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Özet 

Dijital teknolojiler çok miktarda veri üreterek insan davranışlarını izlememize olanak 

sağlarlar. Bu çalışmada özel bir Türk bankasının 60 bin müşteri ve 2 milyon kredi kartı 

işlemi içeren verisi, bireylerin alışveriş davranışlarını incelemek için kullanılmıştır. 

Online alışverişin arttığı bir çağda olmamıza rağmen, insanlar yine de alışveriş yapma 

duygusunu yaşamak için alışveriş merkezlerini ve ana caddelerde yer alan mağazaları 

tercih etmektedirler. İnsanlar genellikle alışveriş yapacakları yere karar verirken alışveriş 

yapacakları yerin mağaza çeşitliliğini, ulaşılabilirliğini, konforunu ve sosyal yönlerini 

dikkate alırlar. Bu çalışmada insanların çeşitlilik arama davranışları alışveriş merkezleri 

ve alışveriş kategorileri bağlamında  incelenmiştir. Bireylerin alışveriş davranışlarını 

ayırt etmek için kredi kartı harcamalarından elde edilen davranışsal özelliklerin yer aldığı, 

K-medyan kümeleme algoritması kullanılmıştır. Ayrıca bireyleri oluşturulan kümelerden 

birine, kümelerle olan demografik benzerliğini ölçerek atayan bir metot 

önerilmiştir. Sonuçlarımıza göre demografik özellikler ile alışveriş davranışları arasında 

bir bağlantı olduğu saptanmıştır. Bulgular ayrıca kadınların alışveriş yaparken çeşitli 

alışveriş merkezleri ve kategorileri aramaya meyilli olduğunu, dolayısı ile alışverişi 

eğlenceli ve sosyal aktivite olarak algıladığını göstermektedir. Diğer taraftan erkeklerin 

ise, ihtiyaca dayalı harcamalar için belirli alışveriş merkezlerini tercih ettiğini, böylece 

alışveriş için zaman ve enerji harcamayi tercih etmediklerini göstermektedir. Yaptığımız 

çalışmanın, pazarlamacılara doğru müşteri gruplarına doğru stratejiler ile iletişime 

geçmelerine yol göstereceğini ummaktayız. 
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Abstract 

 

Digital technologies allow us to trace human behaviors by generating large amounts of 

data. In this study a private Turkish bank data containing 60 thousand customers and 2 

million credit card transactions are used to analyze the shopping behaviors of individuals. 

Even though we are in an age of growing online shopping, people still prefer to visit 

shopping malls, or the stores placed in high streets to experience shopping. They usually 

make their shopping place decisions according to store variety, accessibility, comfort, and 

social aspects. In this study, we investigate people’s variety seeking behavior in the 

context of shopping malls and shopping categories to assess their shopping experience. 

We use K-means clustering algorithm to distinguish between customers’ shopping 

behaviors by using the behavioral features we extract from their credit card spending. In 

addition, we propose a method to assign individuals to one of the segments by measuring 

the demographic property similarity with segments. Our results indicate that there is an 

association between demographic properties and shopping behavior. The findings also 

suggest that females are more likely to search for variety of shopping malls and categories, 

and hence perceive shopping as an entertaining and social activity, whereas men prefer to 

shop in particular shopping malls for need-driven purchases indicating that they do not 

wish to lose time and energy for shopping. We hope that our research will guide the 

marketers to communicate the right group of customers with the right strategy. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

The digital technologies allow tracing human daily activities like the places they shop, the 

things they eat, the people they call and the products they buy, and by doing so, make it 

possible to collect large amounts of data. These collected data provide the most important 

input for analyzing human behavior patterns. One of the data producing technologies is 

mobile payment systems, which provide banks to collect large amounts of data of its credit 

card users. Mobile payment systems enable to identify spatial-temporal patterns of 

shopping activities (Yoshimura et al., 2016). In order to develop good marketing 

strategies, understanding the shopping behavior of customers is very important. For 

instance, it can help develop personalized campaigns or make it easier for identifying the 

potential customers (Yen et al., 2018). 

Although online shopping is growing, consumers still prefer to make their 

purchases in brick-and-mortar stores by either going to shopping malls or stores located 

in high streets. Customers usually want to get shopping experience, which online shopping 

cannot provide and so they are faced with the decision of selecting shopping areas 

considering store choices and location. People usually make their shopping place 

decisions according to store variety, accessibility, comfort, atmosphere and social aspects. 

According to Huff (1964), people are more likely to shop areas close to their home or 

workplace. However, with the conveniences in transportation, they may choose attractive 

locations which include more variety of store options. However, we cannot expect all 

individuals to behave in the same way. Therefore, in this thesis, we aim to identify the 
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shopping behavior differences of consumers in the context of shopping malls by looking 

at the behavioral features extracted from Big Data. 

In this study, data from a private Turkish bank containing 60 thousand customers 

and 2 million credit card transactions located in Turkey are used. In addition, we collect 

data containing shopping mall coordinates in Istanbul. Each transaction is assigned to one 

of the shopping malls if the determined distance criterion is satisfied and we continue our 

analysis with the reduced data containing only shopping mall transactions. In order to 

detect customers’ variety seeking behavior in the context of shopping malls and shopping 

categories, we use two behavioral features: diversity and loyalty. Diversity refers to the 

notion that customers’ shopping behavior can vary over various shopping malls or 

shopping categories and loyalty measures how much a customer is loyal to their particular 

shopping mall(s) or shopping categor(ies). We approach our problem by considering these 

two different types of behavioral features. 

In the first step of our study, we segment customers into four groups by K-means 

clustering algorithm using diversity and loyalty as clustering dimensions. Our aim is to 

differentiate the customers according to their variety seeking intentions with shopping 

malls and shopping categories. Then, we provide insights on demographic profiles, 

transactional and shopping category characteristics of the constituted segments to find out 

the distinguishing differences among segments. In the end, we associate our findings with 

the shopping experience discussed in the literature.  

In the second step, we split our data into training and test sets, and use the trained 

model to assign customers in the test set to the segment they belong to by considering 

their demographic information. Then, we check the coherence of actual and assigned 

segments to understand how efficient the demographic information is for distinguishing 

the shopping behavior of consumers. In cases where marketers know only the 

demographic information of individuals, we expect, based on our results, that marketers 

can better communicate with them by offering the right shopping places and product types 

or take better actions on potential customers. 

This thesis is organized as follows. In Chapter 2, we review the literature on 

behavioral analysis and feature extraction, shopping place choice and patronage, and 

gender differences in shopping experience. In Chapter 3, we explain the data used in the 

study along with data preprocessing steps and the features extracted to understand the 
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shopping behavior of customers. In Chapter 4, we give brief information about the 

methodologies we used. In Chapter 5, we present the results that are obtained in the 

computational analysis and discuss the inferences from these computational analyses. 

Finally, in Chapter 6, we provide our concluding remarks along with a summary of the 

thesis outcome achieved and its contributions. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

In this chapter, we present the literature review under three topics: behavioral analysis and 

feature extraction, the consumers’ shopping place choice and patronage, and gender 

differences in shopping experience. We conclude the chapter with the discussion of our 

contributions to the literature. 

 

2.1 Behavioral Analysis and Feature Extraction 

Storing large amounts of data about customers enables extracting information about their 

behavioral properties. For instance, datasets containing coordinate information of 

transactions allow in many studies the extraction of customer mobility behavior in 

relation to financial wellbeing (Singh et al., 2015; Srivastava et al., 2014). Singh et al. 

(2013) try to predict the spending behavior of people using spatio-temporal behavior 

measurements. Krumme et al. (2013) study the prediction of store visitation patterns. 

Clemente et al. (2017) and Guidotti et al. (2018) investigate customers’ regularities of 

temporal purchasing behavior. Features like diversity, loyalty and regularity are 

constituted in many studies to identify the customers’ behavioral characteristics.    

In order to extract the spatial and temporal behaviors of the customers in a 

transactional data set, Singh et al. (2015) propose diversity, loyalty and regularity 
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features. Diversity measures how the customers’ shopping experience vary in time and 

location. Loyalty is the percentage of purchases occurred in the three most frequently 

visited locations or shopped day of the week. Regularity calculates the similarity in 

customers’ shopping behavior over shorter and longer periods. These three features 

enable to predict the financial difficulties, which are defined as overspending, late 

payment and financial trouble of customers with an improvement from 30% to 49% 

compared to models that contain only demographic variables.   

On the other hand, Srivastava et al. (2014) extract behavioral features of 

customers from a bank data set to analyze the financial well-being of merchants. They 

measure total revenue and consistency in revenue to provide information about 

merchants’ credit riskiness to the banks. They measure the behavioral features: diversity 

and propensity according to the time of the day, age groups, distance, day of the week, 

educational status, gender, transaction amounts and transactions by loyal customers for 

each merchant. Their results show that customers who belong to a specific age group and 

visit merchants in specific times of the day enable merchants to generate high revenues. 

On the other hand, diversity in age groups and visitation times of the customers provide 

stability in merchants’ revenue. In addition, their research also has a positive impact on 

merchants to reach the potential target of customers like correct age groups, in correct 

days or hours for further marketing campaigns. 

Singh et al. (2013) use a data set of 52 adults forming 26 couples and consisting 

of their self-reported spending data and social interaction patterns including phone calls, 

SMS logs and face-to-face interaction. They use diversity and loyalty features, and also 

introduce overspending that measures the ratio of actual monthly spending to the self-

reported income in a survey. Naïve Bayes method is used to predict the spending behavior 

of couples. The study shows that social behavior measurements extracted from face-to-

face interaction, call, and SMS logs have predictive power on spending behavior for 

couples with regard to exploring various businesses, becoming loyal customers, and 

overspending. The results also indicate that mobile phone based social interactions can 

provide more predictive power on spending behavior compared to other features. 

Dong et al. (2017) argue that social bridges between communities result in 

similarity in their purchase behavior. The authors define social bridge as people who live 

in different communities but work at closer locations. Therefore, people who work in 
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same or close workplaces possibly interact and exchange information between one 

another.  They define three behavioral indices which are the number of unique co-visited 

stores by customers in different pre-defined communities, the similarity of temporal 

distributions of purchases made by customers from different communities and the sum of 

absolute differences in median spending amount in the merchant categories. Their results 

show that social bridges indicate a much stronger similarity in purchasing behaviors 

compared to sociodemographic and income.  They also find out that females are affected 

more by social bridges compared to males.   

Clemente et al. (2017) group the consumers into five different segments according 

to their similarity in purchasing sequences to identify their lifestyles. They use credit card 

transaction data set that contains age, gender, and residential zip code of the consumers 

combined with mobile phone data.  The results show that the segments are also 

differentiated in terms of demographic properties like gender and age.  

Like the study of Clemente et al. (2017), Guidotti et al. (2018) also examine the 

regularities of temporal purchasing behavior of consumers. The authors extract 

purchasing profiles of customers from a retailer data set to distinguish them according to 

shopping behavioral patterns. The behavioral characteristics are grouped under two titles. 

Regular customers that do not involve large number of temporal purchasing behavior 

patterns and changing customers that involve several types of behavioral patterns. The 

target of the study is to offer personalized services to the customers based on their 

temporal purchasing behavior.  

Krumme et al. (2013) investigate the predictability of customers’ store visitation 

patterns using transactional data. The authors compute temporally uncorrelated entropy, 

which takes into account only the frequencies of store visits not containing sequences, 

and sequence dependent entropy, which takes into account sequence of store visitations. 

Their results suggest that although predicting the next shopping place of customer 

involves too much uncertainty, over the long run, the behaviors show regularities and 

become predictable.   

 Eagle et al. (2010) use communication network data and national census data in 

their study to examine the relation between social networks and socioeconomic 

opportunities. They measure individuals’ social and spatial diversity with the Shannon 
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entropy formula. Their findings show that there is a positive association between peoples’ 

diversification in relationships and the economic development of communities. 

 The study of Song et al (2010) shows that individual mobility can be predicted 

with a 93% potential. They use a mobile phone data set containing 50,000 users. They 

introduce three entropy measurements: Random entropy, Temporal-uncorrelated entropy 

and Actual entropy to find a relation between the random and the regular human mobility. 

The authors point out that predicting human actions can guide urban planning and traffic 

engineering, thus it may have positive impact on societies’ well-being. 

2.2 Shopping Place Choice and Patronage 

People determine where to shop according to factors like atmosphere of the shopping 

place, physical characteristics of the shopping place such as parking lots, distance to 

travel, variety of the stores or products offered, or the services such as those involving 

entertainment. In this section, we present the studies in the literature related to shopping 

place choice and consumers patronage intentions. 

Huff (1964) develop a gravity- based model commonly known as the Huff model, 

which attempts to describe customers’ patronage behavior. He comes up with three 

significant results. The first result shows that people patronize shopping areas that are 

closer to their home or work places. The second one indicates that for the different types 

of goods offered, how far consumers are willing to travel changes. Lastly, people tend to 

shop more in shopping places with a variety of merchants. 

Hart et al. (2007) investigate the shopping experience of customers’ impact on 

their re-patronization behavior to the specific shopping malls. The authors examine the 

relation between perceived image of shopping malls and enjoyment of shopping 

experience, between enjoyment of shopping experience in a particular mall and the re-

patronization behavior, and also between the gender differences and re-patronization 

behavior. They conduct a questionnaire in the United Kingdom to test these three 

relationships. They present four elements which are thought to have an impact on 

shopping enjoyment experience: accessibility, environment, atmosphere, and service 

personnel. Their results show that the enjoyment of shopping experience is related with 

these four elements and people are willing to re-patronize the shopping places where they 

enjoy. In addition, the results indicate that men are more loyal to their specific shopping 
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places and for women shopping enjoyment is more related with browsing a variety of 

shopping locations and comparing different alternatives while choosing a shopping place. 

One of the main reasons that consumers care about store choice is the variety 

offered. Consumers are more likely to patronize specific stores which offer more varied 

assortments and thus make it easy to find what they plan to buy. Therefore, retailers try 

to figure out how consumers perceive the variety and how this perception impacts store 

choice and satisfaction of consumers. Hoch et al. (1999) develop a mathematical model 

of perceived variety depending upon spatial locations of objects and their multi-attribute 

structure by adding psychological set of restrictions on the variety model. The findings 

show that people mostly choose stores which are perceived as offering high variety of 

assortments. They conclude that perceived variety will influence store choice when there 

is uncertainty in the preferences of consumers such as when they do not know which 

product to buy or which store sells it. 

