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Abstract: In this paper, a new data-driven modeling of a diesel engine soot emission formation
using gated recurrent unit (GRU) networks is proposed. Different from the traditional time series
prediction methods such as nonlinear autoregressive with exogenous input (NARX) approach,
GRU structure does not require the determination of the pure time delay between the inputs
and the output, and the number of regressors does not have to be chosen beforehand. Gates
in a GRU network enable to capture such dependencies on the past input values without any
prior knowledge. As a design of experiment, 30 different points in engine speed - injected fuel
quantity plane are determined and the rest of the input channels, i.e., rail pressure, main start
of injection, equivalence ratio, and intake oxygen concentration are excited with chirp signals in
the intended regions of operation. Experimental results show that the prediction performances
of GRU based soot models are quite satisfactory with 77% training and 57% validation fit
accuracies and normalized root mean square error (NRMSE) values are less than 0.038 and
0.069, respectively. GRU soot models surpass the traditional NARX based soot models in both

steady-state and transient cycles.
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1. INTRODUCTION

Diesel engines are widely preferred due to their high ther-
mal efficiency, endurance, reliability, and low operating
costs, especially for heavy-duty vehicles in the market
(Resitoglu et. al. 2014). However, they emit high exhaust
emissions particularly soot particles which is responsible
for serious environmental and health problems. Regard-
ing this, ever-mounting stringent emission regulations en-
force the engine manufacturers to design innovative en-
gines by introducing after-treatment systems (Hsieh and
Wang, 2011) or in-cylinder combustion control techniques
(Sindhu et. al., 2017) to reduce exhaust emissions to the
environment. Moreover, increase in fuel prices and the
demand for more powerful engines reveal the need for
searching the optimum engine conditions in both steady-
state and transient operations for engine manufacturers.
Therefore, obtaining a sufficiently accurate model of en-
gine combustion process is required to employ it in power-
train development for the optimization of engine compo-
nents, testing and model-based calibration of combustion
and after-treatment control (Bertram et. al., 2014).

Modeling exhaust emissions on both steady-state and tran-
sient operating cycles of diesel engines can significantly
reduce the experimentation time and cost for tuning of the
parameters. Pfeifer et. al. (2003) stated that measurements
need to be taken not only on the after-treatment system

but also on the engine raw emissions in order to meet
the actual and upcoming stringent emission legislation.
In literature, some studies focus on the phenomenologi-
cal nature of the soot formation and present physics or
chemistry-based models. On the other hand, some existing
methods tackle the soot emission modeling problem by
exploiting the potential of empirical data and try to find
a global model or multiple local models which explain the
relation between measured input and output signals.

Tauzia et. al. (2017) presented a semi-physical sub-models
to predict NOx and soot emissions for a compression
ignition (CI) diesel engine. Soot formation is described by
a global equation relates the formation with O2 concentra-
tion, in-cylinder pressure, temperatures, heat release rate
duration and turbulence intensity. Walke et. al. (2016)
proposed sub-models for cylinder pressure, two zone tem-
perature, NOx and soot emissions. In the study, Hiroyasu
model (Hiroyasu and Kadota, 1976) is taken as base soot
model and the model is corrected by experiments. Tanelli
and Maranta (2015) compared three semi-empirical soot
models for internal combustion engine simulations called
Moss, Lindstest-Leung and Wen. They also extended the
representative interactive flamelet combustion model to
predict soot emissions. It should be noted that the phe-
nomenological models include several local physics and
chemistry based relations, therefore generalization perfor-



mances of such models are not promising due to their
complex structures.

