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ABSTRACT

Improving Human Action Recognition Using Decision Level Fusion of Classifiers

Trained with Depth and Inertial Data

Zain Fuad

Mechatronics Engineering M.Sc. Thesis, July 2018

Thesis Supervisor: Prof. Dr. Mustafa Ünel

Keywords: Human Action Recognition, Neural Networks, Classifier, Fusion,

Logarithmic Opinion Pool, RGB-D Camera, Inertial Sensor

Improvement in sensor technology has aided research in the field of human action

recognition (HAR), as acquiring data is easier and the obtained data is more accu-

rate. However, each sensor has its own limitations and benefits, and a combination

of these sensors can help improve the accuracy of recognition systems.

This thesis presents an in depth study of HAR using decision level fusion of classifiers

that are trained using RGB-D camera and inertial sensor data. Extraction of ro-

bust and subject-invariant features is performed to train independent classifiers, i.e.

neural networks, for action recognition purposes. This work employs decision level

fusion on the outputs of the individual classifiers using a probabilistic approach in

the form of Logarithmic Opinion Pool (LOP). The e↵ect of varying the parameters

of the proposed algorithm on the final 8-fold cross-validation accuracy is analyzed.

The proposed algorithm is tested on UTD-Multimodal Human Action Dataset that

contains actions which are based upon the movement of di↵erent set of joints, and

it achieves an average 8-fold cross-validation accuracy of 97.3%.



ÖZET

Derinlik ve Atalet Verileriyle Eğitilmiş Sınıflandırıcıların Karar Düzeyinde

Füzyonuyla İnsan Hareketi Tanımanın İyileştirilmesi

Zain Fuad

Mekatronik Mühendisliği Yüksek Lisans Tezi, Temmuz 2018

Tez Danışmanı: Prof. Dr. Mustafa Ünel

Anahtar Kelimeler: İnsan hareketi Tanıma, Sinir Ağları, Sınıflandırıcı, Füzyon,

Logaritmik Düşünce Havuzu, RGB-D Kamera, Ataletsel Sensör

Sensör teknolojilerindeki ilerlemeler insan hareketi tanıma (İHT) alanındaki araşt-

ırmalara yardımcı oldu zira veri alımı kolaylaştı ve elde edilen verinin doğruluğu daha

fazla. Bununla birlikte her sensörün kendine özgü sınırları ve yararları bulunmakta

ve de bu sensörlerin füzyonu tanıma sistemlerinin doğruluğunu artırmada yardımcı

olabilir.

Bu tezde RGB-D kamera ve ataletsel sensör verileri ile eğitilmiş bağımsız sınıflandırıc-

ıların karar düzeyinde füzyonu kullanılarak İHT alanı derinlemesine irdelenmiştir.

Gürbüz ve özneden bağımsız öznitelikler bağımsız hareket tanıma sınıflandırıcılarını

(mesela sinir ağları) eğitmek için çıkarıldı. Bu çalışma Logaritmik Düşünce Havuzu

(LDH) formunda olasılıksal yaklaşım kullanarak bireysel sınıflandırıcıların çıktıları

üzerinde karar düzeyinde veri füzyonu uygulamıştır. Bu tez önerilen algoritmadaki

parametreleri değiştirmenin son 8-katlı çapraz doğrulama üzerindeki etkisini incele-

mektedir.

Önerilen algoritma, içinde eklemlerin farklı hareketlerine göre sınıflandırılmış eylem-

ler bulunan UTD-Multimodal Human Action Dataset üzerinde test edilmiş ve 8-katlı

çapraz doğrulama sonucunda %97.3’lük bir doğruluk oranına ulaşılmıştır.
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Chapter 1

Introduction

Human action recognition (HAR) is a multidiscipline research area and the goal can

be simply put as acquiring a person’s gestures through various sensors, merging these

gestures to form an action, and lastly understanding or classifying those actions. In

other words, the body movements acquired from di↵erent sensors are classified to

understand the intended action. The applications consist of security or surveillance,

robotics, telemedicine, internet of things and human-machine interaction [19], and

have extended to unorthodox areas, such as recognition of food preparation activities

[20]. Some examples of human actions can be seen in Figure 1.1.

There are di↵erent aspects that need to be looked into for solving the problem of

HAR. One of these problems is to choose sensors that can acquire the significant

human movements.

Due to the 3-dimensional nature of the world we live in, relying on RGB cameras

result in the loss of the depth information, which in turn decreases the e�ciency of

the action recognition framework. Structure from motion [21] or stereo vision [22]

although solve the issue of grasping the depth, however, they require high compu-

tational power, which restricts their use in many real world scenarios [23].
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Figure 1.1: Sample human actions [1]

(a) Skeletal joint positions
shwon on an RGB image of a
person

(b) Skeletal joint positions shown on
depth image of a person

Figure 1.2: Microsoft Kinect skeletal joint positions illustration

Nonetheless, with the advent of RGB-D cameras such as Microsoft Kinect, depth

information can be acquired with less computational e↵ort. An example of the

skeletal joints obtained from Microsoft Kinect is shown in Figure 1.2.