Hozier and Stem (1985) use a dataset which is generated from a mail-based survey 

to examine the association between outshopping behavior and retail patronage loyalty. 

Their results show that loyalty has a stronger relationship with outshopping behavior 

compared to attitudes toward local retailer attributes or demographic variables. They 

conclude that the unexplained part in outshopping behavior may come from the services 

offered such as entertainment or gravity related variables. 

Sit et al. (2003) study the impact of entertainment attributes on shopping mall 

patronage and aim to identify the entertainment seeking shopper segment. First, the 

authors explore the elements that are important of shopping mall image for shoppers. In 

the second part, they cluster the shoppers into six segments according to determined 

attributes: merchandising, macro-accessibility, micro-accessibility, personal service, 

amenities, ambulance, atmospherics, specialty entertainment, special event 

entertainment, food, and security. The identified six segments are the entertainment 

shopper, serious shopper, demanding shopper, convenience shopper, apathetic shopper, 

and service shopper. They introduce entertainment shoppers who see shopping as a 

leisure activity that can do entertainment activities, socializing or browsing.  

Haj-Salem et al. (2016) investigate the elements that lead to shopping place 

loyalty in the context of shopping malls and different perceptions among genders that 

lead to mall loyalty. They conduct a questionnaire in two shopping malls located in North 
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America. Their results indicate that males are affected by atmosphere, prices, and 

identification with the place. On the other hand, females are affected by the atmosphere, 

physical design of the place and the quality of products and services. 

2.3 Gender Differences in Shopping Experience 

Kruger and Byker (2009) argue that gender difference in shopping experience is 

influenced by foraging strategies adapted in humankind. Although the environment that 

hunters and gatherers were living and the challenges they faced have changed, they are 

operating in a same way using same behavioral repertoire (Hantula, 2003). The context 

of foraging has been shifted to grocery stores, shopping-malls, and websites instead of 

hunting and gathering due to the cultural evaluation (Hantula, 2003). In this section, we 

present the articles that study the gender differences in shopping experience. 

 Bakewell and Mitchell (2004) investigate the shopping decisions of males. In 

order to do this, they use the Consumer Style Inventory developed by Sproles and Kendall 

(1986) that profiles consumers according to their decision-styles by categorizing them 

using eight factors (price/ value consciousness, perfectionism, brand consciousness, 

novelty/ fashion consciousness, habitual/ brand-loyal, recreational shopping 

consciousness, impulsive/careless and confused by over choice). The authors also add 

four factors: store-loyal/low-price seeking, time-energy conserving, confused time 

restricted and store-promiscuity to the Consumer Style Inventory. They conduct a survey 

with 245 male undergraduate students. Their findings indicate that there are differences 

in decision-making styles among males and females. Although some male customers 

perceive shopping as a leisure activity, the majority of them perceive shopping as a time- 

and energy-consuming event. Therefore, the majority of male customers shop from the 

same stores or are indifferent to the stores to spend less time for shopping. In addition to 

that, they observe brand consciousness in male shoppers. As a result, they conclude that 

since the male shoppers have different shopping decisions compared to females, a 

consumer style inventory specific to males is needed. 

 The study of Teller and Thomson (2012) suggests that there is a gender difference 

in the perception of accessibility-related attributes of shopping locations like parking and 

infrastructure. Males care more about the logistics of the shopping effort since they do 

not prefer to spend time in shopping. However, their findings show that the 
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agglomeration’s attractiveness which constitutes of atmosphere and store variety is 

perceived the same by females and males.  

Noble et al. (2006) examine which factors influence loyalty to local merchants. 

They use survey data on consumers’ choice on where to shop without having restrictions 

to local merchants. Their findings indicate that women seek wide assortments and are 

motivated by the opportunities for browsing products, whereas men search for 

convenience during shopping. Therefore, women enjoy shopping experience and socially 

interact during that time. On the other hand, men try to spend less time while browsing 

or they interact less socially. As a result, the findings show that gender difference has an 

impact on shopping motivation, which effects local merchant loyalty. In addition to that, 

authors highlight that women are more likely to be loyal to local merchants that is 

explained by their dependence on the community where they live. 

Alreck and Settle (2002) introduce two different shopping styles that consumers 

practice while purchasing goods. One is concerned with spending large amounts of time 

and energy to shop for the best alternative while enjoying the experience. The other one 

is concerned with shopping for only the required goods while minimizing the shopping 

time and effort without having pleasure from the shopping experience. The authors 

conduct a survey on adults involving questions about shopping attitude, shopping style, 

image profile and demographic status. Their findings show that women are more likely 

to enjoy shopping experience and perceive shopping as a social activity. On the other 

hand, men tend to prefer stores which enable them to find their required goods easily 

without wasting time and effort.  

Apart from recreational differences among gender in shopping experience, 

Grewal et al. (2003) examine the waiting duration expectations and store atmosphere 

differences in store patronage. They examine customers’ behavior in a jewelry store 

where the participants in the experiment are unfamiliar with the store. Jewelry store is 

selected as a place where a special service from the employers is required, unlike the retail 

stores such as supermarkets and discount stores where customers mostly experience 

shopping by themselves while browsing for products or trying them. Their findings show 

that men have less tolerance to waiting compared to women, so long waiting times during 

shopping will likely decrease their patronization of the store.    
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Mitchell and Walsh (2004) investigate the usability of the consumer style 

inventory and determine the differences in decision-making styles of German female and 

male consumers. Their results show that only four factors are significant in both gender, 

which are consciousness, perfectionism, over choice and impulsiveness. For the male 

consumer, the distinctive characteristics like satisfying, time restriction and economy 

indicate that males are more likely to minimize their shopping time. Also, fashion sale 

seeking characteristic shows that males are more responsive to sale and they track sale 

times. On the other hand, for female customers, characteristics such as recreation indicate 

that they gain pleasure while shopping and perceive shopping as a leisure time activity. 

In addition to that, females tend to show more variety seeking behavior to shop for new 

goods. The authors conclude that there is a need to modify the customer style inventory 

due to the gender differences in consumer decision making. 

Otnes and McGrath (2001) offer a different perspective compared to the previous 

studies in the literature presented so far. They argue that the shopping behavior 

differences among genders are not as distinct as indicated in other studies. In addition, 

they state that men’s behaviors are stereotyped in the previous studies which is not an 

accurate reflection of reality. In this study, they analyze the validity of the three male 

shopper stereotypes: Grab and Go, Whine and/or Wait, Fear of Feminine. Grab and Go 

refers to the need-driven purchasing behavior of men and not perceiving shopping as a 

social or recreational activity. Whine and/or Wait suggests that men get bored while 

accompanying their partners and young men get unhappy with shopping experience. Fear 

of Feminine suggests that men stay away from shopping behavior or products which 

connote feminism. The authors make personal interviews to understand men’s shopping 

experience in detail. According to the Jump and Haas (1987), the demographic properties 

such as high level of education and income associate with the less traditional gender roles. 

Otnes and McGranth (2001) argue that gender transcendence among men, which can 

consist of different demographics, help to understand male shopping attitudes. 

In addition to the gender difference, Zeithaml (1985) considers demographic 

features such as female working status, income, age, and marital status to find difference 

in supermarket shopping behavior. Female or housewife-mothers are seen as the target 

group of household purchases by the marketers. However, he states that changing roles 

in the family like the increasing number of working female or divorces, and differentiated 
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demographic profiles affect individuals’ supermarket shopping behavior. Therefore, he 

argues that there is a need to adapt to these changes. 

Raajpoot et al. (2008) conduct a questionnaire in three different shopping malls 

in Montreal to analyze both gender differences and differences of working status of 

women in shopping center patronage. The authors find the following three major 

differences between women and men, which they consider as not much significant: a) 

better product assortments make women’s shopping experience more exciting; b) 

accessible places increase women’s shopping experience; c) men pay more attention to 

employee behavior in stores. The differences in shopping experience among housewife 

and working women are found much more significant. Housewives care about the 

accessibility of shopping location compared to working women. On the other hand, 

working women pay attention to employee behavior in stores and tend to re-patronize 

more if they are satisfied with the overall shopping experience. 

Evans et al. (1996) argue that social and economic influences change the gender 

roles in shopping behavior discussed in the previous studies. For instance, men start to 

get involved in shopping activity or women’s shopping habits change with their 

involvement in the workforce or with the increasing number of single mothers. They 

divide people into three shopper segments: male, working women and female 

homemakers. They analyze the social impact on these three shopper segments. Their 

results show that female homemakers perceive shopping as an important role in their lives 

due to the social norms. On the other hand, working women enjoy shopping experience 

and perceive it as a social interaction opportunity. The authors foresee that since the 

patronage intentions are affected by the social referents, males may also perceive 

shopping as a socialization opportunity and their involvement in shopping will increase 

in the future.  

The studies about gender differences in shopping experience in the literature 

indicate that women and men perceive shopping differently. Women mostly perceive 

shopping as leisure time and social activity, whereas men perceive it as a time and energy 

consuming activity. Besides women seek out wide assortments and are willing to browse 

for products more compared to men. However, some studies show that due to the change 

in role of women and men in society and family life, distinguishing shopping experience 
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according to gender only may not be accurate and one should consider other 

demographics and dimensions as well. 

2.4 Our Contribution to the Literature 

In the literature, although behavioral features such as diversity and loyalty are used in 

some studies to understand spatio-temporal behavior of individuals, none of the studies 

uses them in the shopping mall context. Secondly, past studies use survey data in order 

to distinguish shopping experience among genders and also associate with demographic 

features like working status. However, we think that individuals may not give consistent 

answers in surveys, especially men may hide their interest in shopping since shopping is 

perceived as a feminine activity. In our study, we explore the real actions of consumers 

using Big Data for the first time in the literature in this context rather than relying on 

surveys to find out their shopping experience.  Lastly, we constitute consumer segments 

according to their diversity and loyalty behaviors in shopping malls and shopping 

categories. In our findings, we obtain some segments which have not been identified 

before in previous studies. 
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CHAPTER 3 

 

 

 

DATA AND PREPROCESSING 

 

 

In this chapter, we present the dataset used in this study and explain the data preprocessing 

methods we used, which prepare our study for the detailed analyses we have conducted. 

In addition, we propose the use of two behavioral features; diversity and loyalty that give 

information about customers shopping behaviors in shopping malls. Finally, we 

demonstrate our analysis of the generated behavioral features. 

 

3.1   Data Collection  

In this study, secondary data are used which were collected by one of the leading private 

banks in Turkey. This bank has over 15 million customers, 4.8 million credit card users 

and 800 branches in total. A randomly selected sample of 62,392 customers and 

associated attributes are supplied by the bank for analysis. The time frame for the dataset 

is one year starting from July 1, 2014 to June 30, 2015. The dataset consists of 20 tables, 

269 columns and 28,075,313 rows in total. The explanations and details of each table can 

be seen in the Table 3.1. Each customer is assigned a unique anonymous ID by the bank 

and each table has these unique IDs as primary key.  
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Table 3.1: Tables Received from the Bank 

In our study, we use the Customer Demographics table and the Credit Card 

Transaction table only. Apart from the data received from the Bank, we have also 

collected shopping mall center coordinates located in Istanbul using Google Maps. Since 

new shopping malls open in Istanbul at a fast rate, all collected shopping malls opening 

dates are checked and the ones whose opening date is later than 6/30/2015 is removed 

from the analysis. In total, 66 shopping malls are selected for the study. Table 3.2 shows 

the details of the data used in the analysis.   

          

TABLE # of columns # of rows

1 CUSTOMER DEMOGRAPHICS 28 62,392             

2 CREDIT CARD INFORMATION 8 61,629             

3 BRANCH TRANSACTION 7 339,329           

4 CALL CENTER 4 165,029           

5 AUTO PAYMENT 4 143,334           

6 RISK SCORE 3 728,541           

7 CREDIT CARD TRANSACTION 11 4,254,652        

8 CREDIT CARD RECEIPT PAYMENT 5 931,100           

9 CREDIT CARD RECEIPT 8 811,786           

10 ACCOUNT BALANCE 14 748,704           

11 ATM TRANSACTION 9 1,428,180        

12 ELECTRONIC FUNDS TRANSFER 5 301,454           

13 REMITTANCE 7 164,838           

14 MOBILE & INTERNET 8 14,340,122     

15 RESPONSE SCORE 3 1,019,506        

16 CAMPAIGN BATCH 9 819,013           

17 CAMPAIGN 7 133,511           

18 PRODUCT OWNERSHIP & ACTIVITY 102 748,705           

19 CUSTOMER ACTIVENESS 3 811,096           

20 CHURN 24 62,392             

269 28,075,313     TOTAL

Customer Demographics Data

Customer Masked ID

Customer Segment

Branch Code

Branch Coordinates (X and Y)

Customer Home Coordinates (X and Y)

Customer Workplace Coordinates (X and Y)

Gender

Marital Status

Education

Job Type

Income

Age

Bank Age

Risk Code

Credit Card Transactions Data

Customer Masked ID

Date

Time

Amount

Merchant Type

Merchant Masked ID

Online Transaction

Expense Type

Currency

Coordinates (X and Y)
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Table 3.2: Collected Data for Study 

 

3.2   Data Preprocessing 

Our study focuses on transactions located in Istanbul which has population over 15 

million and is the 8th largest city in the world ("Population of Cities in Turkey (2018)"). 

Istanbul is a large metropolitan consisting of people having a variety of purchasing power 

and shopping behavior. The data received from the bank consists of credit card 

transactions distributed across entire Turkey. The first preprocessing step therefore 

involves selecting credit card transactions located in Istanbul only. The QGIS software is 

used in order to extract transactions which are located in Istanbul. A fitting rectangle is 

drawn around Istanbul borders and the data points inside the rectangle are extracted for 

further analysis. The rectangle involves some data points located in neighboring 

provinces close to the borders, which are also considered. Figure 3.1 shows the 

distribution of the extracted credit card transactions. After this step, 2,733,293 credit card 

transactions remain out of 4,254,652 in total. Reducing the number of rows also allows 

better computational efficiency for further analysis in the study. 

