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ABSTRACT

LOW ENERGY VIDEO PROCESSING AND COMPRESSION
HARDWARE DESIGNS

Ercan Kalali
Electronics, PhD Dissertation, 2018

Thesis Supervisor: Assoc. Prof. flker HAMZAOGLU

Keywords: Median Filter, Gaussian Blur, Image Sharpening, HEVC, Intra Prediction,
Fractional Interpolation, DCT, IDCT, Approximate Computing, Hardware
Implementation, FPGA, Low Energy

Digital video processing and compression algorithms are used in many
commercial products such as mobile devices, unmanned aerial vehicles, and
autonomous cars. Increasing resolution of videos used in these commercial products
increased computational complexities of digital video processing and compression
algorithms. Therefore, it is necessary to reduce computational complexities of digital
video processing and compression algorithms, and energy consumptions of digital video
processing and compression hardware without reducing visual quality.

In this thesis, we propose a novel adaptive 2D digital image processing algorithm
for 2D median filter, Gaussian blur and image sharpening. We designed low energy 2D
median filter, Gaussian blur and image sharpening hardware using the proposed
algorithm. We propose approximate HEVC intra prediction and HEVC fractional
interpolation algorithms. We designed low energy approximate HEVC intra prediction
and HEVC fractional interpolation hardware. We also propose several HEVC fractional
interpolation hardware architectures. We propose novel computational complexity and
energy reduction techniques for HEVC DCT and inverse DCT/DST. We designed high
performance and low energy hardware for HEVC DCT and inverse DCT/DST including

the proposed techniques.
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We quantified computation reductions achieved and video quality loss caused by
the proposed algorithms and techniques. We implemented the proposed hardware
architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6
and Xilinx ZYNQ FPGAs, and estimated their power consumptions using Xilinx
XPower Analyzer tool. The proposed algorithms and techniques significantly reduced
the power and energy consumptions of these FPGA implementations in some cases with

no PSNR loss and in some cases with very small PSNR loss.
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OZET

DUSUK ENERJILI GORUNTU iSLEME VE SIKISTIRMA DONANIM
TASARIMLARI

Ercan Kalali
Elektronik Miih., Doktora Tezi, 2018

Tez Danismani: Dog. Dr. flker HAMZAOGLU

Anahtar Kelimeler: Orta Deger Filtresi, Gauss Bulanikligi, Goriintii Keskinlestirme,
HEVC, Cergeve I¢i Ongorii, Kesirli Aradegerleme, Ayrik Kosiniis Doniisiimii, Ters
Ayrik Kosiniis Doniisiimii, Yaklasik Hesaplama, Donanim Gergekleme, FPGA, Diisiik
Enerji

Sayisal video isleme ve sikistirma algoritmalar1 mobil cihazlar, insansiz hava
araclar1 ve otonom araglar gibi birgok ticari iirtinde kullanilmaktadir. Bu ticari Giriinlerde
kullanilan video ¢0Ozilniirliiklerinin artmas1 sayisal video isleme ve sikigtirma
algoritmalarmin hesaplama karmasikligin1 arttirmaktadir. Bu ylizden, sayisal video
isleme ve sikigtirma algoritmalarinin hesaplama karmagsikligini ve sayisal video isleme
ve sikistirma donanimlarinin enerji tiikketimlerini gorsel kaliteyi diisiirmeden azaltmak
gerekmektedir.

Bu tezde, 2B orta deger filtresi, Gauss bulaniklifi ve goriintii keskinlestirme
algoritmalart ic¢in yeniden uyarlanabilir 2B sayisal goriintii isleme algoritmasi
onerilmektedir. Onerilen algoritmay1 kullanarak diisiik enerjili 2B orta deger filtresi,
Gauss bulanikligt ve goriintii keskinlestirme donanimlari tasarlanmistir. Yaklasik
HEVC c¢erceve ici ongorii ve yaklasik HEVC kesirli aradegerleme algoritmalari
onerilmektedir. Diisiik enerjili yaklasik HEVC gerceve ici 6ngorii ve yaklastk HEVC
kesirli aradegerleme donanimlar1 tasarlanmistir. Ayrica, HEVC kesirli aradegerleme

algoritmas1 i¢in farkli donanim mimarileri Onerilmektedir. HEVC DCT ve ters
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DCT/DST i¢in birkag farkli hesaplama karmasikligi ve enerji azaltma teknikleri
onerilmektedir. Onerilen teknikleri kullanarak, yiiksek performansh ve diisiik enerjili
HEVC DCT ve ters DCT/DST donanimlar: tasarlanmistir.

Onerilen algoritma ve tekniklerin neden oldugu hesaplama azaltmalar1 ve video
kalitesi kayiplar1 6lgiildii. Onerilen donanim mimarileri Verilog donanim tasarlama dili
ile gergeklendi. Verilog RTL kodlar1 Xilinx Virtex 6 ve Xilinx ZYNQ FPGA’lerine
sentezlendi ve bunlarin gii¢ tiiketimleri Xilinx XPower Analyzer araci ile tahmin edildi.
Onerilen algoritmalar ve teknikler, bu FPGA ger¢eklemelerinin giic ve enerji
tikketimlerini, bazi durumlarda PSNR kaybi1 olmaksizin, bazi durumlarda ise ¢ok kiigiik

PSNR kaybi ile 6nemli dlgtlide azaltti.
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CHAPTER I

INTRODUCTION

Digital video processing and compression algorithms and hardware are used in
many commercial products such as mobile devices, unmanned aerial vehicles, and
autonomous cars [1]-[4]. To improve visual quality and compression efficiency, video
sizes and computational complexities of digital video processing and compression
algorithms are increased. For example, Quad Full HD (4K) and Ultra HD (8K) video
resolutions started to be used instead of Full HD (2K) video resolution. This increases
the energy consumptions of hardware implementations of these algorithms. This trend is
expected to continue in the future as well. According to Cisco Visual Networking Index
internet video traffic will be 82% of all consumer internet traffic by 2021 [5]. Also,
63% of video IP traffic will be consumed by mobile devices by 2021 [5]. Because of
these developments, video coding algorithms with high coding efficiency should be
designed. Therefore, Joint Collaborative Team on Video Coding (JCT-VC) recently
developed a new video compression standard called High Efficiency Video Coding
(HEVC) [6]-[8]. HEVC provides 50% better coding efficiency than H.264 video
compression standard. HEVC uses larger block sizes, more prediction modes and more
transform types than H.264 to obtain better coding efficiency. Therefore, HEVC has
higher computational complexity than H.264.



1.1 HEVC Video Compression Standard

The video compression efficiency achieved by HEVC standard is result of a
combination of several encoding and decoding tools such as intra prediction, motion
estimation, deblocking filter, sample adaptive offset (SAQO) and entropy coder. The top-
level block diagrams of an HEVC encoder and decoder are shown in Figure 1.1 and

Figure 1.2.
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Figure 1.2 HEVC Decoder Block Diagram

As shown in Figure 1.1, an HEVC encoder has a forward (coding) path and a
reconstruction (decoding) path. The forward path is used to encode a video frame by
using spatial (intra) and temporal (inter) prediction modes. Then, residual data are
coded after the transform and quantization processes, and bitstream is created. Since
HEVC decoder does not have access to original frames, reconstruction path in the
encoder is used to prevent a mismatch between encoder and decoder. In this way, both

encoder and decoder use identical reference frames for intra and inter prediction.
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HEVC uses quad-tree block structure as shown in Figure 1.3. Therefore, each
frame is divided into coding units (CU) in the forward path. These CUs can be 8x8,
16x16, 32x32 or 64x64 pixel blocks. CUs in | frames are encoded with only intra
prediction modes. CUs in P and B frames are encoded with intra or inter mode
depending on the mode decision. Intra and inter prediction modes use the prediction
unit (PU) partitioning structure inside the CUs. Each PU size can be equal to or less
than CU size. PU sizes can be 4x4, 8x8, 16x16 and 32x32 for intra prediction modes.
However, inter prediction has 24 different PU sizes (4x8, 8x4, 8x8 etc.). After the
prediction, mode decision determines whether the PU will be coded with intra or inter
prediction based on PSNR and bit-rate. Then, prediction is subtracted from original
video data and residual data is generated. Then, transformation and quantization are
performed on the residual data. Transform units (TU) are used in the integer discrete
cosine transform (DCT), and TU sizes can be from 4x4 up to 32x32. 4x4 TU size is
only used for discrete sine transform (DST). Finally, entropy coder (context adaptive

binary arithmetic coding) generates the encoded bitstream.

CU,: 64x64

CU;: 32x32

CU,: 16x16

CU;: 8x8

Figure 1.3 HEVC Quadtree Block Structure

Reconstruction path begins with inverse quantization and inverse transform. The
quantized transform coefficients are inverse quantized and inverse transformed to
generate the reconstructed residual data. Since quantization is a lossy process, inverse
quantized and inverse transformed coefficients are not identical to the original residual
data. The reconstructed residual data are added to the predicted pixels to create the
reconstructed frame. DBF is, then, applied to reduce the effects of blocking artifacts in

the reconstructed frame.



