
Synchronizing Heuristics For Weakly Connected 
Automata with Various Topologies 

 

Berk Cirisci, Barış Sevilmiş, Emre Yasin Sivri, Poyraz Kıvanç Karaçam, 
Kamer Kaya and Hüsnü Yenigün 

Computer Science and Engineering, Faculty of Engineering and Natural Sciences, Sabanci 
University, Istanbul, Turkey 

{berkcirisci, barissevilmis, emreyasinsivri, karacam, kaya, yenigun}@sabanciuniv.edu 

Keywords: Finite State Automata, Synchronizing Sequences, Strongly Connected 
Component.  

Abstract: The problem of finding a synchronizing sequence for an automaton is an 
interesting problem studied widely in the literature. Finding a shortest 
synchronizing sequence is an NP-Hard problem. Therefore, there are heuristics 
to find short synchronizing sequences. Some heuristics work fast but produce 
long synchronizing sequences, whereas some heuristics work slow but produce 
relatively shorter synchronizing sequences. In this paper, we propose a method 
for using these heuristics by considering the strongly connectedness of 
automata. Applying the proposed approach of using these heuristics make the 
heuristics work faster than their original versions, without sacrificing the quality 
of the synchronizing sequences. 

1 Introduction 
 
A synchronizing sequence w for an automaton A is a sequence of inputs such that 
without knowing the current state of A, when w is applied to A, A reaches to a 
particular final state, regardless of its initial state. If an automaton A has a 
synchronizing sequence, A is called as synchronizing automaton.  

Synchronizing automata and synchronizing sequences have various applications. 
One example area of application is the model-based testing, in particular Finite State 
Machine (FSM) based testing. When the abstract behavior of an interactive system is 
modeled by using an FSM, there are various methods to derive test sequences with 
high fault coverage [2, 4, 7]. These methods construct a test sequence to be applied 
when the implementation under test is at a certain state. Therefore, it is required to 
bring the implementation under test to this particular state, regardless of the initial 
state of the implementation, which can be accomplished by using a synchronizing 



 

sequence. Even when the implementation has a reset input for this purpose, there are 
cases where using a synchronizing sequence is preferred [5]. For more examples of 
application areas of synchronizing sequences and for an overview of the theoretical 
results related to synchronizing sequences please see [11]. 

For practical purposes, e.g. the use of a synchronizing sequence in model-based 
testing, one is interested in finding synchronizing sequences as short as possible. 
However, finding a shortest synchronizing sequence is known to be a NP-hard 
problem [3]. Therefore, heuristic algorithms, known as synchronizing heuristics, are 
used to find short synchronizing sequences. Among such heuristics are Greedy [3], 
Cycle [10], SynchroP [8], and SynchroPL [6]. In this paper, we consider using the 
structure of an automaton while applying a synchronizing heuristic to speed up the 
execution of these heuristics. Namely, we consider the connectedness of automata. 

An automaton is called strongly connected if every state is reachable from every 
other state by traversing the edges (only in the direction they point). An automaton is 
called weakly connected if one can reach any state starting from any other state by 
traversing the edges in some direction (i.e., not necessarily in the direction they 
point). To be synchronizing, an automaton needs to be at least weakly connected. 
When an automaton A is not strongly connected, it can be represented as a union of 
strongly connected automata. These automata are called as strongly connected 
components (SCCs) of A. In [1], given a weakly connected automaton A, a method is 
suggested to build a synchronizing sequence for A by using the synchronizing 
sequences of the SCCs of A. We will call the method suggested by [1] as the SCC 
method.  

In [1], the SCC method has been experimented on randomly generated automata. 
Both Greedy and SynchroP algorithms have been applied to the strongly connected 
components of the automaton. The SCC method has proven itself by improving 
running time greatly in both algorithms. In [1], our aim was to find if taking the SCCs 
into account yields a better, faster heuristic, however we lacked variety in graph 
generation. 

In this work, we focus on the performance of the SCC method further. We 
carefully construct our experimental testbed and connected the SCCs in various ways 
to generate different topologies. To have a control on the overall topology, we first 
assume a DAG of SCCs that can be either; 1) Linear, 2) All-To-One, 3) Tree, 4) 
Complete, 5) Random. Each vertex in the DAG corresponds to a single SCC of the 
automata. These DAG structures are described in more detail later in the text. While 
we connect the SCCs, we respect the chosen DAG and do not allow any other 
connections between SCCs. Our main interest is on the possible improvements on the 
sequence length and running time on the above-mentioned DAG types. To analyze the 
method’s performance further, we also experiment on the ratio of the number of the 
edges connecting SCC’s.  

The rest of the paper is organized as follows. In Section 2, we introduce the 
notation and briefly give the required background. In Section 3, we introduce our 
approach. In Section 4, we talk about the synchronizing heuristics that we have 
worked on and their integration to our approach. In Section 5, we compare the 
proposed approach with the traditional one that performs synchronization heuristics 
on full automata. In Section 6, we conclude the paper and provide some future 
directions for our work. 
 



 

2 Background and Notation 
 
A (deterministic) automaton is defined by a tuple A = (S, Σ, D, δ) where S is a finite 
set of n states, Σ is a finite alphabet consisting of p input letters (or simply letters). D 
⊆ S × Σ is the called the domain and δ: D → S is a transition function. When D = S × 
Σ, then A is called complete, otherwise A is called partial. Below, we consider only 
complete automata, unless otherwise stated. 

