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Autophagy and the ubiquitin–proteasome system (UPS) are the two major intracellular 

protein quality control and recycling mechanisms that are responsible for cellular 

homeostasis in eukaryotes. Ubiquitylation is utilized as a degradation signal for both 

systems, however, the two system differ in terms of their mode of actions. The UPS is 

responsible for the degradation of short-lived proteins and soluble unfolded/misfolded 

proteins whereas autophagy eliminates rather long-lived proteins, insoluble protein 

aggregates and even whole organelles (e.g., mitochondria, peroxisomes) and pathogenic 

invaders (e.g., bacteria). In addition to an indirect connection between the two systems 

through ubiquitylated proteins, recent data indicate the presence of functional connections 

and reciprocal regulation mechanisms between these degradation pathways. In this thesis 

work, we have characterized and analyzed novel and direct links between the UPS and 

autophagy. Autophagy of mitochondria was chosen as a model to study the interaction 

and crosstalk between autophagy and the UPS.  Functional consequences of these 

findings will be presented and discussed in detail. 
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ÖZET 

 

 

ÜBİKİTİN-PROTEAZOM SİSTEMİ VE OTOFAFİ ARASINDAKİ 

BAĞLANTILARIN MİTOFAJİDEKİ REGÜLASYONU 

 

Nur Mehpare KOCATÜRK 

Doktora Tezi, Temmuz 2018 

Tez Danışmanı: Prof.  Devrim Gözüaçık 

 

Anahtar Kelimeler: Otofaji, Ubikitin-Proteazom Sistemi, UPS, mitokondri, mitofaji, 

protein-protein etkileşimi, organel homeostazı 

 

Otofaji ve ubikitin-proteazom sistemi ökartotik hücrelerde, hücre içi homestaza katkıda 

bulunan iki ana protein kalite control ve geri dönüşüm mekanizmasıdır. Ubikitinasyon, 

her iki system için de bozulma işareti olarak kullanılır, fakat iki mekanizma birbirinden 

işleyiş bakımından ayrılırlar. Ubikitin-proteazom sistemi kısa ömürlü proteinlerin ve 

çözünür haldeki katlanma bozukluğu olan proteinlerin yıkımından sorumlu olurken, 

otofaji daha uzun ömürlü proteinlerin, protein çökeltilerinin, hatta organellerin (örn., 

mitokondriler, peroksizomlar) ve patojenik işgalcilerin (örn., bakteriler) ortadan 

kaldırılmasından sorumludur. Ubikitinlenmiş proteinlerin iki mekanizma tarafından 

yıkılması sayesinde iki mekanizma arasındaki dolaylı bağlantıya ek olarak, güncel veriler 

iki mekanizmanın aarsındaki fonksiyonel bağlantıların ve karşılıklı control sistemlerinin 

olduğunu göstermektedir. Bu doktora tezinde, ubikitin-proteazom ve otofaji 

mekanizmaları arasındaki yeni ve doğrudan bağlantılar bulunup analiz edilmiştir. 

Mitokondrilerin otofajisi, ubikitin-proteazom sistemi ve otofaji arasındaki bağlantının 

çalışılması için model olarak seçilmiştir. Bu buluşların fonksiyonel yansımaları sunularak 

detaylıca tartışılacaktır. 
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1. INTRODUCTION 
 

The ubiquitin–proteasome system (UPS) and macroautophagy (hereafter referred 

as autophagy) are major cellular catabolic pathways conserved from yeast to man. The 

degradation of short-lived proteins through the UPS required  substrate modification 

through sequential addition of ubiquitin molecules (Finley, 2009; Hershko, 1983, 2005). 

Polyubiquitin modified substrates are then recognized by the subunits of multicatalytic 

protease complexes called proteasomes (Hershko and Ciechanover, 1998; Schwartz and 

Ciechanover, 2009).  

 

Proteasomes are highly efficient structures that are mainly responsible for the 

degradation of short-lived proteins, soluble unfolded or misfolded proteins as well as 

polipeptides. On the other hand, rather long-lived proteins, accumulations of insoluble 

protein aggregates  and damaged whole organelles such as dysfunctional mitochondria 

and Endoplasmic Reticulum are eliminated by the autophagy-lysosome system (Groll and 

Huber, 2003, 2004; Klionsky, 2007).  Autophagy is characterized by the formation of 

double-membrane structures called autophagosomes, which later on fuse with lysosomes, 

becoming autolysosomes in order to degrade autophagosomal contents through the action 

of hydrolitic enzymes. 

 

The UPS and autophagy are independent but interconnected systems, and 

inhibition of one system could have a positive influence on the activity of the other.  There 

is growing evidence in the literature about these indirect connections between the two 

degradative system (Collins and Goldberg, 2017; Mizushima, 2018; Yu et al., 2018).  In 

this study, I will first briefly summerize the two systems, and then discuss in detail various 

examples of coordination and crosstalk between them. And finally, i will introduce the 

novel and the first proposed direct link between the UPS and autophagy system.  
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1.1 UBIQUITIN-PROTEASOME SYSTEM 

 

Ubiquitin-Proteasome system is involved in the regulation of various cellular 

signaling process, including protein quality control, transcription, cell cycle progression, 

DNA repair, cell stress response and apoptosis.  For instance during cell cycle regulation, 

timely progression of each phase of the cycle based on sequential transcription and 

degradation of  cell cycle proteins, such as cyclins (Benanti, 2012; Glotzer et al., 1991).  

 

 

 

1.1.1 The Conjugation System 

 

Ubiquitylation, the covalent conjugation of small and globular ubiquitin molecule 

to other proteins, is a special post translational modification, in addition to serving as an 

essential degradation signal for proteins or it may alter their localization, function or 

activity based on the added number of ubiquitin molecules to the substrates.  

 

Binding of ubiquitin to the substrate occurs through a three-step cascade 

mechanism: (i) First, Ub is linked to a cysteine residue with its terminal glycine to an 

activating enzyme, E1, in an ATP-dependent manner. (ii) Second, the activated ubiquitin 

is then transferred to a conjugating enzyme, E2, by energy-rich thiol ester bond at a 

cysteine residue. (iii) Third, ubiquitin is finally attached to the destined substrate protein 

that is specifically bound to one member of the E3 ubiquitin ligase family (Hershko and 

Ciechanover, 1998). Up to now, there have been identified 2 E1 encoding genes, more 

than 40 genes E2 encoding genes, and over 1000 E3 encoding genes  in the human 

genome (Clague et al., 2015; Pickart and Eddins, 2004). In cells, each E1 enzyme exhibits 

different preference for E2, and during the association of E2 and E3 enzymes, providing 

further complexity. The biochemical details of ubiquitylation are determined by the 

involved E3 enzymes. E3 enzymes can be divided into two major groups that are namely 
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HECT-domain E3s and RING-finger E3s (Huang et al., 1999). HECT type E3s form 

thiolester intermediate products with ubiquitin through their conserved cysteine residue, 

as in the case of E1 and E2 enzymes. However, RING-finger E3s, instead of forming 

thiolester intermediates act as a scaffold proteins which brings into a close proximity both 

a Ub-E2 intermediate and a substrate. Therefore, through a conformational change Ub 

directly transferred to the substrate from E3 enzyme (Ciechanover, 2012; Petroski and 

Deshaies, 2005). 

 
 

Figure 1.1.1 1: The 3D structural view of ubiquitin molecule.PDB Code: 1UBQ 

(retrieved from (Vijay-Kumar et al., 1987)). 

 

 

Based on the lysine (K) residues are involved in polyubiquitin chain formation, 

the polyubiquitin linkages are characterized and given names as K6, K11, K27, K29, K33, 

K48, or K63 chains. Following discovery, K48-linked polyubiquitin chain was first 

characterized as the signal to target proteins for proteasomal degradation. Conversely, 

K11- or K63- linked polyubiquitin chains and even single ubiquitin molecule 

conjugations, termed as monoubiquitinylation were considered as signals for 

nonproteolytic functions (Behrends and Harper, 2011). These non-proteolitic chain types 

are involved in regulation of several processes such as gene transcription, DNA repair, 

cell cycle progression, apoptosis, and receptor endocytosis (Welchman et al., 2005). 

However, recent reports have demonstrated that all types of ubiquitin chains as well as 

monoubiquitinylation can target substrates for degradation via autophagy. 
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Figure 1.1.1 2: The Representative Scheme of the Ubiquitin Conjugation System and 

Proteasomal Degredation. 

 

 

 

1.1.2    Proteasomes: Structure and Regulation 

 

The 26S proteasome is a multicatalytic, ATP-dependent protease complex, which 

consists of a proteocatalytic, core particle (20S proteasome) and a regulatory particle (19S 

proteasome) is found as attached to one or two end-rings of the 20S proteasome.  Barrel-

shaped structure, the 20S proteasome composed of 28 distinct subunits. The two end rings 

of 20S proteasome contain seven different α subunits. These α rings are responsible for 

serving as template for the β subunit incorporation. The two middle rings of 20S 

proteasome contain seven different β subunits. β subunits are the critical elements for the 

differential catalytic activity of the 20S proteasomes whereas α subunits serve as gate for 

the unfolded proteins for degredation. 20S proteasome exhibits trypsin-like, caspase-like, 

and chymotrypsin-like activities, by the catalytic preferences of the major components: 

Ub
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β1, β2 and β5 subunits respectively. All the catalytic subunits have different active sites 

on the interior surface of the core particle providing differential preferences for the 

cleavage of the peptides (Heinemeyer et al., 2004). Prior to the degradation, substrate 

experiences several steps. These steps could be listed as, getting unfolded and 

translocated into the catalytic chamber with the guidance of α subunits.  The size of the 

released range between 3-25 amino acid residues and these peptides experience further 

cleavage into single amino acids by peptidases (Tomkinson and Lindås, 2005). So that 

proteasomal degradation generates essential amino acids for the reuse of the cells. 

Therefore as a major side-effect proteasomal inhibition, deleterious shortage of amino 

acids resulted in increased cellular lethality (Suraweera et al., 2012).    

 

In addition to constitutive proteasomes, imammals, there are also alternative 

proteasomes known as immunoproteasomes and these proteasomes are differentiated by 

the incorporation of alternative β1i, β2i, and β5i subunits instead of other constitutive 

subunits. The immunoproteasomes are stimulated with γ-interferon and specifically 

shown to generate peptides for antigen presentation (Griffin et al., 1998).  

 

Base and the lid domains of the 19S proteasome functions in differentiating  

ubiquitinated substrates and internalizing them in 20S proteasome for further degradation 

(Lander et al., 2012). The key part of the 19S base consists of six AAA ATPases (Rpt1–

Rpt6) that form a hexameric Rpt ring and maintain several crucial functions: (1) They 

link the 19S to the heptameric α-ring of the 20S proteasomes and (2) provide a force for 

the 20S proteasome become open position. (3) They unfold proteins in an energy 

dependent manner which was generated from ATP hydrolysis and (4 ) translocate 

unfolded substrates into the 20S proteasome (Smith et al., 2007). Base subdomain also 

contains non-ATPase proteins including Rpn10 and Rpn13. Rpn10 and Rpn13 contain 

ubiquitin-binding domains and therefore could have function as receptors for ubiqitin 

modified substrates (Finley, 2009).  

 

Recent findings revealed that ubiquitylation is a reversible modification. 

Deubiquitinating enzymes (DUBs) are proteases are able to remove ubiquitin or 

ubiquitin-like molecules from substrates and disassociates polyubiquitin linkages. 

Therefore DUBs  are critical players to modulate the UPS-mediated degradation based 

on the cellular conditions (Turcu Francisca E. Reyes, Ventii Karen H., 2010). There have 
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been identified 90 DUBs encoded by the human genome and are classified into seven 

different groups including ubiquitin specific processing proteases (USPs) (He et al., 2016; 

Pinto-Fernandez and Kessler, 2016). There are three deubiquitinases (DUBs) Poh1, 

Usp14 and Uch37 shown to be associated with 19S proteasome  and these DUBs through 

physical interaction remove ubiquitin chains from the substrates, stimulates ATP 

hydrolysis for 20S proteasomal gate opening (Peth et al., 2009). Free ubiquitin pool in 

cells is tightly regulated by: DUBs allow recycling and reuse of ubiquitin molecules and 

are also responsible for processing of newly synthesized ubiquitin precursors (Collins and 

Goldberg, 2017; Grou et al., 2015; Komander et al., 2009; Lee et al., 2011).   

 

 

 

1.1.3 Ubiquitin-like Modifiers        

 

SUMO, NEDD8, FAT10, Ufm1 and ISG15 are some of the identified and 

characterized other molecules known as ubiquitin-like modifiers (Ubls) (Hendriks et al., 

2014; Wang et al., 2017; Yau and Rape, 2016). These modifiers are very similar to 

ubiquitin in terms of structure and their way of conjugation to other biomolecules in cells. 

The attachment to the substrate is maintained by the carboxyl group of the glycine, 

likewise in ubiquitylation (Hochstrasser, 2009).   

 

Among these Ubls, SUMO can be conjugated to various ubiquitin linkages 

generated on substrates, such as K6, K11, K27, K48, and K63, forming a ubiquitin–

SUMO hybrids (Hendriks et al., 2014). Eventhough there have been identified more than 

1000 substrates, the sumoylation process is maintained by a single E1, a single E2, and a 

few E3 enzymes (Hendriks and Vertegaal, 2016). The SUMO isopeptidases could 

reversible remove SUMO molecules from SUMO modified substrates (also known as 

ULP, SENP, and SUSP) in the same manner with DUBs (Pichler et al., 2017).  Various 

cellular pathways such as DNA damage response, transcriptional regulation, and stress 

responses are regulated by sumoylation. Interestingly, recent studies uncovered that 

SUMO-targeted ubiquitin ligases (STUBLs) can conjugate ubiquitin to SUMO molecules 

on substrates (Hendriks et al., 2014; Sriramachandran and Dohmen, 2014; Szargel et al., 

2015). Ubiquitylation of SUMO moieties can induce substrate degradation by the 
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proteasome and therefore regulate the metabolic stabilities of SUMO-conjugated 

substrates. 

 

1.1.4 PSMA7        

 

Among the α subunits, α4 (also known as PSMA7, RC6-1 or XACP7), is one of the best 

characterized proteasomal subunit. PSMA7 composed of eight a-helices and eleven b-

stranded sheets in its 3D structure (Figure 1.1.4 1, A.) and located at the two end rings of 

20S proteasome (Figure 1.1.4 1, B and C) having a regulatory role rather than exhibiting 

catalytic activity.  

 

  
 

Figure 1.1.4 1: The 3D structure of human PSMA7 and its location in 20S proteasome. 

(PDB code: 5lf1.C). A. PSMA7 (N-Terminus in Green), B. Side view of 20S 

proteasome, C. Top view of 20S proteasome, and PSMA7shown in Orange (Schrader et 

al., 2016).    

 

  

During proteasome assembly, first α rings are formed and then they provide a 

landing path for incorparation of b subunits. In vitro and in vivo experiments revealed 

that PSMA7 N-terminal region was critical for binding many of the other α subunits, 

suggesting its involvement of the half proteasomes (Apcher et al., 2004). The cellular 

non-proteasomal PSMA7 level is also controlled by proteasomal degradation through 

ubiquitylation by BRCA1. Non-receptor kinase family proteins c-Abl-Arg complex-

mediated phoshorylation of PSMA7 at Y106 residue prevented PSMA7 from proteasomal 

degradation. PSMA7 subunit level regulated by c-Abl  and tightly correlated with 

B C 
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proteasome abundance in cells (Li et al., 2015). Not only the proteasome abundance, but 

also PSMA7 is critical subunit for the activity of proteasomes. Tyr153 phosphorylation 

of PSMA7 by the c-Abl-Arg complex compromised proteasomal degradation. Non-

phosphorylation Y153F mutant of PSMA7 failed to proceed in G1/S phase in cell cycle 

implicating the another critical role in PSMA7 and its regulation for cellular homeostasis 

(Liu et al., 2006). 

	 HIF1a, reactive oxygen responsive transcription factor, is tightly regulated by 

proteasomal degradation under basal condition.  HIF1a contains two transactivation 

domains at its N-terminal region: 531-575 amino acid and 786-826 amino acid residues. 

PSMA7 identified an interaction partner of HIF1a and inhibited HIF1a transactivation 

therefore its function in both normoxia and hypoxia by inducing its proteasomal 

degradation (Cho et al., 2001). As an additional level of PSMA7-mediated control of 

cellular HIF1a level involved Calcineurin. Cancineurin binding to PSMA7 attenuated 

HIF1a transactivation (Li et al., 2011).  

 

 An endocytic membrane tranport protein, RAB7 was identified as binding partner 

of PSMA7 through its C-terminal region.  PSMA7-RAB7 interaction suggested a central 

regulatory role of PSMA7 in RAB7-associated endocytic membrane recruitment and 

transport regardless from proteasomal function of PSMA7 (Dong et al., 2004).  

 

In addition to its core structure that participates in the structure of the 20S 

proteasome, PSMA7 contains a protruding C-terminus that is available for protein-protein 

interactions. Giving the high variety of the identified interaction partners, PSMA7 shown 

to be involved in various cellular processes. Table 1.1.4 1 summerizes the identified 

interaction partners of PSMA7 by using various technics. 
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Table 1.1.4 1: Reported PSMA7 interactors. 

 
Interactor 

 
Experimental System 

 
Reference 

ABL1 Affinity Capture-Western (Liu et al., 2006) 
ABL1 Co-fractionation (Liu et al., 2006) 
ABL1 Affinity Capture-Western (Liu et al., 2006) 
ABL1 Biochemical Activity (Liu et al., 2006) 
ABL1 Affinity Capture-Western (Li et al., 2015) 
ABL2 Affinity Capture-Western (Liu et al., 2006) 
ABL2 Biochemical Activity (Liu et al., 2006) 

ADRM1 Co-fractionation (Wan et al., 2015) 
AIMP1 Affinity Capture-Western (Tandle et al., 2009) 

AMBRA1 Affinity Capture-MS (Antonioli et al., 2014a) 
AMFR Affinity Capture-MS (Christianson et al., 2012) 
AP3M1 Co-fractionation (Kristensen et al., 2012) 

APP Reconstituted Complex (Oláh et al., 2011) 
BAG3 Affinity Capture-MS (Chen et al., 2013) 

BARD1 Two-hybrid (Woods et al., 2012) 
BRCA1 Affinity Capture-Western (Li et al., 2015) 
BRCA1 Far Western (Li et al., 2015) 
BRCA1 Biochemical Activity (Li et al., 2015) 
BRCA1 Affinity Capture-MS (Ertych et al., 2016) 
CAPN10 Two-hybrid (Wang et al., 2011) 
CEP85 Affinity Capture-MS (Blomen et al., 2015) 
COPS5 Affinity Capture-MS (Bennett et al., 2010) 
CUL1 Reconstituted Complex (Bloom et al., 2006) 
CUL1 Affinity Capture-MS (Bennett et al., 2010) 
CUL3 Affinity Capture-Western (Shen et al., 2007) 
CYLD Affinity Capture-MS (Elliott et al., 2016) 
ECSCR Affinity Capture-Western (Ikeda et al., 2009a) 
ECSCR Affinity Capture-Western (Ikeda et al., 2009a) 
EGFR PCA (Deribe et al., 2009) 

ERRFI1 Two-hybrid (Ying et al., 2010) 
EXOSC9 Co-fractionation (Wan et al., 2015) 
FKBP8 Affinity Capture-MS (Nakagawa et al., 2007) 

FN1 Affinity Capture-MS (Humphries et al., 2009) 
HECW2 Affinity Capture-MS (Lu et al., 2013) 
HIF1A Reconstituted Complex (Cho et al., 2001) 
HIF1A Affinity Capture-Western (Cho et al., 2001) 
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HIF1A Affinity Capture-Western (Yi et al., 2008) 
HUWE1 Affinity Capture-MS (Thompson et al., 2014) 
IKBKE Affinity Capture-MS (Ewing et al., 2007) 
INSIG1 Reconstituted Complex (Ikeda et al., 2009b) 
INSIG2 Reconstituted Complex (Ikeda et al., 2009b) 
IQCB1 Affinity Capture-MS (Sang et al., 2011) 
ISG15 Affinity Capture-MS (Zhao et al., 2005) 
ITGA4 Affinity Capture-MS (Byron et al., 2012) 

MAPK4 Affinity Capture-MS (Varjosalo et al., 2013) 
MAPK6 Affinity Capture-MS (Varjosalo et al., 2013) 
MAVS Affinity Capture-Western (Jia et al., 2009) 
MAVS Affinity Capture-Western (Jia et al., 2009) 
MCM2 Affinity Capture-MS (Drissi et al., 2015) 
MDM2 Co-fractionation (Kulikov et al., 2010) 
MDM2 Affinity Capture-Western (Kulikov et al., 2010) 
MDM2 Affinity Capture-Western (Sdek et al., 2005) 

MRPS16 Co-fractionation (Havugimana et al., 2012) 
MYC Affinity Capture-MS (Koch et al., 2007) 

NEDD8 Affinity Capture-MS (Norman and Shiekhattar, 
2006) 

NME2 Affinity Capture-MS (Ewing et al., 2007) 
NOD1 Affinity Capture-Western (Yang et al., 2013) 
NOD1 Affinity Capture-Western (Yang et al., 2013) 
NOS2 Affinity Capture-MS (Foster et al., 2013) 

NTRK1 Affinity Capture-MS (Emdal et al., 2015) 
P4HB Co-fractionation (Wan et al., 2015) 

PARK2 Affinity Capture-MS (Sarraf et al., 2013) 
PLK1 Affinity Capture-MS (Feng et al., 2001) 
PLK1 Affinity Capture-Western (Feng et al., 2001) 
POMP Co-fractionation (Fricke et al., 2007) 
POMP Two-hybrid (Fricke et al., 2007) 
POMP Affinity Capture-Western (Hirano et al., 2006) 

PPP3R1 Two-hybrid (Li et al., 2011) 
PPP3R1 Affinity Capture-Western (Li et al., 2011) 
PPP3R1 Affinity Capture-Western (Li et al., 2011) 

PR39 Affinity Capture-Western (Gao et al., 2000) 
PR39 Affinity Capture-Western (Gao et al., 2000) 

PSMA1 Two-hybrid (Apcher et al., 2004) 
PSMA1 Affinity Capture-Western (Apcher et al., 2004) 
PSMA1 Affinity Capture-Western (Apcher et al., 2004) 
PSMA1 Two-hybrid (Jayarapu and Griffin, 2004) 
PSMA1 Co-fractionation (Tipler et al., 1997) 
PSMA1 Two-hybrid (Fricke et al., 2007) 
PSMA1 Co-fractionation (Havugimana et al., 2012) 
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PSMA1 Co-fractionation (Kristensen et al., 2012) 
PSMA1 Affinity Capture-MS (Huttlin et al., 2015) 
PSMA1 Co-fractionation (Wan et al., 2015) 
PSMA1 Affinity Capture-MS (Huttlin et al., 2017) 
PSMA2 Two-hybrid (Vinayagam et al., 2011) 
PSMA2 Affinity Capture-MS (Claverol et al., 2002) 
PSMA2 Two-hybrid (Apcher et al., 2004) 
PSMA2 Affinity Capture-Western (Apcher et al., 2004) 
PSMA2 Affinity Capture-MS (Bousquet-Dubouch et al., 

2009) 
PSMA2 Two-hybrid (Fricke et al., 2007) 
PSMA2 Co-fractionation (Havugimana et al., 2012) 
PSMA2 Co-purification (Froment et al., 2005) 
PSMA2 Affinity Capture-MS (Froment et al., 2005) 
PSMA2 Co-fractionation (Kristensen et al., 2012) 
PSMA2 Co-fractionation (Wan et al., 2015) 
PSMA3 Two-hybrid (Vinayagam et al., 2011) 
PSMA3 Two-hybrid (Apcher et al., 2004) 
PSMA3 Affinity Capture-Western (Apcher et al., 2004) 
PSMA3 Affinity Capture-Western (Apcher et al., 2004) 
PSMA3 Affinity Capture-Western (Nandi et al., 1997) 
PSMA3 Two-hybrid (Fricke et al., 2007) 
PSMA3 Co-fractionation (Havugimana et al., 2012) 
PSMA3 Two-hybrid (Wang et al., 2011) 
PSMA3 Co-fractionation (Kristensen et al., 2012) 
PSMA3 Co-fractionation (Wan et al., 2015) 
PSMA4 Two-hybrid (Apcher et al., 2004) 
PSMA4 Affinity Capture-Western (Apcher et al., 2004) 
PSMA4 Affinity Capture-Western (Apcher et al., 2004) 
PSMA4 Co-fractionation (Apcher et al., 2004) 
PSMA4 Two-hybrid (Jayarapu and Griffin, 2004) 
PSMA4 Affinity Capture-Western (Nandi et al., 1997) 
PSMA4 Two-hybrid (Fricke et al., 2007) 
PSMA4 Co-fractionation (Havugimana et al., 2012) 
PSMA4 Co-fractionation (Kristensen et al., 2012) 
PSMA4 Co-fractionation (Wan et al., 2015) 
PSMA5 Affinity Capture-Western (Apcher et al., 2004) 
PSMA5 Co-fractionation (Havugimana et al., 2012) 
PSMA5 Co-fractionation (Kristensen et al., 2012) 
PSMA5 Co-fractionation (Wan et al., 2015) 
PSMA6 Two-hybrid (Apcher et al., 2004) 
PSMA6 Two-hybrid (Apcher et al., 2004) 
PSMA6 Affinity Capture-Western (Apcher et al., 2004) 
PSMA6 Affinity Capture-Western (Apcher et al., 2004) 
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PSMA6 Two-hybrid (Jayarapu and Griffin, 2004) 
PSMA6 Two-hybrid (Fricke et al., 2007) 
PSMA6 Two-hybrid (Fricke et al., 2007) 
PSMA6 Co-fractionation (Havugimana et al., 2012) 
PSMA6 Co-fractionation (Kristensen et al., 2012) 
PSMA6 Co-fractionation (Wan et al., 2015) 
PSMA6 Reconstituted Complex (Ishii et al., 2015) 
PSMA7 Two-hybrid (Fricke et al., 2007) 
PSMA8 Co-fractionation (Havugimana et al., 2012) 
PSMB1 Two-hybrid (Jayarapu and Griffin, 2007) 
PSMB1 Co-fractionation (Havugimana et al., 2012) 
PSMB1 Co-fractionation (Kristensen et al., 2012) 
PSMB1 Affinity Capture-Western (Yuan et al., 2013) 
PSMB1 Co-fractionation (Wan et al., 2015) 
PSMB1 Affinity Capture-MS (Huttlin et al., 2017) 
PSMB2 Co-fractionation (Havugimana et al., 2012) 
PSMB2 Co-fractionation (Kristensen et al., 2012) 
PSMB2 Co-fractionation (Wan et al., 2015) 
PSMB2 Affinity Capture-MS (Huttlin et al., 2017) 
PSMB3 Co-fractionation (Havugimana et al., 2012) 
PSMB3 Co-fractionation (Kristensen et al., 2012) 
PSMB3 Co-fractionation (Wan et al., 2015) 
PSMB3 Affinity Capture-MS (Huttlin et al., 2017) 
PSMB4 Co-fractionation (Havugimana et al., 2012) 
PSMB4 Co-fractionation (Kristensen et al., 2012) 
PSMB4 Affinity Capture-MS (Huttlin et al., 2015) 
PSMB4 Co-fractionation (Wan et al., 2015) 
PSMB4 Affinity Capture-MS Hein MY (2015) 
PSMB4 Affinity Capture-MS (Huttlin et al., 2017) 
PSMB5 Co-fractionation (Havugimana et al., 2012) 
PSMB5 Co-fractionation (Kristensen et al., 2012) 
PSMB5 Co-fractionation (Wan et al., 2015) 
PSMB5 Affinity Capture-MS (Hein et al., 2015) 
PSMB6 Co-fractionation (Havugimana et al., 2012) 
PSMB6 Co-fractionation (Kristensen et al., 2012) 
PSMB6 Co-fractionation (Wan et al., 2015) 
PSMB7 Co-fractionation (Havugimana et al., 2012) 
PSMB7 Co-fractionation (Kristensen et al., 2012) 
PSMB7 Affinity Capture-MS (Huttlin et al., 2015) 
PSMB7 Co-fractionation (Wan et al., 2015) 
PSMB7 Affinity Capture-MS (Huttlin et al., 2017) 
PSMB8 Co-fractionation (Havugimana et al., 2012) 
PSMB8 Co-fractionation (Wan et al., 2015) 
PSMB9 Two-hybrid (Jayarapu and Griffin, 2007) 
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PSMB9 Two-hybrid (Fricke et al., 2007) 
PSMB9 Affinity Capture-MS (Huttlin et al., 2015) 
PSMB9 Co-fractionation (Wan et al., 2015) 
PSMB9 Affinity Capture-MS (Huttlin et al., 2017) 
PSMC1 Co-fractionation (Havugimana et al., 2012) 
PSMC1 Co-fractionation (Wan et al., 2015) 
PSMC2 Co-fractionation (Havugimana et al., 2012) 
PSMC2 Co-fractionation (Wan et al., 2015) 
PSMC3 Co-fractionation (Havugimana et al., 2012) 
PSMC3 Co-fractionation (Wan et al., 2015) 
PSMC4 Co-fractionation (Havugimana et al., 2012) 
PSMC4 Co-fractionation (Wan et al., 2015) 
PSMC5 Co-fractionation (Havugimana et al., 2012) 
PSMC5 Co-fractionation (Wan et al., 2015) 
PSMC6 Co-fractionation (Havugimana et al., 2012) 
PSMC6 Co-fractionation (Wan et al., 2015) 
PSMD1 Co-fractionation (Garrett et al., 2004) 
PSMD1 Co-fractionation (Havugimana et al., 2012) 
PSMD1 Co-fractionation (Wan et al., 2015) 
PSMD11 Co-fractionation (Havugimana et al., 2012) 
PSMD11 Co-fractionation (Wan et al., 2015) 
PSMD12 Co-fractionation (Havugimana et al., 2012) 
PSMD12 Co-fractionation (Wan et al., 2015) 
PSMD13 Affinity Capture-MS (Ewing et al., 2007) 
PSMD13 Co-fractionation (Havugimana et al., 2012) 
PSMD13 Co-fractionation (Wan et al., 2015) 
PSMD14 Co-fractionation (Havugimana et al., 2012) 
PSMD14 Affinity Capture-MS (Wang et al., 2007) 
PSMD2 Co-fractionation (Havugimana et al., 2012) 
PSMD2 Co-fractionation (Wan et al., 2015) 
PSMD3 Co-fractionation (Havugimana et al., 2012) 
PSMD4 Co-fractionation (Hamazaki et al., 2007) 
PSMD4 Co-fractionation (Liu et al., 2006) 
PSMD4 Co-fractionation (Havugimana et al., 2012) 
PSMD4 Co-fractionation (Wan et al., 2015) 
PSMD5 Co-fractionation Havugimana PC (2012) 
PSMD5 Co-fractionation (Wan et al., 2015) 
PSMD6 Co-fractionation Thompson HG (2004) 
PSMD6 Co-fractionation (Havugimana et al., 2012) 
PSMD6 Co-fractionation (Wan et al., 2015) 
PSMD7 Co-fractionation Thompson HG (2004) 
PSMD7 Co-fractionation (Havugimana et al., 2012) 
PSMD7 Co-fractionation (Wan et al., 2015) 
PSMD8 Co-fractionation (Havugimana et al., 2012) 
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PSME1 Co-fractionation (Havugimana et al., 2012) 
PSME3 Co-fractionation (Havugimana et al., 2012) 
PSME4 Co-fractionation (Kristensen et al., 2012) 
PSMF1 Two-hybrid (Wang et al., 2011) 
PSMG1 Affinity Capture-Western (Hirano et al., 2006) 
PSMG3 Affinity Capture-Western (Hirano et al., 2006) 
PYCRL Co-fractionation (Kristensen et al., 2012) 
RAB7A Affinity Capture-Western (Dong et al., 2004) 
RAB7A Affinity Capture-Western (Dong et al., 2004) 

RAD23A Affinity Capture-MS (Scanlon et al., 2009) 
RB1 Affinity Capture-Western (Sdek et al., 2005) 

RBM3 Co-fractionation (Havugimana et al., 2012) 
RMND5B Affinity Capture-MS (Boldt et al., 2016) 
RNF185 Affinity Capture-MS (Iioka et al., 2007) 
SAMD1 Co-fractionation (Havugimana et al., 2012) 
SHFM1 Affinity Capture-MS (Wei et al., 2008) 
SLX1B Affinity Capture-MS (Svendsen et al., 2009) 

SNRPA1 Co-fractionation (Havugimana et al., 2012) 
SPTBN1 Co-fractionation (Havugimana et al., 2012) 
SYVN1 Affinity Capture-MS (Christianson et al., 2012) 
TAT1 Affinity Capture-Western (Apcher et al., 2003) 

TBXA2R Affinity Capture-Western (Sasaki et al., 2007) 
TBXA2R Two-hybrid (Sasaki et al., 2007) 
TBXA2R Two-hybrid (Nakahata et al., 2007) 
TERF1 Affinity Capture-MS (Giannone et al., 2010) 
TIMP2 Affinity Capture-MS (Ewing et al., 2007) 

TSC22D2 Two-hybrid (Li et al., 2016) 
UBC Affinity Capture-MS (Matsumoto et al., 2005) 

UBQLN1 Affinity Capture-Western (Lim et al., 2009) 
UCHL5 Affinity Capture-MS (Yao et al., 2008) 
UCHL5 Co-fractionation (Wan et al., 2015) 
VCAM1 Affinity Capture-MS (Humphries et al., 2009) 

VCP Two-hybrid (Wang et al., 2011) 
 

 The network of PSMA7 and its reported interactors underlines that PSMA7 has 

mainly involved in proteasome complex. However, it was also reported to interacted with 

various proteins showing that has key role in differential cellular mechanisms. The 

PSMA7 interaction network was depicted in Figure 1.1.4 2 using BioGRID software.   
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Figure 1.1.4 2: PSMA7 interaction network was obtained by using BioGRID software. 

 

  

Due to its involvement of various cancer types ranging from the lung cancer to 

colorectal cancer, as well as its critical role in innate immunity it is emerging to 

understand the molecular details behind the interaction of PSMA7 and its partners under 

different cellular and environmental conditions.  
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1.2 AUTOPHAGY 

 

 

Autophagy classified in three main types: that are macroautophagy, 

microautophagy and chaperon-mediated autophagy (CMA). These three different types 

of autophagy share common feature as final step of degradation targets are carried to the 

lysosomes but they differ in the process of delivery to the lytic organelles. 

 

 In CMA, cytosolic proteins are recognized through their pentapeptide signature 

motif (KFERQ) by a well known chaperon protein called heat shock 70 kDa protein 

(HSC70). After recognition, HSC70 protein binds to lysosomal-associated membrane 

protein 2A (LAMP2A). The degradation targets subsequently gets unfolded  and 

translocated to the lysosomal lumen for degradation (Susmita Kaushik and Ana Maria 

Cuervo, 2013). During microautophagy, following  direct engulfment of cargo, the 

cytosolic content is sequestered by a small invagination of the lysosomal membrane that 

pinches off into lumen (Li et al., 2012). The best studied type of autophagy is 

macroautophagy (hereafter called autophagy). Autophagy is characterized by the 

engulfment of differential degradation targets by a double-membrane structure (also 

called as isolation membrane) as a portion of cytoplasm that enclosed to form 

autophagosomes (Lamb et al., 2013). Mature autophagosomes fuse with lytic organelles 

to form autolysosomes as a consequence degradation occurs by the action of hydrolases. 