The advent of wearable inertial sensors (Figure 1.3) made their application possible

in everyday usage as they provide little or no hindrance to the person performing

2



Figure 1.3: Example of a wearable inertial sensor [2]

the action. These sensors can be placed on any part of the human body and they

can capture the motion to a great accuracy.

Despite the advances, there are still a lot of challenges in this regard, which basically

arise from the way an action is performed and can be influenced by environmental,

cultural, personal and emotional factors [24]. These factors may include view point

occlusions or signal distortions of a particular sensor, view point di↵erences or the

presence of di↵erent type of clothing for vision-based sensors and unwillingness of a

person using a particular type of a sensor [25]. In regards to the wearable sensors

of any sort, wearing them loosely a↵ects their performance, as there is relative

movement between the sensor and the body, in contrast to the sensor being firmly

fixed to capture solely the body movements. Moreover, there is a limit to the number

of sensors being worn, as they can cause physical and/or psychological discomfort

to the person wearing them.

Some of the problems associated with getting skeletal joint positions from Microsoft

Kinect are shown in Figure 1.4. The problem mainly arises when the camera looses

the track of the human body parts. This causes broken joints, joints being at

unrealistic locations and/or unreasonable skeletal form.

3



(a) (b) (c)

(d) (e) (f)

Figure 1.4: Faulty skeletal joint positions obtained from Kinect in a real world
environment

For this reason, the idea of sensor fusion comes into practice, as the deficiencies

and limitations of one sensor can be compensated by other sensor(s). The purpose

of this thesis is to recognize human actions using data acquired from depth and

inertial sensors. Adding to this, this work makes use of neural networks as the

main classifiers due to their robustness and high classification accuracy, and applies

Logarithmic Opinion Pool (LOP) as the decision level fusion method to merge the

outputs of the individual classifiers.
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1.1 Contributions of the Thesis

The goal of this work is to design a framework that is able to recognize human

actions to a high degree of accuracy. For this purpose, existing work in the literature

is investigated and a new method has been developed that is based upon the idea

of sensor/data fusion.

This thesis has the following main contributions:

• It provides instances where the sensors that are typically used for HAR fail

in one way or the other, and proposes to use a fusion of joint locations from

depth sensor and linear acceleration and angular velocities from an inertial

sensor, to acquire the body movements to a significant degree of accuracy.

• A new algorithm is developed that is subject-invariant, performs well under

noisy measurements, and can be employed in real time. The proposed al-

gorithm consists of neural network classifiers to classify the data from each

sensor. Decision level fusion is performed on the outputs of these classifiers

in a probabilistic manner. Moreover, a discussion about the free parameters

of the proposed algorithm has been presented that can be used to tune the

algorithm.

• The algorithm has been tested and benchmarked on UTD-MHAD dataset [17].

This dataset contains a variety of actions that are performed by the movement

of di↵erent joints, and depict real world scenarios. The achieved accuracy on

this dataset is 97.3%.
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1.2 Outline of the Thesis

The organization of this thesis is as follows:

Chapter 2 reviews works that address the issue of HAR. The works are divided into

di↵erent categories based on the modality of the sensor that they make use of.

Chapter 3 provides a general overview of the characteristics of the sensors that are

used in the framework of HAR. Moreover, a list of the publicly available datasets

used in this framework are also presented.

In Chapter 4 the proposed algorithm is highlighted and explanations are provided

for each step of the algorithm.

Chapter 5 presents the results of the algorithm and Chapter 6 concludes the thesis

and indicates possible future directions.

1.3 Publications

The following papers are produced during my MS thesis work

• Fuad Z., Unel M. (2018) Human Action Recognition Using Fusion of Depth

and Inertial Sensors. In: Campilho A., Karray F., ter Haar Romeny B. (eds)

Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer

Science, vol 10882. Springer, Cham.

• Fuad, Z. and Unel, M. Improving Human Action Recognition Based on Deci-

sion Level Fusion of Classifiers Trained with Depth and Inertial Data (under

preparation)
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Chapter 2

Literature Survey

The literature contains a lot of techniques and solutions to the problem of HAR.

Hachaj et al. [26] proposed a method for template generation, matching, comparing

and visualization which they applied on MoCap recordings of highly-skilled karate

athletes. On the other hand, Chaaraoui et al. [27] propose a multi-view setup

approach to recognize human behavior for health purposes and they extend this

approach to maintain the privacy of the users of the system.

Nazir et al. [3] proposed a Bag of Expression framework which is based on the bag of

words approach, and formed a codebook of visual expressions based on the training

videos. Later a non-linear SVM was used as the action classification algorithm.

On the other hand, Nie et al. [4] decomposed human actions into poses, and fur-

ther decomposed these poses to mid-level spatio-temporal parts and used dynamic

programming for classification purposes. They claim that this way they are able to

capture the geometric and appearance variations of the poses at each frame. The

results they obtain are shown in Figure 2.1.
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Figure 2.1: Pose estimation from videos [4]

Due to the nature of this thesis, the literature has been classified according to the

sensor modalities they employ.

