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To my beloved brother… 

“You’re only given one little spark of madness. You mustn’t lose it.” 
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ABSTRACT 

MicroRNAs, small endogenous non-coding RNAs are one of the most important components in 

the cell and they play a critical role in many cellular processes and have been linked to the 

control of signal transduction pathways. Identifying disease related miRNAs and using that 

knowledge to understand the disease pathogenesis at the molecular level, new molecular tools 

can be designed for reducing the time and cost of diagnosis, treatment and prevention. 

Computational models have become very useful and practical in terms of discovering new 

miRNA disease associations to be used in experimental validations. 

Omics studies demonstrated that changes in miRNA profiles of various tissues correlate with 

many complex diseases, such as Alzheimer’s, Parkinson’s or Huntington’s and various cancers.  

The aim of our study was to identify the potential active TF-miRNA-gene regulatory pathways 

involved in complex diseases Huntington’s and Parkinson’s, via integrating miRNA and gene 

expression profiles with known experimentally verified miRNAs/genes and directed signaling 

network. 

We downloaded the miRNA and gene expression profiles from gene expression omnibus (GEO) 

database. We derived the differentially expressed genes (DEGs) and differentially expressed 

miRNAs (DEmiRs). SIGNOR database of causal relationships between signaling entities is used 
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as a signed directed network and TF-miRNA-gene bidirectional regulatory network is 

constructed. Then, DEGs and DEmiRs are mapped to the TF-miRNA-gene regulatory network. 

We connected the mapped DEGs and DEmiR nodes with their third-degree neighbors, hence, 

the potential regulatory TF-miRNA-gene subnetwork was built. By using BFS algorithm, the 

potential disease related TF-miRNA-gene regulatory pathways were identified. 

In this study, we analyzed Huntington’s and Parkinson’s related mRNA and miRNA expression 

profiles with transcription factors (TF) and miRNAs known to be related to diseases. miRNA-

TF-gene regulatory mechanisms and disease specific TF and miRNA regulatory pathways were 

aimed to be identified systematically.   

This study provides bioinformatic support for further research on the molecular mechanism of 

complex diseases. 
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ÖZET 

mikroRNA’lar, küçük, endojen, kodlamayan RNA molekülleridir ve pek çok hücresel süreçte 

kritik rol oynarlar ve sinyal iletimi yolaklarının kontrolüyle bağdaştırılmışlardır. Hücrenin en 

önemli bileşenlerinden biri olarak, farklı biyolojik süreçlerle ilgili önemli role sahiptirler. 

Hastalık ilişkili miRNAların tanımlanması ve bu bilginin moleküler düzeyde hastalıkların 

patogenezinin anlaşılabilmesi için teşhis, tedavi ve koruma için harcanan zamanı ve maliyeti 

düşüren yeni moleküler araçlar geliştirilebilir. Bilgisayımsal modeller hastalık ilişkili yeni 

miRNA’ların keşfedilmesi ve deneysel validasyonlarda kullanılabilmesi için oldukça kullanışlı 

ve pratik hale gelmiştir.  

Omik çalışmalar, çeşitli dokulardaki miRNA profillerindeki değişimlerin Alzheimer, Parkinson, 

Huntington ve kanser çeşitleri gibi kompleks hastalıklar ile korele olduğunu göstermiştir. 

Çalışmamızdaki amacımız, miRNA ve gen ifade profillerini, ilgili hastalıkla iligisi olduğu 

bilinen ve deneysel olarak doğrulanmış miRNA/gen ve yönlü sinyal ağlarını birleştirerek, 

Huntington ve Parkinson kompleks hastalıklarında yer alan potansiyel aktif Transkripsiyon 

Faktör(TF)–miRNA–gen düzenleyici yolaklarını tanımlayabilmekti. 

Omics studies demonstrated that changes in miRNA profiles of various tissues correlate with 

many complex diseases, such as Alzheimer’s, Parkinson’s or Huntington and various cancers.  
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miRNA ve gen ifade profillerini Gene Expression Omnibus (GEO) veri bankasından indirdik. 

Kademeli ifade edilen genleri ve miRNA’ları belirledik. Sinyalleşen birimler arası nedensel 

ilişkiler bilgisini barındıran SIGNOR veri bankası, yönlü sinyal ağın oluşturulması için 

kullanıldı, TF-miRNA-gen çift yönlü düzenleyici ağ yapılandırıldı. İfade edilen genler ve 

miRNA’lar organize edilmiş TF-miRNA-gen düzenleyici ağ üzerine aktif düğümler olarak 

işaretlendi. Aktif düğümler, birinci derece komşuluğuklarıyla birleştirilerek potansiyel 

düzenleyici ilgili hastalığa özgü TF-miRNA-gen alt ağı elde edildi. BFS algoritması 

kullanılarak, potansiyel aktif TF-miRNA-gen düzenleyici yolakları tanımlandı. 

Bu çalışmada, sistemik olarak Huntington ve Parkinson ile ilişkili mRNA ve miRNA ifade 

profillerini, organize edilmiş TF ve miRNA düzenleyici mekanizmalarını, aktif TF ve miRNA 

düzenleyici yolaklarını tanımlamak için analiz ettik.  

Bu çalışma gelecekte yapılacak kompleks hastalıkların mekanizması üzerine yapılacak 

araştırmalar için biyoenformatiksel destek sağlayacaktır. 
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 BACKGROUND 

1.1 Understanding the Mechanism of Complex Diseases 

Complex diseases are caused by a combination of genetic perturbations and environmental 

factors. Scientists know that a single genetic mutation in other words Mendelian patterns of 

inheritance cannot explain the pattern of a complex disease.  

Understanding the molecular mechanisms through which factors affects a phenotype is 

complicated. Moreover, it is more difficult to understand the complex relationships of genetic 

and environmental factors in affected individuals as the complete view of complex diseases 

might be changeable among them. In recent years, systems biology approaches and network-

based approaches were discovered and catch researchers’ attention. Their powerful potential for 

studying complex diseases were expected to be a new era for the development of precision 

medicine. Network-based approaches generally use the physical and functional interactions 

between molecules to represent the interaction data as a network.  An interaction network 

contains both the binary relationships between individual nodes and hidden higher level 

organization of cellular communication. That is why, it is crucial to combine multi-omics data 

into an integrated network to constitute enough knowledge for the interpretation of the disease 

molecular mechanism[1]. 

Many diseases fall in the category of complex disease including cancer, autism, diabetes, 

obesity, Huntington’s disease, Parkinson’s disease, and coronary artery disease. Recently, there 

is a huge amount of data such as genomic, transcriptomic, proteomic and metabolomic data 

related to these diseases. They are available to scientists to be used to do significantly facilitated 

research into complex diseases. However, extracting-useful- information from biological 

databases is a complex- task. Recently, there are many studies just using individual type of 

biological layer which do not declare any interconnection between them. The task of revealing 

the molecular perturbations of diseases becomes even more complicated when it comes to gene 

regulation, TFs a transcriptional regulators and miRNAs as post-transcriptional regulators[2]. 
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1.2 microRNAs (miRNAs) 

Multiple types of small RNAs exist in eukaryotes and these RNAs regulate gene expression not 

only in the cytoplasm but also in the nucleus. Small RNAs suppress unwanted genetic materials 

and transcripts by different regulatory mechanisms: a) post-transcriptional gene silencing, b) 

chromatin-dependent gene silencing or c) RNA activation. That is why, their roles in health and 

disease development is important and need to be understood [3].  

Small RNAs are defined as non-coding RNA molecules and their length is about 18–30 nucleo-

tides. Three classes of small RNAs have been defined: microRNAs (miRNAs), siRNAs and 

Piwi-interacting RNAs (piRNAs) [4].  

In eukaryotes, miRNAs are ~22 nucleotides in length. They are produced by Drosha and Dicer 

which are RNase III proteins and they dominate other classes of small RNAs. The domain at the 

5ʹ end from nucleotide position 2 to 7 which is responsible for target recognition is called 

‘miRNA seed’ and miRNA binding regions are generally located in the 3ʹ untranslated-region 

(UTR) of mRNA sequences[5,6]. It was thought that, perfect seed matching was the only 

mechanism for miRNA silencing process but recent studies showed that downstream 

nucleotides of miRNAs specifically nucleotide 8 and nucleotides 13–16 which are outside the 

seed, reported to promote binding to mRNA nucleotides [7]. It is also known that, more than 

60% of human protein-coding genes are in tendency to construct a pairing with miRNAs. Hence, 

it becomes more apparent why many miRNA binding sites have conserved sites, in addition to 

non-conserved sites. It can be concluded that, most protein-coding genes may be under the 

control of miRNAs [5]. Moreover, not only the expression of genes is regulated by miRNAs but 

also the expression of miRNAs themselves are regulated by regulatory mechanisms[8], and their 

dysregulation is revealed to be related to human diseases, including cancer, neurodevelopmental 

disorders, cardiovascular disease, diabetes, kidney and liver disease and infectious diseases [9].  

miRNA transcription 

miRNA genes are transcribed by RNA polymerase II (Pol II) and primary transcripts (pri-

miRNAs) are generated. One transcript with a local hairpin structure is longer than the other 
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one. pri-miRNAs are processed by the Drosha-DiGeorge syndrome critical region gene 8 

(DGCR8) complex, in other words Microprocessor complex and ~70 nucleotide (nt) long pre-

miRNAs are generated. Nuclear export factor exportin 5 binds to nuclear pre-miRNAs from the 

3’ overhang. They are transferred from nucleus to cytoplasm and the cytoplasmic RNase III 

Dicer catalyses-the production of miRNA duplexes. RNA-induced silencing complex (RISC) 

removes one strand of the miRNA duplex. The single stranded miRNAs are resulted to be 

partially complementary to target mRNA from its ‘seed’ sequence from the 5’ end to the 3’ UTR 

of mRNA targets (Figure 2).  

miRNA genes can be observed in animals, plants, protists and viruses and they are one of the 

largest gene family [10]. miRBase a miRNA database has been constructed for collecting 

existing or discovered miRNAs. The latest release of the miRNA database (miRBase) has 

catalogued 2,588 miRNAs in humans, and not all miRNAs’ functional importance has been 

understood, most of the miRNA annotations are still need to be determined [11,12]. 

miRNA sequences are hidden in different genomic regions. In humans, although there exist 

some miRNAs which are encoded by intergenic (exonic) regions, most of the accepted miRNAs 

are generated by introns of transcriptional units. Some miRNA genes have the same promoter 

with their host gene. In this case miRNA genes have been detected to be in the introns of protein-

coding genes. The miRNAs in the same transcription unit are called clusters and are generally 

co-transcribed. Generally, several miRNA loci constitutes a polycistronic transcription unit [13]. 