Following degradation, autophagy provides molecular building blocks and supply energy 

during cellular stress conditions. 
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Figure 1.2 1: The schematic representation of sequential stages of autophagy mechanism. 

 

 

Unraveling the molecular mechanisms of autophagy process has gained 

acceleration following the initial discovery of approximately 35 autophagy-related 

(ATG) genes from genetic studies in yeast (Nakatogawa et al., 2007). Later on, it is 

understood that mammals have orthologs for most of the yeast ATG proteins, as well as 

producing some additional factors specific to higher eukaryotes. The autophagic cascade 

has been divided into distinct stages: Upstream regulation, initiation/nucleation, 

elongation and closure, and autophagosome-lysosome fusion (Detailed representation 

given in Figure 1.2 1 and Figure 1.2 2). 

 

 

 

1.2.1   Upstream Regulation 

 

The regulation of autophagy is central to the understanding of its mechanisms and 

related diseases. Two main kinase systems known to regulate the autophagic pathway: 

the mTOR–ULK1 and the BECN1 complex. mTOR, or target of rapamycin (TOR in 

nonmammalian species), belongs to the family of phosphoinositide-3-kinase related 

kinase (PIKKs) (Sengupta et al., 2010). mTOR is so-called because it gives response to 

treatment with rapamycin and other kinase inhibitors that have been widely used to induce 

autophagy, even under nutrient-rich conditions (Hara et al., 1998). mTOR was found in 
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two different complexes, as complex 1 (mTORC1) and complex 2 (mTORC2). mTORC2 

is less sensitive to rapamycin. These two complexes contain several proteins in common 

(Deptor, GβL, and PRAS40), but other components are specific to mTORC1 (Raptor) or 

mTORC2 (Rictor, SIN1, and Protor). 

 

 
 

Figure 1.2 2: Molecular regulators involved in different stages of the autophagy process. 

 

 

The serine-threonine kinase TOR is key factor for integrating signaling pathways 

that regulate cellular homeostasis, by coordinating anabolic and catabolic processes upon 

nutrients, energy and oxygen availability, as well as growth factor signaling (Kroemer et 

al., 2010). When mTOR is activated in the presence of nutrients or growth factors, the 

mTORC1 complex gets associated with the ULK1/2 complex and hyperphosphorylates 

its ATG13 subunit. This hyperphosphorylation results in its inactivation and subsequent 

down-regulation of autophagy. The ULK complex contains the ULK1 or ULK2 kinase, 

ATG13, FIP200 (focal adhesion kinase-family interacting protein of 200 kDa) and 

ATG101, an ATG13-binding protein in mammals. When activated, mTORC1 favors cell 

growth by promoting translation via the phosphorylation of p70S6K (70 kDa polypeptide 

1 ribosomal protein S6 kinase) and of 4E-BP1, an inhibitor of translation initiation, 

therein inactivating it (Chen and Klionsky, 2011). 
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However when nutrient and growth factors are limiting in the environment 

mTORC1 is downregulated and gets disassociated from the ULK1/2 complex. This 

disassociation causes its subsequent dephosphorylation and its activation. Due to its 

autophosphorylation ability, the activated ULK1/2 phosphorylates itself and ATG13 and 

FIP200 to activate autophagy in cells. The active ULK1/2 remains attacted to the isolation 

membrane during nutrient deprivation. Eventhough the exact mechanism in which 

ULK1/2 activate downstream effectors and components of autophagic machinery is 

vogue, but it is shown that ULK1/2 can phosphorylate AMBRA1 (activating molecule of 

BECN1-regulated autophagy 1) which is a component of the VPS34 associated BECN1 

complex (Mehrpour et al., 2010).  

 

 

 

1.2.2 Initiation and Membrane Nucleation  

 

The nascent membrane, called the “isolation membrane”, wraps around a portion 

of cytoplasm that may contain soluble proteins, organelles, or aggregates to be degraded. 

Due to its crescent-shaped structure is also called the “phagophore” or “omegasome”, 

which is assembled at the phagophore assembly site (PAS). The source of the isolation  

membrane is still under debate, and both the ER, mitochondria, plasma membrane, and 

the Golgi apparatus have been implicated (Weidberg et al., 2011). A complex of class III 

phosphatidylinositol 3-kinases (PI3K) controls the nucleation step and the assembly of 

the initial phagophore formation. The core components of PI3K complex are also 

responsible for the catalytic activity of the complex and these are VPS34 (vacuolar protein 

sorting 34), VPS15, and a positive regulatory unit BECN1 (ATG6 in yeast). The cellular 

autophagy level in mammals mainly determined by the activity of this complex and is 

tightly regulated by positive and negative regulators. Mammalian cells host BECN 1-

binding proteins, including positive regulator ATG14L [also known as Barkor (BECN1-

associated ATG Key regulator)], Bif-1 and UVRAG, and negative regulators, Bcl-2, and 

Rubicon (Funderburk et al., 2010). Phosphatidylinositol-3-phosphate (PtdIns3P) is 

generated by VPS34 and constitutes an essential membrane component of the elongating 

isolation membrane. In mammalian cells, PtdIns3P molecules function as recruiting point 

for several autophagy-related proteins to the isolation membrane. WIPI1/2 (orthologous 

to yeast ATG18), DFCP1, and Alfy are recruited by PtdIns3P to the isolation membrane. 
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Subsequently, WIPI1/2 attenuates membrane rearrangements and positioning that 

ultimately facilitate the formation of autophagosomes by an unknown molecular 

mechanism (Mauthe et al., 2011). ATG9 (mATG9 or ATG9L1 in mammals) is the only 

transmembrane ATG protein. ATG9L1 functions in trafficking between the trans-Golgi 

network and endosomal systems in normal cells. However, as a response to starvation, it 

localizes to autophagic vacuoles. ATG9L1 was shown to carry lipids or to prepare a kind 

of platform for recruiting effectors to the phagophore (Young, 2006). 

 

 

 

1.2.3 Membrane Elongation and Closure  

 

Elongation of the isolation membrane relies on two ubiquitin-like conjugation 

reactions. In the first system, basically ATG12 protein is conjugated to ATG5 protein 

resulting in the formation of an oligomeric ATG5-ATG12 complex which then recruits 

ATG16L protein to promote elongation and the closure of the autophagosomes. ATG5-

ATG12 complex formation requires E1- and E2-like activities. ATG7 (an E1-like 

enzyme) protein activates ATG12 and the activated ATG12 then transferred to ATG10 

(E2-like enzyme) and then finally conjugated to ATG5 (Hanada et al., 2007). The 

ATG12-ATG5 conjugate then associates with ATG16L (ATG16 in yeast) by a non-

covalent binding similar to an E3-like enzyme.  

 

The other system contains the ATG8 (in yeast) proteins.  Mammalian ATG8 

homologues  are grouped into three subfamilies, that are, the LC3 subfamily (LC3A, B, 

and C), the GABARAP subfamily (GABARAP and GABARAPL1/GEC1), and 

GABARAPL2/GATE-16 (Shpilka et al., 2011). In mammals, LC3B functions as the main 

ATG8 homolog (Tanida et al., 2004). These LC3B proteins are synthesized as precursors 

and are critical components of autophagosome formation. ATG4 protein is involved in 

the LC3 procesing steps. A cystein protease ATG4 cleaves LC3 from its C-terminus and 

a glycine residue is exposed. Cleaved form of LC3 then activated by ATG7 (E1-like 

enzyme), activated LC3 transferred to ATG3 (E2-like enzyme), and finally through 

covalent binding linked to an amino group of phosphatidylethanolamine (PE). These LC3 

associated PE (LC3-PE) is utilized for major membrane phospholipid during autophagy  

by the ATG5-ATG12-ATG16L complex (Hanada et al., 2007). Conjugation of LC3-PE 
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to both sides of the isolation membrane enables them to act as surface receptors for the 

specific recruitment of other proteins. Lipidated LC3 proteins are also involved in 

membrane biogenesis of autophagosomes via their membrane fusion activity 

(Nakatogawa et al., 2007). ATG4 is also capable of cleaving LC3-PE therein by 

deconjugation, controls the active LC3 level as well as the size of the autophagosomes in 

cells. The autophagosomal closure results in a typical double-membraned vacuole 

formation and following closure ATG12-ATG5-ATG16L complex leaves the 

autophagosome, autophagosomal membrane associated LC3-PE molecules are placed in 

the cytosolic surface  and PE molecules are cleaved by ATG4 for recycling (Kabeya, 

2004).   

 

 

 

1.2.4 Autophagosome-Lysosome Fusion 

 

Following autophagosome formation, PE-LC3B protein attached to the outer 

membrane of the autophagosome is subjected to a cleavage reaction by ATG4 and 

released back to the cytosol for reuse (Kirisako et al., 2000). In mammalian cells, 

autophagosome and lysosome fusion event require the lysosomal membrane protein 

LAMP-2,  several SNARE proteins and the small GTPase Rab7 (Jager, 2004; Tanaka et 

al., 2000).   After fusion, the degradation of engulfed materials is mediated by a series of 

lysosomal acid hydrolases (Tanida et al., 2004). Then small molecule products of 

hydrolitic cleavage after degredation, particularly amino acids are transported back to the 

cytosol in order to be involved in protein synthesis and therein to support cellular 

functions during stress conditions. 

 

 

 

1.2.5    Autophagy Receptors: Ub Code for Selective Autophagy 

 

In the last decade, emerging evidence revealed that autophagy process is able to 

distinguish and direct specific cargo molecules to the lysosomes for further degradation 

steps. Based on the differences in the degradation targets, differents autophagy terms were 

coined to distinguish the mechanisms (Figure 1.2.5. 1). The best studied processes are 
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mitophagy: the selective removal of mitochondria (Okamoto et al., 2009), aggrephagy: 

removal of misfolded aggregates (Lamark and Johansen, 2012), xenophagy: the selective 

autophagy of pathogenic intracellular invaders (Wileman, 2013), and pexophagy: 

removal peroxisome by autophagy (Till et al., 2012).  Basically, the selective autophagy 

is ensured mainly by spesific adaptor proteins for each identified processes. Additionally, 

direct interactions between the core autophagy machinery and target molecules have been 

observed. 

 

 
 

Figure 1.2.5 1: Autophagic machinery selectively degrade cellular targets and 

invaders.(retrieved from (Stolz et al., 2014)). 

 

 

Recent findings in the field of ubiquitin, revealed that ubiquitin has a fundamental 

role in selective autophagy (Kirkin et al., 2009; Rogov et al., 2014). Degradation targets 

of autophagy might be spesifically labelled with ubiquitin.  The recognition of 

ubiquitinylated proteins during autophagy or the proteasome is mediated by ubiquitin 

receptors that are interacting with ubiquitin through non covalent binding by their 

ubiquitin-binding domains (UBD).  

 

p62/SQSMT1 (hereafter p62), is the first protein reported to have such an adaptor 

function (Pankiv et al., 2007) and observed in ubiquitin associated protein aggregates 

(Moscat and Diaz-Meco, 2009), was originally discovered as a scaffold in signaling 
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pathways regulating cell growth and proliferation. P62 contains a C-terminal ubiquitin-

binding domain (UBD) (Ciani et al., 2003) and a short LIR (LC3-interacting region) 

sequence responsible for LC3 interaction (Pankiv et al., 2007). Mice and Drosophila 

knockout studies revealed that p62 is an essential protein for proper aggregation of 

ubiquitin labelled proteins. Therefore play essentials role in the autophagic clearence of 

those aggregates (Komatsu et al., 2007; Nezis et al., 2008).   

 

 
 

Figure 1.2.5. 2: Autophagy receptors make bridges between selective cargo and 

autophagic machinery through their specialized interaction domains. (retrived from 

(Birgisdottir et al., 2013)). 

 

 

Similarly selective autophagy relies on its own recognition and binding capacity 

of autophagy receptors to intracellular ubiquitinated aggregates (p62, NBR1, OPTN, 

TOLLIP) (Kirkin et al., 2009; Korac et al., 2013; Lu et al., 2014; Pankiv et al., 2007), 
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bacterial invaders (p62, OPTN, NDP52) (Thurston, 2009; Wild et al., 2011; Zheng et al., 

2009), peroxisomes (NBR1) (Deosaran et al., 2013), mitochondria (OPTN, NDP52, 

Tax1BP1) (Lazarou et al., 2015; Sarraf et al., 2013; Wong and Holzbaur, 2014), or 

proteasomes (RPN10) (Marshall et al., 2015), and the material directed to 

autophagosomal membranes (Figure 1.2.5. 2). Importantly, based on the length and the 

type of the Ub chains,  ubiquitinated proteins tend to form aggregates, and thus become 

autophagy substrates (Meier et al., 2012; Morimoto et al., 2015). However, genetic 

disruption of the essential autophagy genes ATG5 or ATG7 results in the accumulation 

of Ub chains of different topology, indicating that any ubiquitin linkage type could serve 

as a degradation signal for autophagy (Riley et al., 2010).  

 

 

 

1.2.6   ATG5 

 

The discovery of ATG5 protein based on yeast studies. The mammalian homologue of 

the protein chacterized as an essential component of the autophagy pathway due to its 

involvement in autophagosomal membrane formation. It has been also identified that 

rather than membrane formation, calpain-cleaved short fragment of ATG5 implicated in 

non-autophagic but pro-apoptotic funstions suggesting that ATG5 is a key regulator 

between autophagy and apoptosis in the regulation of cell fate (Codogno and Meijer, 

2006; Yousefi et al., 2006).  ATG5, a core autophagy protein, involves five b-sheets and 

two a-helices structuraly. ATG5 is 275 amino acid long and composed of  Ubiquitin like 

domain 1 (Ub A) and 2 (Ub B), helix rich domain (HR) and N-terminal alpha helix 

domain (Matsushita et al., 2007) (shown in Figure 1.2.6 1). The involvement of ATG5 in 

autophagy pathway is strongly associated with its non-covalent binding to an other 

autophagy protein, ATG12 at K130 residue of ATG5. This ATG5-ATG12 complex is 

further bound to ATG16L through N-terminal region of ATG5 (Ohsumi and Mizushima, 

2004).  

 Not only the ATG12 and ATG16 proteins, but also other autophagy proteins 

identified as ATG5 partners in the regulation of autophagy. For example, selective 

autophagy receptor proteins OPTN (Bansal et al., 2018) and p62  (Fracchiolla et al., 

2016), LC3 and TECPR1 (Behrends et al., 2010) pointing out that, ATG5 plays a central 

role  due to its involvement in different stages of autophagy process. 
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Figure 1.2.6 1: Structural view of ATG5 protein (retrieved from (Matsushita et al., 2007) 

and modified). 

 

 

 Various knockout and knockdown studies in both in vitro and in vivo showed that 

ATG5 defficiency resulted in physiological and neurological defects further supported 

the essential role of ATG5 cellular and organismal homeostasis. ATG5 protein is one of 

the key protein through direct interaction regulating various cellular processes as well as 

involving different stages of autophagy by interacting various other autophagy proteins. 

Table 1.2.6 1 summerizes the identified interaction partners of ATG5 by using various 

technics ranging from yeast-two-hybrid to MS. 
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Table 1.2.6 1: Reported ATG5 interactors. 

 
Interactor 

 
Experimental System 

 
Reference 

ATG12 Affinity Capture-MS (Ewing et al., 2007) 
ATG12 Affinity Capture-MS (Behrends et al., 2010) 
ATG12 Affinity Capture-MS (Behrends et al., 2010) 
ATG12 Affinity Capture-MS (Chen et al., 2012) 

ATG16L1 Affinity Capture-MS (Behrends et al., 2010) 
ATG16L1 Affinity Capture-MS (Behrends et al., 2010) 
ATG16L1 Affinity Capture-MS (Chen et al., 2012) 
ATG16L1 Co-purification (Chen et al., 2012) 
ATG16L1 Affinity Capture-Western (Ravikumar et al., 2010) 
ATG16L1 Reconstituted Complex (Itoh et al., 2008) 
ATG16L1 Co-fractionation (Kristensen et al., 2012) 
ATG16L1 Affinity Capture-MS (Gammoh et al., 2013) 
ATG16L1 Co-crystal Structure (Otomo et al., 2013) 
ATG16L1 Co-fractionation (Wan et al., 2015) 
ATG16L1 Co-crystal Structure (Kim et al., 2015) 
ATG16L1 Two-hybrid (Kim et al., 2015) 
ATG16L1 Reconstituted Complex (Kim et al., 2015) 

ATG3 Affinity Capture-MS (Behrends et al., 2010) 
ATG3 Reconstituted Complex (Qiu et al., 2013) 
ATG3 Affinity Capture-MS (Huttlin et al., 2017) 
BCL10 Affinity Capture-Western (Paul et al., 2012) 

BCL2L1 Affinity Capture-Western (Yousefi et al., 2006) 
BSN Affinity Capture-Western (Okerlund et al., 2018) 

CALCOCO2 Reconstituted Complex (Fracchiolla et al., 2016) 
CAPN1 Biochemical Activity (Yousefi et al., 2006) 
CAPN2 Biochemical Activity (Yousefi et al., 2006) 
CAV1 Affinity Capture-Western (Chen et al., 2014) 
CAV1 Affinity Capture-Western (Chen et al., 2014) 

CCHCR1 Two-hybrid (Rolland et al., 2014) 
ELAVL1 Affinity Capture-RNA (Abdelmohsen et al., 2009) 
EXOC4 Affinity Capture-Western (Bodemann et al., 2011) 
FADD Reconstituted Complex (Pyo et al., 2005) 
FADD Affinity Capture-Western (Pyo et al., 2005) 
FADD Co-localization (Pyo et al., 2005) 
GNBL2 Co-localization (Erbil et al., 2016) 
GNBL2 Affinity Capture-Western (Erbil et al., 2016) 
GNBL2 Affinity Capture-MS (Erbil et al., 2016) 
GNBL2 Two-hybrid (Erbil et al., 2016) 

HTT Affinity Capture-Western (Filimonenko et al., 2010) 



27 
 

IKBIP Affinity Capture-MS (Huttlin et al., 2017) 
IMPDH2 Affinity Capture-MS (Ewing et al., 2007) 
KEAP1 Two-hybrid (Rolland et al., 2014) 

MAP1LC3B Affinity Capture-MS (Behrends et al., 2010) 
MAP1LC3C Affinity Capture-MS (Behrends et al., 2010) 

MEOX2 Two-hybrid (Rolland et al., 2014) 
OPTN Reconstituted Complex (Fracchiolla et al., 2016) 
OPTN Affinity Capture-Western (Bansal et al., 2018) 
OPTN Reconstituted Complex (Bansal et al., 2018) 

RB1CC1 Affinity Capture-Western (Gammoh et al., 2013) 
SIRT1 Affinity Capture-Western (Lee et al., 2008) 

SQSTM1 Reconstituted Complex (Fracchiolla et al., 2016) 
SQSTM1 Affinity Capture-Western (Fracchiolla et al., 2016) 

TAB2 Co-localization (Takaesu et al., 2012) 
TAB3 Co-localization (Takaesu et al., 2012) 

TECPR1 Affinity Capture-MS (Behrends et al., 2010) 
TECPR1 Affinity Capture-MS (Behrends et al., 2010) 
TECPR1 Affinity Capture-MS (Chen et al., 2012) 
TECPR1 Affinity Capture-MS (Chen et al., 2012) 
TECPR1 Affinity Capture-Western (Chen et al., 2012) 
TECPR1 Affinity Capture-Western (Chen et al., 2012) 
TECPR1 Co-localization (Chen et al., 2012) 
TECPR1 Co-purification (Chen et al., 2012) 
TECPR1 Co-crystal Structure (Kim et al., 2015) 
TECPR1 Two-hybrid (Kim et al., 2015) 
TECPR1 Reconstituted Complex (Kim et al., 2015) 
TEKT4 Two-hybrid (Rolland et al., 2014) 

TKT Affinity Capture-MS (Behrends et al., 2010) 
VCP Two-hybrid (Rolland et al., 2014) 

WDFY3 Affinity Capture-Western (Filimonenko et al., 2010) 
WDFY3 Reconstituted Complex (Filimonenko et al., 2010) 
WIPI2 Affinity Capture-Western (Dooley et al., 2014) 
WIPI2 Affinity Capture-MS (Huttlin et al., 2015) 
WIPI2 Affinity Capture-MS (Huttlin et al., 2017) 
XPO1 Affinity Capture-MS (Kırlı et al., 2015) 

 

 

 

The network of ATG5 and its reported interactors underlines that ATG5 has a key 

position in the hearth of autophagy regulation by direct interaction with OPTN, p62, 
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ATG12, ATG16L1, TECPR1 and ATG3. The ATG5 interaction network was depicted in 

Figure 1.2.6 1 using BioGRID software.   

 

 
 

 

Figure 1.2.6 2: ATG5 interaction network was obtained by using BioGRID software. 
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1.3 THE UPS – AUTOPHAGY CONNECTION 

 

 

The ubiquitin-proetasome system and autophagy are major and evolutionarily conserved 

intracellular catabolic pathways and recycling systems from yeast to man. The molecular 

details behind the two systems revealed that their mode of actions are not interdependent. 

However, recent studies also showed that there are identified several direct and indirect 

connections and crosstalks between the two degradative systems. Mitophagy is a good 

biological example in interdependency between the two system is obvious and best 

studied. Rather than that, there are other various examples of overlap and communication 

in cells. In the following chapter, I will explain these connections and communications 

and summarize the molecular fine-details behind them. 

 

 

 

1.3.1. Compensatory Mechanisms Between the UPS and Autophagy 

 

Initial observations about the understanding of possible links between the ubiquitin-

proteasome system and autophagy showed that inhibiton of one system allowed the 

compensatory upregulation fort he other degradative system. By this way, cellular 

homeostasis is maintained. Accumulation of potentially toxic cellular materials following 

inhibition of one degradative system required to be removed by the other system. In this 

section, I will compile the literature and give examples where functional compensatory 

mechanisms are observed (represented in Figure 1.3.1). 

 

 Proteasomal activity blockage by utilization of various chemicals, including 

MG132, bortezomib and lactacystine (Fan et al., 2018; Selimovic et al., 2013; Wu et al., 

2008) or by genetic approaches (Demishtein et al., 2017) enhanced cellular autophagy 

levels. For instance, bortezomib-induced proteasome activity inhibition resulted an 
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upregulation of several autophagy genes such as ATG5 and ATG7, and therefore induced 

autophagy in various different cell types: prostate cancer cells and mouse embryonic 

fibroblasts (MEFs). Interestingly, phosphorylation of eukaryotic translation initiation 

factor-2 alpha (eIF2α) was suggested as a key modification in which autophagy gene 

upregulation relies on an ER stress-dependent pathway (Zhu et al., 2010). 

 

 

 
 

Figure 1.3.1: Schematic representation of compensatory actions between the UPS and 

autophagy. 

 

 

In the same direction by the others, proteasome inhibition regulated autophagy 

gene expression was linked Nrf1-dependent and -independent pathways as an alternative 

fort he ER-stress dependent pathways. Inhibition of proteasome activity was correlated 

with the p62 and GABARAPL1 protein upregulation prior to autophagy activation in SH-

SY5Y neuroblastoma cells through Nrf1-dependent and -independent pathways (Sha et 

al., 2018). By using MG132 as a proteasome inhibitor, in human SHG-44 glioma cells, 

decreased cell proliferation, cell cycle arrest at G2/M phase and enhanced autophagic 

activity  through increased  Beclin1 and LC3 protein levels were observed (Ge et al., 

2009).  
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Proteasomal activity impairment was also associated with AMPK activation-

mediated enhanced autophagic activity. There are accumulating evidence supporting that 

AMPK and mTORC1 are the two sensors for proteasomal activity loss.  In various cell 

types including, immun macrophages, skin epitelial and endothelial cells, chemical-

stimulated proteasome inhibition resulted in AMPK activation (Jiang et al., 2015b; Xu et 

al., 2012). AMPK activity is controlled by the upstream modulators glycogen synthase 

kinase-3β (GSK-3β) and CaMKKβ in cancer cells. Loss of proteasome activity in some 

cancer cells resulted deregulation of GSK-3β activity and subsequently upregulation of 

AMPK activity and autophagy (Sun et al., 2016). On the other hand, Torin-1- or 

rapamycin-mediated inhibition of mTORC1 stimulated long lived protein degradation 

through activation of both UPS and autophagy (Zhao et al., 2015; Zhao and Goldberg, 

2016). As another example, in retina pigment epithelial cells, lactasistin and epoxomicin-

induced proteasome inhibition resulted in blockage of the AKT-mTOR pathway and 

autophagy induction (Tang et al., 2014).  

 

Conversely, decrease in cellular autophagy levels associated with the enhanced 

proteasome activity. By utilizing inhibitors and genetical modification of ATG genes, 

cellular autophagy level is restricted in colon cancer cells. This attenuated autophagic 

activity  enhanced protein expression of proteasomal subunits, including one of the 

catalytic subunit, PSMB5 and consequently upregylated proteasome activity (Wang et 

al., 2013). In line with this observation, 3-MA-stimulated inhibition of autophagy resulted 

in enhanced chemotrypsin-like activity of proteasomes in cultured neonatal rat ventricular 

myocytes (Tannous et al., 2008). Proteasomes can be also selective degradation targets 

for autophagic machinery. Autophagic degradation of proteasomes is called proteophagy 

and will be explained in detail in the following sections. Autophagy-inhibition regulated 

gain in the proteasomal peptidase activity could be linked to the accumulation of 

proteasomes (Cuervo et al., 1995; Marshall et al., 2015). On the other hand, in several 

different cases, following autophagy impairment linked to the accumulation of 

ubiquitylated subsrates. In several independent work, it was observed that ubiquitylated 

materials were accumulated in especially brain and the liver of the  ATG5 or ATG7 

knockout mice (Hara et al., 2006; Komatsu et al., 2005, 2006; Riley et al., 2010). 

Supporting data also came from other experimental animal models such as Drosophila 
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(Nezis et al., 2008). In the similar direction,  siRNA-mediated knockdown of ATG7 and 

ATG12 in HeLa cells resulted in the accumulation of ubiquitylated UPS substrates such 

as p53 and b-catenine as an indication of UPS impairment (Korolchuk et al., 2009a).  

 

Due to being degradation targets of ubiquitylated substratees for both the UPS and 

autophagy, ubiquitylation is a key and common component by directing modified 

substrates to the destined degradation system and therefore granted to the crosstalk 

between the two system (Dikic, 2017; Korolchuk et al., 2010). Based on this hypothesis, 

the type of the polyubiquitin chains are the key determinants. For instance, substrates that 

are conjugated with the K48-linked polyubiquitin chains are predominantly degraded by 

the proteasomes. In contrast, substrates that are conjugated to K63-linked polyubiquitin 

chains are degraded by the autophagic membranes. As another ubiquitin associated link 

between the UPS and autophagy is p62 protein due to its binding capacity to ubiquitylated 

targets. P62 protein can bind to the both K48- and K63-linked polyubiquitin linkages, yet 

p62 exhibits higher preference for K63-linked polyubiquitin chains is (Long et al., 2008; 

Tan et al., 2008; Wooten et al., 2008). Giving the importance of dual binding capacity of 

p62, it has a potent inhibitory effects on proteasomes. In addition to p62, another key 

determinant for the faith of the protein is p97/VCP which is involved in UPS and ERAD-

related pathways. P97/VCP overexpression deregulated p62 binding to the ubiquitylated 

materials suggesting that the two proteins are in competition for ubiquitin binding. From 

another perspective, autophagy inhibition resulted in p62 accumulation and sequestration 

of the proteins that are p97/VCP targets (Korolchuk et al., 2009a, 2009b). 

 

To conclude, if there is a defect in one of the two degradation mechanisms, the 

other system is upregulated in order to compensate failure in the elimination of 

ubiquitylated protein substrates. As explaine above, the success rate of compensatory 

mechanism mostly variable from one cell type to the other as well as cellular conditions.  
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1.3.2 Interplay Between the UPS-Autophagy in the Selective Clearence of Cytosolic 

Proteins 

 

Folding and unfolding cycle and 3 dimentional structure of the proteins are the main 

characteristics for the function of proteins. Newly synthesized proteins with the help of 

chaperone and co-chaperone proteins, including Hsp40, Hsp70, Hsp90 and Cdc37 

become folded. Several stress sources such as heat shock, organellar stress, oxidative 

stress might result in the accumulation of unfolded/misfolded proteins. These kind of 

folding problems were linked to several disease-related mutations in the proteins. Hsp40-

Hsp70 are responsible fort he control of the protein folding at early stages and in contrast 

Hsp90 has role in later steps. Any potential defects in refolding process of the proteins 

cause dysfunctional or malfunctional, therefore potentially toxic aggregates, responsible 

for the upregulation of stress-related pathways, including cell death. These toxic protein 

accumulations are controlled by the active removal processes.  

 

Chaperone proteins recognize misfolded or unfolded proteins and direct them 

proteasomal degradation if they exhibit soluble characteristic feature. These chaperone 

proteins can also interact with E3 ligases to regulated ubiquitylation pattern of the 

aggregates. For example Hsp70 and Hsp90 can bind CHIP and stimulates formation of 

K48-linked polyubiquitin linkages onto unfolded or misfolded proteins. Additionally, 

BAG family proteins are also in the desicion system for degradation of the proteins with 

folding problems. BAG1 protein shown to bind Hsp70 chaperone complex and stimulates 

proteasomal degradation of the targets.  

 

 On the other hand, to be become removed, insoluble and/or aggregate-prone 

proteins form aggresomes in cells. There have been identified several E3 ligases including 

CHIP, Parkin, HRD1 and TRIM50 (Mao et al., 2017; Mishra et al., 2009; Olzmann et al., 

2007; Zhang and Qian, 2011) involved in the ubiquitylation cascade, and then ubiquitin-

modified aggregated proteins are transported to microtubule organizing centers (MTOC) 

in order to form aggresomes (Johnston et al., 1998; Kopito, 2000). Formation of 

aggresome is complex and regulated process. HDAC6 protein was shown to be one of the 

key regulator of  aggresome formation (Matthias et al., 2008). HDAC6 can bind directly 

to K63-linked polyubiquitin linkages and at the same time dynein proteins (Olzmann et 

al., 2007). By bridging ubiquitylated aggregates with dynein, HDAC6 stimulates dynein-
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mediated transport of ubiquitinated substrates to the aggresome, and therefore critical for 

the clearance of aggresomes by autophagy (Iwata et al., 2005; Kawaguchi et al., 2003). 

HDAC6 has an important role in the autophagosome formation besides its role in in 

aggresome formation providing a link between K63-based ubiquitylated aggregates and 

dynein to facilitate dynein-mediated transport towards MTOC (Lee et al., 2010; Matthias 

et al., 2008; Olzmann et al., 2007). These autophagosomes contain ubiquitinated proteins, 

demonstrating a role for HDAC6 in the maturation of autophagosomes involved in 

selective autophagy of misfolded proteins. The role of HDAC6 in this process is 

toregulate the actin cytoskeleton (Lee et al., 2010; Yao, 2010) ISG15 has recently been 

shown to bind to HDAC6 and p62, and to promote degradation of aggregated proteins via 

aggrephagy  (Nakashima et al., 2015).  

 

Aggregation could also be important for function of a protein such as p62 which 

is found in almost all protein aggregates and continuously degraded by autophagy  though 

direct interaction with LC3B (Ichimura et al., 2008; Lamark and Johansen, 2012). 

Through direct interaction with both ubiquitylated aggregates and LC3B, serve as 

aggrephagy receptor to facilitate autophagic clearance. ALFY (autophagy-linked FYVE 

protein), and NBR1 (neighbor of BRCA1 gene) similarly to p62, are general contents of 

protein inclusions and are believed to be there because they are involved in both their 

construction and their degradation by autophagy (Clausen et al., 2010; Filimonenko et al., 

2010). 

Alternatively, chaperone protein Hsp70 can cooporate with BAG3 and CHIP 

proteins for aggresome formation (Zhang and Qian, 2011). As in the case of HDAC6, 

BAG3 can binds to dynein provide transportion of substrates to aggresomes. But 

differentially, BAG3-dependent aggresome formation is dispensible for CHIP ligase 

activity. Because BAG3 does not require ubiquitylation of the substrates for their 

transportation (Gamerdinger et al., 2011; Zhang and Qian, 2011). On the other hand, 

BAG3-dependent system requires E3 ligases for autophagic clearence of aggresomes. 
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Figure 1.3.2 1: Interplay between the UPS and autophagy system against ubiquitylated 

misfolded proteins. 

 

 Recent finding about the molecular details of neurodegenerative diseases 

supplemented various examples showing the interplay between the UPS and autophagy 

in the removal of disease-causing anbormal proteins (Juenemann et al., 2013). One of the 

best exaple is Huntington Disease (HD). Poly-glutamine expasions in a protein called 

Huntingtin (Htt) are the cause of the HD. These poly-glutamine expansions result in 

abnormal organization and aggregation of the Htt protein. Htt protein can be modified by 

both K48- or K63-linked polyubiquitin chains (Bhat et al., 2014). Therefore, based on its 

ubiquitylation pattern, both UPS and autophagy systems can eliminate mutant Htt in 

different conditions. For instance, K63-linked polyubiquitin decorated mutant Htt 

aggregates predominantly cleared by autophagy (Menzies et al., 2015; Renna et al., 

2010). On the other hand, ectopically expression of K48-specific E3 ligase Ube3a, drives 

mutant proteins for proteasomal degradation. In line with this, organismal E3 ligase level 

is deregulated with age. Therefor the attenuated level of E3 ligases in older experimental 

conditions favors for autophagic removal through enhanced accumulation of K63-linked 

polyubiquitins. Another molecular switch in the same context between the UPS and 

autophagy requires CHIP stimulating proteasomal degradation (Bhat et al., 2014; Jana et 

al., 2005). Furthermore, as another the switch between the UPS and selective autophagy 

is the availability of the cellular free ubiquitin pool through both synthesis and recycling 

(Clague et al., 2015).  
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1.3.3 Degradation of Proteasomes or Autophagy Components as a Cross Control 

Mechanism 

 

Along with this introduction part of the thesis, so far, UPS and autophagy were considered 

as independent, yet functionally complementary systems. However it is also possible that 

components of one system can be proteolytically degraded by the other system. For 

instance, there are a huge number of autophagy related proteins are regulated by the UPS 

in terms of stability, transcriptional regulation and function. On the other hand, 

autophagic membranes can engulf whole dysfunctional proteasomes spesifically. In this 

section, I will give examples about the cross control mechanisms that also contributes to 

the crosstalk and the interplay between the UPS and autophagy. 

 

 

 

1.3.3.1 Control of the Proteasome Abundance by the Autophagy 

 

Initial studies showed the localization of the proteasomes in lysosomes as an indication 

lysosome-associated degradation of proteasomes (Cuervo et al., 1995). Follow up studies 

in plant studies revealed that, 26S proteasomes can be degraded by lysosomal enzymes 

in the process of a specific form of selective autophagy, proteaphagy (Marshall et al., 

2015). In plants, RPN10 protein was suggested as selective proteaphagy receptor for the 

recruitment of ATG8-associated membranes. However, RPN10 protein in yeast and 

mammalian cells did not recruit autophagic membranes. Instead of RPN10, Cue5 protein 

in the yeast and its human ortholog TOLLIP protein were able to recruit autophagic 

membranes therefore suggested as selective proteaphagy receptors (Lu et al., 2014). 