Benz et. al. (2010) proposed a nonlinear extended quasi-
static model for raw emissions of heavy-duty and light-
duty diesel engines derived by a symbolic regression algo-
rithm. In order to choose the input signals, they employ
an input variable selection algorithm based on genetic pro-
gramming and artificial neural network (ANN). Prediction
performances of their NOx models are quite satisfactory,
but the soot emission predictions are not quite well due to
relatively high measurement errors. Tschanz et. al. (2010)
presented a novel model for particulate matter (PM) emis-
sions of diesel engines that meets the requirements of being
control oriented, easily identifiable and portable. They
also assumed that the engine-out PM emissions are quasi-
statically influenced by the conditions inside the cylinder
at intake valve close and injection parameters. PM emis-
sions are modeled as relative deviations of stationary base
maps and a polynomial model is employed to estimate
the influence of each input on PM emissions. However,
employing a polynomial approach in such method brings
certain disadvantages such that the number of parameters
for the presented method is relatively high and polynomial
approach has diminished extrapolation ability. Ericson et.
al.  (2005) presented another quasi-stationary modeling
approach for fuel consumption, CO, HC, NOx and PM
emissions. They claimed that transient correction methods
are required to obtain well-performing models, and torque
and speed must be employed as inputs to those correction
models for better generalization. Their approaches are
primarily useful for predicting the emissions and are not
offered to be used for engine control or optimization. In
order to obtain more consistent results and employ that
approach to engine control, the time delay estimation must
be substantially improved.

Sequenz et. al. (2010) presented a global model struc-
ture composed of adaptive local polynomial models. In
order to reduce the number of parameters to be estimated
and the variance error in estimation, a regressor selection
method based on Mallows Cp-statistics (Mallows, 1973)
is described. It is seen that the error between soot mea-
surements and simulated output increases after a constant
level of air-fuel ratio, and so R? performance of the soot
models are not high enough like NOx emissions. Mrosek
et. al., (2010) modeled the simplified combustion process
and the emission formation as a stationary batch process.
Diesel engine emissions are modeled locally at discrete
operations points and these points are defined by engine
speed and the desired injection quantity. Local polynomial
model (LPM) (Sequenz et. al., 2010) structure takes the
measures and the combustion characteristic (MFB50) as
inputs. Raw emission outputs are approximated by poly-
nomials of equal order 3 and considering cross-terms of
two inputs. Performances of NOx emission models were
quite well but the soot models still need to be improved.
Hafner et. al., (2000) compared two neural models for
the stationary soot formation with different input signals.
The first model is based on the engine control settings,
injected fuel, injection angle and engine speed, while in
the second one the characteristics of the measured cylinder
pressure signal are utilized. They employed a special local
linear model tree (LOLIMOT) with radial basis function

(RBF) introduced by Nelles and Isermann (Nelles and
Isermann, 1996). Static soot models with cylinder pressure
characteristics show comparable good performances with
the model based on engine actuator signals. Atkinson and
Mott (2005) proposed a neural network based transient
engine modeling where engine operating parameters such
as engine speed, engine temperature, MAP, manifold air
temperature and the engine control inputs such as fueling
rate, injection timing, injection pressure, VGT setting and
EGR rate are considered as inputs, and emissions such as
NOx, HC, CO, PM, and CO2 are taken as outputs. Their
work covers a very narrow range of operating points and
the PM results are not satisfactory.

In this paper, data-driven modeling of a diesel engine
soot emission formation using gated recurrent unit (GRU)
networks is proposed for the first time. Different from the
traditional time series prediction methods, GRU structure
does not necessitate to determine the pure time delay
between inputs and output, and the number of regressors
does not need to be chosen beforehand. As a design of
experiment, 30 different operating points in engine speed
- injected fuel quantity plane are selected and the rest of
the input channels (rail pressure, main start of injection,
equivalence ratio, and intake oxygen concentration) are
excited with chirp signals in the intended regions of oper-
ation. To reduce the amplitude of sudden spikes and encap-
sulate the nonlinearities between inputs and the output,
soot measurements are logarithmically normalized. Exper-
imental results show that the prediction performances of
GRU based soot models are quite satisfactory and surpass
the traditional NARX based soot models.

Organization of this paper is as follows: Diesel engine
combustion is briefly described in Section 2. Design of
experiment is presented in Section 3. Gated Recurrent
Unit Network structure is explained in Section 4. Experi-
mental results are provided in Section 5. Finally, the paper
is concluded with some remarks and future directions in
Section 6.

2. DIESEL ENGINE

The experimental measurements are performed on Ford
Otosan’s Ecotorq 13L Euro 6 diesel engine. The diesel
engine combustion composes of two fundamental paths
named air and fuel paths. On its air-path, the engine has
high-pressure Exhaust Gas Recirculation (EGR) routing
and swing vane Variable Geometry Turbine (VGT) tur-
bocharger as shown in Fig. 1.