Transcription regulation is not the only regulation mechanism for miRNAs. Individual miRNAs 

can also be regulated at the post-transcriptional level. In addition to this, it has been revealed 

that miRNA genes generally have more than one transcription start sites and that the promoters 

of intronic miRNAs can be sometimes different from the promoters of their host genes [14,15]. 

Transcription of miRNAs is mainly controlled by RNA Pol II, and transcription factors 

associated with RNA Pol II protein [16,17]. Transcription factors are known to regulate the 

expression of miRNAs [18,19] and there may be even more interesting cases in regulation of 

miRNAs by TFs. For example, there is a feedback loop between PTEN and has-miR-21 in which 

PTEN directly regulates the hsa-miR-21 and hsa-mir-21 regulates the expression of PTEN. 
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Apart from TFs, also epigenetic regulators, such as DNA methylation in miRNAs’ respective 

promoter regions and histone modifications in transcription sites also have regulatory affect in 

miRNA expression (Figure 1) [20]. 

 

Figure 1: DNA Methylation and Histone Modifications play critical role in miRNA 

transcription. Republished from the original publication [21]. 
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Republished from the original publication [22]. 

miRNA Nuclear Processing 

Following transcription in the nucleus and formation of pri-miRNA transcripts, they need to be 

converted to the mature forms. pri-miRNA is over 1 kb and contains a stem–loop structure and 

harbors the mature miRNA sequences in it. Pri-miRNA stem length is 33–35 bp, and it has a 

terminal loop and single-stranded-RNA sites at the 3ʹ and 5ʹ regions. The Drosha crops the 

stem-loop and a small hairpin-shaped RNA of ~65 nucleotides in length (pre-miRNA) is 

released [23]. Drosha with its cofactor DGCR8, forms a protein complex called, the 

Figure 2: Schematic model of microRNA (miRNA) biogenesis. 
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Microprocessor complex. Drosha is a nuclear protein and is effective on double-stranded RNA 

(dsRNA). It belongs to the family of RNase III-type endonucleases. Drosha and DGCR8 are 

conserved in mammals and together they fractionates at 650 kDa [24,25]. 

 

Figure 3: Translocation of microRNA from nucleus to cytoplasm 

 

Drosha cleaves pri-miRNA to the hairpin structured pre-miRNA (Figure 3) [26]. Pri-miRNA 

processing is an important stage in defining the miRNA abundance. There are more than one 

regulatory mechanisms controlling the expression level, activity and specificity of Drosha and 

DGCR8. Post-translational modifications can affect the protein stability [27,28], nuclear 

localization [29] and processing activity of Microprocessor [30]. But, it is still ambiguous how 

Drosha and DGCR8 participate in the maturation process of pri-miRNA.  
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Figure 4: pre-miRNA export by EXP5- RAN•GTP transport complex 

pre-miRNA Nuclear Export 

Upon Drosha processing, pre-miRNA is translocated from the nucleus to the cytoplasm by 

exportin 5 (EXP5). EXP5, with GTP-binding nuclear protein forms RAN•GTP and together 

with a pre-miRNA forms a protein complex responsible from transportation of pre-miRNA 

(Figure 3) [31]. After the transport to cytoplasm, pre-miRNA is released, GTP is hydrolyzed 

and the transport complex is disassembled. 

pre-miRNA Processing in Cytoplasm 

Following the transport of pre-miRNA to the cytoplasm, Dicer cleaves pre-miRNA near the 

terminal loop to a small RNA duplex (Figure 2) [24].  

RNA-induced silencing complex (RISC) formation 

Following the formation of the small RNA duplex by Dicer, AGO protein binds to miRNA-

miRNA* duplex and after passenger strand ejection, together they form the effector complex 
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named as RNA-induced silencing complex (RISC) (miRNA* stands for the passenger strand). 

RISC assignment has two sequential steps: 1) the-loading-of-the-RNA-duplex and 2) unwinding 

of-the-miRNA-duplex. miRNA duplexes are loaded onto AGO proteins and AGO protein 

selects only one of the strands as a guide which will also be its stablemate until the end of its 

life. After loading, the pre-RISC (in which AGO proteins associate with RNA duplexes) 

removes the passenger strand to generate a mature RISC. Another mechanism which is used 

more frequently is the unwinding of miRNA duplex without passenger strand cleavage because 

most of the miRNAs cannot match and bind completely to AGO protein because of the central 

mismatches. That’s why human AGO1, AGO3 and AGO4 do not have slicer activity [32,33,34]. 

But, it also indicates that AGO protein family is capable to be coordinated with different types 

of RNAs [35]. Thus, miRNA passenger strand cleavage although seems to be the general 

process, there are many cases showing miRNA duplex unwinding without cleavage is preferred 

in miRNA processing. In miRNA duplex unwinding mechanism without cleavage, there exists 

mismatches in the guide strand at nucleotide positions 2–8 and 12–15 which trigger unwinding 

of miRNA duplexes [36]. miRNAs have important roles in diverse regulatory pathways so that 

it is explicable why they are strongly connected to signaling pathways. TFs and miRNA-

processing molecules are under the control of cell signaling. That is why it is important to 

uncover the relationship between signaling molecules and upstream and downstream of 

miRNAs to understand the miRNA biogenesis.  

Previous studies showed that miRNAs are often involved in mechanisms like feedback loops, 

which support their crucial role in regulation. There are several good examples explaining their 

regulatory role like LIN28 proteins and let-7 in mammals. It is observed that, let-7 maturation 

is blocked by LIN28 proteins and let-7 downregulates LIN28 proteins by binding to their 3ʹ-

UTR [37]. Furthermore, MYC is one of the targets of let-7 and it is known that MYC activates 

the transcription of LIN28 proteins in mammals [38]. It can be concluded that, there is a 

regulatory loop mechanism among LIN28, MYC proteins and let-7. Hence, it will be interesting 

to identify additional miRNA regulatory mechanisms as their wide coverage of protein coding 

genes make them interesting to be used in defining disease regulatory mechanism. 
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1.3 Regulatory Networks 

Genes, proteins, signaling molecules in a cell are generally in a system of interacting network 

modules like biological pathways. By working systematically with each other, the biological 

system can actualize its biological functions. Proteins by binding to each other can form a stable 

protein complex to regulate gene expression or instead they can interact with each other to 

generate biological signals. Similarly, regulation of number of genes involved in the same 

biological process may be in homeostasis with each other so that they can respond effectively 

to different biological conditions. They are some good examples explaining the modularity of 

interactions. Revealing the transcription process of co-regulated genes and the regulatory 

mechanism of expression of genes encoding proteins in a biological system would be a 

significant approach to study biological mechanisms underlying various cell activities. High 

throughput microarray and RNA-sequencing techniques have been developed for genome-wide 

profiling of transcriptomes under different biological conditions. The analysis of these profiles 

can provide information about gene expression reflecting gene regulation activities. These 

techniques give important data to develop and test new computational models or tools that can 

reveal transcriptional mechanisms of different molecular processes [39]. There are number of 

computational methods developed for this purpose and constructing gene regulatory networks 

using gene expression data is one of the important approaches that is used by different 

computational models [40,41]. By these methods [40] it becomes possible to combine multiple 

omics data such as transcriptomics, metabolomics, proteomics etc.  to reveal the description of 

the complex systems with its regulators and the elements. But, it was not enough to integrate 

the data in transcriptional level only to understand the function and structure of regulation 

mechanism. It is understood that both physical and genetic interaction of molecules are 

important when speaking of complex biological systems. In recent years, molecular network 

construction, such as transcription regulatory networks and protein-protein interaction networks 

(PPINs) have driven interest but further development of networks is essential. There exist many 

concepts focusing on detecting topological, structural and architectural properties when 

analyzing the network. However, although the PPINs and transcription regulatory networks 
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have been constructed for identification of pathways and modules, they are not sufficient enough 

to integrate important post-transcriptional regulations. 

1.4 Role of miRNAs in Human Organism 

Transcription factors (TFs) contribute to biological processes at the transcription level of the 

genes and TFs are not the only regulatory factors of gene expression. Compared to 

transcriptional regulators, miRNAs act as posttranscriptional regulators, being active in the 

cytoplasmic compartment. They disturb/cancel out the effect of upstream processes of 

transcription in the nucleus. They are capable of regulating transcripts in different special 

tissues. They can also be in high concentrations around 10.000s of molecules in a cell, providing 

stableness [42]. 

In recent years, studies suggest that miRNAs play critical roles in a variety of essential biological 

processes that is why disruptions in the expression of miRNAs would effect cell functions such 

as cell cycle regulation, differentiation, development, metabolism, neuronal patterning, aging 

etc. [6]. It is determined that miRNA-gene, TF-miRNA relations and regulations are 

complicated and also evolutionarily conserved [43,44]. Although miRNAs represent only about 

~1% of the genome, their authority in regulating gene expression is undeniable. Different from 

the mechanism of complete base pairing between miRNAs and the mRNA, multiple miRNAs 

can synergistically regulate one or more pathways [45,46]. It has been also shown that, a single 

miRNA can bind to more than one mRNA, in other words a target gene can be targeted by 

multiple miRNAs [47]. Different tissues or a specific tissue under different conditions would 

have different miRNA expression profiles as well. Therefore, with increasing evidences it is 

revealed that, deregulations of miRNAs are responsible and effective in the development of 

various human diseases like cancer and neurological disorders. The different expression levels 

of miRNAs affect the initiation, progression and metastasis of different cancer types such as 

breast cancer [48], lung cancer [49], prostate cancer [50], colon cancer [51], ovarian cancer[52], 

brain cancer[53]. New disease related-miRNAs are emerging with the new results coming up 

from the experimental literature.  
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Thereby, miRNAs have become an important potential biomarker for understanding the 

molecular mechanisms of complex diseases leading to obtain new potential biomarkers for the 

diagnosis, treatment, prognosis and potential drug targets in drug discovery and clinical 

treatment. 

