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Abstract A bi-criteria version of the curriculum-based university timetabling
problem of ITC-2007 is solved using a multi-objective simulated annealing
(MOSA) algorithm that identifies an approximation to the optimal Pareto
front. The two criteria are the penalty function as defined in ITC-2007 and
a robustness function. The robustness function assumes one disruption occurs
in the form of a period of an event (lecture) becoming infeasible for that
event. The parameters of the MOSA algorithm are set using the Iterated F-
Race algorithm and then its performance is tested against a hybrid MOGA
algorithm developed by the authors. The results show that MOSA provides
better approximation fronts than the hybrid MOGA.

Keywords University course timetabling · Robustness · Bi-criteria optimiza-
tion · Multi-objective simulated annealing

1 Introduction

For the curriculum-based university course timetabling problem defined in
ITC-2007 (see [6]), we assume that a disruption can occur in the form of a
period to which an event of a course has been assigned, ceasing to be feasible
for that event. If such a disruption occurs, the timetable has to be updated,
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in essence re-optimized, while ensuring that the changes to the rest of the
timetable are limited. Hence, a timetable is said to be robust if, when disrupted,
its feasibility can be restored without significantly lowering its quality in terms
of the objective function while keeping it relatively stable. We formulate the
problem of identifying a robust timetable as a bi-criteria optimization problem
where one objective is the quality of the solution measured as a function of
the violated soft constraints, that is the penalty function denoted by P , and
the second one is a function that measures the robustness of the timetable,
denoted by R. The problem is formulated as one of finding an approximation
to the optimal Pareto front defined by P and R.

This problem was first defined in [1] and solved using a hybrid Multi-
objective Genetic Algorithm (MOGA), which makes use of Hill Climbing and
Simulated Annealing algorithms in addition to the standard Genetic Algorithm
approach. Here we propose a Multi-objective Simulated Annealing (MOSA)
algorithm that outperforms the hybrid MOGA on the ITC-2007 data set.

2 The robustness measure

Calculation of the robustness measure R requires finding, for each lecture
E, the move that yields the minimum incremental penalty r(E) to restore
feasibility if that lecture is disrupted. We assume there are three type of moves
allowed for this re-optimization problem, and the move that yields r(E) is the
minimum cost one among all the feasible moves of these types: (1) moving
only the disrupted lecture to an empty room in a feasible time slot (called the
simple move), (2) swapping the disrupted lecture with another lecture (called
the swap move) and (3) the Kempe chain move of [4] which enables a lecture
to be moved more flexibly to a new time slot.

When a swap or a Kempe chain move is made, in addition to the change
in the penalty costs of the moved lectures, a fixed cost is added. This fixed
cost is calculated as the average per lecture penalty, Pave, in a set of 1200
randomly generated feasible solutions for the given instance, denoted by S.
These solutions are the same solutions generated in the initial populations
(each of size 40) of 30 runs of the multi-objective Genetic Algorithm (MOGA)
of [1]. Thus, Pave = 1

|S||E|
∑
S∈S P (S), where E is the set of lectures.

The robustness of solution S is calculated as R(S) = 1
|E|
∑
E∈E r

+(E),

where r+(E) = max(r(E), 0). The search for r+(E) stops if a move with
r+(E) = 0 is found, or all feasible moves for that lecture have been evaluated.
As the current robustness measure is computationally expensive, we employed
a heuristic measure to estimate the robustness of a given solution. The heuristic
robustness measure takes a small subset of lectures into account, by taking
a fixed fraction of lectures, denoted by PercentLec, from each curriculum in
increasing order of their saturation degrees ([5]). Saturation degree of a lecture
is the number of valid periods, in terms of satisfying the hard constraints, in
the timetable. This subset is formed for each instance only once before the
start of the algorithm, and it remains the same throughout the running of the
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algorithm. This ensures that each curriculum is represented in the sample and
for each curriculum, the most difficult events in terms of time availabilities are
selected. This approach, rather than randomly selecting events, gave strongly
positively correlated robustness results with the real robustness measure where
all lectures have been evaluated.

3 The Multi-objective Simulated Annealing (MOSA) Algorithm

We designed a two-phase MOSA, where, in the first phase, the algorithm
works as a SA algorithm for minimizing the penalty function P , and then in
the second phase it works as a MOSA to find the best approximation front for
the objectives P and R.