 

Figure 3.1: Credit Card Transaction Distribution across Istanbul 

Shopping Mall Data

Shopping Mall Name

Latitude

Longitude
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In the second step, the distance between each transaction and each shopping mall 

is calculated. If the distance is 200 meters or less, then the transaction is assigned to that 

shopping mall and is assumed to have taken place at that mall. If multiple shopping malls 

satisfy the distance criteria, then the transaction is assigned to shopping mall which is 

closest. A sample of shopping mall locations and transactions which satisfy the criteria 

can be seen in the Figure 3.2. The red dots represent the locations of the shopping malls 

and the green dots represent the transactions that are counted within the assigned 

shopping malls. The Haversine formula given below is used to calculate the great-circle 

distance between shopping mall locations and transaction locations:  

𝑑𝑙𝑜𝑛 = 𝑙𝑜𝑛2 − 𝑙𝑜𝑛1 

𝑑𝑙𝑎𝑡 = 𝑙𝑎𝑡2 − 𝑙𝑎𝑡1 

𝑎 =  sin2 (
𝑑𝑙𝑎𝑡

2
) + cos(𝑙𝑎𝑡1) ∗ cos(𝑙𝑎𝑡2) ∗ sin2(

𝑑𝑙𝑜𝑛

2
) 

𝑐 = 2 ∗ 𝑎𝑡𝑎𝑛2(√𝑎 , √1 − 𝑎 ) 

𝑑 = 𝑅 ∗ 𝑐  (where R is the radius of the Earth 6,371km)                                           (3.1)                                                                                                              

The calculations are done in the R programming language and the geosphere 

package is used for applying Haversine formula. The results are transferred to the credit 

card transaction data table in a new column.  For each transaction, the assigned shopping 

mall name (or NA, if no shopping mall is assigned) is entered in this column. 

 

Figure 3.2: Shopping Mall and Transaction Locations 
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The transaction data table has a merchant type column, which is coded with numeric 

values. The descriptions of merchant types are provided in a different table which consists 

of category, merchant type, category name and description. In the third step, some 

categories are removed, and some new categories are generated for our further analysis. 

Since our analysis focuses on shopping malls, the categories which cannot occur in 

shopping malls like car rental, gas station, accommodation and airways are removed. In 

addition, some merchant types are also removed from categories. For instance, school 

payments are eliminated from Education / Stationery / Office Equipment category and 

hospital payments are eliminated from Health / Healthcare Products category. On the 

other hand, some new categories such as Cosmetics and Entertainment are generated.  

Cosmetics is separated from Health / Healthcare Products category and Entertainment is 

separated from Service Sectors category according to category names. Out of 24 

categories which are supplied by the bank, we produce 14 categories, which we assume 

could take place in shopping malls. The list of categories is shown in Table 3.2. In this 

table, Entertainment corresponds to places such as cinemas, amusement parks, 

aquariums, Food corresponds to restaurants and fast-food restaurants, Education / 

Stationary / Office Equipment corresponds to bookstores, hobby stores, stationaries gift 

shops, Health / Healthcare Products corresponds to pharmacies, Service Sectors 

correspond to locations like dry cleaning, flower stores, pet shops, photo studios and 

Various Food corresponds to places like bakeries, confectioners and tobacco shops. 

 

Table 3.3: Categories Used in the Study 

After finalizing the category table, in our fourth step, data integration is performed 

to merge different tables into a single table. All customers are represented with a unique 

anonymous customer ID common to all tables. Customer Demographics and Credit Card 

Category

Clothing and Accessory

Electronic Appliance, Computer

Cosmetics

Construction Materials, Hardware Store

Furniture and Decoration

Entertainment

Food

Education/ Stationery/ Office Equipment

Health / Healthcare Products

Supermarket

Goldsmiths

Service Sectors

Various Food

Telecommunications
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Transactions tables are merged based on the customer ID. In addition, the Category Table 

is merged along with the merchant types into the newly constituted table. After this 

integration, data cleaning is performed to prepare the data for further analysis. 

The last step of our data preprocessing is data cleaning. After merging the data 

tables, transactions with missing value are deleted. Online transactions, which are 

indicated by a binary variable with value 1 are deleted from the analysis. The customers 

who have a total number of transactions less than 12 and have at most 2 shopping mall 

transactions in one year are considered as inactive and eliminated from the analysis. In 

addition, the transactions which are not assigned to any shopping mall are removed from 

the dataset. In the end, 4,254,652 transactions are reduced to 150,828 transactions and 

62,392 customers are reduced to 14,843 customers. 

 

3.3   Feature Extraction 

In our analysis, we generate behavioral features for each customer. We use their credit 

card transaction information in order to extract these behavioral features. 

 

3.3.1 Diversity 

We calculate diversity which means that a customer’s shopping behavior can vary over 

various “bins”. In our case, bins are defined as shopping malls, shopping categories and 

shopping days of the week. 𝑝𝑖𝑗 refers to the fraction of transactions that fall within bin j 

for each customer i. That is, 𝑝𝑖𝑗 is calculated for each customer for each bin. Then we 

calculate the diversity of each customer i by normalizing the entropy of transactions 

counted in all bins by N, where N denotes the total number of bins. The diversity formula 

is given below:    

 

𝐷𝑖 =
− ∑ 𝑝𝑖𝑗𝑙𝑜𝑔𝑝𝑖𝑗

𝑁
𝑗=1  

𝑙𝑜𝑔𝑁
                                                                                                      (3.2) 

Due to the normalization, the resulting values 𝐷𝑖 are between 0 and 1. Numbers 

closer to 1 mean higher diversity values for customers. For instance, when a customer 

transacts equally in almost every different shopping mall, the diversity value becomes 

almost 1. 
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Singh et al. (2015) use the same diversity formula in their study with a single 

difference. They use M for normalization instead of N, which denotes the total number of 

non-empty bins instead of the total number of bins. In this case, when a customer spreads 

his or her transactions almost equally across different bins, then the diversity value 

becomes high. In our case, however, we prefer the diversity value to be high when the 

transactions are diversified equally to all bins, so we use a modified version of the 

Shannon entropy formula used by Singh et al. (2015). 

3.3.2 Behavioral Features Generated Using Diversity Formula 

Shopping Mall Diversity: The bins are taken as shopping malls and the transaction 

diversity across shopping malls for each customer is calculated. Values of the shopping 

mall diversity close to 1 indicate that a customer does her credit card transactions in a 

large variety of shopping malls. 

Category Diversity: The bins are taken as shopping categories and the transaction 

diversity across shopping categories for each customer is calculated. Values of the 

category diversity close to 1 indicate that a customer does her credit card transactions in 

a large variety of categories. 

Shopping Mall Diversity for each Individual Shopping Category: Shopping malls are 

again used as bins similar to shopping mall diversity, however, transactions are filtered 

according to shopping categories and 14 different diversity scores are calculated for each 

category for each customer. 

Day Diversity: Days of the week are used as bins and for each customer, the shopping 

day diversity is calculated for the purchases made during the one-year period. Values of 

the day diversity close to 1 indicate that a customer makes purchases equally in various 

days of the week. 

3.3.3 Loyalty 

Loyalty is defined as the percentage of a customer’s transactions that take place in his or 

her k most frequented bins. Let fi be the combined fraction of all transactions of customer 

i that occur in the top k most frequented bins. The loyalty of each customer i is calculated 

by the formula given below: 

 

𝐿𝑖 =
𝑓𝑖

∑ 𝑝𝑖𝑗
𝑁
𝑗=1

                 (3.3) 
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Loyalty values are between 0 and 1. Larger loyalty values indicate high loyalty 

behaviors of a customer towards given bins. 

 

3.3.4 Behavioral Features Generated Using Loyalty Formula 

Shopping Mall Loyalty: The bins are taken as shopping malls and the value k is taken as 

2. The value two typically indicates the shopping malls, one close to customer’s working 

place and one close to customer’s house. Larger values in shopping mall loyalty score 

show that a customer makes most of the transactions in the top two visited shopping malls. 

Category Loyalty: The bins are taken as shopping categories and the value k is taken as 

2. Larger values in shopping category loyalty score show that a customer makes most of 

her transactions in two most preferred categories out of 14 categories. 

Shopping Mall Loyalty for Individual Category: Shopping malls are used as bins like the 

shopping mall loyalty, however, transactions are filtered according to shopping categories 

and 14 different loyalty scores are calculated for each customer.  

Day Loyalty: The bins are taken as days of the week and the value k in the equation is 

taken as 2. The loyalty scores closer to 1 show that a customer has made most of her 

purchases in two days of the week. 

Table 3.4 indicates the demographical, behavioral, and financial features used in our 

study. The dataset consists of 6 demographic features. The first feature X1 is the unique 

ID of customers, and the remaining features X2-X6 are the age, the education status, the 

gender, the marital status, and the job type of the customer, respectively. X7 and X8 are 

the shopping mall diversity and the category diversity calculated for each customer 

according to the shopping mall bins and shopping category bins of transactions. X9 to 

X22 show the diversity for each shopping category according to the shopping mall bins. 

X23 and X24 are the shopping mall loyalty and the category loyalty calculated for each 

customer according to the shopping mall bins and shopping category bins of transactions.  
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Table 3.4: Feature Properties 

X25 through X38 are the loyalty features for each shopping category according to the 

shopping mall bins. X39 and X40 indicate the shopping day diversity and loyalty that are 

calculated according to the days of the week as bins. X41 indicates the average transaction 

amount for each customer. 

 

Feature Num. Future Name Data Type Feature Type

X1 Customer ID Integer Demographic

X2 Age Double Demographic

X3 Education Status Text Demographic

X4 Gender Text Demographic

X5 Marital Status Text Demographic

X6 Job Type Text Demographic

X7 Shopping Mall Diversity Double Behavioral

X8 Category Diversity Double Behavioral

X9 Clothing and Accessory Diversity Double Behavioral

X10 Electronic Appliance, Computer Diversity Double Behavioral

X11 Cosmetics Diversity Double Behavioral

X12 Construction Materials, Hardware Store Diversity Double Behavioral

X13 Furniture and Decoration Diversity Double Behavioral

X14 Entertainment Diversity Double Behavioral

X15 Food Diversity Double Behavioral

X16 Education/ Stationery/ Office Equipment Diversity Double Behavioral

X17 Health / Healthcare Products Diversity Double Behavioral

X18 Supermarket Diversity Double Behavioral

X19 Goldmiths Diversity Double Behavioral

X20 Service Sectors Diversity Double Behavioral

X21 Various Food Diversity Double Behavioral

X22 Telecommunications Diversity Double Behavioral

X23 Shopping Mall Loyalty Double Behavioral

X24 Category Loyalty Double Behavioral

X25 Clothing and Accessory Loyalty Double Behavioral

X26 Electronic Appliance, Computer Loyalty Double Behavioral

X27 Cosmetics Loyalty Double Behavioral

X28 Construction Materials, Hardware Store Loyalty Double Behavioral

X29 Furniture and Decoration Loyalty Double Behavioral

X30 Entertainment Loyalty Double Behavioral

X31 Food Loyalty Double Behavioral

X32 Education/ Stationery/ Office Equipment Loyalty Double Behavioral

X33 Health / Healthcare Products Loyalty Double Behavioral

X34 Supermarket Loyalty Double Behavioral

X35 Goldmiths Loyalty Double Behavioral

X36 Service Sectors Loyalty Double Behavioral

X37 Various Food Loyalty Double Behavioral

X38 Telecommunications Loyalty Double Behavioral

X39 Day Diversity Double Behavioral

X40 Day Loyalty Double Behavioral

X41 Average Transaction Amount Double Financial
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3.4   Descriptive Statistics 

In this part, we report the descriptive statistics of our features in Table 3.3 including their 

minimum (Min), maximum (Max), mean, median, first quartile (1st QU) and third quartile 

(3rd Qu), standard deviation (Std Dev) and the number of missing attributes (NA’s) for 

numeric features and number of occurrences for categorical features.   

Demographic Features 

   Age       Education Status                                                  Job Type 

Min: 19 Primary School: 441 Private Sector Employee: 10297 

1st Qu: 31 Middle School: 684 Public Servant: 1282 

Median: 37 High School: 5540 Retiree: 1060 

Mean: 38.56 College: 1458 Self-Employed: 1784 

3rd Qu: 45 University: 5756 Non-Employed: 93 

Max: 83 Master: 734 Housewife: 212 

Std Dev: 9.56 PhD: 63 Other: 115 

   Uneducated: 157    

   Unknown: 10    

        

  Gender                    Marital Status  
Female: 6946 Single: 3527    

Male: 7897 Married: 10115    

   Divorced: 778    

   Unknown: 423    

            

Table 3.5: Descriptive Statistics of Demographic Features 

 

Behavioral and Financial Features 

  Shopping Mall Diversity 

 
Category Diversity 

Clothing and Accessory 

Diversity 

Min: 0.0000 Min: 0.0000 Min: 0.0000 

1st Qu: 0.0979 1st Qu: 0.1554 1st Qu: 0.0000 

Median: 0.1632 Median: 0.2412 Median: 0.1519 

Mean: 0.1757 Mean: 0.2536 Mean: 0.1283 

3rd Qu: 0.2620 3rd Qu: 0.3871 3rd Qu: 0.2250 

Max: 0.5517 Max: 0.7434 Max: 0.5122 

Std Dev: 0.1183 Std Dev: 0.1680 Std Dev: 0.1162 

NA's: 0 NA's: 0 NA's: 1273 

Electronic Appliance, 

Computer Diversity 
Cosmetics Diversity 

Construction Materials, 

Hardware Store Diversity 

Min: 0.0000 Min: 0.0000 Min: 0.0000 
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1st Qu: 0.0000 1st Qu: 0.0000 1st Qu: 0.0000 

Median: 0.0000 Median: 0.0000 Median: 0.0000 

Mean: 0.0220 Mean: 0.0310 Mean: 0.0010 

3rd Qu: 0.0000 3rd Qu: 0.0000 3rd Qu: 0.0000 

Max: 0.3640 Max: 0.3840 Max: 0.1650 

Std Dev: 0.0585 Std Dev: 0.0691 Std Dev: 0.0144 

NA's: 10881 NA's: 11045 NA's: 13949 

Furniture and Decoration 

Diversity 
Service Sectors Diversity 

Education/ Stationery/ Office 

Equipment Diversity 

Min: 0.0000 Min: 0.0000 Min: 0.0000 

1st Qu: 0.0000 1st Qu: 0.0000 1st Qu: 0.0000 

Median: 0.0000 Median: 0.0000 Median: 0.0000 

Mean: 0.0360 Mean: 0.0020 Mean: 0.0030 

3rd Qu: 0.0000 3rd Qu: 0.0000 3rd Qu: 0.0000 

Max: 0.3840 Max: 0.1650 Max: 0.3180 

Std Dev: 0.0730 Std Dev: 0.0197 Std Dev: 0.0265 

NA's: 10101 NA's: 14703 NA's: 14570 

Goldsmiths Diversity Entertainment Diversity Supermarket Diversity 

Min: 0.0000 Min: 0.0000 Min: 0.0000 

1st Qu: 0.0000 1st Qu: 0.0000 1st Qu: 0.0000 

Median: 0.0000 Median: 0.0000 Median: 0.0000 

Mean: 0.0038 Mean: 0.0030 Mean: 0.0100 

3rd Qu: 0.0000 3rd Qu: 0.0000 3rd Qu: 0.0000 

Max: 0.1654 Max: 0.3180 Max: 0.2760 

Std Dev: 0.0244 Std Dev: 0.0265 Std Dev: 0.0388 

NA's: 14562 NA's: 14570 NA's: 11048 

 

