
I

LOW ENERGY VIDEO PROCESSING AND COMPRESSION HARDWARE

DESIGNS

by

Ercan Kalalı

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Sabancı University

August 2018

II

III

© Ercan Kalalı 2018

All Rights Reserved

IV

To my Mother and Father

To my beloved wife Ayşegül

V

ACKNOWLEDGEMENT

I would like to thank my supervisor, Dr. İlker Hamzaoğlu for all his guidance,

support, and patience throughout my PhD study. I appreciate very much for his

suggestions, detailed reviews, invaluable advices and life lessons. I particularly want to

thank him for his confidence and belief in me during my study. It has been a great honor

for me to work under his guidance.

I would like to thank to all members of System-on-Chip Design and Testing Lab;

Hasan Azgın and Ahmet Can Mert for their great friendship and their collaboration

during my studies.

Special thanks to my family and my love Ayşegül. This thesis is dedicated with

love to them for their constant support and encouragement for going through my tough

periods with me.

Finally, I would like to thank Sabancı University and Scientific and

Technological Research Council of Turkey (TUBITAK) for supporting me throughout

my graduate education.

VI

1 ABSTRACT

LOW ENERGY VIDEO PROCESSING AND COMPRESSION

HARDWARE DESIGNS

Ercan Kalalı
Electronics, PhD Dissertation, 2018

Thesis Supervisor: Assoc. Prof. İlker HAMZAOĞLU

Keywords: Median Filter, Gaussian Blur, Image Sharpening, HEVC, Intra Prediction,

Fractional Interpolation, DCT, IDCT, Approximate Computing, Hardware

Implementation, FPGA, Low Energy

Digital video processing and compression algorithms are used in many

commercial products such as mobile devices, unmanned aerial vehicles, and

autonomous cars. Increasing resolution of videos used in these commercial products

increased computational complexities of digital video processing and compression

algorithms. Therefore, it is necessary to reduce computational complexities of digital

video processing and compression algorithms, and energy consumptions of digital video

processing and compression hardware without reducing visual quality.

In this thesis, we propose a novel adaptive 2D digital image processing algorithm

for 2D median filter, Gaussian blur and image sharpening. We designed low energy 2D

median filter, Gaussian blur and image sharpening hardware using the proposed

algorithm. We propose approximate HEVC intra prediction and HEVC fractional

interpolation algorithms. We designed low energy approximate HEVC intra prediction

and HEVC fractional interpolation hardware. We also propose several HEVC fractional

interpolation hardware architectures. We propose novel computational complexity and

energy reduction techniques for HEVC DCT and inverse DCT/DST. We designed high

performance and low energy hardware for HEVC DCT and inverse DCT/DST including

the proposed techniques.

VII

We quantified computation reductions achieved and video quality loss caused by

the proposed algorithms and techniques. We implemented the proposed hardware

architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6

and Xilinx ZYNQ FPGAs, and estimated their power consumptions using Xilinx

XPower Analyzer tool. The proposed algorithms and techniques significantly reduced

the power and energy consumptions of these FPGA implementations in some cases with

no PSNR loss and in some cases with very small PSNR loss.

VIII

2 ÖZET

DÜŞÜK ENERJİLİ GÖRÜNTÜ İŞLEME VE SIKIŞTIRMA DONANIM

TASARIMLARI

Ercan Kalalı
Elektronik Müh., Doktora Tezi, 2018

Tez Danışmanı: Doç. Dr. İlker HAMZAOĞLU

Anahtar Kelimeler: Orta Değer Filtresi, Gauss Bulanıklığı, Görüntü Keskinleştirme,

HEVC, Çerçeve İçi Öngörü, Kesirli Aradeğerleme, Ayrık Kosinüs Dönüşümü, Ters

Ayrık Kosinüs Dönüşümü, Yaklaşık Hesaplama, Donanım Gerçekleme, FPGA, Düşük

Enerji

Sayısal video işleme ve sıkıştırma algoritmaları mobil cihazlar, insansız hava

araçları ve otonom araçlar gibi birçok ticari üründe kullanılmaktadır. Bu ticari ürünlerde

kullanılan video çözünürlüklerinin artması sayısal video işleme ve sıkıştırma

algoritmalarının hesaplama karmaşıklığını arttırmaktadır. Bu yüzden, sayısal video

işleme ve sıkıştırma algoritmalarının hesaplama karmaşıklığını ve sayısal video işleme

ve sıkıştırma donanımlarının enerji tüketimlerini görsel kaliteyi düşürmeden azaltmak

gerekmektedir.

Bu tezde, 2B orta değer filtresi, Gauss bulanıklığı ve görüntü keskinleştirme

algoritmaları için yeniden uyarlanabilir 2B sayısal görüntü işleme algoritması

önerilmektedir. Önerilen algoritmayı kullanarak düşük enerjili 2B orta değer filtresi,

Gauss bulanıklığı ve görüntü keskinleştirme donanımları tasarlanmıştır. Yaklaşık

HEVC çerçeve içi öngörü ve yaklaşık HEVC kesirli aradeğerleme algoritmaları

önerilmektedir. Düşük enerjili yaklaşık HEVC çerçeve içi öngörü ve yaklaşık HEVC

kesirli aradeğerleme donanımları tasarlanmıştır. Ayrıca, HEVC kesirli aradeğerleme

algoritması için farklı donanım mimarileri önerilmektedir. HEVC DCT ve ters

IX

DCT/DST için birkaç farklı hesaplama karmaşıklığı ve enerji azaltma teknikleri

önerilmektedir. Önerilen teknikleri kullanarak, yüksek performanslı ve düşük enerjili

HEVC DCT ve ters DCT/DST donanımları tasarlanmıştır.

Önerilen algoritma ve tekniklerin neden olduğu hesaplama azaltmaları ve video

kalitesi kayıpları ölçüldü. Önerilen donanım mimarileri Verilog donanım tasarlama dili

ile gerçeklendi. Verilog RTL kodları Xilinx Virtex 6 ve Xilinx ZYNQ FPGA’lerine

sentezlendi ve bunların güç tüketimleri Xilinx XPower Analyzer aracı ile tahmin edildi.

Önerilen algoritmalar ve teknikler, bu FPGA gerçeklemelerinin güç ve enerji

tüketimlerini, bazı durumlarda PSNR kaybı olmaksızın, bazı durumlarda ise çok küçük

PSNR kaybı ile önemli ölçüde azalttı.

X

3 TABLE OF CONTENTS

ACKNOWLEDGEMENT .. V

1 ABSTRACT ... VI

2 ÖZET ... VIII

3 TABLE OF CONTENTS ... X

LIST OF FIGURES ... XII

LIST OF TABLES .. XIV

LIST OF ABBREVIATIONS .. XV

1 CHAPTER I INTRODUCTION ... 1

1.1 HEVC Video Compression Standard .. 2

1.2 Thesis Contributions ... 5

1.3 Thesis Organization .. 7

2 CHAPTER II LOW COMPLEXITY 2D ADAPTIVE IMAGE PROCESSING

ALGORITHM AND ITS HARDWARE IMPLEMENTATION 9

2.1 Proposed 2D Adaptive Digital Image Processing Algorithm 12

2.2 Proposed 2D Adaptive Digital Image Processing Hardware 18

3 CHAPTER III AN APPROXIMATE HEVC INTRA PREDICTION

HARDWARE.. 23

3.1 HEVC Intra Prediction Algorithm .. 24

3.2 Proposed Approximate HEVC Intra Angular Prediction Technique 26

3.3 Proposed Approximate HEVC Intra Prediction Hardware ... 29

XI

4 CHAPTER IV LOW ENERGY HEVC FRACTIONAL INTERPOLATION

HARDWARE.. 36

4.1 HEVC Fractional Interpolation Algorithm ... 37

4.2 Proposed Pixel Correlation Based Computation and Energy Reduction Techniques

and Their Hardware Implementations ... 38

4.3 Proposed HEVC Fractional Interpolation Hardware (MCM) 44

4.4 Proposed Approximate HEVC Fractional Interpolation Filters and Their Hardware

Implementations .. 48

4.5 Hardware Comparison .. 56

5 CHAPTER V A COMPUTATION AND ENERGY REDUCTION TECHNIQUE

FOR HEVC DISCRETE COSINE TRANSFORM .. 59

5.1 Proposed Computation and Energy Reduction Technique ... 62

5.2 Proposed HEVC 2D DCT Hardware .. 68

5.3 Implementation Results... 73

6 CHAPTER VI A LOW ENERGY HEVC INVERSE TRANSFORM

HARDWARE.. 76

6.1 Proposed Energy Reduction Technique .. 78

6.2 Proposed HEVC 2D IDCT and IDST Hardware .. 82

6.3 Implementation Results... 85

7 CHAPTER VII CONCLUSIONS AND FUTURE WORKS 88

8 BIBLIOGRAPHY ... 90

4.2.1 Proposed PECR and PSCR Techniques .. 39

4.2.2 Proposed HEVC Fractional Interpolation Hardware (PECR and PSCR) 41

4.4.1 Proposed Approximate HEVC Fractional Interpolation Filters 49

4.4.2 Proposed Approximate HEVC Fractional Interpolation Hardware 51

5.2.1 Proposed HEVC 2D DCT Lower Utilization Hardware 68

5.2.2 Proposed HEVC 2D DCT Higher Utilization Hardware 71

XII

LIST OF FIGURES

Figure 1.1 HEVC Encoder Block Diagram ... 2

Figure 1.2 HEVC Decoder Block Diagram ... 2

Figure 1.3 HEVC Quadtree Block Structure ... 3

Figure 2.1 Proposed 2D Adaptive Digital Image Processing Algorithm 13

Figure 2.2 Pseudo Code of Proposed 2D Adaptive Digital Image Processing Algorithm 13

Figure 2.3 Example Image for 2D Median Filter .. 15

Figure 2.4 Proposed 2D Adaptive Digital Image Processing Hardware 18

Figure 2.5 Proposed 2D Adaptive Median Filter Hardware Implementation on an FPGA

Board ... 20

Figure 2.6 Power and Energy Consumptions of FPGA Implementations for Full HD

(1920x1080) Images .. 21

Figure 3.1 HEVC Intra Prediction Mode Directions ... 24

Figure 3.2 Neighboring Pixels of 4x4 and 8x8 PUs .. 24

Figure 3.3 Example Intra Angular Prediction Equations for Different Distances 28

Figure 3.4 Proposed Approximate HEVC Intra Prediction Hardware 30

Figure 3.5 Proposed MCM Datapath .. 31

Figure 3.6 Scheduling of HEVC Intra Angular Prediction Hardware 33

Figure 3.7 Implementation of Proposed Approximate HEVC Intra Prediction Hardware on

an FPGA Board ... 34

Figure 3.8 Energy Consumption Comparison ... 35

Figure 4.1 Integer, Half and Quarter Pixels .. 38

Figure 4.2 Rate-Distortion Performances of Original HEVC and HEVC Using PSCR

Techniques for Fractional Interpolation .. 41

Figure 4.3 Proposed HEVC Fractional Interpolation Hardware (PECR and PSCR) 42

Figure 4.4 Energy Consumptions of HEVC Fractional Interpolation Hardware 44

Figure 4.5 Type A and Type B Filters ... 44

Figure 4.6 Proposed HEVC Fractional Interpolation Hardware (MCM) 45

Figure 4.7 Energy Consumption of HEVC Fractional Interpolation Hardware for Tennis

(1920x1080) with different QP Values ... 47

Figure 4.8 Energy Consumption of HEVC Fractional Interpolation Hardware for Kimono

(1920x1080) with different QP Values ... 48

Figure 4.9 Proposed AS Approximate HEVC Fractional Interpolation Hardware 52

Figure 4.10 Proposed MCM Approximate HEVC Fractional Interpolation Hardware 52

Figure 4.11 Scheduling of HEVC Fractional Interpolation Hardware 53

Figure 4.12 Implementation of Proposed Approximate HEVC Fractional Interpolation

Hardware on an FPGA Board .. 54

Figure 4.13 Energy Consumption Results ... 56

Figure 5.1 Proposed Computation and Energy Reduction Technique 62

XIII

Figure 5.2 Pseudocode of HEVC DCT with The Proposed Technique 63

Figure 5.3 DCT Level Percentages ... 64

Figure 5.4 Proposed HEVC 2D DCT Lower Utilization Hardware 68

Figure 5.5 Column Butterfly Structure .. 69

Figure 5.6 Multiplier Block in HEVC 2D DCT Lower Utilization Hardware 70

Figure 5.7 Transpose Memory .. 71

Figure 5.8 Multiplier Block in HEVC 2D DCT Higher Utilization Hardware 72

Figure 5.9 Energy Consumptions of HEVC 2D LU Hardware for Full HD (1920x1080)

Video Frames .. 74

Figure 5.10 Energy Consumptions of HEVC 2D HU Hardware for Full HD (1920x1080)

Video Frames .. 74

Figure 6.1 Pseudocode of HEVC IDCT with The Proposed Technique 78

Figure 6.2 DC and Pre-Determined Coefficient Sets .. 79

Figure 6.3 Proposed HEVC 2D IDCT and IDST Hardware ... 82

Figure 6.4 Column Butterfly Structure .. 83

Figure 6.5 4x4 Datapath .. 83

Figure 6.6 Multiplier Block in 8x8 Datapath .. 84

Figure 6.7 Transpose Memory .. 84

XIV

LIST OF TABLES

Table 2.1 Similarity Percentages (%) for 5x5 and 7x7 Windows (HEVC Images) 14

Table 2.2 Similarity Percentages (%) for 5x5 and 7x7 Windows (Benchmark Images)....... 15

Table 2.3 PSNR Values (dB) for HEVC Test Images .. 16

Table 2.4 PSNR Values (dB) for Benchmark Images ... 16

Table 2.5 Structural Similarity (SSIM) Values for HEVC Test Images 17

Table 2.6 Structural Similarity (SSIM) Values for Benchmark Images 17

Table 2.7 Median Filter Hardware Comparison for 5x5 Window .. 21

Table 2.8 Gaussian Blur Hardware Comparison for 5x5 Window 22

Table 3.1 Prediction Equation Reductions by Data Reuse ... 27

Table 3.2 BD-Rate(%) and BD-PSNR(dB) .. 29

Table 3.3 Comparison of FPGA Implementations ... 34

Table 3.4 Comparison of ASIC Implementations .. 35

Table 4.1 Equality and Similarity Percentages .. 40

Table 4.2 Computation Reductions by PECR and PSCR 3bT ... 40

Table 4.3 Common Coefficients of Input Pixels .. 46

Table 4.4 Addition and Shift Reductions ... 50

Table 4.5 BD-Rate(%) and BD-PSNR(dB) .. 51

Table 4.6 FPGA Implementation Results .. 55

Table 4.7 ASIC Implementation Results .. 55

Table 4.8 Comparisons of The Proposed FPGA Implementations .. 57

Table 4.9 Comparisons of ASIC Implementations .. 57

Table 4.10 Comparisons of FPGA Implementations ... 57

Table 5.1 Addition and Shift Reductions for All TU Sizes.. 64

Table 5.2 BD-Rate, BD-PSNR and Execution Time Results for HEVC All Intra (AI)

Configuration ... 65

Table 5.3 BD-Rate, BD-PSNR and Execution Time Results for HEVC Low Delay P (LP)

Configuration ... 66

Table 5.4 BD-Rate, BD-PSNR and Execution Time Results for HEVC Random Access (RA)

Configuration ... 67

Table 5.5 FPGA Implementations Results ... 73

Table 5.6 Hardware Comparison ... 75

Table 6.1 Addition and Shift Reductions for All TU Sizes ... 79

Table 6.2 Bitrate and PSNR Values .. 80

Table 6.3 Percentages (%) of TU Sizes and IDCT for DC Coefficient 81

Table 6.4 Energy Consumption Reductions for Cactus (1920x1080) 86

Table 6.5 Energy Consumption Reductions for Kimono (1920x1080) 86

Table 6.6 Hardware Comparison .. 87

XV

LIST OF ABBREVIATIONS

AXI Advanced eXtensible Interface

BRAM Block RAM

CABAC Context Adaptive Binary Arithmetic Coding

CU Coding Unit

DBF Deblocking Filter

DCT Discrete Cosine Transform

DST Discrete Sine Transform

FHD Full High Definition

FPGA Field Programmable Gate Array

HD High Definition

HDMI High Definition Multimedia Interface

HEVC High Efficiency Video Coding

HM HEVC Test Model

IDCT Inverse Discrete Cosine Transform

PSNR Peak Signal to Noise Ratio

PU Prediction Unit

QFHD Quad Full High Definition

QP Quantization Parameter

SAO Sample Adaptive Offset

TU Transform Unit

VCD Value Change Dump

1

1 CHAPTER I

INTRODUCTION

 Digital video processing and compression algorithms and hardware are used in

many commercial products such as mobile devices, unmanned aerial vehicles, and

autonomous cars [1]-[4]. To improve visual quality and compression efficiency, video

sizes and computational complexities of digital video processing and compression

algorithms are increased. For example, Quad Full HD (4K) and Ultra HD (8K) video

resolutions started to be used instead of Full HD (2K) video resolution. This increases

the energy consumptions of hardware implementations of these algorithms. This trend is

expected to continue in the future as well. According to Cisco Visual Networking Index

internet video traffic will be 82% of all consumer internet traffic by 2021 [5]. Also,

63% of video IP traffic will be consumed by mobile devices by 2021 [5]. Because of

these developments, video coding algorithms with high coding efficiency should be

designed. Therefore, Joint Collaborative Team on Video Coding (JCT-VC) recently

developed a new video compression standard called High Efficiency Video Coding

(HEVC) [6]-[8]. HEVC provides 50% better coding efficiency than H.264 video

compression standard. HEVC uses larger block sizes, more prediction modes and more

transform types than H.264 to obtain better coding efficiency. Therefore, HEVC has

higher computational complexity than H.264.

2

1.1 HEVC Video Compression Standard

The video compression efficiency achieved by HEVC standard is result of a

combination of several encoding and decoding tools such as intra prediction, motion

estimation, deblocking filter, sample adaptive offset (SAO) and entropy coder. The top-

level block diagrams of an HEVC encoder and decoder are shown in Figure 1.1 and

Figure 1.2.

Figure 1.1 HEVC Encoder Block Diagram

Figure 1.2 HEVC Decoder Block Diagram

 As shown in Figure 1.1, an HEVC encoder has a forward (coding) path and a

reconstruction (decoding) path. The forward path is used to encode a video frame by

using spatial (intra) and temporal (inter) prediction modes. Then, residual data are

coded after the transform and quantization processes, and bitstream is created. Since

HEVC decoder does not have access to original frames, reconstruction path in the

encoder is used to prevent a mismatch between encoder and decoder. In this way, both

encoder and decoder use identical reference frames for intra and inter prediction.

3

HEVC uses quad-tree block structure as shown in Figure 1.3. Therefore, each

frame is divided into coding units (CU) in the forward path. These CUs can be 8x8,

16x16, 32x32 or 64x64 pixel blocks. CUs in I frames are encoded with only intra

prediction modes. CUs in P and B frames are encoded with intra or inter mode

depending on the mode decision. Intra and inter prediction modes use the prediction

unit (PU) partitioning structure inside the CUs. Each PU size can be equal to or less

than CU size. PU sizes can be 4x4, 8x8, 16x16 and 32x32 for intra prediction modes.

However, inter prediction has 24 different PU sizes (4x8, 8x4, 8x8 etc.). After the

prediction, mode decision determines whether the PU will be coded with intra or inter

prediction based on PSNR and bit-rate. Then, prediction is subtracted from original

video data and residual data is generated. Then, transformation and quantization are

performed on the residual data. Transform units (TU) are used in the integer discrete

cosine transform (DCT), and TU sizes can be from 4x4 up to 32x32. 4x4 TU size is

only used for discrete sine transform (DST). Finally, entropy coder (context adaptive

binary arithmetic coding) generates the encoded bitstream.

Figure 1.3 HEVC Quadtree Block Structure

Reconstruction path begins with inverse quantization and inverse transform. The

quantized transform coefficients are inverse quantized and inverse transformed to

generate the reconstructed residual data. Since quantization is a lossy process, inverse

quantized and inverse transformed coefficients are not identical to the original residual

data. The reconstructed residual data are added to the predicted pixels to create the

reconstructed frame. DBF is, then, applied to reduce the effects of blocking artifacts in

the reconstructed frame.

CU0: 64x64

CU1: 32x32

CU2: 16x16

CU3: 8x8

4

Intra prediction algorithm in HEVC predicts the pixels of a block from the pixels

of its already coded and reconstructed neighboring blocks. In H.264, there are 9 intra

prediction modes for 4x4 luminance blocks, and 4 intra prediction modes for 16x16

luminance blocks [9]. In HEVC, for the luminance component of a frame, intra

prediction unit (PU) sizes can be from 4x4 up to 32x32 and number of intra prediction

modes for a PU can be up to 35 [6, 7]. 33 of these 35 prediction modes are intra angular

prediction modes, and the predicted pixels are generated by weighted average of two

neighboring pixels. In addition to angular prediction modes, there are DC and planar

prediction modes in the HEVC intra prediction algorithm.

Inter prediction algorithm in HEVC, first, performs integer pixel motion

estimation. There are 24 different PU sizes and 593 different best motion vector

candidates in the integer motion estimation of each 64x64 CU. There are different

motion vector search algorithms for integer pixel motion estimation in the literature [7].

Integer motion vector search algorithm is not specified in the HEVC standard.

However, full search, diamond search and TZ search algorithms are often used in the

implementations. After the integer pixel motion estimation, fractional pixel (half and

quarter) accurate variable block size motion estimation is performed in HEVC to

increase the performance of integer pixel motion estimation. In H.264, 6-tap FIR filter

is used for the interpolation of half pixels, and bilinear interpolation filter is used for the

interpolation of quarter pixels [9]. In HEVC, one 8-tap FIR filter and two 7-tap FIR

filters are used for the interpolation of half and quarter pixels [6, 7].

Integer discrete cosine transform (DCT) is used in HEVC similar to H.264. In

H.264, transformation block sizes can be 4x4 or 8x8. In HEVC, TU sizes can be from

4x4 up to 32x32. In addition to DCT, HEVC uses discrete sine transform (DST) for the

4x4 intra prediction [6, 7]. HEVC performs 2D transform operation by applying 1D

transforms in vertical and horizontal directions. The coefficients in HEVC 1D transform

matrices are derived from DCT-II and DST-VII basis functions. However, integer

coefficients are used for simplicity.

After the transform of residual data, transform coefficients are divided by a

quantization step size, and the results are rounded. However, in the inverse quantization,

only multiplication by the quantization step size is performed. Quantization step size is

determined using the quantization parameter similar to H.264.

Entropy coder uses context adaptive binary arithmetic coding (CABAC) similar

to H.264 with several improvements [10]. Entropy coder exploits statistical

5

redundancies to perform lossless compression. Binarization, context modeling and

binary arithmetic coding are the three main parts of CABAC algorithm.

Deblocking filter algorithm reduces blocking artifacts on the edges of the

prediction units. Decision making and filtering processes in deblocking filter are

simplified in HEVC compared to H.264. Sample adaptive offset (SAO) is added to

deblocking filter process in HEVC which is not used in the previous video compression

standards [6, 7]. After the deblocking filter, SAO is used to reduce the ringing artifacts.

1.2 Thesis Contributions

As the complexity of video processing and compression algorithms are

increasing, the energy consumptions of their hardware implementations are also

increasing [11]. Therefore, in this thesis, we propose computation and energy reduction

techniques for video processing and compression algorithms. Then, we designed and

implemented low energy video processing and compression hardware.

We propose 2D adaptive median filter algorithm [12]. The proposed algorithm

detects noiseless pixels, and it eliminates the sorting operation in the median filter. The

proposed adaptive median filter algorithm does not perform any sort in the best case,

and it sorts 15 pixels instead of 25 pixels in the worst case for a 5x5 window. Then, we

generalize this novel low complexity algorithm for 2D adaptive digital image

processing (DIP) [13]. We show that the proposed algorithm also reduces computational

complexities of 2D gaussian blur and 2D image sharpening without reducing quality of

output image.

We also designed and implemented 2D median filter, Gaussian blur and image

sharpening hardware including the proposed 2D adaptive DIP algorithm using Verilog

HDL. We quantified the impact of the proposed algorithm on the power consumptions

of these hardware on a Xilinx Virtex6 FPGA using Xilinx XPower. The proposed

algorithm reduced energy consumption of the median filter, Gaussian blur and image

sharpening hardware up to 80%, 22% and 31%, respectively.

We propose an approximate HEVC intra angular prediction technique. The

proposed technique uses closer neighboring pixels instead of distant neighboring pixels

in an intra angular prediction equation if the distance between the neighboring pixels

used in this intra angular prediction equation is larger than 2. The proposed approximate

HEVC intra angular prediction technique causes negligible PSNR loss and bit rate

6

increase. Then, we designed and implemented approximate HEVC intra angular

prediction hardware using Verilog HDL. The proposed hardware, in the worst case, can

process 24 Quad Full HD fps. The proposed hardware is the smallest HEVC intra

prediction hardware in the literature.