Intra prediction algorithm in HEVC predicts the pixels of a block from the pixels
of its already coded and reconstructed neighboring blocks. In H.264, there are 9 intra
prediction modes for 4x4 luminance blocks, and 4 intra prediction modes for 16x16
luminance blocks [9]. In HEVC, for the luminance component of a frame, intra
prediction unit (PU) sizes can be from 4x4 up to 32x32 and number of intra prediction
modes for a PU can be up to 35 [6, 7]. 33 of these 35 prediction modes are intra angular
prediction modes, and the predicted pixels are generated by weighted average of two
neighboring pixels. In addition to angular prediction modes, there are DC and planar
prediction modes in the HEVC intra prediction algorithm.

Inter prediction algorithm in HEVC, first, performs integer pixel motion
estimation. There are 24 different PU sizes and 593 different best motion vector
candidates in the integer motion estimation of each 64x64 CU. There are different
motion vector search algorithms for integer pixel motion estimation in the literature [7].
Integer motion vector search algorithm is not specified in the HEVC standard.
However, full search, diamond search and TZ search algorithms are often used in the
implementations. After the integer pixel motion estimation, fractional pixel (half and
quarter) accurate variable block size motion estimation is performed in HEVC to
increase the performance of integer pixel motion estimation. In H.264, 6-tap FIR filter
is used for the interpolation of half pixels, and bilinear interpolation filter is used for the
interpolation of quarter pixels [9]. In HEVC, one 8-tap FIR filter and two 7-tap FIR
filters are used for the interpolation of half and quarter pixels [6, 7].

Integer discrete cosine transform (DCT) is used in HEVC similar to H.264. In
H.264, transformation block sizes can be 4x4 or 8x8. In HEVC, TU sizes can be from
4x4 up to 32x32. In addition to DCT, HEVC uses discrete sine transform (DST) for the
4x4 intra prediction [6, 7]. HEVC performs 2D transform operation by applying 1D
transforms in vertical and horizontal directions. The coefficients in HEVC 1D transform
matrices are derived from DCT-Il and DST-VII basis functions. However, integer
coefficients are used for simplicity.

After the transform of residual data, transform coefficients are divided by a
guantization step size, and the results are rounded. However, in the inverse quantization,
only multiplication by the quantization step size is performed. Quantization step size is
determined using the quantization parameter similar to H.264.

Entropy coder uses context adaptive binary arithmetic coding (CABAC) similar

to H.264 with several improvements [10]. Entropy coder exploits statistical
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redundancies to perform lossless compression. Binarization, context modeling and
binary arithmetic coding are the three main parts of CABAC algorithm.

Deblocking filter algorithm reduces blocking artifacts on the edges of the
prediction units. Decision making and filtering processes in deblocking filter are
simplified in HEVC compared to H.264. Sample adaptive offset (SAQO) is added to
deblocking filter process in HEVC which is not used in the previous video compression

standards [6, 7]. After the deblocking filter, SAO is used to reduce the ringing artifacts.

1.2 Thesis Contributions

As the complexity of video processing and compression algorithms are
increasing, the energy consumptions of their hardware implementations are also
increasing [11]. Therefore, in this thesis, we propose computation and energy reduction
techniques for video processing and compression algorithms. Then, we designed and
implemented low energy video processing and compression hardware.

We propose 2D adaptive median filter algorithm [12]. The proposed algorithm
detects noiseless pixels, and it eliminates the sorting operation in the median filter. The
proposed adaptive median filter algorithm does not perform any sort in the best case,
and it sorts 15 pixels instead of 25 pixels in the worst case for a 5x5 window. Then, we
generalize this novel low complexity algorithm for 2D adaptive digital image
processing (DIP) [13]. We show that the proposed algorithm also reduces computational
complexities of 2D gaussian blur and 2D image sharpening without reducing quality of
output image.

We also designed and implemented 2D median filter, Gaussian blur and image
sharpening hardware including the proposed 2D adaptive DIP algorithm using Verilog
HDL. We quantified the impact of the proposed algorithm on the power consumptions
of these hardware on a Xilinx Virtex6 FPGA using Xilinx XPower. The proposed
algorithm reduced energy consumption of the median filter, Gaussian blur and image
sharpening hardware up to 80%, 22% and 31%, respectively.

We propose an approximate HEVC intra angular prediction technique. The
proposed technique uses closer neighboring pixels instead of distant neighboring pixels
in an intra angular prediction equation if the distance between the neighboring pixels
used in this intra angular prediction equation is larger than 2. The proposed approximate

HEVC intra angular prediction technique causes negligible PSNR loss and bit rate



increase. Then, we designed and implemented approximate HEVC intra angular
prediction hardware using Verilog HDL. The proposed hardware, in the worst case, can
process 24 Quad Full HD fps. The proposed hardware is the smallest HEVC intra
prediction hardware in the literature.

We propose two pixel correlation based computation and energy reduction
techniques for HEVC fractional interpolation [14]. The proposed techniques compare
pixels at the inputs of HEVC fractional interpolation operation. If these pixels are equal
or similar, interpolation operation is skipped and one of the input pixels is selected as
output. The proposed techniques significantly reduce the computational complexity of
HEVC fractional interpolation with a negligible PSNR loss and bit rate increase. Also,
we designed and implemented two HEVC fractional interpolation hardware including
the proposed techniques using Verilog HDL. The proposed hardware, in the worst case,
can process 30 Quad Full HD fps. They consume up to 39.7% and 46.9% less energy
than original HEVC fractional interpolation hardware.

We propose low energy HEVC fractional interpolation hardware using Hcub
MCM [15]. The proposed hardware calculates common sub-expressions in different
FIR filter equations in HEVC fractional interpolation algorithm once, and the result is
used in all the equations. We designed and implemented the proposed hardware using
Verilog HDL. The proposed hardware, in the worst case, can process 30 Quad Full HD
fps. It consumes up to 48% less energy than original HEVC fractional interpolation
hardware.

We propose two approximate HEVC fractional interpolation filters [16]. Both of
these approximate filters use one 4-tap and two different 3-tap FIR filters instead of
using one 8-tap and two different 7-tap FIR filters. The proposed interpolation filters
significantly reduce the computational complexity of HEVC fractional interpolation
with a negligible PSNR loss and bit rate increase. Then, two approximate HEVC
fractional interpolation hardware for all PU sizes are designed and implemented using
Verilog HDL for each proposed approximate fractional interpolation filter. The
proposed hardware, in the worst case, can process 45 Quad Full HD fps. They consume
up to 67.1% less energy than original HEVC fractional interpolation hardware.

We propose a computation and energy reduction technique for HEVC DCT
operation [17]. The proposed technique is a kind of adaptive zero prediction technique.
Since most of the forward transformed and quantized high frequency coefficients in a

TU become zero, the proposed computation reduction technique only calculates several
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pre-determined low frequency coefficients of transform units (TUs), and it assumes that
the remaining coefficients are zero. The proposed technique reduces the computational
complexity of HEVC DCT significantly at the expense of slight decrease in PSNR and
slight increase in bit rate.

We also designed and implemented two (lower utilization and higher utilization)
low energy hardware for HEVC DCT including the proposed computation and energy
reduction technique using Verilog HDL. In addition to proposed computation and
energy reduction technique, Hcub MCM is used in the transform datapath, and an
efficient transpose memory architecture is implemented. The proposed lower utilization
hardware and higher utilization hardware can process 48 Quad Full HD and 53 Ultra
HD video frames per second, respectively. The proposed technique reduced the energy
consumption of the lower utilization hardware and the higher utilization hardware up to
17.9 and 18.9, respectively.

We propose a computation and energy reduction technique for HEVC
IDCT/IDST [18]. The proposed technique calculates IDCT and IDST only for DC
coefficient if the values of several predetermined forward transformed low frequency
coefficients in a TU are smaller than a threshold. Otherwise, it calculates IDCT and
IDST for all coefficients in the TU. The proposed technigue significantly reduces
computational complexity of HEVC inverse transform with a negligible PSNR loss and
bit rate increase. Performing IDCT only for DC coefficient in a TU, on the average,
achieves 98.87% reduction in addition and 98.70% reduction in shift operations.

We also designed and implemented a low energy HEVC 2D inverse transform
(IDCT and IDST) hardware for all TU sizes including the proposed computation and
energy reduction technique using Verilog HDL. Clock gating technique is used to
reduce the energy consumption of the proposed hardware. Hcub MCM is also used in
the transform datapath, and an efficient transpose memory architecture is implemented.
The proposed hardware, in the worst case, can process 48 Quad Full HD fps. The

proposed technique reduced the energy consumption of this hardware up to 32%.