1.5 Approaches for Detecting miRNA-Disease Regulatory Relations 

In the past few years, based on the assumption that miRNAs which have similar functions are 

generally related to similar disease and vice versa, studies have been focused on developing 

computational methods to infer potential miRNA-disease associations. [54] developed a model 

which uses hypergeometric distribution on the integrated data which includes miRNA functional 

interactions network, disease phenotype similarity network and the known phenome-

microRNAome network and the prediction accuracy is not that high. [55], again makes 

predictions about miRNA-disease associations by integrating the functional link information 

between miRNA targets and disease related genes in protein-protein interaction network. But, 

these methods both strongly rely on the predicted miRNA-target interactions, that is why they 

have high number of false positive and false negative results.  

Apart from these methods, RWRMDA [56] and HDMP [57] have given good results for 

miRNA-disease association prediction, the only obstacle about them is, they cannot be applied 

to the diseases without related miRNAs. RWRMDA uses the implementation of random walk 

on the miRNA functional similarity network and it does not rely on predicted miRNA-target 

interactions. HDMP predicts potential miRNAs associated with human disease based on 

weighted k most similar neighbors. 

In addition to miRNA-disease regulatory networks, miRNA-regulated networks are such as 

miRNA co-regulated networks, miRNA-mRNA networks and miRNA-TF networks are studied. 

On the other hand, research on miRNA-regulated protein-protein interaction networks have 

barriers because of both the complex working mechanism of miRNAs and complexity of 

protein-protein interactions. 
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1.6 miRNAs and Protein-Protein Interaction Networks  

For the continuation of biological functions like DNA replication, transcription, translation, 

signal transduction, protein-protein interaction (PPI) is inevitable for a living cell [58]. PPI can 

be represented as an undirected graph structure with topological properties like edges, nodes 

and clusters and mathematical and computational analysis can be applied to understand the 

organization of the cell [59].  

In 1989, the yeast two-hybrid system was introduced to construct PPI networks[60]. In 2000, 

first PPI network of yeast was published [61] and in 2005 first human PPI network was released 

[62]. Recently, PPI network studies generally focus on PPI network detection and prediction 

[63], signal transduction pathways[64,65,66], protein function prediction based on PPI networks 

and protein complex prediction in PPI networks [67,68].  

Studies about miRNA-regulated PPI networks are developed mainly in two areas: a) revealing 

the correlation between miRNAs and protein-protein interaction networks, using bioinformatics 

approaches and statistical means. This method tries to find new miRNA-regulated gene 

expressions beside seed matching. The unfavorable things about these studies are, they suffer 

from poor coverage rates, false positives and false negatives; b) identification of the impact of 

miRNA regulation on PPI networks in diseases is the second way of developing miRNA-

regulated PPI networks. Signal transduction pathways are one of the important components of 

PPIs and they are the primary factors of miRNA targeting modulators in animal cells [69].  

miRNAs can serve as mediators of crosstalk between signaling pathways [69] and it can be 

understood that miRNAs act as an indirect regulator in PPI networks. Additionally, as signaling 

pathways are the most important sub-graphs of the PPI network, understanding the miRNA-

regulated signaling pathways relationship mechanism becomes very important.  

Causal interactions between proteins are not that easy to capture in a structured format but it is 

obvious that it would be more informative for representing the direction and sign of information 

flow in signal transduction. Recently, it is difficult to construct activity flow diagrams with 

sufficient high coverage rates and to support each interaction with experiments. To handle these 
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considerations a new tool called SIGNOR has been developed, capturing causal interactions 

between proteins [70]. It offers a comprehensive network of experimentally validated functional 

relationships between signaling proteins. During writing this thesis work, SIGNOR has about 

16,000 manually curated interactions connecting about 4,000 biological molecules like 

chemicals, metabolites, proteins or protein complexes which have significant role in signal 

transduction pathways[71]. SIGNOR is a source of signaling information and uses the functional 

relevance information of two interactors according to the probability of their citation in the same 

paper. It stores the causal relationships as lists of interactions between two molecules. One of 

the molecule would be the regulator and the other would be the regulated molecule. Most of the 

molecules in the network are proteins but other chemicals, phenotypes, stimuli, complexes and 

protein families are included as well. That is why it provides comprehensive directional 

interaction information for data analysis, computational modeling and prediction. 

In this thesis, only the protein entities are used for constructing the protein-protein interaction 

network directionally.  
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 INTRODUCTION 

Neurodegenerative diseases, are today’s one of the most important groups of diseases [72] that 

have a high impact on society because of their high incidence, mortality and decrease in the 

quality of living. 

Huntington’s and Parkinson’s Diseases (HD and PD) are neurodegenerative disorders. In one 

hand, they all share a similar ability to cause damage when they capture brain cells, on the other 

hand the specific proteins and types of neurons are affected differently.  

Transcriptional dysregulation has been observed in HD and PD [73]. Transcription, 

neuroinflammation and developmental processes are dysregulated in the brains with HD and 

inflammation and mitochondrial dysfunction were obtained in the brains of patients with 

PD[73].  

Understanding the molecular mechanisms underlying complex diseases (in this case HD, PD 

neurodegenerative disorders) is necessary for the diagnosis and treatment of the disorders. It is 

therefore important to detect the most important genes and miRNAs and studying their 

interactions for recognition of disease mechanisms. It seems that miRNAs are involved in 

deregulation of neurodegenerative diseases[74]. Many studies demonstrated the expression of 

specific miRNA in the central nervous system (CNS) with different roles. Therefore, a 

comprehensive study in miRNAs involved in neurodegenerative diseases could be conveniently 

used in innovative therapies. 

The aim of this study is by focusing on miRNAs involved in HD, PD and their target genes, to 

determine the most important miRNAs, TFs, genes and their pathways in the diseases. In this 

way, a systematic analysis of the mechanism of HD and PD is done to understand biological 

processes common to all of them and differences if there is any. In this model, disease specific 

(HD and PD) transcriptional and post-transcriptional regulatory pathways, using disease related 

miRNA and mRNA databases and mRNA and miRNA expression profiles were identified 

(Figure 5). 
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For this purpose, to obtain stable signatures we identified disease related differentially expressed 

genes (DEGs) only in the prefrontal cortex of the brains of HD and PD human subjects compared 

to neuropathologically normal control brain tissues using mRNA-Seq. In addition to this, we 

also identified differentially expressed miRNAs (DEmiRs) in the prefrontal cortex of the brains 

of HD and PD and in the parietal lobe cortex of the brains of AD as it is the only miRNA 

expression analysis done in AD.  

 

Figure 5: Overview of the proposed approach. 

 

In addition to this, breadth-first-search (BFS) algorithm was used to find the disease related 

pathways of a complex regulatory network which is constructed by using directed protein-

protein interaction network, TF-miRNA, miRNA-mRNA, TF-gene relations. Consequently, 

these pathways may contain non-DE genes and miRNAs as well. To attain the significance 

scores of the potential pathways hypergeometric test was used. Resulted significant pathways 

were clustered according to their resemblance and KEGG pathway analysis was done to reveal 

the functional enrichment of the genes and miRNAs in the final disease related network. 
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 MATERIALS & METHODS 

3.1 Studying RNA-seq data 

HD and PD are complex diseases, and different brain regions of these diseases have diverse 

gene expression patterns[75]. That is why, to get accurate results and to compare truly, we 

searched the GEO database for RNA-seq data with the same brain tissue for each disease. 

Expression profiles of GSE64810 for HD and GSE68719 for PD have been used. For HD, 

analysis was done by next-generation sequencing in human (BA9) in 20 HD and 49 

neuropathologically normal individuals using Illumina high-throughput sequencing[76]. For 

PD, brain tissue from the prefrontal cortex Brodmann Area 9 of 29 PD and 44 control samples 

were used and any AD-type pathology beyond normal signs of aging were excluded[77].   

Differentially expressed genes with adjusted p-value less than 0.0002 were selected. 

3.2 Differentially Expressed miRNAs in HD, PD 

High-throughput techniques to investigate miRNA expression in HD and PD have rarely been 

used. For HD, GSE64977 with 26 HD patients, 49 neurologically normal control prefrontal 

cortex samples are used. For PD, GSE72962 with 29 PD patients, 33 control prefrontal cortex 

samples are used. 

Table 1: Directed Protein-Protein Interaction Data 

 

To attain directed PPI disease data, we used SIGNOR (SIGnaling Network Open Resource) 

database[71]. The output of SIGNOR database provided us to construct the directed graph 

 Huntington’s Disease (HD) Parkinson’s Disease (PD) 

RNA-seq  

Gene Expression Data 

 

GSE64810 

 

GSE68719 

 

miRNA Expression Data 

 

GSE64977 

 

GSE72962 
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between signaling entities. We created directed PPI network of 12315 interactions from 4627 

nodes.  

3.3 Identification of Transcription Factors (TFs) 

For the identification of TF in the directed PPI network, union of TRANSFAC (version 11.4) 

and TRED databases are used[78,79].  

Within the curated disease specific regulatory network, all the self-loops were removed from 

the graph and if there were more than one interaction with same directionality between two 

nodes, the interactions were represented with a single edge. 

3.4 Identification of HD, PD related miRNAs and genes 

Disease related experimentally verified genes are obtained from the database DISGENET[80]. 

The disease genes presented in DISGENET which offers one of the most comprehensive 

collections of human gene-disease associations. For each disease, genes with DISGENET PMID 

score >=2 are selected. 

Disease related experimentally verified miRNAs are derived from HMDD[81] and the 

miR2Disease database[82]. Both HMDD and miR2Disease databases collect the miRNA-

disease associations manually from experimentally verified published data.   

3.5 TF-miRNA-mRNA Regulatory Network Construction 

The construction of curated TF-miRNA-mRNA regulatory network was done by combining 

various databases. Four data sources were used: a) TransmiR database (version 1.2) represented 

the curated TF-miRNA relations [83] and; b) miRTarBase database (version 4.5), c) miRecords 

(version 3); d) TarBase (version 5.0) represented the curated miRNA-mRNA regulations 

[84,85,86].  

3.6 Construction of Regulatory Subnetwork of HD, PD 

RNA-seq method provides important capabilities like high resolution and broad dynamic range 

and it enriches to the progress of transcriptomics research. Important amount of data was 
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detected as a result of this sequencing method. It is known that RNA-seq data  is complex and 

it is not easy to get meaningful results from a huge data [87]. To hold the information about disease 

related genes and miRNAs with DEGs and DEmiRs, we mapped them with their third-degree 

neighbors to construct the TF-miRNA-mRNA regulatory subnetwork. The nodes represent TFs and 

miRNAs which were in the databases and the edges represent the regulating relationships between 

miRNAs, TFs and genes. To get a global view of this subnetwork, we used R, igraph package.  

