
 

Rolling and Sliding of Spheres Inside Horizontal 
Channels 

 

Ebru Demir  
Sabanci University 

Istanbul, Turkey 
ebrudemir@sabanciuniv.edu

Serhat Yesilyurt  
Sabanci University 

Istanbul, Turkey 
syesilyurt@sabanciuniv.edu 

 

Abstract— Low Reynolds Number rolling and sliding motion 
of spheres inside cylindrical channels filled with glycerin is 
investigated. Experimental data are collected for channel/sphere 
radius ratios (rch / rsph) of 1.6 and 3, where the magnetic sphere is 
actuated at frequencies between 0.1-50 Hz. Magnetically actuated 
sphere is rotated clockwise about the y-axis, where the central 
axis of the cylindrical channel is designated as the z-axis and the 
distance between the sphere center and the channel axis is 
measured in x-direction. For rch / rsph ratio of 3, we observe that 
the sphere translates in positive z-direction, performing “rolling”. 
However, at smaller rch / rsph ratio of 1.6, where the sphere is 
closely fitted inside the cylindrical channel, as the actuation 
frequency is increased, transition from rolling to “sliding” in the 
opposite direction is observed, which describes the motion of a 
sphere translating in negative z-direction despite its clockwise 
rotation about y-axis. Further increase in actuation frequency 
results in saturation of the lateral velocity of sphere due to step-
out in both cases. Experimental results are compared to the 
predictions of the existing analytical models in the literature. A 
computational fluid dynamics (CFD) model validated against the 
data found in the literature is utilized to help extending the 
existing data and interpreting the experimental results. 
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I. INTRODUCTION  
As our understanding of the micro- nanoscale world 

considerably expanded, and as the developments in the 
manufacturing technologies allowed us to miniaturize virtually 
everything, nanorobots and nanoparticles started to attract 
attention as an alternative means to deliver therapeutic agents 
to the disease inflicted sites. Targeted drug delivery not only 
decreases the side effects experienced due to the healthy 
tissues or organs being subjected to toxic agents, but it also 
increases the efficacy of the treatment by adjusting the dosage 
that needs to be administered [1]. Magnetic particles that are 
actuated noninvasively and that can be tracked throughout the 
body are promising candidates in targeted drug delivery 
applications. As the success of such applications depends on 
the accurate targeting and dosage delivery, enabling the 
motion of simple spherical particles in channels and 
understanding how those particles swim inside cylindrical 
conduits of different radii, such as encountered in our 
circulatory system, becomes crucial. Actively inducing and 
controlling the motion is of particular importance for the cases 

where the passive movement of the particle due to field 
gradients (e.g. chemotaxis) is not sufficient or undesirable for 
accurate targeting. 

Various studies are conducted to understand and predict 
the behavior of spherical particles swimming inside conduits 
or near boundaries, both in the presence of a flow and in a 
quiescent fluid. Brenner and Happel [2] investigated the 
frictional drag on a sphere subjected to a Poseuille flow using 
method of reflections. After much iteration, they concluded 
that an optimum distance between the sphere center and 
central axis of the cylindrical conduit exists, where the drag is 
minimized. However, their results are valid in asymptotic 
cases where the distance between the sphere and the channel 
wall is much larger than the sphere radius. Goldman et al. [3] 
took near wall effects of nearly planar wall, their results can 
only apply when the channel radius is considerably greater 
than the sphere radius. Bungay and Brenner [4] studied the 
motion of spherical particles in a tightly fitting cylindrical 
conduit and proposed an improvement on the existing 
lubrication theories, which is still widely used in cases the 
sphere and the channel wall are in close proximity. Higdon 
and Muldowney [5] used spectral boundary element method to 
obtain friction coefficients of spheres swimming inside 
cylindrical conduits. They presented tabulated results for 
various rch / rsph ratios, which can be used to predict swimming 
behavior of spheres that swim under zero net torque condition, 
at any distance from the channel wall. For the cases when 
sphere is too close to the channel wall, they employed 
lubrication theory. As zero torque conditions are applied, 
rotational friction coefficients and coupling friction 
coefficients are not reported. 