In both of these phases we use a real time initial temperature selection
strategy that employs a short “burn-in” period in which worsening moves
are accepted with a predefined probability. The total number of iterations is
determined so that the algorithm takes twice the competition time limit (as
we try to solve a two-objective problem). Furthermore, in order to not to
violate the time constraints of the timetabling competition, we restricted the
time spent on Stage 1 to be at most equal to the competition time limit (the
(Phase 1 CPU Sec)/(Total CPU Sec) parameter in Table 1). To control how
much effort the MOSA algorithm spends on improving R versus P , we limited
the local moves from a given solution to have P values that are at most a
certain multiple of the best penalty found in phase 1 (the Max (P/Phase 1 P ∗)
parameter in Table 1).

The main difference between a MOSA algorithm and a single-objective SA
algorithm is in the design of the acceptance rule and the maintenance of an
archive of solutions that yield the front (for a survey of MOSA and SA algo-
rithms see [11]). Let zk(X), for k ∈ {1, 2}, be the value of the kth objective
for solution X. To decide whether a move from solution X to X ′ is accepted,
let ∆Z = (∆zk, k ∈ {1, 2}) with ∆zk = zk(X

′
) − zk(X). Then, assuming all

criteria are to be minimized, if ∆zk ≤ 0 ∀k, X
′

is always accepted. Other-
wise, probabilistic acceptance rules can be used. We experimented with three
types of rules. Probability scalarizing rules first calculate the acceptance
probability of the move from X to X ′ for each objective individually, then a
decision rule is applied in order to aggregate these probabilities, giving a rel-
ative weight λk to each objective k. The acceptance probability with respect
to the kth objective, πk, is computed as shown in Equation 1.

πk =

{
exp
(
−∆zkT

)
, if ∆zk > 0

1, if ∆zk ≤ 0
(1)

In the criterion scalarization rules, multiple objective values are combined
in order to create a single value using a weight vector, λk, for each criterion k.
The most widely used scalarizing approach is the weighted sum method which
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is shown in Equation 2, where S(∆Z) represents the scalarized objective func-
tion value. The acceptance probability is then computed as shown in Equation
3 (see [8]).

S(∆Z) = λ∆z1 + (1− λ)∆z2, where 0 < λ < 1. (2)

p =

{
exp

(
−S(∆Z)

T

)
, if S(∆Z) > 0

1, if S(∆Z) ≤ 0
(3)

In the Pareto Domination based approaches the acceptance probability of a
given solution is computed by comparing it with the set of potentially Pareto-
optimal feasible solutions. Based on these three types of rules we tested eight
acceptance rules:

1. PSmin: For the probability scalarizing with minimum rule, the aggregate
acceptance probability, p, is computed as p = mink=1,..,K(πk)λk .

2. PSmax: For the probability scalarizing with maximum rule the aggregate
acceptance probability, p, is computed as p = maxk=1,..,K(πk)λk .

3. PSprod:For the probability scalarizing with product rule the aggregate
acceptance probability, p, is computed p =

∏K
k=1(πk)λk .

4. CSλ=0.5: The criterion scalarizing approach with λ = 0.5.
5. CSλ=0.7: The criterion scalarizing approach with λ = 0.7.
6. CSλ=0.3: The criterion scalarizing approach with λ = 0.3.
7. Suman([10]): Let |F (X)| be equal the number of solutions in the po-

tentially Pareto-optimal solutions dominating solution X plus 1. Then,
∆S = |F (X)| − |F (X

′
)| and the aggregate acceptance probability, p, is

computed as p = min{1, exp (−∆ST )}.
8. Smith ([9]): Letting F̃ denote the union of the current potentially Pareto

optimal set F , the current solution X and the new solution X ′, modifies

the Suman rule by setting ∆S = 1/|F̃ |
(
|F (X)| − |F (X

′
)|
)

.

We used an Iterated F-Race experiment (see [3]) to identify the best-
performing settings of the design parameters given in Table 1. Eight parame-
ters, each having 3, 3, 3, 4, 8, 3, 2 and 4 levels, respectively, yields a total of
20736 configurations. Clearly, a full factorial experiment would not be viable.
By using Iterated F-Race we were able to set the total computational bud-
get, B, to just 440 runs. This resulted in the number of configurations to be
tested to be 13, 11, 10, 9, 8 and the numbers of instances used to test these
configurations to be 7, 8, 9, 10, 11, for iterations 1 through 6, respectively.