3.7 Pathway Analysis of Disease Regulatory Networks 

The subnetworks of each disease have complex structures, although they are simplified from the 

background TF-miRNA-gene network. To get meaningful information from this complex 

network structure, regulatory pathways which include multiple TFs, miRNAs and target genes 

were considered first. Identification of regulatory pathways in HD and PD by uncovering 

transcriptional and post-transcriptional regulations, revealed the molecular regulatory 

mechanisms. 

The regulatory cascades are detected by using the shortest path algorithm in the package igraph 

[88]. shortest.path() function uses Breadth-First Search Algorithm (BFS).  

breadth first search: 

choose some starting vertex x 

mark x   

list L = x 

tree T = x 

while L nonempty 

choose some vertex v from front of list 

visit v 

for each unmarked neighbor w 

         mark w 

         add it to end of list 

         add edge vw to T 

 

BFS is one of the most important and fundamental algorithm used to traverse graph structures. 

The breadth first search tree holds a list of nodes to be added to the tree. It starts traversing from 

the selected source node. Algorithm traverses the graph layer by layer by visiting the neighbor 

nodes directly connected to the starting node (Figure 6). 
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The directed regulatory subnetwork was scanned and all the paths between every two 0-indegree 

and 0-outdegree differentially expressed genes (DEGs) and differentially expressed miRNAs 

(DEmiRs) with more than two nodes were identified (Figure 7). 

 

Figure 6: Breath-First Search Algorithm 

 

3.8 Evaluation of Disease Related Cascades/Pathways 

For each cascade between DEGs and DEmiRs, we evaluated a coverage rate (CR). CR value is 

calculated to determine the relationship strength of the pathways identified and the disease of 

interest. CR value is calculated as, 

𝐶𝑅 =
𝑁𝐷

𝑁𝑇
 

Equation 1: ND-represents-number-of-disease-related-nodes, NT represents the length of the 

cascade 

To evaluate the statistical significance of the CR value, hypergeometric test is used. Hence, rate 

of observing if CR value is likely to occur by chance or not is evaluated. 

 

 

(3.1) 

Denklemi buraya yazın.  
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(
𝑀
𝑘

) ( 𝑛−𝑘
𝑁−𝑀)

(
𝑁
𝑛

)
     

Equation 2: Hypergeometric test calculates the probability of k successes in n selections with 

replacement. N represents the population size, k represents the number of successes and n 

represents the sample size. (𝑁
𝑛

) represents the number of ways a sample of size n can be selected 

from a population of size N. (𝑁−𝑀
𝑛−𝑘

) represents the number of ways n – k failures can be selected 

from a total of N – M failures in the population. (𝑀
𝑘

) represents the number of ways x successes 

can be selected from a total of r successes in the population 

 

Finally, multiple testing correction via false discovery rate (FDR) was performed using 

Benjamini-Hochberg procedure and assigned to pathways. Cascades which have FDR value 

smaller than 0.2 are selected as functional disease related pathways. 

 

Figure 7: Pathways between 0-indegree and 0-outdegree nodes are determined 

f (k) = 

Denklemi buraya yazın.  

(3.2) 

Denklemi buraya yazın.  
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3.9 KEGG Pathway Analysis of Disease Related Cascades 

Our method groups the potential pathways according to their resemblance. If the sequences of 

cascades are 50% the same, then those are put to the same group. To determine the functional 

relation of the groups with the related disease, PathFindR pathway analysis was done to the 

genes involved in each subgroup [89].     

Databases Main Feature 

TransmiR the experimentally validated microRNA-target interactions 

database 

miRTarBase the experimentally validated microRNA-target interactions 

database 

miRecords manually curated database of experimentally validated miRNA-

target interactions 

TarBase manually curated database of experimentally validated miRNA 

targets 

TRANSFAC the database of eukaryotic transcription factors 

TRED a transcriptional regulatory element database 

HMDD  

(the Human microRNA 

Disease Database) 

a database of curated experiment-supported evidence for human 

microRNA (miRNA) 

miR2Disease a manually curated database, aims at providing a comprehensive 

resource of miRNA deregulation in various human diseases 

DISGENET (v5.0) collections of genes and variants associated to human diseases 

Table 2: Database list used for Disease Related Network Construction 
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 RESULTS 

4.1 Disease Related Regulatory Network Construction 

The Signaling Network Open Resource (SIGNOR), warehouses the signaling information in a 

structured format. It stores only the interactions that were validated in the scientific literature. 

The captured information is stored as cause and effect relationship between the source molecules 

and the target molecules. By this means, this structured format can be represented as a 

directional network. The information can be downloaded from (https://signor.uniroma2.it/). The 

network is constructed by using R, igraph package. There were 4731 number of unique nodes 

and 12447 number of unique interactions.  

MiRNA-gene, TF-miRNA experimentally validated relations were downloaded from 

TransmiR, miRTarBase, miRecords and TarBase databases. There were 2829 number of 

relations integrated to directed PPI network. With the addition of new relations, network was 

extended. miRNA regulatory network had 5241 number of nodes with 15276 number of unique 

relations. There were 468 number of TFs, 4231 number of genes and 392 number of miRNAs 

in the extended regulatory network. TFs were detected by using TRANSFAC and TRED 

databases. Figure 8 shows the TF-miRNA-gene directed regulatory network. 

From GEO database, GSE64977 miRNA expression profile and GSE64810 gene expression 

profile were used for Huntington’s Disease. 20 HD patients and 49 neuropathologically normal 

controls were analyzed for genome-wide analysis of mRNA expression in human prefrontal 

cortex using next generation high-throughput sequencing. For Parkinson’s Disease (PD), 

GSE72962 for miRNA and GSE68719 for gene expression profile were used. 29 PD and 33 

neuropathologically normal controls were included for genome-wide analysis of mRNA 

expression in human prefrontal cortex using next generation high-throughput sequencing. Genes 

and miRNAs with FDR values smaller than 0.0001 were selected. Differentially expressed 

miRNAs and genes were identified and separated according to their increased and decreased 

expressions (Table 3). DE genes and miRNAs mapped to the network. The HD network had 191 

number of increased DE genes/miRNAs and 33 number of decreased DE genes/miRNAs. The 

PD network had 42 number of increased and 34 number of decreased DE genes/miRNAs. 

https://signor.uniroma2.it/
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                         Huntington’s Disease Parkinson’s Disease 

 DE 

miRNAs 

DE 

genes 

DE 

miRNAs 

DE 

genes 

increased 

expression 

26 165 31 11 

decreased 

expression 

16 17 33 1 

Table 3: Differentially expressed miRNAs/genes for Huntinton’s Disease and Parkinson’s 

Disease with their increased, decreased information 

 

 

Figure 8: TF-miRNA-gene Directed Regulatory Network 
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The potential disease specific TF-miRNA-mRNA regulatory subnetwork was constructed by 

connecting all disease related nodes which were comprised from DE genes/miRNAs and their 

3rd degree neighbours. The subgraph for HD had 4724 number of nodes and 14922 number of 

relations. The subgraph for PD had 4474 number of nodes and 14605 number of relations. Our 

tool has the options to select among 1st, 2nd and 3rd degree neighbor nodes. In this analysis we 

chose 3rd degree to include most of the disease related known nodes in the subnetwork. There 

were 634 known HD related genes [80] and 14 HD related miRNAs were detected. 352 number 

of them were mapped to the regulatory network and 332 number of them were included in the 

HD related active subnetwork (Figure 9a). There were 443 known PD related genes and 38 PD 

related known miRNAs, 259 number of them were mapped to the regulatory network and 235 

number of them were included in the PD related active subnetwork (Figure 9b). 

4.2 Identifying Disease Related Potential Regulatory Pathways 

In this study, all directed acyclic paths were found by using BFS algorithm between 0-indegree 

and 0-outdegree DE nodes. For HD, we got 9167 and for PD we got 614 number of directed 

acyclic paths. The length of all the potential cascades were longer than 2 and these cascades 

were accepted as potential active disease related pathways.  

 

Figure 9: The orange nodes represent genes, green nodes represent miRNAs, blue nodes 

represent TFs. Red and Blue borders indicate increased and decreased expressions of 

miRNAs/genes a) Huntington’s Disease (HD) Regulatory Network b) Parkinson’s Disease (PD) 

Regulatory Network. 

a) Huntington’s Disease b) Parkinson’s Disease 
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For each pathway CR values were calculated to measure the relevance of the pathways and the 

disease of interest. By applying hypergeometric test, significant pathways were selected. 

Multiple testing using FDR values were done and for HD we got 42, for PD we got 27 number 

of pathways with FDR-value < 0.2.  

Significant disease related active pathways were grouped according to their similar cascades. If 

they had equal or larger than 50% similar cascades, they were put into the same subgroup. For 

HD we got 8 and for PD we got 17 number of subgroups (Figure 10,11,12) (Appendix A).  

In Figure 13 and Figure 14, significant HD and PD related pathways can be observed on the HD 

and PD related networks. Some edges are larger than the other ones. The edge thickness was 

adjusted according to the frequency of the edges in the significant pathways designated. 

4.3 Comparison of Cascades in miRNA Regulatory Pathways in HD and PD 

Significant regulatory pathways for each disease were analyzed according to their frequent 

cascades. For Huntington’s Disease, there were 86 and for Parkinson’s Disease there were 117 

number of unique relations. The common relations between HD and PD were detected and is 

shown in Table 4.      