We propose two pixel correlation based computation and energy reduction

techniques for HEVC fractional interpolation [14]. The proposed techniques compare

pixels at the inputs of HEVC fractional interpolation operation. If these pixels are equal

or similar, interpolation operation is skipped and one of the input pixels is selected as

output. The proposed techniques significantly reduce the computational complexity of

HEVC fractional interpolation with a negligible PSNR loss and bit rate increase. Also,

we designed and implemented two HEVC fractional interpolation hardware including

the proposed techniques using Verilog HDL. The proposed hardware, in the worst case,

can process 30 Quad Full HD fps. They consume up to 39.7% and 46.9% less energy

than original HEVC fractional interpolation hardware.

We propose low energy HEVC fractional interpolation hardware using Hcub

MCM [15]. The proposed hardware calculates common sub-expressions in different

FIR filter equations in HEVC fractional interpolation algorithm once, and the result is

used in all the equations. We designed and implemented the proposed hardware using

Verilog HDL. The proposed hardware, in the worst case, can process 30 Quad Full HD

fps. It consumes up to 48% less energy than original HEVC fractional interpolation

hardware.

We propose two approximate HEVC fractional interpolation filters [16]. Both of

these approximate filters use one 4-tap and two different 3-tap FIR filters instead of

using one 8-tap and two different 7-tap FIR filters. The proposed interpolation filters

significantly reduce the computational complexity of HEVC fractional interpolation

with a negligible PSNR loss and bit rate increase. Then, two approximate HEVC

fractional interpolation hardware for all PU sizes are designed and implemented using

Verilog HDL for each proposed approximate fractional interpolation filter. The

proposed hardware, in the worst case, can process 45 Quad Full HD fps. They consume

up to 67.1% less energy than original HEVC fractional interpolation hardware.

We propose a computation and energy reduction technique for HEVC DCT

operation [17]. The proposed technique is a kind of adaptive zero prediction technique.

Since most of the forward transformed and quantized high frequency coefficients in a

TU become zero, the proposed computation reduction technique only calculates several

7

pre-determined low frequency coefficients of transform units (TUs), and it assumes that

the remaining coefficients are zero. The proposed technique reduces the computational

complexity of HEVC DCT significantly at the expense of slight decrease in PSNR and

slight increase in bit rate.

We also designed and implemented two (lower utilization and higher utilization)

low energy hardware for HEVC DCT including the proposed computation and energy

reduction technique using Verilog HDL. In addition to proposed computation and

energy reduction technique, Hcub MCM is used in the transform datapath, and an

efficient transpose memory architecture is implemented. The proposed lower utilization

hardware and higher utilization hardware can process 48 Quad Full HD and 53 Ultra

HD video frames per second, respectively. The proposed technique reduced the energy

consumption of the lower utilization hardware and the higher utilization hardware up to

17.9 and 18.9, respectively.

We propose a computation and energy reduction technique for HEVC

IDCT/IDST [18]. The proposed technique calculates IDCT and IDST only for DC

coefficient if the values of several predetermined forward transformed low frequency

coefficients in a TU are smaller than a threshold. Otherwise, it calculates IDCT and

IDST for all coefficients in the TU. The proposed technique significantly reduces

computational complexity of HEVC inverse transform with a negligible PSNR loss and

bit rate increase. Performing IDCT only for DC coefficient in a TU, on the average,

achieves 98.87% reduction in addition and 98.70% reduction in shift operations.

We also designed and implemented a low energy HEVC 2D inverse transform

(IDCT and IDST) hardware for all TU sizes including the proposed computation and

energy reduction technique using Verilog HDL. Clock gating technique is used to

reduce the energy consumption of the proposed hardware. Hcub MCM is also used in

the transform datapath, and an efficient transpose memory architecture is implemented.

The proposed hardware, in the worst case, can process 48 Quad Full HD fps. The

proposed technique reduced the energy consumption of this hardware up to 32%.

1.3 Thesis Organization

The rest of the thesis is organized as follows.

Chapter II presents the proposed 2D adaptive digital image processing algorithm.

It describes the proposed low energy median filter, Gaussian blur and image sharpening

8

hardware including the proposed 2D adaptive DIP algorithm and presents their

implementation results.

Chapter III, first, explains HEVC intra angular prediction algorithm. Then, it

describes the proposed approximate intra angular prediction technique and the proposed

approximate HEVC intra angular prediction hardware. It also presents the

implementation results.

Chapter IV, first, explains the HEVC fractional interpolation algorithm. Then, it

presents the proposed pixel correlation based computation and energy reduction

techniques for the HEVC fractional interpolation, and their hardware implementations.

After that, the proposed HEVC fractional interpolation hardware using multiplierless

constant multiplication is explained. Also, the proposed approximate HEVC fractional

interpolation filters and their hardware implementations are explained in Chapter IV.

Finally, hardware comparison with the literature is presented.

The proposed computation and energy reduction technique for HEVC DCT

algorithm is described in Chapter V. Then, the proposed lower utilization and higher

utilization hardware implementations of HEVC DCT including the proposed

computation and energy reduction technique are explained. After that, implementation

results are presented.

Chapter VI explains the proposed computation and energy reduction technique for

HEVC IDCT/IDST algorithm. Then, the proposed low energy hardware implementation

of HEVC IDCT/IDST including the proposed computation and energy reduction

technique is presented.

Chapter VII presents conclusions and future works.

9

2 CHAPTER II

LOW COMPLEXITY 2D ADAPTIVE IMAGE PROCESSING

ALGORITHM AND ITS HARDWARE IMPLEMENTATION

 Digital images are affected by the noise resulting from image sensors or

transmission of images. Image denoising is performed to remove the noise from images.

Several linear and non-linear filters are proposed for image denoising [19]. Although

non-linear filters are more complex than linear filters, they are more commonly used for

image denoising because they reduce smoothing and preserve image edges. 2D spatial

median filter is the most commonly used non-linear filter for image denoising. It is a

non-linear sorting-based filter. It sorts pixels in a given window, determines the median

value, and replaces the pixel in center of the given window with this median value.

Since 2D median filter has high computational complexity, in this thesis, we

propose a novel low complexity 2D adaptive median filter algorithm [12]. The proposed

algorithm reduces the computational complexity of 2D median filter and produces

higher quality filtered images than 2D median filter by exploiting pixel correlations in

input image. We also designed a low energy 2D adaptive median filter hardware

implementing the proposed 2D adaptive median filter algorithm for 5x5 window size.

The proposed hardware is implemented using Verilog HDL. It is verified to work

correctly on an FPGA board. It can work at 263 MHz, and it can process 105 full HD

(1920x1080) images per second in the worst case on a Xilinx Virtex 6 FPGA. It has

more than 80% less energy consumption than original 2D median filter hardware on the

same FPGA.

10

Then, in this thesis, we generalize this novel low complexity adaptive algorithm

for 2D digital image processing. We show that the proposed algorithm also reduces

computational complexities of 2D Gaussian blur and 2D image sharpening without

reducing quality of output image. These DIP algorithms also have high computational

complexity. 2D Gaussian blur is commonly used for image smoothing and denoising. In

this thesis, 2D Gaussian kernel shown in equation (1.1) is used. Output image is

generated by convolving input image with this kernel. 2D image sharpening is used to

sharpen images and enhance edges. In this thesis, 2D image sharpening kernel shown in

equation (1.2) is used. Output image is generated by convolving input image with this

kernel.

 𝐺 =

[

3 4 5 4 3
4 6 7 6 4
5 7 8 7 5
4 6 7 6 4
3 4 5 4 3]

≫ 7 (1.1)

 𝑆 =

[

−1 −1 −1 −1 −1
−1 2 2 2 −1
−1 2 8 2 −1
−1 2 2 2 −1
−1 −1 −1 −1 −1]

≫ 3 (1.2)

We also designed a low energy 2D adaptive gaussian blur hardware and a low

energy 2D adaptive image sharpening hardware implementing the proposed 2D adaptive

gaussian blur and 2D adaptive image sharpening algorithms, respectively, for 5x5

window size. The proposed hardware are implemented using Verilog HDL. The

proposed 2D adaptive gaussian blur hardware can work at 152 MHz, and it can process

74 full HD (1920x1080) images per second in the worst case on a Xilinx Virtex 6

FPGA. It has more than 22% less energy consumption than original 2D gaussian blur

hardware on the same FPGA. The proposed 2D adaptive image sharpening hardware

can work at 185 MHz, and it can process 105 full HD (1920x1080) images per second

in the worst case on a Xilinx Virtex 6 FPGA. It has more than 31% less energy

consumption than original 2D image sharpening hardware on the same FPGA.

Several median filter algorithms are proposed in the literature [20]-[23]. These

algorithms can be classified into two groups. Median filter algorithms proposed in [20],

11

[21] optimize sorting process to reduce computational complexity of median filter

algorithm without reducing quality of filtered images. Median filter algorithms

proposed in [22], [23] increase quality of filtered images without increasing

computational complexity of median filter algorithm. These algorithms try to detect

noisy pixels and adaptively filter only these noisy pixels. However, the 2D adaptive DIP

algorithm proposed in this thesis both reduces computational complexity of median

filter algorithm and increases quality of filtered images by exploiting pixel correlations

in input image.

Several median filter hardware are proposed in the literature [24]-[28]. In [24], an

adaptive median filter hardware that detects noisy pixels in several iterations and filters

only these noisy pixels is proposed. The proposed median filter hardware uses different

sorting algorithms like bitonic and odd-even merge sort. In [25], sorting process of

median filter algorithm is optimized. The proposed median filter hardware only finds

correct positions of input pixels in the sliding window instead of sorting all pixels in the

window. In [26], a histogram based median filter algorithm is proposed. It only

performs well for large window sizes. In [27], low complexity bit-pipeline algorithm is

proposed to decrease hardware area and increase performance. In [28], an energy

efficient median filter hardware is proposed by optimizing memory read/write

scheduling of median filter algorithm. However, performance and area of this hardware

are not reported. The 2D adaptive median filter hardware proposed in this thesis is

compared with these median filter hardware in Section 2.2.

Several Gaussian blur algorithms are proposed in the literature [29], [30]. These

algorithms increase quality of output image by increasing computational complexity of

Gaussian blur algorithm. However, the 2D adaptive DIP algorithm proposed in this

thesis reduces computational complexity of Gaussian blur algorithm without reducing

quality of output image by exploiting pixel correlations in input image.

Several Gaussian blur hardware are proposed in the literature [31]-[34]. In [31], a

Gaussian blur hardware is proposed for real time stereo vision application for 5x5

window. In [32], nearest pixel approximation is used for Gaussian blur hardware

implementation. This reduces hardware area. But, it also reduces quality of output

image. In [33], a Gaussian blur hardware is proposed for feature extraction application.

This hardware performs two 1D convolution operations instead of performing direct 2D

convolution to decrease hardware area. In [34], modified Gaussian blur hardware is

proposed to decrease rounding error in kernel coefficients. The 2D adaptive Gaussian

12

blur hardware proposed in this thesis is compared with these Gaussian blur hardware in

Section 2.2.

Several image sharpening hardware are proposed in the literature [35], [36].

However, they are implemented as part of image up-scaling hardware. Their area and

performance are not separately reported.

2.1 Proposed 2D Adaptive Digital Image Processing Algorithm

The proposed 2D adaptive DIP algorithm consists of two steps as shown in Figure

2.1. Pseudo code of the proposed 2D adaptive DIP algorithm for 5x5 window is given in

Figure 2.2. The proposed algorithm, in the best case, does not perform any sorting or

convolution operation. It, in the worst case, sorts or convolves 15 pixels instead of 25

pixels for 5x5 window.

In the first step, the proposed algorithm compares pixels in each row and column

of the given window separately. If pixels in a row are similar, row comparison signal for

that row is set to 1. Similarly, if pixels in a column are similar, column comparison

signal for that column is set to 1. Then, if pixels in all rows are similar, PS_R signal is

set to 1. Similarly, if pixels in all columns are similar, PS_C signal is set to 1. The

proposed algorithm decides that pixels in a row or column are similar if their 4 most

significant bits are the same.

In the second step, output value is determined. If there is full similarity (both

PS_R and PS_C are 1), the pixel in center of the window is determined as output value

of the window. If there is partial similarity (only PS_R or PS_C is 1), diagonal pixels in

the window are sorted or convolved with 1D_1 kernel, and output of this operation is

determined as output value of the window. If there is no similarity (neither PS_R nor

PS_C is 1), diagonal, horizontal and vertical pixels are sorted or convolved with 1D_1,

1D_2 and 1D_3 kernels, respectively, and their output values (O1, O2, O3) are

determined separately. Then, O1, O2, O3 are sorted or convolved with 1D_4 kernel, and

output of this operation is determined as output value of the window. Finally, the pixel

in center of the given window is replaced with the output value.

13

Figure 2.1 Proposed 2D Adaptive Digital Image Processing Algorithm

2D_Adaptive_DIP_Algorithm (Window) {

 RC = compare(MSB 4 bits of pixels in each row)

 CC = compare(MSB 4 bits of pixels in each column)

 PS_R = (RC[0] & RC[1] & RC[2] & RC[3] & RC[4])

 PS_C = (CC[0] & CC[1] & CC[2] & CC[3] & CC[4])

 if (PS_R is 1 and PS_C is 1)

 Output = Window(2, 2)

 else if (PS_R is 1 or PS_C is 1)

 Output = 1D_Operation (Diagonal Pixels) // 1D_1

 else {

 O1 = 1D_Operation (Diagonal Pixels) // 1D_1

 O2 = 1D_Operation (Horizontal Pixels) // 1D_2

 O3 = 1D_Operation (Vertical Pixels) // 1D_3

 Output = 1D_Operation (O1, O2, O3) // 1D_4

 }

 Window(2, 2) = Output

}

Figure 2.2 Pseudo Code of Proposed 2D Adaptive Digital Image Processing Algorithm

1D kernels shown in equations (1.3), (1.4) and (1.5) are used in the proposed 2D

adaptive gaussian blur algorithm.

1D_1 = [3 6 8 6 3] / 26 (1.3)

 1D_2 = 1D_3 = [5 7 8 7 5] ≫ 5 (1.4)

 1D_4 = [1 2 1] ≫ 2 (1.5)

14

1D kernels shown in equations (1.6) and (1.7) are used in the proposed 2D

adaptive image sharpening algorithm.

 1D_1 = 1D_2 = 1D_3 = [-1 1 2 1 -1] ≫ 1 (1.6)

 1D_4 = [−1 3 −1] (1.7)

Number of windows with similar pixels in an image varies from image to image.

We used HEVC video compression standard test videos [37] and commonly used image

processing benchmark images [38] to determine percentage of similarities for different

window sizes. Simulation results for 5x5 and 7x7 window sizes for one image from

Traffic (2560x1600), People on Street (2560x1600), Basketball Drive (1920x1080),

Tennis (1920x1080), Kimono (1920x1080), Park Scene (1920x1080), Vidyo1

(1280x720), Vidyo4 (1280x720), Kristen and Sara (1280x720), Four People

(1280x720) videos [37], and Baboon (512x512), Barbara (512x512), Goldhill

(512x512), Lena (512x512), Peppers (512x512) images [38] are shown in Table 2.1 and

Table 2.2.

Table 2.1 Similarity Percentages (%) for 5x5 and 7x7 Windows (HEVC Images)

T
ra

ff
ic

P
eo

p
le

o

n

S
tr

ee
t

B
a

sk
et

T
en

n
is

K
im

o
n

o

P
a

rk
 S

ce
n

e

V
id

y
o

 1

V
id

y
o

 4

K
ri

st
e
n

 a
n

d

S
a

ra

F
o

u
r

P
eo

p
le

5x5

F. S. 13.32 13.30 18.29 25.39 20.23 14.64 19.16 22.16 21.06 20.17

P. S. 2.34 1.68 4.22 4.25 3.67 3.90 4.27 3.71 2.01 4.66

N. S. 84.54 85.02 77.49 70.36 76.10 81.46 76.57 74.13 76.94 75.17

7x7

F. S. 4.44 4.41 4.78 9.86 6.01 3.31 5.09 6.82 8.32 7.79

P. S. 3.24 1.11 1.54 2.75 1.11 2.15 3.33 2.37 2.26 2.39

N. S. 92.32 94.48 93.68 87.39 92.88 94.55 91.59 90.81 89.42 89.82

15

Table 2.2 Similarity Percentages (%) for 5x5 and 7x7 Windows (Benchmark Images)

 B
a

b
o

o
n

B
a

rb
a

ra

G
o

ld
h

il
l

L
en

a

P
ep

p
er

s

5x5

F. S. 2.21 8.13 7.51 10.31 11.63

P. S. 1.00 2.44 2.56 2.46 3.20

N. S. 96.79 89.42 89.92 87.23 85.17

7x7

F. S. 2.47 3.39 3.45 3.23 3.77

P. S. 2.04 2.10 2.07 2.06 2.04

N. S. 95.48 94.51 95.48 94.71 94.19

We also quantified impact of the proposed 2D adaptive DIP algorithm on PSNR

performance for 5x5 and 7x7 window sizes. For 2D median filter, salt & pepper noise is

added to input images. Then, these images are filtered with original 2D median filter

algorithm, and with the proposed 2D adaptive median filter algorithm. For 2D Gaussian

blur, input images are convolved with the kernel shown in equation (1.1), and with the

proposed 2D adaptive Gaussian blur algorithm. For 2D image sharpening, input images

are convolved with the kernel shown in equation (1.2), and with the proposed 2D

adaptive image sharpening algorithm. PSNR and visual quality results for Basketball

Drive image are shown in Figure 2.3. PSNR values between output and input images are

computed and shown in Table 2.3 and Table 2.4. These results show that the proposed

2D adaptive DIP algorithm produces higher PSNR values than original 2D DIP

algorithms. This is because, if pixels in the window are similar, the proposed 2D

adaptive DIP algorithm does not replace the pixel in center of the given window, and

therefore preserves the input image.

Figure 2.3 Example Image for 2D Median Filter

16

Table 2.3 PSNR Values (dB) for HEVC Test Images

Image
W.

Size

2D Median Filter 2D Gaussian Blur 2D Image Sharpening

S & P

Noise
Orig. Prop.

∆PSNR

(dB)
Orig. Prop.

∆PSNR

(dB)
Orig. Prop.

∆PSNR

(dB)

Traffic
5x5

18.189
32.515 34.582 2.067 30.132 33.170 3.039 27.400 30.160 2.760

7x7 29.345 32.864 3.519 29.097 31.260 2.163 32.070 32.225 0.155

People

on Street

5x5
18.156

29.157 33.334 4.177 28.295 31.216 2.920 26.555 29.214 2.659

7x7 32.371 34.947 2.576 27.550 29.676 2.126 30.445 30.626 0.177

Basket
5x5

18.713
31.291 32.054 0.763 29.309 32.265 2.956 28.723 31.100 2.371

7x7 30.046 31.191 1.145 28.332 29.915 1.583 29.903 30.863 0.961

Tennis
5x5

17.699
38.145 39.007 0.862 33.424 36.180 2.756 32.146 34.370 2.224

7x7 35.149 37.729 2.580 32.792 34.535 1.743 34.501 35.113 0.612

Kimono
5x5

17.929
43.436 45.418 1.982 35.662 38.853 3.191 35.542 37.391 1.849

7x7 39.796 43.904 4.108 33.050 33.749 0.699 33.585 33.912 0.327

Park

Scene

5x5
18.077

31.648 34.125 2.477 30.510 33.108 2.599 28.569 31.862 3.293

7x7 29.574 32.829 3.255 29.786 31.860 2.074 32.419 33.740 1.321

Vidyo1
5x5

18.211
35.080 36.812 1.732 30.914 34.850 3.936 29.857 32.913 3.056

7x7 32.528 35.356 2.828 28.780 30.169 1.389 30.336 30.723 0.387

Vidyo4
5x5

18.215
35.200 36.383 1.183 28.971 31.062 2.091 28.465 29.671 1.206

7x7 32.885 35.517 2.632 27.412 28.318 0.906 28.528 28.528 0.000

Kristen

and Sara

5x5
17.977

31.316 32.677 1.361 28.613 31.840 3.227 28.533 30.924 2.391

7x7 28.457 30.794 2.337 27.213 29.010 1.797 29.490 30.178 0.688

Four

People

5x5
18.154

30.728 32.265 1.537 28.676 32.087 3.411 27.039 29.685 2.645

7x7 28.601 31.287 2.686 27.353 29.294 1.941 29.844 30.124 0.280

Table 2.4 PSNR Values (dB) for Benchmark Images

Image
W.

Size

2D Median Filter 2D Gaussian Blur 2D Image Sharpening

S & P

Noise
Orig. Prop.

∆PSNR

(dB)
Orig. Prop.

∆PSNR

(dB)
Orig. Prop.

∆PSNR

(dB)

Boat
5x5

18.526
27.044 28.880 1.836 24.682 26.854 2.171 23.715 26.103 2.388

7x7 20.563 23.305 2.742 23.199 24.519 1.320 24.714 25.599 0.885

Barbara
5x5

18.461
23.142 24.923 1.781 22.933 25.156 2.223 24.050 25.825 1.775

7x7 23.546 25.115 1.569 22.496 23.715 1.219 23.336 27.009 3.672

Goldhill
5x5

18.348
28.717 30.701 1.984 26.709 28.968 2.259 25.544 28.203 2.659

7x7 27.226 30.239 3.013 23.919 24.821 0.902 24.821 25.574 0.753

Lena
5x5

18.459
30.971 32.927 1.956 26.313 27.952 1.639 25.603 27.284 1.681

7x7 28.894 32.144 3.250 24.873 25.745 0.872 26.003 26.390 0.387

Peppers
5x5

18.100
31.801 33.865 2.064 26.434 28.041 1.607 25.823 27.490 1.667

7x7 29.991 33.072 3.081 24.819 25.641 0.822 25.687 26.218 0.531

We also quantified impact of the proposed 2D adaptive DIP algorithm on visual

quality using structural similarity (SSIM) metric. SSIM values between output images

produced by original 2D DIP algorithms and output images produced by the proposed

2D adaptive DIP algorithm are computed and shown in Table 2.5 and Table 2.6. These

17

results show that the proposed algorithm reduces computational complexities of 2D DIP

algorithms without reducing quality of output image.

Table 2.5 Structural Similarity (SSIM) Values for HEVC Test Images

Image
W.

Size

2D

Median

Filter

2D

Gaussian

Blur

2D Image

Sharpening

Traffic
5x5 0.974 0.987 0.968

7x7 0.951 0.984 0.982

People

on Street

5x5 0.976 0.987 0.977

7x7 0.957 0.985 0.985

Basket
5x5 0.984 0.985 0.970

7x7 0.981 0.984 0.967

Tennis
5x5 0.984 0.988 0.980

7x7 0.978 0.989 0.979

Kimono
5x5 0.991 0.994 0.989

7x7 0.985 0.996 0.990

Park

Scene

5x5 0.967 0.981 0.976

7x7 0.950 0.980 0.968

Vidyo1
5x5 0.985 0.988 0.983

7x7 0.979 0.988 0.985

Vidyo4
5x5 0.987 0.990 0.976

7x7 0.980 0.989 0.982

Kristen

and Sara

5x5 0.984 0.987 0.987

7x7 0.973 0.987 0.984

Four

People

5x5 0.975 0.982 0.977

7x7 0.959 0.980 0.978

Table 2.6 Structural Similarity (SSIM) Values for Benchmark Images

Image
W.

Size

2D Median

Filter

2D Gaussian

Blur

2D Image

Sharpening

Boat
5x5 0.946 0.969 0.968

7x7 0.914 0.967 0.937

Barbara
5x5 0.884 0.931 0.955

7x7 0.891 0.953 0.840

Goldhill
5x5 0.946 0.973 0.965

7x7 0.921 0.971 0.932

Lena
5x5 0.970 0.982 0.980

7x7 0.951 0.982 0.962

Peppers
5x5 0.973 0.983 0.972

7x7 0.961 0.984 0.951

18

2.2 Proposed 2D Adaptive Digital Image Processing Hardware

The proposed 2D adaptive DIP hardware architecture is shown in Figure 2.4. An

input pixels buffer is used to store pixels in a 5x5 window. This on-chip buffer reduces

the required off-chip memory bandwidth. After the pixels are loaded into this buffer,

40x4 bit comparators in the comparison unit compare the pixels in each row and

column. Based on the comparison results, similarity control signals PS_R and PS_C

shown in Figure 2.2 are generated.

Figure 2.4 Proposed 2D Adaptive Digital Image Processing Hardware

The proposed hardware, in the best case, does not perform any sorting or

convolution operation. It, in the worst case, sorts or convolves 15 pixels instead of 25

pixels for 5x5 window. These 15 pixels are sorted or convolved in 3 parallel datapaths.

Each datapath has 4 pipeline stages to increase throughput. The proposed hardware

produces 1 output per clock cycle.