Food Diversity 

 

Telecommunications Diversity 
Health / Healthcare Products 

Diversity 

Min: 0.0000 Min: 0.0000 Min: 0.0000 

1st Qu: 0.0000 1st Qu: 0.0000 1st Qu: 0.0000 

Median: 0.0000 Median: 0.0000 Median: 0.0000 

Mean: 0.0310 Mean: 0.0020 Mean: 0.0100 

3rd Qu: 0.0000 3rd Qu: 0.0000 3rd Qu: 0.0000 

Max: 0.3720 Max: 0.1650 Max: 0.2620 

Std Dev: 0.0657 Std Dev: 0.0158 Std Dev: 0.0404 

NA's: 11588 NA's: 14702 NA's: 13120 

Various Food Diversity Shopping Mall Loyalty  Category Loyalty 

Min: 0.0000 Min: 0.2857 Min: 0.0000 

1st Qu: 0.0000 1st Qu: 0.7500 1st Qu: 0.8000 

Median: 0.0000 Median: 0.9565 Median: 1.0000 

Mean: 0.0080 Mean: 0.8699 Mean: 0.8980 

3rd Qu: 0.0000 3rd Qu: 1.0000 3rd Qu: 1.0000 

Max: 0.2620 Max: 1.0000 Max: 1.0000 

Std Dev: 0.0365 Std Dev: 0.1581 Std Dev: 0.1327 

NA's: 13980 NA's: 0 NA's: 0 
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Clothing and Accessory 

Loyalty 

Electronic Appliance, Computer 

Loyalty 
Cosmetics Loyalty 

Min: 0.2870 Min: 0.5380 Min: 0.4000 

1st Qu: 0.8571 1st Qu: 1.0000 1st Qu: 1.0000 

Median: 1.0000 Median: 1.0000 Median: 1.0000 

Mean: 0.9206 Mean: 0.9960 Mean: 0.9910 

3rd Qu: 1.0000 3rd Qu: 1.0000 3rd Qu: 1.0000 

Max: 1.0000 Max: 1.0000 Max: 1.0000 

Std Dev: 0.1357 Std Dev: 0.0350 Std Dev: 0.0497 

NA's: 1274 NA's: 10882 NA's: 11045 

Furniture and Decoration 

Loyalty 

Construction Materials, 

Hardware Store Loyalty 
Service Sectors Loyalty 

Min: 0.4000 Min: 0.5380 Min: 1.0000 

1st Qu: 1.0000 1st Qu: 1.0000 1st Qu: 1.0000 

Median: 1.0000 Median: 0.0000 Median: 1.0000 

Mean: 0.9910 Mean: 0.9960 Mean: 1.0000 

3rd Qu: 1.0000 3rd Qu: 1.0000 3rd Qu: 1.0000 

Max: 1.0000 Max: 1.0000 Max: 1.0000 

Std Dev: 0.0505 Std Dev: 0.0350 Std Dev: 0.0000 

NA's: 10102 NA's: 10882 NA's:  14703 

 

Education/ Stationery/ 

Office Equipment Loyalty 

 

Various Food Loyalty Entertainment Loyalty 

Min: 0.5000 Min: 0.6670 Min: 0.6000 

1st Qu: 1.0000 1st Qu: 0.0000 1st Qu: 1.0000 

Median: 1.0000 Median: 1.0000 Median: 1.0000 

Mean: 0.9930 Mean: 0.9980 Mean: 0.9980 

3rd Qu: 1.0000 3rd Qu: 1.0000 3rd Qu: 1.0000 

Max: 1.0000 Max: 1.0000 Max: 1.0000 

Std Dev: 0.0424 Std Dev: 0.0206 Std Dev: 0.0242 

NA's: 12504 NA's: 13981 NA's: 14570 

Goldsmiths Loyalty Food Loyalty Supermarket Loyalty 

Min: 1.0000 Min: 0.4000 Min: 0.6670 

1st Qu: 1.0000 1st Qu: 1.0000 1st Qu: 1.0000 

Median: 1.0000 Median: 1.0000 Median: 1.0000 

Mean: 1.0000 Mean: 0.9860 Mean: 0.9990 

3rd Qu: 1.0000 3rd Qu: 1.0000 3rd Qu: 1.0000 

Max: 1.0000 Max: 1.0000 Max: 1.0000 

Std Dev: 0.0000 Std Dev: 0.0654 Std Dev: 0.0179 

NA's: 14563 NA's: 11590 NA's: 11048 

Telecommunications 

Loyalty 

Health / Healthcare Products 

Loyalty 
 Shopping Day Loyalty 

Min: 1.0000 Min: 0.3330     Min:          0.3077 

1st Qu: 1.0000 1st Qu: 1.0000  1st Qu:    0.5833 

Median: 1.0000 Median: 1.0000  Median:    0.7000 

Mean: 1.0000 Mean: 0.9740  Mean:    0.7243 
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3rd Qu: 1.0000 3rd Qu: 1.0000  3rd Qu:    0.8571 

Max: 1.0000 Max: 1.0000 Max:     1.0000 

Std Dev: 0.0000 Std Dev: 0.1056 Std Dev:     0.1872 

NA's: 14702 NA's: 13120 NA’s:     0 

Shopping Day Diversity Average Transaction Amount  

Min: 0.0000 Min: 3.787   

1st Qu: 0.4615 1st Qu: 58.487   

Median: 0.5929 Median: 94.322   

Mean: 0.5917 Mean: 165.080   

3rd Qu: 0.7733 3rd Qu: 162.290   

Max: 0.9967 Max: 19037.33   

Std Dev: 0.2294 Std Dev: 366.7205   

NA's: 0            NA's: 0   

Table 3.6: Descriptive Statistics of Behavioral and Financial Features 

3.5   Explanatory Data Analysis 

In this section, we present the explanatory analysis we have done, before constructing 

models. 

3.5.1 Dispersion of Customers’ Transaction Counts 

Figure 3.3 shows the histogram of customers’ yearly total transaction count in shopping 

malls located in Istanbul. The minimum number of transactions is 3 and the maximum 

number of transaction is 611.  The average transaction count of customer’s in the data set 

is 10.17. 80% of the transaction counts are between 3 and 40. 

 

Figure 3. 3: Histogram of Customers' Yearly Transaction Count in Shopping Malls 
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3.5.2 Diversity and Loyalty Analysis  

The cumulative density function (CDF) of diversity in Figure 3.4 shows that the 

customers are more diverse in terms of their shopping categories for transactions made in 

shopping malls than the shopping malls they visited. In addition, 20% of the customers 

have a diversity score of 0 for either location or category, which means that they have 

done their purchases on the same shopping mall or on the same category.  

 

Figure 3. 4: Cumulative Density Function (CDF) of Diversity 

The cumulative density function (CDF) of diversity in Figure 3.5 indicates that 

approximately 95% of the purchases are done in the two most preferred shopping malls 

by customers.  In addition, nearly half of the customers make all their purchases on their 

most preferred two categories in shopping malls. 

 

Figure 3. 5: Cumulative Density Function (CDF) of Loyalty 

3.5.3 Category Diversity and Category Loyalty Analysis  

Distinct customer numbers that are calculated by counting the number of customers who 

make a purchase in a given shopping category can be seen in Figure 3.6. The top six 
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category that have the highest number of distinct customer counts are selected for the 

analysis. These are Clothing and Accessory, Furniture and Decoration, Electronic 

Appliance and Computer, Cosmetics, Supermarket, and Food. 

 

Figure 3. 6: Distinct Customer Counts by Category 

Figure 3.7 shows that people are more diverse in Clothing and Accessory purchases 

in shopping malls. In other words, people prefer to visit various shopping malls and make 

purchases for Clothing and Accessory. The second most diverse category is Furniture and 

Decoration and the least diverse category among the selected six categories is 

Supermarket purchases. 

 

Figure 3. 7: Cumulative Density Function (CDF) of Category Diversity 

 

People prefer to shop in same shopping malls they used to go for categories: 
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Computer. On the other hand, Figure 3.8 shows that people are more likely to do their 

Clothing and Accessory purchases in different shopping malls rather than their most 

preferred two shopping malls they used to go.  

 

Figure 3. 8: Cumulative Density Function (CDF) of Category Loyalty 
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CHAPTER 4 

 

 

 

METHODOLOGY 

 

 

In this chapter, we explain the algorithms that we use in this study. First, in order to 

segment customers according to their shopping behavior, we use K- means clustering 

algorithm, which is a part of unsupervised learning. Secondly, we provide explanations of 

how we classify customers into the segments that we constitute with the demographic 

information of customers. 

 

4.1   Unsupervised Learning 

Data mining approaches can be categorized into two: supervised learning and 

unsupervised learning. In unsupervised learning the data is unlabeled, and the target is to 

detect unknown patterns and recognize relationships among input measurements unlike 

predicting an outcome in supervised learning. Since the data points do not have the 

associated ground truth values, it is not possible to measure the accuracy of the outcome 

of the models in unsupervised learning. Unsupervised learning includes association rules, 

cluster analysis and principal component analysis.  

4.1.1   K-means Clustering  

K-means clustering algorithm developed by MacQueen et al. (1967) aims to partition the 

observations in a data set into k number of groups. The desired number of clusters k is 
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determined beforehand. In the first step of algorithm, k number of data points are 

randomly chosen from the dataset to become the initial set of cluster “centers”. In the 

second step, all data points are assigned to the closest center. Then each center, which is 

a vector of the feature means of the data points within its corresponding cluster, is 

recalculated for each cluster. The data points are then reassigned to the new closest center, 

and the algorithm continues to iterate until the centers of the clusters remain unchanged 

from one iteration to the next.   

In our study, we apply the K-means clustering algorithm in order to identify the 

groups of similar customers according to their shopping behaviors. We propose two 

different K-means clustering models containing either shopping mall diversity and 

category diversity or shopping mall loyalty and category loyalty. 

4.1.1.2 Determining Number of Clusters 

In our study, to determine number of clusters, we use the Elbow Method. For the number 

of clusters, k, ranging from 1 to 10, the total Within Clusters Sum of Squares (WCSS) is 

calculated. WCSS is defined as the sum of the squared distance between each data point 

in the cluster and the cluster center. The optimal number of clusters is found by the Elbow 

Method where the number of clusters k is chosen when the dramatic decrease of total 

WCSS stops at a value k. When the total WCSS is plotted against the number of clusters, 

an angle can be seen at value k and after k, it reaches a plateau (Bholowalia & Kumar, 

2014). After this value k, increasing the number of clusters will not provide better 

modelling of the data. 

 

Figure 4.1: Optimal Number of Diversity Based Clusters 



32 
 

In the two models constructed based on diversity and loyalty scores, we applied 

the Elbow Method in order to select the optimal number of clusters. In Figure 4.1 and 

Figure 4.2, it can be seen that 4 is the optimal number of clusters for both diversity based 

segments and loyalty based segments. 

 

Figure 4.2: Optimal Number of Loyalty Based Clusters 

4.2 Classification Algorithm 

We are not normally able to calculate diversity and loyalty of new customers, and hence 

assign them to existing segments, since we do not have the past data of their transactions. 

One way to assign them to existing clusters is through the use of their demographic 

features, and here we propose an approach to do that by measuring the cosine similarity 

between a customer’s demographic profile and the segment’s demographic profile. In the 

second part of our study, our aim is to foresee new customers' shopping behavior by 

considering demographics while obtaining high accuracy. In order to do this, we split our 

data into train and test sets constituting 70% and 30% of the customers, respectively. We 

apply our classification algorithm for both diversity and loyalty based segments.    

 In the first step, we apply K-means algorithm on the train set and constitute four 

different clusters. Then, we measure the distribution of the demographic properties and 

the centers of each resulting cluster. The information on demographic profiles and centers 

of each cluster can be found in Appendix A. In the third step, we use Euclidian distance 

to assign each customer in the test set to the nearest cluster using the train set centers. The 

distance between test set’s behavioral features including mall and category based values 

(testm, testc) and the train set centers (trainm, trainc) are calculated with the following 

formula (4.1). The customer is assigned to the cluster that gives the minimum Euclidian 

distance. Therefore, the assigned labels for each customer become the ground truth. 
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dist((testm, testc), (trainm, trainc)) = √(𝑡𝑒𝑠𝑡𝑚 − 𝑡𝑟𝑎𝑖𝑛𝑚)2 + (𝑡𝑒𝑠𝑡𝑐 − 𝑡𝑟𝑎𝑖𝑛𝑐)2          (4.1)                                                   

  

In the fourth step, we measure the cosine similarity between train set’s 

demographic profile and the customers in test set. Before doing that, in order to include 

significant demographic features in our model, we calculate chi-square statistics for each 

demographic property in the train set and check the significance by taking the significance 

level when p-value is less than 0.05. Our findings show that job type is not a distinguishing 

characteristic among clusters, so we exclude it in our model. We generate vectors 

composed of proportions of gender, age, marital status, and education status within its 

cluster for each cluster. In addition, for each customer, a binary vector with the customer’s 

gender, age, marital status, and education status is generated.  The sample of generated 

vectors for both segments and customers can be seen in Table 4.1. The segment names 

will be explained in Chapter 5.  

 

Table 4. 1: Sample of Demographic Property Vectors 

The cosine similarity measures the cosine of the angle between of each cluster 

vector (𝑎⃗) and customer vector (𝑏⃗⃗). The formula used to calculate cosine similarity can be 

seen in (4.2). The outcome ranges between 0 and 1, where the values closer to 1 indicate 

high similarity between the two vectors. Then the customer is assigned to the cluster which 

gives the maximum similarity measure in terms of demographic profile. 