An element of the set Σ* is called an input sequence or simply a sequence. For a 
sequence w ∈ Σ*, we use |w| to denote the length of w, and ε is the empty sequence of 
length 0. For a complete automaton, we extend the transition function δ to a set of 
states and to a sequence in the usual way. For a state s ∈ S, we have δ(s, ε) = s, and 
for a sequence w ∈ Σ* and a letter x ∈ Σ, we have δ(s, xw) = δ(δ(s, x), w). For a set of 
states C ⊆ S, we have δ(C, w) = {δ(s, w) | s ∈ C}. 

For a set of states C ⊆ S, let C2 = {{s, s'} | s, s' ∈ C} be the set of all multisets with 
cardinality 2 with elements from C, i.e. C2 is the set of all subsets of C with 
cardinality 2, where repetition is allowed. An element {s, s'} ∈ C2 is called a pair. 
Furthermore, it is called a singleton pair (or an s–pair, or simply a singleton) if s = s', 
otherwise it is called a different pair (or a d–pair). The set of s–pairs and d–pairs in 
C2 are denoted by C2

s and C2
d respectively. A sequence w is said to be a merging 

sequence for a pair {s, s'} ∈ S2 if δ({s, s'},w) is singleton. For an s-pair {s, s}, every 
sequence (including ε) is a merging sequence. For a given automaton A= (S, Σ, S×Σ, 
δ) and a subset of states S' ⊆ S, a sequence w is called an S'-synchronizing sequence 
for A if δ(S', w) is singleton. When S' = S, w is simply called a synchronizing sequence 
for A. An automaton A is called S'-synchronizing if there exists an S'-synchronizing 
sequence for A. An automaton A is called synchronizing if there exists a 
synchronizing sequence for A. 

In this paper, we only consider synchronizing automata. As shown by Eppstein 
[3], deciding if an automaton is synchronizing can be performed in time O(pn2) by 
checking if there exists a merging sequence for {s, s'}, for all {s, s'} ∈ S2. 

We use δ−1(s, x) to denote the set of those states with a transition to state s with 
letter x. Formally, δ−1(s, x) = {s' ∈ S | δ(s', x) = s}. For pairs, we also define δ−1({s, s'}, 
x) = {{p, p'} | p ∈ δ−1(s, x) ∧ p' ∈ δ−1(s', x)}.  

An automaton A = (S, Σ, S×Σ, δ) is said to be strongly connected if for every pair 
of states s, s' ∈ S, there exists a sequence w ∈ Σ* such that δ(s, w)= s'. Given an 
automaton A = (S, Σ, S×Σ, δ) and another automaton B = (S', Σ, D, δ́), B is said to be a 
sub-automaton of A if (i) S' ⊆ S, (ii) D = {(s, x) ∈ S' ×Σ | Ǝs' ∈ S' s.t. δ(s, x) = s'́}, and 
(iii) ∀(s, x) ∈ D, δ́(s, x) = δ(s, x). Intuitively, the states of B consist of a subset of 
states of A. Every transition in A from a B state to a B state is preserved, and all the 
other transitions are deleted.  

A strongly connected component (SCC) of a given automaton A = (S, Σ, S×Σ, δ), is 
a sub-automaton B = (S ́, Σ, D, δ́) of A such that, B is strongly connected, and there 
does not exist another strongly connected sub-automaton C of A, where B is a sub-
automaton of C. When one considers an automaton A as a directed graph (by 
representing the states of A as the nodes, and the transition between the states as the 
edges of the graph), B simply corresponds to a SCC of the directed graph of A. 



 

For a set of SCCs {A1, A2, …, Ak}, where Ai = (Si, Σ, Di, δi), 1 ≤ i ≤ k, we have Si ∩ 
Sj = ∅ when i ≠ j, and S1 ∪ S2 ∪ … ∪ Sk = S. Please note here that k = 1 if and only if 
A is strongly connected. In Figure 1, a weakly connected automaton and its SCCs are 
given. 

 
Figure 1: An automaton with 10 states, 2 inputs and 3 SCCs. (Source: [1]) 

An SCC Ai = (Si, Σ, Di, δi) is called a sink component if Di = Si×Σ. In other words, 
for a sink component, all the transitions of the states in Si in A are preserved in Ai. 
Therefore, if Ai= (Si, Σ, Di, δi) is not a sink component, then some transitions of some 
states will be missing. For this reason, Ai is a complete automaton if and only if Ai is a 
sink component. For the automaton given in Figure 1, SCC3 is the only sink 
component. 

Given a partial automaton, we consider the completion of this automaton by 
introducing a new state and adding the missing transitions of states to this new state. 
Formally for a partial automaton A = (S, Σ, D, δ) such that D ⊂ S×Σ, we define the 
completion of A as A' = (S ∪{*}, Σ,  S×Σ, δ'), where (i) the star state * is a new state 
which does not exist in S, (ii) ∀ (s, x) ∈ D, δ'(s, x) = δ(s, x), (iii) ∀ (s, x) ∉ D, δ'(s, x) = 
*,  (iv) ∀ x ∈ Σ, δ'(*, x) = *. Any SCC that is not a sink component will be a partial 
automaton. In Figure 2, the completion of the SCC1 of the automaton of Figure 1 is 
given.   

 

 
Figure 2: SCC1(A1) with additional star state. * is the synchronizing state. (Source: [1]) 



 

3 Sequences for Weakly Connected Automata 
 
To keep the paper self-contained, we explain the SCC method given in [1]. Consider 
an automaton A = (S, Σ, S×Σ, δ) and its SCC decomposition {A1, A2, …, Ak}. 
Lemma 1: A is synchronizing iff there exists only one sink component in Ai in {A1, 
A2, …, Ak} and Ai is synchronizing. 
Proof: If there are multiple sink components Ai and Aj, a state si and Ai and a state sj in 
Aj cannot be merged, hence A is not synchronizing. If Ai is the only sink component of 
A and Ai is not synchronizing, A is not synchronizing as well.  