If there is full similarity, the pixel in center of the window is selected in output

multiplexer as the output value. If there is partial similarity, only diagonal 1D datapath

(1D_1) is enabled, and the other datapaths are disabled to reduce power consumption. If

there is no similarity, all datapaths are enabled, and the output of 1D 3x1 datapath

(1D_4) is selected in output multiplexer as the output value.

19

In the proposed 2D adaptive median filter hardware, 1D 5x1 datapaths (1D_1,

1D_2, 1D_3) sort the given 5 pixels, and determine median value. 1D 3x1 datapath

(1D_4) sorts the outputs of 1D_1, 1D_2, 1D_3 datapaths, and determines median value.

In the proposed 2D adaptive Gaussian blur hardware and image sharpening hardware,

1D 5x1 datapaths (1D_1, 1D_2, 1D_3) convolve the given 5 pixels with corresponding

1D kernels. 1D 3x1 datapath (1D_4) convolves the outputs of 1D_1, 1D_2, 1D_3

datapaths with corresponding 1D kernel.

The proposed 2D adaptive DIP hardware and original 2D DIP hardware are

implemented using Verilog HDL. The Verilog RTL codes are verified with RTL

simulations. The RTL simulation results matched the results of software

implementations of 2D DIP algorithms. The Verilog RTL codes are synthesized and

mapped to a Xilinx Virtex 6 FPGA. The FPGA implementations are verified with post

place and route simulations. The post place and route simulation results matched the

results of software implementations of 2D DIP algorithms.

FPGA implementation of the proposed 2D adaptive median filter hardware uses

136 slices, 327 LUTs, 150 DFFs, and it can work at 263 MHz. FPGA implementation of

the original 2D median filter hardware uses 208 slices, 634 LUTs, 226 DFFs, and it can

work at 250 MHz.

FPGA implementation of the proposed 2D adaptive Gaussian blur hardware uses

144 slices, 291 LUTs, 160 DFFs, and it can work at 152 MHz. FPGA implementation of

the original 2D Gaussian blur hardware uses 152 slices, 367 LUTs, 301 DFFs, and it

can work at 152 MHz.

FPGA implementation of the proposed 2D adaptive image sharpening hardware

uses 88 slices, 172 LUTs, 160 DFFs, and it can work at 185 MHz. FPGA

implementation of the original 2D image sharpening hardware uses 100 slices, 178

LUTs, 259 DFFs, and it can work at 143 MHz.

The proposed 2D adaptive median filter hardware is verified to work correctly on

an Xilinx Zynq ZC7200 FPGA board as shown in Figure 2.5. The FPGA board includes

an FPGA, a dual core ARM microprocessor, a high speed AXI bus, 128 MB DDR3

memory, 16 MB quad flash memory, HDMI and Ethernet interfaces. The camera

captures 60 fps full HD (1920x1080) images. The proposed hardware filters these

images. The filtered images are displayed on HDMI monitor and sent to computer using

Ethernet.

20

Figure 2.5 Proposed 2D Adaptive Median Filter Hardware Implementation on an FPGA

Board

We estimated power consumptions of all FPGA implementations using Xilinx

XPower Analyzer for one image from Tennis (1920x1080), Kimono (1920x1080), Park

Scene (1920x1080) and Basketball Drive (1920x1080) videos [37]. In order to estimate

power consumption of an FPGA implementation, post place and route timing simulation

is performed, and signal activities are stored in a VCD file. This VCD file is used for

estimating power consumption of the FPGA implementation. For all FPGA

implementations, only internal power consumption is considered. Input and output

power consumptions are ignored.

Power and energy consumptions of the proposed 2D adaptive DIP hardware and

the original 2D DIP hardware are shown in Figure 2.6. As shown in this figure, the

proposed 2D adaptive median filter hardware has 42% and 85% less power and energy

consumption than the original 2D median filter hardware. The proposed 2D adaptive

Gaussian blur hardware has 22% less power and energy consumption than the original

2D Gaussian blur hardware. The proposed 2D adaptive image sharpening hardware has

31% less power and energy consumption than the original 2D image sharpening

hardware.

Comparison of the proposed 2D adaptive median filter hardware with the median

filter hardware proposed in the literature is shown in Table 2.7. 2D median filter

hardware shown in this table process 5x5 pixel 2D windows whereas 1D median filter

hardware shown in this table process 25 pixel 1D windows. Although the adaptive

median filter hardware proposed in [24] increases quality of output image, this hardware

has large area. Sorting process is optimized in [25] without reducing output image

quality. But, its hardware area is 10 times larger than the proposed 2D adaptive median

21

Figure 2.6 Power and Energy Consumptions of FPGA Implementations for Full HD

(1920x1080) Images

Table 2.7 Median Filter Hardware Comparison for 5x5 Window

FPGA
of

Slices

Max.

Speed

(MHz)

Performance

(fps)

[24] Xilinx Virtex II 1506 305 140 Full HD

[25] Altera Cyclone

II
1309 94 23 Full HD

[26] Xilinx Virtex II 2300 333 35 Full HD

[27] Xilinx Virtex II 660 318 Not Reported

Proposed

Xilinx Virtex II

(Scaled)
366 140 56 Full HD

Xilinx Virtex VI 136 263 105 Full HD

filter hardware. Histogram based median filter proposed in [26] gives better results for

large window sizes, but it is very costly for small window sizes. Low complexity bit-

pipeline algorithm proposed in [27] has smaller hardware area than the other median

filter hardware in the literature. But, the proposed 2D adaptive median filter hardware

has much smaller area than this hardware. In addition, the median filter hardware

proposed in [27] does not increase quality of output image.

22

Optimized memory scheduling based median filter hardware proposed in [28]

reduces energy consumption of median filter hardware up to 53%. However, the

proposed 2D adaptive median filter hardware reduces energy consumption of median

filter hardware more than 80%. In addition, performance and area of this hardware are

not reported.

Comparison of the proposed 2D adaptive Gaussian blur hardware with the

Gaussian blur hardware proposed in the literature is shown in Table 2.8. The hardware

proposed in [31] has much larger area and lower performance. Although, the hardware

proposed in [32] has lower area, it has 0.4 dB average quality loss. The hardware

proposed in [33] has larger area, and its performance is not reported. The hardware

proposed in [34] increases quality of output image. But, it has much larger area, and its

performance is not reported.

Table 2.8 Gaussian Blur Hardware Comparison for 5x5 Window

FPGA
of

Slices

Max.

Speed

(MHz)

Performance

(fps)

[31] Xilinx Virtex 5 3775 141 50 Full HD

[32] Xilinx Virtex 6 52 159 Not Reported

[33] Altera Cyclone III 545
Not

Reported
Not Reported

[34] Xilinx Spartan 3E 2637
Not

Reported
Not Reported

Proposed Xilinx Virtex 6 144 152 74 Full HD

23

3 CHAPTER III

AN APPROXIMATE HEVC INTRA PREDICTION HARDWARE

Intra prediction algorithm predicts the pixels of a block from the pixels of its

already coded and reconstructed neighboring blocks. In H.264, there are 9 intra

prediction modes for 4x4 luminance blocks, and 4 intra prediction modes for 16x16

luminance blocks. In HEVC, for the luminance component of a frame, intra prediction

unit (PU) size can be from 4x4 up to 32x32 and number of intra prediction modes for a

PU is 35.

In this thesis, an approximate HEVC intra angular prediction technique is

proposed. The proposed technique uses closer neighboring pixels instead of distant

neighboring pixels in an intra angular prediction equation if the distance between the

neighboring pixels used in this intra angular prediction equation is larger than 2. The

proposed approximate HEVC intra angular prediction technique causes negligible

PSNR loss and bit rate increase.

In this thesis, an approximate HEVC intra angular prediction hardware is

designed and implemented using Verilog HDL. The common-sub expressions in the

constant multiplication operations used in HEVC intra angular prediction equations are

calculated once and the results are used to generate different constant multiplications in

the proposed hardware. Therefore, Hcub multiplierless constant multiplication

algorithm is used [40]. The proposed hardware is the smallest HEVC intra prediction

hardware in the literature [42]-[53].

24

3.1 HEVC Intra Prediction Algorithm

HEVC intra prediction algorithm predicts the pixels in prediction units (PU) of a

coding unit (CU) using the pixels in the available neighboring PUs [6]. For the

luminance component of a frame, 4x4, 8x8, 16x16 and 32x32 PU sizes are available. As

shown in Figure 3.1, there are 33 angular prediction modes (Mode) corresponding to

different prediction angles (Angle) for each PU size. In addition, there are DC and

planar prediction modes for each PU size. An 8x8 PU, four 4x4 PUs in it, and their

neighboring pixels are shown in Figure 3.2.

Figure 3.1 HEVC Intra Prediction Mode Directions

Figure 3.2 Neighboring Pixels of 4x4 and 8x8 PUs

25

In HEVC intra prediction algorithm, first, reference main array is determined. The

pixels in the reference main array are used in the intra prediction equations. If the

prediction mode is equal to or greater than 18, reference main array is selected from

above neighboring pixels. However, first four pixels of this array are reserved to left

neighboring pixels, and if prediction angle is less than zero, these pixels are assigned to

the array. If the prediction mode is less than 18, reference main array is selected from

left neighboring pixels. However, first four pixels of this array are reserved to above

neighboring pixels, and if prediction angle is less than zero, these pixels are assigned to

the array.

After the reference main array is determined, ildx which is used to determine

positions of the pixels in this array that will be used in the intra prediction equations and

iFact which is used to determine coefficients of these pixels are calculated as shown in

(3.1a) and (3.1b), respectively. If iFact is equal to 0, neighboring pixels are copied

directly to predicted pixels. Otherwise, predicted pixels are calculated as shown in (3.2).

𝑖𝐼𝑑𝑥 = ((𝑦 + 1) ∗ 𝐴𝑛𝑔𝑙𝑒) ≫ 5 (3.1a)

𝑖𝐹𝑎𝑐𝑡 = ((𝑦 + 1) ∗ 𝐴𝑛𝑔𝑙𝑒) & 31 (3.1b)

𝑝𝑟𝑒𝑑[𝑥, 𝑦] = ((32 − 𝑖𝐹𝑎𝑐𝑡) ∗

 𝑟𝑒𝑓𝑀𝑎𝑖𝑛[𝑥 + 𝑖𝐼𝑑𝑥 + 1] + 𝑖𝐹𝑎𝑐𝑡 ∗

𝑟𝑒𝑓𝑀𝑎𝑖𝑛[𝑥 + 𝑖𝐼𝑑𝑥 + 2] + 16) ≫ 5

 (3.2)

𝑥 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 − 1), 𝑦 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 − 1)

All the intra prediction equations can be obtained from (3.2). As an example,

reference main array and prediction equations for the 8x8 intra prediction mode 6 with

prediction angle 13 are shown in (3.3a) and (3.3b), respectively. The neighboring pixels

used in these equations can be seen in Fig. 2.

𝑟𝑒𝑓𝑀𝑎𝑖𝑛 = [0,0,0,0,0,0,0,0, 𝑅, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝑉𝐴, 𝑉𝐵, 𝑉𝐶, 𝑉𝐷, 𝑉𝐸, 𝑉𝐹, 𝑉𝐺, 𝑉𝐻]

(3.3a)

pred[0,0] = pred[1,0] = [19*A + 13*B + 16] >> 5

pred[2,0] = pred[3,0] = [19*B + 13*C + 16] >> 5

pred[4,0] =

pred[5,0] = pred[6,0] = [19*C + 13*D + 16] >> 5

pred[7,0] = [19*D + 13*E + 16] >> 5

(3.3b)

pred[0,1] = pred[1,1] = [6*B + 26*C + 16] >> 5

pred[2,1] = pred[3,1] = [6*C + 26*D + 16] >> 5

pred[4,1] =

pred[5,1] = pred[6,1] = [6*D + 26*E + 16] >> 5

pred[7,1] = [6*E + 26*F + 16] >> 5

26

pred[0,2] = pred[1,2] = [25*C + 7*D + 16] >> 5

pred[2,2] = pred[3,2] = [25*D + 7*E + 16] >> 5

pred[4,2] =

pred[5,2] = pred[6,2] = [25*E + 7*F + 16] >> 5

pred[7,2] = [25*F + 7*G + 16] >> 5

pred[0,3] = pred[1,3] = [12*D + 20*E + 16] >> 5

pred[2,3] = pred[3,3] = [12*E + 20*F + 16] >> 5

pred[4,3] =

pred[5,3] = pred[6,3] = [12*F + 20*G + 16] >> 5

pred[7,3] = [12*G + 20*H + 16] >> 5

pred[0,4] = pred[1,4] = [31*E + 1*F + 16] >> 5

pred[2,4] = pred[3,4] = [31*F + 1*G + 16] >> 5

pred[4,4] =

pred[5,4] = pred[6,4] = [31*G + 1*H + 16] >> 5

pred[7,4] = [31*H + 1*I + 16] >> 5

pred[0,5] = pred[1,5] = [18*F + 14*G + 16] >> 5

pred[2,5] = pred[3,5] = [18*G + 14*H + 16] >> 5

pred[4,5] =

pred[5,5] = pred[6,5] = [18*H + 14*VA + 16] >> 5

pred[7,5] = [18*VA+14*VB + 16] >> 5

pred[0,6] = pred[1,6] = [5*G + 27*H + 16] >> 5

pred[2,6] = pred[3,6] = [5*H + 27*VA + 16] >> 5

pred[4,6] =

pred[5,6] = pred[6,6] = [5*VA + 27*VB + 16] >> 5

pred[7,6] = [5*VB + 27*VC + 16] >> 5

pred[0,7] = pred[1,7] = [24*H + 8*VA + 16] >> 5

pred[2,7] = pred[3,7] = [24*VA + 8*VB + 16] >> 5

pred[4,7] =

pred[5,7] = pred[6,7] = [24*VB + 8*VC + 16] >> 5

pred[7,7] = [24*VC + 8*VD + 16] >> 5

3.2 Proposed Approximate HEVC Intra Angular Prediction Technique

In this thesis, data reuse technique is first used for reducing amount of

computations performed by HEVC intra prediction algorithm [40]. In HEVC, intra 4x4,

8x8, 16x16 and 32x32 luminance angular prediction modes have identical equations.

There are identical equations between luminance angular prediction modes of different

PU sizes as well. Data reuse technique calculates the common prediction equations for

all 4x4, 8x8, 16x16 and 32x32 luminance angular prediction modes only once and uses

the result for the corresponding prediction modes. There are 33792, 8448, 2112 and 528

prediction equations in 32x32, 16x16, 8x8 and 4x4 luminance angular prediction modes,

respectively. As shown in Table 3.1, using data reuse technique, the numbers of

prediction equations that should be calculated for 32x32, 16x16, 8x8 and 4x4 luminance

angular prediction modes are reduced to 3735, 1507, 593 and 201, respectively.

27

A 32x32 CU includes one 32x32 PU, four 16x16 PUs, sixteen 8x8 PUs and sixty

four 4x4 PUs. As shown in Figure 3.2, an 8x8 PU and some of the 4x4 PUs have

common neighboring pixels. They also have common prediction equations. 4x4, 8x8,

16x16 and 32x32 PUs also have common neighboring pixels and common prediction

equations. Therefore, data reuse technique is used for calculating predicted pixels of a

32x32 PU and predicted pixels of the corresponding four 16x16 PUs, sixteen 8x8 PUs

and sixty four 4x4 PUs. In this way, the number of prediction equations that should be

calculated for a 32x32 CU is reduced from 135168 to 14848.

Table 3.1 Prediction Equation Reductions by Data Reuse

4x4

PU

8x8

PU

16x16

PU

32x32

PU

32x32

CU

of Pred.

Equations
528 2112 8448 33792 135168

of Pred.

Equations with

Data Reuse

201 593 1507 3735 14848

Reduction (%) 61.93 71.92 82.16 88.94 89.02

Since we use data reuse technique, instead of calculating intra prediction

equations of different prediction modes and PUs separately, we calculate all necessary

intra prediction equations together and use the results for the corresponding prediction

modes and PUs. As shown in Figure 3.3, there are much more intra prediction equations

using closer neighboring pixels than intra prediction equations using distant neighboring

pixels. Intra angular prediction equations using neighboring pixels that have larger than

2 distance between them are only 4% of intra angular prediction equations. Therefore,

in this thesis, an approximate HEVC intra angular prediction technique is proposed. If

distance between the neighboring pixels used in an intra angular prediction equation is

larger than 2, the neighboring pixel that has 2 distance with the first neighboring pixel is

used instead of second neighboring pixel. Otherwise, original neighboring pixels are

used. For example, in Figure 3.3, neighboring pixel C is used instead of neighboring

pixel D in the intra prediction equations using neighboring pixels A and D. Original

neighboring pixels are used in the intra prediction equations using neighboring pixels A

and C.

28

Figure 3.3 Example Intra Angular Prediction Equations for Different Distances

The proposed approximate HEVC intra angular prediction technique is integrated

into intra angular prediction in HEVC HM software encoder 15.0 [39]. First ten frames

of some of the HEVC test videos [37] are coded with all intra (AI) test configuration

and four different quantization parameters (QP) using HEVC HM 15.0 with three

different HEVC intra angular predictions; original, the proposed approximate HEVC

intra angular prediction using neighboring pixels that have 1 distance between them

(D1), and the proposed approximate HEVC intra angular prediction using neighboring

pixels that have at most 2 distance between them (D2). The resulting rate-distortion

performances are shown in Table 3.2. D2 causes negligible PSNR loss and bit rate

increase because neighboring pixel intensities are similar as they are close to each other

in the video frame. Since D2 has a negligible impact on PSNR and bit rate, it is

implemented in the proposed approximate HEVC intra angular prediction hardware

instead of D1.

A B C D E F ...Neighboring Pixels

Distance 1

Distance 2

Distance 3

A + 31xB + 16
2xA + 30xB + 16
3xA + 29xB + 16
4xA + 28xB + 16
5xA + 27xB + 16
6xA + 26xB + 16
7xA + 25xB + 16
8xA + 24xB + 16
9xA + 23xB + 16

25xA + 7xB + 16
26xA + 6xB + 16
27xA + 5xB + 16
28xA + 4xB + 16
29xA + 3xB + 16
30xA + 2xB + 16

31xA + B + 16

...

3xA + 29xC + 16
5xA + 27xC + 16
7xA + 25xC + 16
9xA + 23xC + 16

11xA + 21xC + 16
13xA + 19xC + 16
15xA + 17xC + 16
18xA + 14xC + 16
20xA + 12xC + 16
22xA + 10xC + 16
24xA + 8xC + 16
26xA + 6xC + 16
28xA + 4xC + 16
30xA + 2xC + 16

A + 31xD + 16
5xA + 27xD + 16

10xA + 22xD + 16
14xA + 18xD + 16
19xA + 13xD + 16
23xA + 9xD + 16
28xA + 4xD + 16

23xA + 9xE + 16

Distance 4

29

Table 3.2 BD-Rate(%) and BD-PSNR(dB)

 D1 D2

Video

Sequence

B
D

-R
a

te

(%
)

B
D

-

P
S

N
R

(d
B

)

B
D

-R
a

te

(%
)

B
D

-

P
S

N
R

(d
B

)

People

on Street
0.3057 -0.0174 0.0238 -0.0014

Traffic 0.0867 -0.0047 -0.0154 0.0008

Tennis 0.2515 -0.0076 0.0196 -0.0005

Kimono 0.1204 -0.0040 0.0348 -0.0009

Basketball

Drive
0.4870 -0.0114 0.0657 -0.0013

Park

Scene
0.1032 -0.0045 0.0165 -0.0008

Vidyo1 0.8689 -0.0422 0.0962 -0.0044

Vidyo4 0.5559 -0.0248 0.0488 -0.0023

Kristen

And Sara
0.8100 -0.0413 0.1525 -0.0072

Four

People
0.6710 -0.0390 0.2079 -0.0120

Keiba 0.1294 -0.0071 -0.0110 0.0000

Party

Scene
0.3019 -0.0239 0.0308 -0.0029

Race

Horses
0.3769 -0.0242 0.0137 -0.0008

Basketball

Drill
1.4598 -0.0687 0.1130 -0.0060

Average 0.4663 -0.0229 0.0569 -0.0028

3.3 Proposed Approximate HEVC Intra Prediction Hardware

The proposed approximate HEVC intra prediction hardware implementing

angular prediction modes for all PU sizes (4x4, 8x8, 16x16 and 32x32) including data

reuse and the proposed approximate technique is shown in Figure 3.4.

30

Figure 3.4 Proposed Approximate HEVC Intra Prediction Hardware

Three local neighboring buffers are used to store neighboring pixels in the

previously coded and reconstructed neighboring PUs. After a PU in the current CU is

coded and reconstructed, the neighboring pixels in this PU are stored in the

corresponding buffers. These on chip neighboring buffers reduce the required off-chip

memory bandwidth. More on-chip memory accesses are required when the intra angular

prediction equations use distant neighboring pixels. Since the proposed approximate

intra angular prediction technique uses closer neighboring pixels, it reduces number of

on-chip memory accesses.

Reconstructed
Neighboring Buffer

MCM
Datapath

Top
 Neighboring Buffer

Left
 Neighboring Buffer

Control Unit & Address Generation

Rotational
Buffer 1

Rotational
Buffer 2

Rotational
Buffer 3

Intra Angular Prediction Datapath

Output Mem 1 Output Mem 2 Output Mem 3 Output Mem 4

31

As shown in Figure 3.3, one neighboring pixel is multiplied with different

constants in different prediction equations. Therefore, in the proposed hardware,

multiple constant multiplication (MCM) hardware is used to efficiently implement

constant multiplications using add and shift operations. The proposed MCM hardware

multiplies an input pixel with constants 1, 2, 3, …, 31 by calculating common parts in

these constant multiplications once and using them to perform all constant

multiplications.

The proposed MCM datapath is shown in Figure 3.5. In the proposed MCM

hardware, Hcub MCM algorithm is used to reduce number and size of adders, and adder

tree depth [40]. The proposed MCM datapath takes only one neighboring pixel in every

two cycles and performs multiplications with constants 1, 3, 5, 7, 9, 11, 13, 15.

Multiplications with constants 2, 4, 6, 8, 10, 12, 14, 16 are performed by using these

multiplication results and shift operations. Multiplications with constants 17, 18, 19, …,

31 are performed by adding 16 to these multiplication results.

As shown in Figure 3.3, since the number of HEVC intra angular prediction

equations using distant neighboring pixels is small and MCM hardware multiplies an

input pixel with constant 1, 2, 3, …, 31, MCM hardware will perform many

unnecessary constant multiplications for distant neighboring pixels. Since the number of

HEVC intra angular prediction equations using closer neighboring pixels is large and

the proposed approximate intra angular prediction technique uses closer neighboring

pixels, it performs few unnecessary computations.

Figure 3.5 Proposed MCM Datapath

<<2

+ -

<<3

- +
7

5 3

9

REGREG

REG REG

+

REG

11

-

<<4

15
REG

-

REG
13

Input_Pixel

32

As shown in Figure 3.4, three rotational buffers are used in the proposed

hardware. As shown in Figure 3.6, first, constant multiplication results of neighboring

pixels A and B are stored to rotational buffers 1 and 2, respectively. While the intra

prediction equations using both neighboring pixels A and B are calculated, constant

multiplication results of neighboring pixel C are stored to rotational buffer 3. After the

intra prediction equations using neighboring pixel A are calculated, there is no need to

store the constant multiplication results of neighboring pixel A in rotational buffer 1.

Therefore, while the intra prediction equations using both neighboring pixels B and C

are calculated, constant multiplication results of neighboring pixel D are stored to

rotational buffer 1. After the intra prediction equations using neighboring pixel B are

calculated, there is no need to store the constant multiplication results of neighboring

pixel B in rotational buffer 2. Therefore, while the intra prediction equations using both

neighboring pixels C and D are calculated, constant multiplication results of

neighboring pixel E are stored to rotational buffer 2. This process repeats rotationally.

Therefore, constant multiplication results of a neighboring pixel should be stored 6

cycles in a rotational buffer.

Since the proposed approximate intra angular prediction technique uses closer

neighboring pixels instead of distant neighboring pixels, it reduces the number of

necessary rotational buffers. If original intra angular prediction equations using distant

neighboring pixels are calculated, more rotational buffers will be used to store constant

multiplication results of more neighboring pixels.

Since the proposed approximate intra angular prediction technique uses closer

neighboring pixels instead of distant neighboring pixels, it also reduces the number of

necessary clock cycles. If original intra angular prediction equations using distant

neighboring pixels are calculated, additional clock cycles will be used to calculate the

intra prediction equations using distant neighboring pixels. For example, in Figure 3.6,

additional clock cycles will be used to calculate the intra prediction equations using

both neighboring pixels A and D.

33

Figure 3.6 Scheduling of HEVC Intra Angular Prediction Hardware

The proposed approximate HEVC intra angular prediction hardware is

implemented using Verilog HDL. The Verilog RTL implementation is verified with

RTL simulations. RTL simulation results matched results of a software implementation

of the proposed approximate intra angular prediction technique.

The Verilog RTL codes are synthesized and mapped to a Xilinx XC6VLX195T

FF1156 FPGA with speed grade 3 using Xilinx ISE 14.7. The proposed approximate

HEVC intra angular prediction hardware uses 318 LUTs, 1068 DFFs, and 8 BRAMs.