To rank the configurations, the racing algorithm requires the cost function
to be a scalar number, which is referred to as utility in [7]. Since we are
dealing with a multi-objective problem, the utility function should be able
to quantify the quality of a Pareto front. We defined the utility function as
weighted sum of generational distance, spread, spacing and minimum distance
to the minimum-penalty point. The first three metrics are also used to evaluate
the overall performance of our MOSA algorithm; their exact definitions are
given in [1]. All these metrics are defined so that they take values in [0, 1],
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Table 1 Parameter settings in the Iterated F-Race experiment

Parameter Settings

Phase 1 CPU Sec

Total CPU Sec
(1) 0.3 (2) 0.4 (3) 0.5

Phase 1 T0 Prob. (1) 0.5 (2) 0.7 (3) 0.9

Phase 2 T0 Prob. (1) 0.3 (2) 0.5 (3) 0.7

Max
P

Phase 1 P ∗ (1) 1 (2) 1.5 (3) 2 (4) 2.5

Acceptance rule (1) PSmin (2) PSmax (3) PSprod (4) CSλ=0.5

(5) CSλ=0.7 (6) CSλ=0.3 (7) Suman (8) Smith

PercentLec (1) 10 (2) 20 (3) 30

Kempe move (1) yes (2) no

Phase 2 cooling rate (1) 0.99 (2) 0.95 (3) 0.9 (4) 0.85

and all the metrics except spread decrease with improving solution quality.
The fourth one, Minimum distance to minimum-penalty point, is included to
provide bias towards solutions with smaller P values, since ultimately we seek
robust solutions with small P values assuming a decision maker would be
willing to choose a solution with better robustness only if that that solutions
does not have an excessively inferior penalty value. Then, the utility of each
front i obtained by parameter configuration t, U ti , is computed by as 0.5 ∗
Dmin−p(F ti ) + 0.25 ∗GD(F ti ) + 0.15 ∗ (1−S(F ti )) + 0.1 ∗Sp(F ti ) (these are the
same weights used in [1]).

MOSA parameter settings corresponding to the F-Race winning config-
uration are, Phase 1 CPU Sec/Total CPU Sec = 0.4; Phase 1 T0 Prob. =
0.7; Phase 2 T0 Prob. = 0.7; MaxP/Phase 1 P ∗ = 2.5; Acceptance rule =
8; PercentLec = 30; Kempe move = yes, and Phase 2 cooling rate = 0.95. In
addition to these parameters, two parameters were fixed as a design decision.
First, we used one constructive heuristic to create an initial feasible solution.
Second, for the first phase of the MOSA, we set the cooling rate cr to 0.99,
because [2] determined that for these competition instances setting a specific
value for the cooling rate, at least within the investigated intervals, was essen-
tially irrelevant to the performance, and they fixed the cooling rate to 0.99 in
their experiments.

4 Results

The performance of MOSA is tested on the dataset for the CB-CTP track
of ITC-2007 ([6]), which is comprised of 21 instances. Table 2 presents some
statistics on the P and R values obtained in the 30 runs done using MOGA
and MOSA for each instance. Excluding the trivial instance 11, among the re-
maining 20 instances, MOSA improved both P ∗ and min(P ∗i ) for 19 instances.
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MOGA yielded a better P ∗ only for instances 1 and 18, and yielded a better
min(P ∗i ) only for instance 18. Furthermore, these penalty performances are
competitive with respect to the best known penalty values in the literature.
On the other hand, K statistics show that the fronts obtained by MOGA span
an extremely wide range of P values, whereas those of MOSA are concentrated
close to the P ∗ of the front. We believe one can argue that a decision maker
would not be willing to deteriorate the penalty of a solution so excessively in
order to improve robustness, thus in the remaining comparative analysis of the
results we decided to focus on the Pareto fronts within a window of P values
defined by the range [P best, 5× P best], where P best equals to the minimum of
P ∗ found by MOSA and P ∗ found by MOGA, for each instance.