𝑐𝑜𝑠𝜃 =
𝑎⃗⃗.𝑏⃗⃗

‖𝑎⃗⃗‖‖𝑏⃗⃗‖
                                                                                                                  (4.2) 

In the final step, we calculate the matching rate of the cosine similarity cluster 

assignments and the ground truth. The results are presented in Chapter 5. 
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Recreational Shoppers 0.53 0.47 0.73 0.18 0.07 0.02 0.10 0.54 0.29 0.07 0.01 0.01 0.03 0.29 0.10 0.47 0.08 0.01 0.01 0.00

Category Hunters 0.58 0.42 0.74 0.18 0.06 0.02 0.13 0.49 0.29 0.08 0.01 0.03 0.06 0.38 0.10 0.37 0.05 0.00 0.01 0.00

Mall Squatters 0.61 0.39 0.78 0.14 0.06 0.02 0.10 0.51 0.30 0.08 0.01 0.03 0.05 0.37 0.11 0.36 0.05 0.01 0.01 0.00

Mission Shoppers 0.69 0.31 0.78 0.15 0.04 0.02 0.09 0.51 0.32 0.07 0.01 0.05 0.06 0.48 0.08 0.27 0.03 0.00 0.01 0.00

Customer 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

Customer 2 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

Customer 3 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
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CHAPTER 5 

 

 

 

RESULTS AND DISCUSSION  

 

 

In this chapter, we give the description of constructed segments (i.e. clusters) and their 

demographic, transactional and shopping category profiles. In addition, we clarify the 

relationship between the two cluster models comprising of diversity and loyalty, and their 

constructed segments. Lastly, we present the results of our segment classifications.  

5.1   Consumer Segments  

The K-means clustering method is used to implement two different models based on 

diversity scores and loyalty scores regarding the consumers’ shopping behavior in the 

context of shopping malls and shopping categories. The following two sections give the 

detailed information about the consumer segments we identify with our dataset. 

5.1.1 Diversity Based Segmentation 

Shopping Mall Diversity scores and Category Diversity scores are used for clustering in 

order to segment consumers according to their shopping behaviors. Four different 

consumer segments are identified and labeled based on the average values of the two 

diversity scores. Figure 5.1 shows the resulting four clusters on a scatter plot. One-way 

analysis of variance (ANOVA) test shows that the average values of each feature are 

statistically different between each pair of segments at the significance level 0.05. (Table 

5.1)  
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Figure 5.1: Diversity Based Segments 

Ruiz et al. (2004) construct four segments according to the activities consumers 

perform in a shopping mall. In our study, we named the first segment as Recreational 

Shoppers, which is a name similar to the one by Ruiz et al. (2004) given to the group of 

consumers who see shopping as a social interaction and leisure activity. This segment 

comprises of 3826 customers that equals 26% of all customers. Post-hoc Tukey test 

indicates that this segment contains, on average, customers with high Shopping Mall 

Diversity scores as well as high Category Diversity scores. This segment consists of 

people who prefer to make their purchases in diversified shopping malls and diversified 

categories in the shopping malls. It can be said that these people like to walk around in 

malls to shop for various categories and also visit shopping malls in various locations, 

which is a sign that they like to enjoy the shopping experience.  

 The second segment is named as Category Hunters. This segment comprises of 

5089 customers, which is 34% of all customers. The people that take part in this segment 

have, on average, high Shopping Mall Diversity scores and low Category Diversity 

scores. This segment consists of people who make their purchases in a variety of shopping 

malls focusing on their particular categories in those shopping malls. These people have 

willingness to search for their targeted categories in various shopping malls.  
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The third segment is named as Mall Squatters. This segment comprises of 3114 

customers, which corresponds to 21% of all customers. The people who are part of this 

segment have, on average, low Shopping Mall Diversity scores and high Category 

Diversity scores. This segment consists of people who make their purchases in their 

preferred shopping malls and on various categories in those shopping malls. These 

shopping malls satisfy the needs of the customers in this segment by offering variety of 

category alternatives, therefore they do not need to visit any other malls.  

Ruiz et al. (2004) identified one group of customers as Mission Shoppers who only 

go to the malls to buy products they already planned to purchase. We also named our last 

segment as Mission Shoppers. This segment comprises of 2814 customers, which is 19% 

of all customers. According to the Post-hoc Tukey test, people have, on average, low 

Shopping Mall Diversity scores and low Category Diversity scores compared to the other 

segments. The people who are part of this segment prefer to visit few numbers of 

shopping malls and make purchases in few categories in those shopping malls. We argue 

that people who fall within this segment are target oriented and they visit particular 

shopping malls to buy particular products. 

 

Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers 
Total F 

p-

value 

Shopping Mall 

Diversity Score 
0.28 0.27 0.10 0.06 0.18 10724 0.000 

Category 

Diversity Score 
0.44 0.16 0.30 0.03 0.25 14099 0.000 

 

Table 5.1: Consumer Segments and Their Average Diversity Scores  

5.1.1.1 Demographic Profiles of Diversity Based Segments 

Statistics of the diversity based segments’ demographic profiles can be seen in Table 5.2. 

In order to find out statistically significant differences between consumer segments, Chi-

square test or one-way analysis of variance (ANOVA) test are used. Differences are 

accepted as statistically significant when p-value is less than 0.05. 

 Chi-square tests are performed to examine the relation between consumer 

segments and demographic features such as gender, job type, marital status and education 

status. The relation between gender and consumer segments are significant, X2 (3, N = 

14843) = 263.50, p <.000. A significant relation between marital status and consumer 
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segments is found, X2 (9, N = 14843) =79.91, p <.000. The relation between education 

status and consumer segments are found to be statistically significant, X2 (24, N = 14843) 

=607.060, p <.000. On the other hand, there is not a statistically significant relation 

between job type and consumer segments, X2 (21, N = 14843) =27.728, p = .0663. 

 A one-way ANOVA is conducted to compare the difference of age across all 

consumer segments. The analysis shows that there is such a difference and it is significant, 

F (3, 14839) = 10.76, p <.000. Post hoc comparisons using the Tukey test are carried out. 

The post hoc comparisons reveals that Category Hunters are the youngest segment. 

 Pairwise comparison of proportion test shows that the proportion of females in 

Category Hunters is significantly larger compared to Mall Squatters and Mission 

Shoppers. On the other hand, the proportion of males in Mission Shoppers is significantly 

larger compared to Recreational Shoppers and Category Hunters.  

 Pairwise comparison of proportion test indicates that the proportion of married 

people in Mission Shoppers and Mall Squatters is significantly larger compared to 

Category Hunters and Recreational Shoppers. On the other hand, the proportion of single 

people in Category Hunters is significantly larger compared to Mission Shoppers and 

Mall Squatters. 

 We generate two groups named as low education level and high education level 

in order to test the significance of proportion difference among segments. Low education 

level comprises of uneducated, primary school, middle school, and high school 

categories. On the other hand, high education level comprises of college, university, 

Master and PhD. Our results show that Recreational Shoppers have the highest education 

level with high education proportion of 0.67. On the other hand, Mission Shoppers have 

the lowest education level with low education proportion of 0.57. 

 In Appendix B, charts associated with segment properties can be found. 
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Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers 
Total 

Test 

Statistic 
p-value 

Gender           X2  
Male 47.4% 44.7% 58.9% 60.2% 53.2%   
Female 52.6% 55.3% 41.1% 39.8% 46.8% 263.50 0.000 

Marital Status      X2  
Married 67.1% 62.9% 71.2% 69.9% 68.1%   
Single 24.8% 28.5% 21.1% 21.9% 23.8%   
Divorced 5.7% 5.7% 4.8% 5.0% 5.2%   
Unknown 2.5% 2.9% 2.9% 3.2% 2.8% 79.91 0.000 

Age Group      F  
19-30 21.1% 26.7% 19.9% 21.4% 21.9%   
31-42 49.2% 43.7% 47.8% 46.1% 47.0%   
43-54 23.2% 23.7% 25.3% 26.1% 24.5%   
55-66 5.9% 5.6% 6.2% 5.7% 5.9%   
67-83 0.7% 0.4% 0.9% 0.6% 0.7% 10.76 0.000 

Education 

Status      X2  
Primary School 1.2% 2.5% 3.4% 5.2% 3.0%   
Middle School 2.6% 4.6% 5.3% 6.3% 4.6%   
High School 28.1% 34.8% 41.6% 44.9% 37.3%   
College 9.7% 10.1% 10.1% 9.0% 9.8%   
University 49.7% 41.7% 34.1% 29.3% 38.8%   
Master 7.3% 5.0% 3.9% 3.6% 4.9%   
PhD 0.5% 0.4% 0.4% 0.4% 0.4%   
Uneducated 0.9% 0.9% 1.2% 1.3% 1.1%   
Unknown 0.1% 0.1% 0.1% 0.0% 0.1% 607.060 0.000 

Job Type      X2  
Private Sector 

Employee 68.6% 68.2% 70.3% 70.0% 69.4%   
Public Servant 9.8% 9.3% 7.7% 8.0% 8.6%   
Self-Employed 11.3% 12.4% 12.0% 12.5% 12.0%   
Retiree 7.5% 7.0% 7.1% 6.8% 7.1%   
Housewife 1.4% 1.6% 1.5% 1.3% 1.4%   
Non-Employed 0.4% 0.6% 0.7% 0.8% 0.6%   
Other 0.9% 0.9% 0.7% 0.6% 0.8% 27.728 0.0663 

 

Table 5.2: Demographic Profiles of Diversity Based Segments 

 

5.1.1.2 Transactional Characteristics of Diversity Based Segments 

Here we first calculate the average transaction amount per customer for each diversity 

based segment, which can be seen in Table 5.3. A one-way ANOVA test is conducted to 

compare the difference in average transaction amount per customer across diversity based 

segments. The results show that there is a statistically significant difference of average 

transaction amount per customer among consumer segments, F (3, 14839) = 3.475, p = 
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0.0153. Afterwards, post hoc Tukey test is carried out and the result of the test reveals 

that the average transaction amounts per customer of Recreational Shoppers and Mission 

Shoppers are different significantly at p < .05. Recreational Shoppers have the lowest 

average transaction amount and Mission Shoppers have the highest. 

 

Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers 
Total F 

p-

value 

Average 

Transaction Amount 

per Customer 

151.3 163.7 168.1 180 165.08 3.475 0.0153 

 

Table 5.3: Average Transaction Amount per Customer of Diversity Based Segments 

 

Secondly, average transaction count per customer for each diversity based 

segment is calculated and the details can be seen in Table 5.4. The results of the ANOVA 

test show that there is a significant difference of average transaction count per customer 

among consumer segments, F (3, 14839) = 103.7, p < .000. The post hoc Tukey results 

indicate that Recreational Shoppers, on average, have relatively more transaction counts 

in shopping malls compared to other segments. 

 

Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers 
Total F 

p-

value 

Average Transaction 

Count per Customer 
13.5 8.8 9.4 8.6 10.2 103.7 0.000 

 

Table 5.4: Average Transaction Count per Customer of diversity Based Segments 

 

Thirdly, Table 5.5 shows the average of total transaction amount per customer 

values for each consumer segment. The results of the ANOVA test indicate that total 

transaction amount of per customer is significantly different among customer segments, 

F (3, 14839) = 17.92, p < .000. According to the Post hoc Tukey test results, the total 

transaction amount of Recreational Shoppers is the highest of all segments.  
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Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers 
Total F 

p-

value 

Total Transaction 

Amount per 

Customer 

1798.9 1433.7 1209.7 1363.6 1437.8 17.92 0.000 

 

Table 5.5: Total Transaction Amount per Customer of Diversity Based Segments 

 

Lastly, The ANOVA test results show that there are significant differences 

between consumer segments and their Shopping Day Diversity and Shopping Day 

Loyalty scores. Findings in Table 5.6 show that Recreational Shoppers prefer to shop in 

diversified days of the week. Since their visit days are varied, they are more willing to 

see shopping as a leisure activity. This also promotes the findings stated by Ruiz et al. 

(2004) that Recreational Shoppers are looking for fun, leisure, and social interaction. On 

the other hand, Mission Shoppers have high Shopping Day Loyalty scores. They are more 

likely to shop their most preferred two days of the week compared to the other segments. 

Since they are task-oriented shoppers, they visit shopping malls on specific days of the 

week to buy the items they planned to purchase. 

 

Table 5.6: Shopping Day Behavioral Scores of Diversity Based Segments 

 

5.1.1.3 Shopping Category Profile of Diversity Based Segments 

In Table 5.7 we report the percentage of total transaction counts according to the shopping 

categories for each segment. We calculate the variation of each segment’s shopping 

category from total shopping category by subtracting total category percentage from 

segment category percentage and dividing the result by total category percentage. The 

results are shown on the heat map in Figure 5.2. The blue colors shown on the heat map 

indicate that the shopping category percentage for a segment deviates from the overall 

 

Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers 
Total F 

p-

value 

Shopping Day Diversity 

Shopping Day Loyalty 

0.69 

0.66 

0.60 

0.71 

0.56 

0.75 

0.50 

0.79 

0.59 

0.72 

438.4 

304.1 

0.000 

0.000 
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shopping category percentage in a positive direction, whereas the red colors indicate a 

deviation in the negative direction. 

  
Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers 
Total 

Clothing and Accessory 47.40% 80.03% 47.12% 52.46% 54.06% 

Construction Materials, 

Hardware Store 
1.34% 0.28% 1.06% 0.44% 0.92% 

Cosmetics 7.70% 3.39% 6.11% 1.01% 5.35% 

Education/ Stationery/ Office 

Equipment 
4.55% 1.46% 2.71% 0.38% 2.74% 

Electronic Appliance, Computer 5.07% 2.44% 6.96% 2.05% 4.71% 

Entertainment 0.46% 0.08% 0.36% 0.13% 0.31% 

Food 7.74% 2.61% 4.50% 2.15% 4.89% 

Furniture and Decoration 10.21% 4.71% 7.30% 3.37% 7.19% 

Goldsmiths 0.36% 0.12% 0.27% 0.18% 0.26% 

Health / Healthcare Products 2.50% 0.93% 1.97% 0.29% 1.69% 

Supermarket 10.86% 3.45% 19.92% 35.43% 16.29% 

Service Sectors 0.26% 0.08% 0.15% 0.07% 0.16% 

Telecommunications 0.11% 0.04% 0.26% 0.16% 0.15% 

Various Food 1.46% 0.37% 1.32% 1.89% 1.28% 

 

Table 5.7: Percentage of Total Transaction Count by Shopping Categories 

It can be observed that Category Hunters mainly target several shopping malls, 

purchase clothing and accessory products that constitute 80.03% of their transactions and 

have a variation size of 0.48. The other categories apart from clothing and accessory stay 

below the total distribution. These people do not adhere to specific shopping malls and 

search for clothing and accessory related products in various locations. 