Similar to the topological sorting of strongly connected components of a graph, we 
consider the topological sorting of SCCs of an automaton. Let A = (S, Σ, S×Σ, δ) be an 
automaton and {A1, A2, …, Ak} be the SCCs of A.  We consider the SCCs of A sorted 
as 〈A1, A2, …, Ak〉 such that for any 1 ≤ i < j ≤ k, there do not exist si ∈ Si, sj ∈ Sj, w ∈ 
Σ* where δ(sj, w) = si. Note that in this case Ak must be a sink component. From this 
point on, we consider A = (S, Σ, S×Σ, δ) to be an automaton which is not strongly 
connected, and we consider 〈A1, A2, …, Ak〉 to be the topologically sorted SCCs of A, 
where Ai = (Si, Σ, Di, δi).  We have the following result. 
Lemma 2: For any sequence w ∈ Σ* and for a state s ∈ Si, 1 ≤ i ≤ k, we have δ(s, w) ∈ 
(Si ∪ Si+1 ∪ … ∪ Sk).  
Proof: Since the components are topologically sorted, states in Ai can only move to a 
state in Ai, or to a state in Ai+1, Ai+2, …, Ak. 
Lemma 3: Let Ai be an SCC of an automaton which is not a sink component. Then 
the completion A'i of Ai is a synchronizing automaton. 
Proof: When Ai is not a sink component, then Ai is a partial automaton. In this case 
the completion A'i of Ai, is an automaton with a unique sink-state (the star state), 
which is known to be synchronizing [9, 12].  
 
3.1 An Initial Approach to Use SCCs  

We now explain an idea to form a synchronizing sequence for an automaton A by 
using synchronizing sequences of the SCCs of A. For 1 ≤ i < k, let βi be a 
synchronizing sequence for the completion A'i of Ai = (Si, Σ, Di, δi). Based on Lemma 
3, one can always find a synchronizing sequence for A'i, 1 ≤ i < k. Let βk be a 
synchronizing sequence for Ak. Lemma 1 suggests that Ak always has a synchronizing 
sequence if A is synchronizing.  

We first claim that the sequence β1β2…βk is a synchronizing sequence for A. In 
order to see this, it is sufficient to observe the following. 
Lemma 4: For any 0 ≤ i < k we have δ(S, β1β2…βi) ⊆ (Si+1 ∪ S i+2 ∪… ∪ Sk) 
Proof: We will use induction; the base case, i = 0, holds trivially. Assume that the 
claim holds for i-1, i.e. δ(S, β1β2…βi-1) ⊆ (Si ∪ S i+1 ∪… ∪ Sk). For a state s ∈ δ(S, 
β1β2…βi-1) such that s ∈ (Si+1 ∪ S i+2 ∪… ∪ Sk), then δ(s,βi) will also belong to (Si+1 ∪ 
S i+2 ∪… ∪ Sk) based on Lemma 2. Therefore it remains to show that for any state s ∈ 
δ(S, β1β2…βi-1) such that s ∈ Si,  δ(s, βi) is not in Si. The sequence βi is a synchronizing 
sequence for the completion A'i of SCC Ai. Since the star state of A'i is the only state in 
which the states of A'i can be synched, we must have δ'i(Si, βi) = {*}. Note that the star 
state in A'i represents the states S\Si for Ai. Hence the sequence βi is in fact a sequence 



 

that pushes all the states in Si to the states in the other components, i.e., δ(Si, βi) = ∅. 
This implies that for a state s ∈ δ(S, β1β2…βi-1) such that s ∈ Si,  δ(s, βi) is not in Si. 
Finally, we can state the following result. 
Theorem 5: Let βi be a synchronizing sequence for the completion A'i of Ai, 1 ≤ i < k, 
and let βk be a synchronizing sequence for Ak. The sequence β1β2…βk is a 
synchronizing sequence for A. 
Proof: Using Lemma 4, we have δ(S, β1β2…βk-1) ⊆ Sk. Since βk is a synchronizing 
sequence for Ak, δ(Sk, βk) is  singleton. Combining these two results, we have δ(δ(S, 
β1β2…βk-1), βk) = δ(S, β1β2…βk-1βk) singleton as well. 
 
3.2 An Improvement on the Initial Approach  

Theorem 5 implies a trivial algorithm for constructing a synchronizing sequence for 
an automaton A based on its SCCs. As one may notice, though, the length of the 
sequence to be constructed can be reduced based on the following observation. 
Consider a sequence βi, for some 1 < i ≤ k, used in the sequence β1β2…βk-1βk. The 
sequence βi is constructed to push all the states in Ai out of the component Ai. 
However, the sequence β1β2…βi-1 applied before βi can already push some of the 
states in Ai out of Ai. On the other hand, the sequence β1β2…βi-1 can also move some 
of the states in the components A1, A2, …, Ai-1 to a state in Ai. Therefore, a more careful 
approach can be taken considering which states in Ai must be moved out of Ai when 
constructing the sequence to handle the component Ai.  