The common pressurized fuel rail, solenoid injectors and
high-pressure fuel pump are components of the fuel sys-
tem. The ambient fresh air which flows through air filter is
measured before entering to the compressor. This air flow
measurement is stated as Mass Air Flow (MAF). After
the compressor, its pressure is increased to a regulated
level, and in order to boost the volumetric efficiency of
the engine, the compressed air flow is forwarded to the
charge air cooler which reduces the flow temperature to
a regulated level. Before the EGR mixing point, the tem-
perature and the pressure of the cooled charger air are
measured. The cooled charger air flow which is mixed
with EGR flow is injected into the combustion chamber
through the pressurized intake manifold. The pressure of



(1) Air Filter,
sensor, (3) Compressor, (4) Turbine, (5) VGT, (6)
Exhaust pipe, (7) Charge air cooler, (8) EGR cooler,

Fig. 1. Experimental setup: (2) MAF

(9) EGR valve, (10) Exhaust manifold, (11) Exhaust
gas measurement system, (12) Pressurized rail, (13)
Injector, (14) TMAP sensor, (15) Fuel tank, (16) High
pressure fuel pump, (17) AVL Dynamometer

the mixed air flow in the intake manifold is named as
Manifold Absolute Pressure (MAP). After the combustion,
through the exhaust manifold the exhaust gases exit the
chamber and certain portion of them are recirculated back
via EGR valve.

Fuel is injected into a pressurized rail. The fuel amount
and the pressure in the rail are measured as Fuel Quantity
(QNT) and Rail Pressure (RailP), respectively. The start-
ing angle of the main fuel injection quantity is defined as
Start of Injection (SOI). Impact angle of the exhaust gases
to turbine blades is regulated by a valve called Variable
Geometry Turbine (VGT) turbochargers. The exhaust gas
expanded in the turbine is sent to the exhaust line and
its soot content is measured by the AVL 483 Micro Soot
Sensor. Micro soot sensor is a photoacoustic system de-
signed for the measurement of black carbon aerosols. It is
a suitable test bench with high sensitivity down to pg/m?
level, and good linearity and reproducibility (Schindler et.
al. 2004).

3. DESIGN OF EXPERIMENT

Design of experiment includes the selection of model
inputs, the determination of the excitation signals and
the selection of the validation test. As aforementioned in
the former section, the signals in both air-path and fuel-
path play an important role in the combustion process
and exhaust emissions. Within this context, engine speed
(SPD), total injected fuel quantity (QNT), main Start
of Injection (miSOI), rail pressure (railP) and intake
oxygen ratio (intO2) are chosen as input channels for
soot emission models. Furthermore, the equivalence ratio
(EQVR) (Ramadhas et. al., 2014), which is the ratio of
actual fuel-air (QNT/MAF) ratio to the theoretical fuel-
air ratio, is also included in the input set.

Exciting the dynamical system with adequate signals plays
a decisive role in the parameter estimation process. In a
model-free design of experiment approaches for dynamic

systems, covering the whole intended input space by using
space filling methods (Santner et. al. 2013) and encapsu-
lating the frequency range of underlying process (Ljung,
1999) are very crucial. Therefore, chirp signals are com-
monly preferred due to their persistent excitation capa-
bilities. In this study, a diesel engine’s intended region of
operation was determined by 30 different points in engine
speed - injected fuel quantity plane, where the engine speed
and the injected fuel quantity are selected in the ranges of
800-2200 rpm and 4-30 mg/stroke, respectively. The rest
of the input channels were excited by chirp signals, which
have a sinusoidal waveform with changing frequencies over

time given by
y(t) = Asin(2m(f(t))) (1)

where the frequency of the chirp signal can be a linear,
quadratic or an exponential function of time. In this work,
a quadratic function is employed to excite the system
sufficiently in both high and low frequencies as follows
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Fig. 2. Design of experiments in SPD-QNT plane

Duration of each experiment was 5 minutes and the signals
were collected in 10 Hz. 10 of 30 operation points were
chosen for validation purposes in two different ways (Fig.
2). In Case 1, the validation points were randomly selected.
In Case 2, the validation points were selected from the
boundary of the intended region of operations.
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Fig. 3. Input channels excited by chirp signals

For reasons of confidentiality, input channels that were
excited by chirp signals are presented as percentages in
Fig. 3.