 

Common Cascades in HD and PD 

45 HD  

significant pathways 

61 PD  

significant pathways 

BCL2L1  CASP9 13 6 

CASP9  CASP3 13 6 

CASP3  AKT1 12 3 

AKT1  GSK3B 1 4 

TP53  FGF2 1 4 

AKT1  PRKACA 6 4 
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CASP3  AKT 1 2 

CDX2  INS 2 2 

Table 4: It shows the common cascades between Huntington’s Disease and Parkinson’s Disease 
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Figure 10: Huntington Disease active pathways F
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Figure 11: Parkinson Disease related active pathways Groups 1-9 F
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Figure 12: Parkinson Disease related active pathways Groups 10-17 
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Figure 13: Huntington Disease, Significant Pathways are represented as graph. The edge width 

represents the frequency of relations among active pathways. Orange nodes represent the genes, 

green nodes represent miRNAs, blue nodes represent TFs. Red border color indicates the 

increased DE, blue border color indicates repression in DE genes/miRNAs. Yellow/Green 

border colors show decreased/increased DE genes/miRNAs are also known to be related to 

disease of interest. Purple border color represents the known disease related miRNAs/genes. 
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Figure 14: Parkinson Disease, Significant Pathways are represented as graph 
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4.4  KEGG Pathway Analysis of miRNAs/genes in miRNA Regulatory Pathways 

The functions of miRNAs which were included in the significant regulatory pathways were 

predicted my using the miRpath v.3 software. miRpath, assigns pathways to the miRNA targets 

using KEGG database (Table 5,7) [90]. Also, KEGG pathway analysis for the genes which were 

in the cascades of important regulatory pathways was done by using PathFindR Tool in R (Table 

6,8).  

miRNAs in HD Regulatory 

Pathways 

KEGG Pathway Analysis 

 

HSA-MIR-146A 

HSA-MIR-9 

Hippo signaling pathway 

Glycosphingolipid biosynthesis - lacto and neolacto series 

Protein processing in endoplasmic reticulum 

Glycosaminoglycan biosynthesis - keratan sulfate 

ErbB signaling pathway 

Chronic myeloid leukemia 

Lysine degradation 

Allograft rejection 

Measles 

HSA-MIR-486-5P Arrhythmogenic right ventricular cardiomyopathy 

(ARVC) 

HSA-MIR-15A 

HSA-MIR-17 

 

Proteoglycans in cancer 

 

Table 5: Huntington Disease KEGG Pathway analysis results of the miRNAs in the significant 

miRNA regulatory pathways (miRpath v.3 was used). Purple colored miRNA names indicate 

known HD related miRNAs. Red colored miRNA name indicates DE miRNA with increase 

expression. Grey colored miRNA names indicate unknown miRNAs 
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ID KEGG Pathway Genes 

hsa05205 Proteoglycans in cancer AKT1, RAC1, STAT3, TP53, PRKCA, DCN, 

TGFB1, MMP2, FGF2, PLCG1, PRKACA, 

MAPK14, TWIST1, CASP3 

hsa04010 MAPK signaling pathway NFKB1, PRKCA, PRKACA, TP53, MAPK14, 

MAP2K6, AKT1, MAP3K5, TRAF2, CASP3, 

TGFB1, RAC1, MAPK8, MAP3K1, FGF2, INS 

hsa04071 Sphingolipid signaling 

pathway 

AKT1, PRKCA, MAP3K5, MAPK8, MAPK14, 

TP53, NFKB1, RAC1, FYN, TRAF2 

hsa04210 Apoptosis BCL2L1, TP53, XIAP, CASP9, CASP7, 

CASP3, BAD, NFKB1, AKT1, TRAF2, 

MAP3K5, MAPK8 

hsa05014 Amyotrophic lateral 

sclerosis (ALS) 

CASP3, BAD, BCL2L1, CASP9, MAP3K5, 

MAP2K6, MAPK14, RAC1, TP53 

hsa04064 NF-kappa B signaling 

pathway 

BCL2L1, TRAF2, NFKB1, CD40, PLCG1, 

CXCL8, SYK, XIAP 

hsa05162 Measles NFKB1, FYN, AKT1, STAT3, TP53, GSK3B 

hsa04012 ErbB signaling pathway GSK3B, BAD, MAPK8, PRKCA, PLCG1, 

AKT1 

hsa04912 GnRH signaling pathway PRKCA, MAP2K6, MAPK14, MAP3K1, 

MMP2, PRKACA, MAPK8 

hsa05418 Fluid shear stress and 

atherosclerosis 

MAPK14, AKT1, MAPK8, MAP2K6, RAC1, 

MMP2, TP53, MAP3K5, NFKB1 

hsa04151 PI3K-Akt signaling 

pathway 

AKT1, GSK3B, BAD, BCL2L1, TP53, NFKB1, 

FGF2, INS, CASP9, PIK3CG, SYK, RAC1, 

BRCA1, PRKCA 

hsa04014 Ras signaling pathway AKT1, FGF2, INS, RAC1, PRKCA, BAD, 

BCL2L1, NFKB1, MAPK8, ETS1, PLCG1, 

PRKACA 

hsa04115 p53 signaling pathway CHEK1, CASP9, TP53, CASP3, BCL2L1 

hsa04068 FoxO signaling pathway MAPK8, INS, AKT1, STAT3, MAPK14, 

TGFB1 

hsa04621 NOD-like receptor signaling 

pathway 

MAPK8, MAPK14, NFKB1, XIAP, TRAF2, 

BCL2L1, CXCL8 

hsa04072 Phospholipase D signaling 

pathway 

AKT1, CXCR1, CXCR2, PLCG1, PRKCA, 

PIK3CG, INS, CXCL8, FYN, SYK 

hsa05131 Shigellosis RAC1, NFKB1, MAPK8, MAPK14, CXCL8 

hsa04928 Parathyroid hormone 

synthesis, secretion and 

action 

PRKACA, PRKCA, SP1 

hsa05016 Huntington’s disease TP53, CASP3, CASP9, PPARGC1A, SP1 

hsa05146 Amoebiasis NFKB1, CXCL8, CASP3, PRKCA, PRKACA, 

TGFB1 
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hsa05010 Alzheimer’s disease CASP9, CASP3, BAD, CASP7, GSK3B 

hsa04140 Autophagy - animal INS, AKT1, MAPK8, PRKACA, BCL2L1, 

BAD 

hsa04150 mTOR signaling pathway AKT1, PRKCA, INS, GSK3B 

Table 6: Huntington Disease KEGG Pathway Analysis of the genes in the miRNA regulatory 

pathways. Bold gene names indicate the genes included in the common cascades of Huntington 

and Parkinson Diseases 

 

 

miRNAs in PD Regulatory Pathways KEGG Pathways 

 

HSA-MIR-16-2 

HSA-MIR-30C-2 

HSA-MIR-34B 

Fatty acid biosynthesis 

Prion diseases 

Fatty acid metabolism 

Glycosaminoglycan degradation 

Proteoglycans in cancer 

Central carbon metabolism in cancer 

HSA-MIR-328 

HSA-MIR-217 

HSA-MIR-380-5P 

HSA-MIR-491-5P 

HSA-MIR-377 

HSA-MIR-124 

ECM-receptor interaction 

Adherens junction 

Fatty acid elongation 

Transcriptional misregulation in cancer 

Proteoglycans in cancer 

Fatty acid degradation 

Lysine degradation 

Amoebiasis 

Long-term depression 

HSA-MIR-369-5P 

HSA-MIR-106A 

HSA-MIR-17 

HSA-MIR-340 

HSA-MIR-181D 

Prion diseases 

Proteoglycans in cancer 

Fatty acid biosynthesis 

TGF-beta signaling pathway 

Hippo signaling pathway 

FoxO signaling pathway 

Adherens junction 

HSA-MIR-221 

HSA-MIR-155 

HSA-MIR-21 

HSA-MIR-20A 

HSA-MIR-34A 

Prion diseases 

Fatty acid biosynthesis 

Fatty acid metabolism 

Cell cycle 

ECM-receptor interaction 

Lysine degradation 

Hepatitis B 
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HSA-LET-7A 

HSA-MIR-106B 

HSA-MIR-192 

HSA-MIR-23B 

HSA-MIR-93 

Proteoglycans in cancer 

Hippo signaling pathway 

Adherens junction 

Protein processing in endoplasmic reticulum 

Thyroid hormone signaling pathway 

p53 signaling pathway 

Steroid biosynthesis 

FoxO signaling pathway 

Table 7: Parkinson Disease KEGG Pathway analysis results of the miRNAs in the significant 

miRNA regulatory pathways (miRpath v.3 was used). Purple colored miRNA names indicate 

known PD related miRNAs. Red colored miRNA name indicates DE miRNA with increase 

expression. Grey colored miRNA names indicate unknown miRNAs 

 

 

ID KEGG Pathway Genes 

hsa04012 ErbB signaling pathway EGFR, GSK3B, PAK1, MAPK8, PTK2, 

JUN, AKT1, MYC, MAPK1, MAPK3 

hsa04210 Apoptosis BCL2L1, TP53, CASP9, CASP3, 

RELA, AKT1, HTRA2, BAX, MAPK8, 

JUN, MAPK1, MAPK3 

hsa04010 MAPK signaling pathway RELA, MAPK1, MAPK3, PRKACA, 

EGFR, MET, TP53, MAPK14, PPM1A, 

AKT1, CASP3, PAK1, MAPK8, 

HSPA6, JUN, MYC, FGF2, INS 

hsa05205 Proteoglycans in cancer ROCK1, AKT1, PAK1, MAPK1, ESR1, 

MAPK3, TP53, PTK2, MYC, MET, 

FGF2, PRKACA, MAPK14, EGFR, 

CASP3 

hsa04014 Ras signaling pathway MAPK1, MAPK3, AKT1, FGF2, INS, 

EGFR, MET, BCL2L1, RELA, MAPK8, 

PAK1, PRKACA 

hsa04926 Relaxin signaling pathway AKT1, RELA, MAPK1, MAPK3, 

PRKACA, JUN, MAPK14, MAPK8, 

EGFR 

hsa04115 p53 signaling pathway ATR, PPM1D, PTEN, CDKN2A, BAX, 

CASP9, TP53, CASP3, BCL2L1 

hsa04722 Neurotrophin signaling pathway AKT1, MAPK1, MAPK3, GSK3B, 

RELA, MAPK8, TP53, JUN, MAPK14, 

BAX 

hsa04510 Focal adhesion ROCK1, AKT1, PTEN, PTK2, MAPK1, 

MAPK3, EGFR, MET, MAPK8, JUN, 

PAK1, GSK3B 
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hsa04071 Sphingolipid signaling pathway MAPK1, MAPK3, AKT1, ROCK1, 