1.3 Thesis Organization

The rest of the thesis is organized as follows.
Chapter 11 presents the proposed 2D adaptive digital image processing algorithm.

It describes the proposed low energy median filter, Gaussian blur and image sharpening



hardware including the proposed 2D adaptive DIP algorithm and presents their
implementation results.

Chapter I1l, first, explains HEVC intra angular prediction algorithm. Then, it
describes the proposed approximate intra angular prediction technique and the proposed
approximate HEVC intra angular prediction hardware. It also presents the
implementation results.

Chapter IV, first, explains the HEVC fractional interpolation algorithm. Then, it
presents the proposed pixel correlation based computation and energy reduction
techniques for the HEVC fractional interpolation, and their hardware implementations.
After that, the proposed HEVC fractional interpolation hardware using multiplierless
constant multiplication is explained. Also, the proposed approximate HEVC fractional
interpolation filters and their hardware implementations are explained in Chapter IV.
Finally, hardware comparison with the literature is presented.

The proposed computation and energy reduction technique for HEVC DCT
algorithm is described in Chapter V. Then, the proposed lower utilization and higher
utilization hardware implementations of HEVC DCT including the proposed
computation and energy reduction technique are explained. After that, implementation
results are presented.

Chapter VI explains the proposed computation and energy reduction technique for
HEVC IDCT/IDST algorithm. Then, the proposed low energy hardware implementation
of HEVC IDCT/IDST including the proposed computation and energy reduction
technique is presented.

Chapter VI presents conclusions and future works.



CHAPTER II

LOW COMPLEXITY 2D ADAPTIVE IMAGE PROCESSING
ALGORITHM AND ITS HARDWARE IMPLEMENTATION

Digital images are affected by the noise resulting from image sensors or
transmission of images. Image denoising is performed to remove the noise from images.
Several linear and non-linear filters are proposed for image denoising [19]. Although
non-linear filters are more complex than linear filters, they are more commonly used for
image denoising because they reduce smoothing and preserve image edges. 2D spatial
median filter is the most commonly used non-linear filter for image denoising. It is a
non-linear sorting-based filter. It sorts pixels in a given window, determines the median
value, and replaces the pixel in center of the given window with this median value.

Since 2D median filter has high computational complexity, in this thesis, we
propose a novel low complexity 2D adaptive median filter algorithm [12]. The proposed
algorithm reduces the computational complexity of 2D median filter and produces
higher quality filtered images than 2D median filter by exploiting pixel correlations in
input image. We also designed a low energy 2D adaptive median filter hardware
implementing the proposed 2D adaptive median filter algorithm for 5x5 window size.
The proposed hardware is implemented using Verilog HDL. It is verified to work
correctly on an FPGA board. It can work at 263 MHz, and it can process 105 full HD
(1920x1080) images per second in the worst case on a Xilinx Virtex 6 FPGA. It has
more than 80% less energy consumption than original 2D median filter hardware on the
same FPGA.



Then, in this thesis, we generalize this novel low complexity adaptive algorithm
for 2D digital image processing. We show that the proposed algorithm also reduces
computational complexities of 2D Gaussian blur and 2D image sharpening without
reducing quality of output image. These DIP algorithms also have high computational
complexity. 2D Gaussian blur is commonly used for image smoothing and denoising. In
this thesis, 2D Gaussian kernel shown in equation (1.1) is used. Output image is
generated by convolving input image with this kernel. 2D image sharpening is used to
sharpen images and enhance edges. In this thesis, 2D image sharpening kernel shown in
equation (1.2) is used. Output image is generated by convolving input image with this

kernel.

[3 4 5 4 3]
4 6 7 6 4|
G=I|5 7 8 7 5|»7 (1.1)
|l4 6 7 6 4J|
3 4 5 4 3
-1 -1 -1 -1 -1
|[—1 2 2 2 —1]
S={-1 2 8 2 -1|»3 (1.2)
l—1 2 2 2 -1
-1 -1 -1 -1 -1

We also designed a low energy 2D adaptive gaussian blur hardware and a low
energy 2D adaptive image sharpening hardware implementing the proposed 2D adaptive
gaussian blur and 2D adaptive image sharpening algorithms, respectively, for 5x5
window size. The proposed hardware are implemented using Verilog HDL. The
proposed 2D adaptive gaussian blur hardware can work at 152 MHz, and it can process
74 full HD (1920x1080) images per second in the worst case on a Xilinx Virtex 6
FPGA. It has more than 22% less energy consumption than original 2D gaussian blur
hardware on the same FPGA. The proposed 2D adaptive image sharpening hardware
can work at 185 MHz, and it can process 105 full HD (1920x1080) images per second
in the worst case on a Xilinx Virtex 6 FPGA. It has more than 31% less energy
consumption than original 2D image sharpening hardware on the same FPGA.

Several median filter algorithms are proposed in the literature [20]-[23]. These

algorithms can be classified into two groups. Median filter algorithms proposed in [20],
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[21] optimize sorting process to reduce computational complexity of median filter
algorithm without reducing quality of filtered images. Median filter algorithms
proposed in [22], [23] increase quality of filtered images without increasing
computational complexity of median filter algorithm. These algorithms try to detect
noisy pixels and adaptively filter only these noisy pixels. However, the 2D adaptive DIP
algorithm proposed in this thesis both reduces computational complexity of median
filter algorithm and increases quality of filtered images by exploiting pixel correlations
in input image.

Several median filter hardware are proposed in the literature [24]-[28]. In [24], an
adaptive median filter hardware that detects noisy pixels in several iterations and filters
only these noisy pixels is proposed. The proposed median filter hardware uses different
sorting algorithms like bitonic and odd-even merge sort. In [25], sorting process of
median filter algorithm is optimized. The proposed median filter hardware only finds
correct positions of input pixels in the sliding window instead of sorting all pixels in the
window. In [26], a histogram based median filter algorithm is proposed. It only
performs well for large window sizes. In [27], low complexity bit-pipeline algorithm is
proposed to decrease hardware area and increase performance. In [28], an energy
efficient median filter hardware is proposed by optimizing memory read/write
scheduling of median filter algorithm. However, performance and area of this hardware
are not reported. The 2D adaptive median filter hardware proposed in this thesis is
compared with these median filter hardware in Section 2.2.

Several Gaussian blur algorithms are proposed in the literature [29], [30]. These
algorithms increase quality of output image by increasing computational complexity of
Gaussian blur algorithm. However, the 2D adaptive DIP algorithm proposed in this
thesis reduces computational complexity of Gaussian blur algorithm without reducing
quality of output image by exploiting pixel correlations in input image.

Several Gaussian blur hardware are proposed in the literature [31]-[34]. In [31], a
Gaussian blur hardware is proposed for real time stereo vision application for 5x5
window. In [32], nearest pixel approximation is used for Gaussian blur hardware
implementation. This reduces hardware area. But, it also reduces quality of output
image. In [33], a Gaussian blur hardware is proposed for feature extraction application.
This hardware performs two 1D convolution operations instead of performing direct 2D
convolution to decrease hardware area. In [34], modified Gaussian blur hardware is

proposed to decrease rounding error in kernel coefficients. The 2D adaptive Gaussian
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blur hardware proposed in this thesis is compared with these Gaussian blur hardware in
Section 2.2.

Several image sharpening hardware are proposed in the literature [35], [36].
However, they are implemented as part of image up-scaling hardware. Their area and

performance are not separately reported.
2.1 Proposed 2D Adaptive Digital Image Processing Algorithm

The proposed 2D adaptive DIP algorithm consists of two steps as shown in Figure
2.1. Pseudo code of the proposed 2D adaptive DIP algorithm for 5x5 window is given in
Figure 2.2. The proposed algorithm, in the best case, does not perform any sorting or
convolution operation. It, in the worst case, sorts or convolves 15 pixels instead of 25
pixels for 5x5 window.

In the first step, the proposed algorithm compares pixels in each row and column
of the given window separately. If pixels in a row are similar, row comparison signal for
that row is set to 1. Similarly, if pixels in a column are similar, column comparison
signal for that column is set to 1. Then, if pixels in all rows are similar, PS_R signal is
set to 1. Similarly, if pixels in all columns are similar, PS_C signal is set to 1. The
proposed algorithm decides that pixels in a row or column are similar if their 4 most
significant bits are the same.

