, for the first time, the use of 

graphene-coated fabric electrodes and suggests them as suitable alternatives to overcome 

the limitations of the currently used conventional “wet” electrodes. In order to test the 

feasibility of the fabricated textile electrodes a total of 16 EOG recordings was performed 

which was acquired by simultaneous side-by-side placement of both electrodes on 8 

different participants resulted in a signal correlation of ~ 80% on average and maximum 

of 87% for one participant. On the other hand, signals that were simultaneously acquired 

from 2 different participants where each wore a different type of electrode (i.e. either 

graphene textile or Ag/AgCl) displayed 73% correlation. Furthermore, the asynchronous 

recorded signal from a single participant revealed an excellent correlation of 91.3%. 

These experimental results verify the capability of graphene textile electrodes in 

accurately capturing the unique EOG patterns due to horizontal saccades, blinks and 

fixations with very high similarity to that of Ag/AgCl electrodes despite the physiological 
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differences between individuals, variations in contact conditions due to head shape, 

possible asynchronism of individuals while executing specific EM patterns, mismatches 

in measurement conditions and random noise components. Additionally, during the 

period of conducting the reported experiments which exceeded months, no significant 

performance changes were observed in the graphene textile electrodes. As for the 

biocompatibility of graphene, since graphene textiles do not require prior skin preparation 

and effectively touch only the outermost layer of the skin (i.e. stratum corneum, made up 

of several tens-of-microns-thick pile of dead cells), potential concerns on toxicity are 

alleviated as dermal administration of graphene has been reported to display minimal 

effect on the skin for moderate exposure durations and concentrations [100]. Owing to 

their accessible fabrication technique, graphene textile electrodes have the possibility and 

adaptability for mass manufacturing. Moreover, they display a high degree of flexibility 

and stretchability, and fabric materials offer comfortable interfaces for the body due to 

the elimination of the gel existing in wet electrodes. This assures the possibility of 

embedding the electrodes into garments and long-term usability of the EOG devices 

empowered wearable electronics based on graphene textile electrodes.  

 

Wearable textile electronics and their application to biopotential signal acquisition is an 

emerging trend which grows steadily and shows large parallelism to the developments in 

the broader field of wearable or ubiquitous computing, which aims to develop and 

improve personalized routine health monitoring, rehabilitation devices, brain-computer 

interfaces, HCI/HMIs, prosthetics, and possibly many other applications that exploit 

biopotential feedback or control. The development of textile electrodes as a valid 

alternative to standard clinical electrodes is therefore critical due to their potential for 

seamless integration into daily clothing, the possibility of long-term functionality, 

breathability, stretchability, and for achieving “truly wearable” soft electronics. In this 

respect, textile electronics is a key technology enabler. Further developments from 

fundamental materials and system-level integration, including embedding of electronics, 

to strategies for compensating signal artifacts in dynamic operation and novel algorithms 

for a target application will determine the success and widespread use of wearable e-

textile-based devices in the years to follow. With further development, seamless 

integration of graphene textiles with ordinary clothing and electronics it could be possible 

to revolutionize EOG applications including, monitoring of epileptic patients and driver 

drowsiness, diagnostic polysomnogram tests for sleep disorders, development of 
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wearable HCI.  

 

Also in this work, a fully-wearable, smart headband was developed and its capability to 

auto-detect multiple EMs was demonstrated by system-level integration of graphene 

textiles with read-out electronics and classifier algorithms based on sequential, multi-step, 

fixed thresholding. With the approach provided in this study, a novel electrode placement 

for the forehead EOG was introduced whereby five different EM patterns could be 

detected only by a single channel read-out circuitry. The results presented in this work 

lay down the foundation of graphene textiles toward control applications specifically 

tailored to EOG-based HCI/HMI.  

 

In summary, in this work we have shown that EOG provides several advantages over 

common systems based on video; in particular in terms of embedded implementation and 

long term recordings in daily life. However, in current work the information obtained 

from EOG remains coarse, the users are static, and signal processing is yet to be ideal in 

mobile scenarios which render future research directions to be carried on.  
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The experimental procedures involving volunteer human subjects described in this 

research are followed by the ethical principles outlined in the Helsinki Declaration of 

1964, as revised in 2013 and participants gave their informed consent for inclusion before 

they participated in the study. The authors gratefully thank the participants involved in 

this study. 
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Figure S1. Timer Interrupt Serves Routine working block diagram for proposed 

embedded software. 
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Figure S2. The detailed feature extraction section of the flowchart for the proposed 

automatic EM detection algorithm. 
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Figure S3. The first part of the detailed classification section of the flowchart for the 

proposed automatic EM detection algorithm. (S: Swift) 
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Figure S4. The second part of the detailed classification section of the flowchart for the 

proposed automatic EM detection algorithm. (S: swift, B: volunteer blink, L: left 

movement, R: right movement, Amp: amplitude, Calib: calibration) 

 