2.1 HAR Based on Depth Sensor

The idea of HAR from depth sensors is a well-established idea [28]. Advances such

as Microsoft Kinect and ASUS Xtion Pro Live, low-cost RGB-D cameras that can

acquire depth information in addition to RGB videos, have aided the encapsulation

of human motion, in contrast to the expensive detector based MoCap systems, or

computationally-expensive 3-D reconstruction using stereo cameras [19]. In other

words, RGB-D videos preserve discriminative information, such as shape and dis-

tance variations [29], and have reduced processing times as compared to traditional

RGB cameras [23]. Thus, they have enabled researchers to use them in an action

recognition structure.

Han et al. [5] highlighted the utilization of Kinect for vision based algorithms, and

covered the topics regarding preprocessing, object tracking and recognition, human

activity analysis, hand gesture analysis and indoor 3-D mapping (Figure 2.2).
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Figure 2.2: Applications of Kinect [5]

Aggarwal et al. [6] discussed di↵erent approaches for feature extraction from depth

data and mentioned methodologies employed in the context of human activity recog-

nition. They further highlight the pros and cons of each algorithm they analyzed.

The taxonomy of their review can be seen in Figure 2.3.

Figure 2.3: Features used in the context of for HAR from depth images [6]

Notable work in this area includes the proposition of a Hierarchical Recurrent Neu-

ral Network framework which uses skeletal positions obtained from depth cameras,

and understands the performed actions [7]. The authors divide the skeleton into 5

parts and feed them into 5 subnets, as opposed to taking the whole skeleton as the

input. A sketch is shown in Figure 2.4 where the skeleton is divided into 5 parts

and fed into the proposed framework.

9



Figure 2.4: Sketch of a RNN framework for HAR [7]

On the other hand, Luzivon et al. [8] extracted sets of spatial and temporal features

form subgroups of joints, which were later combined and k-NN was used to classify

the actions. An overview of their proposed algorithm is shown in 2.5.

Figure 2.5: Learning features combination for HAR [8]

Another interesting work is the proposal of Sequence of the Most Informative Joints

(SMIJ) [9], where each joint is compared in terms of the information it provides, and

the joints are sorted with respect to the information content they provide (Figure

2.6).
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Figure 2.6: Demonstration of the most informative joints along the key frames
of two di↵erent actions [9]

2.2 HAR Based on Inertial Sensor

The invent of low-cost, small and light-weight, wearable inertial sensors have further

aided the research of HAR, as they provide very little hindrance to the person

performing these actions and can be used in real life scenarios [30].

Qaiser et al. [10] studied the classification of arm action in cricket using inertial

sensors. Figure 2.7 shows the utilized sensor positions. In this work they utilized

mean, mode, standard deviation, peak to peak value, minimum, maximum, first

and second derivative as features that were extracted from acceleration and angular

velocity signals.

Figure 2.7: Sensor placements for classifying cricket actions [10]

11



Additionally, Guo et al. [11] evaluated the e↵ect of task complexity on the accuracy

of using Xsens MVN BIOMECH, which is an inertial sensor-based motion capture

system (Figure 2.8). They performed experiments based on 11 tasks, and found

that wrongly estimated foot separations and the initial system estimation error on

Base of Support (BOS), are two major sources of instabilities and errors of BOS

estimation.

Figure 2.8: Xsens MVN BIOMECH body suit and footprint papers [11]

Ermes et al. [12] analyzed the use of inertial sensors in the detection of sports

activities in controlled and natural environments. Figure 2.9 represents the sensors

used for this task. In this work a hybrid classifier was used, which was composed of

a tree structure possessing a priori knowledge and artificial neural networks, and 3

reference classifiers.

12



Figure 2.9: Data collection and annotation system [12]

Due to the wearable nature of these inertial sensors, one or more of them can be

placed at di↵erent parts of the human body to fully grasp the movements. Attal et

al. [31] reviewed the placement of these sensors on specific parts of the human body

and provided a comparison of the obtained accuracy and the number of activities

performed. For fall detection, sensors placed on the chest, waist, ankle and thigh

were compared [32], whereas Prittikangas et al. [33] tested thighs, necklace and

wrists for the recognition of activities such as drinking, ascending or descending

stairs, watching TV and typing.

In addition to placing these sensors on the di↵erent parts of the human body, they

can also be placed on accessories. Dang et al. [34] placed an inertial sensor to

various positions on a cane that is used as a mobility aid for walking. Based on

the movements of the cane, the walking distance was estimated. Similarly, Gellaerts

et al. [13] instrumented a ski-mounted inertial sensor on the equipment of skiers

to analyze cycle parameters and classified the movements in real time. Figure 2.10

shows the sky mounted inertial sensor used in [13].
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Figure 2.10: Ski mounted inertial sensor [13]

2.3 HAR Based on Sensor Fusion

Regarding the sensors used to acquire the actions, each of the sensors has their own

advantages and short-comings, and a fusion of these sensors results in a higher action

recognition performance [19]. This fusion can occur at the data-level, feature-level

or decision-level and the literature suggests di↵erent approaches in this regard.

For action recognition, Ofli et al. [14] used HOG and HOF features in a Bag-of-

Features framework from the depth camera, and variance of acceleration for each

temporal window from the inertial sensor. The data acquisition system they made

use of is shown in Figure 2.11. On the other hand, Stein and McKenna [20] proposed

the use of statistical features from both Kinect and inertial sensor to gather visual

displacement components and representations of acceleration signals respectively, to

recognize food preparation activities.