PTEN, MAPK8, MAPK14, BAX, TP53, 

RELA 

hsa05014 Amyotrophic lateral sclerosis (ALS) CASP3, BAX, BCL2L1, CASP9, 

MAPK14, TP53 

hsa04140 Autophagy - animal INS, PTEN, AKT1, MAPK1, MAPK3, 

DDIT4, MAPK8, PRKACA, BCL2L1 

hsa04151 PI3K-Akt signaling pathway AKT1, PTEN, EGFR, MET, GSK3B, 

MYC, BCL2L1, TP53, RELA, FGF2, 

INS, DDIT4, CASP9, MAPK1, MAPK3, 

PTK2 

hsa04728 Dopaminergic synapse PRKACA, AKT1, GSK3A, GSK3B, 

MAPK14, MAPK8 

hsa04068 FoxO signaling pathway MAPK8, MAPK1, MAPK3, INS, AKT1, 

EGFR, PTEN, SIRT1, MAPK14 

hsa04657 IL-17 signaling pathway RELA, JUN, MAPK14, MAPK1, 

MAPK3, MAPK8, CASP3, GSK3B 

hsa04933 AGE-RAGE signaling pathway in 

diabetic complications 

RELA, MAPK8, EGR1, MAPK14, 

MAPK1, MAPK3, JUN, BAX, CASP3, 

AKT1 

hsa04664 Fc epsilon RI signaling pathway AKT1, MAPK14, MAPK1, MAPK3, 

MAPK8 

hsa04620 Toll-like receptor signaling pathway MAPK1, MAPK3, MAPK14, MAPK8, 

AKT1, RELA, JUN 

hsa04024 cAMP signaling pathway PRKACA, AKT1, MAPK1, MAPK3, 

MAPK8, ROCK1, RELA, JUN, PAK1 

hsa04662 B cell receptor signaling pathway RELA, GSK3B, AKT1, JUN, MAPK1, 

MAPK3 

hsa05131 Shigellosis RELA, MAPK8, MAPK1, MAPK3, 

MAPK14, ROCK1 

hsa04932 Non-alcoholic fatty liver disease 

(NAFLD) 

INS, AKT1, RELA, GSK3A, GSK3B, 

CASP3, BAX, MAPK8, JUN 

hsa04550 Signaling pathways regulating 

pluripotency of stem cells 

GSK3B, AKT1, MAPK1, MAPK3, 

FGF2, MAPK14, MYC 

hsa04072 Phospholipase D signaling pathway MAPK1, MAPK3, AKT1, EGFR, INS 

hsa04630 Jak-STAT signaling pathway MYC, AKT1, EGFR, BCL2L1 

hsa05031 Amphetamine addiction PRKACA, SIRT1, JUN 

hsa05010 Alzheimer’s disease BACE1, APP, CASP9, CASP3, 

MAPK1, MAPK3, GSK3B 

hsa05162 Measles RELA, AKT1, HSPA6, TP53, GSK3B 

hsa04723 Retrograde endocannabinoid 

signaling 

PRKACA, MAPK14, MAPK1, MAPK3, 

MAPK8 

hsa05016 Huntington’s disease TP53, CASP3, CASP9, PPARGC1A, 

BAX 
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hsa05134 Legionellosis RELA, CASP9, CASP3, HSF1, HSPA6 

hsa04621 NOD-like receptor signaling pathway MAPK8, MAPK1, MAPK3, MAPK14, 

RELA, JUN, BCL2L1 

hsa05012 Parkinson’s disease HTRA2, CASP9, CASP3, PRKACA 

Table 8: Parkinson Disease KEGG Pathway analysis results of the genes in the significant 

miRNA regulatory pathways. Bold gene names indicate the genes included in the common 

cascades of Huntington and Parkinson Diseases. 

4.5 Comparison of Cascades in miRNA Regulatory Pathways in HD and PD 

Significant disease specific regulatory pathways of HD and PD were compared (Table 9). 

 Common Cascades in 

HD and PD 

45 HD significant 

pathways 

61 PD significant 

pathways 

BCL2L1  CASP9 13 6 

CASP9  CASP3 13 6 

CASP3  AKT1 12 3 

AKT1  GSK3B 1 4 

TP53  FGF2 1 4 

AKT1  PRKACA 6 4 

CASP3  AKT 1 2 

CDX2  INS 2 2 

Table 9: Common cascades in HD and PD. There are 45 HD related significant pathways and 

61 PD related significant pathways. Table shows how many times each common relation is 

included among significant pathways. 

 

Common interactions between HD and PD is shown in Table 9. There were 45 HD specific and 

61 PD specific significant pathways observed. Table 9 shows the amount of occurrences of each 

cascade in these significant pathways. In Table 10, the function of each gene is shown 

individually. The information is detected from GeneCards database [91]. 
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Figure 15: Huntington Disease (Common Cascades between HD and PD) 

 

 

Figure 16: Parkinson Disease (Common Cascades between HD and PD) 
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 When common interactions were gathered, the differences between the common pathways were 

observed (Figure 15-16). 

For each participant of the cascade groups in HD and PD, functional information were presented 

in Table 10. 

 

Gene Name Gene Summary from GeneCards 

BCL2L1 The protein encoded by this gene belongs to the BCL-2 protein family. BCL-

2 family members form hetero- or homodimers and act as anti- or pro-

apoptotic regulators 

CASP9 Caspase 9, Apoptosis-Related Cysteine Peptidase. Sequential activation of 

caspases plays a central role in the execution-phase of cell apoptosis 

CASP3 Caspase 3, Apoptosis-Related Cysteine Peptidase. The protein encoded by this 

gene is a cysteine-aspartic acid protease that plays a central role in the 

execution-phase of cell apoptosis. 

AKT1  In the developing nervous system AKT is a critical mediator of growth factor-

induced neuronal survival. Survival factors can suppress apoptosis in a 

transcription-independent manner by activating the serine/threonine kinase 

AKT1, which then phosphorylates and inactivates components of the 

apoptotic machinery.  

GSK3B The protein encoded by this gene is a serine-threonine kinase belonging to the 

glycogen synthase kinase subfamily. It is a negative regulator of glucose 

homeostasis and is involved in energy metabolism, inflammation, ER-stress, 

mitochondrial dysfunction, and apoptotic pathways 

PRKACA Protein Kinase CAMP-Activated Catalytic Subunit Alpha 
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TP53 This gene encodes a tumor suppressor protein containing transcriptional 

activation, DNA binding, and oligomerization domains. The encoded protein 

responds to diverse cellular stresses to regulate expression of target genes, 

thereby inducing cell cycle arrest, apoptosis, senescence, DNA repair, or 

changes in metabolism.  

FGF2 FGF family members bind heparin and possess broad mitogenic and 

angiogenic activities. This protein has been implicated in diverse biological 

processes, such as limb and nervous system development, wound healing, and 

tumor growth.  

CDX2 The encoded protein is a major regulator of intestine-specific genes involved 

in cell growth and differentiation. This protein also plays a role in early 

embryonic development of the intestinal tract. 

INS  Binding of insulin to the insulin receptor (INSR) stimulates glucose uptake.  

Table 10: Summary of Genes included in the common cascades from GeneCards database[91]. 
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 DISCUSSION 

In this dissertation our aim was to understand the TF-miRNA-gene regulatory mechanisms of 

Huntington and Parkinson Diseases, and reveal the significant regulatory signaling pathways by 

using the differential expression analysis results of miRNAs and genes, known disease related 

miRNAs/genes by mapping the information on directed PPI network. Thus, it would be possible 

to uncover the unknown but possibly important cascades.  

5.1 Disease Related Regulatory Network 

We used Signor Database to include the type of the regulations between two entities. We 

extended the directed PPI network by adding miRNA-gene and TF-miRNA regulatory 

information. The resulting TF-miRNA-gene directed regulator network had 5241 number of 

entities and 15276 number of unique relations. This network had 468 number of TFs, and 392 

number of miRNAs.  

miRNA regulatory network had 5241 number of nodes with 15276 number of unique relations. 

There were 468 number of TFs, 4231 number of genes and 392 number of miRNAs in the 

extended regulatory network. Thus, we integrated the transcriptional and post-transcriptional 

regulation information to molecular interaction network. All the relations between the entities 

were selected and mapped on the network if they were experimentally validated, to provide and 

increase the reliability of the results.  

Disease related known miRNA/genes were selected from the databases. All the disease related 

known miRNA/genes were again experimentally validated. They were mapped on the regulatory 

network by changing the border colors of the nodes to purple.  

To include new informative differential expression analysis, we also integrated the 

miRNAs/genes that were detected to have significant expression changes. They were mapped 

to the network with red/blue border colors. If one miRNA/gene existed in both lists, then the 

border color was changed to yellow/green (explained in detail in section Materials &Methods). 

By this way, we got the disease related directed regulatory network both for Huntington’s and 

Parkinson’s Diseases.   
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5.2 Disease Related Regulatory Subnetwork 

Directed regulatory network was too complex to analyze and time consuming to get the 

information we need that is why, interaction networks are useful models to understand the 

functional interpretations of molecules. 

To analyze how connected parts compose the whole network system, to better understand the 

relative importance of system components and make quantitative predictions for understanding 

of Huntington’s and Parkinson’s diseases systematically, we detected the DE miRNAs/genes on 

the network and for each DE miRNA/gene we determined the 3rd degree neighbors [92]. The 

disease related genes do not show difference in their expressions significantly in some 

situations[93,94]. That is why, there may be some disease-related genes in the disease related 

subnetwork among non-DE genes. The tool we developed have the options to select among 1st, 

2nd and 3rd neighbors as well. We connected those DE miRNAs/genes with their 3rd degree 

neighbors. Thus, potential active disease related regulatory subnetwork was produced. 

Huntington’s subnetwork contained 94% and Parkinson’s subnetwork contained 90.4% of 

known-disease related miRNA’s/genes. For Huntington’s Disease the subnetwork included 

4724 number of nodes with 14922 relations and Parkinson’s Disease subnetwork included 4474 

number of nodes with 14605 relations. As we expected, subnetworks of diseases were different 

from each other.   

To reveal the regulatory pathways that changed the expression values of DE miRNAs/genes, 0-

indegree and 0-outdegree of DE miRNAs/genes were selected. We had a directed regulatory 

subnetwork, so BFS algorithm was a good option to traverse all the network to get the pathways 

between 0-indegree and 0-outdegree DE miRNAs/genes. For Huntington’s Disease we got 

9167, for Parkinson’s we got 614 number of directed acyclic paths. Finally, based on the known 

disease-related genes and miRNAs, hypergeometric test was used to evaluate the significance 

of the association of the pathways and the disease of interest. Thus, we revealed 42 TF-miRNA-

protein regulatory pathways significantly related to HD and 27 TF-miRNA-protein regulatory 

pathways significantly related to PD. 
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When significant regulatory pathways of HD and PD were compared, common cascades were 

found. When those cascades were integrated to each other, a unique pathway was formed (Figure 

15-16). The interesting thing was, although HD and PD shared the relations, not every node was 

identical to its form in other disease. BCL2L1, FGF2, CDX2 genes were known to be related to 

HD, but they were not known to be related to PD. Furthermore, INS gene was not known to be 

related to HD, but it was known to be related to PD. 