In the second step, output value is determined. If there is full similarity (both
PS_R and PS_C are 1), the pixel in center of the window is determined as output value
of the window. If there is partial similarity (only PS_R or PS_C is 1), diagonal pixels in
the window are sorted or convolved with 1D_1 kernel, and output of this operation is
determined as output value of the window. If there is no similarity (neither PS_R nor
PS_C is 1), diagonal, horizontal and vertical pixels are sorted or convolved with 1D 1,
1D 2 and 1D_3 kernels, respectively, and their output values (01, 02, O3) are
determined separately. Then, O1, 02, O3 are sorted or convolved with 1D_4 kernel, and
output of this operation is determined as output value of the window. Finally, the pixel

in center of the given window is replaced with the output value.
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Step 1.
Check Similarity

Step 2.
Compute Output
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Figure 2.1 Proposed 2D Adaptive Digital Image Processing Algorithm

2D_Adaptive_DIP_Algorithm (Window) {
RC = compare(MSB 4 bits of pixels in each row)
CC = compare(MSB 4 bits of pixels in each column)
PS_R = (RC[0] & RC[1] & RC[2] & RC[3] & RC[4])
PS_C = (CC[0] & CC[1] & CC[2] & CCJ[3] & CC[4])
if (PS_RislandPS Cis1)
Output = Window(2, 2)
else if (PS_RislorPS _Cis 1)
Output = 1D_Operation (Diagonal Pixels) // 1D_1
else {
01 = 1D_Operation (Diagonal Pixels) //1D_1
02 = 1D_Operation (Horizontal Pixels) // 1D_2
03 = 1D_Operation (Vertical Pixels) //1D_3
Output = 1D_Operation (01, 02,03) //1D_4
}
Window(2, 2) = Output
}
Figure 2.2 Pseudo Code of Proposed 2D Adaptive Digital Image Processing Algorithm

1D kernels shown in equations (1.3), (1.4) and (1.5) are used in the proposed 2D

adaptive gaussian blur algorithm.

1D.1=[3 6 8 6 3]/26 (1.3)
1D2=1D3 =[5 7 8 7 5]>»5 (1.4)
D4 =1[1 2 1]»2 (1.5)
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1D kernels shown in equations (1.6) and (1.7) are used in the proposed 2D

adaptive image sharpening algorithm.

1ID1=1D2=1D3=[1121-1]>»1 (1.6)
D4 =[-1 3 -1] (1.7)

Number of windows with similar pixels in an image varies from image to image.
We used HEVC video compression standard test videos [37] and commonly used image
processing benchmark images [38] to determine percentage of similarities for different
window sizes. Simulation results for 5x5 and 7x7 window sizes for one image from
Traffic (2560x1600), People on Street (2560x1600), Basketball Drive (1920x1080),
Tennis (1920x1080), Kimono (1920x1080), Park Scene (1920x1080), Vidyol
(1280x720), Vidyo4 (1280x720), Kristen and Sara (1280x720), Four People
(1280x720) videos [37], and Baboon (512x512), Barbara (512x512), Goldhill
(512x512), Lena (512x512), Peppers (512x512) images [38] are shown in Table 2.1 and
Table 2.2.

Table 2.1 Similarity Percentages (%) for 5x5 and 7x7 Windows (HEVC Images)

c =]

o P c

o 5] i

(]

Q L D % = %) - # S @
b o 3 v c <} o o Q C =
< o 2 7] £ X > > » © o
sz &| 5| & 5 & £ |25 28
E | oo o = X al S S | ¥H| L a

F.S. | 13.32 | 13.30 | 18.29 | 25.39 2033 14.64 | 19.16 | 22.16 | 21.06 | 20.17
5x5 | P.S. 234 | 168 | 422| 425| 367| 390 | 427| 371| 201 | 4.66
N.S. | 8454 | 85.02 | 77.49 | 70.36 | 76.10 | 81.46 | 76.57 | 74.13 | 76.94 | 75.17
F.S. 444 | 441 | 478| 986 | 6.01| 331 | 509| 682| 832| 7.79
77 | P.S. 324 111 154 | 275| 111 215 | 333 | 237 | 226| 239
N.S. | 92.32 | 94.48 | 93.68 | 87.39 | 92.88 | 94.55 | 91.59 | 90.81 | 89.42 | 89.82
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Table 2.2 Similarity Percentages (%) for 5x5 and 7x7 Windows (Benchmark Images)

Goldhill
Peppers

|Lena

o [Baboon
@ IBarbara

[EEN
w
~
a1
[ty
=
o
w
[y
[EEN
[EEN
(o]
w

F.S. 2
5x5 P.S. 1.00 2.44 2.56 2.46 3.20

N.S. 96.79 89.42 | 89.92 87.23 | 85.17

F.S. 247 3.39 3.45 3.23 3.77

77 P.S. 2.04 2.10 2.07 2.06 2.04

N.S. 9548 9451 | 95.48 94.71 | 94.19

We also quantified impact of the proposed 2D adaptive DIP algorithm on PSNR
performance for 5x5 and 7x7 window sizes. For 2D median filter, salt & pepper noise is
added to input images. Then, these images are filtered with original 2D median filter
algorithm, and with the proposed 2D adaptive median filter algorithm. For 2D Gaussian
blur, input images are convolved with the kernel shown in equation (1.1), and with the
proposed 2D adaptive Gaussian blur algorithm. For 2D image sharpening, input images
are convolved with the kernel shown in equation (1.2), and with the proposed 2D
adaptive image sharpening algorithm. PSNR and visual quality results for Basketball
Drive image are shown in Figure 2.3. PSNR values between output and input images are
computed and shown in Table 2.3 and Table 2.4. These results show that the proposed
2D adaptive DIP algorithm produces higher PSNR values than original 2D DIP
algorithms. This is because, if pixels in the window are similar, the proposed 2D
adaptive DIP algorithm does not replace the pixel in center of the given window, and

therefore preserves the input image.

Basketball Drive With Sait & Pepper Noise  Original Median Filter  Proposed Median Filter

o -

PSNR = 18.713 PSNR = 31,291 PSNR = 32.054

Figure 2.3 Example Image for 2D Median Filter
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Table 2.3 PSNR Values (dB) for HEVC Test Images

W. 2D Median Filter 2D Gaussian Blur 2D Image Sharpening
Image

Size S&P - APSNR - APSNR . APSNR

Noise Orig. Prop. (dB) Orig. Prop. (dB) Orig. Prop. (dB)

5x5 32.515 | 34.582 2.067 30.132 | 33.170 3.039 27.400 | 30.160 | 2.760
Traffic 18.189

<7 29.345 | 32.864 | 3.519 29.097 | 31.260 | 2.163 32.070 | 32.225 | 0.155
People 5x5 18.156 29.157 | 33.334 4177 28.295 | 31.216 | 2.920 26.555 | 29.214 | 2.659
on Street | 7x7 ' 32.371 | 34.947 | 2576 27550 | 29.676 | 2.126 30.445 | 30.626 | 0.177

5x5 31.291 | 32.054 | 0.763 29.309 | 32.265 | 2.956 28.723 | 31.100 | 2.371
Basket 18.713

7 30.046 | 31.191 1.145 28.332 | 29.915 1.583 29.903 | 30.863 | 0.961

5x5 38.145 | 39.007 | 0.862 33424 | 36.180 | 2.756 32.146 | 34.370 | 2.224
Tennis 17.699

7 35.149 | 37.729 2.580 32.792 | 34535 1.743 34.501 | 35.113 | 0.612

5x5 43436 | 45418 | 1.982 35.662 | 38.853 | 3.191 35,542 | 37.391 | 1.849
Kimono 17.929

X7 39.796 | 43.904 | 4.108 33.050 | 33.749 | 0.699 33.585 | 33.912 | 0.327
Park 5x5 18.077 31.648 | 34.125 | 2477 30.510 | 33.108 | 2.599 28.569 | 31.862 | 3.293
Scene X7 ' 29.574 | 32.829 | 3.255 29.786 | 31.860 | 2.074 32419 | 33.740 | 1.321

5x5 35.080 | 36.812 | 1.732 30.914 | 34.850 | 3.936 29.857 | 32.913 | 3.056
Vidyol 18.211

X7 32528 | 35.356 | 2.828 28.780 | 30.169 | 1.389 30.336 | 30.723 | 0.387

5x5 35.200 | 36.383 | 1.183 28.971 | 31.062 | 2.091 28.465 | 29.671 | 1.206
Vidyo4 18.215

X7 32.885 | 35517 | 2.632 27.412 | 28.318 | 0.906 28.528 | 28.528 | 0.000
Kristen 5x5 17,977 31.316 | 32.677 1.361 28.613 | 31.840 | 3.227 28.533 | 30.924 | 2.391
and Sara X7 ' 28.457 | 30.794 | 2.337 27.213 | 29.010 | 1.797 29.490 | 30.178 | 0.688
Four 5x5 18.154 30.728 | 32.265 | 1.537 28.676 | 32.087 | 3.411 27.039 | 29.685 | 2.645
People X7 ' 28.601 | 31.287 | 2.686 27.353 | 29.294 | 1.941 29.844 | 30.124 | 0.280

Table 2.4 PSNR Values (dB) for Benchmark Images

W. 2D Median Filter 2D Gaussian Blur 2D Image Sharpening
Image

size | S&P ; APSNR ; APSNR . APSNR

Noise Orig. Prop. (dB) Orig. Prop. (dB) Orig. Prop. (dB)