In order to reduce sensitivity to sudden spikes in soot
measurements, i.e. increasing numerical stability of the
obtained models, logarithmic normalization was applied
to soot measurements as follows

log(x) x>1
lognorm(z) =< 0 lz] <1 (3)
—log(—z) =< -1

It should be noted that all input signals and logarithmi-
cally normalized soot measurements were scaled to a range
between 0 and 1 to increase numerical stability.

4. GATED RECURRENT UNIT NETWORKS

In order to capture long-term dependencies without the
need of delay information for time series problems, Long-
short Term Memory (LSTM) networks were first intro-
duced by Hochreiter and Schmidhuber (1997). Recent
developments in CPU and GPU technologies enabled to
train such complex structures with high dimensional data.
Cho et. al. (2014) recently proposed gated recurrent unit
networks as the simpler version of LSTMs.

A typical GRU neural network includes an input layer, a
recurrent hidden layer, and an output layer. Different from
classical neural networks, GRU networks have memory
capabilities with two gates called: reset gate and update
gate (Fig. 4). These gates are independent neural networks
with the same dimension and sigmoid activation functions.
The input to these gates is the concatenation of system
measurements and the memory content of previous GRU
cell (h<'=1>). Reset gate adjusts the information to dis-
card from the cell and update gate determines the values
from the input to update the current memory content
(h<t>). A typical GRU network can be implemented by
the following equations

L<t> O’(Wu[h<t71>,l‘<t>] 4 bu) (4)

F<t> U(Wr[h<t71>,x<t>] 4 br) (5)

B = tanh (Woa ™ + (1< s Wph<'=12) b, ) (6)
L<t> — <Z<t> N h<t—1>) n ((1 _ <t ;L<t>> (7)

y<t> = O'(Wyh<t> —l—by) (8)

where W, W,., W, Wy, W, are the weight matrices and
bu, by, by, by are the bias vectors of corresponding opera-
tions. o(.) denotes the sigmoid activation function which
can be computed as follows

1

o(x) = =

9)

where a is a positive parameter to be estimated as well.
(x) is the element-wise multiplication. <!> and y<'>
denote the input vector and output prediction at time ¢,
respectively. In this study, the GRU network is employed
in a regression problem, therefore the GRU cell is followed

<t>

i > p<t>

x<t>

p<t-1>

Fig. 4. Gated Recurrent Unit Network structure

by a fully connected regression layer in the output layer
(8). Generally, the activation function of regression layers
in neural network structures is a linear function. However,
in this study, a sigmoid activation function is utilized
in the output layer which results in smoother signals.
All the parameters used in (4) - (9) are estimated by a
stochastic optimizer called adaptive moment estimation
(Adam) (Kingma and Ba, 2014).

5. EXPERIMENTAL RESULTS

Diesel engine combustion process results in various ex-
haust emissions including NOx and soot. Several studies
exist regarding exhaust emissions modeling particularly
NOx emissions by utilizing Nonlinear Autoregressive with
Exogenous Input (NARX) network structure (Boz et. al,
2015, Alcan et. al., 2018, Alcan et. al. 2019). In order
to compare the prediction performances of the proposed
GRU soot modeling approach, NARX network based soot
modeling is also performed.

The NARX structure has several hyperparameters includ-
ing the number of output regressors, the number of input
regressors (nb) and the amount of delays between inputs
and output. Since the proposed GRU modeling structure
does not include feedback from the estimated output and
captures the relations between time delayed input signals
automatically, the number of output regressors in NARX
models is set to zero and the number of input regressors
is selected in the range of 2 to 5. Moreover, the amount of
delay between inputs and output is decided as 3.5 seconds
by considering the physical conditions of the experimental
setup. Levenberg-Marquardt optimizer is employed in the
parameter estimation process of NARX models.

The performances of obtained models are assessed by
the fit metric and normalized root mean square error
(NRMSE) given by

o (1 lly =4l
Fit = (1 o=l QH) % 100 (10)
NRMSE = ! i i = 1) (11)
(maz(y) — min(y)) N

Training and validation performances of some representa-
tive models obtained by NARX and GRU structures are
tabulated in Table 1 and Table 2.