The proposed FPGA implementation is verified to work at 200 MHz by post place and

route simulations. Therefore, it can process 24 Quad Full HD (3840x2160) video frames

per second.

FPGA implementations are also verified on a Xilinx ZYNQ ZC702 FPGA board

as shown in Figure 3.7. The FPGA board has a 28 nm FPGA and dual-core ARM

microprocessor. It also has 1GB DRAM and several interfaces such as UART and

HDMI. Microprocessor reads video frames from SD card and sends them to FPGA

using a high speed AXI bus. The proposed hardware performs intra prediction. Then,

microprocessor displays intra predicted frames on HDMI monitor and stores them to SD

card.

Verilog RTL code of the proposed approximate HEVC intra angular prediction

hardware is also synthesized and place & routed to TSMC 90nm standard cell library.

Gate count of resulting ASIC implementation is calculated as 3.2k, excluding on-chip

memories, based on NAND (2x1) gate area.

E

MCM Datapath

Rotational Buffer 1 IDLE IDLE

C F

Intra Angular
Prediction Datapath

A+B A+C B+C B+D C+D C+E D+E D+F

A IDLE B IDLE C IDLE D IDLE E IDLE F IDLE

IDLE

A D

BIDLE

IDLE

...Rotational Buffer 2

Rotational Buffer 3

0 1 2 3 4 5 6 7 8 9 10 11 12

...Clock Cycle

34

Figure 3.7 Implementation of Proposed Approximate HEVC Intra Prediction Hardware

on an FPGA Board

Comparisons of the FPGA and ASIC implementations of proposed approximate

HEVC intra angular prediction hardware with the FPGA and ASIC implementations of

HEVC intra prediction hardware proposed in the literature are shown in Table 3.3 and

Table 3.4, respectively [42]-[53]. The proposed approximate HEVC intra angular

prediction hardware has the smallest area and the second best performance.

Table 3.3 Comparison of FPGA Implementations

[43] [44] [45] [46] [42] [52] [53] Proposed

FPGA
Xilinx

Virtex 6

ZYNQ

7000

Xilinx

Virtex 6

Altrea

Stratix

Xilinx

Virtex6

Xilinx

Virtex6

Xilinx

Virtex6

Xilinx

Virtex6

DFF 5.5 K 22 K 110 K 6934 849 2006 1168 318

LUT 14 K 43 K 170 K 13409 2381 6013 4425 1068

BRAM --- 94 --- --- 4 4 4 8

Max

Freq.

(MHz)

110 150 219 162 150 166 227 200

Fps
30

3840x2160

24

3840x2160

30

1920x1080

40

1920x1080

55

1920x1080

24

3840x2160

PU

Size
4,8,16,32 4,8,16,32 4,8,16,32 4,8,16,32 4,8 4,8,16,32 4,8,16,32 4,8,16,32

ARM
(Control &

Communication)

D
D

R
3

FPGA
(HEVC

Intra Prediction
Hardware)

SD Card

AXI-4 BUS

HDMI
Display

35

Table 3.4 Comparison of ASIC Implementations

[47] [48] [49] [50] [51] [42] [52] Proposed

Tech. 90 nm 40 nm 90 nm 130 nm 90 nm 90 nm 90 nm 90 nm

Gate

Count
127.3 K 27 K 76.8 K 324 K 712.2 K 5.4 K 16.1 K 3.2 K

Max Freq.

(MHz)
200 200 270 400 357 150 250 333

Fps
30

3840x2160
--- ---

60

1920x1080

46

2160x1600

30

1920x1080

60

1920x1080

40

3840x2160

Memory 6 KB 4.9 KB 5.6 KB --- --- --- 3 KB 3KB

Power

Dissipatio

n

--- --- --- --- 92.1 mW 23.2 mW 28.5 mW ---

PU Size
4, 8,

16, 32

4, 8,

16, 32

4, 8,

16, 32

4, 8,

16, 32

4, 8,

16, 32
4, 8

4, 8,

16, 32

4, 8,

16, 32

Power consumption of the proposed approximate HEVC intra angular prediction

hardware is estimated for Tennis and Kimono (1920 x 1080) videos [37] using Xilinx

XPower Analyzer tool. Switching activities during post place & route timing simulation

of the proposed hardware at 100 MHz clock frequency are stored to VCD files. Xilinx

XPower Analyzer tool uses placed & routed netlist and these VCD files to estimate

power consumption of the proposed FPGA implementation. Energy consumption

comparison of the proposed FPGA implementation and the HEVC intra prediction

hardware in the literature is shown in Figure 3.8.

Figure 3.8 Energy Consumption Comparison

36

4 CHAPTER IV

LOW ENERGY HEVC FRACTIONAL INTERPOLATION

HARDWARE

To increase the performance of integer pixel motion estimation, fractional pixel

(half and quarter) accurate variable block size motion estimation is performed in HEVC.

Fractional interpolation is one of the most computationally intensive parts of HEVC

video encoder and decoder. On average, one fourth of the HEVC encoder complexity

and 50% of the HEVC decoder complexity are caused by fractional interpolation [6].

 In H. 264 standard, a 6-tap FIR filter is used for half-pixel interpolation and a

bilinear filter is used for quarter-pixel interpolation [9]. In HEVC standard, one 8-tap

and two different 7-tap FIR filters are used for both half-pixel and quarter-pixel

interpolations. In H.264, 4×4 and 16×16 block sizes are used. However, in HEVC,

prediction unit (PU) sizes can be from 4×4 to 64×64. Therefore, HEVC fractional

interpolation is more complex than H.264 fractional interpolation.

 Therefore, in this thesis, we proposed three different HEVC fractional

interpolation hardware implementations for all PU sizes. In the first hardware

implementation, two pixel correlation based computation and energy reduction

techniques (pixel equality based computation reduction (PECR) and pixel similarity

based computation reduction (PSCR)) are used. The second hardware implementation

calculates common sub-expressions in different FIR filter equations used in HEVC

37

fractional interpolation algorithm once. It also uses Hcub multiplierless constant

multiplication (MCM) algorithm [40] to reduce number and size of the adders and to

minimize the adder tree depth. Two approximate HEVC fractional interpolation filters

(F1 and F2) are proposed and used in the third hardware implementation.

4.1 HEVC Fractional Interpolation Algorithm

 In HEVC standard, one 8-tap and two different 7-tap FIR filters are used for

both half-pixel and quarter-pixel interpolations. These 3 FIR filters type A, type B and

type C are shown in (4.1), (4.2), and (4.3), respectively. The symbol (>>) in the

equations represents right shift operation which is used to reduce bit length of fractional

pixels to 8 bits. The shift1 value is determined based on bit depth of the integer pixel

[6].

Integer pixels (Ax,y), half pixels (ax,y, bx,y, cx,y, dx,y, hx,y, nx,y) and quarter pixels

(ex,y, fx,y, gx,y, ix,y, jx,y, kx,y, px,y, qx,y, rx,y) in a PU are shown in Figure 4.1. The half pixels

a, b, c are interpolated from nearest integer pixels in horizontal direction, and the half-

pixels d, h, n are interpolated from nearest integer pixels in vertical direction. The

quarter pixels e, f, g are interpolated from the nearest half pixels a, b, c respectively in

vertical direction using type A filter. The quarter pixels i, j, k are interpolated similarly

using type B filter, and the quarter pixels p, q, r are interpolated similarly using type C

filter. All fractional pixels necessary for fractional motion estimation are calculated in

HEVC fractional interpolation algorithm used in HEVC encoder.

 𝑎0,0 = (−𝐴−3,0 + 4 ∗ 𝐴−2,0 − 10 ∗ 𝐴−1,0 + 58 ∗ 𝐴0,0 + 17 ∗ 𝐴1,0 − 5 ∗

 𝐴2,0 + 𝐴3,0) ≫ 𝑠ℎ𝑖𝑓𝑡1 (4.1)

𝑏0,0 = (−𝐴−3,0 + 4 ∗ 𝐴−2,0 − 11 ∗ 𝐴−1,0 + 40 ∗ 𝐴0,0 + 40 ∗ 𝐴1,0 − 11 ∗

 𝐴2,0 + 4 ∗ 𝐴3,0 − 𝐴4,0) ≫ 𝑠ℎ𝑖𝑓𝑡1 (4.2)

 𝑐0,0 = (−𝐴−2,0 − 5 ∗ 𝐴−1,0 + 17 ∗ 𝐴−0,0 + 58 ∗ 𝐴1,0 − 10 ∗ 𝐴2,0 + 4 ∗

 𝐴3,0 − 𝐴4,0) ≫ 𝑠ℎ𝑖𝑓𝑡1 (4.3)

38

Figure 4.1 Integer, Half and Quarter Pixels

4.2 Proposed Pixel Correlation Based Computation and Energy Reduction

Techniques and Their Hardware Implementations

Two pixel correlation based computation and energy reduction techniques (pixel

equality based computation reduction (PECR) and pixel similarity based computation

reduction (PSCR)) are proposed for HEVC intra prediction in [41, 42]. In this thesis,

these techniques are applied to HEVC fractional interpolation. The proposed techniques

compare the pixels at the inputs of HEVC fractional interpolation operation. If these

pixels are equal or similar, interpolation operation is skipped and one of the input pixels

is selected as output. Therefore, the computational complexity of HEVC fractional

interpolation is reduced. The PECR technique does not affect the PSNR and bit-rate.

The PSCR technique slightly decreases PSNR and increases bit-rate

In this thesis, a low energy HEVC fractional (half-pixel and quarter-pixel)

interpolation hardware for all PU sizes including the proposed techniques is also

designed and implemented using Verilog HDL. The Verilog RTL code is verified to

work at 200 MHz in a Xilinx Virtex 6 FPGA. The proposed hardware, in the worst case,

can process 30 quad full HD (3840x2160) video frames per second. The proposed

PECR and PSCR techniques reduced the energy consumption of the proposed hardware

up to 39.7% and 46.9%, respectively.

39

4.2.1 Proposed PECR and PSCR Techniques

In this thesis, two pixel correlation based computation and energy reduction

techniques (PECR and PSCR) for HEVC fractional interpolation are proposed. The

proposed PECR technique compares the input pixels of an FIR filter. If the input pixels

are equal, the FIR filter output is equal to one of the input pixels. Therefore, the FIR

filter calculation becomes unnecessary and it is skipped. If the input pixels are not

equal, the FIR filter operation is performed.

The proposed PSCR technique compares the input pixels of an FIR filter. If the

input pixels are similar, the FIR filter output is assumed to be equal to the input pixel

multiplied with the largest coefficient in the FIR filter. Therefore, the FIR filter

calculation becomes unnecessary and it is skipped. The PSCR technique checks the

similarity of input pixels by truncating their least significant bits by specified amount (1,

2, 3 or 4 bits) and comparing the truncated pixels. If the input pixels are not similar, the

FIR filter operation is performed.

Equality and similarity percentages of the input pixels of FIR filters vary from

frame to frame. Therefore, one frame of Tennis, Kimono, Park Scene and BQ Terrace

(1920x1080) videos [37] coded with quantization parameters (QP) 22, 27, 32 and 37 are

analyzed to determine equality and similarity percentages using HEVC Test Model HM

encoder software [39].

Table 4.1 shows the equality and 3-bit truncated similarity percentages for integer

pixel inputs (Ax,y) and half-pixel inputs (ax,y, bx,y, cx,y) of FIR filters. As shown in

Table 4.1, significant amount of FIR filter inputs are equal or similar. Therefore, the

proposed PECR and PSCR techniques skip significant amount of FIR filter calculations.

Table 4.2 shows the addition and shift operation reductions achieved by the

proposed PECR and PSCR for 3-bit truncated (3bT) techniques for one frame of each

video sequence. As shown in Table 4.2, the proposed PECR and PSCR for 3bT

techniques achieved up to 26.34% and 49.28% computation reductions, respectively.

The proposed techniques have overhead of only 3628800 comparisons for a full HD

(1920x1080) frame.

40

Table 4.1 Equality and Similarity Percentages

HEVC Fractional

Interpolation (Equal)

HEVC Fractional

Interpolation (3bT)

A a b c A a b c

T
e
n

n
is

22 9.9 17.1 18.7 17.1 35.2 42.7 44.6 42.8

27 13.8 24.8 25.5 24.7 37.4 45.4 47.4 45.5

32 16.0 28.2 28.6 28.3 39.1 47.4 49.4 47.5

37 18.9 31.3 31.2 31.4 40.5 50.0 52.1 50.1

K
im

o
n

o

22 15.5 9.8 8.6 8.7 42.4 38.6 39.1 38.7

27 17.2 11.1 10.3 10.1 45.7 41.5 42.1 41.5

32 17.6 11.9 11.3 11.0 48.8 44.1 45.0 44.1

37 19.5 12.6 12.0 11.7 52.3 46.9 47.9 47.0

P
a

r
k

 S
c
e
n

e

22 4.8 2.4 2.0 2.3 30.8 28.8 30.0 28.8

27 8.3 5.7 5.0 5.5 34.7 32.4 33.6 32.5

32 10.2 7.7 6.8 7.5 37.9 35.5 36.9 35.6

37 12.8 9.5 8.5 9.2 40.1 38.4 40.2 38.5

B
Q

 T
e
rr

a
c
e

22 2.0 2.4 1.9 2.3 11.2 24.4 23.4 24.5

27 7.3 6.0 5.3 5.9 21.2 34.2 32.8 34.3

32 9.9 7.4 6.4 7.2 24.3 37.3 35.7 37.3

37 11.9 9.5 8.4 9.3 26.6 39.3 37.4 39.4

Table 4.2 Computation Reductions by PECR and PSCR 3bT

QP

PECR PSCR for 3bT

Addition

Reductio

n

Shift

Reduction

Addition

Reductio

n

Shift

Reduction

Tennis
22 14.54 % 14.54 % 40.10 % 40.10 %

37 26.34 % 26.34 % 46.64 % 46.64 %

Kimono
22 11.62 % 11.62 % 40.24 % 40.24 %

37 15.06 % 15.06 % 49.28 % 49.28 %

Park

Scene

22 3.26 % 3.26 % 29.84 % 29.84 %

37 10.56 % 10.56 % 39.46 % 39.46 %

BQ

Terrace

22 2.12 % 2.12 % 18.94 % 18.94 %

37 10.20 % 10.20 % 33.86 % 33.86 %

The proposed PSCR technique is integrated into fractional interpolation

performed by HEVC Test Model HM encoder software [39]. The impact of the

proposed PSCR technique on rate-distortion performance is determined for Tennis,

Kimono, Park Scene and BQ Terrace (1920x1080) videos [37]. Rate-distortion

41

performances of original HEVC and HEVC using PSCR technique for fractional

interpolation are shown in Figure 4.2. The proposed PSCR technique slightly decreased

PSNR and increased bit-rate.

Figure 4.2 Rate-Distortion Performances of Original HEVC and HEVC Using PSCR

Techniques for Fractional Interpolation

4.2.2 Proposed HEVC Fractional Interpolation Hardware (PECR and PSCR)

The proposed HEVC fractional interpolation hardware for all PU sizes including

the proposed PECR and PSCR techniques is shown in Figure 4.3. The proposed

hardware interpolates all the fractional (half-pixels and quarter-pixels) pixels for the

luma component of a PU using integer or half pixels. Four buffers are used to store

integer and half pixels necessary for interpolating the half and quarter pixels. The

interpolated a, b and c half-pixels are stored in the filtered pixels buffers A, B and C,

respectively. These on-chip buffers reduce the required off-chip memory bandwidth and

power consumption.

42

Figure 4.3 Proposed HEVC Fractional Interpolation Hardware (PECR and PSCR)

8 parallel interpolation units are used to interpolate the 8x3=24 fractional pixels of

a PU in parallel. As shown in Figure 4.3, three FIR filters (type A, type B, type C) are

implemented separately in an interpolation unit.

Since 15 fractional pixels should be interpolated for one integer pixel, 64x15

fractional pixels should be interpolated for an 8x8 PU. Also, 8x7 extra a, b, c half-pixels

should be interpolated for the interpolation of quarter-pixels. First, integer pixels are

loaded into integer pixel buffer in one clock cycle. Then, 8x8 d, h, n half-pixels are

interpolated and stored in the output buffer in 8 clock cycles. After that 15x8 a, b, c

half-pixels are interpolated and stored in the filtered pixel buffers A, B and C,

respectively, in 15 clock cycles. Finally, 9x8x8 quarter-pixels are interpolated using a,

b, c half-pixels and stored in the output buffer in 3x8=24 clock cycles. Therefore, the

proposed hardware, in the worst case, interpolates the fractional pixels for an 8x8 PU in

48 clock cycles.

In this thesis, an original HEVC fractional interpolation hardware (FIHW) is also

designed for energy consumption comparison. This hardware computes type A, B and C

filters separately. The original HEVC fractional interpolation hardware (FIHW) does

not have the comparison unit. In both the proposed HEVC fractional interpolation

hardware including the PECR technique (FIHW+PECR) and the proposed HEVC

fractional interpolation hardware including the PSCR technique (FIHW+PSCR), 14

comparators are used to check similarity of the input pixels of FIR filters. FIHW+PECR

uses 8-bit comparators. FIHW+PSCR for 1bT uses 7-bit comparators. Similarly,

43

FIHW+PSCR for 4bT uses 4-bit comparators. Based on the comparison results, disable

signals are generated for each FIR filter and sent to the interpolation units. If the input

pixels of an FIR filter are equal or similar, input registers of the corresponding FIR filter

hardware are not updated, and a multiplexer at the output of interpolation unit is used to

select the input pixel multiplied with the largest coefficient in the FIR filter instead of

interpolated pixel. This prevents unnecessary switching activities in the FIR filter

hardware.

The proposed FIHW, FIHW+PECR and FIHW+PSCR hardware are implemented

using Verilog HDL. The Verilog RTL codes are verified with RTL simulations. RTL

simulation results matched the results of fractional interpolation implementation in

HEVC HM encoder software [39].

The Verilog RTL codes are mapped to a Xilinx XC6VLX75T FF784 FPGA with

speed grade 3 using Xilinx ISE 13.4. All FPGA implementations are verified to work at

200 MHz by post place and route simulations. Post place and route simulation results

matched the results of fractional interpolation implementation in HEVC HM encoder

software [39]. Therefore, they can process 30 quad full HD (3840x2160) video frames

per second. FIHW FPGA implementation uses 4110 LUTs, 3448 DFFs and 6 BRAMs.

FIHW+PECR FPGA implementation uses 4577 LUTs, 3408 DFFs, and 4 BRAMs.

FIHW+PSCR for 3bT FPGA implementation uses 2381 LUTs, 849 DFFs, and 4

BRAMs.

Power consumptions of FIHW, FIHW+PECR and FIHW+PSCR for 3bT FPGA

implementations are estimated using Xilinx XPower Analyzer tool. Post place and route

timing simulations are performed for Tennis, Kimono, Park Scene and BQ Terrace

(1920x1080) videos at 100 MHz [37], and signal activities are stored in VCD files.

These VCD files are used for estimating the power consumptions of all FPGA

implementations. Energy consumption results of FIHW, FIHW+PECR and

FIHW+PSCR for 3bT for one frame of each video are shown in Figure 4.4. As shown in

Figure 4.4, PECR and PSCR techniques reduced the energy consumption of FIHW

FPGA implementation up to 39.7% and 46.9%, respectively.

44

Figure 4.4 Energy Consumptions of HEVC Fractional Interpolation Hardware

4.3 Proposed HEVC Fractional Interpolation Hardware (MCM)

The proposed hardware calculates common sub-expressions in different FIR filter

equations in HEVC fractional interpolation algorithm once. The proposed hardware also

uses Hcub multiplierless constant multiplication (MCM) algorithm [40] in order to

reduce number and size of the adders and to minimize the adder tree depth.

The type A and type B FIR filter equations for 8 half-pixels are shown in Figure

4.5. As shown in Figure 4.5, common sub expressions are calculated in different

equations and same integer pixel is multiplied with different constant coefficients in

different equations. Therefore, in the proposed hardware, common sub-expressions in

different equations are calculated once, and the result is used in all the equations. The

proposed hardware also uses Hcub MCM algorithm in order to reduce number and size

of the adders, and to minimize the adder tree depth [40].

b-3,0 = -A-6 + 4×A-5 – 11×A-4 + 40×A-3 + 40×A-2 – 11×A-1 + 4×A0 - A1
b-2,0 = -A-5 + 4×A-4 – 11×A-3 + 40×A-2 + 40×A-1 – 11×A0 + 4×A1 – A2
b-1,0 = -A-4 + 4×A-3 – 11×A-2 + 40×A-1 + 40×A0 – 11×A1 + 4×A2 – A3
b0,0 = -A-3 + 4×A-2 – 11×A-1 + 40×A0 + 40×A1 – 11×A2 + 4×A3 – A4
b1,0 = -A-2 + 4×A-1 – 11×A0 + 40×A1 + 40×A2 – 11×A3 + 4×A4 – A5
b2,0 = -A-1 + 4×A0 – 11×A1 + 40×A2 + 40×A3 – 11×A4 + 4×A5 – A6
b3,0 = -A0 + 4×A1 – 11×A2 + 40×A3 + 40×A4 – 11×A5 + 4×A6 – A7
b4,0 = -A1 + 4×A2 – 11×A3 + 40×A4 + 40×A5 – 11×A6 + 4×A7 – A8

a-3,0 = -A-6 + 4×A-5 – 10×A-4 + 58×A-3 + 17×A-2 – 5×A-1 + A0
a-2,0 = -A-5 + 4×A-4 – 10×A-3 + 58×A-2 + 17×A-1 – 5×A0 + A1
a-1,0 = -A-4 + 4×A-3 – 10×A-2 + 58×A-1 + 17×A0 – 5×A1 + A2
a0,0 = -A-3 + 4×A-2 – 10×A-1 + 58×A0 + 17×A1 – 5×A2 + A3
a1,0 = -A-2 + 4×A-1 – 10×A0 + 58×A1 + 17×A2 – 5×A3 + A4
a2,0 = -A-1 + 4×A0 – 10×A1 + 58×A2 + 17×A3 – 5×A4 + A5
a3,0 = -A0 + 4×A1 – 10×A2 + 58×A3 + 17×A4 – 5×A5 + A6
a4,0 = -A1 + 4×A2 – 10×A3 + 58×A4 + 17×A5 – 5×A6 + A7

A – C Type Filters B Type Filters

Figure 4.5 Type A and Type B Filters

45

Hcub algorithm tries to minimize number of adders, their bit size and adder tree

depth in a multiplier block, which multiplies a single input with multiple constants.

Hcub algorithm is used in this thesis, because it produces better results than other MCM

algorithms [40]. Multiplier block creation tool from Spiral implementing Hcub

algorithm is used [54]. This tool takes constants to be multiplied as input and produces

all necessary shift and add operations in a multiplier block as output. A multiplier block

hardware has only one input, and it outputs results of multiplications with all the

constants.

The proposed HEVC fractional (half-pixel and quarter-pixel) interpolation

hardware for all PU sizes is shown in Figure 4.6. The proposed hardware interpolates all

the fractional pixels (half-pixels and quarter-pixels) for the luma component of a PU

using integer or half pixels. Four buffers are used to store integer and half pixels

necessary for interpolating the half and quarter pixels. The interpolated a, b, c half-

pixels are stored in the filtered pixels buffers A, B, C. These on-chip buffers reduce the

required off-chip memory bandwidth and power consumption.

Transpose
Memory A

Transpose
Memory B

Transpose
Memory C

Integer Pixels Buffer

MUX

D
E

M
U

X

Output Buffer A Output Buffer B Output Buffer C

M1 M2 M2 M2 M2 M2 M2M2 M2 M2 M1

Adder
Tree #1

Adder
Tree #2

Adder
Tree #3

Adder
Tree #4

Adder
Tree #5

Adder
Tree #6

Adder
Tree #7

Adder
Tree #8

Splitter

C1

+

<< 2

+

<< 4

--

<< 15,10 40

-11 58

17

Ax

M2

+

<< 2 << 4

-
-5, -10

Ax

-11

M1

Figure 4.6 Proposed HEVC Fractional Interpolation Hardware (MCM)

 8x3=24 fractional pixels are interpolated in parallel using type A, type B and

type C FIR filter equations. Common 1 (C1) datapath calculates the common sub-

expressions in the equations shown as blue boxes in Figure 4.5. Multiplier 1 (M1) and

Multiplier 2 (M2) datapaths calculate the multiplications with multiple constant

46

coefficients shown as red boxes in Figure 4.5. As shown in Table 4.3, since constant

coefficients of input pixels (A-4, A6) and (A-3-A5) are different, two different

multiplier block hardware are used. Then, fractional pixels are calculated using adder

trees.