Table 2 Some P and R statistics on the fronts

MOGA MOSA

P ∗ R∗ min(P ∗
i ) K P ∗ R∗ min(P ∗

i ) K

1 5.00 0.05 5 480.8 5.50 1.51 5 13.2
2 79.37 0.66 63 68.1 73.43 1.38 55 4.1
3 100.24 0.22 84 54.5 93.83 0.68 76 3.8
4 47.77 0.06 42 95.1 45.43 0.73 41 4.7
5 377.44 1.72 333 22.1 349.23 2.69 316 2.8
6 74.60 0.32 66 71.1 68.67 1.67 53 4.0
7 45.74 0.32 33 109.8 37.5 1.86 26 5.0
8 55.47 0.08 47 72.1 50.80 0.75 40 4.2
9 118.90 0.09 109 38.3 114.2 0.53 105 3.3
10 38.90 0.22 29 116.7 35.50 1.27 25 5.9
11 0 0 0 - 0 0 0 -
12 370.10 0.73 346 11.57 357.77 1.52 339 2.7
13 88.40 0.04 80 71.1 82.87 0.84 73 3.6
14 67.64 0.12 58 56.9 66.90 0.86 57 3.8
15 100.3 0.21 89 56.6 94.80 0.68 82 3.8
16 59.07 0.26 49 71.9 56.03 1.14 37 4.2
17 97.90 0.21 88 51.4 91.37 1.02 80 3.6
18 90.07 0.01 78 22.4 94.17 0.49 80 3.4
19 80.44 0.29 72 55.4 78.30 0.83 68 3.5
20 65.87 0.34 55 111.7 60.30 2.79 42 4.3
21 130.54 0.23 116 38.4 119.2 0.68 105 3.4

Note: Ki = P+
i /P ∗

i , where P+
i and P ∗

i are the maximum and minimum

penalty found in the ith run

Table 3 provides statistics on the average values of several metrics for the
fronts found in this window of P values (the averages of the 30 runs for each
instance), where all metrics except for NBε are calculated using normalized P
and R values. C denotes the average number of solutions in the fronts obtained
in 30 runs for each instance. The average number of unique objective vectors in
the fronts is denoted by V . S ∈ (0, 1] denotes the average spread of the fronts,
such that spread equals 1 if a front includes both of the extreme solutions in the
aggregate front A∗. A∗ is constructed using all 30 fronts found by MOSA and
all 30 fronts found MOGA, for each instance. Thus, for each instance A∗ is the
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best Pareto front known. Sp ∈ [0, 1] denotes the average spacing value of the
final fronts. The more the solutions are uniformly spaced in a given front, the
smaller the spacing metric becomes. NBε uses the better relationship based
on the binary ε-indicator (see [12]). For the MOSA statistics, for each front,
Fi, found by the ith run of MOSA, the number of times Fi is better than
the fronts obtained by MOGA, NBε,i, is calculated (that is, each such Fi
is compared with 30 fronts). This is repeated for the 30 runs of MOSA for
that instance, yielding 30 NBε,i measurements and their average is denoted
by NBε. GD is the average of the generational distances between each front
and A∗, thus the smaller GD is, the better the front is. Clearly, the larger
NBε values are associated with better performance. Finally, HV denotes the
average hypervolume, so that larger values represent better fronts. The results
in Table 3 show that for only the spacing metric the two algorithms yield a
similar performance and for all other metrics MOSA is significantly better. We
performed one-sided Wilcoxon signed rank test for each performance metric, in
which the null hypothesis is MOGA yields a better performance than MOSA.
For all but the spacing metric, this null hypothesis is rejected, verifying that
MOSA is better than MOGA. We are currently working on a version of this
algorithm that can handle multiple disruptions of the same type and hope to
present at least some preliminary results for that in the conference as well.

Table 3 Performance comparison for solutions with P in [P best, 5×P best] for all instances
except the 11th

MOGA MOSA
Min Ave Med Max Min Ave Med Max p-value

C 2.54 7.59 5.54 18.80 16.74 25.24 25.49 36.77 9.70e-6

V 2.47 7.52 5.39 18.70 10.27 23.38 23.74 35.34 9.70e-6

S 0.16 0.52 0.53 0.85 0.60 0.74 0.74 0.81 0.0004

Sp 0.06 0.10 0.10 0.16 0.07 0.11 0.10 0.20 0.895

NBε 0.00 0.04 0.00 0.20 0.57 4.10 3.55 10.99 9.70e-6

GD 0.06 0.09 0.09 0.13 0.01 0.03 0.02 0.05 9.36e-6

HV 0.04 0.13 0.12 0.27 0.08 0.22 0.22 0.44 9.59e-6
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