The two main purposes of Mission Shoppers in visiting shopping malls are 

clothing and accessory purchases as well as supermarket purchases that constitute 52.46% 

and 35.43% of all their transactions, respectively. Their supermarket transactions have 

divergence size of 1.17, which is the highest value among all categories in all segments. 

Since they are more target-oriented people, they mostly acquire their household purchases 

in specific shopping malls in addition to the clothing and accessory purchases. They 

observe shopping as a have-to-do task rather than a joyful activity. 

Recreational Shoppers’ transactions are spread across all categories having 

positive divergence from total dispersion for most of the categories that can be seen in 

the Figure 5.2. They visit many shopping malls to buy various kinds of product groups. 
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They see shopping malls as places where they can socialize and entertain while buying 

some products. 

Mall Squatters mainly visit some specific shopping malls which contain 

merchants of various categories and obtain most of their needs in the same places. In 

addition, the distribution of Mall Squatters transactions counts according to categories 

show similarity with the overall transaction distribution. 

 

Figure 5.2: Category Dispersion of Diversity Based Segments 

 

5.1.2 Loyalty Based Segments  

Apart from diversity scores, in the second model we segment consumers according to 

their Shopping Mall Loyalty scores and Category Loyalty scores. The four clusters 

constructed can be seen in a scatter plot in Figure 5.3. One-way ANOVA test results in 

Table 5.8 show that the average values of each feature are statistically different across 

segments at significance level 0.05. 
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Figure 5.3: Loyalty Based Segments 

We name the first segment of the four as Adventure Seekers. Post-hoc Tukey test 

results indicate that the consumers who fall into this segment have, on average, both low 

Shopping Mall Loyalty scores and low Category Loyalty scores. This segment comprises 

of 1845 customers, which is 12% of all customers. People who are part of this segment 

are not loyal to any specific shopping mall or specific shopping category. In other words, 

like the Recreational Shoppers, these people like to browse new places to shop as well as 

a variety of categories. 

 The second segment we name as Category Addicts. This segment comprises of 

3130 customers, which corresponds to 21% of all customers. The people who are in this 

segment have, on average, low Shopping Mall Loyalty scores and high Category Loyalty 

scores. These people are not loyal to their two most preferred shopping malls and on the 

other hand, shop only for particular products that they are willing to purchase. 

The third segment we name as Location Addicts. This segment comprises of 3095 

customers, which is 21% of all customers. The people who are in this segment have, on 

average, high Shopping Mall Loyalty scores and low Category Loyalty scores. These are 

people who prefer to make their purchases in their preferred shopping malls for a variety 

of categories.  
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We name the last segment as Devoted Shoppers. This segment is comprised of 

6773 customers, which is 46% of all customers. According to the Post-hoc Tukey test, 

people have, on average, high Shopping Mall Loyalty scores and high Category Loyalty 

scores. These people mostly shop in their two most preferred shopping malls and are 

willing to make purchases in their most preferred category groups in that shopping malls. 

  

Adventure 

Seekers 

Category 

Addicts 

Location 

Addicts 

Devoted 

Shoppers 
Total F 

p-

value 

Shopping Mall 

Loyalty Score 
0.63 0.70 0.93 0.99 0.87 18764 0.000 

Category   

Loyalty Score 
0.72 0.99 0.75 0.98 0.90 15646 0.000 

 

Table 5.8: Consumer Segments and Their Average Loyalty Scores 

 

5.1.2.1 Demographic Profiles of Loyalty Based Segments 

Table 5.9 shows the statistics of loyalty based segments’ demographic profiles. Similar 

to the diversity based segment profile analysis, Chi-square test or one-way analysis of 

variance (ANOVA) test is conducted to find out statistically significant differences 

between consumer segments. Differences are accepted as statistically significant when p-

value is less than 0.05. 

 Chi-square tests are performed to examine the relation between consumer 

segments and demographic features such as gender, marital status, education status and 

job type. The relation between gender and consumer segments are found to be significant, 

X2 (3, N = 14843) = 205.17, p <.000. A significant relation between marital status and 

consumer segments is also found, X2 (9, N = 14843) =75.105, p <.000. The relation 

between education status and consumer segments are found to be statistically significant, 

X2 (24, N = 14843) =484.01 p <.000. On the other hand, there is no statistically significant 

relation between job type and consumer segments, X2 (21, N = 14843) =23.352, p = .1774. 

 A one-way ANOVA is conducted to compare the differences in average age 

across consumer segments. Here we find a significant difference of age in consumer 

segments with the ANOVA analysis, F (3, 14839) = 11.970, p <.000. Post hoc 

comparisons using the Tukey test are also carried out and they reveal that Category 

Addicts are younger than Mall Addicts and Devoted Shoppers. 
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Pairwise comparison of proportions test shows that the proportion of females, 

which equals to 0.553 in Category Addicts is significantly the largest among all segments. 

On the other hand, the proportion of males in Devoted Shoppers, which equals to 0.59 is 

also significantly the largest among all segments.  

 Pairwise comparison of proportions test further indicates that the proportion of 

married people in Devoted Shoppers and Location Addicts are significantly larger 

compared to that in Category Addicts and Adventure Seekers segments. On the other 

hand, the proportion of single people in Category Addicts, which is 0.285, is significantly 

largest among all segments. 

We further generate two groups named as low education level and high education 

level in order to test the significance of proportion for the education attribute. Low 

education level comprises of uneducated, primary school, middle school, and high school, 

whereas high education level comprises of college, university, Master, and PhD. Our 

results show that, Adventure Seekers have the highest education level with high education 

proportion of 0.69 compared to other segments. On the other hand, Devoted Shoppes has 

the lowest education level with low education proportion of 0.54. 

In Appendix B, additional charts associated with segment properties can be found. 

 

 

Adventure 

Seekers 

Category 

Addicts 

Location 

Addicts 

Devoted 

Shoppers 
Total 

Test 

Statistic 
p-value 

Gender      X2  
Male 48.0% 44.7% 52.2% 59.0% 53.2%   
Female 52.0% 55.3% 47.8% 41.0% 46.8% 205.17 0.000 

Marital Status      X2  
Married 66.6% 63.1% 69.7% 70.2% 68.1%   
Single 25.9% 28.5% 21.6% 22.0% 23.8%   
Divorced 5.4% 5.7% 5.7% 4.8% 5.2%   
Unknown 2.2% 2.7% 2.9% 3.1% 2.8% 75.105 0.000 

Age Group      F  
19-30 21.2% 26.4% 20.3% 20.8% 21.9%   
31-42 50.0% 44.5% 47.9% 46.9% 47.0%   
43-54 22.7% 23.2% 25.2% 25.4% 24.5%   
55-66 5.4% 5.6% 6.0% 6.1% 5.9%   
67-83 0.7% 0.4% 0.7% 0.8% 0.7% 11.970 0.000 

Education 

Status      X2  
Primary School 1.0% 2.2% 2.6% 4.0% 3.0%   
Middle School 2.4% 4.0% 4.2% 5.7% 4.6%   
High School 26.1% 33.8% 34.6% 43.3% 37.3%   
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College 9.4% 9.8% 11.6% 9.1% 9.8%   
University 52.4% 43.2% 40.3% 32.3% 38.8%   
Master 6.9% 5.9% 5.3% 3.8% 4.9%   
PhD 0.7% 0.3% 0.5% 0.4% 0.4%   
Uneducated 1.0% 0.8% 0.8% 1.3% 1.1%   
Unknown 0.1% 0.1% 0.1% 0.0% 0.1% 484.01 0.000 

Job Type      X2  
Private Sector 

Employee 68.6% 68.1% 70.0% 69.9% 69.4%   
Public Servant 9.9% 9.6% 8.7% 7.8% 8.6%   
Self-Employed 11.5% 12.3% 11.1% 12.4% 12.0%   
Retiree 7.2% 6.9% 7.6% 7.1% 7.1%   
Housewife 1.5% 1.5% 1.5% 1.4% 1.4%   
Non-Employed 0.5% 0.7% 0.4% 0.7% 0.6%   
Other 0.9% 0.9% 0.8% 0.7% 0.8% 23.352 0.1774 

 

Table 5.9: Demographic Properties of Loyalty Based Segments 

 

5.1.2.2 Transactional Characteristics of Loyalty Based Segments 

Table 5.10 shows the average transaction amounts per customer of each loyalty based 

consumer segment. A one-way ANOVA test is conducted to compare the difference 

between average transaction amounts per customer across all four loyalty based 

segments. The result shows that the difference is statistically significant, F (3, 14839) = 

6.365, p < .000. Afterwards, post hoc Tukey test is carried out, which shows that Devoted 

Shoppers and Location Addicts are differed significantly at p < .05. Devoted Shoppers 

have the highest average transaction amount and Location Addicts have the lowest 

average transaction amount. 

 

Adventure 

Seekers 

Category 

Addicts 

Location 

Addicts 

Devoted 

Shoppers 
Total F 

p-

value 

Average Transaction 

Amount per 

Customer 

153.4 163.1 145.7 178 165.08 6.365 0.000 

 

Table 5.10: Average Transaction Amount per Customer of Loyalty Based Segments 

 

We further calculate the average transaction count per customer of each segment. 

The results can be seen in Table 5.11. The results of ANOVA test show that the average 

transaction count of customers is significantly different among customer segments, F (3, 
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14839) = 43.6, p < .000. The post hoc Tukey results indicates that Location Addicts have 

relatively more transaction counts in shopping malls compared to other segments. On the 

other hand, Devoted Shoppers have the least average transaction count compared to other 

segments. 

 

Adventure 

Seekers 

Category 

Addicts 

Location 

Addicts 

Devoted 

Shoppers 
Total F 

p-

value 

Average Transaction 

Count per Customer 
11.2 9.7 12.3 9.1 10.2 43.6 0.000 

 

Table 5.11: Average Transaction Count per Customer of Loyalty Based Segments 

 

We also calculate the average of total transaction counts per customer in each 

consumer segment. The results of ANOVA test show that the total transaction count per 

customer is significantly different across customer segments, F (3, 14839) = 3.606, p < 

.000. The post hoc Tukey results indicate that Devoted Shoppers have relatively less total 

transaction amounts compared to other segments. 

 

 

Adventure 

Seekers 

Category 

Addicts 

Location 

Addicts 

Devoted 

Shoppers 
Total F 

p-

value 

Total Transaction 

Amount per 

Customer 

1538.0 1535.5 1524.8 1325.5 1437.8 3.606 0.000 

 

Table 5.12: Total Transaction Amount per Customer of Loyalty Based Segments 

 

Finally, the ANOVA tests show that there are significant differences between 

consumer segments in terms of their Shopping Day Diversity and Shopping Day Loyalty 

scores. Findings in Table 5.13 show that Adventure Seekers prefer to shop in diversified 

days of the week. Since their visit days are varied, they are more willing to see shopping 

as a leisure activity. On the other hand, Devoted Shoppers have high Shopping Day 

Loyalty scores. They are more likely to shop on their most preferred two days of the week 

compared to the other segments. 
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Adventure 

Seekers 

Category 

Addicts 

Location 

Addicts 

Devoted 

Shoppers 
Total F 

p-

value 

Shopping Day Diversity 

Shopping Day Loyalty 

0.66 

0.68 

0.62 

0.70 

0.64 

0.69 

0.54 

0.76 

0.59 

0.72 

260.2 

189.8 

0.000 

0.000 

 

Table 5.13: Shopping Day Behavioral Scores of Loyalty Based Segments 

 

5.1.2.3 Shopping Category Profile of Loyalty Based Segments 

In Table 5.14 we report the percentage of total transaction counts according to the 

shopping categories for each segment. As we do in diversity based segments, the variation 

of each segments’ shopping category from total shopping category is calculated by 

subtracting total category percentage from segment category percentage and dividing the 

result by total category percentage. The results are shown on the heat map in Figure 5.4.  

  

Adventure 

Seeking 

Shoppers 

Category 

Addicts 

Location 

Addicts 

Devoted 

Shoppers 
Total 

Clothing and Accessory 46.68% 73.28% 43.91% 53.35% 54.06% 

Construction Materials, 

Hardware Store 1.56% 0.36% 1.44% 0.65% 0.92% 

Cosmetics 7.98% 4.29% 7.99% 3.34% 5.35% 

Education/ Stationery/ Office 

Equipment 5.31% 1.80% 4.55% 1.22% 2.74% 

Electronic Appliance, Computer 5.56% 2.78% 6.84% 4.04% 4.71% 

Entertainment 0.44% 0.17% 0.43% 0.25% 0.31% 

Food 8.54% 3.83% 6.56% 3.16% 4.89% 

Furniture and Decoration 11.10% 6.27% 8.58% 5.48% 7.19% 

Goldsmiths 0.34% 0.15% 0.48% 0.15% 0.26% 

Health / Healthcare Products 2.78% 1.16% 2.74% 0.95% 1.69% 

Supermarket 7.54% 5.24% 14.50% 25.79% 16.29% 

Service Sectors 0.33% 0.10% 0.24% 0.09% 0.16% 

Telecommunications 0.10% 0.06% 0.19% 0.19% 0.15% 

Various Food 1.75% 0.51% 1.57% 1.34% 1.28% 

 

Table 5.14: Percentage of Total Transaction Counts by Shopping Categories 

 

Category Addicts, not being loyal to specific shopping malls, mainly search for 

clothing and accessory products, which constitutes 73.28% of their total transactions and 

has a variation size of 0.36 in other malls. Only clothing and accessory category has a 

positive variation in this segment, the other categories remain below the total distribution.  
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Devoted Shoppers are addicted to the same shopping places and mainly two 

shopping categories: clothing and accessory purchases, and supermarket purchases, 

which constitute 53.35% and 25.79% of all of their transactions, respectively. Their 

supermarket transactions have divergence size of 0.58, which is the highest supermarket 

variation value from total dispersion among all segments. They visit their two most 

preferred shopping malls to visit supermarket and clothing and accessory stores.   

Adventure Seekers transactions are spread across all categories with positive 

divergence from total dispersion for most of the categories. They visit many shopping 

malls to buy various kinds of product groups. Service sectors have a variation size of 1.06 

which is the highest value among all categories in all segments, from the total dispersion. 

In other words, Service sector purchases are made in large proportions by the Adventure 

Seekers compared to other segments.  