14



Figure 2.11: Data acquisition system with di↵erent modality sensors [14]

Chen et al. [15] performed a decision level fusion of depth motion maps from the

depth sensor and statistical features obtained based on the temporal segments from

inertial sensor. The classification performance they obtained for each action is shown

in Figure 2.12, which show that sensor fusion results in a higher classification accu-

racy than by using each sensor individually.

Figure 2.12: Classification performance for subject generic experiments [15]
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Chapter 3

Sensors and Datasets for HAR

3.1 Sensors

HAR systems can be divided into three main categories (Figure 3.1) (i) sensor (iner-

tial) based to detect movements of body parts (ii) camera or vision based that record

video sequences and use computer vision algorithms to understand these videos, and

(iii) radio based that understand human activities based on the information about

utilized objects or change in environmental variables [16]. Figure 3.2 shows an RGB

camera, and a MoCap system that can be used for HAR.

This thesis makes use of (i) Microsoft Kinect (a depth sensor) and (ii) MEMS inertial

sensor, and so the rest of this section is dedicated to a description regarding these

two sensors.

3.1.1 Microsoft Kinect

Microsoft Kinect (Fig. 3.3) is a commercially available, low cost RGB-D camera. It

is manufactured with a built-in RGB camera, an infrared emitter and depth sensor,

16



Figure 3.1: Categorization of human action recognition systems [16]

(a) Inertial MoCap system [35] (b) RGB camera

Figure 3.2: Sensors used in human action recognition framework

a microphone, a tilt motor to set the camera angle and an LED light. Kinect captures

color images with a resolution of 64 ⇥ 480 pixels and 16-bit depth images having a

resolution of 320⇥ 240 pixels with a frame rate of 30 frames per second [17].
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Figure 3.3: Microsoft Kinect [17]

Moreover, Kinect SDK, a publicly available support package can be used to track

20 body skeletal joints with their 3-D spatial coordinates (Figure 3.4).

Figure 3.4: Joints tracked by Kinect SDK [18]

18



3.1.2 Inertial Sensor

The low-cost, wearable inertial sensor (Figure 3.5) considered in this work consists

of 9-axis MEMS sensor that captures 3-axis acceleration, 3 axis angular velocity

and 3-axis magnetic strength. The sampling rate of this sensor is 50 Hz and the

measuring range is ±8g for acceleration and ±1000 degrees/second for rotation [17].

Figure 3.6 depicts an instance of a signal obtained from the inertial sensor.

Figure 3.5: Inertial sensor [17]

(a) (b)

Figure 3.6: Gyro measurements (a) and acceleration (b) obtained from the
inertial sensor
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3.2 Datasets

Table 3.1 presents a list of publicly available human action datasets that use sensors

of more than one modality.

Table 3.1: Publicly available multi-modal human action datasets: M:MoCap,
R:RGB, D:Depth, A:Audio, I:Inertial (Adopted from [19])

Dataset Modality # Sub # Act # Seq Year
M R D A I

UTD-MHAD [17] 0 1 1 0 1 8 27 861 2015
URFD [36] 0 2 2 0 1 5 >5 70 2014
TST Fall detection [37] 0 0 1 0 2 11 8 264 2014
Berkley MHAD [14] 1 12 2 4 6 12 11 660 2013
50 salads [20] 0 1 1 0 7 25 17 966 2013
ChAirGest [38] 0 1 1 0 4 10 10 1200 2013
Huawei/3DLife [39] 0 5 5 5 8 17 22 3740 2013

To govern the e↵ectiveness of the proposed algorithm, it was tested using the Uni-

versity of Texas at Dallas Multi-modal Human Action Dataset [17]. This particular

dataset has been chosen because it mimics the real world scenarios, as it comprises of

actions that utilize the movement of di↵erent parts of the body rather than targeting

only a certain group of joints.

The position of the inertial sensor is changed for di↵erent actions (the sensor is placed

on the subject’s right wrist for 21 actions and placed on the subject’s right thigh

for the rest 6 actions), which makes the dataset fairly di�cult and the robustness of

the algorithm is a necessary requirement to achieve good results. For our purpose,

we only use the skeletal and inertial signal information.

Section 3.2.1 provides a detailed explanation about the dataset.
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3.2.1 University of Texas at Dallas Multi-Modal Human Ac-

tion Dataset

The UTD-MHAD [17] is a publicly available dataset and comprises of data synchro-

nized from RGB videos, skeleton joint positions and depth information obtained

Figure 3.7: Data visualized as observed by di↵erent sensors in UTD-MHAD
dataset [17]

from Microsoft Kinect, and inertial signals, i.e. 3 axis linear accelerations and gyro

measurements obtained from a wearable inertial sensor, i.e. IMU. There are a total
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of 27 registered actions, performed by 8 subjects (4 male and 4 female). Each action

is performed 4 times by each subject. Moreover, due to 3 corrupt sequences being

removed, the total number of entries in the dataset is 861. The actions as visualized

by di↵erent sensors are shown in figure 3.7, while the 27 registered actions in the

dataset are given in figure 3.8

Figure 3.8: Actions present in the UTD-MHAD dataset [17]
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Chapter 4

ANN Based Classifiers for HAR

and Fusion of Them Using

Logarithmic Opinion Pool

Variations in speed while performing an action, dissimilarities in the way two di↵er-

ent people perform the same action, and noise due to jitters are the main complica-

tions that require a robust and precise classification algorithm for HAR.