More recently, Bhattacharya et al. [6] reported a more 
complete basis transformation model that overcomes the 
limitations of the asymptotic models. They presented 
translational, rotational and translation-rotation coupling 
friction coefficients for spheres at an arbitrary radial position, 
and for various rch / rsph ratios. The model predicts that based 
on the rch / rsph ratio and the distance of the sphere from the 
channel wall, a sphere rotating at a constant angular velocity 
might roll in one direction or slide in the opposite direction. 
Zhu et al. [7] opted for boundary element method to study the 
motion of spherical squirmers in capillary tubes. They focused 
more on the work necessary to swim, trajectory followed by 



the particles, and on the comparison of pusher and puller type 
swimmers. They concluded that the puller type swimmers are 
following a more stable trajectory, and that the presence of a 
confinement increases the amount of work done to achieve 
swimming. 

Aside from these more general analyses on the motion of 
spheres inside confinements, more peculiar behaviors such as 
anomalous rolling of spheres near inclined planes are reported 
in the literature, namely, motion of a sphere rotating as though 
climbing the inclined plane despite falling downwards. One of 
the earliest mentions of a similar behavior is found in Cox et 
al.’s work [8], where the authors deduct that near the 
boundary, sphere should slip as it rolls based on their 
calculations, however, they mention that an experimental 
demonstration was not reported at the time. Liu et al.’s [9] 
work demonstrates this prediction experimentally. The authors 
found that, when a sphere is dropped near a planar wall, 
depending on the nature of the fluid used (Newtonian vs. Non-
Newtonian) and the angle of inclination of the wall, the sphere 
might perform rolling, sliding or anomalous rolling. When the 
wall is vertical, sphere is found to display anomalous rolling in 
both Newtonian and Non-Newtonian fluids, and that it shies 
away from the wall. They observed that the sphere transitions 
to normal rolling in Newtonian fluids, once the inclination of 
the planar wall is beyond a critical angle, however, that it still 
persisted in Non-Newtonian fluids. More studies reporting the 
behavior of the spherical particles approaching a boundary or 
falling near a boundary [10-14], and studies on collective 
behavior of multiple particles [15, 16] can also be found in the 
literature. 

Despite the abundance of analytical and numerical models 
predicting the motion of passive spherical particles inside 
channels or near boundaries, experimental studies 
demonstrating the rolling and sliding motion of rotating 
swimmers are either absent or scarce, particularly for the 
swimming of rotating swimmers inside horizontal channels. 
To fill this gap and test the existing theories, an experimental 
study is conducted. A neodymium sphere of diameter 1 mm is 
placed inside two different glass channels of diameters 1.6 mm 
and 3 mm, which are of length 10 cm and filled with glycerol. 
Sphere is rotated magnetically at different frequencies using 
two Helmholtz coil pairs and the motion of the sphere is 
recorded. It is shown that the motion of the sphere is affected 
by the ratio of the channel/sphere radii greatly. The distance 
between the sphere and the channel wall plays a significant 
role on the motion and the velocity of the swimmer. 
Experimental results are interpreted utilizing a resistance-
based model and the coefficients presented by Bhattacharya et 
al. [6] and a CFD model that complements their findings. 

II. METHODOLOGY 

A. Experimental 
A neodymium sphere of diameter 1 mm and glass tubes of 

diameters 1.6 mm and 3 mm are used for the experiments. 10 
cm long cylindrical glass tubes are filled with glycerol and the 
magnetic sphere is placed inside the channel. One tube at a 

time is placed horizontally inside the experimental setup 
consisting of three Helmholtz coil pairs connected to Maxon 
drivers controlled via Labview software. Two of the coil pairs 

 

Fig. 1 Experimental setup: Magnetic field rotating about y-axis is applied 
using x (green) and z (blue) coil pairs. A digital microscope is used as camera 
to record the experiments. 

(x and z pairs) are activated with sinusoidal out-of-phase 
currents to create a magnetic field rotating about the y-axis 
whereas the axis of the cylindrical channel is placed along the 
z-direction. The distance between the centers of the sphere and 
the axis of the cylindrical channel is measured along the x-
axis. The magnetic sphere is actuated at different magnetic 
field rotation rates ranging between [0.1-50 Hz] and its motion 
is recorded using a digital microscope from above to observe 
the movement in the x-direction and response to the magnetic 
field.  

As a rotating magnetic field is applied to the magnetic 
sphere, its magnetic dipole moment tries to align with the 
direction of the applied magnetic field, which causes the 
rotation of the sphere. When the magnetic torque acting on the 
sphere due to its rotation exceeds the viscous torque acting on 
it due to the presence of a fluid, the sphere starts to translate 
along z-axis. The relationship between the magnetic dipole 
moment, m, the magnetic field, B, and the magnetic torque, m 
is given by the following equation: 

 0μ=m = m ×B m × H  (1)

where 0 denotes the permeability of the free space and H is 
the magnetic field strength. As implied by the cross-product, 
actual magnetic torque acting on the sphere at any given 
instance depends on the sinus of the angle between the 
magnetic dipole moment vector of the sphere and the magnetic 
field vector, and the angle depends on the net torque acting on 
the sphere, taking both viscous and magnetic torques into 
account. 