Location Addicts are loyal to specific shopping malls with merchants of various 

categories and obtain most of their needs in the same places. Their transactions are 

diversified to various category groups. 

 

Figure 5.4: Category Dispersion of Loyalty Based Segments 

 

5.1.3 Relationship Between Diversity and Loyalty Based Segments  

In order to understand the relationship between diversity and loyalty features, the 

correlation coefficient between Category Loyalty and Category Diversity (p = .00, r = -

.85) and also between Shopping Mall Loyalty and Shopping Mall Diversity (p = .00, r = 
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-.88) features are calculated. The results indicate that there is a strong negative correlation 

between diversity and loyalty for both shopping mall and category. The strong negative 

correlation between diversity and loyalty and having similarities in demographic, 

transactional and categorical profiles among diversity and loyalty based segments may 

suggest that Recreational Shoppers and Adventure Shoppers, Category Hunters and 

Category Addicts, Mall Squatters and Location Addicts, Mission Shoppers and Devoted 

Shoppers are equivalent segments. However, when we analyze the transition of individual 

customers between segments considering the two models, we observe that 60% of the 

customers stay in the anticipated segment in the other model and the 40% of the customers 

move to other segments. The transitions on flow chart and numerical results can be seen 

in the Figure 5.5 and Table 5.14 respectively. 

 

Figure 5.5: Transition Among Diversity and Loyalty Based Segments 

  

From Figure 5.5 and Table 5.14, we observe that the largest number of transitions 

are between Recreational Shoppers and Adventure Seekers, and also Mall Squatters and 

Devoted Shoppers. In the Loyalty based clustering model, most of the customers are 

gathered in Devoted Shoppers segment, while Mission Shoppers are the smallest 

segment. As a result, the analysis shows that the segments constructed with two different 

behavioral features are not identical in composition. 
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Table 5.15: Transition Among Diversity and Loyalty Based Segments 

 

5.1.4 Silhouette Analysis   

 In our study, we use silhouette analysis to measure how the constructed models 

are well separated. Here we measure the similarity of an observation to its assigned cluster 

compared to neighboring clusters. The value ranges from −1 to +1, when a value close to 

1 shows that the observation is well matched to the assigned cluster and a value close to 

-1 indicates that a neighboring cluster of an observation is much similar compared to its 

assigned cluster. The average silhouette width which is computed by taking the average 

silhouette values of all constituted clusters provides an assessment of clustering validity 

(Rousseeuw, 1986). Figure 5.6 and Figure 5.7 show the plot of silhouette for diversity 

and loyalty segments. 

 The average silhouette width of Mission Shoppers is the minimum among all 

segments, which means this segment is not as separated as the others. The average 

silhouette with of the diversity based model is 0.4. 

 

Figure 5.6: Silhouette Plot of Diversity Based Segments 
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The average silhouette width of Devoted Shoppers is the maximum with a value 

of 0.80 compared to other segments, which indicates that the cluster is well separated. 

The average silhouette with of the loyalty based model is 0.56. When we compare the 

average silhouette width of the two models, loyalty based model is much more well 

separated compared to diversity based model. 

 

Figure 5.7: Silhouette Plot of Loyalty Based Segments 

5.1.5 Summary of Segments 

We approach our research target by constituting two clustering models containing 

diversity or loyalty scores of each customer. Our findings through segments give insight 

on peoples’ variety seeking behavior in shopping in the context of shopping malls and 

shopping categories. 

For the diversity dimension, we constructed four different segments: Recreational 

Shoppers, Category Hunters, Mall Squatters, and Mission Shoppers. We can infer from 

the Category Hunters segment that young and single women are more likely to shop for 

mainly clothing and accessory products in various shopping malls. Mission Shoppers 

mainly comprise of low educated married men who prefer to perform their purchases in 

few numbers of shopping malls and they mainly go shopping malls for supermarket, and 

clothing and accessory related products. In addition to that, they make on average fewer 

number of purchases and spend less money throughout the year compared to other 

segments. Also, they are more likely to make purchases in specific days of the week. We 

come with a notion that these people perceive shopping as a time and energy consuming 

event and they make need-driven purchases. Our findings with Mall Squatters show that 

married and male customers mostly do their purchases in the specific malls where they 
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can find a variety of shopping categories. Again, their time and effort consumptions are 

low while searching for various category types, since they are more willing to shop in 

malls which contain a variety of merchant types. Besides, compared to Mission Shoppers 

the male consumers in this segment search a lot more for categories so we can say that 

they have bigger intentions to perceive shopping as an enjoyable activity. In addition, 

there is a demographic difference between these segments; the education level of Mall 

Addicts is higher than that of Mission Shoppers. This situation explains that generalizing 

shopping behavior only for a particular gender is not truly effective since the position of 

men and women in society changes and moves away from traditional perceptions. Lastly, 

Recreational Shoppers consist of educated females who prefer to shop in various 

shopping malls and for various categories. These people have the largest number of 

purchases on average and the largest total transaction amount across all segments. In 

addition, they go shopping malls on various days, which means they do not set aside 

specific days of the week for shopping and are generally more flexible for choosing a 

shopping day. Our findings suggest that these people are more likely to see shopping as 

a leisure time, social and recreational activity, and so they enjoy the shopping experience.  

For the loyalty, we constitute four different segments: Adventure Seekers, 

Category Addicts, Location Addicts, and Devoted Shoppers. Our findings in these four 

segments show some similarity with diversity based segment characteristics. Category 

Addicts mainly consist of young and single female shoppers who are willing to make 

purchases at a variety of shopping malls. Their main consideration for shopping is buying 

clothing and accessory products. Our findings indicate that low educated and married 

men who appear in Devoted Shoppers prefer to make purchases on only their most visited 

shopping malls and in their most preferred categories: clothing and accessory, and 

supermarket. They both have the smallest number of purchases on average and the 

smallest total transaction amount spent in a one-year period in comparison to other 

segments. These people visit fewer number of shopping malls and shop for fewer 

categories which compose basically their needs. Therefore, it can be said that people who 

are part of this segment perceive shopping malls as a place where they can meet their 

requirements without entertaining the shopping experience and wasting time. Location 

addicts prefer to shop in their favorite shopping malls that offer a variety of category 

alternatives for their needs. The proportion of males are slightly higher than females in 

this segment and they are mainly married. In addition, they have the largest number of 
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transaction counts on average compared to other segments. Adventure Seekers are 

comprised of highly educated female shoppers. They are more likely to visit new 

shopping malls and shop for diversified categories. Besides, they are not loyal to specific 

day(s) of the week for mall shopping and spend the largest amount of money over the one 

year period compared to other segments. We conclude that Adventure Seekers are the 

consumers that perceive shopping as an entertainment and leisure time activity.  

Although we have some similar characteristics in diversity and loyalty segments, 

the distribution of people shows remarkable shifts of customers between segments 

corresponding to other feature as we discussed in section 5.1.3.  However, our results 

show that demographic profiles show dissimilarity while distinguishing both diversity 

and loyalty segments. In addition, the segments of diversity and loyalty that are thought 

to be matching show appreciable similarities in demographic profiles.  

5.2   Consumer Segments Prediction 

We randomly split our data into 70% for the training set and 30% for the test set. We do 

this splitting process three times to generate three different train and test sets in order to 

validate our model. Then we predict which segment each customer will be placed in by 

cosine similarity of the demographic profiles. After that, we measure the prediction 

performance by calculating the matching rate of the segment assignments using cosine 

similarity with the ground truth. 

 Our results are presented in Figure 5.8. Since we have four clusters both in 

diversity and loyalty based models, our baseline is 25%. The results indicate that with 

only the demographic information of customers at hand, we can predict his or her segment 

with up to 33% accuracy and on average with 30% accuracy in diversity based models 

and with up to 36% accuracy and on average with 34% accuracy in loyalty based models. 

Therefore, we can predict better with the help of demographic knowledge compared to 

randomly assigning customers into segments. Our results show that demographic 

information of individuals is somewhat indicative of their shopping behavior. 
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Figure 5.8: Prediction Performance of Diversity and Loyalty Based Segments 

 

According to our segment assignments, assigning a customer to either one of the 

three wrong segments has the same impact. Our model does not take into consideration 

the opportunity costs and penalty costs associated with each misclassified segment. For 

instance, assigning a Mission Shopper to the Recreational Shoppers segment and treating 

him or her the same way as Recreational Shoppers by sending irrelevant campaigns on 

various category groups and services, or new shopping places that have opened, can be 

inappropriate and may have a negative impact leading to a negative “cost” for the 

company. On the other hand, assigning a Recreational Shopper to the Mission Shoppers 

segment may cause him or her to miss the relevant direct marketing campaigns and hence 

the opportunities of selling goods. In this study, we do not cover the subject that involves 

the differentiated costs of misclassification and we leave it for a future work.   
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CHAPTER 6 

 

 

CONCLUSION 

 

Understanding consumers’ shopping behavior is important for marketers to develop 

campaigns and promotions relevant to the target group. In this study, we aim to identify 

the variety seeking behaviors of customers in the context of both shopping malls and 

shopping categories. In order to do this, we extract and calculate behavioral features for 

each customer such as diversity and loyalty from a large credit card transaction dataset 

provided by one of the largest Turkish banks. 

Our approach includes two different types of clustering models containing 

features of diversity or loyalty. Using this approach, we construct four segments, which 

give insights about customers’ shopping attitudes of variety seeking and shopping 

experiences, from both diversity and loyalty perspective. When we analyze the 

demographic profiles of segments, we obtain consistency with the gender differences in 

shopping attitudes discussed in the literature as women perceive shopping as a leisure 

time activity, social and entertaining experience and they seek variety of assortments 

whereas men perceive shopping as a time and energy consuming activity and prefer to 

purchase their need as soon as possible. On the other hand, some studies in the literature 

discuss that considering only gender differences will not be realistic and the gap between 

difference have started to decrease since the gender roles in the society are changing with 

the social and economic influences. Although we find our results to support the findings 

about gender difference in literature, we find the impact of demographic features on some 
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group of customers. In our study, we discover a segment closely related to this change, 

which is comprised of educated males who prefer to go specific shopping malls that offer 

a variety of category alternatives to satisfy their needs. Our results show that with the 

increasing education level, men start to much more enjoy the shopping experience. In 

addition, we introduce a segment of customers, not previously reported in the literature, 

composed of young females who are willing to seek a variety of shopping malls for only 

clothing and accessory products. 

 Apart from the presented results, we propose a classification method that assigns 

customers into one of the four segments according to their demographic properties in 

relation to the demographic properties of the segments. We assign the individual into the 

segment which has the most demographic similarity with him or her. Our classification 

results show that we can assign the customer into the right segment with up to 36% 

accuracy which is higher than random guessing. This result implies that there is an 

association between customers’ demographics and their shopping behaviors as well in the 

setting of shopping malls. 

 In conclusion, we hope that our research will guide the marketers to develop the 

right set of actions and approach the right group of customers with the right strategy.  
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Appendix A: Center and Customer Demographics Information about Train Set 1, Train 

Set 2 and Train Set 3 

Table A.1: Centers of Diversity Train Set 1 Clusters 

  

Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers 
Total F 

p-

value 

Shopping Mall 

Diversity Score 
0.30 0.21 0.11 0.02 0.17 8923 0.000 

Category Diversity 

Score 
0.42 0.16 0.38 0.09 0.26 7175 0.000 

 

Table A.2: Customer Demographics Profile of Diversity Train Set 1 Clusters   

 

Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers 
Total 

Test 

Statistic 
p-value 

Gender           X2  
Male 53.2% 58.5% 61.1% 69.4% 59.9%   
Female 46.8% 41.5% 38.9% 30.6% 40.1% 133.52 0.000 

Marital Status      X2  
Married 73.0% 74.3% 78.0% 78.3% 75.5%   
Single 18.4% 18.0% 14.0% 15.3% 16.8%   
Divorced 6.6% 5.8% 5.7% 4.3% 5.7%   
Unknown 2.0% 1.9% 2.3% 2.1% 2.0% 38.747 0.000 

Age Group      F  
19-30 9.9% 12.9% 10.2% 8.9% 10.8%   
31-42 53.7% 49.5% 50.9% 51.5% 51.2%   
43-54 28.5% 29.2% 29.8% 31.5% 29.6%   
55-66 7.3% 7.6% 7.9% 7.2% 7.5%   
67-83 0.7% 0.9% 1.3% 1.0% 0.9% 3.804 0.009 

Education 

Status      X2  
Primary School 1.2% 2.9% 3.3% 5.2% 3.0%   
Middle School 2.9% 5.8% 5.4% 6.4% 5.1%   
High School 29.4% 38.3% 37.3% 48.2% 37.9%   
College 9.8% 9.8% 11.0% 8.4% 9.8%   
University 47.1% 36.6% 36.0% 26.6% 37.1%   
Master 8.1% 4.6% 5.3% 3.3% 5.4%   
PhD 0.7% 0.5% 0.6% 0.4% 0.5%   
Uneducated 1.0% 1.4% 1.0% 1.5% 1.2%   
Unknown 0.0% 0.1% 0.1% 0.0% 0.1% 416.74 0.000 

Job Type      X2  
Private Sector 

Employee 63.9% 63.4% 64.1% 65.5% 64.1%   
Public Servant 9.9% 9.2% 10.2% 8.3% 9.4%   
Self-Employed 13.4% 15.6% 13.1% 14.4% 14.3%   
Retiree 9.6% 8.6% 9.6% 8.9% 9.1%   
Housewife 1.5% 1.7% 1.4% 1.3% 1.5%   
Non-Employed 0.6% 0.5% 0.7% 0.8% 0.6%   
Other 1.2% 1.0% 1.0% 0.7% 1.0% 22.053 0.2296 
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Table A.3: Centers of Loyalty Train Set 1 Clusters 

  

Adventure 

Seekers 

Category 

Addicts 

Location 

Addicts 

Devoted 

Shoppers 
Total F 

p-

value 

Shopping Mall 

Loyalty Score 
0.71 0.70 0.92 0.99 0.87 13051 0.000 

Category Loyalty 

Score 
0.63 0.97 0.75 0.98 0.90 10863 0.000 

 

 

Table A.4: Customer Demographics Profile of Loyalty Train Set 1 Clusters   

 

Adventure 

Seekers 

Category 

Addicts 

Mall  

Addicts 

Devoted 

Shoppers  
Total 

Test 

Statistic 
p-value 

Gender           X2  
Male 54.1% 52.0% 58.6% 65.8% 59.9%   
Female 45.9% 48.0% 41.4% 34.2% 40.1% 143.900 0.000 