The proposed algorithm (Figure 4.1) performs action classification by utilizing a

depth and an inertial sensor. Feature extraction is performed on the frame-wise

skeletal joint positions from the depth sensor, and linear accelerations and angular

velocities are obtained from a wearable inertial sensor, i.e. IMU, located on di↵erent

parts of the body. The feature extraction stage involves resizing all the signals from

a particular sensor to the same size to reduce temporal variations. Moreover, after

performing normalization on the skeletal joint positions and the extraction of mean

and standard deviation from the inertial sensor measurements, individual classifiers

(Classifier
K

and Classifier
I
) are trained for each sensor.
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Figure 4.1: Overview of the proposed algorithm

Similar to the training phase, the testing phase involves feature extraction from

depth and inertial data, and classifying them using the trained classifiers. Finally,

a decision level fusion is performed on the outputs of the individual classifiers using

Logarithmic Opinion Pool (LOGP [15] or LOP [40]), and a class label is assigned

for the performed action. The implemented algorithm can be scaled up to include

data from more than two sensors.

4.1 Feature Extraction

4.1.1 Feature Extraction from Depth Sensor data

The depth sensor provides [xi,j yi,j zi,j], the spatial coordinates of each tracked joint,

where i is the joint number and j is the frame number. Then the output, IK , of the

depth sensor can be represented as

IK =

2

6666664

x1,1 y1,1 z1,1 . . . x1,N y1,N z1,N

x2,1 y2,1 z2,1 . . . x2,N y2,N z2,N

...
...

...
...

...

xM,1 yM,1 zM,1 . . . xM,N yM,N zM,N

3

7777775
(4.1)
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where each row of Ik is the 3D spatial coordinates of each joint and N is the total

number of frames. The total number of joints tracked by the sensor is 20, and so

M = 20.

Due to the variations in speed in performing actions, the total number of frames for

each action may di↵er. To eliminate this temporal variation, the dimensions of the

feature vectors should be comparable to each other. The literature suggests di↵erent

approaches in this regard, including PCA [41], Locally Linear Embedding [42] and

Dynamic Time Warping [43].

The proposed algorithm uses bi-cubic interpolation to reduce the temporal varia-

tions. Frequently used in image processing tasks, bi-cubic interpolation provides

better results than nearest neighbor and linear interpolation, and a lesser processing

time than B-Spline interpolation [44].

After the interpolation operation, the number of columns in IK reduces to

N̂ = �Nmin (4.2)

where Nmin, a data dependent parameter, is the least number of frames amongst

the entries from the training dataset, and � is a scaling constant that helps in

dimensionality reduction.

Each row of IK is divided by its norm, which not only gets rid of dependence on any

specific person performing the task, however, it also makes sure that the individual

joint movements does not a↵ect other joints. The e↵ect is shown in Figure 4.2, when

the features are stacked with and without normalization.

The rows of the reduced matrix are stacked column-wise to produce a 20N̂⇥1 input

vector to the classifier, labeled as Classifier
K
. However, there is noise present in

the form of spikes and for that Savitzky-Golay [45] filter is applied to reduce these

spikes.
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(a) Features stacked column-wise without normalization

(b) Features stacked column-wise with normalization

Figure 4.2: Illustration of the e↵ect of normalization on the rows of IK

Savitzky-Golay filter is a method of data smoothing and is based on local least-square

polynomial approximation [46]. The parameters of the filter should be chosen in

such a way that only the spikes are reduced, without compromising the information

present in the signal. An illustration is shown in Figure 4.3.
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(a) Features stacked column-wise without Savitzky-Golay filter

(b) Features stacked column-wise with Savitzky-Golay filter

Figure 4.3: E↵ect of using Savitzky-Golay filter

4.1.2 Feature Extraction from Inertial Sensor Data

A wearable inertial sensor, i.e. IMU, can be placed at any part of the body, and

provides 3-axis linear acceleration and angular velocity measurements. The output

of the inertial sensor for each frame is [ax ay az !x !y !z], where ai represent linear
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acceleration, !i is the angular velocity and i depicts the respective axis. Then the

data obtained from the inertial sensor can be represented as

II =

2

6666664

ax,1 ay,1 az,1 !x,1 !y,1 !z,1

ax,2 ay,2 az,2 !x,2 !y,2 !z,2

...
...

...
...

...
...

ax,N ay,N az,N !x,N !y,N !z,N

3

7777775
(4.3)

However, if there is more than one inertial sensors utilized, the structure of II can

be changed to incorporate them in a similar manner as skeleton joints in IK .