5x5 27.044 28.880 1.836 24,682 | 26.854 | 2.171 23.715 26.103 | 2.388
Boat 18.526

77 20.563 23305 | 2.742 23.199 | 24519 | 1.320 24.714 | 25,599 | 0.885

5x5 23.142 24.923 1.781 22.933 | 25.156 | 2.223 24.050 | 25.825 | 1.775
Barbara 18.461

7 23.546 25.115 1.569 22.496 | 23.715 | 1.219 23.336 27.009 | 3.672

5x5 28.717 30.701 1.984 26.709 | 28.968 | 2.259 25.544 | 28.203 | 2.659
Goldhill 18.348

7 27.226 30.239 3.013 23919 | 24.821 | 0.902 24.821 25.574 | 0.753

5x5 30.971 32.927 1.956 26.313 | 27.952 | 1.639 25.603 | 27.284 | 1.681
Lena 18.459

7 28.894 32.144 3.250 24873 | 25.745 | 0.872 26.003 26.390 | 0.387

5x5 31.801 33.865 2.064 26.434 | 28.041 | 1.607 25.823 27.490 | 1.667
Peppers 18.100

77 29.991 33.072 3.081 24.819 | 25.641 | 0.822 25.687 | 26.218 | 0.531

We also quantified impact of the proposed 2D adaptive DIP algorithm on visual
quality using structural similarity (SSIM) metric. SSIM values between output images
produced by original 2D DIP algorithms and output images produced by the proposed
2D adaptive DIP algorithm are computed and shown in Table 2.5 and Table 2.6. These
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results show that the proposed algorithm reduces computational complexities of 2D DIP

algorithms without reducing quality of output image.

Table 2.5 Structural Similarity (SSIM) Values for HEVC Test Images

2D 2D
Image S\?z/.e Median Gaussian Szh[a)lrl n;ﬁ?ﬁ

Filter Blur P 9
| 5x5 | 0.974 0.987 0.968
Traffic | 22 | 0.951 0.984 0.982
people | @3 | 0976 0.987 0.977
onStreet | 7x7 | 0.957 0.985 0.985
5x5 | 0.984 0.985 0.970
Basket | 2.7 | 0.981 0.984 0.967
| 56 | 0984 0.988 0.980
Temnis | o7 | o.978 0.989 0.979
5x5 | 0.991 0.994 0.989
Kimono | -7 1 0.985 0.996 0.990
oark | 5 | 0967 0.981 0.976
Scene | 7x7 | 0.950 0.980 0.968
_ 5x5 | 0.985 0.988 0.983
Vidyol | 2 | 0.979 0.988 0.985
5x5 | 0.987 0.990 0.976
Vidyod | 22 | 0.980 0.989 0.982
Kristen | 5%5 | 0.984 0.987 0.987
and Sara | 7x7 0.973 0.987 0.984
cour | %5 | 0975 0.982 0.977
people | 7x7 | 0.959 0.980 0.978

Table 2.6 Structural Similarity (SSIM) Values for Benchmark Images

Image W 2D Median 2D Gaussian 2D Image
Size Filter Blur Sharpening
5x5 0.946 0.969 0.968
Boat X7 0.914 0.967 0.937
55 0.884 0.931 0.955
Barbara | 4 0.891 0.953 0.840
55 0.946 0.973 0.965
Goldhill | 7.7 0.921 0.971 0.932
55 0.970 0.982 0.980
Lena X7 0.951 0.982 0.962
55 0.973 0.983 0.972
Peppers | 7.7 0.961 0.984 0.951
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2.2 Proposed 2D Adaptive Digital Image Processing Hardware

The proposed 2D adaptive DIP hardware architecture is shown in Figure 2.4. An
input pixels buffer is used to store pixels in a 5x5 window. This on-chip buffer reduces
the required off-chip memory bandwidth. After the pixels are loaded into this buffer,
40x4 bit comparators in the comparison unit compare the pixels in each row and
column. Based on the comparison results, similarity control signals PS_R and PS_C

shown in Figure 2.2 are generated.

2D 5x5 Adaptive Median Filter Datapah

—»{ 5x5 INPUT PIXELS BUFFER |

SORT
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Figure 2.4 Proposed 2D Adaptive Digital Image Processing Hardware

The proposed hardware, in the best case, does not perform any sorting or
convolution operation. It, in the worst case, sorts or convolves 15 pixels instead of 25
pixels for 5x5 window. These 15 pixels are sorted or convolved in 3 parallel datapaths.
Each datapath has 4 pipeline stages to increase throughput. The proposed hardware
produces 1 output per clock cycle.

If there is full similarity, the pixel in center of the window is selected in output
multiplexer as the output value. If there is partial similarity, only diagonal 1D datapath
(1D_1) is enabled, and the other datapaths are disabled to reduce power consumption. If
there is no similarity, all datapaths are enabled, and the output of 1D 3x1 datapath
(1D_4) is selected in output multiplexer as the output value.
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In the proposed 2D adaptive median filter hardware, 1D 5x1 datapaths (1D_1,
1D 2, 1D_3) sort the given 5 pixels, and determine median value. 1D 3x1 datapath
(1D_4) sorts the outputs of 1D_1, 1D_2, 1D_3 datapaths, and determines median value.
In the proposed 2D adaptive Gaussian blur hardware and image sharpening hardware,
1D 5x1 datapaths (1D_1, 1D_2, 1D_3) convolve the given 5 pixels with corresponding
1D kernels. 1D 3x1 datapath (1D_4) convolves the outputs of 1D 1, 1D 2, 1D 3
datapaths with corresponding 1D kernel.

The proposed 2D adaptive DIP hardware and original 2D DIP hardware are
implemented using Verilog HDL. The Verilog RTL codes are verified with RTL
simulations. The RTL simulation results matched the results of software
implementations of 2D DIP algorithms. The Verilog RTL codes are synthesized and
mapped to a Xilinx Virtex 6 FPGA. The FPGA implementations are verified with post
place and route simulations. The post place and route simulation results matched the
results of software implementations of 2D DIP algorithms.

FPGA implementation of the proposed 2D adaptive median filter hardware uses
136 slices, 327 LUTSs, 150 DFFs, and it can work at 263 MHz. FPGA implementation of
the original 2D median filter hardware uses 208 slices, 634 LUTSs, 226 DFFs, and it can
work at 250 MHz.

FPGA implementation of the proposed 2D adaptive Gaussian blur hardware uses
144 slices, 291 LUTs, 160 DFFs, and it can work at 152 MHz. FPGA implementation of
the original 2D Gaussian blur hardware uses 152 slices, 367 LUTs, 301 DFFs, and it
can work at 152 MHz.

FPGA implementation of the proposed 2D adaptive image sharpening hardware
uses 88 slices, 172 LUTs, 160 DFFs, and it can work at 185 MHz. FPGA
implementation of the original 2D image sharpening hardware uses 100 slices, 178
LUTSs, 259 DFFs, and it can work at 143 MHz.

The proposed 2D adaptive median filter hardware is verified to work correctly on
an Xilinx Zyng ZC7200 FPGA board as shown in Figure 2.5. The FPGA board includes
an FPGA, a dual core ARM microprocessor, a high speed AXI bus, 128 MB DDR3
memory, 16 MB quad flash memory, HDMI and Ethernet interfaces. The camera
captures 60 fps full HD (1920x1080) images. The proposed hardware filters these
images. The filtered images are displayed on HDMI monitor and sent to computer using
Ethernet.
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Figure 2.5 Proposed 2D Adaptive Median Filter Hardware Implementation on an FPGA
Board

We estimated power consumptions of all FPGA implementations using Xilinx
XPower Analyzer for one image from Tennis (1920x1080), Kimono (1920x1080), Park
Scene (1920x1080) and Basketball Drive (1920x1080) videos [37]. In order to estimate
power consumption of an FPGA implementation, post place and route timing simulation
is performed, and signal activities are stored in a VCD file. This VCD file is used for
estimating power consumption of the FPGA implementation. For all FPGA
implementations, only internal power consumption is considered. Input and output
power consumptions are ignored.

Power and energy consumptions of the proposed 2D adaptive DIP hardware and
the original 2D DIP hardware are shown in Figure 2.6. As shown in this figure, the
proposed 2D adaptive median filter hardware has 42% and 85% less power and energy
consumption than the original 2D median filter hardware. The proposed 2D adaptive
Gaussian blur hardware has 22% less power and energy consumption than the original
2D Gaussian blur hardware. The proposed 2D adaptive image sharpening hardware has
31% less power and energy consumption than the original 2D image sharpening
hardware.