Additionally, p62 was also included in the proteaphagy receptor list (Cohen-kaplan et al., 

2016). For instance, nutrient deprivation significantly enhanced ubiquitylation of 19S 

proteasome components, including RPN1, RPN10, RPN13, and stimulated their 

engulment by autophagic membranes in a p62-dependent manner (Cohen-kaplan et al., 

2016) (Please see Figure 1.3.3.1).   
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Figure 1.3.3.1: The schematic representation of how proteasomes are degraded 

selectively by autophagy. 

 

These recent and critical findings highlight the importance of the autophagic 

degradation of proteasomes in order to control the cellular abundance of the proteasomes 

as well as proteasomal activities in cells. 

 

 

 

1.3.3.2 Control of Autophagy Components by the UPS 
 

Modulation of the half-life of some proteins in the autophagy pathway by the UPS serves 

as a mean to control cellular autophagic activity. For instance, LC3 protein was shown to 

be processed in a stepwise manner by the 20S proteasome, a process that was inhibited 

by p62 binding (Gao et al., 2010). E3 ligase NEDD4-mediated K11-linked ubiquitylation 

of BECN1 and prevented its binding to VPS34 and led to its degradation (Platta et al., 

2012). Another E3 ligase, RNF216 ubiquitylated BECN1 through K48-linked chain 
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formation (Xu et al., 2014). BECN1 ubiquitylation resulted in autophagy blockage in both 

cases. Conversely, reversal of BECN1 ubiquitylation by the DUB protein USP19 

stabilized the protein under starvation conditions and promoted autophagy (Jin et al., 

2016).  USP10 and USP13  as well as USP9X were characterized as other DUBs that 

regulated autophagy through control of BECN1 stability (Jin et al., 2016; Liu et al., 2011).  

 

BECN1 is not the only autophagy protein that is targeted by the UPS in a 

controlled manner. G-protein-coupled receptor (GPCR) ligands and agonists were 

reported to regulate cellular ATG14L levels, and therefore autophagy, through ZBTB16-

mediated ubiquitylation of the protein (Zhang et al., 2015b). In this system, serum 

starvation increased GSK3β-mediated phosphorylation of ZBTB16, resulting in its 

degradation and subsequent stabilization of ATG14L and restoration of autophagy. 

AMBRA1 is another UPS-controlled autophagy protein. Cullin-4 was identified as a 

responsible E3 ligase for the ubiquitylation of AMBRA1 driving it for degradation under 

nutrient-rich conditions where autophagy should be inhibited. (Antonioli et al., 2014b). 

The PI3K complex subunit p85b is another example. Ubiquitylation of these signaling 

component by the E3 ligase SKP1 negatively controlled its cellular levels in order to 

stimulate autophagic activity (Kuchay et al., 2013).   

 

Ubiquitylation of some autophagy proteins did not result in their immediate 

proteasomal degradation, yet provided an extra layer of control over the autophagy 

pathway. For instance,  autophagy receptor OPTN was ubiquitylated as a target of the E3 

ligase HACE1, and K48-linked ubiquitylation regulated the interaction of the protein with 

p62 (Liu et al., 2014).  TRAF6, a central E3 ligase of the NF-kB pathway, participated 

controlled ULK1 activity through K63-linked ubiquitylation. Under nutrient-rich 

conditions, mTOR phosphorylated AMBRA1 leading to its inactivation. When nutrients 

were limiting, mTOR inhibition resulted in AMBRA1 dephosphorylation, stimulating its 

interaction with TRAF6  to facilitate ULK1 K63-linked ubiquitylation (Nazio et al., 

2013). Ubiquitylated ULK1 was stabilized the protein, dimerized and regulated its kinase 

function. Another ubiquitin-dependent regulation mechanism involves AMBRA1-Cullin-

5 interaction in the regulation of mTOR complex component DEPTOR. Above-

mentioned AMBRA1-Cullin-4 complex dissociated under autophagy-inducing 

conditions. Upon autophagy stimulation, AMBRA1 dissociated from Cullin-4  and 

allowing AMBRA1 to bind  another E3 ligase, Cullin-5. This newly formed complex was 
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shown to stabilize DEPTOR and induce mTOR inactivation, providing a negative feed-

back loop in the control of autophagy (Antonioli et al., 2014b). In another study, TLR4 

signaling triggered autophagy through BECN1 ubiquitylation and stabilization. TLR4-

associated TRAF6 protein was identified as the E3 ligase responsible for K63-linked 

ubiquitylation of BECN1 at its BH3 domain. This modification blocked inhibitory BCL-

2 binding to the BH3 domain, activated autophagy (Shi and Kehrl, 2010). On the other 

hand, the deubiquitynating enzyme A20 reversed TRAF6-mediated ubiquitylation of 

BECN1, resulting in autophagy inhibition (Shi and Kehrl, 2010).  Another K63-linked 

ubiquitylation event on BECN1 was promoted by AMBRA1 and increased 

BECN1/VPS34 association. In the same context, the WASH protein interacted with 

BECN1 and suppressed AMBRA1-mediated BECN1 ubiquitylation, and suppressed 

autophagy (Xia et al., 2013). LC3 and p62 were also subjected to regulatory 

ubiquitylation. E3 ligase NEDD4 was identified as the E3 ligase in these reactions. 

NEDD4 was reported to interact with LC3 (Sun et al., 2017) and p62 (Lin et al., 2017). 

In this system, NEDD4 was essential for stress-induced autophagy activation. LC3 

binding to NEDD4 stimulated its ubiquitin ligase activity on the p62 protein  (Sun et al., 

2017). NEDD4 deficient cells exhibited abberrant p62 containing inclusions, indicating 

the defect in aggresome clearance (Lin et al., 2017). 

 

 

 

1.3.4 Trancriptional Mechanisms Connecting the UPS and Autophagy  

 

Several transcription factors that are regulated by the UPS, including p53, NFκB, HIF1α 

and FOXO, have been implicated in the control of autophagy. In general, these factors 

were directly activating transcription of key autophagy genes under stress conditions. 

Some autophagy proteins such as LC3 are consumed in the lysosome following delivery, 

and during prolonged stress, cellular levels of these proteins are sustained by mechanisms, 

including transcription. On the other hand, regulation of the transcriptional activity NRF2 

involves a special crosstalk between the two systems. In this section, we will summarize 

molecular details of transcription regulation by the UPS and autophagy.    

 

P53 is one of the well-known transcriptonal regulators that has a dual role in 

autophagy depending on its intracellular localization. P53, a guardian of the genome, was 
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introduced as a regulator of autophagy. In the absence of stress, cellular active p53 levels 

are controlled by the E3 ligase HDM2/MDM2 and the UPS. Under DNA damage 

inducing stress conditions, p14/p19/ARF protein binds, sequesters and inactivates 

HDM2/MDM2, stabilizing p53. Accumulating p53 protein activates transcription of 

several stress- and death-related genes, including autophagy-related genes PRKAB1, 

PRKAB2, TSC2, ATG2, ATG4, ATG7, ATG10, ULK1, BNIP3, DRAM1 and SESN2 

(Budanov and Karin, 2009; Crighton et al., 2006; Feng et al., 2007; Kenzelmann Broz et 

al., 2013).   On the other hand, a cytosolic form of p53 led to the inhibition of AMPK and 

activation of the mTOR pathway. In this context, non-genotoxic stress by autophagy-

inducing agents such as rapamycin, tunicamycin and nutrient deprivation favored 

HMD2/MDM2-dependent p53 degradation by the UPS (Tasdemir et al., 2008a, 2008b). 

Interestingly, HMD2/MDM2 stability and activity were also regulated by E3 ligases 

SMURF1/2 which in turn determined the stability of p53. SMURF1/2-mediated 

ubiquitylation increased MDM2-MDMX heterodimerization, decreasing 

autoubiquitylation of MDM2, therefore stabilized the protein (Nie et al., 2010). 

Additionally, another E3 ligase, NEDD4-1 was shown to control MDM2 stability and 

p53 activation (Xu et al., 2015). In addition to MDM2, another E3 ligase, PIRH2, was 

able to ubiquitylate p53 to control its cellular stability (Shloush et al., 2011). 

 

NF-κB is a well studied transcriptional regulator of autophagy. As a result of its 

association with IκB, NF-κB is found in an inactive state in the cytosol. In response to 

agonists, Iκα and Iκβ-mediated phosphorylation of IκB induced its ubiquitylation and 

subsequent degradation by the UPS. Following IκB degradation, NF-κB is free to migrate 

to the nucleus of the cell and induces transcription of target genes, including Beclin1 and 

p62 (Copetti et al., 2009; Ling et al., 2012). Regulation of NF-κB by external signals 

involve phosphorylation of IκB by upstream kinases of the IKK complex (IKKα, IKKβ, 

IKKγ/NEMO).  Phosphorylated IκB recruits the E3 ligase SCF-βTRCP, leads to 

degradation and allows the NFkB activation (Orian et al., 2000). Another level of 

regulation involves TNF-α receptor. Binding of TNF-α to TNFR1 leads to the recruitment 

of TRADD and RIPK1 to the receptor, promoting TRAF- and cIAP-mediated K63 and/or 

K11 linked ubiquitylation of the RIPK1. Ubiquitylated RIPK1 recruits NEMO and TAB-

TAK1 complex for IKK activation. Additionally, RIPK1 might also be modified with 

K48-linked poly-ubiquitin chains by  A20 sending it for proteasomal degradation 

(Kravtsova-ivantsiv et al., 2015).  
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However, TNF-α-induced NF-κB activation was reported to inhibit autophagy 

(Djavaheri-Mergny et al., 2006). Additionally, TNF-α-induced activation of IKKα or 

IKKβ led to the phosphorylation TSC1/2 and activated mTOR and led to similar outcome 

(Dan and Baldwin, 2008; Lee et al., 2007). Furthermore, RIPK1 was responsible for 

suppression of autophagy and its silencing activated autophagy under both basal and 

stress condition (Yonekawa et al., 2015).  RIPK1 was reported to be a target of p62-

mediated selective autophagy (Goodall et al., 2016). Moreover, autophagy was 

responsible for the degradation of NF-κB activator NIK and IKK complex subunits 

indicating the presence of a tight cross-regulation of the NF-κB pathway by the UPS and 

autophagy (Qing et al., 2007).  

 

Another transcription factor that was controlling the autophagic outcome was 

HIF1α. Hypoxia induced HIF1α transcriptionally regulated various hypoxia response 

genes, including   GLUT1 (Chen et al., 2001), NOX2 (Yuan et al., 2011), and PDK1 (Kim 

et al., 2006) as well as autophagy genes, including BNIP3, BNIP3L, ATG5 and BECN1 

to stimulate autophagy, mitophagy and pexophagy (Bellot et al., 2009; Walter et al., 2014; 

Zhang et al., 2008). HIF1α itself was regulated in a UPS-dependent manner. Under 

normoxia, specific prolyl hydroxylases (PHDs) hydroxylated HIF1α (Jaakkola et al., 

2014). Hydroxylation functions as recognition signal for UbcH5, an E2 enzyme and von 

Hippel-Lindau protein (the pVHL), E3 ligase complex containing Elongin B and C, 

Cullin-2, and Rbx1 allowing K48 linked ubiquitination of HIF1α and its proteasomal 

degradation (Ohh et al., 2000). In contrast, during hypoxia, PHDs are inhibited and HIF1α 

stabilized. SCF E3 ligase complex was also shown to play a role in HIF1α stability in 

response to GSK3β-mediated phosphorylation of the protein (Cassavaugh et al., 2011; 

Flugel et al., 2012a). Another E3 ligase for HIF1α which facilitates HIF1α degradation is 

HAF (also known as SART1800). Unlike pVHL, HAF-mediated ubiquitylation of  HIF1α 

was not depend on the oxygen levels, suggesting an alternative proteasome-associated 

HIF1α regulation mechanism (Koh et al., 2008). Stability of PHD proteins were also 

controlled by the UPS. For example, SIAH1/2 was shown to direct PHDs for proteasomal 

degradation under hypoxic stress (Nakayama et al., 2004). Moreover several DUBs were 

implicated in  HIF1α  regulation, including  USP20 (Li et al., 2002b), USP28 (Flugel et 

al., 2012b) and USP33 (Li et al., 2002a). 
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FOXO family of transcription  factors (FOXOs) were associated with various 

cellular pathways, including autophagy (Zhao et al., 2007).  The activity of FOXOs are 

reguated by their phosphorylation status and following activation, FOXOs translocate to 

the nucleus and trigger the expression of a number of genes associated with different 

stages of the autophagy pathway, including ATG4, ATG12, BECN1, ULK1, PIK3C3, 

MAP1LC3 and GABARAP (Mammucari et al., 2007; Sanchez et al., 2012; Zhao et al., 

2007). There are several connections between FOXOs and autophagy. Activation of the 

AKT pathway inhibited FOXO3 activity, led to a decrease in LC3 and BNIP3 expression, 

therefore blocked autophagy (Mammucari et al., 2007; Stitt et al., 2004). On the other 

hand, AMPK  activation led to the phosphorylation of FOXO3a and ULK1, inducing 

MAP1LC3, GABARAP and BECN1 expression and subsequent autophagy activation 

(Sanchez et al., 2012).  Another FOXO family protein FOXK1/2, a negative regulator of 

FOXO3, was associated with a decrease in autophagy by removing Sin3A/HDAC 

complex from histone H4 to diminish its acetylation. In this context, nuclear localization 

of  FOXK1/2 was mTOR-dependent and showed an inhibitory effect on autophagy gene 

expression under basal conditions (Bowman et al., 2014). Moreover, JNK deficiency in 

neurons increased autophagic activity through FOXO1 mediated BNIP3 upregulation and 

BECN1 disassociation from BCL-XL (Xu et al., 2011). Another example of a link 

between FOXOs autophagy involved ATG14.  Liver specific knockout of FOXOs 

resulted in the downregulation of ATG14 and this event was associated with high levels 

of triglycerides in the liver and serum of mice (Xiong et al., 2012). Additionally, GATA-

1 shown to directly regulate FOXO3-mediated activation of LC3 genes to facilitate 

autophagic activity (Kang et al., 2012).  

 

Activation of various protein kinases, including AKT, IKK and ERK,  

phosphorylates FOXO proteins and result in their ubiquitylation by E3 ligases, suggesting 

a critical role of the UPS in the regulation of  FOXOs activity (Huang and Tindall, 2011). 

AKT-mediated phosphorylation of FOXO1 provided a signal for its recognition by the 

SKP protein, an SCF  E3 ligase complex component, followed by FOXO1 ubiquitylation 

and degradation (Huang et al., 2005). COP1 was also identified as an E3 ligase that 

regulates FOXO protein stability. COP1 ubiquitylates FOXO1 and promotes its 

proteasomal degradation. This type of regulation might be important in the glucose 

metabolism of hepatocytes, and possibly in autophagy modulation under this conditions 

(Kato et al., 2008). Another FOXO regulating E3 ligase is MDM2 that is specifically 
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responsible for FOXO1 and FOXO3A ubiquitylation and degradation. MDM2-mediated 

ubiquitylation was activated by the phoshorylation of FOXOs by AKT. Due to its role in 

p53 regulation, MDM2 could be part of a more complex regulatory mechanism which 

could  link the UPS, transcriptional regulation and autophagic activity (Fu et al., 2009). 

 

Oxidative stress is also a signal for HIF1α stabilization. Mitophagy activation 

under these conditions ensures a decrease in the mitochondrial mass, resulting in the 

elimination of ROS-producing mitochondria and limiting the oxidative burden. On the 

other hand, NRF2-KEAP1-P62 pathway was defined as another major oxidative stress 

response mechanism involving an interplay between the UPS and autophagy. NRF2 is a 

transcription factor and when activated upregulates antioxidant and metabolic enzymes, 

including TXNRD1 (Suvorova et al., 2009), HMOX1 (Reichard et al., 2007), GPX2 

(Banning et al., 2005a), GBE1, PHK1 (Banning et al., 2005b), and downregulates 

proinflamation-related genes such as IL6, IL1B (Kobayashi et al., 2016). KEAP1 is an 

adaptor protein of the E3 ligase Cullin-3 and plays a role in substrate recognition. Under 

normal conditions, transcription factor NRF2 is found in association with KEAP1-Cullin-

3 E3 ligase complex, that catalyzes its ubiquitylation and rendering it a substrate for 

proteasomal elimination. P62 was shown to compete  with NRF2 for KEAP1 binding, 

following which NRF2 migrated to the nucleus and accumulated therein, activating 

cytoprotective and stress-related genes (Kobayashi et al., 2004) (Komatsu et al., 2010). 

When cells experience oxidative stress, KEAP1-Cullin-3 complex loses affinity for 

NRF2, NRF2 migrates to the nucleus and accumulates therein, activating cytoprotective 

and stress-related genes (Kobayashi et al., 2004).  P62 binding to KEAP1 promoted its 

elimination by selective autophagy (Ishimura et al., 2014). Additionally, the NRF2–

KEAP1 pathway provides a positive feedback loop for autophagy. P62 was characterized 

as a direct transcriptional target of activated NRF2 (Jain et al., 2010). KEAP1 regulation 

by p62 was modulated by the E3 ligase TRIM21. NRF2 activation was negatively 

affected by TRIM21-mediated  K63 linked ubiquitylation of p62 (Pan et al., 2016). 
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1.3.5 Crosstalk and Co-regulatory Mechanisms  

 

The most prominent link between the UPS and autophagy is the capacity of both system 

to degrade ubiquitylated substrates. Therefore when one system is impaired, the other 

degradative system  to some extent eliminates  the target in order to prevent potential 

toxicity caused by aggregated proteins (Fuertes et al., 2003; Long et al., 2008). These 

findings suggest that there is an indirect connection in the two degradation sytems in 

terms of regulating cellular ubiquitin levels and recycling. This crosstalk and co-

regulation mechanisms involves mostly the selective autophagy processes including, 

aggrephagy, xenophagy, mitophagy, pexophagy and ribophagy which will be introduced 

in the following sections.  

 

 

 

 1.3.5.1 Xenophagy: Removal of Intracellular Invaders 
 

Autophagy was shown to target a range of pathogens, including group A. streptococcus, 

Mycobacterium tuberculosis and Shigella flexneri (Gutierrez et al., 2004; 

Kirkegaard et al., 2004; Ogawa et al., 2005). Identification and targeting of pathogens 

to autophagy was termed xenophagy. Elimination of invaginated bacteria are 

ubiquitylated and subsequently degraded by autophagy as an innate immune response. 

The mechanism by which cells target pathogens to autophagy is analogous to other types 

of selective autophagy, namely tagging the cargo with modifiers such as ubiquitin (but 

not exclusively), followed by their recognition by autophagic receptors. Both K63- and 

K48-linked Ub chains an deven M11-linked mono-ubiquitins were shown to mediate the 

recognition of different pathogens, but interestingly independent from ATG5 (Collins et 

al., 2009; Randow and Youle, 2014). Several identified selective autophagic receptors 

were also implicated in xenophagy, such as p62, OPTN and NDP52 (Thurston, 2009; 

Wild et al., 2011; Zheng et al., 2009). Eventhogh there are identified various E3 ligases 

involved in labelling intracellular pathogens with ubiquitin chains such as parkin 

ubiquitylates  Mycobacterium tuberculosis and  Lrsm1 (leucine-rich repeat and sterile 

alpha motif 10 Trends containing 1) ubiquitylates Salmonella enterica (Huett et al., 2012; 

Manzanillo et al., 2013), however there is no identified protein target for ubiquitylation 

on pathogens. 



45 
 

 

Recent studies showed that, bacterial outer membrane-associated and integral 

outer membrane proteins were targets of ubiquitylation (Fiskin et al., 2016). E3 ligases 

such as Parkin, RNF166, ARIH1, HOIP and LRSAM1 were implicated in the 

ubiquitylation reactions prior to autophagic removal of pathogens (Franco et al., 2017; 

Heath et al., 2016; Huett et al., 2012; Lobato-Márquez and Mostowy, 2017; Manzanillo 

et al., 2013). For instance, Mycobacterium could be decorated with both K48- and K63-

linked ubiquitin chains and the E3 ligase Parkin shown to be responsible for the K63-

linked ubiquitylation on Mycobacterium (Collins et al., 2009; Manzanillo et al., 2013).  

Alternatively, intracellular Salmonella Typhimurium shown to be coated with 

directly ubiquitin molecules from its endosome-free parts. Linear M1-linked ubiquitin 

chains formation by the action of LUBAC complex E3 ligase, HOIP on these ubiquitins 

contributed to the autophagic removal of the pathogens (Noad et al., 2017). p62, OPTN, 

NDP52 and NBR1 were included in the xenophagy field as selective xenophagy receptor 

proteins (Thurston, 2009; Wild et al., 2011; Zheng et al., 2009). In addition to the need 

of selective autophagy receptor utilization, it has also shown that Salmonella carrying 

endosomes are ubiquitylated which in turn involved in interaction of Ub with one of the 

autophagy core complex ATG5-12-16L through direct binding with ATG16L (Fujita et 

al., 2013). Endogenous nucleotide 8-nitroguanosine 3’-5’-cyclic monophosphate (8-

nitro-cGMP) has been reported to induce xenophagy. 8-nitro-cGMP promotes S-

guanylation of bacterial proteins and subsequently triggers ubiquitylation of those 

proteins and autophagic removal of ubiquitin-labelled bacteria (Ito et al., 2013).  Glycans 

that were exposed upon distruption of endosomes were a target of Galectin-8 in the 

cytosol. Direct binding of the galectin to glycans on one side and to the autophagy 

receptor NDP52 on the other side provided a bridge between autophagosomes and 

bacteria carrying endosomes (Li et al., 2013). In addition to NDP52, autophagy receptors 

OPTN and p62 were also reported to bind pathogen- and/or endosome-associated 

ubiquitin, and direct them to autophagic membranes (Richter et al., 2016; Wild et al., 

2011) (Schematic representation is shown in Figure 1.3.5.1).  
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Figure 1.3.5.1: Xenophagy mechanisms in mammals. 

 

Type I interferons are shown to upregulate Ub Like modifiers FAT10 and ISG15, 

suggesting that these UBLs could essentially involved in cellular immune responses. In 

line with this, in cytoplasm Salmonella typhimurium is surrounded by FAT10 after 

escaping from vacuolar rupture. However, cells lacking FAT10 do not exhibit restricted 

bacterial replication defect in their phenotype.  Interestingly, NRAMP1 (natural 

resistance-associated macrophage protein 1) transgenic mice that are deficient for FAT10 

are much more susceptible to S. Typhimurium than corresponding controls, indicating 

that FAT10 could be important for antibacterial immunity in vivo (Spinnenhirn et al., 

2014). Moreover, Usp18, an ISG15 DUB-like peptidase deactivating mutation carrying 

mice showed accumulation of ISG15 and susceptibility to Salmonella infection. 

Salmonella elimination was rescued by deletion of ISG15 in a Usp18 mutant background, 

suggesting that ISG15 inhibits cellular immune pathways implicated in antibacterial 

resistance (Bogunovic et al., 2012; Zhang et al., 2015c).   
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It is speculated that the steady state level of autophagy is sufficient for xenophagy 

of all the invading bacteria, and that the pathogens have to interfere with autophagy in 

order to survive. For example, infection by Listeria, Salmonella and Shigella were all 

shown to induce amino acid starvation through GCN2 phosphorylation, ATF3 induction 

and mTOR inhibition and subsequently activating autophagic response (Tattoli et al., 

2012, 2013). But it is also possible that infectious organisms are able to escape from the 

cellular defence mechanisms. Listeria uses its phospholipases, PlcA and PlcB, in order to 

escape from autophagic elimination in host cells by reducing PI3P levels and 

subsequently autophagic flux (Tattoli et al., 2013). After infecting host cells, M. 

tuberculosis (Mtb) can stay dormant for decades and survive inside macrophages due to 

its ability to escape from autophagic degradation. Following activation by IFN- γ, 

macrophages can bypass autophagic inhibition by Mtb, leading to the clearance of the 

pathogen. This process is mediated, at least in part, through the interaction of the shuttling 

protein ubiquilin-1 with Mtb proteins, and the subsequent recruitment of the autophagic 

machinery (Sakowski et al., 2015). This complex interplay between ubiquitylation and 

autophagy achieves the important task of keeping host cells pathogen-free and providing 

a intracellular innate immune defense mechanism against invaders. 

 

 

 

1.3.5.2 Mitophagy: Mitochondrial Turnover 
 

Mitochondria are highly dynamic, double-membrane surrounded ogganelles that 

involve in a variety of cellular funtions within eukaryotic cells and have ancient bacterial 

origin. The known major function of mitochondria is energy production for the cells. 

Within cells, they are involved in amino acid synthesis, fatty acid production, heme 

synthesis, calcium signaling and as well as innate immunity and cell death processes. 

Mitochondria have their own genome which is approximately 16 kilobases and encodes 

13 oxidative phosphorylation (OXPHOS) complex subunits in addition to both transfer 

RNAs and ribosomal RNAs. Due to the needs of cells and type of the cells, there can be 

hundreds copy of a mitochondrial genome in one cell. This raises the importance of 

maintaining the mitochondrial homeostasis and eliminating dysfunctional mitochondria 

for a single cell as well as a whole organism. 
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 The removal of a dysfunctional and no more needed whole mitochondria is 

maintaned by a cargo selective type of autophagy, termed as mitophagy (Lemasters, 

2005). Eventhough mitophagy shares many of the general autophagy modifiers and steps, 

the selectivity of autophagosomes for mitochondria requires unique stress triggers and 

protein reulators.  

 

 

 

1.3.5.2.1 PINK1/Parkin-dependent Mitophagy 
 

Parkin/PINK1-dependent mitophagy is one of the best studied form of mitophagy. 

In different experimental models including mammalian cells, flies and C.elegans  

predominantly mitophagy is maintaned by two famous genes their loss-of function 

mutations are linked to early-onset of Parkinson Disease’s:  PTEN-induced putative 

kinase 1 (PINK1), encodes for a mitochondrially localized kinase, and PARK2, encodes  

a cytosolic E3 ubiquitin ligase (Narendra et al., 2008).  

 

Under normal conditions, after being synthesized as precursor in cytoplasm 

PINK1 is imported to mitochondria by its N-terminal mitochondria targeting sequence 

(MTS) through translocase of the outer membrane (TOM) and translocase of the inner 

membrane (TIM) complexes. When PINK1 is imported, it is post translationally modified 

within mitochondria by mitochondrial proteases. PINK1 is first cleaved through its N-

terminal matrix targeting sequence (MTS) by matrix processing peptidases (MPP) and 

this cleavage followed by  another clevage by Presenilin-associated rhomboid-like 

protease (PARL) in matrix (Deas et al., 2011; Jin et al., 2010). PARL-mediated N-

terminal clevage results in destabilizing Phe104 residue and therefore as soon as 

retranslocated from mitochondria to cytoplasm therein degraded by proteasome through 

recognition of its N-terminus (Yamano and Youle, 2013).  

 

Under stress conditions, PINK1 import to mitochondria is blocked and therefore 

is stabilized on the OMM in TOMM complex that composed of  several different TOM 

proteins (Hasson et al., 2013; Lazarou et al., 2012). Two PINK1 protein on OMM get 

dimerized and this dimerization is necessary for autophosphorylation events therefore the 

activity of PINK1 dimer. Stabilized PINK1 and its kinase activity is prerequisite event 
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for recruitment of cytoplasmic E3 ligase Parkin protein to mitochondria (Lazarou et al., 

2012). In addition to recruitment of Parkin, PINK1 is shown to  enhance the E3 ligase 

activity of Parkin by phosphorylating its Ser65 residue of ubiquitin-like domain (Ubl) 

(Kondapalli et al., 2012; Shiba-Fukushima et al., 2012). Further studies on the 

understanding of structure and the E3 ligase activity of Parkin revealed that either RING1 

or unique Parkin domain (UPD) of the protein interfere with the accessibility of the 

catalytic residue and therefore Parkin is present as autoinhibited form within the cells 

(Trempe et al., 2013). PINK1-mediated phosphorylation of Parkin at Ser65 changes the 

conformation of the protein so that allowing to access its catalytic residues to perform 

ligase activity (Wauer and Komander, 2013). Interestingly, PINK1 also phosphorylates 

preexisting ubiquitin molecules at Ser65 residue homologous to Ser65 phosphorylation 

of Parkin  and both ubiquitin and Parkin phoshorylation strongly correlates with tethering 

Parkin to damaged mitochondria and  fulfillment E3 ligase activity of Parkin therein allow 

ubiquitin modification OMM proteins for further PINK1/Parkin-dependent mitophagy 

steps (Kane et al., 2014; Kazlauskaite et al., 2014; Koyano et al., 2014; Shiba-Fukushima 

et al., 2014).  

 

AMBRA1 is ubiquitiously expressed in adult midbrain and found in complex with 

Parkin but is not an ubiquitylation target of Parkin. The Parkin and AMBRA1 interaction 

is enhanced during mitochondrial depolarization in HEK293 cells, SH-SY5Y cells, and 

adult mouse brain.  Eventhough AMBRA1 has no effect on Parkin recruitment to 

mitochondria, its  activatory effect on PI3K suggested to be critical for PINK/Parkin-

mediated mitophagy (Van Humbeeck et al., 2011).  Through its LIR domain, AMBRA1 

itself can bind to LC3 on autophagosomes in Parkin- and p62-independen but LC3-

dependent manner (Strappazzon et al., 2015). All of these observations suggest that 

AMBRA1 is a key mitophagy regulator that allows proper mitochondrial clearance in 

both Parkin-dependent and independent cases (Cianfanelli et al., 2015; Strappazzon and 

Cecconi, 2015) . 

 

Autophagy receptor proteins are attached to the ubiqutin labelled cargo through 

their ubiquitin-binding domains (UBD) and links them to the autophagosome to promote 

autophagy. p62 a well known autophagy receptor which also binds to ubiquitylated 

subsrates introduced to be a receptor for damaged mitochondria and a linker protein 

between damaged mitochondria and LC3 that is associated with autophagosomes (Geisler 
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et al., 2010). However further studies revealed that p62 is not functioning as mitophagy 

receptor but is essential for clustering of damaged mitochondria in perinuclear region of 

the cells (Narendra et al., 2010; Okatsu et al., 2010). Rather than p62, four receptor 

proteins were associated with selective autophagy that are namely NBR1, NDP52, 

optineurin (OPTN) and TAX1BP1. In order to understand which receptors are required 

for spesifically mitophagy, a cell line which does not express any of those five receptors 

called penta-knockout (penta KO) generated. Penta KO cells failed to progress 

elimination of damaged mitochondria and with rescue experiments its seen that NDP52 

and OPTN are essential for mitophagy (Lazarou et al., 2015). PINK1 kinase activity as 

well as Parkin mediated ubiquitin and phospho-ubiquitin conjugates are required for 

recruitment of NDP52 and OPTN, and their involvement is followed by the recruitment 

of ULK1, DFCP1 and WIPI1 to the close proximity of mitocondria suggesting that they 

function as upstream regulators of LC3. In PINK1/Parkin mediated mitophagy, damage 

enhances TBK1 phosphorylation at Ser172 so that its kinase activity (Lazarou et al., 

2015). The incresed activity of TBK1, stimulates recruitment and subsequent 

phosphorylation of selective autophagy receptors OPTN, NDP52 and p62 through 

physical interaction. TBK phoshorylation on OPTN on Ser473 and Ser513 residues 

promotes TBK activation and ubiquitin binding to OPTN and following OPTN retention 

to mitochondria providing a positive feedback mechanism for maintaining  succesfull 

mitophagy (Heo et al., 2015).  

 

 In mitophagy, major receptor for both Parkin and autophagy receptor proteins is 

phosphorylated ubiquitin (phospho-Ub).  Upon depolarization, phospho-Ub recruited to 

mitohondrial surface therein several proteins get activated. First Parkin is activated by the 

phospho-Ub and active PINK1 which is generator of phospho-Ub also and then OPTN 

and NDP52 are activated by TBK1 mediated phosphorylation and ubiquitin binding 

promoting amplification signals. Due to the critical role of ubiquitin and phospho-

ubiquitin in the substrate recognition, Parkin activation and signal amplification.  
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Figure 1.3.5.2: Molecular details of mitophagy pathways in mammalian cells. 

 

Maintenance of these regulation is emerging due to the involvement of mitophagy 

defects in neurodegeneration. Ubiquitin modification are reversible covalent 

modifications which are reversed by DUBs.  There are several DUBs identified as both 

positive and negative regulators of mitophagy (Dikic and Bremm, 2014; Wang et al., 

2015). USP8/UBPY is a member of ubiquitin-spesific protease family recently introduced 

as a novel controller of mitochondrial quality. USP8, reported to remove K6-linked 

ubiquitin chains from Parkin specifically (Durcan et al., 2014; Durcan and Fon, 2015). 

USP8 mediated deubiquitylation of Parkin is important for its recruitment to 

dysfunctional mitochondria and subsequently proper mitochondrial elimination.  USP15, 

another ubiquitin-specific protease family member of DUBs is highly expressed in brain 
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and other organs. USP15 mediated deubiquitynation has an inhibitory effect on Parkin-

mediated mitophagy but not related to the ubiquitylation level and translocation of Parkin.  

 

It is most likely opposes Parkin-mediated ubiquitylation. Deficiency in USP15, 

results in rescued mitophagy defects in PD-derived fibroblasts that are carrying PARK2 

mutations correlating decreased Parkin expression (Cornelissen et al., 2014). Similar 

observations also obtained from Parkin deficient flies which have mitochondrial and 

behavioral defects in their phenotype. Loss of Parkin caused defects in flies were restored 

by knockdown of DUB CG8334, the closest homolog of USP15 in Drosophila. USP30 

and USP35 are both mitochondria localized DUBs.  USP30 is another identified 

mitophagy antagonist and localized on mitochondria. In neuronal cells, USP30 shown to 

remove ubiquitin molecules from proteins on damaged mitochondria that are ub-

decorated by E3 ligase activity of Parkin and therefore inhibits mitophagy (Bingol et al., 

2014). Knockdown effect of USP30 is strongly correlated with the Parkin recruitment to 

damaged mitochondria. However, USP35 has no effect on Parkin translocation. USP35 

has differential effect on Parkin-dependent mitophagy, due to its disassociation from 

mitochondria upon uncoupling suggesting its mitophagy-inhibitory effect taking place in 

cytoplasm (Wang et al., 2015). USP30 knockdown restored mitophagy defects and 

improved mitochondrial integrity in Parkin- or PINK1-deficient flies (Bingol et al., 2014).  

 

 

 

1.3.5.2.2 Parkin-independent Mitophagy 

 

Expression of Parkin is restricted to a few cell types, including dopaminergic neurons. 

Consequently, Parkin null animals showed prominent mitophagy defects only  in selected 

brain regions (Lee et al., 2018). In other cell types and tissues, mitophagy proceeds in a 

Parkin-independent manner. Alternative E3 ligases were found to play a role in 

mitophagy in these contexts.   

 

Mulan (MUL1) is an E3 ubiquitin ligase that is located on the  OMM and plays a 

role in Parkin-independent mitophagy in different model organisms, including C.elegans, 

Drosophila and mammalian cells (Ambivero et al., 2014; Yun et al., 2014). Mulan 

stabilized DRP1, led to degradation of MFN2 and shown to interact with GABARAP 
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(Ambivero et al., 2014; Braschi et al., 2009). Another E3 ligase that was associated with 

mitophagy is GP78 (Christianson et al., 2012). Over expression of GP78 induced MFN1/2 

ubiquitylation and degradation followed by mitochondrial fragmentation and mitophagy 

in mammalian cells lacking Parkin (Fu et al., 2013). Synphilin-1-dependent recruitment 

of the E3 ligase Siah1 to mitochondria resulted in mitochondrial protein ubiquitylation 

and mitophagy in a PINK1-dependent but Parkin-independent manner (Szargel et al., 

2015). Conversely, another OMM E3 ligase, MITOL (MARCH5), was reported to 

ubiquitylate FIS1, DRP1 (Yonashiro et al., 2006) and MFN2 (Nakamura et al., 2006), yet 

inhibit hypoxia-induced and Parkin-independent mitophagy through ubiquitylation and 

degradation of FUNDC1 (Chen et al., 2017). All these findings underline the fact that 

mitophagy might proceed in cells which do not express Parkin. Further studies are 

required to unravel the molecular mechanisms of Parkin-independent mitophagy in 

different tissues and cell types.  