Table 4.3 Common Coefficients of Input Pixels

Input

Pixel
Coefficient Datapath

A-6 -1

C1
A-5 -1,4

A-4 -1,4,-5,-10,-11 M1

A-3 -1,4,-5,-10,-11,17,40,58

M2

A-2 -1,4,-5,-10,-11,17,40,58

A-1 -1,4,-5,-10,-11,17,40,58

A0 -1,4,-5,-10,-11,17,40,58

A1 -1,4,-5,-10,-11,17,40,58

A2 -1,4,-5,-10,-11,17,40,58

A3 -1,4,-5,-10,-11,17,40,58

A4 -1,4,-5,-10,-11,17,40,58

A5 -1,4,-5,-10,-11,17,40,58

A6 -1,4,-5,-10,-11 M1

A7 -1,4

C1
A8 -1

Since 15 fractional pixels should be interpolated for one integer pixel, 64x15

fractional pixels should be interpolated for an 8x8 PU. 8x7 extra a, b, c half-pixels are

necessary for the interpolation of quarter pixels. Therefore, the proposed hardware, in

the worst case, interpolates the fractional pixels for an 8x8 PU in 48 clock cycles.

 First, integer pixels are loaded into integer pixels buffer in one clock cycle.

Then, 8x8 d, h, n half-pixels are interpolated and stored in the output buffer. After that,

8x15 a, b and c half-pixels necessary for interpolating quarter pixels are interpolated in

15 clock cycles, and stored in the filtered pixel buffers A, B, and C. Finally, 9x8x8

quarter pixels are interpolated and stored in the output pixel buffers.

47

The proposed FIHW+MCM HEVC fractional interpolation hardware is

implemented using Verilog HDL. The hardware implementation is verified with RTL

simulations. The RTL simulation results matched the results of a software model of

HEVC fractional interpolation algorithm. The Verilog RTL codes are synthesized and

mapped to a Xilinx XC6VLX130T FF1156 FPGA with speed grade 3 using Xilinx ISE

13.4. FIHW+MCM FPGA implementation uses 3929 LUTs, 3422 DFFs, and 6

BRAMs. The proposed FPGA implementation is verified to work at 200 MHz by post

place and route simulations. Therefore, it can process 30 quad HD (3840x2160) video

frames per second.

The power consumptions of FIHW and FIHW+MCM FPGA implementations are

estimated using Xilinx XPower Analyzer tool for Tennis (1920x1080) and Kimono

(1920x1080) videos [37]. The energy consumptions of FIHW and FIHW+MCM FPGA

implementations are shown in Figure 4.7 and Figure 4.8. As shown in these figures, the

proposed HEVC fractional interpolation hardware (FIHW+MCM) has up to 48% less

energy consumption than original HEVC fractional interpolation hardware (FIHW).

In order to estimate the power consumption of a fractional interpolation hardware,

timing simulation of its placed and routed netlist is done at 100 MHz using Mentor

Graphics Questa for encoding one frame of each video sequence. The signal activities of

these timing simulations are stored in VCD files, and these VCD files are used for

estimating the power consumption of that fractional interpolation hardware using Xilinx

XPower Analyzer tool. Since fractional interpolation hardware will be used as part of a

HEVC encoder or decoder, only internal power consumption is considered and input

and output power consumptions are ignored.

Figure 4.7 Energy Consumption of HEVC Fractional Interpolation Hardware for

Tennis (1920x1080) with different QP Values

48

Figure 4.8 Energy Consumption of HEVC Fractional Interpolation Hardware for

Kimono (1920x1080) with different QP Values

 The Verilog RTL code of the proposed HEVC fractional interpolation hardware

is also synthesized and place & routed to Synopsys 90nm standard cell library. The gate

count of resulting ASIC implementation is calculated as 28.5k, excluding on-chip

memories, based on NAND (2x1) gate area.

4.4 Proposed Approximate HEVC Fractional Interpolation Filters and Their

Hardware Implementations

In this thesis, two approximate HEVC fractional interpolation filters (F1 and F2)

are proposed. Both F1 and F2 use one 4-tap and two different 3-tap FIR filters instead

of using one 8-tap and two different 7-tap FIR filters. The proposed interpolation filters

significantly reduce computational complexity of HEVC fractional interpolation with a

negligible PSNR loss and bit rate increase. F2 reduces computational complexity more

than F1 with more PSNR loss and bit rate increase.

The proposed approximate fractional interpolation filters are used in fractional

motion estimation stage of an HEVC encoder. After best fractional motion vector is

determined, original HEVC fractional interpolation filter is used in coding stage of the

HEVC encoder. Therefore, the proposed approximate fractional interpolation filters do

not cause encoder-decoder mismatch.

In this thesis, two approximate HEVC fractional interpolation hardware for all PU

sizes are designed and implemented using Verilog HDL for each proposed approximate

fractional interpolation filter. The first hardware implements multiplications with

constant coefficients using adders and shifters. The second hardware implements

49

addition and shift operations using Hcub multiplierless constant multiplication (MCM)

algorithm. The second hardware for both F1 and F2, in the worst case, can process 45

quad full HD (QFHD) frames per second (fps). They consume up to 67.1% less energy

than original HEVC fractional interpolation hardware. F2 fractional interpolation

hardware has smaller area and lower energy consumption than F1 fractional

interpolation hardware.

Approximate HEVC fractional interpolation filters are proposed in [55]-[56].

However, the approximate HEVC fractional interpolation filters proposed in this thesis

have less computational complexity and better rate-distortion performance than the ones

proposed in [55]-[56].

4.4.1 Proposed Approximate HEVC Fractional Interpolation Filters

In this thesis, two approximate HEVC fractional interpolation filters (F1 and F2)

are proposed. Both F1 and F2 use one 4-tap and two different 3-tap FIR filters. But,

they use different filter coefficients. The proposed approximate HEVC fractional

interpolation filter equations for F1 and F2 are shown in (4.4)-(4.6) and (4.7)-(4.9),

respectively.

𝑎0,0 = (−7 ∗ 𝐴−1,0 + 58 ∗ 𝐴0,0 + 13 ∗ 𝐴1,0) ≫ 6
(4.4)

𝑏0,0 = (−8 ∗ 𝐴−1,0 + 40 ∗ 𝐴0,0 + 40 ∗ 𝐴1,0 − 8 ∗ 𝐴2,0) ≫ 6
(4.5)

𝑐0,0 = (13 ∗ 𝐴−0,0 + 58 ∗ 𝐴1,0 − 7 ∗ 𝐴2,0) ≫ 6
(4.6)

𝑎0,0 = (−8 ∗ 𝐴−1,0 + 64 ∗ 𝐴0,0 + 8 ∗ 𝐴1,0) ≫ 6
(4.7)

𝑏0,0 = (−8 ∗ 𝐴−1,0 + 40 ∗ 𝐴0,0 + 40 ∗ 𝐴1,0 − 8 ∗ 𝐴2,0) ≫ 6
(4.8)

𝑐0,0 = (8 ∗ 𝐴0,0 + 64 ∗ 𝐴1,0 − 8 ∗ 𝐴2,0) ≫ 6
(4.9)

In original HEVC FIR filter A, if values of the pixels (A-3,0, A-2,0, A-1,0) multiplied

with first three coefficients (-1, 4, -10) are the same, multiplication and addition result

can be calculated by multiplying one pixel with -7 (-1+4-10 = -7). In original HEVC

fractional interpolation filters, small coefficients have less effect on the filter result. In

addition, since the pixels multiplied with small coefficients are neighboring pixels,

because of spatial correlation, their values will be very similar. Therefore, the

coefficients of F1 are determined by assuming that values of the pixels multiplied with

small coefficients are the same. The coefficients of F2 are determined by replacing the

50

coefficients of F1 with closest 2n values. In this way, multiplications with coefficients of

F2 are performed using shift operations. In addition, F1 and F2 have similar frequency

responses with original HEVC fractional interpolation filters.

Table 4.4 shows the number of addition and shift operations necessary for

calculating FIR filters used in HEVC fractional interpolation (Original), FIR filters used

in the proposed approximate HEVC fractional interpolation (F1 and F2), and FIR filters

used in the approximate HEVC fractional interpolation proposed in [55]-[56].

Table 4.4 Addition and Shift Reductions

Filter

A B C
Avg.

(%)
Add Shift Add Shift Add Shift

Original 11 8 13 10 11 8

F1

Num. 7 6 5 6 7 6

Red.

(%)
36.3 25.0 61.5 40.0 36.3 25.0 37.4

F2

Num. 2 3 5 6 2 3

Red.

(%)
81.8 62.5 61.5 40.0 81.8 62.5 65.0

[55]

Num. 11 6 11 8 11 6

Red.

(%)
0.0 25.0 15.4 20.0 0.0 25.0 14.2

[56]

Num. 9 6 9 10 9 6

Red.

(%)
18.2 25.0 30.8 0.0 18.2 25.0 19.5

The proposed approximate HEVC fractional interpolation filters (F1 and F2) are

integrated into fractional motion estimation in HEVC HM software encoder 15.0 [39].

First ten frames of some of the HEVC test videos [37] are coded with low delay P (LP)

test configuration and with four different quantization parameters (QP) using HEVC

HM 15.0 with original HEVC fractional interpolation filters, F1 and F2. The resulting

rate-distortion performances are shown in Table 4.5.

51

Table 4.5 BD-Rate(%) and BD-PSNR(dB)

 F1 F2 [55] [56]

Video Sequence
BD-

Rate

BD-

PSNR

BD-

Rate

BD-

PSNR

BD-

Rate

BD-

PSNR

BD-

Rate

BD-

PSNR

2560x1600

People on

Street
-0.27 0.01 1.13 -0.05 --- --- --- ---

Traffic 0.51 -0.02 1.56 -0.06 --- --- --- ---

1920x1080

Tennis -0.01 0.01 0.76 -0.02 --- --- --- ---

Kimono -0.31 0.01 0.31 -0.01 1.79 -0.06 1.05 -0.03

Basketball

Drive
0.76 -0.01 1.46 -0.03 1.22 -0.03 1.41 -0.03

Park Scene 0.73 -0.03 1.77 -0.06 2.42 -0.08 3.77 -0.11

1280x720

Vidyo1 0.17 -0.01 0.60 -0.02 --- --- --- ---

Vidyo4 0.25 -0.01 0.49 -0.01 --- --- --- ---

Kristen and

Sara
0.53 -0.02 1.14 -0.04 3.87 -0.12 4.12 -0.12

Four People 0.08 0.00 0.48 -0.02 3.25 -0.11 3.02 -0.10

832x480

Keiba 0.16 -0.01 1.36 -0.05 --- --- --- ---

BQ Mall 0.79 -0.04 1.36 -0.06 1.69 -0.07 3.73 -0.14

Race Horses 0.61 -0.03 1.91 -0.09 1.28 -0.05 2.21 -0.08

Basketball

Drill
1.56 -0.06 1.64 -0.07 0.35 -0.01 1.28 -0.05

Average 0.40 -0.01 1.14 -0.04 1.98 -0.07 2.57 -0.08

The proposed F1 and F2 filters significantly reduce computational complexity of

HEVC fractional interpolation with a negligible PSNR loss and bit rate increase. They

have less computational complexity and better rate-distortion performance than the ones

proposed in [55]-[56].

4.4.2 Proposed Approximate HEVC Fractional Interpolation Hardware

In this thesis, two approximate HEVC fractional interpolation hardware for all PU

sizes are designed for each proposed approximate interpolation filter. The first hardware

(AS) implements multiplications with constant coefficients using adders and shifters. In

this hardware, three different datapaths are used for implementing A, B and C FIR

filters. It interpolates 8x3=24 fractional pixels in parallel using 24 (8 A, 8 B, 8 C)

parallel datapaths. The proposed AS approximate HEVC fractional interpolation

hardware is shown in Figure 4.9.

52

Figure 4.9 Proposed AS Approximate HEVC Fractional Interpolation Hardware

Since different fractional interpolation filter equations multiply same integer pixel

with different constant coefficients, in the second hardware (MCM), Hcub MCM

algorithm is used for reducing number and size of the adders. A multiplier block (MB)

hardware is given one input. It outputs multiplications of this input with all the

constants. The proposed MCM approximate HEVC fractional interpolation hardware is

shown in Figure 4.10.

Figure 4.10 Proposed MCM Approximate HEVC Fractional Interpolation Hardware

53

Integer pixels are stored in one on-chip memory. Then, half pixels (a, b, c) that

will be used for interpolating the quarter pixels are stored in three on chip memories.

Since a, b, c half pixels are interpolated in horizontal direction and used in vertical

direction for quarter pixel interpolations, transpose memory architecture is used to store

a, b, c half pixels.

Both proposed MCM hardware implementing the proposed F1 fractional

interpolation filter (F1 MCM hardware) and proposed MCM hardware implementing

the proposed F2 fractional interpolation filter (F2 MCM hardware) interpolate 8x3=24

fractional pixels in parallel. First, multiplier blocks perform multiplications with

constant coefficients. Then, fractional pixels are calculated using adder trees. Since

different constant coefficients are used in F1 and F2 filters, different multiplier blocks

are used in F1 MCM hardware and F2 MCM hardware.

Since the proposed approximate HEVC fractional interpolation filters F1 and F2

use FIR filters with less number of taps than the original HEVC fractional interpolation

filter, the proposed F1 AS, F1 MCM, F2 AS and F2 MCM hardware need to access 11

pixels instead of 15 pixels in order to interpolate 8x3=24 fractional pixels. Therefore,

they require less memory accesses than the original HEVC fractional interpolation

hardware.

F1 AS, F2 AS, F1 MCM and F2 MCM hardware interpolate the fractional pixels

for an 8x8 PU in 44 clock cycles. First, 8x8 half pixels are interpolated. Then, 8x11 half

pixels that will be used for interpolating the quarter pixels are interpolated. Finally,

64x9 quarter pixels are interpolated. Scheduling of memory read and interpolation

operations in F1 AS, F2 AS, F1 MCM and F2 MCM hardware are shown in Figure

4.11.

Figure 4.11 Scheduling of HEVC Fractional Interpolation Hardware

Integer Pixels
(8 Cycles)

Integer Pixels
(11 Cycles)

 ‘a’ Half Pixels
(8 Cycles)

‘b’ Half Pixels
(8 Cycles)

‘c’ Half Pixels
(8 Cycles)

d,h,n Pixels
(8 Cycles)

a,b,c Pixels
(11 Cycles)

e,i,p Pixels
(8 Cycles)

f,j,q Pixels
(8 Cycles)

g,k,r Pixels
(8 Cycles)

SCHEDULING of F1 AS, F1 MCM, F2 AS, F2 MCM

Memory Read

Interpolation

0 1 42 43 46

Integer Pixels
(8 Cycles)

Integer Pixels
(15 Cycles)

‘a’ Half Pixels
(8 Cycles)

‘b’ Half Pixels
(8 Cycles)

‘c’ Half Pixels
(8 Cycles)

d,h,n Pixels
(8 Cycles)

a,b,c Pixels
(15 Cycles)

e,i,p Pixels
(8 Cycles)

f,j,q Pixels
(8 Cycles)

g,k,r Pixels
(8 Cycles)

SCHEDULING of Original AS and Original MCM

Memory Read

Interpolation

47

4
Cycles

54

The proposed F1 AS, F1 MCM, F2 AS and F2 MCM hardware are implemented

using Verilog HDL. The Verilog RTL codes are synthesized, placed and routed to a

Xilinx XC6VLX130T FF1156 FPGA. FPGA implementations are verified with both

RTL and post place & route timing simulations. The simulation results matched the

results of HEVC HM software encoder [39].

FPGA implementations are also verified on an Xilinx ZYNQ ZC702 FPGA board

as shown in Figure 4.12. The FPGA board has a 28 nm FPGA and dual-core ARM

microprocessor. It also has 1GB DRAM and several interfaces such as UART and

HDMI. Microprocessor reads video frames from SD card and sends them to FPGA

using a high speed bus. The proposed hardware interpolates the video frames. Then,

microprocessor displays interpolated frames on HDMI monitor and stores them to SD

card.

Figure 4.12 Implementation of Proposed Approximate HEVC Fractional Interpolation

Hardware on an FPGA Board

FPGA implementation results are shown in Table 4.6. F1 AS implementation can

work at 200 MHz, and it can process 33 QFHD (3840x2160) fps. F2 AS

implementation can work at 250 MHz, and it can process 41 QFHD fps. F1 MCM and

F2 MCM implementations can work at 278 MHz, and they can process 45 QFHD fps.

The proposed F1 and F2 approximate HEVC fractional interpolation hardware are faster

and smaller than the original HEVC fractional interpolation hardware proposed in [15].

HIGH SPEED BUS

Microprocessor

FPGA

D
D

R
 3

SD
Card

HDMI
Display

55

Table 4.6 FPGA Implementation Results

 Original [15] Proposed F1 Proposed F2

 AS MCM AS MCM AS MCM

Slice 1669 1557 1144 834 963 731

LUT 4110 3929 2416 2008 1601 1567

DFF 3448 3422 2596 3034 1873 2762

BRAM 6 6 6 6 6 6

Freq.

(MHz)
200 200 200 278 250 278

Fps
30 Quad

Full HD

30 Quad

Full HD

33 Quad

Full HD

45 Quad

Full HD

41 Quad

Full HD

45 Quad

Full HD

Power

Dissip.
152 mW 93 mW 104 mW 88 mW 67 mW 80 mW

The Verilog RTL codes of the proposed F1 AS, F1 MCM, F2 AS and F2 MCM

hardware are synthesized, placed and routed to a 90nm standard cell library as well. The

gate counts of these ASIC implementations are calculated based on 2x1 NAND gate

area. ASIC implementation results are shown in Table 4.7.

Table 4.7 ASIC Implementation Results

 Original [15] Proposed F1 Proposed F2

 AS MCM AS MCM AS MCM

Tech. 90 nm 90 nm 90 nm 90 nm 90 nm 90 nm

Gate

Count
29.5 K 28.5 K 13.2 K 12.8 K 10.6 K 11.2 K

Freq.

(MHz)
250 250 300 300 300 300

Fps
37 Quad

Full HD

37 Quad

Full HD

49 Quad

Full HD

49 Quad

Full HD

49 Quad

Full HD

49 Quad

Full HD

Power

Dissip.
27.3 mW 23.9 mW 16.4 mW 15.8 mW 14.8 mW 14.9 mW

Power consumptions of F1 AS, F2 AS, F1 MCM and F2 MCM are estimated for

Tennis and Kimono (1920x1080) videos [37] using a Xilinx XPower Analyzer tool.

Signal activities captured during post place & route timing simulations are used to

estimate power consumptions. Energy consumptions of all FPGA implementations are

56

shown in Figure 4.13. The proposed approximate HEVC fractional interpolation

hardware consume up to 67.1% less energy than the original HEVC fractional

interpolation hardware proposed in [15].

Figure 4.13 Energy Consumption Results

4.5 Hardware Comparison

The proposed FIHW, FIHW+PECR, FIHW+PSCR+3bT, FIHW+MCM, F1 AS,

F1 MCM, F2 AS and F2 MCM FPGA implementations are compared in Table 4.8. The

proposed approximate hardware implementations have higher performance than other

hardware implementations because they need less clock cycles to interpolate one 8x8

PU. FIHW+PSCR+3bT has smaller area than other hardware implementations since it

uses most significant 5-bits of integer and half pixels for interpolation. However, it has

the worst rate distortion performance.

57

Table 4.8 Comparisons of The Proposed FPGA Implementations

FIHW

FIHW+

PECR

FIHW+

PSCR+3bT

FIHW+

MCM
F1 AS

F1

MCM
F2 AS

F2

MCM

FPGA
Xilinx

Virtex 6

Xilinx

Virtex 6

Xilinx

Virtex 6

Xilinx

Virtex 6

Xilinx

Virtex 6

Xilinx

Virtex 6

Xilinx

Virtex 6

Xilinx

Virtex 6

DFF

Count
3448 3408 849 3422 2596 3034 1873 2762

LUT

Count
4110 4577 2381 3929 2416 2008 1601 1567

Max.

Freq.

(MHz)

200 200 200 200 200 278 250 278

Fps
30

QFHD

30

QFHD
30 QFHD

30

QFHD

33

QFHD

45

QFHD

41

QFHD

45

QFHD

 The proposed approximate HEVC fractional interpolation hardware are

compared with the HEVC fractional interpolation hardware proposed in the literature

[57]-[65]. The comparisons of ASIC and FPGA implementations are shown in Table

4.9 and Table 4.10, respectively. Some of the results are not given in Table 4.9 and

Table 4.10, because they are not available in the literature [57]-[63].

Table 4.9 Comparisons of ASIC Implementations

[15] [57] [58] [59] [60] [61] [62] F1 F2

Tech. 90 nm 150 nm 90 nm 90 nm 90 nm 130 nm 40 nm 90 nm 90 nm

Gate Count 28.5 K 30.2 K 224 K 383 K 37.2 K 126.8 K 297.3 K 12.8 K 11.2 K

Max.

Freq. (MHz)
200 312 333 192 240 208 342 300 300

Fps
30

QFHD

30

QFHD

30

FHD

60

QFHD

47

QFHD

86

QFHD

60

UHD

49

QFHD

49

QFHD
Power

Dissip.

23.9

mW
--- --- --- --- ---

48.1

mW

15.8

mW

14.9

mW

Table 4.10 Comparisons of FPGA Implementations

[15] [59] [63] [64] [65] F1 F2

FPGA
Xilinx

Virtex 6

Xilinx

Virtex 5

Altera

Arria II

Xilinx

Virtex 6

Xilinx

Virtex 6

Xilinx

Virtex 6

Xilinx

Virtex 6

Slice Count 1557 --- --- 2181 1498 834 731

LUT Count 3929 28486 24202 5017 3806 2008 1567

Max. Freq.

(MHz)
200 120 200 283 233 278 278

Fps
30

3840x2160

60

1920x1080

30

2560x1600

35

3840x2160

45

3840x2160

45

3840x2160

Power

Dissipation
93 mW --- 171 mW 89 mW --- 88 mW 80 mW

58

A coarse grained reconfigurable datapath is proposed to reduce area and adaptive

scheduling is proposed to increase throughput in [57]. A fractional interpolation

hardware is proposed for HEVC encoder in [58]. Data-reuse technique is used to reduce

memory accesses and highly-parallel architecture is used to increase throughput in [59].

Efficient memory organization and reuse of datapath are proposed in [60]. Resource

sharing for common partial terms of the interpolation filters is proposed in [61]. A

fractional interpolation hardware is proposed for motion compensation in [62]. Many

parallel interpolation hardware are used in [63]. Reconfigurable interpolation datapaths

are used to reduce area and power consumption in [64]. [65] uses memory based

constant multiplication technique for implementing multiplication with constant

coefficients.

The proposed approximate HEVC fractional interpolation hardware have much

smaller hardware area and lower power consumption than the other hardware. The

smallest hardware in the literature has more than two times larger area than the

proposed hardware. Only the HEVC fractional interpolation hardware proposed in [59],

[61]-[62] have higher throughput than them. However, they have more than ten times

larger area than the proposed hardware. In addition, performance result of the hardware

proposed in [62] is given for motion compensation. Performance results of the rest of

the hardware including the ones proposed in this thesis are given for motion estimation.

59

5 CHAPTER V

A COMPUTATION AND ENERGY REDUCTION TECHNIQUE

FOR HEVC DISCRETE COSINE TRANSFORM

HEVC standard uses Discrete Cosine Transform (DCT) / Inverse Discrete Cosine

Transform (IDCT) same as the H.264 standard. However, H.264 standard uses only 4x4

and 8x8 Transform Unit (TU) sizes for DCT/IDCT. HEVC standard uses 4x4, 8x8,

16x16, and 32x32 TU sizes for DCT/IDCT. Larger TU sizes achieve better energy

compaction. However, they increase the computational complexity exponentially. In

addition, HEVC uses Discrete Sine Transform (DST) / Inverse Discrete Sine Transform

(IDST) for 4x4 intra prediction in certain cases.

Transform operations (DCT/IDCT and DST/IDST) are heavily used in an HEVC

encoder [11]. DCT and DST have high computational complexity. DCT and DST

operations account for 11% of the computational complexity of an HEVC video

encoder. They account for 25% of the computational complexity of an all intra HEVC

video encoder.

HEVC uses DCT-II and DST-VII. It uses 4x4, 8x8, 16x16, 32x32 TU sizes for

DCT. It also uses DST for 4x4 intra prediction in certain cases. HEVC performs 2D

transform operation by applying 1D transforms in vertical and horizontal directions. The

coefficients in HEVC 1D transform matrices are derived from DCT-II and DST-VII

60

basis functions. However, integer coefficients are used for simplicity. HEVC 1D DCT-

II and DST-VII matrices for 4x4 TU size are shown in (5.1) and (5.2).

 𝐷𝐶𝑇 − 𝐼𝐼4𝑥4 = [

64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36

] (5.1)

 𝐷𝑆𝑇 − 𝑉𝐼𝐼4𝑥4 = [

29 55 74 84
74 74 0 −74
84 −29 −74 55
55 −84 74 −29

] (5.2)

In this thesis, a novel computation and energy reduction technique for HEVC

DCT for all TU sizes is proposed. After forward transform and quantization, most of the

forward transformed and quantized high frequency coefficients in a TU become zero. In

addition, if the values of non-zero forward transformed and quantized low frequency

coefficients in a TU are small, they have small impact on the inverse quantized and

inverse transformed TU. Therefore, the proposed technique only calculates several pre-

determined low frequency coefficients of TUs, and it assumes that the remaining

coefficients are zero.