As in the case of skeleton data, the inertial sensor data has di↵erent signal sizes. To

reduce this variation, all the signals are resized using bi-cubic interpolation. The size

of II is reduced to Nmin ⇥ 6, where Nmin is chosen from the inertial sensor training

data in the same manner as in the case of the depth data. Furthermore, the inertial

sensor measurements are partitioned into temporal windows, of size W ⇥ 6, and

statistical features, i.e. mean and the standard deviation, are calculated for each

window per direction, and are used as inputs to Classifier
I
. The e↵ect of changing

the window length, W , on the classification accuracy is investigated in Chapter 5.

4.2 Feature Classification

After obtaining robust and subject-invariant features, individual classifiers are trained

for each sensor. This section focuses on the classifiers used in this work, i.e. neural

networks and provides a discussion regarding their implementation in the proposed

algorithm.
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4.2.1 Artificial Neural Network

A neural network (Figure 4.4) can model the relationship between an input vector

and the target value. Neural networks are made up of many connected processors

called neurons, the input neurons get activated through sensors perceiving the en-

vironment, while other neurons get activated from weighted connections with other

neurons [47].

Neural networks have been used in tasks ranging from digit classification [48], plant

classification [49] and face recognition [50] to music composition [51]. Their e↵ec-

tiveness is a direct reason for their popularity in the field of machine learning.

The network we make use of in this thesis has the following structure

Figure 4.4: Structure of the proposed Neural Network classifier

In order to train the network this work makes use of conjugate gradient backpro-

pogation algorithm due to its less memory requirements, as it makes use of the

conjugate search directions and still guarantee quadratic termination [52].
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The search direction is determined according to Polak Ribiére [52] updates as

pk = �gk + �kpk�1 (4.4)

where �k is defined as

�k =
�g

T

k�1gk

gT
k�1gk�1

(4.5)

where gk represents the current gradient and gk�1 represents the previous gradient.

The output vector , O↵, (4.7) represents the probability distribution modeled by the

expert or the classifier for each test case, and this is achieved by using a softmax

activation function at the output layer, according to the following formula:

�(xi) =
e
xi

P
C

j=1 e
xj

(4.6)

where xi is the input to the softmax function and C is the number of classes.

O↵ is in the form of a C ⇥ 1 vector and each entry represents the conditional prob-

ability of the label being assigned to the input sample o.

O↵ = [p↵(1|o) p↵(2|o) . . . p↵(C|o)]T (4.7)

where ↵ 2 {1, 2} is used to index each respective classifier.

4.3 Sensor Fusion

This work makes use of decision level fusion using Logarithmic Opinion Pool (LOP)

for merging the model of the probability distributions produced by the individual
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classifiers. The reasons for employing decision level fusion include its flexibility to

incorporate more sensors, classifiers can be trained independently from each other

and a final decision can be made based on the trusts level of the classifiers. Moreover,

if a sensor stops working due to any reason, the algorithm can be modified to rely

on other available sensor(s) without breaking down.

4.3.1 Logarithmic Opinion Pool

LOP is employed to merge the individual posterior probabilities of the classifiers

and estimate the global membership function

P (c|o) = 1

ZLOP (o)

Y

↵

p↵(c|o)w↵ (4.8)

where
P

↵
w↵ = 1, w↵ � 0 represents our confidence for each classifier ↵, c 2

[1, 2, ..., C] represents a class label, and a uniform distribution is assumed when

fusing the sensors, i.e. w1 = w2 = 1
2 .

ZLOP (o) is a normalizing constant, defined as

ZLOP (o) =
X

c

Y

↵

p↵(c|o)w↵ (4.9)

however, it can be omitted to achieve computational e�ciency.

The final label, to any sample, is assigned to the class label that has the highest

probability according to

Label = argmax
c=1...C

P (c|o) (4.10)

According to Smith et al. [40], for LOP to model the true underlying conditional

distribution e↵ectively, the individual probabilities, p↵, should model the true un-

derlying probabilities well, yet should be diverse.
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Chapter 5

Experimental Results

5.1 Comparison with State-of-the-Art Methods

Table 5.1 provides a comparison of the results obtained with the proposed algorithm

and compares them with the state-of-the-art results obtained on UTD-MHAD [17].

It shows the accuracies obtained from the classification of skeletal data alone, inertial

data alone, and their fusion.

To test and compare the performance of the proposed algorithm, 8-fold cross-

validation is performed, as in [53] and [15], by training the respective classifiers

on 7 subjects and testing on the left out subject. This procedure has been repeated

for every subject in turn, and the final accuracy is the average accuracy of all the 8

subjects.

Table 5.1: Recognition accuracies for subject-generic experiment. (W : Window
length, �: Dimensionality reduction constant)

Algorithm Skeletal Accuracy Inertial Accuracy Fusion Accuracy
Chen et al. [15] 74.7% 76.4% 91.5%
Proposed Algorithm 72.0% 88.5% 97.3%
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This implementation achieves slightly higher accuracy than previous implementation

in [53] by 2.3%, while it beats the results obtained in [15] by 5.8%.

5.2 Performance Evaluation

5.2.1 Influence of � and W

Figure 5.1 to Figure 5.3 depict the experimental results, and show the 8-fold cross-

validation accuracy, with varying � from (4.2) and window length, W , from the

input to the inertial sensor classifier.