Comparison of the proposed 2D adaptive median filter hardware with the median
filter hardware proposed in the literature is shown in Table 2.7. 2D median filter
hardware shown in this table process 5x5 pixel 2D windows whereas 1D median filter
hardware shown in this table process 25 pixel 1D windows. Although the adaptive
median filter hardware proposed in [24] increases quality of output image, this hardware
has large area. Sorting process is optimized in [25] without reducing output image

quality. But, its hardware area is 10 times larger than the proposed 2D adaptive median
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mplementations for Full HD

Table 2.7 Median Filter Hardware Comparison for 5x5 Window
Max.
# of Performance
FPGA . Speed
Slices (fps)
(MHz)
[24] Xilinx Virtex Il | 1506 | 305 140 Full HD
[25] ﬁ'tera Cyclone | 1309 | 94 23 Full HD
[26] Xilinx Virtex 11 | 2300 | 333 35 Full HD
[27] Xilinx Virtex Il | 660 | 318 Not Reported
Xilinx Virtex Il | ae6 | 140 | 56 Full HD
(Scaled)
Proposed
Xilinx Virtex VI | 136 | 263 105 Full HD

filter hardware. Histogram based median filter proposed i

n [26] gives better results for

large window sizes, but it is very costly for small window sizes. Low complexity bit-

pipeline algorithm proposed in [27] has smaller hardware area than the other median

filter hardware in the literature. But, the proposed 2D adaptive median filter hardware

has much smaller area than this hardware. In addition,

proposed in [27] does not increase quality of output image.

21

the median filter hardware



Optimized memory scheduling based median filter hardware proposed in [28]
reduces energy consumption of median filter hardware up to 53%. However, the
proposed 2D adaptive median filter hardware reduces energy consumption of median
filter hardware more than 80%. In addition, performance and area of this hardware are
not reported.

Comparison of the proposed 2D adaptive Gaussian blur hardware with the
Gaussian blur hardware proposed in the literature is shown in Table 2.8. The hardware
proposed in [31] has much larger area and lower performance. Although, the hardware
proposed in [32] has lower area, it has 0.4 dB average quality loss. The hardware
proposed in [33] has larger area, and its performance is not reported. The hardware
proposed in [34] increases quality of output image. But, it has much larger area, and its
performance is not reported.

Table 2.8 Gaussian Blur Hardware Comparison for 5x5 Window

Max.
# of Performance
FPGA ] Speed
Slices (fps)
(MHz2)
[31] Xilinx Virtex 5 3775 | 141 50 Full HD
[32] Xilinx Virtex 6 52 159 Not Reported
[33] Altera Cyclone 111 | 545 Not Not Reported
Reported
34 . Not
[34] Xilinx Spartan 3E | 2637 Reported Not Reported
Proposed Xilinx Virtex 6 144 | 152 74 Full HD
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CHAPTER III

AN APPROXIMATE HEVC INTRA PREDICTION HARDWARE

Intra prediction algorithm predicts the pixels of a block from the pixels of its
already coded and reconstructed neighboring blocks. In H.264, there are 9 intra
prediction modes for 4x4 luminance blocks, and 4 intra prediction modes for 16x16
luminance blocks. In HEVC, for the luminance component of a frame, intra prediction
unit (PU) size can be from 4x4 up to 32x32 and number of intra prediction modes for a
PU is 35.

In this thesis, an approximate HEVC intra angular prediction technique is
proposed. The proposed technique uses closer neighboring pixels instead of distant
neighboring pixels in an intra angular prediction equation if the distance between the
neighboring pixels used in this intra angular prediction equation is larger than 2. The
proposed approximate HEVC intra angular prediction technique causes negligible
PSNR loss and bit rate increase.

In this thesis, an approximate HEVC intra angular prediction hardware is
designed and implemented using Verilog HDL. The common-sub expressions in the
constant multiplication operations used in HEVC intra angular prediction equations are
calculated once and the results are used to generate different constant multiplications in
the proposed hardware. Therefore, Hcub multiplierless constant multiplication
algorithm is used [40]. The proposed hardware is the smallest HEVC intra prediction
hardware in the literature [42]-[53].
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3.1 HEVC Intra Prediction Algorithm

HEVC intra prediction algorithm predicts the pixels in prediction units (PU) of a
coding unit (CU) using the pixels in the available neighboring PUs [6]. For the
luminance component of a frame, 4x4, 8x8, 16x16 and 32x32 PU sizes are available. As
shown in Figure 3.1, there are 33 angular prediction modes (Mode) corresponding to
different prediction angles (Angle) for each PU size. In addition, there are DC and
planar prediction modes for each PU size. An 8x8 PU, four 4x4 PUs in it, and their

neighboring pixels are shown in Figure 3.2.
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Figure 3.1 HEVC Intra Prediction Mode Directions
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Figure 3.2 Neighboring Pixels of 4x4 and 8x8 PUs
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In HEVC intra prediction algorithm, first, reference main array is determined. The
pixels in the reference main array are used in the intra prediction equations. If the
prediction mode is equal to or greater than 18, reference main array is selected from
above neighboring pixels. However, first four pixels of this array are reserved to left
neighboring pixels, and if prediction angle is less than zero, these pixels are assigned to
the array. If the prediction mode is less than 18, reference main array is selected from
left neighboring pixels. However, first four pixels of this array are reserved to above
neighboring pixels, and if prediction angle is less than zero, these pixels are assigned to
the array.

After the reference main array is determined, ildx which is used to determine
positions of the pixels in this array that will be used in the intra prediction equations and
iFact which is used to determine coefficients of these pixels are calculated as shown in
(3.1a) and (3.1b), respectively. If iFact is equal to O, neighboring pixels are copied

directly to predicted pixels. Otherwise, predicted pixels are calculated as shown in (3.2).

ildx = ((y + 1) x Angle) > 5 (3.18)
iFact = ((y + 1) » Angle) & 31 (3.1b)
pred[x,y] = ((32 — iFact) *
refMain[x + ildx + 1] + iFact * (3.2

refMain[x + ildx + 2] + 16) > 5
x =0to (PUsze — 1),y = 0to (PUsjze — 1)

All the intra prediction equations can be obtained from (3.2). As an example,
reference main array and prediction equations for the 8x8 intra prediction mode 6 with
prediction angle 13 are shown in (3.3a) and (3.3b), respectively. The neighboring pixels

used in these equations can be seen in Fig. 2.

refMain = [0,0,0,0,0,0,0,0,R,A4,B,C,D,E,F,G,H,VA,VB,VC,VD,VE,VF,VG,VH] (3.3a)
pred[0,0] = pred[1,0] = [19*A + 13*B + 16] >>5

pred[2,0] = pred[3,0] =[19*B + 13*C + 16] >>5 (3.3b)
pred[4,0] =

pred[5,0] = pred[6,0] = [19*C + 13*D + 16] >>5

pred[7,0] = [19*D + 13*E + 16] >>5

pred[0,1] = pred[1,1] = [6*B + 26*C + 16] >>5
pred[2,1] = pred[3,1] = [6*C + 26*D + 16] >> 5

pred[4,1] =
pred[5,1] = pred[6,1] = [6*D + 26*E + 16] >>5
pred[7,1] = [6*E + 26*F + 16] >>5
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pred[0,2] = pred[1,2] = [25*C + 7*D + 16] >>5
pred[2,2] = pred[3,2] = [25*D + 7*E + 16] >>5

pred[4,2] =
pred[5,2] = pred[6,2] = [25*E + 7*F + 16] >>5
pred[7,2] = [25*F + 7*G + 16] >>5

pred[0,3] = pred[1,3] = [12*D + 20*E + 16] >>5
pred[2,3] = pred[3,3] = [12*E + 20*F + 16] >>5

pred[4,3] =
pred[5,3] = pred[6,3] = [12*F + 20*G + 16] >>5
pred[7,3] = [12*G + 20*H + 16] >>5

pred[0,4] = pred[1,4] = [31*E + 1*F + 16] >>5
pred[2,4] = pred[3,4] = [31*F + 1*G + 16] >>5

pred[4,4] =
pred[5,4] = pred[6,4] = [31*G + 1*H + 16] >>5
pred[7,4] = [31*H + 1*1 + 16] >>5

pred[0,5] = pred[1,5] = [18*F + 14*G + 16] >>5
pred[2,5] = pred[3,5] = [18*G + 14*H + 16] >>5

pred[4,5] =
pred[5,5] = pred[6,5] = [18*H + 14*VA + 16] >>5
pred[7,5] = [18*VA+14*VB + 16] >>5

pred[0,6] = pred[1,6] = [5*G + 27*H + 16] >>5
pred[2,6] = pred[3,6] = [6*H + 27*VA + 16] >>5

pred[4,6] =
pred[5,6] = pred[6,6] = [6*VA + 27*VB + 16] >>5
pred[7,6] = [6*VB + 27*VC + 16] >>5

pred[0,7] = pred[1,7] = [24*H + 8*VA + 16] >>5
pred[2,7] = pred[3,7] = [24*VA + 8*VB + 16] >>5
pred[4,7] =

pred[5,7] = pred[6,7] = [24*VB + 8*VC + 16] >>5
pred[7,7] = [24*VC + 8*VD + 16] >>5