To take this observation into account, we define the following sequences 
recursively. For the base cases, we define α0 = ε and σ0 = ε. For 1 ≤ i < k, let S'i = Si ∩ 
δ(S, σi-1) and let αi  be a S'i-synchronizing sequence for A'i. For 1 ≤ i < k, let σi = σi-1 αi. 
Lemma 6: For 0 ≤ i < k, δ(S, σi) ⊆ Si+1 ∪ Si+2  ∪ .... ∪  Sk.  
Proof: For the base case i=0 we have δ(S, σ0) = δ(S, ε) = S = S1 ∪ S2  ∪ .... ∪  Sk, so it 
trivially holds. δ(S, σi) = δ(S, σi-1αi) = δ(δ(S, σi-1),αi) and using the induction 
hypothesis we have δ(S, σi-1) ⊆ Si ∪ Si+1  ∪ .... ∪  Sk. αi is a S'i-synchronizing sequence 
for A'i, where S'i = Si ∩ δ(S, σi-1). Therefore, αi merges all the states in S'i in the star 
state of Ai, which means δ(S'i, αi) = ∅. Therefore δ(δ(S, σi-1),αi) ⊆ Si+1 ∪ Si+2  ∪ .... ∪  Sk. 
Theorem 7: Let S'k = Sk ∩ δ(S, σk-1) and αk  be a S'k-synchronizing sequence for Ak. 
Then σk-1αk is a synchronizing sequence for A. 
Proof: If αk is a S'k-synchronizing sequence for Ak, δ(S'k, αk) is a singleton. Using 
Lemma 6, we have δ(S, σk-1) ⊆ Sk. Therefore S'k = Sk ∩ δ(S, σk-1) = δ(S, σk-1). Then we 
have δ(S, σk-1αk) = δ(δ(S,σk-1),αk) = δ(S'k,αk), which is a singleton. 
     Based on Theorem 7, the algorithm given in Figure 3 can be used to construct a 
synchronizing sequence for an automaton A. This algorithm uses a synchronizing 
heuristic to find a synchronizing sequence for SCCs. Any synchronizing heuristic can 
be used for this step. In the next section, we explain two different algorithms from the 
literature that we used in our experiments. 
 
 
 
 
 
 
 



 

Input:  An automaton A = (S,Σ,D,δ) 
Output: A synchronizing sequence for A  
 
C = S; // All states are active initially 
Г = ε ; // Г: synch. sequence to be constructed,  

  // initially empty 
<A1, A2,…, Ak> = find/sort SCCs of A  
foreach i in {1, 2, …, k} do 
 // Consider Ai = (Si,Σ,Di,δi) 
 S’i = C ∩ Si; // find active states of Ai 
 Гi = Heuristic(A’i,S’i); // find S’i sync. sequence  
                     // of completion A’i of Ai 
 Г = Г Гi; // append Гi to sync. seq. 

C = δ(C, Гi ); // Update active states 
return Г ; 

Figure 3: SCC algorithm to compute synchronizing sequences. (Source: [1]) 

4 Synchronizing Heuristics 
 
There exist various synchronizing heuristics in the literature where we experimented 
with two of these heuristics, Greedy and SynchroP. Both of these heuristics have two 
phases. Phase 1 is common in these heuristics and given in Figure 4 below.  
 
Input:  An automaton A = (S,Σ,D,δ) 
Output: A merging sequence for all  
     {i,j} ∈ S2 

 
let Q be an initially empty queue // Q: BFS frontier 
P = Ø // P: keeps the set of nodes in the BFS forest constructed so far 
foreach {i,j} ∈ S2

s do  
 push {i,j} onto Q 
 insert {i,j} into P 
 set τ(i,j) = ɛ; 
 
while P ≠ S2 do  
 {i,j}= pop next item from Q; 
  foreach x ∈ Σ do 
  foreach {k,l} ∈ δ-1({i,j},x) do 
    if {k,l} ∉ P then 
    τ(k,l)=x τ(i,j); 
    push {k,l} onto Q; 
    P = P ∪ {{k,l}}; 

 
Figure 4: Phase 1 of Greedy and SynchroP. (Source: [1]) 

 
      In Phase 1 of the synchronizing heuristics, a shortest merging sequence τ(i, j) for 
each {i, j} ∈ S2 is computed by using a breadth first search. Note that in the algorithm, 
τ(i,j) is not unique.  
 Figure 4 performs a breadth first search (BFS), and therefore constructs a BFS 
forest, rooted at s–pairs {i, i} ∈ S2

s, where these s–pair nodes are the nodes at level 0 
of the BFS forest. A d–pair {i, j} appears at level k of the BFS forest if |τ{i,j}| = k. 
The first phase requires Ω(n2) time since each {i, j} ∈ S2 is pushed to Q exactly once. 
 



 

 4.1 The Greedy Heuristic 
 
Greedy’s Phase 2 (given in Figure 5 below) constructs a synchronizing sequence by 
using the information from Phase 1. Its main loop can iterate at most n − 1 times, 
since in each iteration |C| is reduced by at least one. The min operation at line 4 
requires O(n2) time and line 5 takes constant time. Line 6 can normally be handled in 
O(n3) time, but using the information precomputed by the intermediate stage between 
Phase 1 and Phase 2 [3], line 6 can be handled in O(n) time. Therefore, Phase 2 of 
Greedy requires O(n3) time. Note that Phase 2 of Greedy finds an S-synchronizing 
sequence for a given complete automaton A = (S, Σ, S×Σ, δ). However, we need to 
find an S'-synchronizing sequence for a given subset S' ⊆ S of states.  
 
