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ABSTRACT

PAIR IMPLEMENTATION

ECE YILMAZ

Economics, M.A. Thesis, July 2019

Thesis Supervisor: Assoc. Prof. Mehmet Barlo

Keywords: Implementation, Nash implementation, network structures, pair
structure

This thesis analyzes the implementation problem under complete information in a
societal environment where all agents are grouped in pairs. We introduce a new equi-
librium notion called pair-Nash equilibrium and define a related pair-monotonicity
notion on social choice rules and show that it is necessary for implementation in
pair-Nash equilibrium, i.e., pair-implementation. Moreover, we introduce the pair-
implementability condition and prove that it suffices for pair-implementation. Our
results extend implementation results of Maskin (1999) and Moore and Repullo
(1990) to the pair-structure.
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ÖZET

İKİLİ UYGULAMALAR

ECE YILMAZ

Ekonomi, Yüksek Lisans Tezi, Temmuz 2019

Tez Danışmanı: Doç. Dr. Mehmet Barlo

Anahtar Kelimeler: Uygulama, Nash uygulaması, ağ yapıları, ikili yapılar

Bu tezde, tam bilgi altında uygulamalar, toplumdaki her bireyin bir diğeriyle ik-
ili eşleştiği durumlar (ikili-yapılar) için incelenmektedir. Bu analiz için, öncelikle
yeni bir denge nosyonu olarak ikili-Nash dengesini ve bununla ilgili ikili-tekdüzelik
kavramını tanımlayıp, bu ikili-tekdüzelik koşulunun sosyal seçim kurallarının ikili-
Nash dengesi altında uygulanması (ikili-uygulama) için gerekli koşul olduğunu gös-
teriyoruz. Devamında, ikili-uygulanabilirlik koşulunu tanımlayarak bu koşulun
sosyal seçim kurallarının ikili-uygulamaları için yeterli olduğunu kanıtlıyoruz. Elde
ettiğimiz sonuçlar, Maskin (1999) and Moore and Repullo (1990) tarafından ku-
rulan Nash uygulamaları sonuçlarının toplumda ikili-yapılara uyarlanmasını sağla-
maktadır.
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1. INTRODUCTION

Implementation theory is concerned with the problem of a social planner, who would
like to specify a social choice rule that selects a socially optimal outcome regarding
the characteristics of agents in a society. As the planner lacks the information
on characteristics of agents, the main objective of the planner is to extract this
information via the design of an institution or a mechanism to deal with the following
problem: While agents may have an incentive to reveal false information about
their characteristics (e.g., types) to increase their individual welfare, the planner
wishes to structure the mechanism that yields reliable information to be used in
the selection of socially optimal outcomes foreseeing the outcome of the resulting
strategic interaction among the agents.

With Hurwicz (1972) onwards, this problem is formalized and analyzed through a
game form and a relevant game-theoretic equilibrium notion. So the main question
became whether there can be a game form for the agents to play such that the
equilibrium outcome(s) of the game coincide(s) with the outcomes specified by the
social choice rule. Following literature started to structure the game forms as ana-
loguous to real institutions by including the complexities of information structures
and rationality assumptions. While Maskin (1999), Moore and Repullo (1990), Saijo
(1988), Williams (1986) and Williams (2003) focused on implementation problems
under perfect information, Palfrey and Srivastava (1987), Jackson (1991), Postle-
waite and Schmeidler (1986) analyzed implementation problems under imperfect
information. With the introduction of deficiencies of rationality such as status quo
bias, attraction, temptation and framing effects by Thaler and Sunstein (2008) and
Kahneman and Tversky (2013)[Chapter 6.], alternative models of implementation
in the environments with boundedly-rational agents were studied (e.g. Eliaz (2002),
Korpela (2012), de Clippel (2014)).

In recent studies of implementation theory, structures of informational networks
gained importance, as the incentives of the agents in strategic settings may depend
on the group incentives and cooperation of agents. Koray and Yildiz (2018) intro-
duces implementation with rights structures, referred as Γ-implementation, which

1



accounts for the coalitional incentives in such settings. Thus, they present the no-
tions of image monotonicity and individual rights structure and prove them to be
necessary and sufficient for Γ-implementability. Since their work relies on agents’
consideration of how other agents can affect the outcomes by unilaterally changing
their strategies and their use of rights structure focuses on how altering a state from
one to another generates a change in the outcomes, our work elicits a different ap-
proach to group incentives in implementation for that we take groups of two agents
and construct a new equilibrium concept according to this interaction structure of
agents.

In this thesis, we analyze the set of agents grouped as pairs, because of the fact that
the pair structure in societies and institutional settings is a commonly observed
phenomenon. In contemporary societies, marriage systems, joint ventures in busi-
ness environments, and bilateral diplomatic agreements present examples of cases
that incentives of individuals in decision making are affected from their pairwise
interference. When we consider the presence of pair structure in institutional level,
trade agreements between two countries or companies, international agreements for
national defense strategies can be regarded as crucial. For instance, long-lasted
Brexit negotiations can be assessed as two agents’, European Union’s and United
Kingdom’s search for a profitable pairwise deviation. Also, in a business environ-
ment where two business partners discussing about a solution for increasing their
recently dropped sales numbers, one may suggest lowering prices to boost sales
while the other one cares about the perception of their company via selling high-
end, luxurious and expensive products. In this case, these two partners take action
in accordance with each other, thus they have to find a balanced solution that serves
the concerns of all two parts of discussion.

At individual level, marriages, friendships and flat-sharing students represent ex-
emples of pair structure in order to sustain these relationships. In many societies,
marriage laws are constructed in the way permitting married couples live together
and take their life decisions in line with both side’s benefits. For instance, if one of
the partners in a marriage is obliged to move to another location, codes of conduct
in business environments are arranged in order not to separate the married couple
and to sustain their mutual living. Thus, in a diversity of cases, laws can be bind-
ing a pair of agents (individually or institutionally) to act in harmony with each
side’s interests or without legal ties, agents may respect one another’s advantages.
In either cases, decision making processes as pairs need to be analyzed in a new
framework that takes into account their incentives in accordance.