The proposed technique is used in both mode decision and coding stages of an

HEVC encoder. Since the same DCT coefficients are used in both HEVC encoder and

HEVC decoder, the proposed technique does not cause any encoder-decoder mismatch.

The proposed technique does not require any modification in an HEVC decoder. The

proposed technique reduces the computational complexity of HEVC DCT significantly

at the expense of slight decrease in PSNR and slight increase in bit rate. It reduced the

execution time of HEVC HM software encoder [39] up to 12.74%, and it reduced the

execution time of the DCT operations in HEVC HM software encoder up to 37.27% on

a workstation with 3.33 GHz dual-core processor and 64 GB DRAM.

In this thesis, a low energy HEVC 2D DCT hardware for all TU sizes is also

designed and implemented using Verilog HDL. The proposed hardware calculates 4, 8,

16 and 32 DCT coefficients per clock cycle for 4x4, 8x8, 16x16 and 32x32 TU sizes,

respectively. It, in the worst case, can process 48 Quad Full HD (3840x2160) video

frames per second. In this thesis, another low energy HEVC 2D DCT hardware for all

TU sizes with higher hardware utilization is also designed and implemented using

61

Verilog HDL. This hardware processes four 4x4 TUs or two 8x8 TUs in parallel.

Therefore, it can calculate 16 DCT coefficients per clock cycle for 4x4, 8x8 and 16x16

TU sizes, and 32 DCT coefficients per clock cycle for 32x32 TU size. It, in the worst

case, can process 53 Ultra HD (7680x4320) video frames per second.

Clock gating is used to reduce the energy consumptions of both hardware. Hcub

Multiplierless Constant Multiplication (MCM) algorithm [40] is used to reduce number

and size of the adders in both hardware. Hcub MCM algorithm reduced the energy

consumption of the lower utilization (LU) hardware and the higher utilization (HU)

hardware up to 5.9% and 13.1%, respectively. Finally, the proposed technique is used to

reduce the energy consumptions of both hardware. It further reduced the energy

consumption of the LU hardware and the HU hardware up to 17.9% and 18.9%,

respectively.

Several zero quantized DCT coefficient detection techniques are proposed for

H.264 and HEVC [66]-[69]. These techniques try to predict the blocks with zero

forward transformed and quantized coefficients before DCT and quantization operations

in the coding stage of an H.264 or HEVC encoder in order to avoid DCT and

quantization operations. However, the technique proposed in this thesis avoids most of

the DCT operations that have no impact or low impact on the transformed and quantized

TUs in both mode decision and coding stages of an HEVC encoder. In addition, the zero

quantized DCT coefficient detection techniques have much more computational

overhead than the proposed technique which requires only one comparison for each TU.

Several HEVC DCT hardware are proposed in the literature [70]-[74]. In [70], 2D

DCT hardware calculates all DCT outputs using multipliers. In [71], 2D DCT hardware

reuses smaller TU hardware for DCT operations of larger TUs. In [72], 2D DCT

hardware implementation uses two different 1D transform hardware for column and row

transforms, and it can process 32 pixels per clock cycle for all TU sizes. In [73], 2D

DCT hardware calculates all DCT outputs using multipliers, and it modifies the order of

TU processing for optimizing transform buffer. In [74], the proposed hardware only

performs 1D DCT transform, and it uses canonical signed digit representation and

common sub-expression elimination technique to decrease number of adders and

shifters. The low energy HEVC 2D DCT hardware proposed in this thesis is compared

with these HEVC DCT hardware in Section 5.3.

62

5.1 Proposed Computation and Energy Reduction Technique

After forward transform and quantization, most of the forward transformed and

quantized high frequency coefficients in a TU become zero. In addition, if the values of

non-zero forward transformed and quantized low frequency coefficients in a TU are

small, they have small impact on the inverse quantized and inverse transformed TU.

Therefore, the proposed technique only calculates several pre-determined low frequency

coefficients of TUs, and it assumes that the remaining coefficients are zero.

As shown in Figure 5.1, in this thesis, the impact of the proposed technique on the

computational complexity and rate-distortion performance is determined for three

different DCT coefficient sets. In the first two coefficient sets, the coefficients that will

be calculated by the HEVC DCT for all TU sizes are pre-determined, and they are not

changed during DCT operations. When the proposed technique is used with coefficient

set 1, only 25% (1/4) of DCT coefficients are calculated for all TU sizes. When the

proposed technique is used with coefficient set 2, 56.25% (9/16) of DCT coefficients

are calculated for 4x4 and 16x16 TU sizes, and 14% (9/64) of DCT coefficients are

calculated for 8x8 and 32x32 TU sizes. These DCT coefficient percentages are

experimentally determined to reduce the computational complexity of HEVC DCT

significantly with slight impact on distortion and bit rate.

Figure 5.1 Proposed Computation and Energy Reduction Technique

63

In the coefficient set 3, the pre-determined coefficients that will be calculated by

HEVC DCT for all TU sizes are adaptively changed during DCT operations. For 4x4

TUs, level-0 or level-1 DCT is performed. For the other TUs, level-0, level-1 or level-2

DCT is performed. In level-0 DCT, all DCT coefficients are calculated for all TUs. In

level-1 DCT, 25% (1/4) of DCT coefficients are calculated for 4x4 TUs, and 39%

(25/64) of DCT coefficients are calculated for 8x8, 16x16 and 32x32 TUs. In level-2

DCT, 14% (9/64) of DCT coefficients are calculated for 8x8, 16x16 and 32x32 TUs.

Initially, level-0 DCT is used for each TU size. As shown in Figure 5.2, if the

distortion value for current TU obtained by the current DCT operation is smaller than

90% of the previous distortion value for the same TU or same size TU obtained by the

previous DCT operation, DCT level for this TU size is increased. If the distortion value

for current TU obtained by the current DCT operation is larger than 110% of the

previous distortion value for the same TU or same size TU obtained by the previous

DCT operation, DCT level for this TU size is decreased.

DCT(Residuals, Distortion) {

 if (Distortion(curr_dct) is larger than 1.1*Distortion(prev_dct) and

 DCT_Level is larger than zero)

 DCT_Level ← (DCT_Level - 1)

 else if (Distortion(curr_dct) is smaller than 0.9*Distortion(prev_dct)

 and DCT_Level is smaller than two)

 DCT_Level ← (DCT_Level + 1)

 if (DCT_Level is zero)

 DCT Coefficients ← DCT_L0(Residuals)

 else if (DCT_Level is one)

 DCT Coefficients ← DCT_L1(Residuals)

 else if (DCT_Level is two)

 DCT Coefficients ← DCT_L2(Residuals)

}

Figure 5.2 Pseudocode of HEVC DCT with The Proposed Technique

Since the distortion value for current TU is already calculated by an HEVC

encoder, the proposed technique does not calculate the distortion value for current TU.

When the proposed technique is used with coefficient set 3, the percentages of DCT

levels used for all TUs for first 10 frames of three different full HD (1920x1080) videos

are shown in Figure 5.3.

64

Figure 5.3 DCT Level Percentages

Table 5.1 shows the number of addition and shift operations required for

calculating all DCT coefficients in a TU (Original) and for calculating the pre-

determined DCT coefficients in a TU for three different DCT coefficient sets.

Calculating only the pre-determined DCT coefficients in a TU significantly reduces the

number of addition and shift operations.

Table 5.1 Addition and Shift Reductions for All TU Sizes

TU Size Org.
C. Set

#1

Red.

(%)

C. Set

#2

Red.

(%)

Coefficient Set #3

Level 1
Red.

(%)
Level 2

Red.

(%)

4x4
Add. 224 84 62.5 147 34.4 84 62.5 -- --

Shift 224 84 62.5 147 34.4 84 62.5 -- --

8x8
Add. 2560 960 62.5 660 74.2 1300 49.2 660 74.2

Shift 2304 864 62.5 594 74.2 1170 49.2 594 74.2

16x16
Add. 20992 7872 62.5 13776 34.4 10660 49.2 5412 74.2

Shift 16896 6336 62.5 11088 34.4 8580 49.2 4356 74.2

32x32
Add. 182272 68352 62.5 46992 74.2 92560 49.2 46992 74.2

Shift 153600 57600 62.5 39600 74.2 78000 49.2 39600 74.2

Average 62.5 54.3 52.5 74.2

The proposed technique is integrated into DCT operations performed by HEVC

HM software encoder [39]. The pre-determined DCT coefficients are experimentally

determined to achieve large computation reduction with slight decrease in PSNR and

slight increase in bit rate using HEVC HM software encoder. The impact of the

proposed technique on execution time and rate-distortion performance is determined for

three different DCT coefficient sets on a workstation with 3.33 GHz dual-core processor

65

and 64 GB DRAM for People on Street, Traffic (2560x1600), Tennis, Kimono,

Basketball Drive, Park Scene (1920x1080), Vidyo1, Vidyo4, Kristen and Sara, Four

People (1280x720), Keiba, Party Scene, Race Horses, Basketball Drill (832x480) videos

[37].

First 10 frames of all video sequences are coded with all intra (AI), low delay P

(LP) (IPPPP) and random access (RA) (IBBBB) test configurations and with

quantization parameters (QP) 22, 27, 32 and 37 using HEVC HM software encoder [39]

with and without the proposed technique, and BD-Rate and BD-PSNR values are

calculated. The results given in Tables 5.2, 5.3 and 5.4 show that the proposed

technique reduces the computational complexity of HEVC DCT significantly at the

expense of slight decrease in PSNR and slight increase in bit rate. Since it is used in

mode decision stage of an HEVC encoder, it achieves different amount of execution

time reductions for DCT operations and HEVC encoder.

Table 5.2 BD-Rate, BD-PSNR and Execution Time Results for HEVC All Intra (AI)

Configuration

 Coefficient Set #1 Coefficient Set #2 Coefficient Set #3

Video

Sequence B
D

-

R
a

te

(%
)

B
D

-

P
S

N
R

(d
B

)

∆
T

im
e

(%
)

(E
n

c
.)

∆
T

im
e

(%
)

(D
C

T
)

B
D

-

R
a

te

(%
)

B
D

-

P
S

N
R

(d
B

)

∆
T

im
e

(%
)

(E
n

c
.)

∆
T

im
e

(%
)

(D
C

T
)

B
D

-

R
a

te

(%
)

B
D

-

P
S

N
R

(d
B

)

∆
T

im
e

(%
)

(E
n

c
.)

∆
T

im
e

(%
)

(D
C

T
)

People on

Street
1.32 -0.07 4.14 -22.05 2.09 -0.11 -4.10 -24.25 1.89 -0.10 -6.11 -23.81

Traffic 0.82 -0.04 -3.67 -20.78 1.68 -0.09 -3.68 -23.40 1.76 -0.09 7.21 -24.75

Tennis 3.18 -0.10 -4.48 -20.55 3.11 -0.09 -3.85 -22.45 2.32 -0.06 -8.07 -22.86

Kimono 2.06 -0.07 -4.94 -21.13 1.89 -0.06 -1.79 -23.05 1.24 -0.04 -7.21 -23.38

Basketball

Drive
5.63 -0.19 -5.64 -21.05 4.17 -0.16 -4.07 -23.85 4.06 -0.13 -9.77 -24.22

Park Scene 2.88 -0.12 -6.02 -20.25 2.28 -0.09 -4.50 -22.40 2.52 -0.10 -8.83 -24.28

Vidyo1 2.73 -0.13 -3.53 -21.10 2.21 -0.10 -2.82 -24.13 2.09 -0.09 -7.67 -24.24

Vidyo4 3.28 -0.17 -4.32 -20.93 2.84 -0.12 -1.85 -23.55 2.85 -0.12 -8.44 -24.23

Kristen And

Sara
3.37 -0.20 -5.18 -22.05 2.11 -0.10 -2.84 -23.38 2.25 -0.11 -10.14 -23.98

Four People 2.82 -0.16 -3.79 -21.33 2.56 -0.14 -2.64 -23.05 2.50 -0.14 -7.48 -24.17

Keiba 3.69 -0.18 -2.09 -21.23 3.20 -0.18 -3.60 -24.33 3.18 -0.15 -7.41 -22.99

Party Scene -0.94 0.07 -13.48 -20.68 0.90 -0.07 -11.02 -23.15 0.61 -0.05 -11.21 -21.38

Race Horses 1.26 -0.08 -6.05 -20.63 2.31 -0.14 -5.22 -22.80 1.58 -0.10 -9.29 -24.25

Basketball

Drill
-1.63 0.08 -6.42 -21.53 -0.10 0.01 -5.84 -23.15 0.44 -0.02 -9.34 -24.20

Average 2.17 -0.09 -5.27 -21.09 2.23 -0.10 -4.13 -23.35 2.09 -0.09 -8.44 -23.77

66

Table 5.3 BD-Rate, BD-PSNR and Execution Time Results for HEVC Low Delay P

(LP) Configuration

 Coefficient Set #1 Coefficient Set #2 Coefficient Set #3

Video

Sequence B
D

-

R
a

te

(%
)

B
D

-

P
S

N
R

(d
B

)

∆
T

im
e

(%
)

(E
n

c
.)

∆
T

im
e

(%
)

(D
C

T
)

B
D

-

R
a

te

(%
)

B
D

-

P
S

N
R

(d
B

)

∆
T

im
e

(%
)

(E
n

c
.)

∆
T

im
e

(%
)

(D
C

T
)

B
D

-

R
a

te

(%
)

B
D

-

P
S

N
R

(d
B

)

∆
T

im
e

(%
)

(E
n

c
.)

∆
T

im
e

(%
)

(D
C

T
)

People on

Street
1.61 -0.07 -3.10 -28.35 1.75 -0.08 -3.23 -40.59 1.94 -0.09 -7.25 -32.08

Traffic 1.54 -0.06 -4.30 -24.45 2.10 -0.08 -4.08 -45.72 2.53 -0.10 -8.24 -30.65

Tennis 1.77 -0.05 -3.30 -32.13 1.59 -0.05 -3.36 -44.54 1.66 -0.05 -7.23 -35.58

Kimono 1.51 -0.05 -4.11 -31.60 0.98 -0.03 -2.95 -37.41 0.58 -0.02 -7.64 -36.33

Basketball

Drive
4.48 -0.16 -5.51 -29.65 3.79 -0.12 -5.13 -38.68 3.01 -0.10 -8.87 -37.27

Park Scene 2.80 -0.09 -6.67 -27.48 2.09 -0.07 -3.51 -42.40 2.56 -0.08 -9.36 -30.13

Vidyo1 2.97 -0.12 -5.56 -20.38 1.86 -0.07 -5.30 -52.03 2.39 -0.09 -7.59 -31.11

Vidyo4 3.93 -0.14 -5.81 -20.85 3.43 -0.11 -2.38 -51.46 3.20 -0.09 -7.61 -32.62

Kristen And

Sara
4.07 -0.16 -5.23 -19.90 2.60 -0.11 -2.87 -51.91 2.62 -0.10 -7.44 -30.84

Four People 2.89 -0.14 -4.03 -20.63 2.48 -0.13 -3.50 -53.30 2.52 -0.11 -7.82 -29.37

Keiba 6.01 -0.37 -7.87 -21.10 5.54 -0.31 -4.93 -36.66 3.08 -0.17 -9.80 -32.41

Party Scene 1.31 -0.09 -12.62 -20.28 2.01 -0.13 -10.21 -44.13 1.34 -0.08 -12.74 -25.84

Race Horses 4.57 -0.22 -8.32 -20.08 3.84 -0.20 -5.35 -25.58 2.27 -0.14 -10.04 -31.42

Basketball

Drill
-0.20 0.01 -7.87 -20.48 1.04 -0.04 -5.01 -42.88 1.95 -0.08 -8.44 -32.83

Average 2.80 -0.12 -6.02 -24.10 2.50 -0.10 -4.41 -43.37 2.26 -0.09 -8.58 -32.04

67

Table 5.4 BD-Rate, BD-PSNR and Execution Time Results for HEVC Random Access

(RA) Configuration

 Coefficient Set #1 Coefficient Set #2 Coefficient Set #3

Video

Sequence B
D

-

R
a

te

(%
)

B
D

-

P
S

N
R

(d
B

)

∆
T

im
e

(%
)

(E
n

c
.)

∆
T

im
e

(%
)

(D
C

T
)

B
D

-

R
a

te

(%
)

B
D

-

P
S

N
R

(d
B

)

∆
T

im
e

(%
)

(E
n

c
.)

∆
T

im
e

(%
)

(D
C

T
)

B
D

-

R
a

te

(%
)

B
D

-

P
S

N
R

(d
B

)

∆
T

im
e

(%
)

(E
n

c
.)

∆
T

im
e

(%
)

(D
C

T
)

People on

Street
1.33 -0.06 -3.93 -39.29 1.54 -0.07 -3.27 -33.77 1.64 -0.07 -4.47 -31.02

Traffic 0.84 -0.03 -4.04 -16.32 1.70 -0.07 -4.30 -27.30 1.82 -0.08 -2.01 -18.47

Tennis 2.19 -0.07 -4.50 -40.03 1.77 -0.05 -3.03 -38.20 1.58 -0.04 -6.32 -32.47

Kimono 1.58 -0.05 -3.22 -44.48 1.31 -0.04 -2.07 -35.88 0.77 -0.02 -6.86 -33.21

Basketball

Drive
4.94 -0.16 -4.35 -42.48 4.37 -0.13 -1.88 -33.48 4.17 -0.09 -7.40 -33.17

Park Scene 2.81 -0.09 -5.76 -13.97 2.27 -0.07 -3.93 -27.25 2.60 -0.09 -7.59 -27.14

Vidyo1 3.11 -0.13 -4.19 -22.16 2.85 -0.10 -3.64 -25.58 2.72 -0.09 -6.50 -26.46

Vidyo4 3.38 -0.12 -3.52 -21.70 2.55 -0.08 -3.88 -26.52 2.75 -0.09 -6.78 -29.24

Kristen And

Sara
3.11 -0.14 -3.95 -22.93 2.00 -0.07 -1.17 -23.60 1.58 -0.06 -6.85 -25.32

Four People 2.79 -0.14 -4.24 -23.99 2.35 -0.11 -2.52 -23.53 2.60 -0.11 -6.90 -24.70

Keiba 8.76 -0.39 -5.12 -15.52 6.07 -0.22 -5.72 -37.00 5.92 -0.21 -6.45 -34.72

Party Scene 0.03 0.01 -10.86 -20.76 1.30 -0.08 -8.34 -29.88 0.92 -0.06 -9.65 -24.54

Race Horses 3.56 -0.15 -6.34 -12.86 3.14 -0.14 -5.17 -34.53 2.02 -0.09 -7.28 -29.96

Basketball

Drill
-0.97 0.05 -4.07 -23.24 0.23 -0.01 -2.72 -31.28 1.11 -0.05 -6.64 -31.17

Average 2.67 -0.10 -4.86 -25.70 2.38 -0.08 -3.69 -30.56 2.30 -0.08 -6.70 -28.69

Since the proposed technique with coefficient set 3 achieved the best execution

time, BD-PSNR and BD-Rate results, it is selected for hardware implementation. The

proposed technique with coefficient set 3 reduced the execution time of HEVC HM

software encoder, on the average, 8.44%, 8.58%, 6.70% for AI, LP, RA configurations,

respectively. It reduced the execution time of DCT operations in HEVC HM software

encoder, on the average, 23.77%, 32.04%, 28.69% for AI, LP, RA configurations,

respectively.

68

5.2 Proposed HEVC 2D DCT Hardware

5.2.1 Proposed HEVC 2D DCT Lower Utilization Hardware

The proposed HEVC 2D DCT lower utilization (LU) hardware for all TU sizes

including clock gating, Hcub MCM algorithm, and the proposed technique with

coefficient set 3 is shown in Figure 5.4. Input splitter is used to select the proper DCT

inputs for each TU size. Output multiplexers are used to select the proper DCT outputs

for each TU size. Column and row clip modules are used to scale the outputs of 1D

column DCT and 1D row DCT to 16 bits, respectively. Column clip shifts 1D column

DCT outputs right by 1, 2, 3 and 4 for 4x4, 8x8, 16x16 and 32x32 TU sizes,

respectively. Row clip shifts 1D row DCT outputs right by 8, 9, 10 and 11 for 4x4, 8x8,

16x16 and 32x32 TU sizes, respectively.

Figure 5.4 Proposed HEVC 2D DCT Lower Utilization Hardware

Since HEVC DCT algorithm allows performing an N-point 1D DCT by

performing two N/2-point 1D DCTs with some preprocessing, the proposed hardware

performs N-point 1D DCT transforms by performing two N/2-point 1D DCT transforms

with an efficient butterfly structure. It performs 2D DCT by first performing 1D DCT

transform on the columns of a TU, and then performing 1D DCT transform on the rows

of the TU. After 1D column DCT, the resulting coefficients are stored in a transpose

memory, and they are used as input for 1D row DCT.

69

The butterfly structure used for column transforms is shown in Figure 5.5. For

4x4 TUs, only 4x4 butterfly operation is used. For 8x8 TUs, 8x8 and 4x4 butterfly

operations are used. For 16x16 TUs, 16x16, 8x8 and 4x4 butterfly operations are used.

For 32x32 TUs, all butterfly operations (32x32, 16x16, 8x8, 4x4) are used.

Figure 5.5 Column Butterfly Structure

One 4x4 datapath is used for 4x4 TU size. Two 4x4 datapaths are used for 8x8

TU size. Two 4x4 datapaths and one 8x8 datapath are used for 16x16 TU size. All

datapaths (two 4x4, one 8x8 and one 16x16) are used for 32x32 TU size. In order to

reduce the power consumption of proposed hardware, data gating is used for the inputs

of 4x4, 8x8 and 16x16 column and row datapaths. The inputs of these datapaths are

stored into registers. If a datapath is not used for a TU, its input registers are not

updated. This prevents unnecessary switching activities in this datapath.

DCT multiplications are performed in the datapaths using only adders and

shifters. In order to reduce number and size of the adders in the proposed hardware,

Hcub MCM algorithm [40] is used for implementing multiplications with constants.

Hcub algorithm tries to minimize number and size of the adders in a multiplier block

70

which multiplies a single input with multiple constants using shift and addition

operations. Hcub algorithm determines necessary shift and addition operations in a

multiplier block.

Since different constants are used in 2D DCT for 4x4, 8x8, 16x16 and 32x32 TU

sizes, four different multiplier blocks are used in the proposed hardware. Multiplier

block for second 4x4 column datapath is shown in Figure 5.6. Multiplier blocks in the

first 4x4, second 4x4, 8x8 and 16x16 datapaths multiply a single input with 3, 4, 8 and

16 different constants, respectively. There are 4, 8 and 16 multiplier blocks in 4x4, 8x8

and 16x16 datapaths, respectively. When level-1 or level-2 DCT is performed for a TU,

multiplier block outputs used for calculating the DCT coefficients that are assumed as

zero by the proposed technique are assigned to zero.

Figure 5.6 Multiplier Block in HEVC 2D DCT Lower Utilization Hardware

In order to calculate each output of 1D DCT for 4x4 TU size, an output from each

multiplier block in a 4x4 datapath is selected, and these outputs are added or subtracted.

In order to calculate each output of 1D DCT for 8x8 TU size, an output from each

multiplier block in both 4x4 datapaths is selected, and these outputs are added or

subtracted. Similarly, in order to calculate each output of 1D DCT for 16x16 TU size,

16 outputs from 16 multiplier blocks in two 4x4 datapaths and one 8x8 datapath are

added or subtracted. Similarly, in order to calculate each output of 1D DCT for 32x32

TU size, 32 outputs from 32 multiplier blocks in all datapaths (two 4x4, one 8x8 and

one 16x16) are added or subtracted.

As shown in Figure 5.7, the transpose memory is implemented using 32 Block

RAMs (BRAM). 4, 8, 16 and 32 BRAMs are used for 4x4, 8x8, 16x16 and 32x32 TU

sizes, respectively. In the figure, the numbers in each box show the BRAM that

71

coefficient is stored. The results of 1D column DCT are generated column by column.

For 32x32 TU size, first, the coefficients in column 0 (C0) are generated in a clock

cycle and stored in 32 different BRAMs. Then, the coefficients in column 1 (C1) are

generated in the next clock cycle and stored in 32 different BRAMs using a rotating

addressing scheme. This continuous until the coefficients in column 31 (C31) are

generated and stored in 32 different BRAMs using the rotating addressing scheme.

Figure 5.7 Transpose Memory

This ensures that the 32 coefficients necessary for 1D row DCT in a clock cycle

can always be read in one clock cycle from 32 different BRAMs. Because of the input

data loading and pipeline stages, the proposed hardware starts generating the results of

1D row DCT in 42 clock cycles. It then continues generating the results row by row in

every clock cycle until the end of last TU in the frame without any stalls.