 

  

 

1.3.5.2.3 Mitophagy During Reticulocyte Maturation 

 

During differentiation, in order to increase hemoglobin-bound oxygen loading capacity, 

reticulocytes lose their organelles, including mitochondria, and become mature red blood 

cells (Dzierzak and Philipsen, 2013). During this maturation process, a protein called NIX 

(also known as BNIP3L) is upregulated (Aerbajinai et al., 2003). Characterization of 

NIX-deficient mice showed a decrease in mature erytrocyte numbers and anemia, as well 

as accumulation of immature erytrocytes. NIX-deficient erytrocytes failed to eliminate 

their mitochondria revealing a critical role for NIX in mitophagy (Sandoval et al., 2008; 

Schweers et al., 2007).  

 

NIX is a C-terminally anchored outer mitochondrial membrane (OMM) protein 

that contains a LC3-interactiong reagion (LIR) at its cytoplasmic N-terminal part. 

Through its LIR domain, interact with autophagy protein LC3, enabling engulfment of 

mitochondria by autophagosomes (Novak et al., 2010). Interestingly, NIX-dependent 

mitophagy does not  require ATG5 or ATG7  proteins, but  requires ULK1 (Honda et al., 

2014; Kundu et al., 2008). Indeed, ULK1 deficiency led to the accumulation of 

morphologically abnormal mitochondria in hepatocytes and increased mitochondrial 
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mass in fibroblasts (Egan et al., 2011; Kundu et al., 2008). Although NIX-dependent 

mitophagy was predominantly studied in reticulocytes, NIX-deficient mice derived retina 

revealed increase in mitochondrial mass and reduction in glycolytic enzymes and 

subsequently delayed neuronal differentiation suggesting it has broader impact in other 

cell types. In line with this, NIX-dependent mitophagy shown to be involved in the 

removal of mitochondria during macrophage differentiation (Esteban-Martínez et al., 

2017). Recent studies showed that ubiquitylation of NIX/BNIP3L by a PINK1/Parkin-

independent mechanism was crucial for mitophagy in different experimental models. In 

some studies it was also reported that ubiquitylated NIX/BNIP3L colocalized with other 

selective autophagy receptors such as NBR1 and p62, and it was necessary for 

mitochondrial stress-induced mitophagy (Ding et al., 2010; Gao et al., 2015; Palikaras et 

al., 2015) (Figure 1.3.5.2). Therefore, the role of NIX/BNIP3L seems to be more general 

than previously thought and beyond the developmental context, and stress-induced 

mitochondrial elimination by autophagy might also require NIX/BNIP3L in different cell 

and organism types. 

 

In addition to its role in reticulocyte maturation, NIX and especially its homolog 

BNIP3 were implicated in hypoxia-induced mitophagy (Tracy et al., 2007). In this 

context, HIF1α transcriptionally upregulated both NIX and BNIP3 levels (Sowter et al., 

2001). As in the case of NIX, BNIP3 also has N-terminal LIR domain, and physically 

interacted with LC3 and GABARAP to recruit autophagosomes. The interaction between 

BNIP3, LC3 and GABARAP was regulated by the phosphorylation events on Ser17 and 

Ser24 residues which defines the LIR domain of the protein (Zhu et al., 2013).   

 

 

 

1.3.5.3 Pexophagy: Autophagic Removal of Peroxisomes 

 

Peroxisomes are abundant organelles found in almost all eukatyotes. Peroxisomes 

maintain a number of cellular functions including fatty acid oxidation (FAO), purine 

metabolism and phospholipid synthesis (Wanders et al., 2016).  A variety of 

peroxisomal enzymes are involved in redox regulation due to their dual functions in the 

generation and scavenging of reactive oxygen and nitrogen species (ROS and RNS) 

therefore cellular dynamics of peroxisomes both biogenesis and degradation must be 



55 
 

tightly regulated in order to maintain cellular needs in terms of peroxisome sizes, 

numbers and functions (Du et al., 2015; Honsho et al., 2016). 	Pexophagy is a selective 

degradation process of peroxisomes by autophagic machinery is identified in yeast and 

recently in mammals. 

 

Autophagy of peroxisomes, pexophagy, is a selective degradation process of 

peroxisomes during which the UPS and autophagy mechanisms work in collaboration. 

Peroxisomes are responsible of a number of cellular functions, including fatty acid 

oxidation, purine metabolism and phospholipid synthesis (Wanders et al., 2016).  

Several peroxisomal enzymes are involved in redox regulation due to their dual 

functions in the generation and scavenging of reactive oxygen and nitrogen species. 

Therefore, peroxisomes biogenesis and degradation must be tightly regulated in order 

to control peroxisome size, abundance and function (Du et al., 2015; Honsho et al., 

2016). Moreover under stress conditions such as hypoxia, oxidative stress, starvation or 

conditions causing UPS defects, pexophagy is upregulated. 

 

The understanding of selective autophagy have suggested that ubiquitin is a key 

actor of selective degradation of membrane proteins of associated organelles as well as 

aggregates (Kwon and Ciechanover, 2017; Shaid et al., 2013). Consistently, during 

pexophagy, peroxisomal membrane proteins (PMPs) become highly ubiquitylated (Kim 

et al., 2008). This ubiquitin modification and Ub-sensing adaptor proteins direct 

peroxisomes for degradation to autophagosomal membranes. For example, PMP34 and 

PEX3 induce pexophagy when only associated with Ub through theirs cytoplasmis parts   

(Kim et al., 2008; Yamashita et al., 2014). In addtion to PEX3, mono-ubiquitylation of 

PEX5 is also identified as positive regulator of pexophagy under more specific conditions 

(Wang and Subramani, 2017; Zhang et al., 2015a). In response to ROS, through physical 

interaction PEX5 recruits ataxia-telangiectasia mutated (ATM) protein to peroxisomes. 

This kinase therein inactivates mTORC1 and activates ULK1, subsequently induces 

autophagy. The specificity of pexophagy is mediated by ATM dependent phoshorylation 

of PEX5 at Ser141 which inturn attenuates mono-ubiqutylation of PEX5 at Lys209. 

Lys209 mono-ubiquitylation of PEX5 is recognized  by receptor protein p62 and 

peroxisomes are directed to autophagosomes (Tripathi et al., 2016; Zhang et al., 2015a). 

In addition to Lysine mono-ubiquitylation, PEX5 is also become mono-ubiquitylated 

through a rare thio-ester bond at its N-terminal cysteine residues for recycling of the 
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protein. N-terminal cysteine mono-ubiquitylation of PEX5, requires PEX22 associated 

PEX4 as major E2 enzyme and  a complex of PEX2, PEX10 and PEX12, the three E3 

ligases  in mammalian cells (Platta et al., 2009; Wang and Subramani, 2017). Cystein 

mono-ubiquitylation of PEX5, expedites its extraction from peroxisomes through AAA 

ATPase complex (AAA-complex); PEX1, PEX6, PEX26 (Carvalho et al., 2007; Law et 

al., 2017; Okumoto et al., 2011) .  

 

Pexophagy is also stimulated upon macroautophagy induction such as nutrient 

deprivation and rapamycin treatment.  Starvation and rapamycin mediated mTOR 

inhibition  upregulates PEX2 in Hela and MEF cells (Sargent et al., 2016). Moreover, 

ectopically inducion of PEX2 leads ubiquitylation of PEX5, NBR1 and another 

peroxisomal membrane protein 70 kDa, PMP70  and subsequent peroxisome degradation 

(Sargent et al., 2016). 

 

 The involvement of selective autophagy receptors in selective autophagy studied 

extensively and reviewed above (Chen et al., 2016; Kirkin et al., 2009; Lazarou et al., 

2015; Marshall et al., 2015; Okatsu et al., 2010). Till now among all identified cargo 

specific and ubiquitin-binding receptors proteins, only p62 and NBR1 shown to be 

involved in pexophagy (Deosaran et al., 2013).   Structurally, p62 and NBR1 are very 

similar therefore they act in the same pathway for pexophagy. Interestingly, NBR1 

function is independent from p62 but p62 could increase the efficiency of NBR1-

dependent pexophagy. Another pexophagy regulaters, PEX13 and PEX14 are  also 

imported through PEX5 to peroxisomes (Lee et al., 2017; Schell-Steven et al., 2005).  

Under starvation, PEX14 through direct binding to LC3 facilitates pexophagy and under 

this condition NBR1 is also found to attached to PEX14 in peroxisomes (Jiang et al., 

2015a).  

 

 During the process of pexophagy, a number of peroxisomal membrane proteins, 

including peroxins and PMP70 become ubiquitylated (Kim et al., 2008). PEX2-PEX10-

PEX12 complex serves as an E3 ligase at least for two well studied peroxisome proteins, 

PEX5 and PMP70. Ubiquitylation of peroxisome proteins result in the recruitment of p62 

and/or NBR1 autophagy receptors, directing these organelles for autophagic degradation. 

For example, PEX2 overexpression or amino acid starvation activated the ubiquitylation 

of PEX5, and another peroxisomal membrane protein, PMP70, and led to peroxisome 
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degradation (Sargent et al., 2016). Moreover in response to oxidative stress, ATM was 

recruited onto peroxisomes through physical interaction with PEX5 and promote its 

ubiquitylation. Inactivation of mTORC1 in a TSC2-dependent manner and stimulation of 

ULK1 phosphorylation by ATM, potentiated pexophagy (Wang and Subramani, 2017; 

Tripathi et al., 2016; Zhang et al., 2015a). On the other hand, AAA ATPase complex 

(PEX1, PEX6, PEX26) was shown to extract ubiquitylated PEX5 from peroxisomal 

membranes and regulate pexophagy (Carvalho et al., 2007; Law et al., 2017; Okumoto et 

al., 2011) (Figure 1.3.5.3). Although overexpression of ubiquitin-fused constructs of 

peroxisomal membrane protein PMP34 or PEX3 was reported to induce pexophagy, 

ubiquitylation of these proteins might not be a prerequisite for the progression of 

pexophagy since ubiquitylation defective form of PEX3 was able to induce peroxisome 

ubiquitylation and autophagy   (Kim et al., 2008; Yamashita et al., 2014).  Both NBR1 

and p62 were shown to be recruited onto peroxisomes during pexophagy. Yet, NBR1 was 

a major pexophagy receptor  in a number of contexts, and p62 increased the efficiency of 

NBR1-dependent pexophagy through direct interaction with the latter (Deosaran et al., 

2013; Sargent et al., 2016; Zhang et al., 2015a). Altogether, these findings underline the 

importance of ubiquitylation for the selective degradation of peroxisomes by autophagy. 

 

 
Figure 1.3.5.3:  Schematic representation of selective removal of peroxisomes by 

autophagy machinery.  
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1.3.5.4 Autophagic Removal of Ribosomes and Stress Granules 

 

In addition to major cellular organelles, autophagy was implicated in the clearence of 

ribosomes. Although ribosomes can be degraded in a non-specific manner during non-

selective autophagy, a special form of selective autophagy is activated under various 

stress conditions, ribosomal autophagy or ribophagy. On the other hand, mRNA protein 

complexes that are stalled in translation form stress granules and cleared by both the UPS 

and autophagy. 

 

Ribophagy was first described in the yeast during nutrient stress and was shown 

to involve ubiquitylation of the Rpl25 of the 60S ribosome subunit by the ubiquitin ligase 

Ltn1/Rkr1 and maybe by Rsp5 regulated the activity of Ubp3/Bre5p (Kraft et al., 2008; 

Kraft and Peter, 2008; Ossareh-Nazari et al., 2014). In the mammalian system, in addition 

to mTOR inhibition, oxidative stress, induction of chromosomal mis-segregation 

following MPS1 inhibition or translation inhibition and stress granule formation 

following sodium arsenite treatment were all shown to induce ribophagy (An and Harper, 

2018). Ubiquitylation of ribosomes was observed under ER stress-inducing conditions, 

and considering the involvement of ubiquitylation in the yeast, it is likely that ribosome 

ubiquitylation is involved in ribophagy (Higgins et al., 2015). Moreover, p97/VCP that 

binds to ubiquitylated proteins and that functions in the delivery of these substrates to 

proteasome was necessary for ribophagy both in yeast and mammalian cells (An and 

Harper, 2018; Verma et al., 2013). Yet, individual ribosomal proteins were indeed 

shown to be a target of the UPS (Wyant et al., 2018). Recently, NUFIP1-ZNHIT3 

proteins were identified as novel ribophagy receptors that directly connected ribosomes 

to LC3 and autophagy, but the role of ubiquitylation in this process is not clear to date 

(Wyant et al., 2018) (Figure 1.3.5.4). 

 



59 
 

 
 

Figure 1.3.5.4:  Selective targeting of ribosomes and stress granules for degradation to 

the UPS or autophagy mechanisms. 

 

 

On the other hand stress granules are composed of actively accumulated non-

translating mRNA ribonucleoprotein complexes (Protter and Parker, 2016). Proteins that 

accumulated in the stress granules, include  stalled 40S ribosomal units and various 

translation initiation factors (e.g., eIF4E, eIF4G, eIF3, eIF2 and poly(A)-binding protein 

(PABP)) (Kedersha et al., 2005; Reineke and Lloyd, 2013). A subunit of the eIF2, eIF2-

α is phosphorylated under various stress conditions, leading to the blockage of cap-

dependent translation. GCN2 is one of the eIF2-α kinases and both proteins were involved 

in stress granule formation (Farny et al., 2009; Mazroui et al., 2007). G3BP1 and TIA-1 

are also among the proteins that contribute to stress granule formation (Kedersha et al., 

2000; Tourrière et al., 2003; Waris et al., 2014). Additionally, an interplay between 

G3BP1, Caprin1 and the DUB protein USP10 was shown to regulate stress granul 

formation, USP10 having a negative and Caprin1 having a positive on G3BP1-mediated 

granule condensation (Kedersha et al., 2016) HDAC6 was a component of stress granules 

as well, and HDAC6 and bound  to G3BP1 protein (Seguin et al., 2014).  Accumulating 

data indicate that clearance of stress granules was regulated by both the UPS and 
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autophagy mechanisms, and the p97/VCP protein is a key component in both processes. 

For example, inhibition of autophagy or p97/VCP deficiency were linked to decreased 

stress granule removal (Buchan et al., 2013). Co-factors of p97/VCP determine target 

selectivity of the protein. In this context, while the association of p97/VCP with the co-

factor UFD1L led to the degradation of defective ribosomal products  and dysfunctional 

60S ribosomes by the UPS (Fujii et al., 2012; Ju et al., 2008; Verma et al., 2013), HDAC6 

containing p97/VCP and PLAA associated granules were made a target of ribophagy 

(Ossareh-Nazari et al., 2010). Therefore depending on the co-factor of choice, p97/VCP 

has a decisive role in the choice of the degradative pathway through which ribonuclear 

substrates are eliminated.  

 

 

 

1.3.6 Proposed Direct Link Between the UPS and Autophagy: PSMA7, PSMB5, 

UBA1, UBE2L3 and ATG5 

 

 In this Phd study, previously unidentified, novel and direct links between the UPS 

and autophagy mechanisms were investigated under basal and mitochondrial stress- 

inducing conditions through direct binding of proteasomal components to core autophagy 

protein ATG5.  Along with this thesis, PSMA7 and ATG5 interaction was verified in 

multiple and independent technics, including Yeast-Two-Hybrid, immunoprecipitation 

tests and colocalization analysis as well as gel filtration tests. The functional role of the 

interaction was investigated by knockdown studies using siRNAs and knockout cells are 

utilized. Based on omic studies perfomed during this Phd work, PSMB5, UBA1 and 

UBE2L3 were suggested as ATG5 interactors. These initial screening data further 

confirmed with biochemical tests suggesting that ATG5 is multifunctional protein and 

upon differential stress stimuli provide differential interactome profile regulating cellular 

homeostasis. And even the same stimuli provided different interaction hits based on the 

subcellular localization of the protein. 

 

 These novel interactions could suggest an extra layer of importance for 

understanding of the crosstalks between the degradation systems and co-regulation in the 

elimination of common substrates, especially mitochondria. As well as, potential different 

roles of the interaction in terms of localization: cytoplasm and mitochondria. Findings 
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derived from this thesis would be utilized for the therapeutic approaches of mitochondrial 

defects-causing diseases, including neurodegenerative disorders.   
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2. MATERIALS AND METHODS 
 

 

 

2.1 PLASMIDS, CONSTRUCTS and SIRNAs 

 

Myc-ddk-tagged PSMA7 (RC201169), human PSMA7 (SC319465) and Myc-ddk-tagged 

human ATG5 (RC235557) plasmids obtained from ORIGENE. Mito-dsRed (#87379), 

pm-Turquoise2-mito (#36208), YFP-tagged MFN2 (#28010), YFP-tagged Parkin 

(#23955), mCherry-tagged Parkin (#23956), MYC-tagged Parkin (#17612), N-GFP-

tagged PINK1 (#13315), C-GFP-tagged PINK1(#13316), N-MYC-tagged 

PINK1(#13313), C-MYC-tagged PINK1 (#13314), psPAX2 (#12260), pMD2.G 

(#12259) and pMXs-IP HA-tagged Parkin (#38248) plasmids obtained from Addgene. 

pEGFP-tagged LC3, and human ATG5 plasmids were generous gift from Noboru 

Mizushima, pmCherry-tagged ATG5 plasmid from Jae-Won Soh. For knock down 

experiments, Smart pool siRNA PSMA7 (M-004209-00-0020 20), siRNA PSMB5 (M-

004522-00-0020 20) and Control siRNA (D-001210-01-20) were purchased from 

Dharmacon. Flag-tagged PSMA7 vector exposed to restriction enzyme cut with EcoRI 

and XhoI afterwards ligated into pEGFP-N3 empty vector (Clontech) following EcoRI 

and SalI in order to generate pEGFP-tagged PSMA7 construct. Flag-tagged PSMA7 

fragments, N-terminal (F1) and C-terminal (F2) were generated by PCR-based clonning 

using Myc-ddk-PSMA7 as template and primers listed belove and then PCR products 

inserted into pCMV-3Tag-6-Flag empty vector.  
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The primers used for PSMA7 fragment generation: 

 

PSMA7-F1 Fwd 5' ataggatccagctacgaccgcgccatc 3' TM 65.2 

PSMA7-F1 Rev 5' atactcgagtcactccaggaactcgcg 3'   TM 62.9 

 

PSMA7-F2 Fwd 5' ataggatccgccgccaccaagaactatactgacgaag 3' TM 66.1 

PSMA7-F2 Rev 5' tatctcgagtcatgatgctttcttttgt 3' TM 55.5 

 

BamHI: GGATCC 

XhoI: CTCGAGT 

 

 

 

2.2 YEAST-TWO-HYBRID SCREEN 

(by Former students) 
 
 

For yeast-two-hybrid screening, while pGBKT7-ATG5 construct was used as bait, 

and a thymus cDNA library in the pACT2 vector was used as prey (Clontech). Screening 

procedures were followed according to the manuals provided by manufacturers. To cut 

along story in short, AH109 yeast strain used for transformation of the constructs and 

potential interactions were observed on selective solid media (leucine, tryptophan, 

histidine, and/or adenine) without containing plates for 3 to 5 days. After selection, inserts 

coming from grown colonies were subjected to colony PCR based amplification reaction 

and subsequently, PCR products were sequenced and characterized. Following colony 

PCR protocol was followed in order to amplify the plasmid inserts in grown bacteria: 
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PCR Mix Protocol:  

(Reaction Volume 50 µl) 

10X Tag Buffer (Thermo Fischer, B38): 6,5 µl  

MgCl2: 4,5 µl 

dNTP mix (Thermo Fischer, R0192, 10mM): 2 µl  

Tag Polymerase (Thermo Fischer, 10342020, 1 u/µl): 1 µl  

Primer 5’ pACT2 (10mM): 1 µl 

Primer 3’ (10mM): 1 µl 

Selected colony dissolved in 0,2 M NaOH: 10 µl 

dd H2O: 39 µl 

 

PCR Reaction Program:  

Step 1: 94 ̊C for 3 mins. 

Step 2: 2x Repeat the cycle 

i. 94 ̊C for 30 s 

ii. 60 ̊C for 30 s 

iii. 70 ̊C for 3 mins 

Step 3: 2x Repeat the cycle 

i. 94 ̊C for 30 s  

ii. 59 ̊C for 30 s 

iii. 70 ̊C for 3 mins 

Step 4: 2x Repeat the cycle 

i. 94 ̊C for 30 s 

ii. 58 ̊C for 30 s 
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iii. 70 ̊C for 3 mins 

 

Step 5: 70 ̊C for 10 mins 

 

When PCR cycles have been terminated, samples were run through 1% agarose 

DNA gel.  During this electrophoretic run, Mass Ruler DNA ladder mix (Thermo Fischer, 

SM0403) was used as a molecular weight marker. Compare to moleculare weight with 

the amplified samples which show amplification only at around one size of the band were 

sent for sequencing for further validation and blast-based characterization of the colonies.  

 

 

2.3 CELL CULTURE 

 

 

 

2.3.1 Cell Line Maintenance 
 

 

HEK293T, HeLa and MEF cells were cultured in DMEM (Dulbecco’s modified Eagle’s 

medium; PAN, P04-03500) supplemented with 10% (v/v) fetal bovine serum (FBS; PAN 

Biotech., P30-3302) and antibiotics (100 units/mL penicillin and 100 µg/mL 

streptomycin; Biological Industries, BI03-031-1B) and 1% L-glutamine (Biological 

Industries, BI03-020-1B) under 5% CO2 in a humidified incubator. In the case of cells 

that are stably expressing gene of interests or crispr cells, regular media described above 

was supplemented with mammalian selection marker puromycin according to determined 

doses for each cell type. All cell types used in this study were adherent. Therefore, in 

every two days cells when reached to a 80-90% confluency, cells were splitted into new 

passages. During cell passaging, the media in which celss were growing removed. Cells 

were washed once with sterile, cell culture grade 1xPBS (PAN Biotech., P04-36500) and 

PBS was removed. In order to detach cells from plate surface, Trypsin (Biological 

Industries, BI03-050-1A) was used. Cells were incubated with trypsin for 5 to 7 mins 
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based on the cell types at 37 ̊C in 5% CO2 humidified incubator. After incubation, trypsin 

was inactivated with 2x volume of complete DMEM. 1 to 10 volume of cell suspension 

was placed in new plates for further growth.       

  

 

 

2.3.2 Transfections and Crispr ATG5 cells Generation 
 

 

In order to transiently express genes of interest in HEK/293T and HeLa cells, calcium 

phospate precipitation used according to given protocol belove. For Parkin stable 

HEK/293T and HeLa cells and Crispr ATG5 HeLa cells, viral transduction protocols 

followed described belove. 

 

 

 

2.3.2.1 Calcium-Phosphate Transfection 
 

16 h prior to transfection, 1.5 million HEK/293T and HeLa cells plated in 10 cm2 in 

diamater sterile cell culture plates (all volues were doubled for cells grown in 15 cm2 

plates). In one transfection tube 300 µl of 2X HBS (280mM NaCl, 1.5 mM Na2HPO4, 50 

mM Hepes, 10 mM KCL, 12 mM D-glucose Monohydrate; pre-heated to 37oC) per 

condition was added. In the second tube, based on the cellular expression levels of the 

constructs, 5-10 µg of plasmid DNAs together with the ratio of 1/10 pE-GFP plasmid 

added. The final volume of the second tube filled up to 270 µl with pre-heated ddH2O. 

Next, 30 µl of pre-heated 2.5 M CaCl2 was added into the second tube and the two tubes 

were mixed on the vortex to initiate the reaction. The mixed solution was incubated for 

15 minutes at RT. When the incubation time was over, transfection mix was added onto 

cells drop-by-drop and cells continued to grow with transfection mix. 8 h after 

transfection, cells were washed with 5 ml PBS for three times and plates fullfilled with 

fresh pre-heated medium. 24 h after transfection, the transfection efficiency was 

controlled by the GFP expression under fluorescence microscope. 

2.3.2.2  Retrovirus and Lentivirus Production for Mammalian Cell Infection 
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All retrovirus and lentivirus related experiments performed under the biosafety level-2 

cell culture cabinets. In order to produce lentiviruses for, using HEK/293T cells as host, 

plated in 10 cm2 plated 16 h prior to tranfection. HEK/293T using calcium-phosphate 

precipitation method psPAX2, pMD2G constructs together with target gene transfected. 

The detailed transfection recipe given belove. 8 h after transfection, cell media refreshed 

as described in detail above. 24 h and 48 h after transfection, lentivirus containing media 

collected and centrifugated for 5 min at 300xg. Then, supernatant filtered through 0.45 

µm filter unit and stored at -80°C until further need for transduction. 

 

 

Transfection Protocol: 
 

HBS: 300 µl 

Water: 250 µl 

Target gene: 10 µg 

psPAX2: 8 µg 

pMD2.G: 2 µg 

CaCl2: 30 µl 

 

 

   In order to use retroviral constructs for mammalian cell infection, the specific 

host cell requirements occur. Platinum A cells were used as host which are derivative of 

293T cells but contain gag, pol and env genes as default therefore with a single construct 

transfection allowing efficient retrovirus production. 1.5 million of Platinum A cells 

plated 16 h prior to transfection. Calcium-Phosphate precipitation method with a given 

recipe belove was also used for retrovirus production for further mammalian cell 

infection. 
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Transfection Protocol: 
 

HBS: 300 µl 

Water: 260 µl 

Target gene: 10 µg 

CaCl2: 30 µl 

 

 

8 h after transfection, the media of Platinum A cells renewed. 24 h and 48 h after 

transfection, retrovirus containing media collected. Right after centrifugation and 

filtration, retroviruses used for transduction in order to prevent the loss of infection 

efficiency. 

 

 

 

2.3.2.3 Retroviral Infection for Parkin Stable Cell Generation 
 

 

Due to the lack of endogenous Parkin expression, the need of Parkin stable cell generation 

raised. The retroviral HA-tagged Parkin construct used for stable cell generation (For map 

of the plasmid, please see Figure 2.3.2.3 1).  
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Figure 2.3.2.3 1: Map of the pMXs-IP HA-PARKIN construct. This construct was used 

for stable cell generation was kind gift from Noboru Mizushima (Yoshii et al., 2011).   

 

 

 

300.000 cells/well of HEK/293T and HeLa cells plated in 6-well plates one day before 

the retrovirus collection. 500-1000 µl of retrovirus suspension used with the addition of 

5 µg/ml Polybrene (1mg/ml) for each condition. 8 h after transduction, the media of cells 

refreshed. 72 h after transduction, based on the mammalian selection marker of the 

construst, puromycin in this case, cells started to be grown with antibiotic containing 

media with a pre-determined consentrations for each cell type. 
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2.3.2.4 Crispr ATG5 HeLa Cell Generation   
 

 

Crispr ATG5 cell generation required several steps: 1) Construction and validation of 

constructs, 2) Lentiviral Crispr vector production, 3) Infection of target cells and 

validation of polyclones, 3) monoclonal selection.  

 

Cripr gRNAs for ATG5 gene were determined by using Optimized Crispr Design 

tool provided by MIT (crispr.mit.edu). The human genome was selected as target genome 

and the target gRNA was determined with a high score rate and low off-target gene 

numbers among the given list. At least two different target guide RNA sequences used 

for primer design. Human ATG5 Crispr primers used in Crispr cell generation listed 

below: 

 

Human ATG5-1 Fwd 5’- CACCGAACTTGTTTCACGCTATATC -3’ 

Human ATG5-1 Rev 5’- AAACGATATAGCGTGAAACAAGTTC-3’ 

 

Human ATG5-2 Fwd 5’- CACCGTGATATAGCGTGAAACAAGT -3’ 

Human ATG5-2 Rev 5’- AAACACTTGTTTCACGCTATATCAC -3’ 

 

Human CNT Fwd 5’- CACCGGTAGCGAACGTGTCCGGCGT -3’ 

Human CNT Rev 5’-AAACACGCCGGACACGTTCGCTACC -3’ 

 

  

 

 Desalted Crispr human ATG5 and control (non-gene targeting) oligos were 

solubilized in sterile molecular biology grade water (GE Lifesciences, HyCLONE, 

SH30221.10) according to manifacturers instructions with a final oligo concentration of 

100 µM.  
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2.3.2.4 1 Lentiviral vector digestion, oligo annealing and cloning into digested 
vector  
 

 

1) pLenti CRISPR-V2 empty vector was exposed to restriction enzyme cut by using a 

single enzyme BsmB1 with a given protocol below. Lentiviral vector was digested at 

37°C for 16 h.  

 

 

Digestion Protocol 

 

(Reaction Volume 50 µl) 

10X Tango Buffer: 5 µl 

DTT (20 mM): 2,5 µl 

DNA Template (5ng): 5 µl 

BsmbI:  1 µl 

ddH2O: 36,5 µl 

 

 

2) Digested lentiviral vector extracted from the gel. 

 

Following restriction digestrion, BsmB1 cut and and as negative control uncut vectors 

were separated through 1% agarose gel for 45 minutes. BsmB1 cut vector extracted from 

the gel by using Gel extraction and PCR clean up kit (Macherey- Nagel, REF: 740609.50) 

according to manifacturers instructions. Extracted DNA purity and concentrations 

determined by nanodrop measurement.  

 

3) Human ATG5 targeting primer pairs were annealed according to given protocol below 

and performed in a PCR machine. 
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Annealing Mix 
 

(Reaction Volume 10 µl) 

 

GRNA oligo Rev (100 µM): 1 µl 

10X T4 Ligase reaction buffer: 1 µl 

ATP (25 mM): 0,4 µl 

T4 polynucleotide ligase: 0,5 µl 

DdH2O: 6,1 µl   

 

Annealing Protocol 

Step 1: 37°C for 30 mins. 

Step 2: 95°C for 5 mins. 

Step 3: Allow the oligos return to RT (5°C/min decrease) 

 

 

 Annealed primers were diluted in ddH2O with 1:200 ratio for further ligation 

steps.   

 

 

4) Annealed primers were inserted into digested lentiviral vector according to following 

protocol at 16 °C for 16 h: 

 

Ligation Protocol 

 

(Reaction Volume 10 µl) 

 

10X reaction buffer: 1 µl 

Digester vector: 1 µl 

Annealed primers (diluted): 1 µl 

T4 DNA ligase: 0,5 µl 

ddH2O: 6,5 µl 
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 5) Transformation into Stbl3 bacterial strain. 

 

Ligation products were diluted in 1:100 with molecular biology grade water. 10 

µl of diluted ligation product used for further transformation step. Heat-shock mediated 

transformation was performed by using Stbl3 competent bacterial strain. Transformed 

bacteria were spreaded on ampicillin containing LB agar plates at 37°C for overnight 

incubation. 

 

 

6) Colony selection and DNA isolation. 

 

16 h after transformation, 10 single colonies were selected by using toothpick or pipet tip 

and grown for further 8 hours in ampicillin containing LB broth by shaking with 200 rpm 

at 37°C. The inserted dna construct were extracted by using mini prep protocol according 

to manifacturers instructions (Macherey-Nagel, REF:740412.10). 

 

 

7) Validation of constructs by sequencing  

 

Plasmid DNAs from selected colonies were sent for sequencing (Molecular Cloning 

Laboratories, USA) for validation of inserted gRNA oligos into the pLenti-V2 vector 

without mutation. The sequences were analyzed by using tool suggested by the 

sequencing company. 

 

 

 

 

 



74 
 

2.3.2.4 2 Lentivirus production of confirmed constructs, lentiviral transduction 

and monoclonal selection  

 
 
Following sequencing-based confirmation, the confirmed colonies were grown overnight 

in ampicillin supplemented LB broth by shaking with 200 rpm at 37°C. Next, grown 

bacteria were pelleted with centrifugation at 4°C, 5000g for 30 minutes. In order to use 

for further infection steps, plasmid DNAs were isolated by using midi prep kit according 

manifacturers instructions (Macherey-Nagel, REF: 740412.10). 

 

As described in detail above, also for Crispr ATG5 vector containing lentivirus 

production HEK/293T cells used. Both HEK/293T and HeLa cells used for transduction. 

Duction of target cells done in 6-well plates and 72 h posttransduction puromycin 

mediated selection has began. Polyclones were tested in terms of their ATG5 protein 

levels. Positive clones were then splitted into 96-well plate to have 1 cell per well for 

monocolonal selection. After reaching enough cell population, each monoclones were 

tested according to their ATG5 protein level and their response to autophagy. Best clones 

determined, and following experiments performed bu using these monoclones. 

  

 

 

2.3.3 Mitochondrial Stress and Mitophagy Induction in Cell Culture 
 

 

Mitochondrial stress was stimulated by adding two different chemicals in cell culture 

media of grown cells. Staurosporine (STAURO; Sigma, S5921) is a general PKC 

inhibitor, was dissolved in DMSO (Sigma, VWRSAD2650) (2 mM) and used at a final 

concentration of 1 µM for 12 h. Other chemical which is a protonophore, CCCP (Sigma, 

C2759) was also dissolved in DMSO (20 mM), mitophagy inducing concentration 

determined as 10 µM for 12 h.  
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2.4     PROTEIN ISOLATION AND IMMUNOBLOTTING TESTS  

 

Following the end of the transfection and treatment periods, cells were harvested 

with PBS and collected in tubes. Continuos centrifugation steps were used to get rid of 

media remnants from cell pellets. Cell pellets were disolved in complete protease 

inhibitors (Sigma, P8340) and 1 mM PMSF (Sigma, P7626) supplemented RIPA buffer 

(25 mM Tris, 125 mM NaCl, 1% Nonidet P-40, 0.1% SDS, 0.5% sodium deoxycholate, 

0.004% sodium azide, pH 8.0) according to their volumes. Then, in every 5 minutes cell 

pellets mixed by vortexing for 10 sec and incubated on ice for 30 minutes. Afterwards, 

cell lysate was cleared for 15 minutes centrifugation at 12.000 rpm, 4°C. Cell lysates 

placed into new tubes and protein concentrations were measured by using the Bradford 

assay (Sigma, B6916). For further immunoblotting experiments, protein samples were 

denaturated in 3X protein loading dye (6% SDS, 30% Glycerol, 16% β-Mercaptoethanol 

and 0.1% Bromophenol blue in 1 M Tris-HCl pH 6.8) by boiling at 95°C for 10 minutes. 

Denaturated protein samples were separated in home-made Tris-glycine gels with 

10-15% acrylamide (for self-made SDS gel please see Table 2.4.1 and 2.4.2), then gels 

transferred onto nitrocellulose membrane (GE Healthcare, A10083108) with constant 250 

mA for 75 minutes. Following transfere, membranes were blocked with 5% non-fat milk 

(Applichem, A0830,0500) in PBST (0.05% Tween 20 in PBS; 3.2 mM Na2HPO4, 0.5 

mM KH2PO4, 1.3 mM KCl, 135 mM NaCl, pH 7.4) for 1 h at RT on the shaker. Then the 

membranes were washed with PBST 3 times for about 5 minutes on shaker. Then the 

membranes were incubated with a differential working concentrations of primary 

antibodies diluted in red solution (5% BSA Cohn V Fraction, 0.02% Sodium Azide in 

PBST, pH 7.5, Phenol red) and incubated eihter at RT for 1 h or at 4°C for overnight. 