In order to deal with the implementation problem in pair structures, the need for
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a new concept of equilibrium and implementation emerges. Thus, we present pair-
Nash equilibrium and pair-implementation concepts that build upon previous liter-
ature of implementation under perfect information.

Since the notions of pair-implementation and pair-Nash equilibrium builds upon
the literature of implementation under complete information, we first present pre-
vious literature on Nash implementation which is related to our analysis. Maskin
(1999) presents Nash equilibrium and Nash implementation where every agent knows
about the others’ preferences and reveals this information under a game form. In his
pioneering study, Maskin introduces necessary and sufficient conditions for imple-
mentability of social choice rules and proves that monotonicity condition, which de-
mands that when an alternative that is selected in a preference state and stays higher
ranked in another state continues to be selected, is necessary for implementability
of social choice rule. Together with the monotonicity condition, no-veto-power con-
dition, which requires that an alternative which is highest ranked for every agent
except one should be selected by the social choice rule so that none of the agents
can veto an alternative that is desirable for other agents, is sufficient for Nash im-
plementability, when the society consists of at least three agents.

Building upon Maskin’s Nash implementation framework, Saijo (1988), Williams
(1986) and Williams (2003) study Nash implementation with reduced strategy
spaces, where the agents reveal the information about the preference characteris-
tics of a smaller number of agents. When one thinks of a society consisting of large
amount of individuals, the difficulty of gathering information from all agents about
the characteristics of all the other agents and the related costs of storing and analyz-
ing such a giant amount of data, the necessity of this simplification of game forms
becomes crucial and inevitable. Despite this simplification, their work reaches a
similar result that is monotonicity and no veto power are sufficient for Nash imple-
mentability of social choice rules, in an environment where the information structure
of agents is limited to a cyclical observation of each other’s characteristics under
complete information.

Generalization of implementation problems to a larger set of social choice rules
constitutes another important aspect of implementation literature. This intention
brings the aspiration to less strict conditions of necessity and sufficiency for im-
plementability of social choice rules. Moore and Repullo (1990) approaches this
purpose by providing a weaker condition than Maskin’s no-veto-power condition,
so-called µ-condition and prove it to be both necessary and sufficient for Nash im-
plementability.

In this thesis, we first formally describe a pair structure in a society, where every
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agent is paired with one other agent. This pair structure does not affect the in-
dividual utilities of agents, which depend on their own characteristics, referred as
their state profiles, but their incentive for a profitable deviation depends on their
partner’s benefit as well as their own utility level. So, in this framework, a strategic
action is profitable when it is profitable for both of the agents in a pair, increas-
ing the utilities for both of them, or increasing the utility of one agent while not
decreasing the other’s.

Our framework of pair-implementability provides a new equilibrium concept, pair-
Nash equilibrium, which is a collection of message profiles of a pair and responding
strategies of other players to this pair’s strategy, where none of the players can gather
higher utilities by deviating as pairs, i.e., a collection of strategies from where no
profitable pair-deviation is possible. So the main problem becomes implementation
in pair-Nash equilibrium and we present necessary and sufficient conditions under
characterization of individuals in pairs.

We introduce an analogous description of Maskin’s monotonicity in pair structure
as pair-monotonicity, meaning that if an alternative is chosen by a choice rule and
ranked higher for every pair in another state, it should continue being socially op-
timal at the new state. We first prove that this condition is necessary for pair-
implementability, i.e., if a social choice rule is pair-implementable, then it is pair-
monotone.

For the sufficiency side of implementation, we present the pairwise analogous of
Maskin’s no-veto-power condition as pair-no-veto-power, that demands an alterna-
tive top ranked by all pairs in a society should be selected by the social choice
rule. We also show that a weaker condition, pair-implementability condition which
follows from condition-µ of Moore and Repullo (1990) with pair-monotonicity is
sufficient for pair-implementability, so that if a social choice rule satisfies the pair-
implementability condition, then it is pair-implementable. We also show that pair-
no-veto-power condition implies our pair-implementability condition but not vice
versa, as the former is a stronger condition while it leaves out a group of social choice
rules that are pair-implementable. Hence, our study contributes to implementation
literature by extending canonical framework of Moore and Repullo (1990) in pair
structure.

The rest of this thesis is organized as follows: Chapter 2 presents the formaliza-
tion of pair implementation framework with Section 2.1 introducing preliminaries of
pair structure, pair-Nash equilibrium and pair-implementability, Section 2.2 follow-
ing with necessity results. Section 2.3 presents our mechanism constructed for our
sufficiency theorem and Chapter 3 concludes.

4



2. PAIR-IMPLEMENTATION

In this chapter, we establish the necessity and sufficiency conditions for a social
choice correspondence to be implementable in pair-Nash equilibrium.

Many economic environments feature situations in which decision makers are paired
with one another and have to address the concerns of their partner while making de-
cisions. Households consisting of two individuals, law enforcement consisting of the
police force and attorneys, bilateral agreements between institutions/corporations
and inter-country agreements between two parts in diplomatic environments serve
as an example of such situations. Notice that, in such situations, an agent must
attribute importance to the benefit of his/her counterpart regardless of whether or
not the agreements between two partners are legally binding.

In such a setting where the individuals are grouped as pairs, the strategic interac-
tion between individuals depends on not only the individual motivation of decision
makers but also concerns about the pairwise accordance of individuals. Here, the
equilibrium outcome depends on the consensus between the partners, generating a
pair-Nash equilibrium, different than the standard Nash equilibrium notion. Pair-
Nash equilibrium of a game of n-agents is a collection of strategy profiles that pro-
vide the most preferred outcome(s) for each individual within the set of alternatives
through pairwise deviations, while other individuals keep playing their part of equi-
librium. So the outcome generated from a strategy profile of a player depends on
his/her and his/her partner’s strategy, together with the responses of other players
to these strategies. Thus, to obtain a better outcome, the paired individuals should
act in a coordinated manner, when they consider a potential deviation.