5.3 KEGG Pathway Analysis of miRNAs/genes in miRNA Regulatory Pathways 

From disease related significant regulatory pathways, miRNAs and genes were identified. 

Separately the KEGG analysis of miRNAs and genes were done.  

In our analysis, hsa-mir-146a and hsa-mir-9 were known to be related to HD. Their KEGG 

analysis enriched hippo signaling. A recent study investigated the possible role of this pathway 

and observed alterations in human Huntington’s Disease brain [95].  

Glycosaminoglycan biosynthesis was the other pathway that was detected. Quantitative and 

qualitative fractioning of GAGs have been widely used in screening for MPS disorders for many 

years. The accumulation of undegraded GAGs in lysosomes affects functions of most cell types, 

tissues and organs, including viscera, connective tissue and central nervous system 

(CNS)[96].The other informative and interesting pathway which was enriched in all groups of 

miRNAs was proteoglycans in cancer pathway. Proteoglycans consist of a core protein and one 

or more covalently attached glycosaminoglycan chains [97]. Proteoglycans and 

glycosaminoglycans play important roles in neurological disorder development. Thus, we can 

conclude that hsa-mir-15a and hsa-mir-17 are not known to be related to HD, and not DE but 

may be important for HD development. Similarly, for Parkinson Disease which is again a 

neurological disorder, it was revealed that known disease related miRNAs enriched the pathway 

proteoglycans in cancer and glycosaminoglycan degradation pathways. Interestingly, miRNAs 

with increased and decreased differential expressions and miRNAs with unknown information 

enriched the proteoglycan in cancer pathway. 
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Glycosphingolipid biosynthesis pathway was enriched by the known disease related miRNAs 

hsa-mir-146a and hsa-mir-9. A study done in 2007 on HD mice/humans brains showed 

disrupted patterns of glycolipids and ganglioside levels and hypothesized that glycolipid 

metabolism changes may be used as an alternative therapeutic target for HD [98].  Sphingolipids 

are responsible from organizing the functions of many neuronal ion channels and receptors. Role  

and mechanism of membrane microdomains in development of neurological diseases is not 

certain and known yet[99] but alterations in sphingolipid metabolism found to be related to 

many neurological disorders not only Huntington’s Disease but also Parkinson’s as well[98]. In 

addition to this, our PD results showed that, all groups of miRNAs enriched fatty acid related 

KEGG pathways such as fatty acid biosynthesis, fatty acid metabolism, fatty acid elongation 

and fatty acid degradation. Fatty acids are components of most cellular lipids, such as 

sphingolipids and cholesterol esters and major fatty acid species include long-chain fatty acids 

(LCFAs). Most of the LCFAs in mammals are components of sphingolipids and when the polar 

head group of sphingolipids are sugar, it is called glycosphingolipids [100]. It seems that, our 

results promote the significance of fatty acid mechanism in the development of HD and PD and 

possible regulatory roles of miRNAs in this system. 

Furthermore, we discovered that has-mir-486-5p was one miRNA which was included in the 

significant pathways and it was differentially expressed. It does not take part in HMDD or 

miR2disease databases when searched for HD related miRNAs. A previous study done in 2015 

about plasma-derived miRNAs mimicking behavior in Huntington’s Disease brain tissue 

showed that hsa-mir-486-5p had increased levels of expression in HD patients’ plasma, 

compared to control subjects. In addition to this, results were consistent with the expression 

changes in the brain [101].  

Apart from this, hsa-mir-15a and hsa-mir-17 did not belong neither to known-disease related 

miRNA group, nor to DE miRNA group. They were found to be on the path of significant 

regulatory cascades. When a literature search was done about their relation to HD, we found the 

study of Marti et.al. showing the miRNA variability in human brain and both has-miR-15a and 

hsa-mir-17 were found to be significantly upregulated [102].  Their KEGG analysis enriched 

fatty acid biosynthesis and fatty acid metabolism pathways. In previous studies, it was shown 
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that the lipid dysregulation had effects on sterol regulatory element binding proteins in 

Huntington’s Disease[103]. Prion diseases pathway was enriched and it was already known that 

prion diseases are included in a group of neurodegenerative disorders and both Huntington and 

Parkinson Diseases belong to this group[104]. 

Lysosomal storage disorders and neurodegenerative diseases (Alzheimer’s, Parkinson’s and 

Huntington diseases) share many features related to the mechanisms that characterize the disease 

pathogenesis. 
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5.4 Analysis of Disease Related Directional Pathway Subgroups in HD 

 

Figure 17: Huntington Disease related active pathways were grouped according to their ratio of 

similar relations. 2nd pathway subgroup of HD. Color of arrows indicates the relationship type: 

1) : activation,: repression, : not-known. 

 

In our study to understand the relationship of miRNAs with their targets and TFs with their 

target miRNAs, the significant regulatory pathways were grouped according to their sequence 

of cascades. If they had same length with each other and if they had the same beginning node, 
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they were put in to the same group. Tree view of the cascades provides user to analyze and 

follow the regulatory sequences apparently.  

To understand how to analyze the tree view of the cascade groups, Figure 17 which is the 2nd 

cascade group of HD will be used.  

The tree starts with the root node PRKD3 gene and ends with leaf nodes CXCR2 and CXCR1 

genes which have red border colour, representing the DE genes in HD. The pathways in this 

subgroup is listed in Table 9. Each subgroup is shown in detail in Appendix A.  

According to HD subgroupss, we could observe that, hsa-mir-146a CXCL8  CXCR1/2 

were included in most of the cascades. CXCR1/2 were activated by CXCL8 and it was shown 

by the directed red arrow in Figure 17. CXCR1 and CXCR2, known as Interleukin-8 receptor A 

(IL-8RA) and Interleukin-8 receptor B (IL-8RB) form a gene cluster. C-X-C motif ligand 8 

(CXCL8) is a chemokine that acts as an important multifunctional cytokine and CXCR1/2 are 

the receptors of CXCL8. CXCL8-CXCR1/2 pathway was found to be related to various cancer 

types such as, breast cancer, prostate cancer, lung cancer etc. [105]. The chemokine receptors 

CXCR1/2 and their ligand CXCL8 are essential for the activation and trafficking of 

inflammatory mediators as well [106]. Reported sources of CXCL1, CXCL2, and CXCL8 

include activated microglia [107]. Microglia when stimulated seem to express CXCR2 receptor 

after demyelination [108]. Demyelination in HD compared to other neurodegenerative diseases 

remain relatively unexplored and a recent study investigated the myelin breakdown in HD 

suggested that myelin breakdown contributed to white-matter impairment in human HD [109]. 

Thus, our pathway results supported the hypothesis about the possible relation HD to 

demyelination process. In addition to this, a study and data showed the function of CXCL8-

CXCR2 network involvement in neuronal electrical activity, neurotransmitter release and 

synaptic plasticity in the central nervous system (CNS) [110].  

Apart from HD and PD, multiple sclerosis (MS) also is known to have demyelination in CNS 

[111]. Studies emphasized the crucial role of Zn in the pathogenesis of MS [112]and it was also 

shown that differences in Zn levels stimulated different amount of cytokine release according 
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to different type of cells [113]. Thus, like in the case of MS, alterations in Zn levels may be 

important to control the demyelination process of neurological diseases like HD and PD.  

 electrical activity was lost in HD brain [114]. Another study showed that, CXCR2 expression 

increase on Purkinje neurons enhancing glutaminergic activity. It is already known that, HD is 

caused by a mutation in HD gene and huntingtin protein get built incorrectly by getting extra 

glutamine proteins. So, CXCL8-CXCR2 pathway mechanism may be informative for 

understanding the development process of HD.  

CXCL8-CXCR1/2 cascades were controlled by hsa-mir-146a which was known to be related to 

HD. Transcription factor NFkB is known to regulate the expression of hsa-mir-146a by binding 

to the upstream sequences[115]. A study investigating the NFkB, TP53 and miRNA 

involvement in the regulation of cell death mechanism in HD cells, showed that, there were 

expression changes in NFkB and TP53 and decrease in hsa-mir-146a. The study also showed 

that the NFkB activation was decreased while TP53 was increased [116]. Our regulatory figure 

explains the decrease in the expression of hsa-mir-146a in pursuit of the decrease in NFkB. 

[116] confirmed earlier studies done, showing increase in the level of TP53 in other cell and 

animal models of HD[117,118,119]. However, none of the studies could explain the mechanism 

of increased level of TP53. Our results showed that, TP53 did not have direct regulatory effect 

on hsa-mir-146a. There exists a negative relationship between TP53 and ETS1 and this 

regulation was shown by blue coloured arrow in Figure 17. It was found that ETS1 physically 

had association with TP53 and its C-terminal part was found to be essential for inhibition of 

ETS1 transcriptional activity [120]. That is why according to our results, ETS1 was involved in 

the regulation of hsa-mir-146a, and as it has grey coloured border meaning neither it is known 

disease related nor differentially expressed, both its function in regulating the hsa-mir-146a, 

hence CXCL8-CXCR1/2 cascades with TP53 and concordantly its importance for HD 

mechanism may be clarified.  
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Table 11: Pathway list of directed regulatory network in Fig. 14. 
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GSK3B is a known HD related gene and [121] demonstrated levels of total GSK3 were 

decreased in the HD-affected frontal cortex. Our HD related important pathways that we found 

with their relation information added to the network explains the flow of the cascade. If GSK3B 

expression decreases in HD, then NFkB1 activity would decrease as expected because of the 

direct proportion between them. A study on Rett Syndrome (RTT) which is the second leading 

cause of mental impairment in girls, also showed that inhibition of GSK3B reduces NFkB1 

signaling [122].  