After primary antibody incubation, membranes were washed with PBST three times and 

membranes were incubated with HRP-conjugated secondary antibody diluted with 

1.10000 ratio in 5% non-fat milk solution at RT for 1 h. Afterwards, membranes washed 

3 times with PBST and homemade ECL solution (25 mM luminol, 9 mM coumeric acid, 

70 mM Tris-HCl pH 8.8) prepared. As soon as 3 µl of H2O2 was added into the solution 

the chemical reaction began and the membranes wettened with working solution. Then in 

order to detect the signal, membranes and blue films (Fujifilm, Blue Sensitive film 47410 
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19289) on top of the membranes, placed into cassettes for 20 minutes incubation in dark 

room. At the end of 20 minutes, the signal on the films were developed and fixed using 

manuel developer and fixer solutions sequentially in dark room.  

Due to the need for detection more than 1 protein with the same or close molecular 

weights, after chemiluminescence detection membranes were incubated with stripping 

buffer (25mM Tris- HCl, 1% SDS pH 2.0) for 30 minutes at 60°C by shaking in every 5 

minutes. Following stripping step, membranes required to be blocked and incubated for 

desired primary antibodies afterwards. 

 

Table 2.4.1: The recipe of home-made separating gel (LOWER) for SDS-PAGE. 

 

 

 

Table 2.4.2: The recipe of home-made stacking gel (UPPER) for SDS-PAGE. 

 

 

 

 

 

 

 

 

LOWER GEL 15% 12% 10% 

 
5ml 10ml 20ml 5ml 10ml 20ml 5ml 10ml 20ml 

DdH20 850 µl 1.75 ml 3.5 ml 1.35 ml 2.75 ml 5.5 ml 1.7 ml 3.4 ml 6.8 ml 

50% Glycerol 400 µl 750 µl 1.5 ml 400 µl 750 µl 1.5 ml 400 µl 750 µl 1.5 ml 

Lower Buffer 1.25 ml 2.5 ml 5 ml 1.25 ml 2.5 ml 5 ml 1.25 ml 2.5 ml 5 ml 

Bis/Acrylamide 2.5 ml 5 ml 10 ml 2 ml 4 ml 8 ml 1.65 ml 3.35 ml 6.7 ml 

10% APS 50 µl 100 µl 200 µl 50 µl 100 µl 200 µl 50 µl 100 µl 200 µl 

Temed 5 µl 10 µl 20 µl 5 µl 10 µl 20 µl 5 µl 10 µl 20 µl 

UPPER GEL 2.5ml 5ml 7.5ml 12.5ml 

DdH2O 1.62 ml 3.25 ml 4.88 ml 8.13 ml 

Upper Buffer 625 µl 1.25 ml 1.87 ml 3.12 ml 

Bis/Acrylamide 250 µl 500 µl 750 µl 1.25 ml 

10% APS 20 µl 40 µl 60 µl 100 µl 

Temed 5 µl 10 µl 15 µl 25 µl 
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Immunoblots were achieved by using spesific antibodies against PSMA7 (Enzo 

Lifesciences, PW8120), PSMB5 (Enzo Lifesciences, PW8895), Parkin (Santa Cruz 

Biotech., Sc-32282), TOMM40 (Santa Cruz Biotech., Sc-11414), Flag (Sigma, F3290), 

ATG5 (Sigma, AO856), LC3 (Novus, 2331), MFN2 (Sigma, M6444), b-Actin (Sigma, 

A5441), p62 (BD Transduction Lab.,610832), VDAC1 (Millipore, AB10527), Tim23 

(BD Transduction, 611222), PINK1 (Novus, BC100-494), ATP5A (Santa Cruz Biotech., 

sc-58613), UB (PD41, Santa Cruz Biotech., sc-8017), Ser65 phospho-UB (EMD 

Millipore, ABS1513-I), OPTN (Abcam, ab23666). Following primary antibody 

incubation, HRP conjugated anti-mouse IgG (Jackson Immuno., 115035003) or anti-

rabbit IgG (Jackson Immuno., 1110305144) were selected according to host organism of 

primary antibody and used with a 1:10.000 dilution in 5% milk in PBST. In order to 

quantify the band intensities, ImageJ software was used. 

 

 

 

2.5     MITOCHONDRIAL ISOLATION  

 

 

In order to obtain highly purified mitochondria, 30 million cells were cultured for each 

condition. Cells were harvested and washed with PBS three times by a series of 

centrifugation. The resulting cell pellet was resuspended in isolation buffer (600 mM 

sucrose, 10 mM TRIS-HCl pH7.4, 1 mM EDTA pH8.0) supplemented with 0.1 % (v/v) 

protease inhibitor cocktail, 1 mM NaF (Fluka, 71527), 0.2 mM NaVO3 (Sigma, 450243) 

and 0.1 mM PMSF and centrifuged at 500 g and 4°C for 5 min. After dissolving pellets 

in 1 ml of isolation buffer, transferred into a glass hand-homogenizer. Mechanical 

disruption was achieved by 25 strokes in the glass potter and maintained always on ice. 

Following a serial centrigutaion steps, first remaining intact cells and nuclei were 

separated from cytoplasm and then, crude mitochondria from cytoplasm. Crude 

mitochondria pellet was resuspended in MOPS buffer (250 mM sucrose, 10 mM MOPS 

(Calbiochem, 475898), 1 mM EDTA pH 8.0, pH 7.2) supplemented with 0.1% (v/v) 

protease inhibitor cocktail, 1 mM NaF, 0.2 mM NaVO3 and 0.1 mM PMSF and loaded 

on top of the precooled sucrose density gradient consisting of 4 distinct sucrose layers 

with 60, 32, 23 and 15% sucrose solutions, respectively. After ultracentrifugation 

(Beckman Coulter, Optima Max-XP) at 134.000×g and 4 °C for 1 h the mitochondrial 
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fraction was visible as a yellowish pellet between 60% and 32% sucrose layers. The 

mitochondrial fraction was collected with glass pipet and washed with MOPS buffer to 

remove remaining sucrose solution. Resulting pellet was dissolved in protease inhibitor 

cocktail and 1 mM PMSF containing RIPA buffer and mitochondrial protein isolation 

was performed as described above. Bradford assay was used to measure protein 

concentrations. Purity control of the isolated mitochondria was achieved by 

immunoblotting of 50-100 µg mitochondrial fractions and blotting with antibodies 

against mitochondrial and cytoplasmic proteins. 

 

 

 

2.6     IMMUNOPRECIPITATION TESTS 

 

 

To analyze protein-protein interactions in cells or more specifically on 

mitochondria, protein lysates were incubated with either Flag-beads (Anti-Flag M2 

affinity gel; Sigma A2220) or protein-A/G agarose beads (Santa Cruz Biotech., sc-2001 

and sc-2002) that are precoupled with specific antibodies for immunoprecipitation 

experiments.  25 µl of beads for each condition were used and washed once with 250 µl 

of PBS, once with 250 µl of RIPA buffer and once with 250 µl of protease inhibitor 

supplemented RIPA buffer by centrifugation at 4°C, 6000g for 1 min. 1 mg for 

overexpressed proteins and 2.5 mg of endogenous proteins were loaded onto the 

prewashed beads and the total volume filled up to 250  µl with protease inhibitor 

containing RIPA buffer.  100 µg of protein samples was boiled with 3X loading dye as 

input control. Samples were allowed over-night rotation at 4°C. Then, unbound proteins 

were washed away by 6 repeats of centrigation steps with 500 µl of homemade protease 

inhibitor (500X) and 1 mM PMSF containing RIPA buffer. After last wash, bead pellets 

were boiled with 3X loading dye in order to elute bound proteins. Elutes and input 

controls of each condition were separated in 12% tris-glycine gels. 
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2.7    IMMUNOFLUORESCENCE TESTS 

 

 

For immunofluorescence tests, HeLa cells were cultured directly on cover slips in 12-

well plates. 25.000 HeLa cells were plated per well. For HEK/293T cells, cover slips were 

pre-coated with 0.01 % poly-L-lysine (Sigma, P8920). Sterile cover slips were placed in 

10 cm2 plates and 100 µl of 0.01 % poly-L- lysine solution added onto each cover slips 

and incubated for 10 mins at RT. Poly-L- lysine solution was removed from the top of 

the cover slips and cover slips air-dried. Then, slides were washed once with sterile PBS 

and placed into 12-well plates. 30.000 HEK/293T cells splitted into each well that 

contains cover slips inside drop by drop. 

 

Following desired transfections and treatments, growth media was removed and 

washed once with sterile filted PBS. Cells were fixed with 4% paraformaldehyde ph 7.4 

(PFA; Sigma, P6148) for 30 minutes in dark and at RT under the chemical hood due to 

the toxicity of the chemical. Next, PFA is removed and cells were washed with PBS three 

times. If the cells were readily suitable for visualization of fluorescence-tagged proteins, 

10 µl of mounting solution [50% glycerol (Applichem, A4453) in filtered PBS] added on 

microscopy slides and cover slips were placed as the cell containing surface would meet 

the mounting solution. The excessive amount of mounting solution was removed with the 

help of dust-free papers and the edges of the cover slips were sealed with nail polish. 

After becoming dried, the slides were analysed under the confocal microscope with and 

63x oil objective (Carl Zeiss, LSM710). If not, after fixation, cells were placed in parafilm 

covered wells of 6-well plate and therein incubated with 100 µl of blocking reagent [PBS 

with 0.1% BSA (Sigma, A4503) and 0.1% saponin (Sigma, 84510)] in order to 

permeabilize the sample for 30 minutes at 4°C by shaking. Following removal of blocking 

reagent, samples were incubated with 50 µl of primary antibodies diluted (with 1:100-

1:200 ratio depending on the efficiency of each antibody) in blocking solution for 1 h, at 

RT on the shaker. Following primary antibody incubation, solution was removed and 

washed with PBS for 3 times and samples were incubated for further 1 h with fluorescent-

tagged secondary antibodies diluted in blocking solution (1:500 ratio) at RT. Based on 

the host organisms of the primary antibodies following secondary antibodies were 

utilized. For primary antibodies produced in mouse host, Alexa Fluor 488 goat anti- 
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mouse IgG (Thermo Fisher Scientific, 982245), Alexa Fluor 594 goat anti- mouse IgG 

(Thermo Fisher Scientific, 927075), Alexa Fluor 568 goat anti-mouse IgG (Thermo 

Fisher Scientific, A11004) and Alexa Fluor 405 goat anti-mouse (Thermo Fisher 

Scientific, A31553) were used. For primary antibodies produced in rabbit host, Alexa 

Fluor 488 goat anti- rabbit IgG (Thermo Fisher Scientific, 948490), Alexa Fluor 594 goat 

anti- rabbit IgG (Thermo Fisher Scientific, 982384), Alexa Fluor 405 goat anti-rabbit IgG 

(Thermo Fisher Scientific, A31556), and Alexa Fluor 568 goat anti-rabbit IgG (Thermo 

Fisher Scientific, A11011) were used as secondary antibodies. Next, cover slides were 

washed, mounted on the slides and analyzed under confocal microscopy. 

 

 

 

 

2.8  ANTI-DNA STAINING TEST 

 

 

Cellular mitochondrial DNA amount was determined by using anti-DNA (Progen, Cat. 

No. 61014) staining according to manifacturers instructions and analyzed as described in 

(Lazarou et al., 2015). Briefly, cells were grown as described in the section 2.7. Following 

desired transfection and treatments, cells were fixed with 4% PFA and permeabilized by 

using BSA/Saponin solution. Following permeabilization, coverslides were incubated 

with 40 µl of anti-DNA antibody overnight at 4°C with a 1:100 dilution in BSA/Saponin 

solution. Then Alexa Fluor 488 goat anti- mouse IgG (Thermo Fisher Scientific, 982245) 

used for secondary antibody incubation with 1:500 dilution. In the last wash of PBS, 

nuclear DNA was stained by using DAPI with a 1:106 dilution for 5 minutes at RT. Slides 

were analyzed under confocal microscope. 

 

 For analysis, cellular green and blue signals were measured by using IMAGE J 

software. For mitochondrial DNA, nuclear blue signal was excluded from the green 

signal. And mtDNA over nuclear DNA ratio was calculated for at least 50-100 cells per 

condition. Statistical analyses were performed. 

 

   

 



81 
 

2.9  GEL FILTRATION ANALYSES 

 

 

Gel filtration is fast protein liquid chromatography (FPLC)-based method used for 

separation of molecules according to their molecular sizes through an automated gradient 

control and peak collection. In gel filtration experiments, a porous matrix assisted 

separation was maintained by using a SuperoseTM 6 10/300 GL column (GE Healthcare, 

17-5172-01) with a separation range of 5–5000 kDa or a Superdex-200 10/300 GL (GE 

healthcare, 17-5175-01) with a separation range of 10-600 kDa. The separation colum 

was connected to the AKTA Prime FPLC system (GE Amersham Pharmacia AKTA 

FPLC UPC900/P920 System/Frac 900 fraction collector, US). Then first, the column was 

washed with sonicated 36 ml of deionized water (3 fold greated than of column bed 

volume) and [(1:1) 0,05% glycerol/RIPA buffer (without protease inhibitors)] until all the 

paramaters (pressure: 1.5 MPa, flow rate: 0,5 ml/min., fraction volume: 0,5 ml, 

sample loop volume: 500 µl) become stable which were followed real-time on the 

UNICORNTM software of the AKTA system. Before loading protein samples to the 

column, the column was washed with 24 ml of sonicated protease inhibitors 

supplemented RIPA buffer and marker calibration was performed by using 250 µl of 

molecular weight marker as sample (Sigma, MWGF-1000).  

 

Following marker calibration, 500 µl of samples cellular lysates, cytoplasmic or 

mitochondrial fractions which approximately contain 5-10mg protein were loaded and 

fractions were collected in every 0.5 ml volume. Between different samples, the column 

was re-calibrated with sonicated water, equilibration buffer and protease inhibitor 

containşng RIPA buffer. 250 µl of 3X loading dye was added into each fraction. Samples 

were boiled and stored at -20°C until use for SDS-PAGE. Electrophoresis and following 

western blot analysis were performed as explained in detail above. 
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2.10 SILAC LABELLING AND EXPERIMENTATION  

 

 

Stable isotope labelling with anino acids in cel culture (SILAC) is a method where during 

cell division, stable carbon, hydrogen or nitrogen isotopes [Heavy (Arg10, Lys8), Medium 

(Arg6, Lys8), and Light (Arg0, Lys0)] were incorporated into cellular proteins while 

growing cells in SILAC medium (Dengjel et al., 2007, 2012). These differential medium 

usages enabled relative comparisons between three different experimental contions 

(represented in Figure 2.9 1).  Cells were grown in indicated SILAC medium for at least 

6 cell doubling period prior to settle up experiment. 

 

 

Figure 2.10 1: The pipeline of Tri-SILAC experiments starting from labelling cells with 

given amino acid containing medium to MS-derived data analysis. 

 

Following cell labelling with stable isotopes, based on the requirements of the 

experimental plan, cells transfected and treated. Protein samples were extracted or 

cytoplasmic and mitochondrial fractions isolated. BCA assay was used for measurement 
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of protein concentrations. 1 - 1.5 mg of protein samples were used for 

immunoprecipitation experiments (Flag-IPs).  

 

 

 

2.11 LIQUID CHROMOTOGRAPHY, SAMPLE PREPARATION FOR MS/MS 

 

Elutes were mixed and separated through a pre-cast SDS gel. SDS gels were 

stained with colloidal blue by using kit according to manufacturers instructions 

(Invitrogen, LC6025) in order to observe the immunoprecipitated proteins on the gel in 

correlation with expected molecular weights. The proteins in the gel were cut by scalper 

into 10 pieces and each pieces placed in one separate tube for further steps. In each tube, 

in-gel digestion was assessed using trypsin.  After trypsin digest  and serial vashing steps 

obtained peptides were analyzed by LC-MS/MS and data interpretation was achieved 

(Antonioli et al., 2017).   

 

 

 

 

2.12 LC-MS/MS and MS DATA ANALYSIS 

 

 

AGILENT HP 1200 HPLC series system connected a Q ExactiveTM Hybrid 

Quadrupole-Orbitrap Mass Spectrometer (Thermo Scientific, 

IQLAAEGAAPFALGMAZR) was utilized for LC-MS/MS analysis. Through the 

AGILENT system, HPLC was maintained with the use of a 15 cm silica emitting 

microcolumn (SilicaTip PicoTip; New Objective) self-packed with reverse-phase 

ReproSil-Pur C18-AQ beads (the size of 3,5 µm with a 20 µm inner diameter, Dr. Maisch, 

GmbH, Germany). 

 

Through a linear gradient flow of a 10-30% acetonitrile in 0.5% acetic ecid, 

peptides were allowed for separation with a 250 nl/min flow rate. In FT-MS, under the 

automated gain control value of 106 with a 60,000 resolution at m/z 400, full-scan mode 

acquired. 1000 counts and a upper filling limit of 100 ms were adjusted as tresholds for 
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repetitive MS/MS in the five samples exhibiting highest intensities varying in every 

sampling and automatic gain control (AGC) target value was determined as 5000 ions. 

Broad band selection was activated with a q= 0.25 value for 30 ms over a uniform 35% 

of collision capacity. Ions that are single charged or unassigned were extracted a dynamic 

exclusion mode to eliminate ions from sequential MS/MS for 45 s.  

 

The raw data obtained from LC-MS/MS, first subjected to a MaxQuant software 

run which allows large set of data interpretation with the given criteria. Following 

corrections in the MaxQuant run, MS-derived peptide peaks were converted into peptide 

sequences and these peptides were identified in an organism spesific database. In our 

case, MaxQuant 1.4.0.8 version was used for peptide search with default parameters 

through human Uniprot database. Identified peptides having false discovery rate (FDR) 

below than 1% were omitted through forward-decoy searches and matches were 

facilitated between each run. Next, the identified protein list subjected to aseveral 

significance tests, including: Benjamini Hochberg and p-value tests by using Perseus 

software in order to obtain significant hits as interaction partner in at least two different 

biological replicates. 

 

 

 

2.13     PROTEASOME ACTIVITY ASSAY MEASUREMENT 

 

 

Proteasome activity assay is performed as described in (Liggett et al., 2010). But briefly, 

Suc-LLVY-AMC, Bz-VGR-AMC and Z-LLE-AMC substrates were solubilized in Assay 

buffer with a composition of 20 mM Tris-Cl pH 7.5, 1 mM EDTA, 1 mM NaN3, 1 mM 

DTT in order to have final concentraion of each 10 mM of substrate assay solution.  The 

activity of 20S proteasomes were determined with the help of standard AMC calibration 

curve with a specific substrate consisting of a differenatially insreasing concentrartions 

obtained by serial dilutions (0.125 µM, 0.25 µM, 0,5 µM, 1 µM, 2 µM, 4 µM, 8 µM and 

16 µM).  
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 Substrate assay buffer and Assay buffer with 1:1 ratio used as blank in duplicate 

wells with 40 µl total volume per well. Substrates were incubated with cell lysates with 

1:1 ratio in final 100 µl, for 30 mins in water bath (37°C). At the end of 30 mins, each 40 

µl of samples from each tube pipetted into duplicate wells in dark-plate. The reaction then 

terminated with the addition of 200 µl of 100 mM sodium chloroacetate dissolved in 30 

mM sodium acetate, 70 mM acetic acid, pH 4.3. As soon as terminating solution added, 

plate is placed into fluorometer and mesurement performed with the filters set for 360 nm 

and 460 nm waive lengths for excitation and emission repectively. 

 

 

2.14     ATP ASSAY MEASUREMENT 

 

 

Cellular ATP level was measured according to manifacturers instructers (ATP 

Bioluminescence Assay Kit HS II; Roche, Cat. No. 11 699 709 001). But in short, cellular 

ATP leves are determined by comparing the luciferase intensities of lysates with ATP 

standards. Cells are grown in 6 well plates prior to measurement. Following treatment, 

cell are harvested and diluted with a concentration of 105 to 108 cells/ml in 50 µl in tubes 

or 25 µl in microplates. Lysis buffer is added onto the samples and standards. Following 

5 minutes incubation at RT, 50 µl of samples placed into the wells of dark microplate and   

50 µl of luciferase reagent is added per each well. Right after luminometric measurement 

performed and blank values are extracted from raw data. 
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3. RESULTS 
 

 

 

3.1 CONFIRMATION AND CHARACTERIZATION OF ATG5-PSMA7 

INTERACTION 

 

 

 

3.1.1 Confirmation of ATG5-PSMA7 interaction in mammalian cells. 
 

The initial Y2H screen was performed in the establishment of the lab by former students. 

According to Y2H screen, PSMA7 was identified as one of the candidates interacting 

with ATG5 (for sequence analysis please see Appendix B.1).   

 

In order to validate the Y2H screen in mammalian cells, various 

immunoprecipitation experiments performed. The experimental set ups in order to 

confirm the ATG5 and PSMA7 interaction in mammalian cells represented in the pipeline 

(Figure 3.1.1 1). 

 
 

Figure 3.1.1 1:  The pipeline of validation methods of ATG5-PSMA7 interaction in 

mammals. 
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  Utilizing the high protein productivity of HEK/293T cells, following co-

transfection experiments of both ATG5 and PSMA7 constructs, PSMA7 

immunoprecipitation experiments were performed and ATG5 binding to PSMA7 was 

observed. The western blots following immunoprecipitation experiment shown in Figure 

3.1.1 2.  

 

 
 

Figure 3.1.1 2:  PSMA7 immunoprecipitation experiment result of HEK/293T cells. 

HEK/293T cells were transfected with Flag-tagged PSMA7, non-tagged human ATG5 or 

co-transfected with both of the plasmids. 48 h after transfection, cells were harvested and 

proteins isolated. Following concentration measurement, proteins were incubated with 

FLAG-beads for immunoprecipitation tests overnight at 4°C. For immunoblotting 

experiments, ATG5, FLAG and b-ACTIN antibodies were used. Pre-IP, Total protein 

lysates; IgG, Immunoglobulin G. b-ACTIN was used as loading control. N=3 

independent experiments were performed and one of them shown as representative. 

 

 

 In other way around, immunoprecipitation of ATG5 could also co-precipitate 

PSMA7 as shown in Figure 3.1.1 3.  

 



88 
 

 
 

Figure 3.1.1 3: ATG5 immunoprecipitation experiments were performed in HEK/293T 

cells. HEK/293T cells were transfected with Flag-tagged PSMA7, pmCherry-tagged 

ATG5 or co-transfected with Flag-tagged PSMA7 and pmCherry-tagged ATG5 

constructs. Following 48 h of transfections, cell lysates were incubated with ATG5 

antibody coupled protein G agarose beads overnight at 4°C. Immunoprecipitated proteins 

were analyzed by immunoblotting experiments using FLAG, ATG5 and b-ACTIN 

antibodies. Pre-IP, Total protein lysates; IgG, Immunoglobulin G. b-ACTIN was used as 

loading control. N=3 independent experiments were performed and one of them shown 

as representative. 

 

 

 

 The interaction between endogenous proteins rather than overexpressed versions 

were tested by using mouse embryonic fibroblast (MEF) cells. Related result was shown 

in Figure 3.1.1 4. In endogenous immunoprecipitation experiments also PSMA7 and 

ATG5 protein interactions were verified. 
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Figure 3.1.1 4: Endogenous ATG5 immunoprecipitation experiments were performed in 

HEK/293T cells. HEK/293T cells were cultured until they become confluent for 48-72 h. 

Cell lysates were used for immunoprecipitation with ATG5 antibody coupled protein G 

plus agarose beads. Serum, Rabbit serum for negative control; Pre-IP, Total protein 

lysates; IgG, Immunoglobulin G. b-ACTIN was used as loading control. N=3 

independent experiments were performed and one of them shown as representative. 

 

 

 As an additional way of to test protein-protein interactions, colocalization of 

ATG5 and PSMA7 was analyzed by using confocal microscopy. According to data shown 

in Figure 3.1.1 5, under basal, nutrient rich conditions fluorescent-tagged both proteins 

were partially colocalized around perinuclear area of the cells. 
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Figure 3.1.1 5: The colocalization experiments were performed in HEK/293T (Upper 

part) and HELA (Lower part) cells.   Cells were cultured on cover slips and co-transfected 

with pEGFP-tagged PSMA7 (Green) and pmCherry-tagged ATG5 (Red). Following 48 

h of post transfection, cells were fixed with 4% PFA and analyzed under confocal 

microscope. Merge, the overlay of Green and Red signals of the cells. N=3 independent 

experiments performed. 

 

 

 

 Conclusively, several immunoprecipitation experiments and colocalization tests 

were all indicated that PSMA7 is a novel interaction partner of ATG5. This interaction is 

very important due to the being first direct interaction shown between the UPS and 

autophagy systems. 
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3.1.2 ATG5-PSMA7 Interaction Modelling 
 

 

Next, we would like to map the interaction between ATG5 and PSMA7 proteins in order 

to understand the critical parts of the PSMA7 for ATG5 binding. In order to map the 

ATG5 and PSMA7 proteins several computational and biochemical tests were performed 

as described in the pipeline (Figure 3.1.2 1).  

 

 
 

Figure 3.1.2 1: The pipeline of the performed experiments in order to address the ATG5-

PSMA7 interaction domain. 

 

 

By computational modelling performed by Sezerman group (Figure 3.1.2 1), it is 

suggested that C-terminal part of the PSMA7 especially is important for the protein-

protein interaction through salt bridges (Figure 3.1.2 2).     
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Figure 3.1.2 2: Computational Modelling of ATG5 (PDB Code: 4GDK, Blue) and 

PSMA7 (PDB Code: 1IRU, Red) (Performed by Sezerman Group). 

 

 

 

Table 3.1.2 1: Critical residues for ATG5-PSMA7 Interaction 
 

Important Residues  
For ATG5-PSMA7 Interaction 

ARG196_ATG5-GLU238_PSMA7 
ARG30_ATG5-ASP67_PSMA7 

ASP111_ATG5-ARG212_PSMA7 
ASP111_ATG5-LYS218_PSMA7 
ASP228_ATG5-LYS243_PSMA7 
ASP231_ATG5-LYS243_PSMA7 

GLU109_ATG5-ARG212_PSMA7 
GLU109_ATG5-LYS218_PSMA7 
GLU233_ATG5-LYS242_PSMA7 
GLU71_ATG5-ARG212_PSMA7 
GLU71_ATG5-ARG213_PSMA7 
GLU73_ATG5-ARG212_PSMA7 
LYS201_ATG5-GLU235_PSMA7 
LYS201_ATG5-GLU238_PSMA7 
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According to modelling, all important residues in terms of the interaction is listed 

in the Table 3.1.2 1.  According to this list, it is seen that C-terminal part of the PSMA7 

and N- and C-terminal part of the ATG5 protein could be involved in the protein-protein 

interaction. Based on this finding, using PCR-based cloning strategies, Flag-tagged N- 

and C-terminal fragments of PSMA7 were generated. F1 represents N-terminal fragment 

of the protein, F2 represents C-terminal fragment of the protein which also corresponds 

the Y2H sequence as well as important residues according to modelling (Figure 3.1.2 3).  

 

 

 
 

Figure 3.1.2 3: Schematic representation of PSMA7 fragments. 

 

 

In order to map the interaction between ATG5 and PSMA7, Flag-tagged PSMA7 

constructs were immunoprecipitated and co-precipitated ATG5 levels analyzed. 

According to data shown in Figure 3.1.2 4, F2 fragment showed more affinity to bind 

ATG5 than F1 fragment proving that C-terminal part is critical for ATG5 interaction. 

 

GxxD RPxG KEKE
N-term C-term

1 74 79 124 128 234 237 241 246 248

FL-PSMA7

KEKE
C-term

174 234 237 241 246 248
Y2H  SEQUENCE

GxxD RPxG
N-term

1 74 79 124 128 173
F1-PSMA7

F2-PSMA7
KEKE

C-term

174 234 237 241 246 248
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Figure 3.1.2 4: Interaction mapping experiments in HEK/293T cells. HEK/293T cells 

grown in 10 cm2 plates with a 1.5x106 cells per plate. Following 16 h of passaging, cells 

were transfected with Flag-tagged full length, N-terminal or C-terminal fragments of 

PSMA7. 48 h of porttransfection, cells were harvested, and protein lysates were incubated 

with Flag-beads. Immunoprecipitated proteins were eluted in 3x loading dye and samples 

separated through 12 % SDS-PAGE. For immunoblots, FLAG and ATG5 antibodies are 

used. ACTB, b-Actin is used for loadig control. Pre-IP, lysate control; Flag-IP, Flag 

Immunoprecipitation; FL, Full length; F1, N-terminal fragment and F2, C-terminal 

fragment (n=6 independent experiments performed in HEK/293T cells). 

 

 

 

 Additionally, we checked potential inhibitory effect of C-terminal fragment of 

PSMA7 on full length PSMA7 for ATG5 binding. To test this, ATG5 protein was 

precipitated and co-precipitating PSMA7 fragments were analyzed. According to data 

shown in Figure 3.1.2 4, full length PSMA7 and C-terminal fragments bind to ATG5. 

Yet, when the two constructs co-expressed, their individual binding for ATG5 decreased. 
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Figure 3.1.2 5: Competition test between full length PSMA7 and C-terminal Fragment 

of the protein in HEK/293T cells. HEK/293T cells were grown in 10 cm2 in a cell density 

of 1.5x106 per plate. Cells were transfected with Flag-tagged full length PSMA7 or C-

terminal fragment of PSMA7 or both fragments were co-transfected. 48 h of post-

transfection, cells were harvested and proteins out of them isolated. Cell lysates were 

incubated with ATG5 antibody coupled-beads overnight at 4°C. Immunoprecipitated 

proteins were eluted in protein sample buffer by heating for 10 minutes at 95°C. 

Denaturated samples were separated through 12 % SDS-PAGE. For immunoblotting, 

FLAG and ATG5 antibodies were used. ACTB, b-Actin was used for protein loading 

control. Pre-IP, cell lysate control; ATG5-IP, ATG5 Immunoprecipitation; FL, Full 

length and F2, C-terminal fragment of PSMA7. 
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3.1.3 Analysis of The Dynamics in ATG5-PSMA7-Parkin Interaction 
 

 

In order to understand the dynamic nature of the interaction, under various stress 

conditions the affinity of the proteins for binding was evaluated. Several different 

experimental approaches were utilized as represented in the Figure 3.1.3 1.  

 

 
Figure 3.1.3 1: List of performed experiments to analyze stress-induced dynamic 

Interaction ATG5-PSMA7 interaction and investigation of other complex components. 

 

 

One of the first observations about colocalization in perinuclear area of the cells 

had directed us to stimulate cells with mitochondrial stress inducers, including CCCP and 

staurosporine.  

 

PSMA7 immunoprecipitation experiments showed almost two-fold increased 

ATG5 binding after CCCP and staurosporine treatments compare to DMSO treated 

control conditions (Figure 3.1.3. 2).   
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Figure 3.1.3 2: PSMA7-Immunoprecipitation experiments performed in HEK/293T 

cells. Flag-PSMA7 overexpressed cells exposed to Staurosporine (1 µM for 12 h), CCCP 

(10 µM for 12 h) and DMSO as control. Cell lysates were incubated with FLAG-beads 

for overnight at 4°C. Protein-pritein interactions were anlayzed by immunoblotting 

following SDS-PAGE experiments. Pre-IP, lysate control; IP, Immunoprecipitation; 

IgG, Immunoglobulin G; kDA, kilodaltons. For blotting experiments, ATG5 and PSMA7 

antibodies used. b-ACTIN was used as loading control for lysates. The band intensities 

were measured by using Image J software. 

 

 

  

 

 Colocalization experiments in HEK/293T cells showed increased accumulation of 

ATG5 and PSMA7 dots around nucleus which were confirming increased interaction 

between ATG5 and PSMA7 upon mitochondrial stress (Figure 3.1.3 3). 

 

ATG5/IgG: 1 1,8 2

ATG5/IgG: 1 1,8 2
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Figure 3.1.3 3: Colocalization experiments of PSMA7 and ATG5 with mitochondrial 

stress inducers in HEK/293T cells analyzed by confocal microscopy. HEK/293T cells 

were grown on Poly-L-lysine coated cover slips and following 48 h post-transfection, 

cells were treated with Staurosporine (1 µM, 12 h), CCCP (10 µM, 12 h) and DMSO as 

treatment control. Following treatment, cells were fixed with 4% PFA and analyzed by 

using confocal microscopy. 

 

 

 

 Similar colocalization tests were performed in HELA cells and according to data 

shown in Figure 3.1.3 4, mitochondrial stress increased PSMA7 and ATG5 

colocalization. 
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Figure 3.1.3 4: Colocalization experiments of PSMA7 and ATG5 with mitochondrial 

stress inducers in HELA cells analyzed by confocal microscopy. HELA cells were 

splitted on coverslides and 16 h after splitting co-transfected with pmCherry-tagged 

ATG5 and pEGFP-tagged PSMA7.  Following 12 h of treatment (Stauro, 1 µM; CCCP 

10 µM), cells were fixed with 4%PFA and visualized under confocal microscope.   

 

 

 

 The dynamic interaction between the proteins were further analyzed with a 

SILAC-based quantitative proteomics in HEK/293T cells. HEK/293T cells were cultured 

for two weeks prior to experimentation with three different SILAC labels containing cell 

culture medium. SILAC labelled cells were used for FLAG immunoprecipitation and 

further LC-MS/MS experiments. By utilizing this method, the mitochondria stress-

induced increased ATG5-PSMA7 interaction was confirmed. In Figure 3.1.3 5, the 

increased ATG5 and PSMA7 complex formation was shown in graphichal illustration. 
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Figure 3.1.3 5: SILAC-based LC-MS/MS analysis results of HEK/293T cells. SILAC 

labelled cells were transfected with Myc-ddk-tagged ATG5 construct for 48 h. Following 

12 h of CCCP (10 µM) treatment, cell lysates were used for FLAG immunoprecipitation 

tests. After mixing all conditions, following gel electrophoresis, samples were prepared 

for LC-MS/MS. The fold change graphs were compared with beads alone (left); 

enrichment of PSMA7-ATG5 complex under CCCP conditions were compared with 

DMSO control condition (right) (n=1). 

 

 

 

In order to further analyze the protein complexes in a closest to native structure, 

size exclusion chromatography-based gel filtration experiments were performed. 

HEK/293T cells were treated with DMSO and mitochondrial stress inducers used as 

autophagy triggering factors. Cellular lysates were separated through a Superdex 200 

column with a separation range of 10 to 600 kDA. According to representative data shown 

in Figure 3.1.2 5, it was observed that there have been two different protein complexes 

containing ATG5, PSMA7, PARKIN and PINK1 proteins. The components of the first 

complex are ATG5-12, PARKIN and PINK1. On the other hand, the second complex was 

composed of PARKIN, PSMA7 and additionally decreased overlapping fractions of 

ATG5-12 protein.  

 

As it could be interpreated in the graphical illustrations of Figure 3.1.2 5, PSMA7 

and PINK1 were differentially contributed to the ATG5-PARKIN containing protein 

complexes to generate bigger complexes. Another observation obtained from gel 

filtration experiments was an indication of a disassociation of a protein with CCCP 
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treatment due to the protein band shifts at the fraction number 3. Additionally, in line with 

the previous results, CCCP induced the formation of the ATG5 and PSMA7 containing 

complex (please see the fraction numbers 4, 5 and 6 in Figure 3.1.3 6). 