To understand the intuition underlying this equilibrium notion, consider the fol-
lowing scenario. Suppose that a tribe consisting of n individuals (n being an even
number and hence allowing to match individuals as pairs) will be settled in a lo-
cation, which will be determined according to a mechanism that is constructed by
a social planner. Everybody has their own preference ordering for the locations
about which the social planner has no information, yet every individual decides the
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message to send to the social planner in accordance with their companion, i.e., the
individual that they are paired with, as every agent wants the optimal location for
themselves and their companions. Consider that everybody plays their strategy and
the resulting outcome is a pair-Nash equilibrium. In order for an individual to play
another strategy, this deviation should be profitable not only for himself but also
for his/her companion.

The purpose of the following sections is to introduce and formally define a setting
to employ pair Nash-equilibrium concept and present its implications and some of
its applications.

2.1 Notation and definitions

The society (the set of players) consists of agents indexed by i = 1,2, . . . ,n. We
let the set of players be given by N = {1,2, . . . ,n}. For reasons of convenience, we
restrict attention to cases where the cardinality of N is an even number.

As discussed above, the agents are paired with one another. Indeed, the matching
between the agents are described by a bijection ν : N → N such that for every
agent i ∈ N , ν(i) ∈ N \{i} denotes the agent matched with i. Thus, we have that
ν(ν(i)) = i for all i ∈N .

A pair of players consisting of i and j = ν(i) 6= i is denoted by (ij) ∈ N2. It is
appropriate to emphasize that in our setting an agent can be paired with only one
distinct individual, and vice versa. Thus, the profile of pairs in this economy is
given by an N ×N matrix P where the rows and columns are given by the agents
N and pij = 1 if (ij) is a pair while pij = 0 otherwise. Clearly, as i 6= j in any pair
(ij), pii = 0. Thus, P is such that ∑

j pij = 1 and ∑
i pij = 1. We let the set of all

possible pairs be denoted by P. Abusing notation, (ij) ∈ P denotes the situation
when players i and j are a pair in P .

The set of alternatives of the economy is given by X. We denote the set of all
non-empty subsets of X by X . The set of states of the economy is given by Θ. An
element of Θ will be denoted by θ and agents’ preferences (continuous and complete
preorders) on the set of alternatives depend on the state. Given a state θ ∈ Θ, the
preferences of agent i∈N on X are represented by a state dependent utility function
ui(·|θ) : X → R. In this environment, define the lower contour set of x ∈X for an
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agent i ∈N at θ ∈Θ as

LCSi(x | θ) = {y ∈X : ui(x | θ)≥ ui(y | θ)}.

Then, the lower contour set of x ∈X for a pair (ij) ∈ P (i.e., i ∈N and j = ν(i))
at θ ∈Θ is defined as

Lij(x | θ) = LCSi(x | θ)∩LCSj(x | θ).

A social choice rule f : Θ→X is a correspondence, which selects socially optimal
alternatives in X for the state profile θ. A standard example of a social choice rule
is efficiency: Given a state of the economy, the socially optimal allocations are those
that are efficient (Pareto optimal) in that particular state.

In order to implement a given social choice rule f , the social planner constructs a
strategic n-person game and specifies the rules of the game formalized as a game
form, which is a tuple µ= (M,g), where M =M1× . . .×Mn is the set of a collection
of individual message spaces with mi ∈Mi being an individual message profile for
individual i. For notational purposes, for any given i ∈ N and (ij) ∈ P , we let
m−i ∈M−i := ×k 6=iMk and m−ij ∈M−ij := ×k 6=i,jMk. Meanwhile, g : M → X is
a mapping from the message space to the set of alternatives that associates every
message profile with an outcome, being referred to as the outcome function. Thus,
µ= (M,g) is equivalently called a mechanism and the social planner is also referred
to as the mechanism designer.

This work concentrates on implementation under complete information. That is, it
is assumed that each agent knows the state of the economy while the social planner
does not. Consequently, the resulting question is whether or not the social planner
can extract this information from the agents and implement a desired social choice
rule (correspondence) using the appropriate concept of equilibrium suited to this
setting.

The study of implementation in an environment where the individuals are grouped as
pairs necessitates a new notion of equilibrium and a new notion of implementation.
As in most equilibrium notions for strategic game forms, a player is required to
optimally respond to the equilibrium strategies of the other players.

On the other hand, here a player’s response is evaluated with not only his/her
preferences but also with those of the player that he/she is paired with.

These are formalized in the following notion of equilibrium:
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Definition 1. Given a mechanism µ= (M,g), a message profile m∗ ∈M is a Pair-
Nash Equilibrium of Γ = {N,P ,〈ui,Mi〉i∈N} at θ ∈Θ if for all (ij) ∈ P,

ui(g(m∗))≥ ui(g(mi,mj ,m
∗
−ij)), and uj(g(m∗))≥ uj(g(mi,mj ,m

∗
−ij)),

for all (mi,mj) ∈Mi×Mj.

In words, pair-Nash equilibrium of a mechanism describes a message profile m∗ =
(m∗i ,m∗j ,m∗−ij) consisting of an optimal strategy for player i, m∗i , an optimal strategy
for player j, m∗j , and optimal responses of other pairs, m∗−ij , when i and j construct
a pair (ij). The resulting alternatives from these optimal strategies provide higher
utilities for both of the players i and j in pair (ij) at the given state profile θ, when
compared with the utilities resulting from other message profiles, (mi,mj), at the
same state profile θ.

In this equilibrium notion, individuals could generate a profitable deviation only
when they deviate as a pair, i.e. by varying their own strategy while others play
their part of the equilibrium. Thus, individual profitable deviation is only possible
when deviation from a strategy is profitable for the other part of the pair as well. By
the same example, if the pair (ij) change their strategy from m∗ = (m∗i ,m∗j ,m∗−ij)
to m̃= (m̃i, m̃j ,m

∗
−ij), then resulting alternative g(m̃) should render higher utilities

for both i and j. Notice that each player chooses his/her own strategy and each
player’s concern is his/her individual utility as long as it does not hurt his/her
partner’s utility. For each individual, the equilibrium outcome is among the chosen
options within the set of outcomes that he or she can generate through pairwise
deviations.