Positions of the spheres are obtained through image processing 
via a MATLAB code, using the images recorded by the digital 



microscope directed towards yz-plane. The image processing 
code extracts each frame of the recording and masks the area 
where the channel is located. Then the background is cancelled 
through use of filters, such that only the image of the sphere 
remains as a black circle against a white background. 
Afterwards, the code calculates the centroid of the sphere and 
tracks its position. Using the position data, lateral velocity of 
the sphere is calculated. 

B. CFD 
CFD model used in the validation of the data 

extrapolation based on the data presented in Bhattacharya et 
al.’s study [6] solves incompressible Stokes equations, which 
are given as follows in non-dimensional form: 

 21 0   and    0p
Re

−∇ + ∇ = ∇ ⋅ =u u   (2) 

where u and p denote the velocity vector and pressure 
respectively. The Reynolds number, Re, is based on the 
rotation frequency, f, and a length scale, , such as the 
diameter of the channel: i.e. Re = 2f / , where  is the 
density and  is the viscosity of glycerine. 

No-slip boundary conditions are used on the channel wall 
and on the sphere surface moving with the velocity: 

 ( ) S∈0u = U + × r - r , r    (3) 

where U is the swimming velocity,  is the angular velocity, r 
is the position, r0 is the position of the centroid, and S 
represents the surface of the body. Force-free swimming 
condition is applied to the sphere surface as follows:  

 0net
S

dA == ⋅F n  (4) 

where  is the stress tensor and n is the local surface normal. 

COMSOL Multiphysics [17] software is used to solve 
incompressible Stokes equations with finite element method. 
P1+P1 discretization of the fluids and MUMPS direct solver is 
employed for the simulations. Triangular surface mesh is 
applied to the sphere surface and tetrahedral elements are used 
to mesh all domains. Smaller mesh elements are used in the 
region where sphere gets close to the channel to capture the 
more complex dynamics in this region. Average degrees of 
freedom (DOF) for the results reported in this paper is 500K 
and mesh convergence of the results are observed.  

Here, it should be noted that the CFD study is conducted 
only to interpret our experimental results extending and using 
the available data presented by Bhattacharya et al [6]. Since 
their study does not report on the case where rch / rsph = 1.6, a 
direct comparison of the experimental results with the 
theoretical model is not possible. However, data presented for 
rch / rsph = 2 and rch / rsph = 3 are sufficient to demonstrate the 
effect of rch / rsph ratio on thesphere’s behavior. 

III. RESULTS AND DISCUSSION 
Fig. 2 depicts the velocities of the neodymium sphere of 

diameter 1mm, swimming inside cylindrical channels of 
diameters 1.6 mm (Fig. 2/a) and 3 mm (Fig. 2/b) at different 
actuation frequencies. 

The influence of the channel-to-sphere radius ratio, rch / 
rsph on the swimming behavior of the sphere is easily 
discernible from the significantly different velocity profiles 
obtained for the same sphere (Fig. 2). In the channel with 3 
mm diameter, the sphere goes through two phases, namely, the 
rolling and step-out (Fig. 2/b). Rolling motion of the sphere 
implies lateral movement of the sphere in the positive z-
direction, while it rotates clockwise in the y-direction. The 
term step-out indicates that the sphere cannot sustain a 
synchronous rotation with the magnetic field. In the rolling 
phase, the velocity demonstrates a linear dependence on the 
rotation frequency. At frequencies greater than 14 Hz, step-out 
behavior is observed. First the sphere starts to slow down, as 
the rotation of the sphere loses sync with the rotation of the 
magnetic field. Velocity starts to decrease until it saturates at 
higher actuation frequencies. 

In the narrow channel, sphere displays a more complex 
behavior, where the velocity exhibits three different phases 
with increasing frequencies. At rotation frequencies ranging 
between 0.1-0.3 Hz, the sphere rolls in the positive z-direction. 
However, as the frequency increases up to 10 Hz, the sphere 
starts to swim in negative z-direction despite its clockwise 
rotation about y-axis. This behavior will be referred to as 
“sliding” in the remainder of this paper. Even though the 
sphere’s movement transitions from rolling to sliding, velocity 
displays an almost linear dependency on frequencies between 
0.1-10 Hz. After 10 Hz, the behavior can be attributed to step-
out. 