Input: An automaton A = (S,Σ,D,δ), τ(i,j) for all {i,j} ∈ S2

s, S’ to be 
synchronized 
Output: An S’-synch. sequence Г for A 
 
C = S’ // C: current state set 
Г = ε  // Г: synch. sequence to be constructed, initially empty 

	
while |C| > 1 do  // still not a singleton 
 {i,j} = arg min<k,l>∈C2d |τ(k,l)|;  // decide the d-pair to be 
           // merged 
 Г = Г τ(i,j); // append τ(i,j) to the synchronizing sequence  
 C= δ(C, τ(i,j));   //update current state set with τ(i,j) 

Figure 5: Phase 2 of Greedy. (Source: [1]) 

4.2 The SynchroP Heuristic  

Similar to Greedy, the second phase of SynchroP constructs a synchronizing sequence 
iteratively. It keeps track of the current set C of states, which is initially the entire set 
of states S. In each iteration, the cardinality of C is reduced at least by one. This is 
accomplished by picking a d-pair {i, j} ∈ C2

d in each iteration, and considering      
δ(C, τ(i, j)) as the current set in the next iteration. Since τ(i, j) is a merging sequence 
for the states i and j, the cardinality of δ(C, τ(i, j)) is guaranteed to be smaller than that 
of C. For a set of states C ⊆ S, let the cost φ(C) of C be defined as  
 

𝜑(𝐶) = 𝜏 𝑖, 𝑗!,! ∈ !                       (1) 
 
where φ(C) is a heuristic indication of how hard it is to bring the set C to a singleton. 
The intuition here is that, the larger the cost φ(C) is, the longer a synchronizing 
sequence would be required to bring C to a singleton set. 
     During the iterations of SynchroP, the selection of {i, j} ∈ C2

d that will be used is 
performed by considering the cost of the set δ(C,τ(i, j)). Based on this cost function, 
the second phase of SynchroP is given in Figure 6. As in Greedy with the SCC 
method, we also use a slightly modified version of the second phase of SynchroP 
algorithm to find S'-synchronizing sequence.  
 
 



 

Input:  An atomaton A = (S,Σ,D,δ), τ(i,j) for all {i,j} ∈ S2
s, S’ to 

be synchronized 
Output: An S’-synch. sequence Г for A 
 
C = S’ // C: current state set 
Г = ε  // Г: synchronizing sequence to be constructed,  
   // initially empty 
while |C| > 1 do  // still not a singleton 
 minCost = ∞ 
 foreach d-pair {i,j} ∈ C2

d do 
 thisPairCost = ɸ(δ(C,τ(i,j))) 
 if thisPairCost < minCost then 
  minCost = thisPairCost 
  τ’ = τ(i,j) 
	

 Г = Г τ’; // append τ’ to the synch. sequence  
 C= δ(C, τ’); //update current state set with τ’ 

Figure 6: Phase 2 of SynchroP. (Source: [1]) 

5 Experimental Results 
 
The experiments were performed on a machine with Intel Xeon E5-2620 CPU and 
64GB of memory, using Ubuntu 16.04.2. The code was written in C/C++ and 
compiled using gcc with -O3 option enabled. 
     In order to evaluate the performance of the SCC method, we generated automata 
with 5 different DAG types, nSCC ∈ {32, 64, 128} states for each SCC, p ∈ {2, 4, 8} 
inputs, d ∈ {0.25, 0.5, 0.75} (edge distribution factor), k ∈ {2, 4, 8} SCC’s for four 
DAG types (t ∈ {All-to-One, Linear, Complete, Random}) and k ∈ {3, 7, 15} SCC’s 
for one DAG type (t = Tree). To construct an automaton A with the given parameters, 
we first construct k different strongly connected automata A1, A2, …, Ak, where each 
Ai has nSCC states, p inputs. To construct an automaton Ai, we consider each state s in 
Ai and each input x, and assign δ(s, x) to be one of the states in Ai randomly. If Ai is 
not strongly connected after the initial random assignment, we reassign δ(s, x) for 
some of the states and inputs randomly again, keep repeating this process until Ai 
becomes strongly connected. Once we have Ai strongly connected, we identify those 
state s and input x pairs in Ai (except for the last SCC Ak) such that Ai stays strongly 
connected even without using the transition of the state s and with the input x. For 
these state/input pairs in Ai, we reassign δ(s, x) to be one of the states in the automata 
Ai+1, Ai+2, …, Ak according to the DAG type that we select. We used the distribution 
factor parameter d ∈ {0.25, 0.5, 0.75} as follows: after finding M transitions that can 
be reassigned safely without making Ai not strongly connected, we use at most (d × 
M) of them to connect the current SCC to the other SCCs based on the chosen DAG 
type t.  
     For Linear automata, we connect each SCC Ai to the SCC Ai+1 except Ak as shown 
in Figure 7. For Complete automata, all SCC Ai to SCC Aj connections are established 
for i < j. For Random automata, each transition reassignment for SCC Ai is performed 
randomly to an SCC Aj where i < j. In All-to-one automata, all the reassignments are 
performed to SCC Ak, the sink component. For Tree automata, we connect each SCC 



 

Ai to its parent in a (complete binary) tree. In this automata type, k ∈ {3, 7, 15} since 
we aim to generate complete trees.  
 

 

Figure 7: Example DAGs with 4 SCCs for the types Linear, Complete, Random and All-to-
one, and 7 SCCs for the type Tree.  

     In general, for each nSCC-p-d-k-t combination we created 50 automata. However, 
due to the complexity of SynchroP, for automata with nSCC = 128, p ∈ {2, 4, 8} 
inputs, d ∈ {0.25, 0.5, 0.75}, k = 15 and t = Tree, we created only 20 automata rather 
than 50. 

For an automaton A = (S, Σ, S×Σ, δ) with nSCC states for each SCC, p inputs and k 
SCCs 〈A1, A2, …, Ak〉 where Ai = (Si, Σ, Di, δi), 1 ≤ i ≤ k, we find a synchronizing (i.e. 
S-synchronizing) sequence for A by using Greedy and SynchroP algorithms given in 
Figure 5 and Figure 6, respectively. We also find a synchronizing sequence for A by 
using the SCC method given in Figure 3, where for each Ai = (Si, Σ, Di, δi), we use 
Greedy and SynchroP to find S'i-synchronizing sequence as explained in Section 3. 