The proposed hardware performs 1D DCT transform for 4x4, 8x8, 16x16 and

32x32 TU sizes in 4, 8, 16 and 32 clock cycles, respectively. The 1D row DCT and 1D

column DCT operations are pipelined. While 1D row DCT for current TU is performed,

1D column DCT for next TU is also performed.

5.2.2 Proposed HEVC 2D DCT Higher Utilization Hardware

The proposed HEVC 2D DCT higher utilization (HU) hardware processes four

4x4 TUs or two 8x8 TUs in parallel. Same as the LU hardware, it uses two 4x4

datapaths and one 8x8 datapath for 16x16 TU size, and it uses all datapaths (two 4x4,

one 8x8 and one 16x16) for 32x32 TU size. However, the HU hardware uses two 4x4

72

datapaths and one 8x8 datapath for 4x4 and 8x8 TU sizes. Since 4x4 and 8x8 column

and row datapaths are used for all TU sizes, data gating is used only for the inputs of

16x16 column and row datapaths.

Same as the LU hardware, multiplier blocks in the first 4x4 datapath and 16x16

datapath multiply a single input with 3 and 16 different constants, respectively.

However, in the HU hardware, multiplier blocks in the second 4x4 datapath and 8x8

datapath multiply a single input with 7 and 15 different constants, respectively.

Because, in the HU hardware, the second 4x4 datapath and 8x8 datapath are used for all

TU sizes. Multiplier block for second 4x4 column datapath is shown in Figure 5.8.

Figure 5.8 Multiplier Block in HEVC 2D DCT Higher Utilization Hardware

In order to calculate each output of 1D DCT for 4x4, 8x8 and 16x16 TU sizes,

an output from each multiplier block in both 4x4 datapaths and 8x8 datapath is selected,

and these outputs are added or subtracted. Similarly, in order to calculate each output of

1D DCT for 32x32 TU size, 32 outputs from 32 multiplier blocks in all datapaths (two

4x4, one 8x8 and one 16x16) are added or subtracted.

Same as the LU hardware, transpose memory is implemented using 32 BRAMs.

However, in the HU hardware, 8, 8, 16 and 32 BRAMs are used for 4x4, 8x8, 16x16

and 32x32 TU sizes, respectively.

73

5.3 Implementation Results

The proposed low energy HEVC 2D DCT LU and HU hardware for all TU sizes

including clock gating (original hardware), including clock gating and Hcub MCM

algorithm (MCM hardware), and including clock gating, Hcub MCM algorithm and the

proposed technique with coefficient set 3 (proposed hardware) are implemented in

Verilog HDL. The Verilog RTL implementations are verified with RTL simulations.

RTL simulation results matched the results of 2D DCT implementation in HEVC HM

software encoder [39].

The Verilog RTL codes are synthesized and mapped to an Xilinx XC6VLX550T

FF1156 FPGA. The FPGA implementations are verified with post place & route

simulations. Post place & route simulation results matched the results of 2D DCT

implementation in HEVC HM software encoder [39]. The FPGA implementation results

given in Table 5.5 show that Hcub MCM algorithm considerably decreased area, and

the proposed technique slightly increased area.

Table 5.5 FPGA Implementations Results

LU Hardware HU Hardware

 Orig. MCM Prop. Orig. MCM Prop.

Slice 12944 9797 10080 14981 11279 12712

LUT 39829 33376 35555 47737 38006 41905

DFF 11196 11110 11230 11964 12025 12200

BRAM 32 32 32 32 32 32

Freq.

(MHz)
102 116 100 111 117 111

Fps
49 Quad

Full HD

56 Quad

Full HD

48 Quad

Full HD

53 Ultra

HD

56 Ultra

HD

53 Ultra

HD

Power consumptions of the FPGA implementations are estimated using a Xilinx

XPower Analyzer. Post place & route timing simulations are performed for Tennis,

Kimono and ParkScene (1920x1080) videos at 100 MHz [37] and signal activities are

stored in VCD files. These VCD files are used for estimating power consumptions of

the FPGA implementations.

The energy consumption results for the LU hardware and the HU hardware for

one frame of each video are shown in Figure 5.9 and Figure 5.10, respectively. Hcub

MCM algorithm reduced the energy consumption of the LU hardware and the HU

74

Figure 5.9 Energy Consumptions of HEVC 2D LU Hardware for Full HD (1920x1080)

Video Frames

Figure 5.10 Energy Consumptions of HEVC 2D HU Hardware for Full HD

(1920x1080) Video Frames

hardware up to 5.9% and 13.1%, respectively. The proposed energy reduction technique

further reduced the energy consumption of the LU hardware and the HU hardware up to

17.9% and 18.9%, respectively.

In order to compare the LU hardware and the HU hardware with the HEVC

DCT hardware in the literature, their Verilog RTL codes are also synthesized to a 90nm

standard cell library and the resulting netlists are placed and routed. The resulting ASIC

implementations of the LU hardware and the HU hardware work at 140 MHz and 130

MHz, respectively. Gate counts of the LU hardware and the HU hardware are calculated

as 175K and 197K, respectively, according to NAND (3x1) gate area excluding on-chip

memory. The comparison of the LU hardware and the HU hardware with the HEVC

DCT hardware in the literature is shown in Table 5.6.

The proposed 2D DCT hardware has smaller area and power consumption than

the 2D DCT hardware proposed in [70]-[74]. The DCT hardware proposed in [74] only

performs 1D DCT, and its performance is not given. Since the 2D DCT hardware

proposed in [70] and [73] use multipliers, they have larger area than the proposed 2D

DCT hardware. Since the 2D DCT hardware proposed in [72] performs DCT operations

75

for several TUs in parallel for smaller TU sizes, it achieves higher performance than the

proposed 2D DCT LU hardware at the expense of much larger area and power

consumption. It has same performance as the proposed 2D DCT HU hardware with

larger area.

Table 5.6 Hardware Comparison

[70] [71] [72] [73] [74]

LU

Hardware

HU

Hardware

Technology 90 nm 45 nm 90 nm 90 nm 90 nm 90 nm 90 nm

Gate Count 343.5 K 205.5 K 347 K 328.2 K 149 K 175 K 197 K

Max Freq.

(MHz)
311 333 187 400 100 140 130

Frames per

Sec.

30

4096x2048

30

4096x2048

60

7680x4320

30

3840x2160

60

3840x2160

60

7680x4320

Throughput

(pixels/cycle)
4/8/16/32 4/8/16/32 32 8/16/32/32 4/8/16/32 4/8/16/32 16/16/16/32

Power

Dissipation
85.3 mW ---- 67.6 mW 76.9 mW 25.0 mW 13.1 mW 65.8 mW

Transform

Size
4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32

Transform 2D 2D 2D 2D 1D 2D 2D

76

6 CHAPTER VI

A LOW ENERGY HEVC INVERSE TRANSFORM HARDWARE

 HEVC standard uses Discrete Cosine Transform (DCT) / Inverse Discrete

Cosine Transform (IDCT) same as the H.264 standard. However, H.264 standard uses

only 4x4 and 8x8 Transform Unit (TU) sizes for DCT/IDCT. HEVC standard uses 4x4,

8x8, 16x16, and 32x32 TU sizes for DCT/IDCT. Larger TU sizes achieve better energy

compaction. However, they increase the computational complexity exponentially. In

addition, HEVC uses Discrete Sine Transform (DST) / Inverse Discrete Sine Transform

(IDST) for 4x4 intra prediction in certain cases.

 Transform operations (DCT/IDCT and DST/IDST) are heavily used in an HEVC

encoder [11], [75, 76]. IDCT and IDST have high computational complexity. IDCT and

IDST operations account for 11% of the computational complexity of an HEVC video

encoder. They account for 25% of the computational complexity of an all intra HEVC

video encoder.

 In this thesis, a novel energy reduction technique for HEVC IDCT and IDST for

all TU sizes is proposed. After forward transform and quantization, most of the forward

transformed and quantized high frequency coefficients in a TU become zero. In

addition, if the values of non-zero forward transformed and quantized low frequency

coefficients in a TU are small, they have small impact on the inverse quantized and

inverse transformed TU. Therefore, the proposed technique calculates IDCT and IDST

only for DC coefficient if the values of several predetermined forward transformed low

77

frequency coefficients in a TU are smaller than a threshold. Otherwise, it calculates

IDCT and IDST for all coefficients in the TU.

 Since the proposed technique is used in mode decision stage of an HEVC

encoder and it is not used in coding stage of an HEVC encoder, it does not cause any

encoder-decoder mismatch. The proposed technique reduces the computational

complexity of IDCT and IDST operations in an HEVC encoder significantly. It

increases the bit rate slightly for most video frames. It decreases the PSNR slightly for

some video frames, and it increases the PSNR slightly for some video frames. In

addition, it can easily be used in HEVC encoders.

 In this thesis, a low energy HEVC 2D inverse transform (IDCT and IDST)

hardware for all TU sizes is also designed and implemented using Verilog HDL. Clock

gating technique is used to reduce the energy consumption of the proposed hardware.

Then, in order to reduce number and size of the adders in the proposed hardware, Hcub

Multiplierless Constant Multiplication (MCM) algorithm [40] is used for calculating 8,

16 and 32 point IDCT. Hcub MCM algorithm reduced the energy consumption of the

proposed hardware up to 56%. Finally, the proposed energy reduction technique is used

to reduce the energy consumption of the proposed hardware. It reduced the energy

consumption of the proposed hardware up to 31%. The proposed HEVC 2D inverse

transform hardware can process 48 Quad HD (3840x2160) video frames per second.

Therefore, it can be used in portable consumer electronics products that require a real-

time HEVC encoder.

 Several zero quantized DCT coefficient detection techniques are proposed for

H.264 and HEVC [66]-[69]. These techniques try to predict the blocks with zero

forward transformed and quantized coefficients before DCT and quantization operations

in the coding stage of an H.264 or HEVC encoder in order to avoid DCT and

quantization operations. However, the technique proposed in this thesis avoids the

inverse transform (IDCT and IDST) operations that have no impact or low impact on

the inverse quantized and inverse transformed TU in mode decision stage of an HEVC

encoder.

 Several HEVC IDCT hardware are proposed in the literature [70], [77]-[79]. In

[77], only 1D IDCT is implemented for all TU sizes, and all IDCT outputs are

calculated using multipliers. In [78], 2D IDCT is implemented only for 16x16 and

32x32 TU sizes, and processing elements are implemented using shifters, adders and

multiplexers to reduce hardware area. In [79], 1D 8x8 IDCT for several video

78

compression standards (H.264, VC-1, AVS and HEVC) is implemented. In [70], 2D

IDCT is implemented for all TU sizes, and the proposed hardware also calculates DCT

and Hadamard Transform. The low energy HEVC 2D inverse transform hardware

proposed in this thesis is compared with these HEVC IDCT hardware in Section 6.2.

6.1 Proposed Energy Reduction Technique

 After forward transform and quantization, most of the forward transformed and

quantized high frequency coefficients in a TU become zero. In addition, if the values of

non-zero forward transformed and quantized low frequency coefficients in a TU are

small, they have small impact on the inverse quantized and inverse transformed TU.

Therefore, the proposed energy reduction technique calculates IDCT and IDST only for

DC coefficient if the values of several predetermined forward transformed low

frequency coefficients in a TU are smaller than a threshold. Otherwise, it calculates

IDCT and IDST for all coefficients in the TU.

 The proposed energy reduction technique for HEVC IDCT for all TU sizes is

shown in Figure 6.1. The proposed technique checks the DC coefficient and three low

frequency AC coefficients in the predetermined positions in a TU. If DC coefficient is

not zero and all three low frequency AC coefficients are smaller than a threshold value,

the proposed technique performs IDCT only for DC coefficient in the TU. Otherwise, it

performs IDCT for all coefficients in the TU.

 The proposed technique reduces the computational complexity of IDCT and

IDST significantly by performing IDCT and IDST only for DC coefficient in a TU.

Table 6.1 shows the number of addition and shift operations required for performing

IDCT for all coefficients in a TU and for only DC coefficient in a TU for all TU sizes.

Performing IDCT only for DC coefficient in a TU, on the average, achieves 98.87%

reduction in addition and 98.70% reduction in shift operations. It achieves more

computation reduction for larger TU sizes.

IDCT(Transform Coefficients) {

 if (DC coefficient is not zero and

 predetermined AC coefficients are smaller than threshold)

 Residual ← IDCT(DC Coefficient)

 Else

 Residual ← IDCT(Transform Coefficients)

 end if }

 Figure 6.1 Pseudocode of HEVC IDCT with The Proposed Technique

79

 Table 6.1 Addition and Shift Reductions for All TU Sizes

TU

Size

IDCT for All

Coefficients

IDCT for DC

Coefficient

Reduction

(%)

Add. Shift Add. Shift Add. Shift

4x4 256 256 16 18 93.7

5

92.97

8x8 2688 2432 64 66 97.6

2

97.29

16x16 24576 2099

2
256 258 98.9

6
98.77

32x32 204800 1884

16
1024 1026 99.5

0
99.46

Total 362496 3276

80

4096 4266 98.8

7

98.70

 The proposed technique is integrated into IDCT operations performed for rate

distortion cost calculation in intra mode decision stage of HEVC reference software

encoder (HM) version 10.0 [80]. The threshold value is experimentally determined as

64 to achieve large computation reduction with negligible bit rate increase and PSNR

loss using this HEVC software encoder.

 5 different low frequency AC coefficient sets shown in Figure 6.2 are evaluated

using this HEVC software encoder for Class A and B video sequences [37]. The same

AC coefficients are used for all TU sizes. For example, for coefficient set 1, the

proposed technique checks the three low frequency AC coefficients in positions [0, 1],

[0, 2] and [2, 0] for all TU sizes. The bit rate and PSNR results for three different

quantization parameters (QP) are shown in Table 6.2. These results show that the

proposed technique increases the bit rate slightly for most video frames. It decreases the

PSNR slightly for some video frames, and it increases the PSNR slightly for some video

frames. Since the proposed technique performs well for all video sequences with

coefficient set 1, coefficient set 1 is selected for hardware implementation.

Figure 6.2 DC and Pre-Determined Coefficient Sets

80

Table 6.2 Bitrate and PSNR Values

Coefficient Set 1 Coefficient Set 2 Coefficient Set 3 Coefficient Set 4 Coefficient Set 5

Frame QP

∆
B

R
a

te

(%
)

∆
P

S
N

R

(d
B

)

∆
B

R
a

te

(%
)

∆
P

S
N

R

(d
B

)

∆
B

R
a

te

(%
)

∆
P

S
N

R

(d
B

)

∆
B

R
a

te

(%
)

∆
P

S
N

R

(d
B

)

∆
B

R
a

te

(%
)

∆
P

S
N

R

(d
B

)

C
la

ss
 A

 (
2
5

6
0
x

1
6
0

0
) Steam

Loco.

22 0.49 0.003 0.41 -0.001 0.42 -0.001 0.40 0.000 0.95 0.002

27 0.53 -0.001 0.48 -0.007 0.47 -0.005 0.47 -0.004 0.40 -0.002

32 0.64 -0.007 0.31 -0.009 0.39 -0.012 0.35 -0.013 0.80 -0.020

Traffic

22 0.70 0.015 0.39 -0.016 0.25 -0.013 0.38 -0.018 4.03 -0.130

27 1.25 0.016 0.60 -0.014 0.53 -0.011 0.68 -0.013 4.78 -0.107

32 3.41 0.059 2.52 -0.043 2.34 -0.041 2.63 -0.040 7.43 -0.179

People

on

Street

22 0.77 -0.005 0.07 -0.033 -0.03 0.011 -0.06 0.009 3.72 -0.072

27 0.90 -0.019 0.17 -0.019 1.12 -0.028 1.18 -0.030 5.99 -0.104

32 3.05 -0.054 3.97 -0.040 3.66 -0.131 3.79 -0.136 10.78 -0.231

C
la

ss
 B

 (
1

9
2
0

x
1
0

8
0

) Park

Scene

22 0.39 -0.010 0.43 -0.006 0.34 -0.008 0.39 -0.009 2.04 -0.058

27 0.68 -0.017 0.44 -0.016 0.41 -0.019 0.47 -0.016 2.26 -0.081

32 0.57 -0.085 0.36 -0.081 0.49 -0.073 0.52 -0.070 1.92 -0.172

Kimono

22 0.40 -0.004 0.04 -0.003 0.01 -0.004 -0.09 -0.001 1.82 -0.011

27 0.63 -0.002 0.27 -0.004 0.23 0.004 0.28 -0.005 2.52 -0.023

32 0.95 -0.009 0.29 0.003 0.13 -0.004 0.17 -0.007 2.68 -0.042

Cactus

22 -0.04 -0.039 0.36 -0.035 0.37 -0.033 0.30 -0.040 2.45 -0.108

27 0.86 -0.016 0.33 -0.012 1.01 -0.014 1.00 -0.017 5.09 -0.063

32 2.59 -0.046 2.84 -0.044 3.07 -0.049 3.07 -0.044 9.51 -0.136

 The percentages of TU size selections (PTU) and the percentages of times the

proposed technique with coefficient set 1 performs IDCT only for DC coefficient for the

selected TU (PDC) are determined using this HEVC software encoder for Class A and

B video sequences for different QPs, and they are shown in Table 6.3. The results in

Table 6.1 and Table 6.3 show that the proposed technique reduces the computational

complexity of inverse transform operations in an HEVC encoder significantly.

 The percentages of TU size selections changes from frame to frame. But, the

most selected TU size is 4x4 and the percentages of TU size selections get smaller with

larger TU sizes. The percentage of times the proposed technique performs IDCT only

for DC coefficient is highest for 4x4 TU size, and the percentage gets smaller with

larger TU sizes. This is because DCT produces larger low frequency AC coefficients for

larger TU sizes. Therefore, the three low frequency AC coefficients in the

predetermined positions in a TU become smaller than the threshold value less often for

larger TU sizes.

 The percentage of times the proposed technique performs IDCT only for DC

coefficient gets larger with larger QPs. This is because DCT produces more zero low

frequency AC coefficients with larger QPs. Therefore, the three low frequency AC

coefficients in the predetermined positions in a TU become smaller than the threshold

value more often for larger QPs.

81

Table 6.3 Percentages (%) of TU Sizes and IDCT for DC Coefficient

Frame QP 4x4 8x8 16x16 32x32 Total

Steam

Loco.

22
PTU 74.36 20.40 4.71 0.53 100.0

PDC 16.44 3.99 1.97 3.27 13.15

27
PTU 71.76 22.26 5.36 0.62 100.00

PDC 27.95 8.54 4.20 7.44 22.23

32
PTU 67.52 25.15 6.55 0.78 100.00

PDC 40.81 15.38 8.75 3.30 32.03

Traffic

22
PTU 69.23 19.28 4.65 6.84 100.00

PDC 39.27 11.22 2.64 2.37 25.28

27
PTU 66.32 25.97 6.86 0.85 100.00

PDC 43.19 18.87 7.86 7.52 34.15

32
PTU 60.77 29.42 8.67 1.14 100.00

PDC 54.39 27.38 14.54 4.02 42.42

People

on

Street

22
PTU 71.50 22.52 5.33 0.65 100.00

PDC 27.52 5.36 0.93 1.82 20.95

27
PTU 66.60 25.84 6.72 0.84 100.00

PDC 39.79 13.82 4.76 6.12 30.44

32
PTU 61.04 29.04 8.74 1.18 100.00

PDC 49.55 22.08 11.18 3.29 37.67

Park

Scene

22
PTU 71.48 22.32 5.54 0.66 100.00

PDC 23.29 10.75 5.63 7.58 19.41

27
PTU 68.32 24.43 6.42 0.83 100.00

PDC 33.67 15.72 9.22 17.08 27.58

32
PTU 63.05 27.85 8.04 1.07 100.00

PDC 48.56 22.47 13.34 6.85 38.02

Kimono

22
PTU 67.20 25.79 6.28 0.73 100.00

PDC 59.20 13.14 3.68 3.28 43.43

27
PTU 60.86 30.17 8.00 0.97 100.00

PDC 77.84 25.50 6.54 7.25 55.66

32
PTU 50.39 36.95 11.24 1.42 100.00

PDC 89.07 43.60 11.64 2.83 62.34

Cactus

22
PTU 71.55 22.34 5.45 0.66 100.00

PDC 21.68 11.41 4.55 4.44 18.34

27
PTU 66.03 25.85 7.20 0.92 100.00

PDC 34.03 18.65 9.50 8.91 28.06

32
PTU 59.70 29.72 9.31 1.27 100.00

PDC 44.88 25.28 14.45 3.80 35.70

82

6.2 Proposed HEVC 2D IDCT and IDST Hardware

 The proposed low energy HEVC 2D inverse transform (IDCT and IDST)

hardware for all TU sizes including clock gating, Hcub MCM algorithm, and the

proposed energy reduction technique is shown in Figure 6.3. The proposed hardware

uses an efficient butterfly structure for column and row transforms. The butterfly

structure used for column transforms is shown in Figure 6.4. IDCT inputs are selected

depending on size of the IDCT operation (4, 8, 16 or 32 point). Then, IDCT and IDST

multiplications are performed in the datapaths using only adders and shifters. As shown

in Figure 6.5, 4x4 datapaths perform both 4x4 IDCT and 4x4 IDST operations, and the

result of one of these inverse transforms is selected based on a control signal.

 In order to reduce number and size of the adders in the proposed hardware, Hcub

MCM algorithm [40] is used for calculating 8, 16 and 32 point IDCT. Hcub algorithm

tries to minimize number and size of the adders in a multiplier block which takes a

single input, multiplies this input with multiple constants using shift and addition

operations, and outputs the results of these multiplications. Hcub algorithm determines

necessary shift and addition operations in a multiplier block. Hcub algorithm is used for

8, 16 and 32 point IDCT in the proposed hardware, because it did not achieve additional

optimization for 4 point IDCT and 4 point IDST hardware.

Figure 6.3 Proposed HEVC 2D IDCT and IDST Hardware

83

Figure 6.4 Column Butterfly Structure

 Since different constants are used in 8, 16 and 32 point IDCT, three different

multiplier blocks are used in the proposed hardware. Multiplier block used for 8 point

IDCT is shown in Figure 6.6. Multiplier block for 8 point IDCT multiplies a single

input with four different constants, multiplier block for 16 point IDCT multiplies a

single input with eight different constants, and multiplier block for 32 point IDCT

multiplies a single input with sixteen different constants. There are 4 multiplier blocks

in 8x8 datapath, 8 multiplier blocks in 16x16 datapath and 16 multiplier blocks in 32x32

datapath.

Figure 6.5 4x4 Datapath

84

Figure 6.6 Multiplier Block in 8x8 Datapath

 In order to calculate each output of 8 point IDCT, an output from each multiplier

block is selected, and these outputs are added or subtracted. Similarly, in order to

calculate each output of 16 point IDCT, eight outputs from eight multiplier blocks are

added. Similarly, in order to calculate each output of 32 point IDCT, sixteen outputs

from sixteen multiplier blocks are added.

 In the proposed hardware, after 1D column IDCT, the resulting coefficients are

stored in a transpose memory, and they are used as input for 1D row IDCT. As shown in

Figure 6.7, the transpose memory is implemented using 32 Block RAMs (BRAM). 4, 8,

16 and 32 BRAMs are used for 4 point, 8 point, 16 point and 32 point IDCT,

respectively. In the figure, the numbers in each box show the BRAM that coefficient is

stored.

 The results of 1D column IDCT are generated column by column. For 32 point

IDCT, first, the coefficients in column 0 (C0) are generated in a clock cycle and stored

in 32 different BRAMs. Then, the coefficients in column 1 (C1) are generated in the

next clock cycle and stored in 32 different BRAMs using a rotating addressing scheme.

Figure 6.7 Transpose Memory

85

This continuous until the coefficients in column 31 (C31) are generated and stored in 32

different BRAMs using the rotating addressing scheme. This ensures that the 32

coefficients necessary for 1D row IDCT in a clock cycle can always be read in one

clock cycle from 32 different BRAMs.

 Because of the input data loading and pipeline stages, the proposed hardware

starts generating the results of 1D row IDCT in 40 clock cycles. It then continues

generating the results row by row in every clock cycle until the end of the last TU in the

video frame without any stalls. The proposed HEVC 2D IDCT hardware finishes 4, 8,

16 and 32 point IDCT operations in 4, 8, 16 and 32 clock cycles, respectively.

6.3 Implementation Results

 The proposed low energy HEVC 2D inverse transform (IDCT and IDST)

hardware for all TU sizes including clock gating (original hardware), including clock

gating and Hcub MCM algorithm (MCM hardware), and including clock gating, Hcub

MCM algorithm and the proposed energy reduction technique (proposed hardware) are

implemented in Verilog HDL.

 The Verilog RTL implementations are verified with RTL simulations. RTL

simulation results matched the results of inverse transform implementation in HEVC

reference software encoder (HM) version 10.0 [80]. The Verilog RTL codes are

synthesized and mapped to a Xilinx XC6VLX130T FF1156 FPGA. The FPGA

implementations are verified with post place & route simulations. Post place & route

simulation results matched the results of inverse transform implementation in HEVC

reference software encoder (HM) version 10.0 [80].