The motion of the sphere inside the narrow channel can be 
explained as follows: At very low frequencies, sphere is in 
contact with the channel wall, and the magnetic field is 
rotating so slowly, that the sphere’s magnetic dipole moment 
can sync with it easily. In this phase, the balance between the 
magnetic torque and friction torque on the sphere result in 
synchronous rolling of the sphere in the z-direction. However, 
as the sphere rotates faster, it loses its traction and due to the 
small diameter of the channel, a pressure difference in the 
front and at the wake of the sphere start builds up (Fig. 2/a), 
effectively pushing the sphere in the negative z-direction [18]. 
Hence the sphere slows down with increasing frequency. As 
the pressure difference between the two sides of the sphere 
increases, it starts to slide in the opposite direction. Increasing 
the actuation frequency rotates the sphere faster, which 
increases the pressure difference, thus the sphere accelerates in 
negative z-direction. Change in the distance of the sphere from 
the channel wall can also contribute to this behavior and 
explain slight deviations from the linear profile. As the 
actuation frequency gets higher, the sphere might achieve lift-
off from the channel wall [19-22], and become more 
susceptible to the pressure difference, however, such minor 
changes in the distance between the sphere and the channel 



wall cannot be quantified experimentally. When the actuation 
frequency exceeds 10 Hz, sphere starts to become out of sync 
with the rotating field, and its sliding motion is slowed down 
until a saturation velocity is reached. Another remark that 
must be made here is that the saturation velocity is negative 
for the sphere in the tighter confinement, whereas it was 
positive for the sphere swimming in the wide channel. 

 Bhattacharya et al.’s [6] theoretical findings confirm our 
interpretation of the experimental data presented. Firstly, their 
model also captures the effect of rch / rsph ratio on the 

movement of the spherical particles in cylindrical 
confinements. They derived the translational and rotational 
resistance coefficients of spheres swimming inside circular 
channels, and reported different results for various rch / rsph 
ratios. A closer inspection of the data presented in 
Bhattacharya et al. [6] shows that the transition from rolling to 
sliding is highly affected by the relative radii of the sphere and 
the channel, as well as by the distance of the spherical particle 
from the wall. The relationship between the friction 
coefficients, forces and torques acting on the sphere, and 
velocity and the angular velocity are given is follows [6]:

 
Fig. 2 Translation velocity, U, vs. the actuation frequency, f, of the sphere of diameter 1 mm inside cylindrical channels of (a) 1.6 mm, and (b) 3 mm

 0⋅ ⋅tt tr p exF u + F + f + f =   (5) 

 0⋅ ⋅rt rr p exF u + F + + =  (6) 

 
where Ftt, Frr, Ftr denote the friction coefficient tensors for 
translation, rotation and translation-rotation coupling 
respectively. Frt is the transpose of Ftr, whereas u and  are 
the translational and angular velocity vectors. Vectors f and  
denote force and torque, whereas the superscripts p and ex

 
indicate that the forces or torques occur due to the presence of 
a parabolic flow or an external input. Applying zero net force 
condition and necessary coordinate transformations, and 
considering that angular velocity is nonzero only about the y-
axis, these equations simply reduce to: 
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tt
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G U
F ω
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G
U f

F
π=  (7) 

 
where G’ is the component of translation-rotation coupling 
friction coefficient related to rotation about y-axis, U is the 
translation velocity of the sphere, Ftt

zz is the z-component of 
the translational friction coefficient, f is the rotation frequency, 
and y is the angular velocity about y-axis. 

Using equation (4), velocity profile of the sphere in the 
linear regime can be obtained. To validate our model, we focus 
on the cases where the sphere is almost in contact with the 
wall in order to observe the effect of the change in particle-
channel wall distance on the velocity clearly. Since 
Bhattacharya et al. [6] present data for rch / rsph = 2, 3 and 4, 
and our ratios are rch / rsph = 1.6 and 3, we will use the data for 
the ratios rch / rsph = 2 and rch / rsph = 3. We focus on the linear 
regime observed in both cases, where rch / rsph = 2 and rch / rsph 
= 3. To this end, we need to find the friction coefficients Ftt

zz 
and G’ near the channel wall. If R is the distance between the 
sphere center and the central axis of the cylinder measured 



along x-axis, distance of the sphere from the wall can be 
quantified with the normalized variable  as follows: 

 
ch sph

R
r r

β =
−

 (8) 