Although the NARX soot models are trained at most
59% and the models are validated with at most 47%
fit accuracy, training performances of GRU models are



Table 1. Performances of NARX models

. Training Validation
Case | nb | Unit | o= QRVSE [ Fit (%) | NRMSE
1 5 10 46.89 0.0888 38.95 0.1017
1 3 15 49.70 0.0841 47.59 0.0873
1 2 20 48.87 0.0855 45.30 0.0911
1 5 25 55.45 0.0745 44.83 0.0919
1 5 30 54.48 0.0761 40.40 0.0992
1 2 50 52.79 0.0789 41.00 0.0982
2 5 10 46.60 0.0862 38.69 0.1088
2 3 15 45.46 0.0881 43.94 0.0995
2 5 20 51.99 0.0775 40.46 0.1057
2 5 25 54.75 0.0731 40.83 0.1050
2 5 30 55.07 0.0726 43.03 0.1011
2 3 50 59.48 0.0654 40.93 0.1049
Table 2. Performances of GRU models
. Training Validation
Case | Unit o NRMSE | Fit (%) | NRMSE
1 10 76.19 0.0391 53.28 0.0802
1 15 TT.A7 0.0373 57.37 0.0686
1 20 68.53 0.0517 54.86 0.0739
1 25 63.95 0.0586 50.37 0.0773
1 30 74.74 0.0419 53.72 0.0718
1 50 73.03 0.0434 53.59 0.0725
2 10 59.72 0.0611 47.75 0.0877
2 15 76.99 0.0368 52.53 0.0807
2 20 49.23 0.0885 42.97 0.1070
2 25 75.67 0.0379 49.06 0.0854
2 30 54.17 0.0707 47.08 0.0929
2 50 57.42 0.0726 45.58 0.1086

able to reach up to 77%, corresponding validation perfor-
mances exceeds 55%. Furthermore, training and validation
NRMSE values are around 0.037 and 0.069 in the selected
GRU model, however, NRMSE values are always above
0.65 for training and validation of NARX models. The best
results of GRU structure for both cases are achieved when
the number of units is selected as 15.

Time plots of NARX and GRU models with 15 units are
depicted in Fig. 5, 6, 7 and 8. Since the number of input
regressors and the pure time delay between inputs and
output are pre-defined and can not be adjusted during pa-
rameter estimation in a NARX structure, the predictions
of NARX models are highly oscillatory and their accuracies
are not good at steady-state operating points compared to
transient sections. Furthermore, it is not easy to determine
the model parameters that result in a smooth response by
fixing these values, particularly in soot emissions modeling.
However, the predictions of GRU models are smoother
thanks to the gated structure which enables the model
to adjust the effects of former input signals adaptively
with update and reset gates. Moreover, the prediction
accuracies of GRU models are better on both steady-state
and transient sections of test cycles. In Fig. 7, it is seen
that the prediction performance of GRU model in the first
10 minutes is inadequate because the engine works in its
idle state with speed less than or equal to 1000 rpm, and
soot emission dynamics differ in this speed range. In order
to increase the prediction performances, separate models
for different ranges of engine speed can be trained.

It should be noted that this work explores the possibility of
employing a GRU network in soot emissions modeling for
an extensive range of engine speeds. We do not claim any
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Fig. 5. Training performances of the models (Case 1)
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optimality regarding structure of the GRU network used
in this work. Therefore obtained results are not optimal in
any sense, however they are satisfactory when compared
to the existing results in the literature.

6. CONCLUSION

We have now presented gated recurrent unit (GRU) net-
works to estimate soot emissions in diesel engines. Due
to having both reset and update gates in GRU networks,
dynamical relations between past inputs and the output
are automatically captured. Thanks to this important
memory capability, GRU structure does not require the



determination of the pure time delay and the number of
regressors beforehand.

Prediction performances of GRU based soot models are
quite satisfactory with 77% training and 57% validation
fit accuracies and NRMSE values are less than 0.038
and 0.069, respectively. GRU soot models surpass the
traditional NARX based models in both steady-state and
transient test cycles. Utilization of a logarithmic normal-
ization on soot measurements in the parameter estimation
process reduces model sensitivity to sudden variations in
soot measurements and increases the modeling accuracies.

As a future work, prediction errors in steady-state regions
of the test cycles will be investigated and the obtained
models will be validated with different cycles such as the
New European Driving Cycle (NEDC) and the Worldwide
Light-duty Test Cycle (WLTC).
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