 All three FPGA implementations work at 150 MHz. Therefore, in the worst case

(when all TU sizes in a video frame are 32x32), they can process 48 Quad HD

(3840x2160) video frames per second. FPGA implementation of the original hardware

uses 15101 slices, 45698 LUTs, 12187 DFFs, and 32 BRAMs. FPGA implementation

of the MCM hardware uses 11343 slices, 38790 LUTs, 11762 DFFs, and 32 BRAMs.

FPGA implementation of the proposed hardware uses 11397 slices, 38821 LUTs, 11763

DFFs, and 32 BRAMs. BRAMs are implemented as dual-port Select RAMs. These

results show that Hcub MCM algorithm considerably decreased the area, and the

proposed technique slightly increased the area.

 The power consumptions of original hardware, MCM hardware, and proposed

hardware are estimated using a Xilinx XPower Analyzer. Post place & route timing

86

simulations are performed for Cactus and Kimono (1920x1080) videos at 50 MHz [37]

and signal activities are stored in VCD files. These VCD files are used for estimating

the power consumptions of all three FPGA implementations. The power and energy

consumption results for one frame of each video are shown in Tables 6.4 and 6.5. Hcub

MCM algorithm reduced the energy consumption of the proposed hardware up to 56%.

The proposed energy reduction technique further reduced the energy consumption of the

proposed hardware up to 31%.

 In order to compare the proposed hardware with the HEVC IDCT hardware in

the literature, its Verilog RTL code is also synthesized to a 90nm standard cell library

and the resulting netlist is placed & routed. The resulting ASIC implementation works

at 150 MHz, and its gate count is calculated as 142K according to NAND (3x1) gate

Table 6.4 Energy Consumption Reductions for Cactus (1920x1080)

QP 22 27 32

Original MCM Proposed Original MCM Proposed Original MCM Proposed

Clock (mW) 84 66 67 84 66 67 84 66 67

Logic (mW) 83 35 35 93 36 38 81 34 35

Signal (mW) 68 17 17 76 17 19 67 16 17

BRAM

(mW)
56 16 16 56 17 18 55 18 19

Total Power

(mW)
291 134 135 309 136 142 287 134 138

Time (ms) 5.159 5.159 4.254 5.422 5.422 4.523 5.862 5.862 4.556

Energy (uJ) 1501.27 691.31 574.29 1675.40 737.39 642.27 1682.40 785.51 628.73

Energy Red.

53.95% 61.75%

55.99% 61.66%

53.31 62.63

Table 6.5 Energy Consumption Reductions for Kimono (1920x1080)

QP 22 27 32

Original MCM Proposed Original MCM Proposed Original MCM Proposed

Clock (mW) 84 66 67 84 66 67 84 66 67

Logic (mW) 89 36 34 91 38 35 81 37 34

Signal (mW) 51 17 16 52 17 17 46 17 17

BRAM

(mW)
54 15 15 53 16 17 53 18 18

Total Power

(mW)
278 134 132 280 137 136 264 138 136

Time (ms) 5.153 5.153 4.085 5.524 5.524 4.080 5.895 5.895 4.027

Energy (uJ) 1432.53 690.50 539.22 1546.72 756.79 554.96 1556.28 813.51 547.67

Energy Red.

51.80% 62.36%

51.07% 64.12%

47.72% 64.80%

87

area excluding on-chip memory. The comparison of the proposed hardware with the

HEVC IDCT hardware in the literature is shown in Table 6.6. Only the proposed

hardware implements 4x4 IDST.

 Since the IDCT hardware proposed in [77] only implements 1D IDCT, it has

lower gate count than the proposed hardware. But, it is slower than the proposed

hardware. Although the IDCT hardware proposed in [78] only implements 16 and 32

point 2D IDCT, it has higher gate count than the proposed hardware and it is slower

than the proposed hardware. Since the IDCT hardware proposed in [79] only

implements 8 point 1D IDCT, it has lower gate count than the proposed hardware. But,

it is slower than the proposed hardware. The IDCT hardware proposed in [70] has

higher gate count than the proposed hardware and it is slower than the proposed

hardware.

Table 6.6 Hardware Comparison

[77] [78] [79] [70] Proposed

Technology
0.13 um

ASIC

0.18 um

ASIC

0.18 um

ASIC

90 nm

ASIC

90 nm

ASIC

Gate Count 109.2 K 287 K 12.3 K 235.4 K 142 K

Max Speed

(MHz)
350 300 211 311 150

Frames per

Second

30

4096x2048

30

3840x2160

67

1920x1080

30

4096x2048

48

3840x2160

Transform

Size
4, 8, 16, 32 16, 32 8 4, 8, 16, 32 4, 8, 16, 32

Transform 1D 2D 1D 2D 2D

88

7 CHAPTER VII

CONCLUSIONS AND FUTURE WORKS

In this thesis, we proposed a novel adaptive 2D digital image processing

algorithm for 2D median filter, Gaussian blur and image sharpening. We designed low

energy 2D median filter, Gaussian blur and image sharpening hardware using the

proposed algorithm. We proposed approximate HEVC intra prediction and HEVC

fractional interpolation algorithms. We designed low energy approximate HEVC intra

prediction and HEVC fractional interpolation hardware. We also proposed several

HEVC fractional interpolation hardware architectures. We proposed novel

computational complexity and energy reduction techniques for HEVC DCT and inverse

DCT/DST. We designed high performance and low energy hardware for HEVC DCT

and inverse DCT/DST including the proposed techniques. We quantified computation

reductions achieved and video quality loss caused by the proposed algorithms and

techniques. We implemented the proposed hardware architectures in Verilog HDL. We

mapped the Verilog RTL codes to Xilinx Virtex 6 and Xilinx ZYNQ FPGAs, and

estimated their power consumptions using Xilinx XPower Analyzer tool. The proposed

algorithms and techniques significantly reduced the power and energy consumptions of

these FPGA implementations in some cases with no PSNR loss and in some cases with

very small PSNR loss.

As future work, application-specific approximate video processing and

compression algorithms can be proposed. An HEVC video encoder and decoder can be

89

implemented by implementing the HEVC video encoder and decoder modules which

are not implemented in this thesis and by integrating them with the ones implemented in

this thesis. Versatile Video Coding (VVC) is a new video compression standard which

will have much higher computational complexity than HEVC. Therefore, energy

reduction techniques for VVC standard and low energy VVC hardware implementations

can be proposed.

90

8 BIBLIOGRAPHY

[1] C. H. Huang, C. Y. Chang, “An Area and Power Efficient Adder-Based Stepwise Linear

Interpolation for Digital Signal Processing,” IEEE Transactions on Consumer

Electronics, vol. 61, no. 1, pp. 69-75, Feb. 2016.

[2] S. Li, X. Kang, “Fast Multi-Exposure Image Fusion with Median Filter and Recursive

Filter,” IEEE Transactions on Consumer Electronics, vol. 58, no. 2, pp. 626-632, May

2012.
[3] Y. Yang, “Three-Dimensional Image Processing VLSI System with Network-on-Chip

System and Reconfigurable Memory Architecture,” IEEE Transactions on Consumer

Electronics, vol. 57, no. 3, pp. 1345- 1353, Aug. 2011.
[4] J. O. Cadenas, R. S. Sherratt, P. Huerta, W. C. Kao, “Parallel Pipelined Array

Architectures for Real-Time Histogram Computation in Consumer Devices,” IEEE

Transactions on Consumer Electronics, vol. 57, no. 4, pp. 1460-1464, Nov. 2011.
[5] Cisco, "Cisco visual networking index: Forecast and methodology, 2016 - 2021,” Sep.

2017 [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
[6] High Efficiency Video Coding, ITU-T Rec. H.265 and ISO/IEC 23008-2 (HEVC), ITU-T

and ISO/IEC, Apr. 2013.

[7] G.J.Sullivan, J.R. Ohm, W.J. Han, T. Wiegand, “ Overview of the High Efficiency Video

Coding (HEVC) Standard, ”IEEE Trans. on Circuits and Systems for Video Technology,

vol.22, no.12, pp.1649-1668, Dec. 2012.

[8] F. Pescador, M. Chavarrias, M. J. Garrido, E. Juarez, C. Sanz, “Complexity Analysis of

an HEVC Decoder Based on a Digital Signal Processor”, IEEE Trans. on Consumer

Electronics, vol.59, no.2, pp. 391-399, May 2013.

91

[9] Advanced Video Coding, ITU-T Rec. H.264 and ISO/IEC 14496-10 (H.264), ITU-T and

ISO/IEC, Apr. 2017.

[10] V. Sze, M. Bugadavi, G. J. Sullivan, High Efficiency Video Coding (HEVC) Algorithms

and Architectures, Springer, 2014.

[11] J. Vanne, M. Viitanen, T.D. Hämäläinen and A. Hallapuro, “Comparative Rate-

Distortion-Complexity Analysis of HEVC and AVC Video Codecs”, IEEE Trans. on

Circuits and Systems for Video Technology, vol.22, no.12, pp.1885-1898, Dec. 2012.

[12] E. Kalali, I Hamzaoglu, “A Low Energy 2D Adaptive Median Filter Hardware,” Design,

Automation and Test in Europe (DATE) Conference, pp. 725-729, March 2015.
[13] E. Kalali, I. Hamzaoglu, “Low Complexity 2D Adaptive Image Processing Algorithm

and Its Hardware Implementation,” IEEE Transactions on Consumer Electronics, vol. 63,

no. 3, pp. 277-284, Aug. 2017.

[14] E. Kalali, A. C. Mert, I. Hamzaoglu, “Pixel Correlation Based Computation and Energy

Reduction Techniques for HEVC Fractional Interpolation,” IEEE. Int. Conf. on Consumer

Electronics – Berlin, Sep. 2017.

[15] E. Kalali, I. Hamzaoglu, “A Low Energy Sub-Pixel Interpolation Hardware,” IEEE Int.

Conf. on Image Processing (ICIP), pp. 1218-1222, Oct. 2014.

[16] E. Kalali, I. Hamzaoglu, “Approximate HEVC Fractional Interpolation Filters and Their

Hardware Implementations,” IEEE Trans. on Consumer Electronics, vol. 64, no. 3, Aug.

2018.

[17] E. Kalali, I. Hamzaoglu, “A Computation and Energy Reduction Technique for HEVC

Discrete Cosine Transform,” IEEE Trans. on Consumer Electronics, vol. 62, no. 2, pp.

166-174, May 2016.

[18] E. Kalali, E. Ozcan, O. M. Yalcinkaya, I. Hamzaoglu, “A Low Energy HEVC Inverse

Transform Hardware,” IEEE Trans. on Consumer Electronics, vol. 60, no. 4, pp. 754-

761, Oct. 2014.

[19] R. C. Gonzalez, R. E. Woods, Digital Image Processing, Prentice Hall, 2002.
[20] C. Chakrabarti, “Sorting network based architecture for median filters,” IEEE Trans. on

Circuits and Systems II: Analog and Digital Signal Processing, vol.40, no. 11, pp. 723-

727, Nov. 1993.
[21] J. Scott, M. Pusateri, M. U. Mushtaq, “Comparison of 2D median filter hardware

implementations for real time stereo video,” 37th IEEE Applied Imagery Pattern

Recognition Workshop, Oct. 2008.

92

[22] S. Esakkirajan, T. Veerakumar, A. N. Subramanyan, C. H. PremChand, “Removal of

high density salt and pepper noise through modified decision based unsymmetric trimmed

median filter,” IEEE Signal Processing Letters, vol. 18, no. 5, pp. 287-290, March 2011.
[23] S. Akkoul, L. Roger, R. Leconge, R. Harba, “A new adaptive switching median filter,”

IEEE Signal Processing Letters, vol. 17, no. 6, pp. 587- 590, June 2010.
[24] Z. Vasicek, L. Sekanina, “Novel hardware implementation of adaptive median filters,”

11th IEEE Workshop on Design and Diagnostics of Electronics Circuits and Systems,

Apr. 2008.
[25] V. G. Moshnyaga, K. Hashimoto, “An efficient implementation of 1-D median filter,”

52nd IEEE Int. Midwest Symp. on Circuits and Systems, Aug. 2009.
[26] S. A. Fahmy, P. Y. K. Cheung, W. Luk, “High-throughput onedimensional median and

weighted median filters on FPGA,” IET Computers & Digital Techniques, vol. 3, no. 4,

pp. 384-394, June 2009.
[27] D. Prokin, M. Prokin, “Low hardware complexity pipelined rank filter,” IEEE Trans. on

Circuits and Systems II: Express Brief, vol. 57, no. 6, pp. 446-450, May 2010.
[28] A. Sanny, V. K. Prasanna, “Energy-efficient median filter on FPGA,” Int. Conf. on

Reconfigurable Computing and FPGAs, Dec. 2013.
[29] Z. Zhang, E. Klassen, A. Srivastava, “Gaussian Blurring-Invariant Comparison of

Signals and Images,” IEEE Transactions on Image Processing, vol. 22, no. 8, pp. 3145-

3157, Aug. 2013.

[30] T. Popkin, A. Cavallaro, D. Hands, “Accurate and Efficient Method for Smoothly Space-

Variant Gaussian Blurring,” IEEE Transactions on Image Processing, vol. 19, no. 5, pp.

1362-1370, May 2010.
[31] S. Song, S. Lee, J. P. Ko, J. W. Jeon, “A Hardware Architecture Design for Real-Time

Gaussian Filter,” IEEE Int. Conf. on Industrial Technology, Feb. 2014.
[32] A. Jaiswal, B. Garg, Vi Kaushal, G. K. Sharma, “SPAA-Aware 2D Gaussian Smoothing

Filter Design Using Efficient Approximation Techniques,” 28th Int. Conf. on VLSI

Design, pp. 333-338, Jan. 2015.
[33] H. Luo, X. Gai, Z. Chang, B. Hui, “A Real-Time Multi-Scale 2-D Gaussian Filter Based

on FPGA,” SPIE Int. Symp. on Optoelectronic Technology and Application: Image

Processing and Pattern Recognition, Nov. 2014.
[34] S. Khorbotly, F. Hassan, “A Modified Approximation of 2D Gaussian Smoothing Filters

for Fixed-Point Platforms,” IEEE Southeastern Symp. on System Theory, pp. 151-159,

March 2011.

93

[35] S. L. Chen, “VLSI Implementation of a Low-Cost High-Quality Image Scaling

Processor,” IEEE Transactions on Circuits and SystemsII:Express Briefs, vol. 60, no. 1,

pp. 31-35, Jan. 2013.
[36] S. L. Chen, “VLSI Implementation of an Adaptive Edge-Enhanced Image Scalar for

Real-Time Multimedia Applications,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 23, no. 9, pp. 1510-1522, Sep. 2013.
[37] F. Bossen, “Common test conditions and software reference configurations”, JCTVC-

I1100, May 2012.
[38] Benchmark Images [Online]. Available: http://www.dcs.qmul.ac.uk/~phao/CIP/Images

[39] K. McCann, B. Bross, W.J. Han, I.K. Kim, K. Sugimoto, G. J. Sullivan, “High

Efficiency Video Coding (HEVC) Test Model 15 (HM 15) Encoder Description”,

JCTVC-Q1002, June 2014.

[40] Y. Voronenko, M. Püschel, “Multiplierless Constant Multiplication,” ACM Trans. on

Algorithms, vol. 3, no. 2, May 2007.

[41] E. Kalali, Y. Adibelli, I. Hamzaoglu, “A High Performance and Low Energy Intra

Prediction Hardware for High Efficiency Video Coding,” 22nd Int. Conf. on Field

Programmable Logic and Applications (FPL), pp. 719-722, Aug. 2012.

[42] E. Kalali, Y. Adibelli, I. Hamzaoglu, “A Low Energy Intra Prediction Hardware for High

Efficiency Video Coding,” Journal of Real-Time Image Processing, vol. 15, no. 2, pp.

221-234, Aug. 2018.

[43] B. Min, Z. Xu, R. C. C. Cheung, “A Fully Pipelined Hardware Architecture for Intra

Prediction of HEVC”, IEEE Trans. on Circuits and Systems for Video Technology, July

2016.

[44] M. Abeydeera, M. Karunaratne, G. Karunaratne, K. De Silva, A. Pasqual, “4K Real

Time HEVC Decoder on FPGA”, IEEE Trans. on Circuits and Systems for Video

Technology, vol. 26, no. 1, pp. 236-249, Jan. 2016.

[45] F. Amish, E. B. Bourennane, “Fully Pipelined Real Time Hardware Solution for High

Efficiency Video Coding (HEVC) Intra Prediction”, Journal of System Architecture, vol.

64, pp. 133-147, March 2016.

[46] M. U. K. Khan, M. Shafique, M. Grellert, J. Henkel, “HardwareSoftware Collaborative

Complexity Reduction Scheme for The Emerging HEVC Intra Encoder,” Design,

Automation and Test in Europe (DATE) Conference, pp. 125-128, March 2013.

94

[47] G. Pastuszak, A. Abramowski, “Algorithm and Architecture Design of The H.265/HEVC

Intra Encoder”, IEEE Trans. on Circuits and Systems for Video Technology, vol. 26, no.

1, pp. 210-222, Jan. 2016.

[48] C.T. Huang, M. Tikekar, A. Chandrakasan, “Memory-Hierarchical and Mode-Adaptive

HEVC Intra Prediction Architecture for Quad Full HD Video Decoding”, IEEE Trans. on

Very Large Scale Integration (VLSI) Systems, vol. 22, no. 7, pp. 1515-1525, July 2014.

[49] P. Chiang, Y. Ting, H. Chen, S. Jou, I. Chen, H. Fang, T. Chang, “A QFHD 30 fps

HEVC Decoder Design”, IEEE Trans. on Circuits and Systems for Video Technology,

vol. 26, no. 4, pp. 724-735, April 2016.

[50] N. Zhou, D. Ding, L. Yu, “On Hardware Architecture and Processing Order of HEVC

Intra Prediction Module”, Picture Coding Symposium, pp. 101-104, Dec. 2013.

[51] Z. Liu, D. Wang, H. Zhu, X. Huang, “41.7BN-pixels/s Reconfigurable Intra Prediction

Architecture for HEVC 2560x1600 Encoder”, IEEE Int. Conf. on Acoustics, Speech and

Signal Processing, pp. 2634-2638, May 2013.

[52] H. Azgin, E. Kalali, I. Hamzaoglu, “A Computation and Energy Reduction Technique

for HEVC Intra Prediction,” IEEE Trans. on Consumer Electronics, vol. 63, no. 1, pp. 36-

43, Feb. 2017.

[53] H. Azgin, A. C. Mert, E. Kalali, I. Hamzaoglu, “An Efficient FPGA Implementation of

HEVC Intra Prediction,” IEEE Int. Conf. on Consumer Electronics, pp. 1-5, Jan. 2018.

[54] Spiral Multiplier Block Generator, http://spiral.ece.cmu.edu/mcm/gen.html.

[55] A. Diefy, A. Shalaby, and M. S. Sayed, “Efficient architectures for HEVC luma

interpolation filters,” Int. Conf. on Microelectronics, 2015.

[56] A. Diefy, A. Shalaby, and M. S. Sayed, “Low cost luma interpolation filter for motion

compensation in HEVC,” Int. Symp. on Midwest Circuits and Systems, 2016.

[57] C. M. Diniz, M. Shafique, S. Bampi, and J. Henkel, “High-throughput interpolation

hardware architecture with coarse-grained reconfigurable datapaths for HEVC,” IEEE Int.

Conf. on Image Processing, Oct. 2013.

[58] G. Pastuszak and M. Trochimiuk, “Architecture design and efficiency evaluation for the

high-throughput interpolation in the HEVC encoder,” Euromicro Conference on Digital

System Design, Sep. 2013.

[59] C. Y. Lung and C. A. Shen, “A high-throughput interpolator for fractional motion

estimation in high efficient video coding (HEVC) systems,” IEEE Asia Pacific

Conference on CAS, 2014.

95

[60] W. Zhou, X. Zhou, and X. Lian “An efficient interpolation filter VLSI architecture for

HEVC,” IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2015.

[61] D. Kang, Y. Kang, and Y. Hong, “VLSI implementation of fractional motion estimation

interpolation for high efficiency video coding,” Electronic Letters, vol. 51, no. 5, pp.

1163-1165, Jul. 2015.

[62] S. Wang, D. Zhou, J. Zhou, T. Yoshimura, and S. Goto, “VLSI implementation of HEVC

motion compensation with distance biased direct cache mapping for 8K UHDTV

applications,” IEEE Trans. on Circuits and Systems for Video Technology, Dec. 2015.

[63] G. Pastuszak and M. Trochimiuk, “Algorithm and architecture design of the motion

estimation for the H.265/HEVC 4K-UHD encoder,” Journal of Real-Time Image

Processing, vol. 12, no. 2, pp. 517-529, Aug. 2016.

[64] C. M. Diniz, M. Shafique, S. Bampi, and J. Henkel, “A reconfigurable hardware

architecture for fractional pixel interpolation in high efficiency video coding,” IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 2, pp.

238-251, Feb. 2015.

[65] A. C. Mert, E. Kalali, I. Hamzaoglu, “An HEVC Fractional Interpolation Hardware

Using Memory Based Constant Multiplication,” IEEE Int. Conf. on Consumer

Electronics, Jan. 2018.

[66] Y. H. Moon, G. Y. Kim, J. H. Kim, "An Improved Early Detection Algorithm for All-

Zero Blocks in H.264 Video Encoding", IEEE Trans. on Circuits and Systems for Video

Technology, vol. 15, no. 8, pp. 1053-1057, Aug. 2005.

[67] M. Zhang, T. Zhou, W. Wang, "Adaptive Method for Early Detecting Zero Quantized

DCT Coefficients in H.264/AVC Video Encoding", IEEE Trans. on Circuits and Systems

for Video Technology, vol. 19, no. 1, pp. 103-107, Jan. 2009.

[68] K. Lee, H. J. Lee, J. Kim, Y. Choi, "A Novel Algorithm for Zero Block Detection in

High Efficiency Video Coding", IEEE Journal of Selected Topics in Signal Processing,

vol. 7, no. 6, pp. 1124-1134, Dec. 2013.

[69] J. Li, J. Takala, M. Gabbouj, H. Chen, "A Detection Algorithm for Zero-Quantized DCT

Coefficients in JPEG", IEEE Int. Conf. on Acoustics Speech and Signal Processing

(ICASP), pp. 1189-1192, Apr. 2008.

[70] J. Zhu, Z. Liu, D. Wang, "Fully Pipelined DCT/IDCT/Hadamard Unified Transform

Architecture for HEVC Codecs", IEEE Int. Symp. on Circuits and Systems (ISCAS), pp.

677-680, May 2013.

96

[71] W. Zhao, T. Onoye, T. Song, "High-Performance Multiplierless Transform Architecture

for HEVC", IEEE Int. Symp. on Circuits and Systems (ISCAS), pp. 1668-1671, May 2013.

[72] P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, C. Yeo, "Efficient Integer DCT

Architectures for HEVC", IEEE Trans. on Circuits and Systems for Video Technology,

vol. 24, no. 1, pp. 168-178, Jan. 2014.

[73] G. Pastuszak, "Hardware Architecture for the H.265/HEVC Discrete Cosine

Transform", IET Image Processing, vol. 9, no. 6, pp. 468-477, June 2015.

[74] A. D. Darji, R. P. Makwana, "High-Performance Multiplierless DCT Architecture for

HEVC", Int. Symp. on VLSI Design and Test, pp. 1-5, June 2015.

[75] Y. J. Ahn, W. J. Han, D. G. Sim, “Study of Decoder Complexity for HEVC and AVC

Standarts Based on Tool-by-Tool Comparison”, SPIE Applications of Digital Image

Processing XXXV, vol. 8499, Aug. 2012.

[76] F. Bossen, B. Bross, K. Suhring, D. Flynn, "HEVC Complexity and Implementation

Analysis", IEEE Trans. on Circuits and Systems for Video Technology, vol.22, no.12,

pp.1685-1696, Dec. 2012.

[77] S. Shen, W. Shen, Y. Fan, X. Zeng, "A Unified 4/8/16/32-Point Integer IDCT

Architecture for Multiple Video Coding Standards", IEEE Int. Conf. on Multimedia and

Expo (ICME), pp. 788-793, July 2012.

[78] J. S. Park, W. J. Nam, S. M. Han, S. Lee, "2-D Large Inverse Transform (16x16,32x32)

for HEVC (High Efficiency Video Coding)", Journal of Semiconductor Technology and

Science, vol. 12, no. 2, pp. 203-211, June 2012.

[79] M. Martuza, K. A. Wahid, "Low Cost Design of a Hybrid Architecture of Integer Inverse

DCT for H.264, VC-1, AVS, and HEVC", Journal of VLSI Design, vol. 2012, no.

242989, March 2012.

[80] K. McCann, B. Bross, W.J. Han, I.K. Kim, K. Sugimoto, G. J. Sullivan, “High

Efficiency Video Coding (HEVC) Test Model 10 (HM 10) Encoder Description”,

JCTVC-L1002, March 2013.