Bhattacharya et al. [6] report Ftt
zz and G’ values for a range 

of  values. However, since the sphere is either in contact or 
near-contact with the channel wall, we needed to obtain Ftt

zz 
and G’ values for  much closer to unity. To predict Ftt

zz and 
G’ values for greater , we first develop a simple CFD model 
of the experiment using commercially available software 
COMSOL® [17]. Using this model, we obtain Ftt

zz values for 
the cases rch / rsph = 2 and rch / rsph = 3 to be able to compare 
our results directly to the reported values. Black line in Fig. 3 
depicts Bhattacharya’s [6] results, whereas the blue line shows 
the CFD results. Reasonably well agreement is achieved with 
Bhattacharya et al.’s results, as the maximum relative error is 
found to be less than 4.5% for the available data. 

After this validation, we extend our results to higher  
values. Finally, we found a polynomial fit to Bhattacharya’s 
[6] data that would agree with CFD results at  values very 

 
Fig. 3  Comparison of friction coefficient Ftt

zz vs.  reported by Bhattacharya 
et al., extrapolation of their data and data obtained from our CFD model, for 
rch / rsph = 2 (a) and  rch / rsph = 3 (b). 

close to unity. Using the equation of the polynomial, we 
deduce Ftt

zz and G’ values for a sphere, which swims very 
close to the channel wall, and obtain the slope of the U vs. f 
graph in the linear region. A comparison of the data obtained 
from the CFD and from the extrapolation Bhattacharya’s [6] 
results is presented in Table 1. 

Table 1 exhibits the role of distance on the velocity. Even 
slight changes in the distance can be very effective in changing 
the swimming characteristics [8]. For instance, CFD model 
predicts that the sphere is rolling when in contact with the 
channel wall, but that it is sliding when it is even a fraction 
away from the wall when rch / rsph = 2. The sphere accelerates 
in negative z-direction according to both models. The 
sensitivity of the velocity to the distance from the wall is 
clearly depicted. 

Analytical results predict the sliding of the sphere against 
the rolling velocity, but since we use extrapolated data, the 
change in the sign of the velocity as the sphere approaches 
near contact with the wall could not be captured. CFD model 
on the other hand predicts the transition from rolling to sliding. 
For the CFD model,  = 0.99999 case is practically equivalent 
to contact mode. Distinguishing the full contact mode in CFD 
from  = 0.99999 configuration would require a very fine 
mesh and high computational power. Therefore, at  = 
0.99999 CFD model predicts the results for the contact case. 
However, an analytical model can distinguish between near-
contact and contact modes; but still, predictions will be within 
an error margin. For the wide channel, both models predicted 
positive velocities that increase as the sphere gets closer to the 
wall. 

TABLE I.  2 G’ / FTT
ZZ VALUES OBTAINED FROM EXTRAPOLATION OF THE 

AVAILABLE DATA AND CFD 

 

IV. CONCLUSIONS AND FUTURE WORK 
Motion of a sphere swimming inside horizontal cylindrical 

channels is investigated experimentally and computationally. It 
is shown that the particular dynamics of the sphere rotating and 
translating inside a viscous fluid is highly dependent on rch / rsph 
and instantaneous distance of the sphere from the channel wall. 
Results and the model constructed to interpret them are in 
agreement with the analytical results found in the literature. 

R
ch

 / R
sph 

   Bhattacharya et al. [6] CFD  

2 

0.99  -0.11215  -0.16637  
0.999  -0.026969  -0.12085  

0.9999  -0.018632  -0.07139  
0.99999 -0.017824  0.30988  

3 

0.99  0.039709  0.0095974  
0.999  0.131  0.059408  

0.9999  0.14223  0.10311  
0.99999 0.1433  0.16534  



As future work, relationship between the translational 
velocity profile of the sphere and its distance from the channel 
wall should be investigated. Complex resistance coefficient 
matrices that would relate multiple forces acting on the 
rotating and translating sphere to its swimming behavior 
should be driven. Pressure drop across the sphere due to this 
coupled motion needs to be quantified. Scaling down the 
experimental setup or conducting a nondimensional analysis is 
necessary for accurate prediction of the spherical particles in 
nanofluid solutions. 3D manipulation of the sphere trajectory 
is also a valuable challenge. 
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