From Figure 5.1, it can be observed that increasing � increases the 8-fold cross-

validation accuracy. The reason for this can be allocated to the fact that decreasing

� results in a loss of information, and since the skeletal data comprises of the location

of 20 joints (as opposed to one inertial sensor), significant information is lost when

the dimension of the feature vector (the input to the neural network classifier for

skeletal data) is reduced.

It is important to note the highest accuracy obtained from the skeletal data does

not guarantee the highest fusion accuracy. The reason for this can be associated to

the fact that the percentages obtained from the neural network classifier, i.e. p↵,

from (4.7) for the skeletal case are low for a specific class, as compared to the ones

obtained when using inertial data alone, and thus have a low contribution to the

overall fusion accuracy. This can further be explained by the fact that it is very hard

for a human to perform an action using only certain joints, while keeping the other

joints stationary. Moreover, this can also be termed as one of the major sources

of noise. In this work since we use one inertial sensor, the classification accuracy

obtained from the inertial data does not face this problem, however, since Kinect

tracks 20 joints, this problem is persistent.
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(a) (b)

(c)

Figure 5.1: Plot of accuracy against � for (a) W = 3, (b) W= 17 and (c) W =
35 when using skeletal data alone

Figure 5.2 represents the 8-fold cross-validation accuracy when using inertial data

alone. This figure follows the general trend observed in the case of data fusion (Figure

5.3). The reason can be assigned to the fact that the percentages, p↵, obtained from

the classifier when using inertial data alone are higher than when using skeletal data

alone, and thus have a higher contribution the overall fusion accuracy, as mentioned

earlier. However, due to the skeletal data providing valuable information, the fusion

accuracy is higher than when using each of the sensors alone.
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(a) (b)

(c)

Figure 5.2: Plot of accuracy against � for (a) W = 3, (b) W= 17 and (c) W =
35 when using inertial data alone

Increasing W from 3 to 17 increases the accuracy of the classification in Figure

5.2. The reason for this can be accounted to the fact of over-fitting. Increasing W

results in less number of windows and hence a feature vector of a lower dimension,

which does not over-fit to the training data. However, it should also be noted that

decreasing the dimensionality a lot can result in a loss of information, and hence the

classification accuracy can be decreased, as observed when changing W from 17 to

35.

35



Figure 5.3 represents the 8-fold cross-validation accuracy for the decision level case.

From the figure, it can be observed that increasing � increases the accuracy up to a

point, and then the accuracy is decreased.

(a) (b)

(c)

Figure 5.3: Plot of accuracy against � for (a) W = 3, (b) W= 17 and (c) W =
35 when using decision level fusion

5.2.2 Comparison of Subject-Based Accuracies

Figure 5.4 to Figure 5.6 depict the accuracy of the proposed algorithm with respect

to each sensor used along with the fusion accuracy, for each of the 8 subjects. These
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charts show the highest (Figure 5.4), the intermediate (Figure 5.5) and the lowest

accuracy (Figure 5.6). These figures represent the accuracy obtained from having

di↵erent � and W values.

Figure 5.4 represents the case which achieved the highest 8-fold cross-validation

accuracy of 97.3%. In terms of each subject, fusion accuracy of subject 8 was the

lowest (93.5%), while that of subject 1, subject 2 and subject 3 were the highest

and similar, around 99.1%. Moreover, inertial data achieved a higher recognition

performance than skeletal data for all the subjects.

Figure 5.4: Subject-based accuracies for the case that achieved the highest
fusion accuracy of 97.3% at � = 0.1 and W = 17

Figure 5.5 represents the case that achieved an intermediate accuracy of 95.7%. In

this case, subject 8 achieved the lowest accuracy of 90.7%, while subject 2 achieved

the highest accuracy of 98.1%. The skeletal data had a higher classification accuracy

than the inertial data for subjects 3, 4 and 8.
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Figure 5.5: Subject-based accuracies for the case that achieved the intermediate
fusion accuracy of 95.7% at � = 1 and W = 35

Figure 5.6 represents the case that achieved the lowest 8-fold cross-validation ac-

curacy of 94.8%. In this case, subject 2 and subject 3 achieved the highest fusion

accuracy of 99.1%, while subject 8 achieved the lowest fusion accuracy of 85.0%.

In terms of the individual classifiers, skeletal data obtained a higher accuracy for

subject 1, while both skeletal and inertial data achieved an equal accuracy of 75.7%

in the case of subject 8.

From the bar charts, it can be seen that the fusion accuracy is always higher than

that of using each sensor alone. This is due to the fact that each sensor has its own

limitations, and the redundancies encountered when using a sensor of a particular

modality can be overcome by a sensor of a di↵erent modality, and vice versa.

An interesting observation is that the inertial sensor measurements, in a majority of

the cases, achieved a higher accuracy than the skeletal measurements. This is due

to the noise that is caused by the movement of joints in the case of the skeletal data.
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An example could be that the subject moves their legs while performing the action

‘swipe right’ with their right arm. Since only one inertial sensor is used, it does not

encounter this type of noise.