Marital Status      X2  
Married 72.8% 71.4% 76.5% 77.7% 75.5%   
Single 19.0% 20.2% 14.6% 15.5% 16.8%   
Divorced 6.3% 6.4% 6.6% 4.8% 5.7%   
Unknown 1.9% 2.0% 2.3% 1.9% 2.0% 52.719 0.000 

Age Group      F  
19-30 9.8% 13.6% 9.8% 10.2% 10.8%   
31-42 54.8% 49.9% 51.1% 50.9% 51.2%   
43-54 27.9% 29.1% 30.3% 30.0% 29.6%   
55-66 6.6% 6.9% 7.9% 7.8% 7.5%   
67-83 0.9% 0.5% 0.9% 1.2% 0.9% 6.409 0.000 

Education 

Status      X2  
Primary School 1.0% 2.5% 2.6% 4.0% 3.0%   
Middle School 2.8% 4.8% 4.8% 6.0% 5.1%   
High School 27.4% 35.4% 34.8% 43.4% 37.9%   
College 9.8% 9.9% 11.0% 9.1% 9.8%   
University 49.2% 40.0% 39.3% 31.2% 37.1%   
Master 8.0% 6.1% 5.9% 4.0% 5.4%   
PhD 0.8% 0.4% 0.6% 0.4% 0.5%   
Uneducated 0.9% 0.8% 0.9% 1.7% 1.2%   
Unknown 0.1% 0.0% 0.1% 0.1% 0.1% 312.6 0.000 

Job Type      X2  
Private Sector 

Employee 64.8% 62.0% 64.3% 64.8% 64.1%   
Public Servant 9.9% 10.5% 9.8% 8.5% 9.4%   
Self-Employed 13.4% 15.1% 13.0% 14.8% 14.3%   
Retiree 8.8% 8.9% 9.9% 8.9% 9.1%   
Housewife 1.5% 1.7% 1.5% 1.4% 1.5%   
Non-Employed 0.5% 0.7% 0.5% 0.7% 0.6%   
Other 1.0% 1.0% 1.0% 0.9% 1.0% 25.56 0.1103 
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Table A.5: Centers of Diversity Train Set 2 Clusters 

  

Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers 
Total F 

p-

value 

Shopping Mall 

Diversity Score 
0.30 0.21 0.10 0.01 0.17 8923 0.000 

Category Diversity 

Score 
0.42 0.15 0.39 0.09 0.25 7175 0.000 

 

 

Table A.6: Customer Demographics Profile of Diversity Train Set 2 Clusters   

 

Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers  
Total 

Test 

Statistic 
p-value 

Gender      X2  
Male 40.5% 45.9% 49.1% 58.5% 47.6%   
Female 59.5% 54.1% 50.9% 41.5% 52.4% 133.52 0.000 

Marital Status      X2  
Married 60.8% 60.5% 66.2% 66.6% 62.8%   
Single 31.7% 30.4% 25.4% 25.1% 28.8%   
Divorced 4.6% 5.6% 4.6% 4.4% 4.9%   
Unknown 2.9% 3.5% 3.9% 3.9% 3.5% 38.747 0.000 

Age Group      F  
19-30 31.9% 33.4% 28.0% 26.8% 30.8%   
31-42 48.7% 44.0% 48.8% 47.9% 46.8%   
43-54 16.1% 18.5% 19.0% 21.4% 18.6%   
55-66 3.2% 3.9% 3.7% 3.6% 3.6%   
67-83 0.2% 0.2% 0.5% 0.2% 0.2% 3.804 0.009 

Education 

Status      X2  
Primary School 1.1% 3.1% 3.4% 5.1% 3.1%   
Middle School 2.0% 4.0% 4.3% 5.7% 3.9%   
High School 27.4% 38.5% 39.0% 48.0% 37.7%   
College 9.8% 9.7% 11.5% 8.9% 9.9%   
University 51.8% 39.6% 36.9% 28.5% 40.0%   
Master 7.1% 4.2% 3.6% 3.0% 4.6%   
PhD 0.3% 0.3% 0.6% 0.3% 0.3%   
Uneducated 0.4% 0.5% 0.6% 0.3% 0.5%   
Unknown 0.1% 0.1% 0.1% 0.0% 0.1% 416.74 0.000 

Job Type      X2  
Private Sector 

Employee 75.1% 74.3% 75.9% 76.1% 75.2%   
Public Servant 9.4% 8.6% 6.8% 6.8% 8.1%   
Self-Employed 8.8% 10.0% 10.2% 10.3% 9.8%   
Retiree 3.9% 4.3% 4.8% 4.6% 4.4%   
Housewife 1.4% 1.5% 1.4% 1.0% 1.4%   
Non-Employed 0.5% 0.6% 0.4% 0.7% 0.5%   
Other 0.9% 0.6% 0.6% 0.4% 0.7% 22.053 0.2296 

 

 



65 
 

Table A.7: Centers of Loyalty Train Set 2 Clusters 

  

Adventure 

Seekers 

Category  

Addicts 

Location 

Addicts 

Devoted 

Shoppers 
Total F 

p-

value 

Shopping Mall 

Loyalty Score 
0.65 0.69 0.94 0.99 0.87 13051 0.000 

Category Loyalty 

Score 
0.69 0.96 0.76 0.99 0.90 10863 0.000 

 

Table A.8: Customer Demographics Profile of Loyalty Train Set 2 Clusters   

 

Adventure 

Seekers 

Category 

Addicts 

Location 

Addicts 

Devoted 

Shoppers  
Total 

Test 

Statistic 
p-value 

Gender           X2  
Male 43.4% 37.5% 47.2% 53.6% 47.6%   
Female 56.6% 62.5% 52.8% 46.4% 52.4% 143.900 0.000 

Marital Status      X2  
Married 61.9% 57.4% 64.9% 64.6% 62.8%   
Single 30.6% 33.9% 26.4% 26.9% 28.8%   
Divorced 4.7% 5.3% 4.9% 4.8% 4.9%   
Unknown 2.8% 3.4% 3.7% 3.6% 3.5% 52.719 0.000 

Age Group      F  
19-30 30.7% 36.4% 28.7% 29.0% 30.8%   
31-42 49.3% 43.6% 48.6% 46.8% 46.8%   
643-54 16.9% 16.6% 18.8% 19.8% 18.6%   
55-66 2.9% 3.1% 3.6% 4.1% 3.6%   
67-83 0.2% 0.2% 0.3% 0.2% 0.2% 6.409 0.000 

Education 

Status      X2  
Primary School 1.2% 2.1% 2.7% 4.2% 3.1%   
Middle School 2.0% 3.2% 3.7% 4.8% 3.9%   
High School 27.1% 31.3% 35.3% 44.3% 37.7%   
College 10.0% 9.8% 11.7% 9.1% 9.9%   
University 52.7% 47.4% 41.0% 33.0% 40.0%   
Master 6.0% 5.3% 4.7% 3.8% 4.6%   
PhD 0.5% 0.3% 0.4% 0.3% 0.3%   
Uneducated 0.3% 0.6% 0.4% 0.5% 0.5%   
Unknown 0.2% 0.1% 0.1% 0.0% 0.1% 312.6 0.000 

Job Type      X2  
Private Sector 

Employee 75.3% 74.4% 75.6% 75.3% 75.2%   
Public Servant 9.2% 9.5% 7.8% 7.3% 8.1%   
Self-Employed 9.4% 9.2% 9.1% 10.5% 9.8%   
Retiree 3.3% 4.1% 4.9% 4.5% 4.4%   
Housewife 1.5% 1.4% 1.5% 1.3% 1.4%   
Non-Employed 0.5% 0.6% 0.3% 0.6% 0.5%   
Other 0.8% 0.8% 0.8% 0.5% 0.7% 18.503 0.4227 
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Table A.9: Centers of Diversity Train Set 3 Clusters 

  

Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers 
Total F 

p-

value 

Shopping Mall 

Diversity Score 
0.29 0.27 0.10 0.06 0.18 7469 0.000 

Category Diversity 

Score 
0.44 0.16 0.30 0.02 0.25 9824 0.000 

 

 

Table A.10:  Customer Demographics Profile of Diversity Train Set 3 Clusters   

 

Recreational 

Shoppers 

Category 

Hunters 

Mall 

Squatters 

Mission 

Shoppers  
Total 

Test 

Statistic 
p-value 

Gender      X2  
Male 47.1% 45.0% 59.5% 61.1% 53.6%   
Female 52.9% 55.0% 40.5% 38.9% 46.4% 203.67 0.000 

Marital Status      X2  
Married 66.1% 63.0% 71.6% 70.8% 68.2%   
Single 25.9% 27.9% 21.0% 21.3% 23.8%   
Divorced 5.6% 6.0% 4.6% 4.9% 5.2%   
Unknown 2.4% 3.0% 2.7% 3.0% 2.8% 64.39 0.000 

Age Group      F  
19-30 21.9% 26.6% 19.3% 21.3% 21.9%   
31-42 48.8% 43.3% 48.7% 46.0% 47.1%   
43-54 22.8% 24.2% 24.9% 26.3% 24.5%   
55-66 5.9% 5.5% 6.2% 5.5% 5.9%   
67-83 0.6% 0.4% 0.9% 0.9% 0.7% 7.555 0.000 

Education 

Status      X2  
Primary 

School 1.2% 2.6% 3.1% 5.1% 2.9%   
Middle School 2.5% 4.8% 5.1% 6.4% 4.6%   
High School 27.9% 35.0% 41.5% 44.4% 37.2%   
College 9.8% 9.9% 10.0% 9.1% 9.7%   
University 50.1% 41.6% 34.5% 29.6% 39.1%   
Master 7.1% 4.9% 3.9% 3.6% 4.9%   
PhD 0.5% 0.4% 0.4% 0.4% 0.4%   
Uneducated 0.9% 0.8% 1.3% 1.4% 1.1%   
Unknown 0.1% 0.1% 0.1% 0.0% 0.1% 412.44 0.000 

Job Type      X2  
Private Sector 

Employee 68.9% 68.8% 70.1% 69.7% 69.4%   
Public Servant 9.8% 9.0% 7.9% 7.5% 8.5%   
Self-Employed 11.1% 11.8% 11.9% 13.3% 11.9%   
Retiree 7.3% 7.2% 7.1% 7.0% 7.1%   
Housewife 1.6% 1.7% 1.5% 1.3% 1.5%   
Non-Employed 0.3% 0.6% 0.7% 0.7% 0.6%   
Other 0.9% 0.9% 0.8% 0.6% 0.8% 23.846 0.1464 
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Table A.11: Centers of Loyalty Train Set 3 Clusters 

  

Adventure 

Seekers 

Category 

Addicts 

Location 

Addicts 

Devoted 

Shoppers 
Total F 

p-

value 

Shopping Mall 

Loyalty Score 
0.65 0.68 0.93 0.98 0.87 12210 0.000 

Category Loyalty 

Score 
0.69 0.96 0.76 0.99 0.90 11736 0.000 

 

 

Table A.12: Customer Demographics Profile of Loyalty Train Set 3 Clusters   

 

Adventure 

Seekers 

Category 

Addicts 

Location 

Addicts 

Devoted 

Shoppers  
Total 

Test 

Statistic 
p-value 

Gender           X2  
Male 48.5% 44.2% 53.9% 59.0% 53.6%   
Female 51.5% 55.8% 46.1% 41.0% 46.4% 148.23 0.000 

Marital Status      X2  
Married 65.6% 63.5% 70.5% 70.0% 68.2%   
Single 26.6% 27.9% 21.2% 22.3% 23.8%   
Divorced 5.2% 5.7% 5.4% 5.0% 5.2%   
Unknown 2.6% 2.8% 2.9% 2.8% 2.8% 45.09 0.000 

Age Group      F  
19-30 21.5% 26.1% 20.3% 20.7% 21.9%   
31-42 50.7% 44.5% 47.8% 47.1% 47.1%   
43-54 22.2% 23.2% 25.3% 25.3% 24.5%   
55-66 5.2% 5.7% 5.8% 6.1% 5.9%   
67-83 0.4% 0.5% 0.8% 0.8% 0.7% 8.016 0.000 

Education 

Status      X2  
Primary School 0.8% 2.2% 2.7% 3.8% 2.9%   
Middle School 2.0% 4.0% 4.4% 5.6% 4.6%   
High School 26.0% 33.5% 34.5% 42.9% 37.2%   
College 9.8% 9.1% 11.4% 9.3% 9.7%   
University 52.8% 44.6% 40.3% 32.5% 39.1%   
Master 6.8% 5.8% 5.0% 4.0% 4.9%   
PhD 0.7% 0.3% 0.6% 0.3% 0.4%   
Uneducated 1.1% 0.5% 0.9% 1.4% 1.1%   
Unknown 0.2% 0.1% 0.1% 0.1% 0.1% 224.26 0.000 

Job Type      X2  
Private Sector 

Employee 68.6% 68.8% 70.3% 69.6% 69.4%   
Public Servant 10.0% 9.4% 8.7% 7.7% 8.5%   
Self-Employed 12.1% 11.4% 10.7% 12.7% 11.9%   
Retiree 6.1% 7.5% 7.1% 7.2% 7.1%   
Housewife 1.7% 1.5% 1.8% 1.4% 1.5%   
Non-Employed 0.4% 0.6% 0.4% 0.7% 0.6%   
Other 1.0% 0.8% 1.0% 0.7% 0.8% 24.023 0.1424 
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Appendix B: Segment Properties  

Figure B.1: Gender Distribution of Diversity Based Segments 

 

Figure B.2: Marital Status Distribution of Diversity Based Segments 

 

Figure B.3: Education Level Distribution of Diversity Based Segments 
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Figure B.4: Age Distribution of Diversity Based Segments 

 

Figure B.5: Transaction Count Distribution of Diversity Based Segments 

 

Figure B.6: Day Diversity Distribution of Diversity Based Segments 
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Figure B.7: Day Loyalty Distribution of Diversity Based Segments 

 

Figure B.8: Gender Distribution of Loyalty Based Segments 

 

Figure B.9: Marital Status Distribution of Loyalty Based Segments 
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Figure B.10: Education Level Distribution of Loyalty Based Segments 

 

Figure B.11: Age Distribution of Loyalty Based Segments 

 

Figure B.12: Transaction Count Distribution of Loyalty Based Segments 
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Figure B.13: Day Diversity Distribution of Loyalty Based Segments 

 

 

Figure B.14: Day Loyalty Distribution of Loyalty Based Segments 

 

 