Example 1. Suppose an environment with the set of agents N = {1,2,3,4} and the
profile of pairs (12),(34) ∈ P and the set of actions Mi = {a1,a2} for all i ∈N . At
a given state θ, the utilities of agents, ui(·, ·, ·, · | θ), are given as follows:

ui(a1,a1,a1,a1 | θ) = 1, for all i= 1, . . . ,4,

ui(a2,a2,a2,a2 | θ) = 1, for all i= 1, . . . ,4,

u1(a2,a1,a1,a1 | θ) = 2,

u2(a2,a1,a1,a1 | θ) = u3(a2,a1,a1,a1 | θ) = u4(a2,a1,a1,a1 | θ) = 1/2,

u1(a1,a2,a2,a2 | θ) = 1,

u2(a1,a2,a2,a2 | θ) = u3(a1,a2,a2,a2 | θ) = u4(a1,a2,a2,a2 | θ) = 1/2,

ui(a | θ) = 0 for all a ∈M not listed above.

Taking pure strategies into consideration, notice that, in this example, (a1,a1,a1,a1)
8



is among pair-Nash equilibrium strategies while they are not among Nash equilib-
ria. On the other hand, (a1,a2,a2,a2) is a Nash equilibrium but not a pair-Nash
equilibrium.

In order to see that, let us start with (a1,a1,a1,a1). It is not a Nash equilibrium
as u1(a1,a1,a1,a1 | θ) = 1 < 2 = u1(a2,a1,a1,a1 | θ). On the other hand, for all
(a,a′) ∈ {a1,a2}2 \ (a1,a1), u2(a,a′,a1,a1 | θ)< 1; thus, (a1,a1,a1,a1) is a pair-Nash
equilibrium.

On the other hand, (a1,a2,a2,a2) is a Nash equilibrium because u1(a1,a2,a2,a2 | θ) =
1 = u1(a2,a2,a2,a2 | θ) while for any a,a′,a′′ ∈ {a1,a2}3 with (a,a′,a′′) 6= (a2,a2,a2)
and (a,a′,a′′) 6= (a1,a1,a1), we have uj(a1,a,a′,a′′ | θ) = 0 < 1/2 = uj(a1,a2,a2,a2 |
θ) for all j 6= 1. But, (a1,a2,a2,a2) is not a pair-Nash equilibrium: Consider
(a2,a2,a2,a2) and notice that for (12) ∈P we have that (a2,a2) is a profitable devia-
tion because u1(a1,a2,a2,a2 | θ) = 1 = u1(a2,a2,a2,a2 | θ) while u2(a1,a2,a2,a2 | θ) =
1/2< 1 = u2(a2,a2,a2,a2 | θ).

These give rise to the following remark which is justified above:

Remark 1. There maybe Nash equilibria which are not pair-Nash while the reverse
also holds.

Following the notion of pair-Nash equilibrium, the opportunity set of player i, the set
of options that an individual can generate through unilateral deviations is defined as
follows: Given a mechanism µ= (M,g), for any (ij)∈P and m̄−i ∈M−i :=×j 6=iMj ,

Gi(m̄−i) = {y ∈X : g(mi, m̄−i) = y with mi ∈Mi}.

Also, the opportunity set of pair (ij) ∈ P , the set of options that this pair can
generate through pairwise deviations, is defined as follows: Given m̄−ij ∈M−ij :=
×k 6=i,jMk,

Gij(m̄−ij) = {y ∈X : g(mi,mj , m̄−ij) = y with (mi,mj) ∈Mi×Mj}.

Equivalently, Gij(m̄−ij) = g(Mi,Mj , m̄−ij).

Under this notation, notice that a strategy m∗ constitutes a pair-Nash equilibrium
of the game induced by mechanism µ= (M,g) at θ if

ui(g(m∗) | θ)≥ ui(y | θ), and uj(g(m∗) | θ)≥ uj(y | θ), for all y ∈Gij(m∗−ij)

for all (ij) ∈ P .
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Now, suppose that a social planner wishes to implement a social choice rule f in
pair-Nash equilibrium. Let f(θ) be the resulting alternative relevant for the state
profile θ, which is called f -optimal outcome. As the planner lacks the knowledge
of preference profiles of players, he wishes to confirm that independent of what the
current profile of preferences is and regardless of the specific equilibrium that is
selected, f -optimal outcome will be realized. The following definition formalizes the
conditions for that a social choice rule to be implemented in pair-Nash equilibrium.

Definition 2. f : Θ→X is pair-implementable by µ= (M,g) if

(1) for all θ ∈Θ and for all x∈ f(θ), there exists m∗ ∈M such that for all (ij)∈P

ui(g(m∗) | θ)≥ ui(g(mi,mj ,m
∗
−ij) | θ) and

uj(g(m∗) | θ)≥ uj(g(mi,mj ,m
∗
−ij) | θ),

for all (mi,mj) ∈Mi×Mj and g(m∗) = x; and

(2) for all θ ∈Θ and for all m∗ ∈ M with for all (ij) ∈ P

ui(g(m∗) | θ)≥ ui(g(mi,mj ,m
∗
−ij) | θ) and

uj(g(m∗) | θ)≥ uj(g(mi,mj ,m
∗
−ij) | θ),

for all (mi,mj) ∈Mi×Mj, we have that g(m∗) ∈ f(θ).

That is, mechanism µ = (M,g) pair-implements a choice rule if it satisfies two re-
quirements: First, for any state θ and for any f -optimal alternative x at θ, there
exists a pair-Nash equilibrium message profile m∗ that provides x via the outcome
function g. Second, for any state θ, m∗ being a pair-Nash equilibrium at θ implies
that the resulting outcome g(m∗) is f -optimal at θ. Thus, all pair-Nash equilib-
ria obtained with mechanism should coincide with f -optimal alternatives, implying
full-implementation.