 

 

 
Figure 3.1.3 6: Gel filtration tests of HEK/293T cell-derived total lysates. HEK/293T 

cells were transfected with Myc-tagged Parkin construct for 48 h. Following treatment 

with CCCP (10 µM), 5-10 mg of total cell lysates were applied to the calibrated Superdex 

200 10/300 GL (GE Healthcare, 17-5175-01) and 20 fractions collected for each 

condition. Fractions were separated through SDS-PAGE and ATG5, PSMA7, PARKIN 

and PINK1 antibodies used for immunoblotting. L, Lysate control and kDA, kilodaltons 

(left panel). The graphics were prepared based on the band intensities of the western blots 

(right panel). The normalization of the bands was performed according to the lysate 

intensities and the highest intensity of each protein type was set to 1.  
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Figure 3.1.3 7: The molecular weight marker calibration peaks of the gel filtration 

experiments over Superdex 200 column.  

 

 

Prior to loading protein samples, commercially available molecular marker mix 

(Sigma, MWGF1000) was separated through the column and the proteins included in the 

mix was observed in different peaks related to choromatogram. 

 

 

 
 

Figure 3.1.3 8: Representative chromatograms of DMSO treated control cell lysates (left 

panel) and CCCP treated cell lysates (right panel) of HEK/293T cells through the FPLC 

separation.  
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Based on the observations derived from gel filtration experiments, PSMA7 

immunoprecipitations were performed in order to prove the formation of the different 

complexes in HEK/293T cells. By immunoprecipitating PSMA7, we could observed 

Parkin binding and with CCCP and Staurosporine the binding affinity of Parkin to 

PSMA7 enhanced (Figure 3.1.3 9). 

 

 
 

Figure 3.1.3 9: Confirmation of PSMA7 and PARKIN interaction by performing 

immunoprecipitation experiments in HEK/293T cells. Cells were harvested after 48 h of 

Flag-tagged PSMA7 and Myc-tagged PARKIN cotransfection and 12 h of Staurosporine 

(1 µM) and CCCP (10 µM) treatment. Following protein extraction and concentration 

measurement, lysates were incubated with Flag-beads for 16 h at 4°C. Precipitants were 

eluted and used for further SDS-PAGE and immunoblotting experiment. Input, lysate 

control; IgG, Immunoglobulin G; ACTB, b-Actin. For blotting, PSMA7 and Parkin 

antibodies were used. b-Actin antibody was used as loading control. 
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 After proving the CCCP mediated dynamic interaction between PSMA7 and 

Parkin, the interaction between ATG5 and Parkin also analyzed in HEK/293T cells with 

ATG5 immunoprecipitation experiments. Under basal conditions, there were no or 

difficult to detect interaction between ATG5 and Parkin. However, with CCCP treatment 

the binding of Parkin to ATG5 significantly enhanced proving the formation of ATG5-

Parkin-PSMA7 complex in cells (Figure 3.1.3 10).   

 

 

 
Figure 3.1.3 10: ATG5 immunoprecipitation tests for Parkin binding in HEK/293T cells. 

HEK293T cells were transfected with YFP-tagged Parkin construct for 48 h. Following 

CCCP (10 µM, 12 h) and MG132 (30 µM, 3 h), lysates were incubated with ATG5 

antibody coupled protein A plus agarose beads overnight. İmmunoprecipitants after 

elution used for SDS-PAGE. ATG5, Parkin and b-Actin antibodies were used for 

blotting. Input, lysate control; ACTB, b-Actin. b-Actin antibody was used as loading 

control. 
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Figure 3.1.3 11: Colocalization experiments of PSMA7 and PARKIN with CCCP 

treatment in HEK/293T cells analyzed by confocal microscopy. HEK/293T cells were 

cotransfected with pEGFP-tagged PSMA7 (Green) and mCherry-tagged Parkin (Red) 

constructs. Following 12 h of CCCP treatment, cells were fixed and analyzed by confocal 

microscopy. Merge, overlay of green and red signals coming from the cells. 

 

 

 

 Furthermore, to support gel filtration and immunoprecipitation experiments, 

colocalization tests were also performed in HEK/293T and HELA cells.   

 

 As illustrated in Figure 3.1.3 11 and 3.1.3 12, respectively in HEK/293T and 

HELA cells, CCCP induced PSMA7 and Parkin colocalization in a similar trend of 

PSMA7 and ATG5 colocalization in accumulated form around perinuclear area. 
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Figure 3.1.3 12: Colocalization experiments of PSMA7 and PARKIN with CCCP 

treatment in HELA cells analyzed by confocal microscopy. HELA cells were co-

transfected with pEGFP-tagged PSMA7 (Green) and pmCherry-tagged Parkin (Red) 

constructs. Following 12 h of CCCP treatment, cells were fixed with 4% PFA and 

analyzed by using confocal microscopy. Merge, the overlay of the green and red signals 

coming from the cells. 

 

 

 

 In order to test the observed CCCP-induced increased interaction between ATG5 

and PSMA7 was due to the potential of autophagic degredation of PSMA7 or even whole 

proteasomes, we checked protein levels upon drug treatments. Regardless from Parkin, 

Staurosporine and CCCP did not cause any significant decrease in cellular PSMA7 and 

PSMB5 levels (Figure 3.1.3 13). 
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Figure 3.1.3 13: PSMA7 and PSMB5 are not the targets of autophagic degradation. 

HEK/293T cells were either transfected with YFP-tagged Parkin or pcDNA3.1 empty 

vector for 48 h. Cells were treated with CCCP (10 µM, 12 h), Staurosporine (1 µM, 12 

h), MG132 (30 µM, 3 h) and DMSO as control. Cell lysates used for further western 

blotting experiments. PSMA7, PSMB5, LC3 and Parkin antibodies were used for specific 

detection. ACTB, b-ACTIN was used for loading control. 

 

 

 All of these data, so far showed that CCCP induced more than one protein 

complex formation at certain fractions sharing constant proteins (ATG5 and Parkin) and 

differing with dispensable proteins (PSMA7 and PINK1). This increased interaction was 

not correlated with autophagic degradation of the proteasomal subunits. CCCP treatment, 

in all cases resulted in the similar aggregated protein localization at perinuclear area as a 

hint of organeller deffect most likely the mitochondria.  
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3.1.4 Determination of The Subcellular Localization of ATG5-PSMA7-Parkin 

Interaction 

 

Due to the mitochondrial stress stimulated abnormal protein accumulation in the 

perinuclear region and the involvement of Parkin protein in the clearance of mitochondria 

by autophagy, we aimed to analyze the subcellular localization of the observed 

interactions in order to analyze the effect of the presence of ATG5-PSMA7 on 

mitochondrial autophagy.  

 

 
 

Figure 3.1.4. 1: Experimental flow in order to figure out the subcellular localization of 

the ATG5-PSMA7 containing protein complexes. 
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To start with in HELA cells confocal microscopy analysis were performed. In 

Figure 3.1.4 2, the partial localization of PSMA7 on mitochondria was observed under 

basal conditions. 

 

 
 

Figure 3.1.4. 2: PSMA7 found on mitochondria. HELA cells were transfected with 

pEGFP-tagged PSMA7 (Green) and mito-dsRed (Red) constructs for 48 h. Then, 4% PFA 

fixed cells analyzed under confocal microscope. Merge, the overlay of the red and green 

signals originating from the cells. Representative image of n=3 independent experiments. 

 

 

 Similarly, when the localization of ATG5 protein was checked on mitochondria, 

the partial colocalization of ATG5 was observed on mitochondria (Figure 3.1.4 3). 
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Figure 3.1.4. 3: ATG5 found on mitochondria HELA cells were grown on cover slips 

and co-transfected with ATG5 (Green) and mito-dsRed (Red) constructs for 48 h. After 

4% PFA fixation, cells were analyzed under confocal microscope. Merge, The overlay of 

the Red and Green signals. Representative of n=3 independent experiments. 

 

 

 

 In order to test the effect of mitochondrial stress on the subcellular colalization of 

the ATG5-PSMA7 complex, first confocal microscopy analyses were performed in 

HELA cells.  The mitochondrial stress inducers, Staurosporine and CCCP, enhanced 

mitochondrial localization of PSMA7 (please see Figure 3.1.4 4) in HELA cells.  
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Figure 3.1.4 4: The presence of PSMA7 on mitochondria stimulated with mitochondrial 

stress (HELA cells). HELA cells were grown on cover slides and co-transfected with 

pEGFP-tagged PSMA7 (Green) and mito-dsRed (Red) constructs and treated with CCCP 

(10 µM, 12 h) and Staurosporine (1 µM, 12 h). Following 48 h of post transfection and 

12 h of treatment, cells were fixed and analyzed under confocal microscope. Merge, The 

overlay of the Red and Green signals. Focus, zoomed in area of colocalization. 

Representative of n=3 independent experiments. 
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In line with PSMA7, CCCP-induced increased ATG5 translocation onto 

mitochondria in HELA (please see Figure 3.1.4 5) and HEK/293T cells (Figure 3.1.4 6) 

was also verified.   

 

 

 
 

Figure 3.1.4 5: The presence of ATG5 on mitochondria stimulated with mitochondrial 

stress (HELA cells). HELA cells were cultured on cover slides and co-transfected with 

YFP-tagged ATG5 (Green) and mito-dsRed (Red) constructs and treated with CCCP (10 

µM, 12 h) and Staurosporine (1 µM, 12 h). Following 48 h of post transfection and 12 h 

of treatment, cells were fixed and analyzed under confocal microscope. Merge, The 

overlay of the Red and Green signals. Representative of n=3 independent experiments. 
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Figure 3.1.4 6: The presence of ATG5 on mitochondria stimulated with mitochondrial 

stress (HEK/293 cells). HEK/293 cells were cultured on cover slides and co-transfected 

with pmTurquoise-Mito (Green) and pmCherry-tagged ATG5 constructs and and treated 

with CCCP (10 µM, 12 h) and Staurosporine (1 µM, 12 h). Following 48 h of post 

transfection and 12 h of treatment, cells were fixed and analyzed under confocal 

microscope. Merge, The overlay of the Red and Green signals. Representative of n=3 

independent experiments. 

 

 
 

 In addition to the increased localization of ATG5 and PSMA7 on mitochondria, 

subcellular translocation of Parkin was also assessed because of the observed interaction 

between both PSMA7 and ATG5 and as an indication of mitophagy due to CCCP 

treatment. In HELA cells, upon CCCP treatment almost all Parkin protein in cells 

translocated to mitochondria in line with literature (Figure 3.1.4 7). 
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Figure 3.1.4 7: The presence of Parkin on mitochondria stimulated with mitochondrial 

stress (HELA cells). HELA cells were cultured on coverslides and co-transfected with 

YFP-tagged Parkin (Green) and mito-dsRed (Red) constructs and treated with CCCP (10 

µM, 12 h) and Staurosporine (1 µM, 12 h). Following 48 h of post transfection and 12 h 

of treatment, cells were fixed and analyzed under confocal microscope. Merge, The 

overlay of the Red and Green signals. Representative of n=3 independent experiments. 

 

 

As an additional way of analyzing the translocation of proteins namely PSMA7 

and ATG5 on mitochondria was assessed by performing subcellular fractionation of 

HEK/293T and HELA cells. Subcellular cytoplasmic and mitochondrial fractions were 

separated from grown cells. According to western blotting results of subcellular fractions 

derived from HEK/293T cells in Figure 3.1.4 8, CCCP treatment, increased Parkin, 

PSMA7 and ATG5 recruitment to mitochondria as an indication of PSMA7 and ATG5 

are important for Parkin-dependent mitophagy. 
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Figure 3.1.4 8: Subcellular fractionation of HEK/293T cells proving the enhanced 

translocation of ATG5 and PSMA7 onto mitochondria upon CCCP treatment. HEK/293T 

cells following MYC-tagged Parkin transfection, treated with CCCP (10 µM, 12 h) or 

DMSO as control. Cells were harvested and mitochondrial isolation protocol was 

followed (Please see, Material and Method section). Cytoplasmic and mitochondrial 

proteins were separated through 12% polyacrylamide gels and subjected to 

immunoblotting with ATG5, PSMA7, PARKIN and ACTIN antibodies. ACTB, b-ACTIN 

used as cytoplasmic control to check the purity of isolation. Cyto, cytoplasm and Mito, 

mitochondria. 

 

 

Furthermore, gel filtration experiments of cellular cytoplasmic and mitochondrial 

proteins were performed to better understand the localization of the complexes under 

basal conditionsa and CCCP-induced translocation of the proteins from cytoplasm onto 

mitochondria (Figure 3.1.4 9). Under basal and CCCP treated conditions, short (processed 

or cleaved) PINK1, Parkin, ATG5-12 and PSMA7 were found as a big molecular complex 

in cytoplasm (Figure 3.1.4 9, left panel). However, in the case of mitochondrial fractions 

of the cells things become more complex due to the involvement of the proteins in more 

than one complexes. Under basal condition, Parkin, PINK1 and ATG5-12 as complex I 

(Fraction number 3) and Parkin, PSMA7 and decreasing levels of ATG5 gathering as 

another complex (Fraction number 4-5). When cells exposed CCCP treatment, there have 

been still two different franctions on mitochondria but the interaction between the 

proteins to form these observed complexes increased. 
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Figure 3.1.4 9: Gel filtration experiment results of mitochondrial and cytoplasmic 

fractions under basal and CCCP treatment conditions. HEK/293T cells with a 4x106 cells 

were plated into each 15 cm2 plates and for each condition of DMSO and CCCP, 10 plates 

of cells cultured. HEK/293T cells were transfected with YFP-tagged Parkin construt for 

48 h. Following 12 h of treatment, cells were collected and subcellular fractionation was 

performed as described in the method section. 5 mg of both cytoplasmic and 

mitochondrial protein for each condition were separated thrpugh FPLC column. 20 

fractions were collected for each condition and denaturated fractions further separated 

through 12% SDS-PAGE. For immunoblotting, PINK1, ATG5, PSMA7 and Parkin 

antibodies were used. L, lysate control: for cytoplasm, cytoplasmic lysate and for 

mitochondria, mitochondrial lysate; kDa, kilo Dalton. 
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Figure 3.1.4 10: Gel filtration chromotograms of the cytoplasmic and mitochondrial 

protein samples over the Superdex 200 column run. Cyto, cytoplasm; Mito, mitochondria. 

 

 

 All these data suggested that, PSMA7, ATG5-12, Parkin and PINK1 proteins 

contitute a various protein complexes in cytoplasm and mitochondria. CCCP treatment 

enhanced the recruitment of mitochondrial translocation of ATG5-12 and PSMA7 

complexes. Due to the involvement of the proteins as a big complex in cytoplasm under 

basal and treated conditions, and partial disassociation of PSMA7 from the higher 

molecular weight complex to smaller molecular weight comlex, it could be interpreted 

that PSMA7 has critical role for recruitment of proteins from cytoplasm to mitochondria 

in order to maintain the mitochondrial homeostasis.   
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3.1.5 The Functional Role of ATG5-PSMA7 Interaction in Selective Autophagy 
 

 

In order to better understand the functional role of the proteins contributing to 

these protein complexes several siRNA, shRNA mediated knockdown experiments and 

genetically modified knock out cells were utilized. The global effect of deficiency in each 

protein was investigated in terms of several layers as described in the Figure 3.1.5 1.  

 

 
 

Figure 3.1.5 1: The global effect of knockout ATG5 and knockdown PSMA7 analyzed 

in terms of several different aspects. 

 

 

 

 The effect of ATG5 defficiency on proteasomal activity in MEF cells was 

analyzed (Figure 3.1.5 2). In accordance with the literature, ATG5 defficiency resulted in 

increased proteasomal activity compare to wild type MEF cells with an increasing time 

points.  
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Figure 3.1.5 2: Proteasomal activity measurement results of WT and ATG5 KO MEF 

cells. WT and ATG5 KO MEF cells. Seeded in 6 well plates and following treatment with 

DMSO and MG132 (20 µM), proteasome activities were measured according to protocol 

described in method chapter (N=4 experiments, not significant).  

 

  

 

Next, the effect of ATG5 defficiency in cellular ATP level was measured in WT 

and ATG5 knockout MEF cells under control and oligomycin treated conditions. As 

shown in Figure 3.1.5 3, ATG5 knockout resulted in significant decrease in ATP 

production as a hint for mitochondrial defect. 
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Figure 3.1.5 3: ATP assay results of WT and ATG5 KO MEF cells in response to 

Oligomycin treatment. WT and ATG5 KO MEF cells were seeded in 6 well plates. 

Following DMSO and Oligomycin treatment, cellular ATP level was determined 

(Oligomycin 5 ug/ml, N=3 independent experiments, *p£0.05). 

 

 

 

Then the effect of knockdown PSMA7 on autophagy was investigated. SiRNA-

mediated knockdown of PSMA7 resulted in enhanced LC3-II shift therefore enhanced 

autophagic activity (Figure 3.1.5 4). Additionally, the effect of PSMA7 defficiency was 

analysed in terms LC3 puncta formation and validated the activatory effect of knock down 

PSMA7 on autophagy (Figure 3.1.5 5). 
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Figure 3.1.5 4: The siRNA-mediated knockdown effect of PSMA7 enhanced autophagic 

activity in HEK/293T cells. HEK/293T cells following PSMA7 specific siRNA 

transfection, grown for further 48 h. Cell lysates were separated through 15% SDS-

PAGE. PSMA7, p62, LC3 and b-ACTIN antibodies were used for immunoblotting. 

 

 

 
 

Figure 3.1.5 5: The results of PSMA7 knockdown on LC3 dot formation analyses in 

HEK/293T cells. HEK/293T cells were cultured on coverslides and co-transfected with 

pEGFP-LC3 and either non-targeting of PSMA7-targeting siRNA oligos for 48 h. The 

knockdown efficiency was checked by western blotting (right panel) by using PSMA7 

and ACTIN antibodies. ACTB, b-ACTIN was used as loading control. For GFP-LC3 dot 

formation, cells were fixed with 4% PFA and analyzed under fluorescent microscope (left 

panel, mean ± S.D. n=5 independent experiments). 
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Following observations of the global effects of each protein on the protein 

degradation mechanisms, we further analyzed the effect of the proteins on a target 

selective autophagy, mitophagy in HEK/293T and HELA cells. To start with, functional 

tests of PSMA7 was performed at several different stages of mitophagy process as listed 

in Figure 3.1.5 6.  

 
Figure 3.1.5 6: The effect of knockdown PSMA7 analyzed on mitophagy in terms of 

several different aspects. 

 

 To do that initially, the effect of knockdown PSMA7 on CCCP-mediated Parkin 

recruitment was analyzed by colocalization tests in HEK/293T (Figure 3.1.5 7) and 

HELA cells (Figure 3.1.5 8).  In both of the cell lines, siRNA-mediated knock down of 

PSMA7 resulted in decrease in CCCP-induced Parkin translocation from cytoplasm to 

mitochondria. 
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Figure 3.1.5 7: The effect of knock down PSMA7 on Parkin translocation onto 

mitochondria in HEK/293T cells. HEK/293T cells were grown on coverslides and co-

transfected with YFP-tagged Parkin (Green) and mito-dsRed (Red) constructs together 

with either PSMA7-targeting siRNA or non-targeting siRNAs for 48 h. Following CCCP 

treatmenf for 12 h with a concentration of 10 µM, colocalization tests were performed 

under confocal microscope. N=3 independent experiments performed. 
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Figure 3.1.5 8: The effect of knock down PSMA7 on Parkin translocation onto 

mitochondria in HELA cells. HELA cells were grown on coverslides and co-transfected 

with YFP-tagged Parkin (Green) and mito-dsRed (Red) constructs together with either 

PSMA7-targeting siRNA or non-targeting siRNAs for 48 h. Following CCCP treatment 

for 12 h with a concentration of 10 µM, colocalization tests were performed under 

confocal microscope. N=3 independent experiments performed. 

 

 

Parkin translocation from cytoplasm to mitochondria was also analyzed by 

subcellular fractionation experiments in addition to colocatization tests. The decrease in 

PSMA7 protein level, correlated with the decrease in CCCP-stimulated Parkin 

recruitment (Figure 3.1.5 9). 

 

 



125 
 

 
 

Figure 3.1.5 9: Western blotting results of subcellular fractionation tests for the analysis 

of PSMA7 deficiency on Parkin recruitment in HEK/293T cells. HEK/293T cells were 

co-transected with YFP-tagged Parkin construct and either with PSMA7-targeting siRNA 

or non-targeting siRNA for 48 h. Following DMSO or CCCP treatment for 12 h with a 

concentration of 10 µM, through series of differential centrifugation, cells were separated 

into cytoplasmic and mitochondrial fractions. Cytoplasmic and mitochondrial proteins 

then further separated through 12% SDS-PAGE. Parkin, TOM40, PSMA7 and b-Actin 

were used for immunoblotting. TOM40 and b-Actin were used to check the quality and 

the purity of subcellular fractionation step. 

 

  

 Next, the effect of PSMA7 on the CCCP-induced PINK1-Parkin interaction was 

evaluated in HEK/293T and HELA cells by performing colocalization (Figure 3.1.5 10) 

and immunoprecipitation tests (Figure 3.1.5 11). When HELA cells treated with CCCP, 

Parkin and PINK1 proteins showed increased interaction. However, PSMA7 knock down 

resulted in decrease in CCCP-induced interaction between Parkin and PINK1 proteins 

(Figure 3.1.5 10). Similar results were obtained in immunoprecipitation tests (Figure 3.1.5 

11). 
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Figure 3.1.5 10: Colocalization analyses showing the role of PSMA7 on PINK1 and 

Parkin interaction in HELA cells. HELA cells were grown on cover slides and co-

transfected with C-terminal GFP-tagged PINK1 (Green), pmCherry-tagged Parkin (Red) 

and together with siRNA CNT (non-targeting) or PSMA7-targeting siRNA for 48 h. 

Following treatment with DMSO and CCCP, colocalization of the proteins were analyzed 

under confocal microscope. Merge, the overlay of Green and Red signals. Representative 

data of n=3 independent experiments. 
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Figure 3.1.5 11: Myc-tagged immunoprecipitation results for analyzing the effect of 

PSMA7 on PINK1 and Parkin interaction in HEK/293T cells. HEK/293T cells were co-

transfected with C-GFP-tagged PINK1 and Myc-tagged Parkin together with either 

PSMA7-targeting siRNA or non-targeting siRNA for 48 h. After DMSO or CCCP 

treatment (10 µM, 12 h), cell lysates were incubated with myc-beads for overnight at 4°C. 

Co-precipitated proteins were analyzed by SDS-PAGE followed by immunoblotting. 

PINK1, Parkin and PSMA7 antibodies were used. Pre-IP, lysate controls; IP, 

immunoprecipitation and ACTB, b-Actin. 

 

 

 

 Due to the regulatory role of PSMA7 on Parkin translocation, we next checked 

the effect of PSMA7 on the interaction between Parkin and its degredation targets as well 

as the degradation level of the Parkin targets such as MFN2 in HEK/293T and HELA 

cells (Figure 3.1.5 12 and Figure 3.1.5 14).  
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Figure 3.1.5 12: Colocalization test to chech the effect of knock down PSMA7 on MFN2 

and Parkin interaction in HEK/293T cells. HEK/293T cells were cultured on cover slips 

and co-transfected with YFP-tagged MFN2 (Green) and pmCherry-tagged Parkin (Red) 

together with either PSMA7-targeting or non-targeting siRNAs. Merge, overlay of the 

red and green signals. N=3 independent experiments performed. 
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In order to understand that, first colocalization tests were performed and knock 

down PSMA7 significantly restored CCCP-induced MFN2 and Parkin colocalization in 

HEK/293T (Figure 3.1.5 12-13) and HELA cells (Figure 3.1.5 14-15).   

 
 

 

 
 

Figure 3.1.5 13: The quantification graphic of Parkin and MFN2 colocalization in 

HEK/293T cells. At least 50 cells per condition per experiment quantified, mean ± S.D. 

n=3 independent experiments, p value: 0,009848. 
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Figure 3.1.5 14: Colocalization test to chech the effect of knock down PSMA7 on MFN2 

and Parkin interaction in HELA cells. HELA cells were cultured on cover slips and co-

transfected with YFP-tagged MFN2 (Green) and pmCherry-tagged Parkin (Red) together 

with either PSMA7-targeting or non-targeting siRNAs. Merge, overlay of the red and 

green signals. N=3 independent experiments performed. 
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Figure 3.1.5 15: The quantification graphic of Parkin and MFN2 colocalization in HELA 

cells. At least 50 cells per condition per experiment quantified, mean ± S.D. n=3 

independent experiments, p value: 0,0002.  

 

 

 

 Then, the effect of PSMA7 on the degradation of outer mitochondrial membrane 

proteins, MFN2 (Figure 3.1.5 16) and TOM40 (Figure 3.1.5 17) were checked by western 

blotting experiments. Correlating the colocalization results of Parkin and MFN2 proteins, 

knock down PSMA7 significantly blocked CCCP-induced MFN2 and TOM40 

degredation. 
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Figure 3.1.5 16: Effect of knockdown PSMA7 on MFN2 degredation in HEK/293T cells. 

HEK/293T cells were transfected with YFP-tagged Parkin and together with either 

PSMA7-targeting siRNA or non-targeting siRNA for 48 h. Following DMSO or CCCP 

treatment, protein lysates were isolated and seperated through 12% SDS-PAGE. MFN2, 

PSMA7 and Parkin antibodies were used for immunoblotting. ACTB, b-Actin used for 

loading control. Image J software was used for band intensity measurement (N=3 

independent experiments were performed).  

 

 
Figure 3.1.5 17: Effect of knock down PSMA7 on TOM40 degredation in HEK/293T 

cells. HEK/293T cells were transfected with YFP-tagged Parkin and together with either 

PSMA7-targeting siRNA or non-targeting siRNA for 48 h. Following DMSO or CCCP 

treatment, protein lysates were isolated and seperated through 12% SDS-PAGE. TOM40, 
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PSMA7 and Parkin antibodies were used for immunoblotting. ACTB, b-Actin used for 

loading control. Image J software was used for band intensity measurement (N=3 

independent experiments were performed).  

 

 

 

 Since Parkin is an E3-ligase and it has been linked to mitophagy through its 

ubiquitylation capacity of outer mitochondrial membrane proteins. Therefore, we next 

checked ubiquitylation levels of the mitochondrial proteins by performing ubiquitin 

immunoprecipitation experiments in HEK/293T cells (Figure 3.1.4 18). PSMA7 knock 

down decreased degredation of OMM proteins such as TOM40 and VDAC1 in line with 

the previous data, but interestingly, CCCP treatment could still increased the 

ubiquitylation levels of these protein suggesting that other E3 ligases could also 

contribute to PINK/Parkin-dependent mitophagy. 

 

 
Figure 3.1.4 18: The effect of PSMA7 on ubiquitylation levels OMM proteins of 

HEK/293T cells. HEK/293T cells were transfected with YFP-tagged Parkin and together 

with either PSMA7-targeting siRNA or non-targeting siRNA for 48 h. Following DMSO 

or CCCP treatment, protein lysates were isolated and incubated with ubiquitin antibody 

coupled protein A agarose beads overnight. Eluted proteins were seperated through 12% 

SDS-PAGE. VDAC1, TOM40, PSMA7 and Parkin antibodies were used for 

immunoblotting. ACTB, b-Actin used for loading control. Input, lysate controls; UB-IP, 



134 
 

ubiquitin immunoprecipitation. Image J software was used for band intensity 

measurement (N=2 independent experiments were performed).  

 

 

 

So far cumulative data shows that, PSMA7 has critical role in recruitment of 

Parkin protein to mitochondria through interfering its interaction with PINK1. Not only 

the recruitment, but also CCCP-induced Parkin mediated ubiquitylation of OMM proteins 

and therefore their degradation was shown to strongly correlated with PSMA7 protein. 

But strikingly, knockdown PSMA7 did not change CCCP-stimulated ubiquitylation 

pattern of OMM proteins suggesting the involvement of other cytoplasmic or 

mitochondrial E3 ligases in this process. 

 

Next, we analyzed the effect of PSMA7 on the recruitment of selective mitophagy 

adaptor proteins such as OPTN and NDP52 in HELA cells by confocal microscopy 

(Figure 3.1.5 19- Figure 3.1.5 21).  According to Figure 3.1.5 19 and its quantification 

shown in Figure 3.1.5 20, CCCP-induced mitochondria associated GFP-OPTN dots 

significantly decreased when PSMA7 was knocked down. In addition to OPTN, NDP52 

as another mitophagy receptor recruitment was also blocked upon PSMA7 knock down 

(Figure 3.1.5 21). 



135 
 

 
 

Figure 3.1.5 19: The effect of knock down PSMA7 on mitochondria associated GFP-

OPTN dot formation in HELA cells. HELA cells co-transfected with EGFP-tagged OPTN 

(Green), mito-dsRed (Red) and together with either PSMA7-targeting or non-targeting 

siRNA for 48 h. Following treatment with DMSO or CCCP (10 µM, 12 h), cells were 

fixed with 4% PFA and dot formation was analyzed under confocal microscope. Merge, 

overlay of green and red signals (Representative data of N=3 independent experiments). 
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Figure 3.1.5 20: The quantification of mitochondria associated GFP-OPTN dot formation 

in HELA cells. At least 50 cells per condition per experiment quantified, mean ± S.D. 

n=3 independent experiments, p value: 0,001825. 

 
Figure 3.1.4 21: The effect of knockdown PSMA7 on mitochondria associated NDP52 

dot formation in HELA cells. HELA cells co-transfected with mito-dsRed (Red) and 

together with either PSMA7-targeting or non-targeting siRNA for 48 h. Following 

treatment with DMSO or CCCP (10 µM, 12 h), cells were fixed with 4% PFA. Fixed 

samples were permeabilized and then sequentially incubated with NDP52 primary 
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antibody and Alexa Fluor 488 rabbit secondary antibody and then analyzed under 

confocal microscope. Merge, overlay of green and red signals (Representative data of 

N=3 independent experiments 

 
 

Figure 3.1.5 22: The effect of siRNA-mediated knock down of PSMA7 on mitochondria 

associated GFP-LC3 dot formation. HELA cells co-transfected with pEGFP-tagged LC3 

(Green), mito-dsRed (Red) and together with either PSMA7-targeting or non-targeting 

siRNA for 48 h. Following treatment with DMSO or CCCP (10 µM, 12 h), cells were 

fixed with 4% PFA and mitochondria associated dot formation was analyzed under 

confocal microscope. Merge, overlay of green and red signals (Representative data of 

N=4 independent experiments). 
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Figure 3.1.5 23: The quantification of mitochondria associated GFP-LC3 dot formation 

in HELA cells. At least 50 cells per condition per experiment quantified, mean ± S.D. 

n=3 independent experiments, p value: 0,000196. 

 

 

 

Afterwards, as an mitophagy test rather then previous mitochondrial protein 

degradation, GFP-LC3 dots that were localizing on mitochondria were analyzed with 

confocal microscope and quantified in HELA (Figure 3.1.5 22 and 3.1.4 23) and 

HEK/293T cells (Figure 3.1.5 24 and 3.1.5 25). Accordingly, it was observed that knock 

down PSMA7 significantly blocked cellular mitophagy levels by interfering the LC3 dot 

and mitochondria association in HELA and HEK/293T cells. 
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Figure 3.1.5 24: The effect of knock down PSMA7 on mitochondria associated GFP-

LC3 dot formation in HEK/293T cells. HEK/293T cells co-transfected with pEGFP-

tagged LC3 (Green), mito-dsRed (Red) and together with either PSMA7-targeting or non-

targeting siRNA for 48 h. Following treatment with DMSO or CCCP (10 µM, 12 h), cells 

were fixed with 4% PFA and mitochondria associated dot formation was analyzed under 

confocal microscope. Merge, overlay of green and red signals (Representative data of 

N=4 independent experiments). 
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Figure 3.1.5 25: The quantification of GFP-LC3 dot associated mitochondria of 

HEK/293T cells at least 50 cells per condition per experiment quantified, mean ±S.D. 

n=4 independent experiments, p value: 0,009848. 

 

 

 

Next, the effect of PSMA7 on mitophagy was checked by the means of staining 

cellular DNA and substracting nuclear DNA from that total DNA content, alterations in 

mitochondrial DNA was evaluated under confocal microscopy (Figure 3.1.5 26) and 

quantified (Figure 3.1.5 27). 

 

Based on the data shown in Figure 3.1.5 26 and Figure 3.1.5 27, knockdown 

PSMA7 significantly blocked CCCP mediated mitochondrial clearance in other words 

PSMA7 was introduced as novel regulator of mitochondrial DNA and mitophagy.  
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Figure 3.1.5 26: Anti-DNA staining results of HELA cells to analyze mitochondrial DNA 

in HELA cells. HELA cells were co-transfected with MYC-tagged Parkin and PSMA7-

targeting or non-targeting siRNAs. Following treatment with DMSO or CCCP (10 µM, 

12 h), cells were fixed with 4% PFA and permeablized with BSA and saponin solution. 

Then permeabilized cells were incubated with Anti-DNA primary antibody and Alexa 

Fluor-488 (Green) secondary antibody. After washes, stained with DAPI (Blue) for 

differentiation of nuclear DNA. Slides were analyzed by confocal microscopy 

(Representative data of n=3 independent experiments). 
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Figure 3.1.5 27: The quantification of mitochondrial DNA amount of HELA cells at least 

100 cells were considered per condition in experiment, mean ± S.D. of n=3 independent 

experiments, p value £ 0.05. 

 

 

 Furthermore, the depence on proteasomal avctivity of ATG5 onto the 

mitochondria was tested by using chemical proteasome inhibitor rather than genetic 

manipulation. 
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Figure 3.1.5 28: The effect of proteasomal activity on ATG5 recruitment onto 

mitochondria in Parkin stable HeLa cells. HeLa cells were co-transfected with mito-

dsRed (Red) and GFP-tagged ATG5 (Green) constructs for 48 h. Following treatment 

with DMSO or CCCP (20 µM), MG132 (30 µM) and MG132 combination with CCCP, 

cells were fixed with 4% PFA and analyzed under confocal microscope. Merge, overlay 

of green and red signals (n=3 independent experiments performed). 
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Figure 3.1.5 29: Quantification of mitochondria associated ATG5 in HeLa cells at least 

30 cells were considered per condition in an experiment, mean ± S.D. of n=3 independent 

experiments, p value £ 0.05) 

 

 

 According to colocalization tests (Figure 3.1.5 28) and its quantification (Figure 

3.1.5 29), it’s observed that upon proteasome inhibition compare to DMSO condition 

ATG5 accumulated onto the mitochondria however when combined with CCCP, CCCP-

mediated recruitment of ATG5 was decreased.  

 

 All these data obtained from this study showed that PSMA7 by forming 

complexes with ATG5 and Parkin, regulates Parkin translocation from cytoplasm to 

mitochondria therefore determines the mitochondrial amount and mitophagy level in 

cells. 
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In the similar context, we also analyzed the role of ATG5 in several stages of 

mitophagy as listed in Figure 3.1.5 30.   

 

 
 

Figure 3.1.5 30: The effect of ATG5 defficiency on mitophagy was investigated in 

different stages of mitophagy.  