3.2 Proposed Approximate HEVC Intra Angular Prediction Technique

In this thesis, data reuse technique is first used for reducing amount of
computations performed by HEVC intra prediction algorithm [40]. In HEVC, intra 4x4,
8x8, 16x16 and 32x32 luminance angular prediction modes have identical equations.
There are identical equations between luminance angular prediction modes of different
PU sizes as well. Data reuse technique calculates the common prediction equations for
all 4x4, 8x8, 16x16 and 32x32 luminance angular prediction modes only once and uses
the result for the corresponding prediction modes. There are 33792, 8448, 2112 and 528
prediction equations in 32x32, 16x16, 8x8 and 4x4 luminance angular prediction modes,
respectively. As shown in Table 3.1, using data reuse technique, the numbers of
prediction equations that should be calculated for 32x32, 16x16, 8x8 and 4x4 luminance

angular prediction modes are reduced to 3735, 1507, 593 and 201, respectively.
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A 32x32 CU includes one 32x32 PU, four 16x16 PUs, sixteen 8x8 PUs and sixty
four 4x4 PUs. As shown in Figure 3.2, an 8x8 PU and some of the 4x4 PUs have
common neighboring pixels. They also have common prediction equations. 4x4, 8x8,
16x16 and 32x32 PUs also have common neighboring pixels and common prediction
equations. Therefore, data reuse technique is used for calculating predicted pixels of a
32x32 PU and predicted pixels of the corresponding four 16x16 PUs, sixteen 8x8 PUs
and sixty four 4x4 PUs. In this way, the number of prediction equations that should be
calculated for a 32x32 CU is reduced from 135168 to 14848.

Table 3.1 Prediction Equation Reductions by Data Reuse

4x4 8x8 16x16 | 32x32 | 32x32
PU PU PU PU CuU

# of Pred. 528 | 2112 | 8448 | 33792 | 135168
EquatlonS
# of Pred.
Equations with | 201 | 593 | 1507 & 3735 | 14848
Data Reuse

Reduction (%) | 61.93 | 71.92 | 82.16 | 88.94 | 89.02

Since we use data reuse technique, instead of calculating intra prediction
equations of different prediction modes and PUs separately, we calculate all necessary
intra prediction equations together and use the results for the corresponding prediction
modes and PUs. As shown in Figure 3.3, there are much more intra prediction equations
using closer neighboring pixels than intra prediction equations using distant neighboring
pixels. Intra angular prediction equations using neighboring pixels that have larger than
2 distance between them are only 4% of intra angular prediction equations. Therefore,
in this thesis, an approximate HEVC intra angular prediction technique is proposed. If
distance between the neighboring pixels used in an intra angular prediction equation is
larger than 2, the neighboring pixel that has 2 distance with the first neighboring pixel is
used instead of second neighboring pixel. Otherwise, original neighboring pixels are
used. For example, in Figure 3.3, neighboring pixel C is used instead of neighboring
pixel D in the intra prediction equations using neighboring pixels A and D. Original
neighboring pixels are used in the intra prediction equations using neighboring pixels A
and C.
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Figure 3.3 Example Intra Angular Prediction Equations for Different Distances

The proposed approximate HEVC intra angular prediction technique is integrated
into intra angular prediction in HEVC HM software encoder 15.0 [39]. First ten frames
of some of the HEVC test videos [37] are coded with all intra (Al) test configuration
and four different quantization parameters (QP) using HEVC HM 15.0 with three
different HEVC intra angular predictions; original, the proposed approximate HEVC
intra angular prediction using neighboring pixels that have 1 distance between them
(D1), and the proposed approximate HEVC intra angular prediction using neighboring
pixels that have at most 2 distance between them (D2). The resulting rate-distortion
performances are shown in Table 3.2. D2 causes negligible PSNR loss and bit rate
increase because neighboring pixel intensities are similar as they are close to each other
in the video frame. Since D2 has a negligible impact on PSNR and bit rate, it is
implemented in the proposed approximate HEVC intra angular prediction hardware
instead of D1.
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Table 3.2 BD-Rate(%) and BD-PSNR(dB)

D1 D2
2 o 2 o
vido | Fo )| Az@ S| az@
Sequence AT | 02 AS | Q2
[a1] [a1]
People 0.3057 | -0.0174 | 0.0238 | -0.0014
on Street
Traffic 0.0867 | -0.0047 | -0.0154 |  0.0008
Tennis 0.2515 | -0.0076 | 0.0196 | -0.0005
Kimono 0.1204 | -0.0040 | 0.0348 | -0.0009
Basketball | 4 470 | 00114 | 0.0657 | -0.0013
Drive
Park
0.1032 | -0.0045 | 0.0165 | -0.0008
Scene
Vidyol 0.8689 | -0.0422 | 0.0962 | -0.0044
Vidyo4 0.5559 | -0.0248 | 0.0488 | -0.0023
Kristen 0.8100 | -0.0413 | 0.1525 | -0.0072
And Sara
Four 0.6710 | -0.0390 | 0.2079 | -0.0120
People
Keiba 0.1294 | -0.0071 | -0.0110 |  0.0000
Party 0.3019 | -0.0239 | 0.0308 | -0.0029
Scene
. 0.3769 | -0.0242 | 0.0137 | -0.0008
Horses
[B)f;‘fetba” 1.4598 | -0.0687 | 0.1130 | -0.0060
Average 0.4663 | -0.0229 | 0.0569 | -0.0028

3.3 Proposed Approximate HEVC Intra Prediction Hardware

The proposed approximate HEVC intra prediction hardware implementing
angular prediction modes for all PU sizes (4x4, 8x8, 16x16 and 32x32) including data

reuse and the proposed approximate technique is shown in Figure 3.4.
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Figure 3.4 Proposed Approximate HEVC Intra Prediction Hardware

Three local neighboring buffers are used to store neighboring pixels in the
previously coded and reconstructed neighboring PUs. After a PU in the current CU is
coded and reconstructed, the neighboring pixels in this PU are stored in the
corresponding buffers. These on chip neighboring buffers reduce the required off-chip
memory bandwidth. More on-chip memory accesses are required when the intra angular
prediction equations use distant neighboring pixels. Since the proposed approximate
intra angular prediction technique uses closer neighboring pixels, it reduces number of

on-chip memory accesses.
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As shown in Figure 3.3, one neighboring pixel is multiplied with different
constants in different prediction equations. Therefore, in the proposed hardware,
multiple constant multiplication (MCM) hardware is used to efficiently implement
constant multiplications using add and shift operations. The proposed MCM hardware
multiplies an input pixel with constants 1, 2, 3, ..., 31 by calculating common parts in
these constant multiplications once and using them to perform all constant
multiplications.

The proposed MCM datapath is shown in Figure 3.5. In the proposed MCM
hardware, Hcub MCM algorithm is used to reduce number and size of adders, and adder
tree depth [40]. The proposed MCM datapath takes only one neighboring pixel in every
two cycles and performs multiplications with constants 1, 3, 5, 7, 9, 11, 13, 15.
Multiplications with constants 2, 4, 6, 8, 10, 12, 14, 16 are performed by using these
multiplication results and shift operations. Multiplications with constants 17, 18, 19, ...,
31 are performed by adding 16 to these multiplication results.

As shown in Figure 3.3, since the number of HEVC intra angular prediction
equations using distant neighboring pixels is small and MCM hardware multiplies an
input pixel with constant 1, 2, 3, ..., 31, MCM hardware will perform many
unnecessary constant multiplications for distant neighboring pixels. Since the number of
HEVC intra angular prediction equations using closer neighboring pixels is large and
the proposed approximate intra angular prediction technique uses closer neighboring

pixels, it performs few unnecessary computations.

Input_Pixel

é?J
. £ A

11

Figure 3.5 Proposed MCM Datapath
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As shown in Figure 3.4, three rotational buffers are used in the proposed
hardware. As shown in Figure 3.6, first, constant multiplication results of neighboring
pixels A and B are stored to rotational buffers 1 and 2, respectively. While the intra
prediction equations using both neighboring pixels A and B are calculated, constant
multiplication results of neighboring pixel C are stored to rotational buffer 3. After the
intra prediction equations using neighboring pixel A are calculated, there is no need to
store the constant multiplication results of neighboring pixel A in rotational buffer 1.
Therefore, while the intra prediction equations using both neighboring pixels B and C
are calculated, constant multiplication results of neighboring pixel D are stored to
rotational buffer 1. After the intra prediction equations using neighboring pixel B are
calculated, there is no need to store the constant multiplication results of neighboring
pixel B in rotational buffer 2. Therefore, while the intra prediction equations using both
neighboring pixels C and D are calculated, constant multiplication results of
neighboring pixel E are stored to rotational buffer 2. This process repeats rotationally.
Therefore, constant multiplication results of a neighboring pixel should be stored 6
cycles in a rotational buffer.