2.2 Necessity

We now introduce the necessary condition and show that it must hold whenever the
social choice correspondence is pair-implementable when attention is restricted to
perfect information.
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Definition 3. f : Θ→X is pair-monotone if x ∈ f(θ) and

Lij(x | θ)⊆ Lij(x | θ′), for some θ′ ∈Θ,

implies x ∈ f(θ′).

In words, pair-monotonicity means that if an outcome chosen by a social choice rule
at state θ and it becomes higher ranked for every pair at another state θ′, then it
should be f -optimal at θ′. Hence, pair-monotonicity property implies that whenever
the social choice rule excludes a previously chosen outcome, then at least one pair
has shifted this outcome down in their ranking. That is, if we denote the formerly
chosen outcome by x, then at least one pair, who has previously preferred x to y
now reverses this relation.

The following is our necessity theorem:

Theorem 1. If a social choice rule f : Θ→ X is pair-implementable, then it is
pair-monotone.

Proof. Let θ ∈ Θ and x ∈ f(θ). Then, by (1) of pair-implementability, there exists
m∗ ∈M such that for all (ij) ∈ P

ui(g(m∗) | θ)≥ ui(g(mi,mj ,m
∗
−ij) | θ), and(2.1)

uj(g(m∗) | θ)≥ uj(g(mi,mj ,m
∗
−ij) | θ)

for all (mi,mj) ∈Mi×Mj and g(m∗) = x.

Due to the hypothesis, let θ′ ∈Θ be such that for all (ij)∈P , Lij(x | θ)⊆Lij(x | θ′).
Then, we need to show that x ∈ f(θ′).

By (2.1), g(m∗) = x; and for any y ∈Gij(m∗−ij), we have that y ∈ Lij(x | θ). Hence,
Gij(m∗−ij)⊆Lij(x | θ)⊆Lij(x | θ′) for all (ij)∈P . As a result, Gij(m∗−ij)⊆Lij(x |
θ′) implies for all (ij) ∈ P ,

ui(g(m∗) | θ′)≥ ui(g(mi,mj ,m
∗
−ij) | θ′)

and
uj(g(m∗) | θ′)≥ uj(g(mi,mj ,m

∗
−ij) | θ′)

for all (mi,mj) ∈Mi×Mj . Therefore, m∗ is a pair-Nash equilibrium at θ′ and by
(2) of pair-implementability, x ∈ f(θ′).

A natural question concerns the relation between pair-monotonicity and the notion

11



of monotonicity of Maskin (1999) which is defined below:

Definition 4. A social choice rule f : Θ→X is Maskin monotone if x ∈ f(θ) and
Li(x | θ)⊆ Li(x | θ′) for all i ∈N and for some θ′ ∈Θ implies x ∈ f(θ′).

In words, Maskin monotonicity requires the following: If an alternative x is f -
optimal at some state θ and it does not get lower ranked for any agent at state θ′,
then x must be f -optimal at θ′.

Below, we establish that, every pair-monotone social choice rule must be Maskin
monotone. That is, Maskin monotone social choice rules contain the set of pair-
monotone social choice rules. On the other hand, showing whether or not the reverse
of this relation holds is an open question.

Theorem 2. If a social choice rule f : Θ→X is pair-monotone, then it is monotone.

Proof. Suppose x ∈ f(θ) and Li(x | θ) ⊆ Li(x | θ′) for all i ∈ N . Therefore, for all
(ij)∈P , we have that Lij(x | θ) =Li(x | θ)∩Lj(x | θ)⊆Li(x | θ′)∩Lj(x | θ′) =Lij(x |
θ′). As f is pair-monotone, we conclude that x ∈ f(θ′) as desired.

2.3 Sufficiency

In this section, we provide our sufficiency result and show that pair-monotonicity
coupled with two conditions is sufficient to guarantee the pair-implementability of
a social choice rule. These two conditions are weaker than the corresponding no-
veto power property, i.e. they are implied by the pair version of the no-veto power
property.

Before going into the details for this endeavor, we wish to present the mechanism
to be employed in our sufficiency theorem.

2.3.1 Mechanism

Given a set of states Θ, a set of alternatives X, and a set of integers K = {1, . . . ,n},
the mechanism µ= (M,g) we are going to employ is one where for each agent i ∈N
the message space isMi = Θ×X×K, and the outcome function is defined as follows:

12



Rule 1: If mi = (θ,x,k), for all i ∈N and x ∈ f(θ), then

(2.2) g(m) = x.

That is, if all agents propose the same strategy and the alternative x that they
propose is f -optimal at their proposed profile θ, then the outcome of the game
is x.

Rule 2: If mi = (θ,x,k), for all i ∈ N \ {̃i} and (̃ij̃) ∈ P and x ∈ f(θ) while mĩ =
(θ′,x′,k′) with mĩ 6=mi, then

(2.3) g(m) =

 x′ if x′ ∈ Lĩj̃(x | θ)
x if x′ /∈ Lĩj̃(x | θ).

In words, Rule 2 requires that, if all agents but one, ĩ, play the same strategy
and their proposed alternative x is f -optimal at their proposed state θ, the
deviator gets his/her proposed alternative x′ if and only if x′ is in the pairwise
lower contour set of x at θ of the pair the deviator belongs to. Otherwise, the
deviator is ignored.

Rule 3: If mi = (θ,x,k) for all i ∈ N \ {̃i, j̃} and (̃ij̃) ∈ P and x ∈ f(θ) and mĩ 6= mi

and mj̃ 6=mi and mĩ = (θ′, x̃,k′), while mj̃ = (θ′′, x̃,k′′) then

(2.4) g(m) =

 x̃ if x̃ ∈ Lĩj̃(x | θ)
x if x̃ /∈ Lĩj̃(x | θ).