Figure 8 shows the performance improvements in terms of time and sequence 
length due to the SCC method over the original Greedy algorithm. We measured the 
ratios of the execution time and sequence length of original Greedy to those of Greedy 
with SCC method and report the averages of these metrics. The first three columns in 
each block of Figure 8 present the improvements over time, i.e., speedups, whereas 
the last three columns do the same for average sequence length. As the figure shows, 
for all DAG types, the SCC method is more than 6x faster than the original Greedy 
for automata with 8 SCCs. For binary-tree DAGs, the speedups look more; however, 
one should note that for tree DAGs, the results are given for 3,7 and 15 SCCs (instead 
of 2, 4 and 8). Hence for tree DAGs, the proposed method yields 12x speedup for 
automata with 15 SCCs. This also confirms that the speedups tend to increase with the 
number of SCCs. As the figure shows, the SCC method reduces the sequence lengths 
on average. Furthermore, similar to the average execution time, the amount of the 
reduction on sequence lengths tends to increase with the number of SCCs. We present 
a more detailed result set in Tables 1-6.  



 

 

Figure 8: Greedy/SCC Method Time Ratio (Speedup) and Sequence Length Ratio Results for 
Automata with 2, 4 and 8 SCC’s and 5 DAG types (3,7 and 15 SCC’s for Tree DAGs). 

Compared to Greedy, SynchroP is a slower heuristic. Hence, we expect that the 
impact of the SCC method over SynchroP will be more. Figure 9 confirms our 
expectations. As the figure shows, the proposed method can make SynchroP around 
10x, 100x and 1000x faster on automata with 2, 4 and 8 SCCs, respectively. For tree 
DAGs, the improvement is 10000x on average for 15 SCCs. Thus, similar to the 
Greedy, one can say that the improvement on runtime tends to increase with the 
number of SCCs. However, it slightly decreases when the number of inputs, i.e., the 
alphabet size, increases.  

 

Figure 9: SynchroP/SCC Method Time Ratio (Speedup) Results for Automata with 2, 4 and 8 
inputs and 5 DAG types in logarithmic scale (3,7 and 15 SCC’s for Tree DAGs). 

Although SynchroP is a slower heuristic, compared to Greedy, it is also much 
better in terms of sequence lengths. Hence, it should be harder to improve the length 
of the sequences. In fact, one can expect longer sequences for the SCC-based variant. 
In our experiments, for DAG types All-to-one, Linear, Complete, Tree and Random, 
the average ratios of the sequence lengths of original SynchroP and the SCC-based 
variant are 0.95, 1.04, 0.96, 0.95 and 0.98. Hence, the proposed method increases the 
sequences length only around 2.4% on average, and it improves the lengths by 4% for 



 

weakly connected automata whose SCCs are connected like a binary tree. The 
detailed results on the sequence lengths for different parameter sets can be found in 
Tables 1-6.  

 

Figure 10: SynchroP/SCC Method and Greedy/SCC Method Sequence Length Ratio with 
Distribution Factors 0,25, 0,5, 0,75 and nSCCs 32, 64, 128. 

     To visualize the results on sequence lengths more clearly, Figure 10 presents the 
trends for varying distribution factors and number of SCCs used to generate the 
automata. As shown in the figure, for Greedy, the improvement on the sequence 
length decreases both with increasing number of states in each SCC (bottom legends 
in the figure) and increasing distribution factor. That being said, even in the worst pair 
of parameters the improvement is 8% on average. The results with SynchroP are 
different: when the number of SCCs increases, the SCC-based variant gets closer to 
original SynchroP. However, similar to Greedy, the distribution factor negatively 
affects the proposed method. 

 

Figure 11: Greedy/SCC Method and SynchroP/SCC Method Time Ratio (Speedup) with 2, 3, 
4, 7, 8 and 15 SCC’s and 32, 64 and 128 nSCCs. 

     Figure 11 shows the trend on with different number of SCCs and nSCCs. Similar 
to the figures above, the speedups increase with the number of SCCs. They also 
increase with the number of states in a single SCC. This is expected since the 
automata get larger and the heuristics become more costly.  

  



 

Table 1: Experimental results for All to One Automata 

 

Number 
of States 
for each 

SCC 

Number 
of SCCs 

Number 
of Inputs 

Greedy vs SCC 
Method 

SynchroP vs SCC 
Method 

Time 
Ratio 

Length 
Ratio 

Time 
Ratio 

Length 
Ratio 

32 

2 

2 0,74 1,04 4,87 1 

4 1,35 1,07 5,48 0,99 

8 1,5 1,08 5,57 0,99 

4 

2 2,56 1,11 53,57 0,94 

4 2,97 1,14 47,89 0,94 

8 2,96 1,12 39,03 0,91 

8 

2 5,32 1,11 318,62 0,94 

4 5,47 1,14 267,33 0,92 

8 5,4 1,15 209,87 0,84 

64 

2 

2 1,78 1,02 10,22 0,98 

4 1,68 1,07 10,36 1,01 

8 1,91 1,06 7,9 1,01 

4 

2 3,44 1,06 86,74 0,96 

4 3,63 1,11 77,65 0,96 

8 3,7 1,12 60,84 0,92 

8 

2 6,93 1,06 851,08 0,93 

4 6,73 1,13 606,1 0,91 

8 7,16 1,14 542,36 0,86 

128 

2 

2 1,96 1,04 9,72 0,99 

4 1,98 1,05 10,11 1,01 

8 1,93 1,06 9,94 1,01 

4 

2 3,88 1,04 103,49 0,97 

4 3,8 1,13 113,04 0,95 

8 3,96 1,1 115,95 0,95 

8 

2 7,46 1,08 1297,94 0,94 

4 7,1 1,16 1427,74 0,91 

8 7,63 1,12 1414,44 0,9 



 