Figure 5.6: Subject-based accuracies for the case that achieved the lowest fusion
accuracy of 94.8% at � = 1 and W = 3

Lastly, each subject has di↵erent body dimensions and the way they perform a par-

ticular action is almost unique. This reason can be held accountable for a di↵erence

in accuracies for di↵erent subjects. It can be seen that subject 8, in almost all of

the cases, achieved a lower accuracy than the rest.

5.2.3 Action-Based Recognition Performance

Figure 5.7 to Figure 5.9 represent the confusion matrices obtained with using dif-

ferent values of � and W . These confusion matrices represent the action based
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performance of the proposed algorithm, i.e. the recognition accuracies for each ac-

tion.

Figure 5.7 represents the confusion matrices obtained when using skeletal data, iner-

tial data, and fusion of both, for the case that achieved the highest fusion accuracy

of 97.3%. In this case � was 0.1, while W was set to be 17.

Figure 5.7: Confusion Matrix of Skeletal (top left), Inertial (top right) and
Fusion (bottom), for the case that achieved the highest fusion accuracy of 97.3%

at � = 0.1 and W = 17

Figure 5.8 represents the confusion matrices obtained when using skeletal data,

inertial data, and fusion of both, for the case that achieved an intermediate fusion

accuracy of 95.7%. In this case, � was set to be 1 and W was set to be 35.
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Figure 5.8: Confusion Matrix of Skeletal (top left), Inertial (top right) and
Fusion (bottom), for the case that achieved the intermediate fusion accuracy of

95.7% at � = 1 and W = 35

Figure 5.9 represents the case that achieved the lowest fusion accuracy of 94.7%. In

this case � was set to be 1 and W was set to be 3.

The mis-classifications when using skeletal data alone were higher than when using

inertial data alone. Moreover, the cases where both skeletal data and inertial data

had mis-classifications resulted in the fusion case also having mis-classifications, such

as drawing circle clockwise (activity 9) and drawing circle counter-clockwise (activity

10).

Looking at the confusion matrices, it can be seen that for every case, the number of

mis-classifications after the fusion of the two sensors are much less than the number

of mis-classifications for each individual sensor.
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Figure 5.9: Confusion Matrix of Skeletal (top left), Inertial (top right) and
Fusion (bottom), for the case that achieved the lowest fusion accuracy of 94.8%

at � = 1 and W = 3

Actions such as drawing circle in a clockwise direction (action 9) and drawing the

same circle in a counter-clockwise direction (action 10), jogging (action 22) and

walking in place (action 23), and throw (action 5) and catch (action 20) had a

lot of mis-classifications amongst them due to them being of similar pattern. This

observation was made across di↵erent values of � and W .
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Chapter 6

Conclusion and Future Work

In this study, a HAR system based on the idea of sensor fusion has been presented.

The main problem with using one modality of the sensor arise from the limitations

of that particular sensor, and hence this results in a lower performance of action

recognition. For this purpose, this work incorporates data from two di↵erent types

of commercially available sensors, mainly an RGB-D camera and a wearable inertial

sensor. The proposed algorithm classifies the data acquired from the di↵erent sensors

into one of the labeled action classes. To fuse these individual classifications and

obtain a final classification of the performed action, this work makes use of decision

level fusion by estimating the individual underlying probability distributions. For

this part, LOP is utilized as the fusion algorithm. The algorithm has been tested

on UTD-Multimodal Human Action dataset, as it contains actions involving the

movement of di↵erent joints in the case of the depth sensor and just one inertial

placed on the di↵erent parts of the body to classify di↵erent actions. The results

show that the resulting classification accuracy after the fusion operation is performed

is much higher than using each of the individual sensors alone.

One of the main problems in the field to HAR is the way an action is performed,

and the speed with which it is performed. In other words, actions performed at

43



di↵erent times by the same or di↵erent people will be performed di↵erently and

hence classifying these actions can be a di�cult task. This work employs bi-cubic

interpolation to reduce the temporal variations between the performed actions as a

pre-processing step. Experiments have been conducted with di↵erent values of the

scaling constant, i.e. �, for dimensionality reduction for the case of depth sensor

data, and the data is divided into window length, W , for the case inertial sensor

data. The results show the e↵ect of these parameters on the obtained accuracy.

This thesis uses a single hidden-layer neural network as the classification algorithm.

The probability distributions of the performed action is obtained using a softmax

function in the output layer of the network. The reason for choosing such a simple

structure is to provide low training times and real time working capabilities of the

algorithm. The reason for choosing a neural network as the classification algorithm

is based on its success in a number of machine learning problems present in the liter-

ature, and the results in this thesis further show its capabilities. It is observed that

using a neural network to classify each sensor’s data gave a 8-fold fusion classification

accuracy of 97.3%.

A critical reader of this thesis may question the use of two sensors and argue that

utilizing more sensors may result in a much higher fusion accuracy. This is taken as a

future work, to evaluate the performance of the proposed algorithm when additional

sensors of the same or di↵erent modalities are added. Moreover, it will be interesting

to find the saturation point, if any, after which adding more sensors does not further

increase the classification accuracy and might even end up decreasing the accuracy

due to the idea of the curse of dimensionality.
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