That is, suppose all agents but one pair, (̃ij̃), play the same strategy and
their proposed alternative x is f -optimal at their proposed state θ, while the
deviating pair proposes the same alternative x̃ possibly different than the
alternative proposed by the rest of the players. Then the deviating pair gets
their proposed alternative x̃ if and only if x̃ is in their pairwise lower contour
set of x at θ, i.e., in x̃ ∈ Lĩj̃(x | θ). Otherwise, the deviating pair is ignored.

Rule 4: If mi = (θ,x,k) for all i ∈ N \ {̃i, j̃} and (̃ij̃) ∈ P and x ∈ f(θ) and mĩ 6= mi
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and mj̃ 6=mi and mĩ = (θ′,x′,k′) while mj̃ = (θ′′, x̃,k′′) with x′ 6= x̃, then
(2.5)

g(m) =



x if either x̃,x′ /∈ Lĩj̃(x | θ)
or x̃,x′ ∈ Lĩj̃(x | θ) and k′,k′′ 6= ((n−2)k+k′+k′′)(mod n) + 1
or x̃,x′ ∈ Lĩj̃(x | θ) and k′,k′′ = ((n−2)k+k′+k′′)(mod n) + 1

x′ if either x′ ∈ Lĩj̃(x | θ) and x̃ /∈ Lĩj̃(x | θ)
or x′, x̃ ∈ Lĩj̃(x | θ) and k′ = ((n−2)k+k′+k′′)(mod n) + 1
and k′′ 6= ((n−2)k+k′+k′′)(mod n) + 1

x̃ if either x̃ ∈ Lĩj̃(x | θ) and x′ 6∈ Lĩj̃(x | θ)
or x̃,x′ ∈ Lĩj̃(x | θ) and k′′ = ((n−2)k+k′+k′′)(mod n) + 1
and k′ 6= ((n−2)k+k′+k′′)(mod n) + 1.

In words, suppose all agents but one pair, (̃ij̃) ∈ P , play the same strategy
and their proposed alternative x is f -optimal at their proposed state θ, while
ĩ of the the deviating pair (̃ij̃) proposes x′ and his/her partner j̃ proposes x̃
with x′ 6= x̃, then the following holds:

(1) The deviating pair (̃ij̃) gets ignored whenever either x′ and x̃ are both not
in their pairwise lower contour set of x at θ (i.e., in x′, x̃ /∈Lĩj̃(x | θ)), or x′

and x̃ are both in their pairwise lower contour set of x at θ but either none
of or both of their integer choices equals ((n−2)k+k′+k′′)(mod n) + 1.

(2) The alternative x′ proposed by ĩ of the deviating pair (̃ij̃) gets selected by
the outcome function whenever either x′ is in the pairwise lower contour
set of (̃ij̃) of x at θ while x̃ is not (i.e., in x′ ∈Lĩj̃(x | θ) and x̃ /∈Lĩj̃(x | θ)),
or both x′ and x̃ are in their pairwise lower contour set of x at θ and ĩ’s
integer choice equals ((n− 2)k+ k′ + k′′)(mod n) + 1 while j̃’s integer
choice does not equal ((n−2)k+k′+k′′)(mod n) + 1.

(3) The alternative x̃ proposed by j̃ of the deviating pair (̃ij̃) gets selected by
the outcome function whenever either x̃ is in the pairwise lower contour
set of (̃ij̃) of x at θ while x′ is not (i.e., in x̃∈Lĩj̃(x | θ) and x′ /∈Lĩj̃(x | θ)),
or both x′ and x̃ are in their pairwise lower contour set of x at θ and
j̃’s integer choice equals ((n−2)k+k′+k′′)(mod n) + 1 while ĩ’s integer
choice does not equal ((n−2)k+k′+k′′)(mod n) + 1.

Rule 5: Ifm does not satisfy the hypothesis of any one of Rules 1–4 andmi = (θi,xi,ki)
with θi ∈Θ and xi ∈X and ki ∈ {1, ...,n} for all i ∈N , then

(2.6) g(m) = xi∗
with i∗ such that ki∗

= (
∑

i

ki)(mod n) + 1.
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In words, Rule 5 demands that in the cases that are not captured by Rules
1–4, the result is determined according to the conditions of modulo game that
is the alternative proposed by the agent who claims the integer that beats the
other integers claimed by other players.

2.3.2 Sufficiency Theorem for Pair Implementability

Next, we present our sufficiency condition, pair-implementability condition, to be
employed in our sufficiency theorem. This condition turns out to be related with
condition-µ of Moore and Repullo (1990).

Definition 5. A social choice rule f : Θ→ X satisfies the pair-implementability
condition if all of the following hold:

1. For all θ ∈ Θ and for all x ∈ f(θ), we have that Lij(x | θ)⊆ Lij(x | θ′) for all
(ij) ∈ P and for some θ′ ∈Θ implies x ∈ f(θ′).

2. For any y ∈X, if θ ∈Θ is such that Lij(y | θ) =X for all (ij)∈P \{(̃ij̃)} with
(̃ij̃) ∈ P, and x ∈ Lĩj̃(y | θ) for some θ′ ∈Θ and some x ∈ f(θ′), then y ∈ f(θ).

3. If y ∈X is such that Lij(y | θ) =X for all (ij) ∈ P, then y ∈ f(θ).

The first part of the pair-implementability condition requires the social choice rule
f to satisfy pair-monotonicity. The second demands the following: if an alternative
y is ranked at par with or above all the alternatives in X at state θ for all but one
pair (̃ij̃) and there exists an alternative x which is f -optimal at some state θ′ and
is ranked below the alternative y for the pair (̃ij̃) at θ, then y must be f -optimal at
θ. Finally, the last part of this condition demands pair-unanimity: if an alternative
y is ranked at par with or above all the alternatives in X for all pairs at θ, then y
has to be f -optimal at θ.

While the first and last items in our pair-implementability condition are standard,
the second coupled with the third has a significant relation with the pair version of
the no-veto-power property.