Table 2: Experimental results for Linear Automata 

Number 
of States 
for each 

SCC 

Number 
of SCCs 

Number 
of Inputs 

Greedy vs SCC 
Method 

SynchroP vs SCC 
Method 

Time 
Ratio 

Length 
Ratio 

Time 
Ratio 

Length 
Ratio 

32 

2 

2 1,09 1,04 6,07 1 

4 1,24 1,07 5,88 0,99 

8 1,98 1,08 5,7 0,99 

4 

2 2,49 1,14 51,37 1,01 

4 2,69 1,17 43,92 1,02 

8 3,06 1,09 36,31 1,07 

8 

2 4,93 1,18 337,16 1,03 

4 5,31 1,15 246,47 1,11 

8 5,93 1,09 190,13 1,14 

64 

2 

2 1,89 1,02 10,86 0,98 

4 1,5 1,07 10,4 1,01 

8 1,84 1,06 7,86 1,01 

4 

2 3,54 1,11 82,46 0,98 

4 3,56 1,14 76,65 1,06 

8 3,85 1,1 59,64 1,05 

8 

2 6,69 1,17 898,92 1 

4 6,84 1,15 603,7 1,1 

8 7,51 1,07 532,77 1,14 

128 

2 

2 1,89 1,04 9,88 0,99 

4 1,86 1,05 10,68 1,01 

8 1,93 1,06 9,6 1,01 

4 

2 3,95 1,08 107,72 0,99 

4 3,72 1,14 116,89 1,04 

8 4,01 1,09 107,85 1,05 

8 

2 7,22 1,15 1320,74 1,02 

4 6,86 1,16 1366,23 1,1 

8 8,19 1,07 1163,29 1,12 



 

Table 3: Experimental results for Complete Automata

 

Number 
of States 
for each 

SCC 

Number 
of SCCs 

Number 
of Inputs 

Greedy vs SCC 
Method 

SynchroP vs SCC 
Method 

Time 
Ratio 

Length 
Ratio 

Time 
Ratio 

Length 
Ratio 

32 

2 

2 1,48 1,04 5,26 1 

4 1,48 1,07 5,59 0,99 

8 1,4 1,08 5,87 0,99 

4 

2 2,47 1,11 55,03 0,97 

4 3 1,14 48,5 0,99 

8 2,85 1,09 38,61 0,95 

8 

2 5,43 1,11 335,4 0,92 

4 5,28 1,15 271,77 0,92 

8 5,76 1,12 215,82 0,87 

64 

2 

2 1,6 1,02 10,53 0,98 

4 1,62 1,07 10,39 1,01 

8 1,78 1,06 7,74 1,01 

4 

2 3,63 1,05 88,12 0,98 

4 3,68 1,12 78,49 0,98 

8 3,77 1,09 64,21 0,94 

8 

2 7,28 1,11 920,73 0,94 

4 7,05 1,13 647,01 0,93 

8 7,45 1,11 633,61 0,89 

128 

2 

2 1,91 1,04 9,62 0,99 

4 1,94 1,05 10,04 1,01 

8 1,9 1,06 10,1 1,01 

4 

2 4,02 1,06 108,14 0,96 

4 3,83 1,13 119,44 0,99 

8 4 1,1 115,12 0,97 

8 

2 7,52 1,11 1395,27 0,95 

4 7,3 1,16 1428,9 0,94 

8 8,01 1,12 1407,34 0,92 



 

Table 4: Experimental results for Tree Automata

Number 
of States 
for each 

SCC 

Number 
of SCCs 

Number 
of Inputs 

Greedy vs SCC 
Method 

SynchroP vs SCC 
Method 

Time 
Ratio 

Length 
Ratio 

Time 
Ratio 

Length 
Ratio 

32 

3 

2 1,67 1,07 19,11 0,97 

4 1,81 1,12 20,08 0,98 

8 2,12 1,11 17,82 0,93 

7 

2 4,68 1,14 251,53 0,94 

4 4,89 1,16 210,9 0,94 

8 5,02 1,18 150,54 0,93 

15 

2 9,73 1,17 1898,79 0,96 

4 10,04 1,22 1591,15 0,94 

8 10,58 1,2 1299,54 0,94 

64 

3 

2 6,13 1,13 481,43 0,95 

4 5,95 1,18 446,86 0,96 

8 6,66 1,15 340,69 0,97 

7 

2 6,13 1,13 481,43 0,95 

4 5,95 1,18 446,86 0,96 

8 6,66 1,15 340,69 0,97 

15 

2 12,45 1,17 7360,79 0,96 

4 11,85 1,22 5763,36 0,95 

8 12,97 1,19 4320,21 0,94 

128 

3 

2 2,99 1,06 40,28 0,95 

4 2,99 1,12 40,22 0,98 

8 3,11 1,08 40,56 0,97 

7 

2 6,55 1,11 799,83 0,95 

4 6,23 1,2 861,5 0,98 

8 6,59 1,14 809,63 0,97 

15 

2 13,38 1,13 21815,24 0,94 

4 12,53 1,23 20093,27 0,93 

8 14,54 1,16 16178,07 0,96 



 

Table 5: Experimental results for Random Automata

 
 