 

 

First, at a wider perspective knock down effect of ATG5 on mitophagy was 

checked with colocalization tests by confocal microscopy in HEK/293T (Figure 3.1.5 31) 

and HELA (Figure 3.1.5 32) cells. In both of the cell lines, ATG5 knock down resulted 

in decrease in LC3 dot association with mitochondria therefore inhibiting mitochondrial 

clearance. 
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Figure 3.1.5 31: The effect of ShRNA-mediated knockdown of ATG5 on mitophagy in 

HEK/293T cells was analyzed under confocal microscope. HEK/293T cells co-

transfected with pEGFP-LC3 (Green), mito-dsRed (Red) and together with pCDNA3.1 

as control or shRNA ATG5 for 72 h. Following treatment with DMSO, Staurosporine and 

CCCP, cells were fixed and analyzed under confocal microscope (Representative data of 

n=3 independent experiments, images belong to the merge pictures of each condition).  
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Figure 3.1.5 32: The effect of ShRNA-mediated knockdown of ATG5 on mitophagy in 

HELA cells was analyzed under confocal microscope. HELAcells co-transfected with 

pEGFP-LC3 (Green), mito-dsRed (Red) and together with pCDNA3.1 as control or 

shRNA ATG5 for 72 h. Following treatment with DMSO, Staurosporine and CCCP, cells 

were fixed and analyzed under confocal microscope (Representative data of n=3 

independent experiments, images belong to the merge pictures of each condition).  

 

 

 Next, the effect of ATG5 on mitochondrial optineurin dot formation was analyzed 

in HELA cells (Figure 3.1.5 33 and Figure 3.1.5 34). Considering the data shown below, 

deficiency in ATG5 attenuated significantly CCCP-stimulated OPTN puncta formation 

which were localized on mitochondria in HELA cells.  
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Figure 3.1.5 33: The effect of shRNA mediated knock down of ATG5 on mitochondria 

associated GFP-OPTN dot formation in HELA cells. HELA cells co-transfected with 

EGFP-tagged OPTN (Green), mito-dsRed (Red) and together with either pCDNA3.1 or 

shRNA ATG5 for 72 h. Following treatment with DMSO or CCCP (10 µM, 12 h), cells 

were fixed with 4% PFA and dot formation was analyzed under confocal microscope. 

Merge, overlay of green and red signals (Representative data of N=3 independent 

experiments). 
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Figure 3.1.5 34:  The quantification of mitochondria associated GFP-OPTN dot 

formation in HELA cells at least 50 cells per condition per experiment quantified, mean 

± S.D. n= 3 independent experiments, P value: 0,044831. 

 

 

So far, knock down of ATG5 has been shown to have an inhibitory effect on 

mitophagy through altering OPTN recruitment to mitochondria.  

 

Furthermore, the role of ATG5 on Parkin recruitment was evaluated by 

colocalization tests and its quantification in HELA cells (Figure 3.1.5 35 and Figure 3.1.5 

36). In accordance with data exhibited below, shRNA-mediated ATG5 knockdown had 

an enhancing effect for recruiting mitochondria.  
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Figure 3.1.5 35: The effect of knock down ATG5 on Parkin recruitment to mitochondria 

in HELA cells.  HELA cells were co-transfected with YFP-tagged Parkin (Green) and 

mito-dsRed (Red) constructs together with pCDNA3.1 as control os shRNA ATG5 for 

72 h. After DMSO or CCCP treatment (10 µM, for 12 h), cells were fixed with 4% PFA 

and analyzed under confocal microscope. Merge, overlay of green and red signals 

(Representative data of N=3 independent experiments). 
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Figure 3.1.5 36: The quantification of Parkin translocation onto mitochondria of HELA 

cells at least 30 cells were considered per condition in experiments, mean ± S.D. of n=3 

independent experiments, p value £ 0.05.  

 

 
 

Figure 3.1.5 37: Subcellular fractionations tests of HEK/293T cells. HEK/293T cells co-

transfected with YFP-tagged Parkin construct together with pCDNA3.1 as control os 

shRNA ATG5 for 72 h. After DMSO or CCCP treatment (10 µM, for 12 h), cells were 

harvested and pellets were subjected to series of differential centrifugation steps for the 

isolation of mitochondrial and cytoplasmic fractions. For immunoblots, Parkin, ATG5, 

PSMA7, VDAC1, TIM23, PINK1 antibodies were used. ACTB, b-Actin was used for the 

purification control of the isolation.  
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 To further validate the results of colocalization tests, by performing subcellular 

fractionation experiments in HEK/293T cells. As shown in Figure 3.1.5 37, knock down 

ATG5 resulted in accumulation of Parkin on mitochondria, not only CCCP conditions but 

also under steady state levels. However, blocked mitophagy in terms of decreasing the 

CCCP-mediated degradation capacity on OMM and IMM proteins. 

 

  

 
 

Figure 3.1.5 38: The effect of ATG5 defficiency in MEF cells. WT and ATG5 -/- MEF 

cells were seeded in 6-well plates with a density of 250.000 cells per well. Following 

DMSO or CCCP treatment (10 µM, for 12 h), cells were harvested and proteins were 

extracted. Denaturated protein samples were separated through 12% SDS-PAGE. For 

immunoblots, PINK1, TOM40, VDAC1, TIM23 and ATG5 antibodies were used. ACTB, 

b-Actin was used for loading control. WT, wild type and ATG5-/- , ATG5 Knockout cells. 

N=3 independent experiments performed. 
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Additionally, the global effect of ATG5 defficiency was checked in wild type and 

ATG5 knockout MEF cells (Figure 3.1.5 38). According to immunoblotting results, it is 

observed that CCCP-mediated degradation of mitochondrial proteins, including TOM40 

and TIM23 blocked in ATG5-/- MEF cells. But more interestingly, PINK1 protein 

become stabilized in response to ATG5 defficiency in its long, unprocessed form 

suggesting that ATG5 has more complex regulation in mitophagy not only recruiting 

autophagic membranes but also regulating PINK1 function. 

 

 In order to validate the data obtained from MEF cells, ATG5 knockout HeLa cells 

were generated by using Crispr/Cas9 strategy. Polyclones were tested according to their 

ATG5 levels and followed by monoclonal selection in puromycine containing selective 

medium. Two different monoclones were determined according to their ATG5-12 levels 

and their basal autophagy levels for further use in the experiments (Figure 3.1.5 39). 

 

 
 

Figure 3.1.5 39: Confirmation of ATG5-/- HeLa clones. Selected HELA clones were 

harvested and protein lysates were prepared using RIPA buffer. Denaturated samples 

were separated through 15% SDS-PAGE. For immunoblots, ATG5, P62 and LC3 

antibodies were used. ACTB, b-Actin was used for loading control. 
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With selected monoclones, the effect of ATG5 on mitochondrial protein in HeLa 

cells were tested (Figure 3.1.5 40). According to daha shown in Figure 3.1.5 40, CCCP-

mediated degradation of mitochondrial proteins were reduced with ATG5 knockout in 

line with the MEF cell results. 

 

 
 

Figure 3.1.5 40: The effect of ATG5 mitochondrial protein levels was analysed in CNT 

and ATG5-/- HeLa cells. HELA cells were seeded in 6-well plates with a cell density of 

250.000 cells per well. Following DMSO or CCCP treatment (10 µM, for 12 h), cells 

were harvested and proteins were extracted. Denaturated protein samples were separated 

through 12% SDS-PAGE. For immunoblots, ATG5 and VDAC1 antibodies were used. 
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Figure 3.1.5 41: The effect of ATG5 on ubiquitin phosphorylation as a readout of PINK1 

activity. HELA cells were seeded in 6-well plates with a cell density of 250.000 cells per 

well. Cells were treated with DMSO, CCCP treatment (20 µM), MG132 (30 µM) and 

MG132 combined with CCCP. Then cells were harvested and phospho-proteins were 

extracted. Denaturated protein samples were separated through 12% SDS-PAGE. For 

immunoblots, ATG5, UB, pSER65-UB and b-Actin antibodies were used. ACTB, b-Actin 

was used for loading control (Representative data of n=2 independent experiments).  
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 Based on the stability effect of ATG5 on PINK1, the data led us to analyze the 

effect of ATG5 on PINK1 kinase activity. To do that, one of the phosphorylation targets 

of PINK1, Ser65 phosphorylation of ubiquitin levels were analyzed in WT and ATG5-/- 

HeLa cells (Figure 3.1.5 41). According to Figure 3.1.5 41, in WT cells, CCCP induced 

ubiquitin phosphorylation and MG132 mediated proteasome inhibition had no effect on 

phosphorylation statue of ubiquitin. In ATG5-/- cells, CCCP induced ubiquitin 

phosphorylation but not as much as in the case of WT cells suggesting that ATG5 has 

regulatory role in kinase activity of PINK1.  

 

 
 

Figure 3.1.5 42:  The effect of ATG5 defficiency in PINK1- Parkin interaction in HeLa 

cells. WT and ATG5-/- HELA cells were cultured on cover slides in 12-well plates at a 

cell density of 25.000 cells per well. Cells were co-transfected with GFP-tagged PINK1 

(Green) and pmCherry-tagged Parkin (Red) constructs for 48 h. After DMSO or CCCP 

treatment (10 µM, for 12 h), cells were fixed with 4% PFA and analyzed under confocal 
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microscope. Merge, overlay of green and red signals (Representative data of N=3 

independent experiments). 

 

 

 Observed functional and stability regulation of PINK1 by ATG5 protein were 

further analyzed in terms the PINK1-Parkin interaction by colocalization test respesented 

in Figure 3.1.5 42. According to microscopy tests, CCCP treatment enhanced PINK1 and 

Parkin colocalization whereas PINK1 and Parkin remained in different regions as 

accumulation around perinuclear area in ATG5-/- cells.   

 

 

 So far, all these data suggest that ATG5 and PSMA7 has differential role in the 

regulation of mitochondrial homeostasis. 
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3.1.6 The Effect of Other Proteasomal Subunits on Mitophagy 
 

 

One of the catalytic b subunit, PSMB5 was found in enriched protein-protein 

complex with ATG5 protein under CCCP treatment condition when compared with 

DMSO treated control condition in mass spectrometry analyses (Figure 3.1.6 1).   

 

 
 

Figure 3.1.6 1: SILAC-based LC-MS/MS analysis. The fold change graphs were 

compared with beads alone (left); enrichment of PSMB5-ATG5 complex under CCCP 

condition were compared with DMSO control condition (right) (n=1). 

 

 

Due to the presence of PSMA7 in cells is both proteasomal and non-proteasomal, 

the subcellular localization of PSMB5 was analyzed in order to understand the observed 

effect of PSMA7 is associated with proteasome or not. To investigate the subcellular 

localization of PSMB5, DMSO and CCCP treated HEK/293T cells were exposed 

subcellular fractionation tests and their cytoplasm and mitochondria are separated. 

According to Figure 3.1.6 2, PSMA7 and PSMB5 were predominantly found in 

cytoplasm and their amount stable upon treatment in cytoplasm. However, in the case of 

mitochondria, under basal condition there is small amount of PSMA7 and PSMB5 on 

mitochondria. The presence of PSMA7-PSMB5 complex suggesting the proteasomal 

abundance onto mitochondria significantly stimulated when cells treated with CCCP. 

This increase is correlated with enhanced translocation of Parkin onto mitochondria and 

decreased mitochondrial inner membrane protein, TIM23. 
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Figure 3.1.6 2: CCCP induces other proteasomal subunits to mitochondria. HEK/293T 

cells were sunjected to 48 h of YFP-Parkin transfection and last 12 h treated with 10 µM 

CCCP or DMSO as control. Subcellular fractionation analyses performed. Following 

fractionation, cytoplasmic and mitochondrial lysates were separated through 12% SDS-

PAGE (representative data of n=3 independent experiments). For immunoblotting, 

ATG5, PSMA7, PSMB5, PARKIN, PINK1 and TIM23 were utilized. ACTB, b-Actin 

was used for purification control of the isolation. 
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Based on these data, the effect of other proteasomal subunits in fact PSMB5 was 

investigated on mitophagy process as listed layers in Figure 3.1.6 3.   

 

 

 
 

Figure 3.1.6. 3: The effect of other proteasomal subunits and overall proteasome activity 

on mitophagy in terms of recruitment of regulators investigated. 

 

 

 

First, the effect of PSMB5 on Parkin recruitment by confocal microscopy is 

checked. As shown in Figure 3.1.6. 4, CCCP-induced parkin recruitment onto 

mitochondria was significantly altered when cellular PSMB5 level is limiting.  
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Figure 3.1.6. 4: The effect of siRNA-mediated knockdown of PSMB5 on Parkin 

recruitment to mitochondria. HEK/293T cells were co-transfected with YFP-tagged 

Parkin (Green) and mito-dsRed (Red) constructs together with PSMB5-targeting siRNA 

or non-targeting siRNA for 48 h. After DMSO or CCCP treatment (10 µM, for 12 h), 

cells were fixed with 4% PFA and analyzed under confocal microscope. Merge, overlay 

of green and red signals (Representative data of N=3 independent experiments). 

 

 

 

Next, the effect of knockdown PSMB5 on Parkin recruitment was analyzed by 

subcellular fractionation experiments. According to immunoblotting results represented 

in Figure 3.1.6 5, CCCP-induced Parkin recruitment onto mitochondria abolished when 

PSMB5 is knocked down using specific siRNAs. 
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Figure 3.1.6 5:  SiRNA mediated knockdown of PSMB5 resulted in decrease in CCCP-

induced Parkin translocation onto mitochondria. HEK/293T cells were grown in 15 cm2 

plates with a cell density of 4x106 cells per plate. For each condition 6 plates of cells 

seeded. Cells were co-transfected with YFP-tagged Parkin constructs together with 

PSMB5-targeting siRNA or non-targeting siRNA for 48 h. After DMSO or CCCP 

treatment (10 µM, for 12 h), cells were harvested and subcellular fractionation protocol 

was followed. Mitochondrial and cytoplasmic fractions were further separated through 

12% SDS-PADE. For immunoblotting, Parkin, TIM23, PSMB5, PINK1 and ACTIN 

antibodies were used. Representative data of n=3 independent experiments. b-Actin was 

used for purification control of the isolation. 

 

These observations obtained from independent experimental set ups suggest that 

not only PSMA7 but also PSMB5 and therefore whole proteasome itself has crucial role 

in CCCP-induced cellular repositioning of E3 ligase, Parkin. 

 

Next, we checked whether proteasome itself or proteasomal activity was also 

required for Parkin and autophagy protein, ATG5 recruitment or not. In order to figure it 

out, chemical proteasome inhibitor MG132 was utilized and by performing subcellular 

fractionation the recruitment of proteins onto mitochondria analyzed in both transiently 

Parkin overexpressed (Figure 3.1.6 6) and stable Parkin expressing (Figure 3.1.6 7) 

HEK/293T cells. 
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Figure 3.1.6 6:  The effect of Proteasome inhibition on protein recruitment onto 

mitochondria in HEK/293T cells. HEK/293T cells were grown in 15 cm2 plates with a 

cell density of 4x106 cells per plate. For each condition 6 plates of cells seeded. Cells 

were co-transfected with YFP-tagged Parkin constructs for 48 h. Following treatments 

with DMSO, CCCP (20 µM), MG132 (30 µM) and MG132 combined with CCCP, cells 

were harvested and subcellular fractionation performed. After denaturation, mtochondrial 

and cytoplasmic proteins separated through 12% SDS-PAGE. Immunoblots were 

incubated with TIM23, TOM40, PSMA7, PSMB5, ATG5, PINK1 nad Parkin antibodies. 

ACTB, b-Actin was used for purification control of the isolation. CYTO, cytoplasm and 

MITO, mitochondria (representative data of n=4 independent experiments). 

 

 

 According to data shown in Figure 3.1.6 6 and Figure 3.1.6 7, CCCP-induced 

mitochondrial recruitment of ATG5 and Parkin required functional proteasomes in cells. 
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Figure 3.1.6 7:  The effect of Proteasome inhibition on protein recruitment onto 

mitochondria in Parkin stable HEK/293T cells. Parkin stable HEK/293T cells were grown 

in 15 cm2 plates with a cell density of 4x106 cells per plate. For each condition 6 plates 

of cells seeded. Cells were co-transfected with YFP-tagged Parkin constructs for 48 h. 

Following treatments with DMSO, CCCP (20 µM), MG132 (30 µM) and MG132 

combined with CCCP, cells were harvested and subcellular fractionation performed. 

After denaturation, mtochondrial and cytoplasmic proteins separated through 12% SDS-

PAGE. Immunoblots were incubated with TIM23, TOM40, PSMA7, PSMB5, ATG5, 

PINK1 nad Parkin antibodies. ACTB, b-Actin was used for purification control of the 

isolation. CYTO, cytoplasm and MITO, mitochondria (Representative data of n=3 

independent experiments). 

 

 

Untill so far, observations showed that CCCP treatment resulted in increased 

positioning of ATG5, Parkin, PSMA7 and PSMB5 onto mitochondria and Parkin 

recruitment and ATG5 recruitment were tightly regulated by the cellular proteasome 

abundance and proteasomal activity. Additionally, cellular PSMA7 and ATG5 levels 

differentially regulates Parkin recruitment to mitochondria in response to CCCP-

mediated mitochondrial dysfunction. 
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3.1.7 Target Prediction on Mitochondria for ATG5 Localization 
 

After validation of the ATG5 occurance, next, we checked the potential mitochondrial 

proteins for CCCP-induced mitochondrial positioning of ATG5 protein.  To start with, 

SILAC-based ATG5 interactome results were critically analyzed in terms of the enhanced 

complex formation upon mitochondrial stress, CCCP. 

 

 
 

Figure 3.1.7 1: SILAC-based LC-MS/MS analysis. The fold change graphs were 

compared with beads alone (left); enrichment of VDAC2-ATG5 complex under CCCP 

conditions were compared with DMSO control condition (right) (n=1). 

 

 

 Among the long list, it is observed that mitochondrial voltage channel VDAC2 

increased the complex formation with ATG5 protein upon CCCP treatment (Figure 3.1.7 

1).  CCCP-induced ATG5 and VDAC2 interaction was investigated by using protein-

protein interaction technics, including immunoprecipitation (Figure 3.1.7 2) and 

colocalization tests in HEK/293T and HeLa cells (Figure 3.1.7 3 and Figure 3.1.7 4).   
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Figure 3.1.7 2: ATG5 immunoprecipitation experiments to test VDAC2 binding in 

HEK/293T cells. HEK/293T cells were grown in 10 cm2 plates for overninght prior to 

desired transfection. Cells were transfected with YFP-tagged Parkin and Flag-tagged 

ATG5 construct together with and without PSMA7-targeting siRNA for 48 h. Following 

treatments with DMSO or CCCP (10 µM, 12 h), cells were harvested and proteins were 

isolated. Cell lysates were incubated with Flag-beads overnight at 4°C. 

Immunoprecipitants were extracted with 3X loading dyte by boiling for 10 minutes, at 

95°C. Samples were separated through 12% SDS-PAGE. For immunoblots, ATG5, 

VDAC1 and PSMA7 antibodies were used. ACTIN, b-Actin was used for loading control. 

FLAG-IP, Flag immunoprecipitation and Pre-IP, protein lysate control (n=3 independent 

experiment performed in HEK/293T cells). 

 

 

ATG5 immunoprecipitation experiments and colocalization tests revealed that VDAC1 

is one of the mitochondria residing proteins potentially targets ATG5 to mitochondria 

through physical interaction. CCCP increased ATG5 and VDAC1 interaction. In line with 

the previous data, siRNA-mediated knockdown of PSMA7 decrased CCCP-induced 

ATG5-VDAC1 interaction (Figure 3.1.7 2, Figure 3.1.7 3 and Figure 3.1.7 4). 
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Figure 3.1.7 3: Colocalization tests of endogenous ATG5 and VDAC1 by 

immunostaining of HEK/293T cells. HEK/293T cells were grown on poly-L-Lysine 

coated cover slides in 12-well plates.  Cells were transfected with MYC-tagged Pakin and 

together with or without PSMA7-targeting siRNA for 48 h. Following 12 h of DMSO or 

CCCP treatment, cells were fixed with 4% PFA and permeabilized with Saponin/BSA 

solution. Following primary and secondary antibody incubations, cells were analyzed 

under confocal microscope. 
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Figure 3.1.7 4: Colocalization tests of endogenous ATG5 and VDAC1 by 

immunostaining of HeLa cells. HELA cells were grown on poly-L-Lysine coated cover 

slides in 12-well plates.  Cells were transfected with MYC-tagged Pakin and together 

with or without PSMA7-targeting siRNA for 48 h. Following 12 h of DMSO or CCCP 

treatment, cells were fixed with 4% PFA and permeabilized with Saponin/BSA solution. 

Following primary and secondary antibody incubations, cells were analyzed under 

confocal microscope. 
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Next, mitochondrial ATG5 and VDAC1 interaction was tested endogenously in 

stable Parkin expressing HEK/293T (Figure 3.1.7 5) and HeLa cells (Figure 3.1.7 6) by 

immunoprecipitating VDAC1 protein from isolated mitochondrial extracts. According to 

data shown belove in Figure 3.1.7 5 and 3.1.7 6, VDAC1 and ATG5 interaction further 

verified under both basal and CCCP-induced conditions as well as in both cell lines. 

 

 
 

Figure 3.1.7 5: Mitochondrial VDAC1-ATG5 interaction tests in Parkin stable 

HEK/293T cells. Stable HEK/293T cells were seeden in 15 cm2 plates with a cell density 

of 4x106 cells. For each condition, 6 plates of cells used. Following subcellular 

fractionation, mitochondrial proteins were incubated with VDAC1 antibody coupled 

agarose beads overnight at 4°C. Precipitated proteins were eluted in loading dye. 

Denaturated samples were separated thrpugh 12% SDS-PAGE. For immunoblots, Parkin, 

pSer65-Ub, ATG5, PSMA7 and VDAC1 antibodies were used. Input, lysate control and 

VDAC1-IP, VDAC immunoprecipitation. 
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Obtained results suggest that VDAC1 protein could be one of the landing zone for 

ATG5 protein locating on mitochondria and PSMA7 has crucial role in directing ATG5 

and Parkin proteins to mitochondria.   

 
Figure 3.1.7 6: VDAC1-ATG5 interaction test on mitochondria in Parkin stable HeLa 

cells. Stable HELA cells were seeded in 15 cm2 plates with a cell density of 4x106 cells. 

For each condition, 6 plates of cells used. Following subcellular fractionation, 

mitochondrial proteins were incubated with VDAC1 antibody coupled agarose beads 

overnight at 4°C. Precipitated proteins were eluted in loading dye. Denaturated samples 

were separated thrpugh 12% SDS-PAGE. For immunoblots, Parkin, pSer65-Ub, ATG5, 

PSMA7 and VDAC1 antibodies were used. Input, lysate control and VDAC1-IP, VDAC 

immunoprecipitation. 

 

 Based on curiosity, other mitochondrial outer membrane proteins, including 

TOM40 (Figure 3.1.7 7 and Figure 3.1.7 8) and MFN2 (Figure 3.1.7 9 and Figure 3.1.7 

10) were also tested for their potential interaction target residing on mitochondria for 

ATG5 to govern mitophagy in both Parkin expressing HEK/293T and Hela cells.  
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Figure 3.1.7 7: TOM40-ATG5 interaction test on mitochondria in Parkin stable 

HEK/293T cells. Stable HEK/293T cells were seeded in 15 cm2 plates with a cell density 

of 4x106 cells. For each condition, 6 plates of cells used. Following subcellular 

fractionation, mitochondrial proteins were incubated with TOM40 antibody coupled 

agarose beads overnight at 4°C. Precipitated proteins were eluted in loading dye. 

Denaturated samples were separated thrpugh 12% SDS-PAGE. For immunoblots, Parkin, 

pSer65-Ub, ATG5, PSMA7 and TOM40 antibodies were used. Input, lysate control and 

TOM40-IP, TOM40 immunoprecipitation. 
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Figure 3.1.7 8: TOM40-ATG5 interaction test on mitochondria in Parkin stable HeLa 

cells. Stable HELA cells were seeded in 15 cm2 plates with a cell density of 4x106 cells. 

For each condition, 6 plates of cells used. Following subcellular fractionation, 

mitochondrial proteins were incubated with TOM40 antibody coupled agarose beads 

overnight at 4°C. Precipitated proteins were eluted in loading dye. Denaturated samples 

were separated thrpugh 12% SDS-PAGE. For immunoblots, Parkin, pSer65-Ub, ATG5, 

PSMA7 and TOM40 antibodies were used. Input, lysate control and TOM40-IP, TOM40 

immunoprecipitation. 
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Figure 3.1.7 9: MFN2-ATG5 interaction test on mitochondria in Parkin stable 

HEK/293T cells. Stable HEK/293T cells were seeden in 15 cm2 plates with a cell density 

of 4x106 cells. For each condition, 6 plates of cells used. Following subcellular 

fractionation, mitochondrial proteins were incubated with MFN2 antibody coupled 

agarose beads overnight at 4°C. Precipitated proteins were eluted in loading dye. 

Denaturated samples were separated thrpugh 12% SDS-PAGE. For immunoblots, Parkin, 

pSer65-Ub, ATG5, PSMA7 and MFN2 antibodies were used. Input, lysate control and 

MFN2-IP, MFN2 immunoprecipitation. 

 

 

 

Even though their protein levels decreased with CCCP, both TOM40 and MFN2 

proteins showed increased binding with ATG5 protein suggesting that not only through 

VDAC1 protein but also via other tested mitochondrial proteins mitochondria were 

eliminated. 
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Figure 3.1.7 10: MFN2-ATG5 interaction test on mitochondria in Parkin stable HeLa 

cells. Stable HELA cells were seeden in 15 cm2 plates with a cell density of 4x106 cells. 

For each condition, 6 plates of cells used. Following subcellular fractionation, 

mitochondrial proteins were incubated with MFN2 antibody coupled agarose beads 

overnight at 4°C. Precipitated proteins were eluted in loading dye. Denaturated samples 

were separated thrpugh 12% SDS-PAGE. For immunoblots, Parkin, pSer65-Ub, ATG5, 

PSMA7 and MFN2 antibodies were used. Input, lysate control and MFN2-IP, MFN2 

immunoprecipitation. 

 

 

 

In this section, all the given data suggested that ATG5 could have various outer 

mitochondrial membrane targets, including VDAC1, TOM40 and MFN2. These 

observations showed that mitophagy is not a process starting from at a certain point and 

remove whole organelle. Conversely, it could start from several locations on 

mitochondria to eliminate dysfunctional mitochondria for the safe of the cell as soon as 

possible. 
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3.2 IDENTIFICATION OF OTHER PROTEASOMAL COMPONENTS AS 

DIRECT INTERACTORS OF ATG5 

 

 

 

3.2.1 SILAC-Based Screening  
 

SILAC-based ATG5 intrecatome analyses revealed that there are various CCP-

induced interaction partners that are associated with the UPS system, including the E1 

enzyme UBA1 and the E2 enzyme UBE2L3 (Figure 3.2.1 1). 

 

 
 

Figure 3.2.1 1: SILAC-based LC-MS/MS analysis. The fold change graphs were 

compared with beads alone (left); enrichment of UBA1-ATG5 complex under CCCP 

conditions (middle) and UBE2L3-ATG5 complex under CCCP (right) were compared 

with DMSO control condition (n=1). 

 

This data suggests potential and more complex cellular roles of ATG5 which 

could be associated with stress stimuli and its autophagic as well as non-autophagic 

functions. Additionally, according to the list given belove in Table 3.2.1 1, in different 

stress conditions, there are several other UPS related components such as E3 ligases in 

ATG5 interactome which will be tested as a follow-up study of this thesis. 
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3.2.2 Validation of SILAC-based ATG5 Interaction Partners 
 

Proteomic analyses then confirmed by using co-immunoprecipitatin tests 

HEK/293T cells. According to immunoblots represented in Figure 3.2.2 1, CCCP 

treatment significantly increased ATG5 binding with both the UPS-associated 

components, UBA1 and UBE2L3. Interestingly, the presence of an E3 ligase Parkin did 

not enhanced the interaction yet, had no effect on UBA1 binding and inhibitory effect on 

UBE2L3 binding. 

 

 
 

Figure 3.2.2 1: Co-immunoprecipitation test for the validation of proteomic data in 

HEK/293T cells. HEK/293T cells were splitted into 10 cm2 plates with a 1.5x106 cell 

density. Cells were transfected with Flag-tagged ATG5 construct alone or together with 

YFP-tagged Parkin for 48 h. Following 12 h of DMSO od CCCP treatment (10 µM), cells 

were harvested and proteins were extracted. Cell lysates were incubated with Flag-beads 

overnight, at 4°C. Immunoprecipitated proteins were eluted by boiling for 10 minutes at 

954°C in loading dye. Denaturated samples were separated through 12% SDS-PAGE. 
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Blots were incubated with UBA1, UBE2L3, PSMB5, Parkin and ATG5 antibodies. 

ACTB, b-Actin was used as loading control. Input, cell lysate control and Flag-IP, Flag 

Immunoprecipitation. 

 

 Next, cellular localization of UBA1 and UBE2L3 enzymes were determined by 

performing cytoplasmic and mitochondrial isolation. Due to the involvement of the both 

enzymes in the fast reactions of ubiquitylation, to increase the efficiency of detection for 

cellular dynamics, chemical-crosslinking was performed prior to subcellular isolation.  

 

 
 

Figure 3.2.2 2: Subcellular localization of UBA1 and UBE2L3 enzymes in HEK/293T 

cells. HEK/293T cells were seeded into 15 cm2 plates with a cell density of 4x106 cells 

per plate.  Cells were transfected with Flag-tagged ATG5 and YFP-tagged Parkin 

constructs for 48 h. Following 12 h of DMSO or CCCP (10 µM), cells were harvested 

and by using glutaraldehyde protein-protein interactions were fixed prior to subcellular 

isolation (For more detail, please see the method section). Through differential 

centrifugation steps, cytoplasm and mitochondria out of the cell pellets were separated. 

Denaturated protein sanples from cytoplasmic and mitochondrial parts, run through 12% 

SDS-PAGE. For immunoblotting, UBA1, UBE2L3, PARKIN and ATG5 antibodies were 

used. ACTB, b-Actin was used as loading control. CYTO, cytoplasm and MITO, 

mitochondria (n=4 independent experiment performed). 
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According to immunoblots represented in Figure 3.2.2 2, in cells UBA1 and 

UBE2L3 had differential distribution pattern. In cytoplasm, DMSO or CCCP treatment 

had no effect on UBE2L3 level, wherease cytoplasmic UBA1 level significantly 

enhanced in response to CCCP. However, for both UBA1 and UBE2L3 proteins, CCCP 

enhanced their presence on mitochondria to gether with ATG5 and PARKIN. 

 

 
 

Figure 3.2.2 3: Determination of the cellular ATG5-UBA1 and ATG5-UBE2L3 

interaction by subcellular fractionation followed by immunoprecipitation tests in 

HEK/293T cells. HEK/293T cells were seeded into 15 cm2 plates with a cell density of 

4x106 cells per plate.  Cells were transfected with Flag-tagged ATG5 and YFP-tagged 

Parkin constructs for 48 h. Following 12 h of DMSO or CCCP (10 µM), cells were 

harvested and by using glutaraldehyde protein-protein interactions were fixed prior to 

subcellular isolation (For more detail, please see the method section). Through 

differential centrifugation steps, cytoplasm and mitochondria out of the cell pellets were 

separated. Protein lysates were incubated with Flag-beads overnight at 4°C. Co-

precipitated proteins were eluted in loading dye by boiling for 10 minutes at 95°C. 
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Denaturated protein sanples from cytoplasmic and mitochondrial parts, run through 12% 

SDS-PAGE. For immunoblotting, UBA1, UBE2L3, PARKIN and ATG5 antibodies were 

used. ACTB, b-Actin was used as loading control. CYTO, cytoplasm;  MITO, 

mitochondria; Pre-IP, lysate controls and Flag-IP, Flag immunoprecipitation (n=2 

independent experiment performed). 

 

 

Subsequently, we wanted to check the localization of ATG5 and ubiquitylation-

related enzymes in cells. To do that, mitochondrial and cytoplasmic ATG5 proteins 

precipitated and co-precipitating proteins were analyzed by immublotting with specific 

antibodies. As represented in Figure 3.2.2 3 that ATG5 binding to both proteins, UBA1 

and UBE2L2 occurred in cytoplasm. 

 

There are other various ubiquitin-proteasome system components that have been 

identified by SILAC-based proteomic screenings in response to CCCP condition (Table 

3.2.2 1) as well as other autophagy-inducing conditions, including starvation and Torin1 

(Table 3.2.2 2).  

 

 

Table 3.2.2 1: CCCP induced UPS-associated ATG5 Interactome List of HEK/293T 

 

 
Gene 

 

 
Protein Name 

PSMA7 Proteasome subunit alpha type-7 

USP10 Ubiquitin carboxyl-terminal hydrolase 10 

UBA1 Ubiquitin-like modifier-activating enzyme 1 

UBE2L3 Ubiquitin-conjugating enzyme E2 L3 

 

 

 

 

 



180 
 

 

 

 

Table 3.2.2 2: CCCP induced UPS-associated PSMA7 Interactome List of HEK/293T 

 

 
Gene Name 

 

 
Protein Name 

CAPRIN1 Caprin-1 

PSMG4 Proteasome assembly chaperone 4 

SCYL2 SCY1-like protein 2 

PSMB5 Proteasome subunit beta type-5 

PSME4 Proteasome activator complex subunit 4 

PSMG1 Proteasome assembly chaperone 1 

PSME3 Proteasome activator complex subunit 3 

KCTD2 BTB/POZ domain-containing protein KCTD2 

KCTD17 BTB/POZ domain-containing protein KCTD17 

PSMG3 Proteasome assembly chaperone 3 

KCTD5 BTB/POZ domain-containing protein KCTD5 

STUB1 E3 ubiquitin-protein ligase CHIP 

ANKFY1 Rabankyrin-5 
 

SUPT16H FACT complex subunit SPT16 

 

 

 

 

Additionally, mitochondrial and cytoplasmic SILAC-based ATG5 interactome 

analyses were also enlighten the posibility as well as the complexity of other direct 

interactions between The UPS and autophagy system based on the subcellular location of 

the components (Table 3.2.2 4 and Table 3.2.2 5). 
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Table 3.2.2 3: UPS-associated ATG5 Interactome Combined List with Differential 

Autophagy Inducing Conditions (CCCP, STV or Torin1) in HEK/293T cells 

 

 
Gene Name 

 

 
Protein Name 

UBA1 Ubiquitin-like modifier-activating enzyme 1 

UBE2N / UBE2NL Ubiquitin-conjugating enzyme E2 N 

UBR5 E3 ubiquitin-protein ligase UBR5 

UFD1L Ubiquitin fusion degradation protein 1 homolog 

USP9X Probable ubiquitin carboxyl-terminal hydrolase FAF-X 

ATXN10 Ataxin-10 

SUMO2 Small ubiquitin-related modifier 2 

TRIM21 E3 ubiquitin-protein ligase TRIM21 

USP10 Ubiquitin carboxyl-terminal hydrolase 10 

USP14 Ubiquitin carboxyl-terminal hydrolase 14 

ATXN2 Ataxin-2 

KCTD2 BTB/POZ domain-containing protein KCTD2 

KCTD5 BTB/POZ domain-containing protein KCTD5 

NDFIP1 NEDD4 family-interacting protein 1 

PARK2 E3 ubiquitin-protein ligase parkin 

RBBP6 E3 ubiquitin-protein ligase RBBP6 

TRIM21 E3 ubiquitin-protein ligase TRIM21 

UBR4 E3 ubiquitin-protein ligase UBR4 
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Table 3.2.2 4: CCCP induced UPS-associated Cytoplasmic ATG5 Interactome List of 

HEK/293T cells 

 

 
Gene Name 

 

 
Protein Name 

PSMA7 Proteasome subunit alpha type-7 

Park2 Parkin 

RBBP6 E3 ubiquitin-protein ligase RBBP6 

KCTD2 BTB/POZ domain-containing protein KCTD2 

ATXN2 Ataxin 2 

MIB1 E3 ubiquitin-protein ligase MIB1 

DCAF13 DDB1- and CUL4-associated factor 13 

KCTD5 BTB/POZ domain-containing protein KCTD5 

UBR4 E3 ubiquitin-protein ligase UBR4 

PSMD4 26S proteasome non-ATPase regulatory subunit 4 

PSMD2 26S proteasome non-ATPase regulatory subunit 2 

PSMD1 26S proteasome non-ATPase regulatory subunit 1 

PSMC5 26S protease regulatory subunit 8 
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Table 3.2.2 5: CCCP induced UPS-associated Mitochondrial ATG5 Interactome List of 

HEK/293T cells 

 
Gene Name 

 

 
Protein Name 

Park2  Parkin E3 ligase 

PSMC2 26S protease regulatory subunit 7 

KCTD5 BTB/POZ domain-containing protein KCTD5 

KCTD2 BTB/POZ domain-containing protein KCTD2 

NDFIP1 NEDD4 family-interacting protein 1 

 

 

Untill so far, it was confirmed that the UPS components E1 enzyme UBA1 and 

E2 enzyme UBE2L3 localized mostly in cytoplasm and upon CCCP treatment they 

translocated onto mitochondria together with ATG5 and Parkin proteins. CCCP treatment 

also enhanced ATG5 binding to UBA1 and UBE2L3 proteins, yet mostly detected in 

cytoplasm and proposed model for UBA1 and UBE2L3 in CCCP-induced cellular 

homeostasis represented in Figure 3.2.2 4. Yet, there are many other differentially 

regulated proteasomal system components that found as ATG5 and PSMA7 interacting 

hits and some common partners also exist. Confirmation technics for at least some 

interesting candidates or all are required. 