Definition 6. A social choice rule f : Θ→X satisfies the pair-no-veto-power prop-
erty if θ ∈ Θ and x ∈ X is such that Lij(x | θ) = X for all (ij) ∈ P \ {(̃ij̃)} with
(̃ij̃) ∈ P, then x ∈ f(θ).

Pair-no-veto-power suggests that if an alternative x is at the top of n
2 − 1 pairs’

preferences, then a single pair cannot prevent the alternative x from being f -optimal.
15



One can simply notice that the pair-implementability condition is a weaker version
of the combination of pair-monotonicity and pair-no-veto power. This observation
is formally characterized and shown in the following theorem.

Theorem 3. If a social choice rule f : Θ→X satisfies pair-monotonicity and pair-
no-veto-power, then f satisfies the pair-implementability condition. Moreover, the
reverse of this relation does not hold.

Proof. Notice that the first step of the pair-implementability condition is exactly
the same as the pair-monotonicity condition.

Next, suppose that a social choice rule f satisfies the pair-no-veto-power condition
and assume that y ∈X and θ ∈Θ is such that Lij(y | θ) =X for all (ij) ∈ P \{(̃ij̃)}
with (̃ij̃) ∈ P and x ∈ Lĩj̃(y | θ) for some θ′ ∈ Θ and some x ∈ f(θ′). Then, clearly
Lij(x | θ) =X for all (ij)∈P \{(̃ij̃)} with (̃ij̃)∈P . Thus, by the pair-no-veto-power
property, x ∈ f(θ).

Finally, assume that y ∈ X and θ ∈ Θ is such that Lij(y | θ) = X for all (ij) ∈ P .
Thus, trivially y ∈ f(θ) as Lij(x | θ) = X for all (ij) ∈ P \ {(̃ij̃)} with (̃ij̃) ∈ P is
satisfied.

The following example illustrates a case where the reverse relation does not hold:

Example 2. Let the set of alternatives be X = {x,y,z, t}. Suppose there are three
pair of agents (ab),(ãb̃),(âb̂) ∈ P having preference ordering on the alternatives in
X at a state θ as follows:

ui(x | θ)≥ ui(y | θ)≥ ui(z | θ)≥ ui(t | θ) for all i= a,b, ã, b̃ and ui(y | θ)≥ ui(z | θ)≥
ui(t | θ)≥ ui(x | θ) for i= â, b̂.

Here, if the social choice rule f satisfies the pair-no-veto-power condition, then we
have f(θ) = x.

When we enrich this example by insisting that x /∈ f(θ′) for all θ′ ∈Θ, then we could
obtain f(θ) = y under a suitable definition of efficiency. This maybe motivated by
declaring z to be the acceptable alternative (alternatives providing higher utilities
than z for all θ′) for pair (âb̂) and requiring that ui(z | θ′) > ui(x | θ′) for θ′ ∈ Θ
and i = â, b̂. Thus, if we have a social choice rule f which selects only acceptable
alternatives for each pair and existence of such alternatives is not an issue (say y is
such an option), then we have f(θ) = y for this particular θ.
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Then, the outcome of the social choice rule that satisfies the pair-no-veto-power
condition and the outcome from the one that satisfies the pair-implementability con-
dition does not coincide, we see in the latter case that the outcome is the alternative
which is top-ranked by only one pair.

The following Theorem establishes that our pair-implementability condition is suf-
ficient:

Theorem 4. Suppose that the social choice rule f : Θ → X satisfies the pair-
implementability condition. Then, f is pair-implementable.

Proof. The proof is constructive by using the mechanism that we describe in Section
2.3.1 and employing two claims.

Claim 1. For all θ ∈Θ and for all x∈ f(θ), there is mx ∈M of µ= (M,g) such that
ui(g(mx) | θ)≥ ui(g(mi,mj ,m

x
−ij) | θ) and uj(g(mx) | θ)≥ uj(g(mi,mj ,m

x
−ij) | θ)

for all (ij) ∈ P and for all (mi,mj) ∈Mi×Mj and g(mx) = x.

Proof. Let θ ∈Θ and x ∈ f(θ) and define mx ∈M by mx
i = (θ,x,1) for all i ∈N .

Then, by Rule 1, g(mx) = x.

Consider (̃ij̃)∈P (so ĩ 6= j̃ as they are partners) and consider mĩ 6=mx
i and mĩ 6=mx

i .
That is, let mĩ = (θ′,x′,k′) 6= (θ,x,1) =mx

i and mj̃ = (θ′′,x′′,k′′) 6= (θ,x,1) =mx
i .

By Rules 1–4, Gĩj̃(mx
−ĩj̃) = Lĩj̃(x | θ).

Therefore, for any (mĩ,mj̃) ∈Mĩ×Mj̃ , it must be that the resulting alternative y =
g(mĩ,mĩ,m

x
−ĩj̃) is in Gĩj̃(mx

−ĩj̃) and hence in Lĩj̃(x | θ). Ergo, uĩ(g(mĩ,mj̃ ,m
x
−ĩj̃) |

θ)≤ uĩ(g(mx) | θ) and uj̃(g(mĩ,mj̃ ,m
x
−ĩj̃) | θ)≤ uj̃(g(mx) | θ). Thus, mx is a pair-

Nash equilibrium at θ as (̃ij̃) ∈ P is arbitrary.

The following is our second claim:

Claim 2. Suppose thatm∗ ∈M is a pair-Nash equilibrium at θ∈Θ, i.e., for all (ij)∈
P, ui(g(m∗) | θ)≥ ui(g(mi,mj ,m

∗
−ij) | θ) and uj(g(m∗) | θ)≥ uj(g(mi,mj ,m

∗
−ij) |

θ) for all (mi,mj) ∈Mi×Mj. Then, g(m∗) ∈ f(θ).

Proof. In m∗, either one of Rules 1–5 applies.

Case 1. Suppose Rule 1 applies.
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Thus, m∗ is such that m∗i = (θ′,x,k) with x ∈ f(θ′) for all i ∈N . We need to show
that x ∈ f(θ) because g(m∗) = x under Rule 1.