Number 
of States 
for each 

SCC 

Number 
of SCCs 

Number 
of Inputs 

Greedy vs SCC 
Method 

SynchroP vs SCC 
Method 

Time 
Ratio 

Length 
Ratio 

Time 
Ratio 

Length 
Ratio 

32 

2 

2 1,21 1,04 5,61 1 

4 1,54 1,07 5,77 0,99 

8 1,45 1,08 5,73 0,99 

4 

2 2,48 1,11 54,68 0,96 

4 2,7 1,13 45,33 0,97 

8 2,99 1,1 36,38 0,98 

8 

2 5,41 1,17 334,1 0,95 

4 5,81 1,15 258,82 0,97 

8 5,97 1,16 199,64 0,96 

64 

2 

2 1,64 1,02 10,22 0,98 

4 1,78 1,07 10,36 1,01 

8 1,8 1,06 7,9 1,01 

4 

2 3,57 1,09 86,74 0,98 

4 3,43 1,14 77,65 0,99 

8 3,8 1,11 60,84 0,98 

8 

2 6,96 1,13 851,08 0,95 

4 6,9 1,15 606,1 0,98 

8 7,7 1,14 542,36 0,97 

128 

2 

2 1,98 1,04 9,55 0,99 

4 1,9 1,05 10,42 1,01 

8 1,91 1,06 9,91 1,01 

4 

2 3,88 1,07 107,13 0,98 

4 3,73 1,13 115,24 1 

8 4,06 1,1 111,98 1 

8 

2 7,25 1,12 1326,64 0,97 

4 7,28 1,17 1392,2 1 

8 8,23 1,14 1284,89 0,99 



 

6 Conclusions 
 
The SCC method can be used with any synchronizing heuristic to make it run faster 
on weakly connected automata. In case of Greedy, it can also find shorter reset 
sequences in shorter time compared to the application of Greedy directly. Compared 
to Greedy, SynchroP is a slower heuristic, which finds shorter reset sequences. With 
the proposed SCC method, one can use SynchroP to generate slightly longer (still 
shorter compared to Greedy) sequences and can be thousands of times faster. 

We were inspired by the following observation while designing the SCC-based 
method: The Greedy heuristic requires O(n3) and SynchroP requires O(n5) time where 
n is the number of states in the automata. Therefore, if one can divide an automaton A 
into pieces (components) in a way that the synchronizing sequence of A can be 
constructed from the synchronizing sequences obtained for these pieces, this approach 
can result in considerable time savings. In this work, we suggest that these “pieces”, 
whose synchronizing sequences can be combined easily to form a synchronizing 
sequence of the original automaton, are the SCCs of a weakly connected automaton. 
If there are k SCCs with equal sizes, complexity of Greedy and SynchroP becomes 
O(𝑘(!

!
)!) O(𝑘 (!

!
)!), respectively. Our experiments show that, the running times 

improve as expected. Of course, the SCC method works only for weakly connected 
automata and the effectiveness of the method depends on the number and the size of 
the SCCs, as displayed by the experiments. 

For future work, one direction is to improve our synchronizing sequence lengths 
for the SCC method when used with SynchroP. The direct application of SynchroP 
algorithm to an automaton performs a global analysis compared to the local analysis 
performed when each SCC is analyzed separately by our SCC method. Another 
direction of research can be to find other decompositions for an automaton. 

 
Acknowledgments. This work was supported by The Scientific and Technological 
Research Council of Turkey (TUBITAK) [grant number 114E569]. 
 
References 
 

1. Cirisci, B., Kahraman, M. K., Yildirimoglu, C. U., Kaya, K., Yenigun, H., 2018. 
Using Structure of Automata for Faster Synchronizing Heuristics. In Proceedings of 
the 6th International Conference on Model-Driven Engineering and Software 
Development, MODELSWARD 2018, Funchal, Madeira - Portugal, 544-551. 

2. Chow, T.S., 1978. Testing software design modelled by finite state machines. IEEE 
Transactions on Software Engineering, 4:178-187. 

3. Eppstein, D., 1990. Reset sequences for monotonic automata. SIAM J. Comput. 19 
(3), 500 - 510. 

4. Hierons, R.M., Ural, H. 2006. Optimizing the length of checking sequences. IEEE 
Transactions on Computers. 55(5): 618-629. 

5. Jourdan, G.V., Ural, H., Yenigün, H., 2015. Reduced checking sequences using 
unreliable reset, Information Processing Letters, 115(5), 532-535.  

6. Kudlacik, R., Roman, A., Wagner, H., 2012. Effective synchronizing algorithms. 
Expert Systems with Applications 39 (14), 11746-11757. 



 

7. Lee, D., Yannakakis, M., 1996. Principles and methods of testing finite state 
machines-a survey. Proceedings of The IEEE, 84(8), 1090-1123. 

8. Roman, A., Szykula, M., 2015. Forward and backward synchronizing algorithms. 
Expert Systems with Applications 42 (24), 9512-9527. 

9. Rystsov, I., 1997. Reset words for commutative and solvable automata. Theoretical 
Computer Science 172 (1-2), 273–279. 

10. Trahtman, A. N., 2004. Some results of implemented algorithms of synchronization. 
In: 10th Journees Montoises d'Inform. 

11. Volkov, M.V., 2008. Synchronizing automata and the Cerny conjecture. In 
Proceedings of the 3rd International Conference on Language and Automata Theory 
and Applications, LATA’ 08, 11–27, 2008. 

12. Volkov, M.V., 2009. Synchronizing automata preserving a chain of partial orders. 
Theoretical Computer Science 410 (37), 3513–3519. 

 
 
 

 