 

 
 
Figure 3.2.2 4: Proposed model for CCCP-induced UBA1 and UBE2L3 regulation in 
cells. 
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3.3 MITOCHONDRIAL MOTILITY CONTROL THROUGH ATG5 

INTERACTORS 

 

Mitochondria are highly dynamic organelles and their movement is critical for the 

energy supply to the cells. The mitochondria motilily is maintained so far through 

microtubules, dyneins and basically cytoskeleton.  Upon mitochondrial stress like CCCP, 

mitochondrial morphology is highly affected, and this alteration would change the 

cellular movement of the mitochondria. 

 

 

3.3.1 The Role of PSMA7 on Mitochondrial Motility 
 

In order to test the mitochondrial movement, following DMSO and CCCP HeLa 

cells were analyzed under confocal microscopy. As seen in Figure 3.3.1 1, CCCP 

abolished mitochondria and fibrillar actin connections and deregulated mitochondrial 

motiliy. 

 

 

 
 

Figure 3.3.1 1: The effect of CCCP on mitochondrial motility analyzed in HeLa cells. 
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HeLa cells were grown on cover slips in 12-well plates and transfected with pmTurquose-

mito construct. Following 12 h treatment of DMSO as control or CCCP (10 µM), cells 

were fixed with 4 % PFA and stained with phalloidin. After staining, cells were analyzed 

under confocal microscope. 

 

 

 
 

Figure 3.3.1 2: The effect of siRNA-mediated knockdown of PSMA7 and PSMB5 on 

mitochondrial motility analyzed in HeLa cells. HeLa cells grown on cover slips in 12-

well plates and transfected with pmTurquiose-mito construct together with PSMA7-

targeting or PSMB5-targeting or non-targeting siRNAs for 48 h. Following treatment of 

DMSO as control or CCCP, cells were fixed with PFA and stained with phalloidin. After 

staining, cells were analyzed under confocal microscope (n=3 independent experiment 

performed).  

 

 

Next, the effect of ATG5 interactors, including PSMA7 and PSMB5 on 

mitochondrial motility was checked in HeLa cells (Figure 3.3.1 2). According to 

confocal microscopy results, CCCP-mediated loos of contact with fibriller actin was 
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restored in both PSMA7 and PSMB5 knockdown conditions. These observations 

suggested that proteasome is a key regulator of both mitochondrial removal and motility.  

 

siRNA-mediated knockdown effect of PSMA7 on mitochondria and cytoskeleton 

connection was further analyzed through microtubule association by tubulin staining in 

HeLa cells. According to given below in Figure 3.3.1 3, mitochondria and microtubule 

connection was decreased even lost upon CCCP treatment. However, deficiency in 

PSMA7 had no significant effect on CCCP-derived loss of mitochondria and microtubule 

connection. 

 
 

Figure 3.3.1 3: The effect of siRNA-mediated knockdown of PSMA7 on mitochondrial 

motility analyzed in HeLa cells. HeLa cells grown on cover slips in 12-well plates and 

transfected with pmTurquiose-mito construct together with PSMA7-targeting or PSMB5-

targeting or non-targeting siRNAs for 48 h. Following treatment of DMSO as control or 

CCCP, cells were fixed with PFA and incubated with Tubulin primary and Alexa-Flour 

488-mouse secondary antibodies. Then cells were analyzed under confocal microscope 

(N=3 independent experiment performed). 
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So far, these data indicate that CCCP treatment significantly inhibited tubulin 

polymerization, reduced the association of mitochondria and microtubules (MT) and 

microfibriles (MF). Knockdown PSMA7 and PSMB5 could successfullt restore the loss 

of MF-mitochondria connection but not MT-mitochondria connection. 

 

 

 

3.3.2 The Effect of DIAPH1 on Mitochondrial Motility and Mitophagy 
 

 

CCCP-stimulated ATG5 interactome analysis revealed that one of the best hits of 

the interaction partners is DIAPH1 protein (shown in the Table 3.3.2 1). DIAPH1 protein 

is a diaphanous-related formin family member protein and is a Rho effector proteins 

regulating cell movement and migration by organizing polymerization of microtubules 

and microfilaments (Watanabe et al., 1997).   

 

 

 

Table 3.3.2 1: List of Top 4 Significant Hits from SILAC-based ATG5 Interactome 

Screen in HEK/293T cells. 

 
 

 

 

Additionally, it has been shown that ACTH signaling through increasing cellular 

cAMP level and PKA potentiated phosphorylation and activation of RhoA regulated 
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organeller positioning in cells. Phosphorylated RhoA intrecated with DIAPH1 and the 

formation of this complex, resulted in the microtubule-dependent movement in a close 

proximity of ER (represented in Figure 3.3.2 1, (Li and Sewer, 2010)). 

 

 

 
 

Figure 3.3.2 1: DIAPH1 regulated mitochondrial repositioning in cells.(Retrieved from 

(Li and Sewer, 2010). 

 

 

 First of all, proteomic data was verified by using classical protein-protein 

interaction test, co-immunoprecipitation. By precipitating overexpressed ATG5, co-

precipitated DIAPH1 protein was analyzed. According to immunoblots represented in 

Figure 3.3.2 2, under basal condition DIAPH1 and ATG5 barely interacted. Yet, CCCP 

significantly enhanced their binding, in line with the proteomic data. 
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Figure 3.3.2 2: Confirmation of ATG5 and DIAPH1 interaction by immunoprecipitation 

tests in HEK/293T cells. HEK/293T cells were seeded in 10 cm2 plates with a cell density 

of 1.5x106. 16 h post seeding, cells were transfected with Flag-tagged ATG5 construct 

for 48 h.  Cells were treated with DMSO or CCCP for 12 h. After treatment, cells were 

harvested and proteins were isolated. Cell lysates were further incubated with Flag-beads 

overnight at 4°C. Precipitated proteins were eluted in sample buffer by boiling for 10 

minutes at 954°C. Denaturated samples were separated through 12% SDS gel. For 

immunoblots, ATG5 and DIAPH1 antibodies were used. ACTB, b-Actin was used as 

loading control. Pre-IP, lysate controls and Flag-IP, Flag immunoprecipitation (n=3 

independent experiments performed). 

 

 

 Next, endogenous ATG5 binding to DIAPH1 protein was tested in HEK/293T 

(Figure 3.3.2 3) and HeLa (Figure 3.3.2 4) cells. Endogenous ATG5 protein could also 

successfully precipitated DIAPH1 protein, when cells exposed to mitochondrial stress 

conditions, including CCCP and Stauroporine in both cell lines. 
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Figure 3.3.2 3:  Endogenous ATG5 binding test for DIAPH1 protein in HEK/293T cells. 

HEK/293T cells were seeded into 15 cm2 plates with a cell density of 4x106 cells for 72 

h. Cells were treated with DMSO, CCCP or Staurosporine for 12 h. Then cells were 

harvested and lysates were incubated with ATG5 coupled beads for overnight at 4°C. 

Precipitated proteins were eluted in sample buffer by boiling for 10 minutes at 954°C. 

Denaturated samples were separated through 12% SDS gel. For immunoblots, ATG5 and 

DIAPH1 antibodies were used. ACTB, b-Actin was used as loading control. Pre-IP, lysate 

controls and Flag-IP, Flag immunoprecipitation (n=3 independent experiments 

performed). 

 
Figure 3.3.2 4:  Endogenous ATG5 binding test for DIAPH1 protein in HeLa cells. 

HELA cells were seeded into 15 cm2 plates with a cell density of 4x106 cells for 72 h. 
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Cells were treated with DMSO, CCCP or Staurosporine for 12 h. Then cells were 

harvested and lysates were incubated with ATG5 coupled beads for overnight at 4°C. 

Precipitated proteins were eluted in sample buffer by boiling for 10 minutes at 954°C. 

Denaturated samples were separated through 12% SDS gel. For immunoblots, ATG5 and 

DIAPH1 antibodies were used. ACTB, b-Actin was used as loading control. Pre-IP, lysate 

controls and Flag-IP, Flag immunoprecipitation (n=3 independent experiments 

performed). 

 

 

Next, the subcellular localization of DIAPH1 was investigated by performing 

subcellular fractionation (Figure 3.3.2 5) due to the hint of its role in mitochondrial 

repositioning and mitochondrial stress-stimulated interaction with ATG5. According to 

data shown in Figure 3.3.2 5, in basal and CCCP-stimulated conditions, DIAPH1 was 

found predominantly in cytoplasm. Under basal situation, there was almost no detectable 

DIAPH1 and ATG5 on mitochondria and with CCCP-treatment the presence of both 

DIAPH1 and ATG5 proteins increased onto the mitochondria suggesting its functionality 

at organeller base.   

 

 
 

Figure 3.3.2 5: DIAPH1 was found on mitochondria upon CCCP treatment in HEK/293T 

cells. HEK/293T cells were seeded into 15 cm2 plates with a cell density of 4x106 cells 
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for 72 h. Cells were treated with DMSO or CCCP for 12 h. Then cells were harvested and 

subcellular fractionation performed. Protein lysates were further separated through 12% 

SDS gel. For immunoblots, ATG5, TIM23, ACTIN and DIAPH1 antibodies were used. 

ACTB, b-Actin was used as purification control of the isolation. Pre-IP, lysate controls 

and Flag-IP, Flag immunoprecipitation (n=3 independent experiments performed). 

 

 

 Next, the functional role of DIAPH1 on mitochondrial elimination was checked 

by siRNA-mediated knockdown experiments in HEK/293T (Figure 3.3.2 6) and HeLa 

cells (Figure 3.3.2 7). CCCP-stimulated mitochondrial protein degradation was enhanced 

upon cellular DIAPH1 level was limiting in both HEK/293T and HeLa cells. These 

findings suggest that DIAPH1 has critical role in restricting cellular mitochondrial loss 

by autophagic degradation. 

 

 
 

Figure 3.3.2 6: The effect of knockdown DIAPH1 on mitophagy in HEK/293T cells. 

HEK/293T cells were seeded in 6-well plates with a cell density of 300.000 cells/well. 

Cells were transfected with DIAPH1-targeting siRNA or non-targeting siRNA for 48 h. 

Following DMSO or CCCP treatment, cells were harvested and proteins were extracted. 

Protein lysates were further separated through 12% SDS gel. For immunoblots, TIM23, 

DIAPH1 and ACTIN antibodies were used. ACTB, b-Actin was used as loading control. 
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Figure 3.3.2 7: The effect of knockdown DIAPH1 on mitophagy in HeLa cells. HELA 

cells were seeded in 6-well plates with a cell density of 300.000 cells/well. Cells were 

transfected with DIAPH1-targeting siRNA or non-targeting siRNA for 48 h. Following 

DMSO or CCCP treatment, cells were harvested and proteins were extracted. Protein 

lysates were further separated through 12% SDS gel. For immunoblots, TIM23, DIAPH1 

and ACTIN antibodies were used. ACTB, b-Actin was used as loading control. 

 

 

 

Next, we tested the functional role of DIAPH1 protein in mitochondria and 

microtubule association, microtubule formation and therfore potentially motility in HeLa 

cells (Figure 3.3.2 8). According to confocal microscopy analyses, tubulin polymerization 

and and its connection with mitochondria decreased with CCCP. These decrease further 

stimulated when DIAPH1 is knocked down.  
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Figure 3.3.2 8: The effect of knockdown DIAPH1 on Mitochondria and Cytoskeleton 

Connection in HeLa cells.  HeLa cells were seeded on cover slips and transfected with 

mito-dsRed (Red) construct together with or without DIAPH1-targeting siRNA.  

Following DMSO or CCCP treatment, cells were fixed with 4% PFA. Then, cells were 

permeabilized with BSA/Saponin solution. Permeabilized samples were incubated with 

Tubulin primary antibody and Alexa-Fluor 488 anti-Mouse secondary antibody. Cells 

were analyzed under confocal microscope. 

 

  

 Along with this thesis, due to the confirmed interaction with ATG5 and PSMA7, 

we checked the effect of PSMA7 on ATG5 binding to DIAPH1 in order to get the idea of 

its binding site on ATG5. To do that, cells expressing PSMA7 at a normal level and deficit 

in PSMA7 used for further ATG5 immunoprecipitation tests HEK/293T. According to 
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immunoblots shown in Figure 3.3.2 9, siRNA-mediated knockdown of PSMA7 has no 

significant effect on ATG5 and DIAPH1 binding suggesting that PSMA7 and DIAPH1 

did not compete for ATG5 binding. 

 

 
Figure 3.3.2 9: Immunoprecipitation experiments to check the effect of PSMA7 on 

ATG5 and DIAPH1 interaction performed in HEK/293T cells. HEK/293T cells were 

seeded in 10 cm2 plates with a cell density of 1.5-2x106 cells. Cells were transfected with 

Flag-tagged ATG5 together with and without PSMA7-targeting siRNA for 48 h. 

Following 12 h of DMSO or CCCP treatment, cell lysates were incubated with Flag-beads 

overnight. Precipitated proteins were eluted by boiling for 10 minutes at 95°C. 

Denaturated samples were separated through 12% SDS-PAGE. For immunoblots, 

DIAPH1, PSMA7 and ATG5 antibodies were used. ACTB, b-Actin was used as loading 

control. Input, cell lysate control and Flag-IP, Flag Immunoprecipitation (Representative 

data of n=4 experiments). 

 

 Due to the their CCCP-mediated enhanced interaction with ATG5 as well as their 

increased localization onto mitochondria, next, we tested whether PSMA7 and DIAPH1 

were interacting or not. According to immunoprecipitation experiment results shown in 
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Figure 3.3.2 10, endogenous PSMA7 found in a complex formation with DIAPH1 and 

this complex abundance increased with CCCP and Staurosporine. 

 

 
 

Figure 3.3.2 10: Immunoprecipitation experiments to test endogenous PSMA7 and 

DIAPH1 binding in HEK/293T cells. HEK/293T cells were seeded in 15 cm2 plates with 

a cell density of 4x106 cells. Following 12 h of DMSO, Staurosporine or CCCP treatment, 

cell lysates were incubated with PSMA7 antibody coupled-beads overnight. Precipitated 

proteins were eluted by boiling for 10 minutes at 95°C. Denaturated samples were 

separated through 12% SDS-PAGE. For immunoblots, DIAPH1, PSMA7 and ATG5 

antibodies were used. ACTB, b-Actin was used as loading control. Input, cell lysate 

control and PSMA7-IP, PSMA7 Immunoprecipitation (Representative data of n=3 

experiments). 

 
 

All these data indicated that, PSMA7 and ATG5 bind the same interaction partner, 

DIAPH1 in order to regulate mitochondrial motility. DIAPH1 binding for both ATG5 and 

PSMA7 was upregulated with CCCP treatment. Knockdown DIAPH1 resulted in 

enhanced mitophagy and knockdown PSMA7 enhanced DIAPH1 and ATG5 binding. 
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Additionally, knockdown of proteasomal subunits restored CCCP-mediated loss of 

cytoskeleton and mitochondria connection whereas knockdown DIAPH1 worsened the 

loss of contact.  

 

Proposed model for PSMA7 and DIAPH1 regulation of mitochondrial motility 

was represented in Figure 3.3.2 11. 

 

 

 

Figure 3.3.2 11: Mitochondrial motility control by PSMA7 and DIAPH1. 
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4. DISCUSSION 
 

 

Autophagy and the ubiquitin proteasome systems are major degradation sytems in 

mammalian cells that allow recycling of cellular contents ranging from soluble proteins 

to intracellular organelles. Although their mode of action and their requirements for 

substrate recognition are different, there are several overlaps and interconnections 

between the UPS and autophagy pathways.  

 

 Ubiquitin is a common signal for both the UPS and autophagy. It was proposed 

that, ubiquitin chain type could determine the pathway of choice for protein degradation. 

K48-linked ubiquitylation was proposed to be a signal for the UPS, whereas K63 linked 

ubiquitylation directed proteins for autophagosomal degradation (Herhaus and Dikic, 

2015). Yet, a number of independent studies provided evidence that both ubiquitylation 

types could lead to autophagic degradation of substrates (Wandel et al., 2017). Moreover, 

recent studies underline the importance of ubiquitin phosphorylation as an event 

increasing the affinity of autophagy receptors to the targets of selective autophagy (Kane 

et al., 2014; Koyano et al., 2014). Additionally, non-ubiquitin modifications (e.g., 

acetylation, sumoylation, neddylation etc.) were shown to affect protein degradation as 

well (Hwang and Lee, 2017). Therefore, a barcode of ubiquitin and other modifications 

seem to prime proteins for one or the other degradation pathway and determine their fate. 

As another level of regulation, deconjugating enzymes such as DUBs may counteract or 

redirect proteins for different degradation systems.  

 

  In this thesis, rather than previously mentioned indirect regulations, the first direct 

links between the ubiquitin-proteasome system and autophagy was introduced and its 

cellular function deeply analyzed which was mainly through ATG5 and PSMA7 and 

PSMB5. The interactions of PSMA7 and PSMB5 with ATG5 were confirmed by various 

protein-protein interaction techniques, including co-immunoprecipitation, colocalization 

tests, endogenous immunoprecipitation and gel filtration tests. By structural modelling, 
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several critical residues at C-terminal part of the PSMA7 suggested as critical points for 

interaction and these data was verified by immunoprecipitating truncated fragments of 

PSMA7 that are generated by PCR-based clonning.  

 The interaction between ATG5 and PSMA7 was observed in both cytoplasm and 

on mitochondria, yet investigated more on mitochondria due to their CCCP and 

staurosporine-mediated increased dynamic complex formation on mitochondria. 

Increased mitochondrial localization of this complex was verified by using subcellular 

fractionation and colocalization tests. In fact, proteasomes are themselves selective target 

for autophagic degradation (Marshall et al., 2015). To figure out the observed interaction 

was due to the proteasomal degradation of not, the expression pattern of proteasomal 

subunits such as PSMA7 and PSMB5 were analyzed in response to various autophagy 

activators, proteasomal inhibitors and as well as mitochondrial stress inducers and no 

significant degradation of PSMA7 was observed in listed conditions. Therefore PSMA7 

is not a degradation target of autophagy in our case and could have regulatory role in 

mitochondrial dynamic such as mitophagy. In line with this hypothesis, the functional 

role of the interaction was analyzed. 

 

 Based on gel filtration experiment results, in cytoplasm ATG5, PSMA7, PINK1 

and Parkin were found as big complex. Yet, there are observed two big complexes on 

mitochondria containing differential amount of ATG5 and PSMA7 proteins. In one 

complex, there are ATG5, PINK1 and Parkin, in the other PSMA7, PSMB5, Parkin and 

decreasing fractions of ATG5 adding complexity to the regulation of mitochondrial 

dynamics. When the potential candidates of outer mitochondrial membrane proteins, it 

was observed that VDAC1, MFN2 and TOM40 were all interacted with ATG5. 

  

 In functional studies, it was observed that PSMA7 knockdown resulted decrease 

in Parkin translocation to mitochondria through its deregulated interaction with PINK1 

and its ubiquitylation targets. Additionally, defficiency in PSMA7, restored CCCP-

induced mitochondrial elimination, mitophagy. Interestingly, other proteasomal subunit, 

PSMB5 knockdown as well as chemical inhibition of proteasome gave similar results 

suggesting that proteasomal abundance and proteasomal activity regulates repositioning 

of Parkin, ATG5 and subsequently mitophagy.  
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Furthermore, from the ATG5 perspective, the deficiency in ATG5 resulted in 

downregulated mitophagy and enhanced Parkin translocation onto mitochondria in line 

with the accumulation of dysfunctional mitochondria recruited more Parkin could not 

become eliminated. Another striking observation was increased cellular stability of 

PINK1 which normally has short half life and only stabilized in response to mitochondrial 

stress. When ATG5 regulation on PINK1 protein was investigated, it was seen that not 

only the stability but also the PINK1 kinase activity was affected with cellular ATG5 

abundance. In ATG5-/- HeLa cells, CCCP induced PINK1-mediated ubiquitin 

phosphorylation was blocked. In fact, these differential regulation of ATG5 and PSMA7 

were not suprising due to our two different complex formation onto mitochondria. 

 

According to data obtained in this phd study, there have been identified various 

protein complexes containing ATG5, PSMA7 (proteasomal form; so the proteasome due 

to the involvement of the PSMB5) and Parkin onto the mitochondria and the formation 

of these complexes. Identified protein complexes on mitochondria depicted in Figure 4. 

1. As shown in the Figure 4. 1, complex I is composed of PINK1, Parkin, VDAC1, ATG5, 

UBA1 and UBE2L3.  In complex II, involved proteins are found as TOM40, ATG5, 

PSMA7, Parkin, UBA1 and UBE2L3. In the third one, MFN2, ATG5, PSMA7, Parkin, 

UBA1 and UBE2L3 were described as complex components. Because the ubiquitin 

conjugation reaction is a rapid system, the involvement of the E1 enzyme UBA1 and the 

E2 enzyme UBE2L3 in the complexes through ATG5 binding is not stable on 

mitochondria. These interactions were also dynamic and eventhough their localization on 

mitochondria were also enhanced with CCCP the predominant interaction between these 

enzymes and ATG5 in cytoplasm.  
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Figure 4. 1: Proposed interaction model for CCCP-induced protein complex formation 

onto mitochondria.  

 

The proposed model for mitophagy regulation by ATG5-PSMA7 or in another 

word, by ATG5-proteasome complex was resresented in Figure 4.2 and Figure 4. 3.   
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Figure 4.2: Detailed model-1 for proposed hypothesis in the regulation of mitophagy. 

 

 

According to proposed models in Figure 4. 2, under steady-state conditions, 

proteasome, ATG5, PINK1 and Parkin are found as complex in cytoplasm. CCCP 

enhances their recruitment onto mitochondria. On the organelle, components of the 

complex disassociates to form 3 different complexes which involve different outer 
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mitochondrial membrane proteins to regulate from several points as fast reaction of 

proper mitophagy. These complexes also contain PSMA7 and PINK1 proteins 

differentially. Knockdown of PSMA7 and PSMB5 as well as chemical proteasome 

inhibition, decreased Parkin and ATG5 recruitment onto mitochondria by interfering with 

PINK1-Parkin interaction and blocked mitophagy receptor recruitment and LC3 

associated autophagosomal membrane engulfment. Differentially, defficiency in ATG5 

increased PINK1 stability and Parkin recruitment onto mitochondria. However interferes 

with mitophagy blockage through deregulating PINK1 kinase activity and recruitment of 

mitophagy receptors and autophagic machinery. 

 

 
Figure 4.3: Detailed model-2 for proposed hypothesis in the regulation of mitophagy. 



204 
 

Similarly in proposed model-2 represented in Figure 4. 3, ATG5, PSMA7 and 

Parkin were found together in cytoplasm. With CCCP-mediated mitochondrial 

depolarization, ATG5, Parkin and PSMA7 are recruited onto mitochondria in order to 

form 3 different complexes during mitochondrial removal. ATG5 also interacts with E1 

and E2 enzymes on CCCP-exposed mitochondria that are posibbly involved in the 

ubiquitylation reactions of outer mitochondrial membrane proteins. When PSMA7 

knocked down, the recruitment of ATG5 and Parkin proteins onto mitochondria 

decreased. Parkin and PINK1 protein interaction blocked. And furthermore, mitophagy 

receptor, OPTN and general autophagy receptor LC3 recruitment onto mitochondria 

reduced, degradation of outer mitochondrial membrane proteins and mitophagy is 

blocked. However, the ubiquitylation of the outer mitochondrial membrane proteins are 

not effected suggesting the involvement of other E3 ligases in the process to compensate 

reduced recruitment of Parkin to damaged mitochondria. On the other hand, when ATG5 

is deficient, Parkin protein recruitment onto mitochondria is upregulated. Both short and 

lonf forms of PINK1 stability is enhanced, yet kinase function decreased. Mitophagy and 

autophagy receptor recruitment and subsequently mitophagy is blocked. 

 

Based on the data and representations in the Figure 4.2 and 4. 3, ATG5 forms a 

bridge between mitochondrial outer membrane proteins and conjugating system 

providing prominent environment for the ubiquitylation of the mitochondrial proteins. 

PSMA7 has a dual function: first, playing a critical role for shuttling E3 ligase Parkin 

protein and through ATG5 binding autophagy machinery and second, involved in the 

degradation process of ubiquitylated outer mitochondrial membrane proteins. All these 

data suggest that first, there are many identified direct links between the UPS and 

autophagy system could include the same key regulators due to their differential 

subcellular localizations. Even on the same compartment of the cell, one regulator could 

have differential roles depending on its binding partners. 

 

Mitochondrial movement based on cellular need, is critical to reveal potential 

regulators of this process. SILAC-based proteomic analyses suggested DIAPH1 as a 

potential ATG5 interecting protein. This data was verified by using immunoprecipitation 

tests and enhanced with CCCP, decreased with staurosporine. Interestingly, PSMA7 and 

ATG5 bound the same protein, DIAPH1 in order to regulate mitochondrial motility. 

Knockdown of DIAPH1 resulted in enhanced mitophagy and knockdown of PSMA7 
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enhanced DIAPH1 and ATG5 binding. Additionally, knockdown of proteasomal subunits 

restored CCCP-mediated loss of cytoskeleton and mitochondria connection whereas 

knockdown DIAPH1 worsened the loss of contact. Eventhough there are missing 

questions such as these regulations are linked to autophagic role of ATG5 or not, but still 

is a novel regulation of ATG5 on mitochondria movement as well as the role of 

proteasome in the same context. 

 

Considering the importance of protein catabolism for cellular and organismal 

homeostasis and health, a better understanding of individual systems as well as the direct 

links between systems will be most rewarding from both a basic science perspective and 

with regards to clinical management of diseases involving protein quality control 

problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



206 
 

 

 

 

 

 

5.  CONCLUSION AND FUTURE ASPECTS 
 
 

In this thesis, PSMA7 was introduced as novel ATG5 interacting protein and a 

key mitophagy regulator.  Possible regulatory mechanisms from ATG5 and PSMA7 

corner in mitophagy coordination were suggested. ATG5 and other UPS-related 

components UBA1 and UBE2L3 interactions were identified which has potentially 

cytoplasmic regulation rather than mitochondria. ATG5 and DIAPH1 interaction was 

identified showing the role of ATG5 in mitochondrial motility in cells. Furthermore, other 

ATG5 and PSMA7 interaction partners were also identified by using SILAC-based 

proteomic analyses. 

 

We believe that, obtained data from this doctoral work will first show that 

ubiquitin-proteasome system and autophagy system are regulating cellular homeostasis 

directly together. Second, these findings will improve our understanding of how complex 

regulations are exist in a cell and due to dynamic nature of the cell we are able to see as 

far as the cell allow us. Yet, there are still remaining questions in the picture. For example, 

first, eventhough we identified that C-terminal part of the PSMA7 is critical for ATG5 

binding the key residue is unknown. We have shortened the possibbility into 4 potential 

aminoacids and further mutagenesis studies need to be performed. Second, in order to 

prove the direct interaction, in vitro binding tests for ATG5-PSMA7, ATG5-UBA1 and 

ATG5-UBE2L3 will be performed. Third, several key experiments will be repeated by 

using different agents including, Antimycin A, Oligomycin and Ivermectin in stabelly 

Parkin expressing cells. Forth, other phosphorylation target of PINK1 protein will be 

tested as another proof of ATG5-regulated PINK1 kinase activity. Fifth, thanks to our 

new collaborations with hospitals, skin biopsy material from Parkinson’s Disease bearing 

patients will be obtained and primary cells will be isolated. Following their trans-

differentiation into dopaminergic neurons, our key findings will be tested in these induced 

dopaminergic neurons.  
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The mitochondrial motility part will be analyzed by live cell microscopy with 

additional controls of chemical polimerization inhibitors. The role of ATG5 on 

mitochondria movement will be tested in WT and ATG5-/- HeLa and MEF cells maybe 

combined with PSMA7 overexpression due to the competition between DIAPH1 and 

PSMA7 for ATG5 binding.  
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APPENDIX A 

 

MATERIAL LIST 

 

Name of Material/ Equipment  Company  Catalog Number  

Acrylamide/Bis-Acrylamide 
Solution 

Sigma  A3574 

Alexa fluor 546 phalloidin Molecular Probes A22283 
Anti mouse IgG, HRP conjugated  Jackson Immuno.  115035003 
Anti-Mouse IgG Alexa Fluor 488  Invitrogen  A11001  
Anti-rabbit IgG HRP conjugated  Jackson Immuno.  1110305144 
Anti-Rabbit IgG Alexa Fluor 568  Invitrogen  A11011 

ATG5 Antibody  Sigma  A0856  
Bradford Solution  Sigma  6916 
Bromophenol blue  Applichem  A3640.0005  

BSA  Sigma  A4503 
CCCP Sigma  C2759 

Coumeric Acid  Sigma  C9008  
Coverslides  Jena Bioscience  CSL-103 

DIAPH1 Antibody Millipore  AB3888  
DMEM (high glucose)  PAN Biotech P04-03500 

DMSO  Sigma  VWRSAD2650 
EBSS  Biological Industries  BI02-010-1A  

Fetal bovine serum (FBS)  Biowest S1810-500 
Flag Antibody Sigma  F3165 
Flag M2 Beads Sigma  A2220 
Glutaraldehyde Sigma  G5882 

Glycerol  Applichem  A4453  
Hemocytometer  Sigma   Z359629-1EA 

Hydrogen Peroxide  Merck  K35522500604  
L-glutamine  Biological Industries  BI03-020-1B  

Luminol  Fluka  9253 
MFN2 Antibody Sigma  M6444 

MG132 Enzo Life Sciences BML-PI102-0005 
MOPS Sigma  M1254 

Nitocellulose membrane  GE Healthcare  A10083108  
Non-Fat milk  Applichem  A0830  

Non-targeting SiRNA Dharmacon D-0011210-02-20 
NP-40  Applichem  A16694.0250 

P62 Antibody Abnova H00008878-M01 
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Paraformaldehyde (PFA)  Sigma  15812-7  
Parkin Antibody Santa Cruz Biotechnology  Sc-32282 

PBS  PAN Biotech P04-36500 
Penicillin/streptomycin solution  Biological Industries  03-031-1B  

Phenol red  Sigma  114537-5G  
PhosphoSer65-Ub Antibody Millipore  ABS1513 

PINK1 Antibody Novus NB100-493 
Poly-L-Lysine  Sigma   P8920  

Protease inhibitor  Sigma  P8340  
Protein A-Agarose Beads  Santa Cruz Biotechnology  Sc-2001  
Protein G-Agarose Beads  Santa Cruz Biotechnology  Sc-2002  

PSMA7 Antibody Enzo Life Sciences PW 8120 
PSMB5 Antibody Enzo Life Sciences PW 8895 

Rapamycin  Sigma  R0395  
Saponin  Sigma  84510 

SiRNA DIAPH1 Dharmacon M-010347-02-0005 5 
SiRNA PSMA7 Dharmacon M-004209-00-0005 
SiRNA PSMB5 Dharmacon M-004522-00-0005 

Slides  Isolab   I.075.02.005 
Sodium Azide  Riedel de Haen  13412 

Sodium Chloride  Applichem  A9242.5000  
Sodium deoxycholate  Sigma  30970 

Sodium dodecyl sulphate (SDS)  Biochemika  A2572 
Sodium orthovanadate  Sigma  450243 

Staurosporine  Sigma  S5921 
Sucrose Sigma  S0389 

TIM23 Antibody BD VWRSAD2650 
TOM40 Antibody Santa Cruz Biotechnology  Sc-11414 

Torin  Tocris  4247 
Triton-X  Applichem  4975 

Trizma Base  Sigma  T1503  
Trypan Blue  Sigma  A4503 

Trypsin EDTA Solution A  Biological Industries  BI03-050-1A  
Tween 20  Sigma  P5927  

Ubiquitin (P4D1) Santa Cruz Biotechnology  Sc-8017 
VDAC1 Antibody Millipore  AB10527 

X-ray Films  Fujifilm  47410 19289  
β-Actin Antibody  Sigma  A5441  
β-Mercaptoethanol  Applichem  A1108.0250  
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APPENDIX B 

 

SEQUENCE ANALYSIS OF CLONE 47-PSMA7 OBTAINED FROM Y2H 

SCREENING 

 

APPENDIX B.1 Clone 47 PSMA7  

(Retrieved from SE thesis) 

 

>101305-M4-101251 sequence exported from 47-475.ab1  

TTTCCCCATTCTNTTNNNCCCAGATCGAGACCCGCAGGTTACTTAGTTGCTT 

ATTAGNCTGCTTGGGTGGTCATATGCCCTTGGAGGCCCCGGGGATCCGAATT 

CGCGGCCGCGTCGACCTTAACTATACTGACGAAGCCATTGAAACAGATGAT 

CTGACCATTAAGCTGGTGATCAAGGCACTCCTGGAAGTGGTTCAATCAGGT 

GGCAAAAACATTGAACTTGCTGTCATGAGGCGAGATCAATCCCTCAAGATT 

TTAAATCCTGAAGAAATTGAGAAGTATGTTGCTGAAATTGAAAAAGAAAAA 

GAAGAAAACGAAAAGAAGAAACAAAAGAAAGCATCATGATGAATAAAATG 

TCTTTGCTTGTAATTTTTAAATTCATATCAATCATGGATGAGTCTCGATGTGT 

AGGCCTTTCCATTCCATTTATTCACACTGAGTGTCCTACAATAAACTTCCGT 

ATTTTTAAAAAAAAAAAAAAAAAACCCCCAAAAATTTTTAAATCCAAAAAC 

CGGAAAACCCCCCCAATTTCTTTAAA  

Color code:  

HA Vector EcoR1 Linker Xho1 start of matching nucleotides  

 

TAC CCA TAC GAT GTT CCA GAT TAC GCT AGC TTG GGT GGT CAT ATG GCC 

ATG GAG GCC CCG GGG ATC CGA ATTCGC GGC GTC GAC CTCGAG  
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