As m∗ ∈M is a pair-Nash equilibrium at θ (by the hypothesis of the claim at hand),
for any (̃ij̃) ∈ P , it must be that for any mĩ,mj̃ ∈Mĩ×Mj̃ the resulting alternative
y = g(mĩ,mj̃ ,m

∗
−ĩj̃

) is in Lĩj̃(x | θ). Moreover, by Rules 1–4, Gĩj̃(m∗−ĩj̃
) = Lĩj̃(x | θ′).

Therefore, we have Lĩj̃(x | θ′) ⊆ Lĩj̃(x | θ). As (̃ij̃) ∈ P is arbitrary, Lĩj̃(x | θ′) ⊆
Lĩj̃(x | θ) for all (̃ij̃) ∈P . This coupled with x ∈ f(θ′) implies (by pair-monotonicity
– (1) of our pair implementability condition presented in Definition 5) x ∈ f(θ).

Case 2. Suppose either one of Rules 2–4 applies.

Then, m∗ is such that mi
∗ = (θ′,x,k) for all i ∈ N \ {̃i, j̃} for some (̃ij̃) ∈ P with

x ∈ f(θ′), and mĩ = (θĩ,x′,kĩ) and mj̃ = (θj̃ ,x′′,kj̃).

Due to Rules 1–4 we have that Gĩj̃(m∗−ĩj̃) = Lĩj̃(x | θ′) with x ∈ f(θ′) and g(m∗) ∈
Gĩj̃(m∗−ĩj̃) as (mĩ,mj̃) = (m∗

ĩ
,m∗

j̃
) is a possibility. That is, x and g(m∗) are both in

Gĩj̃(m∗−ĩj̃). As m∗ is a pair-Nash equilibrium at θ, we have that x ∈ Lĩj̃(g(m∗) | θ)
and x ∈ f(θ′).

Next, any agent i 6= ĩ may deviate from m∗i and can generate an alternative xi by
choosing an appropriate integer due to Rule 5. Thus, Lij(g(m∗) | θ) = X for all i
paired with j and i, j 6= ĩ and i, j 6= j̃ since m∗ is a pair-Nash equilibrium of µ at θ.

Hence, θ ∈ Θ is such that x ∈ Lĩj̃(g(m∗) | θ) for some (̃ij̃) ∈ P and x ∈ f(θ′) while
for all i paired with j and i, j 6= ĩ and i, j 6= j̃ it must be that Lij(g(m∗) | θ) = X.
Ergo, by (2) of our pair-implementability condition (see Definition 5), we conclude
that g(m∗) ∈ f(θ).

Case 3. Suppose Rule 5 applies.

By deviating and making an appropriate integer choice, any one of players i with
(ij) ∈ P can obtain any alternative y ∈X. Therefore, m∗ being a pair-Nash equi-
librium at θ implies Lij(g(m∗) | θ) = X for all (ij) ∈ P . Hence, by (3) of our pair
implementability condition presented in Definition 5, we obtain that g(m∗) ∈ f(θ).

Claims 1 and 2 conclude the proof of the Theorem.
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3. CONCLUDING REMARKS

This thesis explores the question of implementation in the environments in which
agents are grouped as pairs and consider profitable deviations for the benefit of both
agents consisting a pair. In the standard Nash equilbrium concept, a profitable
deviation is a change in the strategy of an agent that will increase his/her own
utility, while the rest of the agents keep their strategies unchanged. In societies,
agents cooperate or interact when they are decision makers and often times they are
grouped as pairs with legal agreements as in business partnerships or with implicit
agreements as in friendships. In such settings, Nash equlibrium concept leaves this
pair accordance out. So we introduce pair-Nash equilibrium to include this group
structure into the analysis of the problem of implementation.

Formal analysis of pair-implementation starts with introducing the pair structure in
a society, where every agent is grouped with one and only one other agent. Although
every agent is only concerned about his/her own utility, in the suitable equilibrium
notion, profitable deviations are defined as the shifts in strategies that are beneficial
for both of the agents in a pair. The utility functions of agents depend on the
characteristics of the agents, their state profiles that affect their preference ordering
on the set of alternatives.

The formalization of pair-implementation follows from the literature on implemen-
tation under complete information. The pioneering analysis of Maskin (1999) shows
that a condition called monotonicity is necessary for Nash implementation and to-
gether with monotonicity, no-veto-power condition is sufficient for Nash implemen-
tation when the society consists of more than three agents.

In this thesis, we introduce a new equilibrium notion, pair-Nash equilibrium that ex-
tends the Nash equilibrium concept in the pair structure. So, we describe pair-Nash
equilibrium as a collection of strategies where any pair of agents can profitably devi-
ate as a pair to increase their utility. Hence, our new implementation concept, pair-
implementation concerns about social choice functions that are implementable in
pair-Nash equilibrium. A social choice rule f is pair-implementable when f -optimal
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outcomes exactly coincide with pair-Nash equilibria, providing full implementation
in pair structure.

The analysis of pair-implementation includes necessity and sufficiency theorems for
pair-implementation. First, we introduce pair-monotonicity condition and prove
as necessity condition that if a social choice rule is pair-implementable, then it
is pair-monotone. In what follows, we describe our sufficiency condition, pair-
implementability condition that is similar to the condition-µ of Moore and Re-
pullo (1990) and prove that pair-implementability condition is sufficient for pair-
implementation, i.e., if a social choice rule satisfies pair-implementability condi-
tion, then it is pair-implementable. Then, we give the pair structure analoguous of
the standard no-veto-power condition, pair-no-veto-power and we show that pair-
implementability condition is a weaker condition than pair-no-veto-power.

Our analysis relates with the previous work done by Maskin (1999) and Moore
and Repullo (1990) by extending their approach to the pair-structure. Although
informational networks are included in the analysis of implementation problem,
network effect in incentives is a rather new concept in this field and our description
of pairs as a graph structure opens a way to analyze larger groups and networks
within the society.
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