PLCG1 and PRKCA gene which has a regulatory effect on both NFkB and TP53, have a 

regulatory interaction between each other. PLCG1 has grey border color in Figure 17, meaning 

its relation to Huntington Disease is unknown and it was not detected to have significant 

expression change according to the gene expression analysis results we used but it appeared in 

the path of significant HD related directed pathways and may be an important factor effecting 

the HD mechanism. PLCG1 is an important signaling regulator involved in cellular processes 

effecting the development of brain and synaptic transmission and its abnormal expression and 

activation was observed in various brain disorders like Alzheimer’s and Huntington’s disease. 

PLC enzyme (protein of PLCG1 gene) by triggering calcium mobilization activates the protein 

kinase C (PKC) (protein of PRKCA gene). PLC-alpha enzyme activity was observed to be 

decreased in HD models [123]. PLCG1 is between two entities GIT1 and PRKCA transcription 

factor. They are both known to be related to Huntington Disease and there may exist a new 

regulatory mechanism that have not been discovered yet between GIT1 and PRKCA. As PLCG1 

was found to be at the beginning of the signaling cascade, it may be important for the progression 

of the HD mechanism. It should be investigated. 

The root of the tree, the PRKD3 gene as we mentioned before, was differentially expressed and 

showed an increase in expression. It is known that PRKD3 is responsible from different kind of 

processes like cell proliferation, cell survival, immune cell signaling and neuronal development 

selectively phosphorylates GIT1 to enhance cell spreading and motility [124,125] . Thus, there 

may be an important regulatory cascade mechanism between PRKD3 and PRKCA and may 

reveal a novel target for therapeutic applications for HD. 
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Another miRNA hsa-mir-15a, which exists in the HD related pathway [PRKCA  hsa-mir-15a 

 BRCA1  has-mir-146a] has an unknown relation to HD. It has a role in the regulation of 

NFkB and BRCA1 genes. BRCA1 gene actually is a major tumor suppressor gene and it is 

targeted by hsa-mir-15 post-transcriptionally [126]. The study was done in pancreatic 

epithelium, colorectal and pancreatic adenocarcinoma cell lines and protein abundances were 

different in each cell line, meaning that the regulation mechanism of hsa-mir-15a and BRCA1 

is complex and cell-specific. Thus, both previous studies and our results propose that hsa-mir-

15a, BRCA1 interaction may be an important regulatory mechanism and hsa-mir-15a may be 

newly discovered miRNA that plays an important role in HD development. 

Hsa-mir-17 again may be a newly discovered miRNA, as it has a regulatory role on the 

expression of CXCL8. With the decrease of hsa-mir-146a in HD, CXCL8 expression was 

expected to increase [127]. According to this disease related subnetwork mechanism, hsa-mir-

17 function may be an important regulatory factor with hsa-mir-146a in triggering the 

inflammation mediators IL-8. Activation of inflammation related cascades in HD also opens a 

new point of view to the relatively unexplored area of HD.  
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5.5 Analysis of Disease Related Directional Pathway Subgroups in HD 

 

 

Figure 18: Parkinson Disease related active pathways were grouped according to their ratio of 

similar relations. 5th pathway subgroup of PD. Colour of arrows indicates the relationship type: 

1) : activation, 2): repression, 3) : not-known. 
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Table 12: Pathway list of directed regulatory network in Fig. 15. 
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When we analyze the regulatory cascades in Figure 18 for PD, cascades start with hsa-mir-328. 

It has a blue border color which indicates, its expression was decreased in PD patients. Like in 

the case of HD, GSK3B, PRKACA, AKT interactions seemed to be important. At the same level 

of regulatory pathways between hsa-mir-328 and both known PD related and also upregulated 

hsa-mir-16-2 there exists different type of miRNAs. It seemed like E2F1 gene regulation is 

highly balanced by miRNAs. According to this analysis, hsa-mir-106a and hsa-mir-17 were 

upregulated and may be active role in triggering the disease related regulatory mechanisms. All 

the miRNAs regulatory transcription factor is MYC but its function in PD is unknown and again 

it may be an important revealing for understanding the disease mechanism.  

Hsa-mir-17 had a role in HD as we mentioned in section 4.5. It was in the regulatory pathways 

of HD, but its function was unknown and it was not DE. But in PD, its expression was 

upregulated and again it exists in the regulatory pathway of PD. Hsa-mir-17 may be an important 

miRNA in neurological disorders. One recent study done about differentially expressed 

miRNAs in PD revealed hsa-mir-17 upregulation [128]. The results of [128] showed SH-SY5Y 

cells in PD stress conditions affected the expression levels of miRNAs. They found that, hsa-

mir-155, hsa-mir-16-5p, hsa-mir-17, hsa-mir-181d were upregulated and hsa-mir-23b, hsa-mir-

7a were down regulated. All these miRNAs were also detected by our pathway results. 

According to our study hsa-mir-155, hsa-mir-23b and hsa-mir-7a were not known to be related 

to PD but our results showed that they were included and took part in the significant regulatory 

pathways. Their role in the regulatory pathways can be observed in depth from supplementary 

figures (Appendix A). 
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Figure 19: Parkinson Disease related active pathways were grouped according to their ratio of 

similar relations. 13th pathway subgroup of PD. Colour of arrows indicates the relationship 

type: 1) : activation, 2): repression, 3): not-known. 

 

In Figure 19, it is represented that, has-mir-155 and CDX2 may be PD related miRNA and gene. 

According to the graphical representation, they have grey border colour which indicates their 

relation to PD is unknown. A recently published paper in 2018 suggested that, anti-Tumor 

Necrosis Factor (anti-TNF) which have been used in inflammatory bowel disease (IBD) 

treatment may reduce the risk of Parkinson’s disease. The results indicated that, the IBD patients 

taking anti-TNF therapy compared to patients receiving no anti-TNF were 78% less likely to 

have PD[129]. In addition to this, when CDX2 function was analysed in GeneCards, this gene 

was found to be the important regulator of intestine-specific genes which are involved in cell 
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growth and differentiation. Its role in early embryonic development of the intestinal tract was 

also interesting. These findings indicated that there may be a possible relation between the 

condition of intestinal tract and PD development.  

According to the results, we can say that, our method is successful in revealing the significant 

regulatory pathways of HD and PD. It gives reliable results, by combining the transcriptional 

and post-transcriptional regulatory factors in one disease related network. Each disease related 

network will be unique and will have different patterns.  
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 CONCLUSION AND FUTURE WORK 

In this study, the core hypothesis was developing a network modeling method to reveal the 

active TFs, miRNAs, genes and their regulatory mechanism by using directed interaction and 

signaling information and understand the systemic active transcriptional and post-transcriptional 

molecular mechanisms of the complex diseases.  

For model complex diseases, Huntington’s and Parkinson’s diseases were used. miRNA 

functions and their interactions were important to understand the complex disease mechanism.  

Hippo signaling, glycosaminoglycan and glycosphingolipid biosynthesis, fatty acid elongation 

and biosynthesis KEGG pathways were enriched by the miRNAs and genes included in 

significant pathways. These pathways were interesting to focus on as they were revealed to be 

related to neurological disorders and their possible relation to each other were discussed in terms 

of HD and PD. HD and PD although only shared just one miRNA which was hsa-mir-17, the 

enriched pathways were connected to each other and indicated the function of the method we 

developed.  

When the regulatory cascades of both diseases were compared, shared cascades were found and 

with further study on these cascades, different but informative regulations can be revealed. 

BCL2L1 gene in shared cascades was interesting. It was known to be HD related, but its relation 

to PD was not known. The protein encoded by this gene belongs to the BCL-2 protein family, 

which acts as anti- or pro- apoptotic regulators.  

Apoptotic regulations of HD and PD can be analyzed in deep for further studies as apoptosis 

KEGG pathway was enriched in both diseases as well.  

This tool also can be used to discover new possible disease related miRNAs. For HD, hsa-mir-

15a and hsa-mir-17; for PD, hsa-mir-155, hsa-mir-23b and hsa-mir-7a may be possible disease 

related miRNAs. Further work targeting these miRNAs may be productive in explaining the 

regulatory mechanism of disease development.  

In conclusion, out method is successful in discovering new potential miRNAs related to disease 

of interest. Significant disease specific pathways can be revealed for further examination. Our 
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approach is flexible to analyze the integrated networks and it is the first time a directed signaling 

network is used to explain the regulatory cascades. Integrating miRNA-mediated TF and 

mRNA-protein interactions is helpful for constructing more comprehensive regulatory 

networks.  

With the increase in available miRNA expression profiles for complex diseases and the 

accumulation of validated miRNA regulations, the results of the tool will become more precise.  

This approach is general and could be applied to other complex diseases and for different model 

organisms. 
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 APPENDIX A SUPPLEMENTARY TABLES AND FIGURES 

8.1 Huntington Disease miRNA Regulatory Pathways Subgroups 

Figure A.4.1.1 Huntington Disease Subgroup 1 
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Figure A.4.1.2. Huntington Disease Subgroup 2 
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Figure A.4.1.3. Huntington Disease Subgroup 3 
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Figure A.4.1.4. Huntington Disease Subgroup 4 
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Figure A.4.1.5. Huntington Disease Subgroup 5  
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Figure A.4.1.6. Huntington Disease Subgroup 6  
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Figure A.4.1.7. Huntington Disease Subgroup 7  
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Figure A.4.1.8. Huntington Disease Subgroup 8 
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8.2 Parkinson Disease miRNA Regulatory Pathways Subgroups 

Figure A.4.2.1. Parkinson Disease Subgroup 1 - 2 
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Figure A.4.2.2. Parkinson Disease Subgroup 3 - 4 
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Figure A.4.2.3. Parkinson Disease Subgroup 5 - 6 
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Figure A.4.2.4. Parkinson Disease Subgroup 7 
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Figure A.4.2.5. Parkinson Disease Subgroup 8 
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Figure A.4.2.6. Parkinson Disease Subgroup 9 
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Figure A.4.2.6. Parkinson Disease Subgroup 10 
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Figure A.4.2.7. Parkinson Disease Subgroup 11 
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Figure A.4.2.8. Parkinson Disease Subgroup 12 
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Figure A.4.2.9. Parkinson Disease Subgroup 13 
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Figure A.4.2.10. Parkinson Disease Subgroup 14 

 

 

 

 

 



91 

 

Figure A.4.2.11. Parkinson Disease Subgroup 15 
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Figure A.4.2.12. Parkinson Disease Subgroup 16 
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Figure A.4.2.13. Parkinson Disease Subgroup 17 
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