Since the proposed approximate intra angular prediction technique uses closer
neighboring pixels instead of distant neighboring pixels, it reduces the number of
necessary rotational buffers. If original intra angular prediction equations using distant
neighboring pixels are calculated, more rotational buffers will be used to store constant
multiplication results of more neighboring pixels.

Since the proposed approximate intra angular prediction technique uses closer
neighboring pixels instead of distant neighboring pixels, it also reduces the number of
necessary clock cycles. If original intra angular prediction equations using distant
neighboring pixels are calculated, additional clock cycles will be used to calculate the
intra prediction equations using distant neighboring pixels. For example, in Figure 3.6,
additional clock cycles will be used to calculate the intra prediction equations using
both neighboring pixels A and D.
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Figure 3.6 Scheduling of HEVC Intra Angular Prediction Hardware

The proposed approximate HEVC intra angular prediction hardware is
implemented using Verilog HDL. The Verilog RTL implementation is verified with
RTL simulations. RTL simulation results matched results of a software implementation
of the proposed approximate intra angular prediction technique.

The Verilog RTL codes are synthesized and mapped to a Xilinx XC6VLX195T
FF1156 FPGA with speed grade 3 using Xilinx ISE 14.7. The proposed approximate
HEVC intra angular prediction hardware uses 318 LUTs, 1068 DFFs, and 8 BRAMs.
The proposed FPGA implementation is verified to work at 200 MHz by post place and
route simulations. Therefore, it can process 24 Quad Full HD (3840x2160) video frames
per second.

FPGA implementations are also verified on a Xilinx ZYNQ ZC702 FPGA board
as shown in Figure 3.7. The FPGA board has a 28 nm FPGA and dual-core ARM
microprocessor. It also has 1GB DRAM and several interfaces such as UART and
HDMI. Microprocessor reads video frames from SD card and sends them to FPGA
using a high speed AXI bus. The proposed hardware performs intra prediction. Then,
microprocessor displays intra predicted frames on HDMI monitor and stores them to SD
card.

Verilog RTL code of the proposed approximate HEVC intra angular prediction
hardware is also synthesized and place & routed to TSMC 90nm standard cell library.
Gate count of resulting ASIC implementation is calculated as 3.2k, excluding on-chip

memories, based on NAND (2x1) gate area.
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Figure 3.7 Implementation of Proposed Approximate HEVC Intra Prediction Hardware
on an FPGA Board

Comparisons of the FPGA and ASIC implementations of proposed approximate
HEVC intra angular prediction hardware with the FPGA and ASIC implementations of
HEVC intra prediction hardware proposed in the literature are shown in Table 3.3 and
Table 3.4, respectively [42]-[53]. The proposed approximate HEVC intra angular

prediction hardware has the smallest area and the second best performance.

Table 3.3 Comparison of FPGA Implementations

[43] [44] [45] [46] [42] [52] [53] Proposed
FPGA Xilinx ZYNQ Xilinx Altrea Xilinx Xilinx Xilinx Xilinx
Virtex 6 7000 Virtex 6 Stratix Virtex6 Virtex6 Virtex6 Virtex6
DFF 55K 22 K 110K 6934 849 2006 1168 318
LUT 14 K 43 K 170K 13409 2381 6013 4425 1068
BRAM 94 4 4 4 8
Max
Freq. 110 150 219 162 150 166 227 200
(MHz)
Fos 30 24 . 30 40 55 24
P 3840x2160 3840x2160 1920x1080 | 1920x1080 | 1920x1080 | 3840x2160
ziLzJe 48,16,32 |4,8,16,32| 4,8,16,32 | 4,8,16,32 48 4,8,16,32 48,16,32 | 4,8,16,32
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Table 3.4 Comparison of ASIC Implementations

[47] [48] [49] [50] [51] [42] [52] Proposed
Tech. 90 nm 40 nm | 90 nm 130 nm 90 nm 90 nm 90 nm 90 nm
Gate 1273K | 27K | 768K | 324K 7122 K 54K 16.1K 32K
Count
Max Freq.
(MH2) 200 200 270 400 357 150 250 333
Fos 30 ) 60 46 30 60 40
p 3840x2160 1920x1080 | 2160x1600 | 1920x1080 | 1920x1080 | 3840x2160
Memory 6 KB 49 KB | 5.6 KB - - - 3 KB 3KB
Power
Dissipatio --- - --- - 92.1 mW 23.2 mW 28.5 mW
. 4,8, 4,8, 4,8, 4,8, 4,8, 4,8, 4,8,
PU Size 16, 32 16,32 | 16,32 16, 32 16, 32 4,8 16, 32 16, 32

Power consumption of the proposed approximate HEVC intra angular prediction

hardware is estimated for Tennis and Kimono (1920 x 1080) videos [37] using Xilinx

XPower Analyzer tool. Switching activities during post place & route timing simulation

of the proposed hardware at 100 MHz clock frequency are stored to VCD files. Xilinx

XPower Analyzer tool uses placed & routed netlist and these VVCD files to estimate

power consumption of the proposed FPGA implementation. Energy consumption

comparison of the proposed FPGA implementation and the HEVC intra prediction

hardware in the literature is shown in Figure 3.8.
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CHAPTER IV

LOW ENERGY HEVC FRACTIONAL INTERPOLATION
HARDWARE

To increase the performance of integer pixel motion estimation, fractional pixel
(half and quarter) accurate variable block size motion estimation is performed in HEVC.
Fractional interpolation is one of the most computationally intensive parts of HEVC
video encoder and decoder. On average, one fourth of the HEVC encoder complexity
and 50% of the HEVC decoder complexity are caused by fractional interpolation [6].

In H. 264 standard, a 6-tap FIR filter is used for half-pixel interpolation and a
bilinear filter is used for quarter-pixel interpolation [9]. In HEVC standard, one 8-tap
and two different 7-tap FIR filters are used for both half-pixel and quarter-pixel
interpolations. In H.264, 4x4 and 16x16 block sizes are used. However, in HEVC,
prediction unit (PU) sizes can be from 4x4 to 64x64. Therefore, HEVC fractional
interpolation is more complex than H.264 fractional interpolation.

Therefore, in this thesis, we proposed three different HEVC fractional
interpolation hardware implementations for all PU sizes. In the first hardware
implementation, two pixel correlation based computation and energy reduction
techniques (pixel equality based computation reduction (PECR) and pixel similarity
based computation reduction (PSCR)) are used. The second hardware implementation

calculates common sub-expressions in different FIR filter equations used in HEVC
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fractional interpolation algorithm once. It also uses Hcub multiplierless constant
multiplication (MCM) algorithm [40] to reduce number and size of the adders and to
minimize the adder tree depth. Two approximate HEVC fractional interpolation filters
(F1 and F2) are proposed and used in the third hardware implementation.

4.1 HEVC Fractional Interpolation Algorithm

In HEVC standard, one 8-tap and two different 7-tap FIR filters are used for
both half-pixel and quarter-pixel interpolations. These 3 FIR filters type A, type B and
type C are shown in (4.1), (4.2), and (4.3), respectively. The symbol (>>) in the
equations represents right shift operation which is used to reduce bit length of fractional

pixels to 8 bits. The shiftl value is determined based on bit depth of the integer pixel
[6].

Qoo =(—Az0+4xA 50— 10%A_19+58%Agg +17 % Ao — 5

Ay + Asg ) > shiftl (4.1)
boo=(—A_g0+4*A 50— 11%A 15 +40xAgo+ 40 A1 — 11 %

Ago+ 4% Agy — Agg) » shiftl (4.2)
Coo=(—A20—5%A_19+17%xA g +58%A;g— 10xA,0+ 4

Az — Agg) > shiftl (4.3)

Integer pixels (Axy), half pixels (axy, bxy, Cxy, dxy, hxy, Nxy) and quarter pixels
(Exys Ty, Oxys Ixys Jxys Kxys Pxys Oxys xy) in @ PU are shown in Figure 4.1. The half pixels
a, b, c are interpolated from nearest integer pixels in horizontal direction, and the half-
pixels d, h, n are interpolated from nearest integer pixels in vertical direction. The
quarter pixels e, f, g are interpolated from the nearest half pixels a, b, ¢ respectively in
vertical direction using type A filter. The quarter pixels i, j, k are interpolated similarly
using type B filter, and the quarter pixels p, g, r are interpolated similarly using type C
filter. All fractional pixels necessary for fractional motion estimation are calculated in

HEVC fractional interpolation algorithm used in HEVC encoder.
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Figure 4.1 Integer, Half and Quarter Pixels

4.2 Proposed Pixel Correlation Based Computation and Energy Reduction
Techniques and Their Hardware Implementations

Two pixel correlation based computation and energy reduction techniques (pixel
equality based computation reduction (PECR) and pixel similarity based computation
reduction (PSCR)) are proposed for HEVC intra prediction in [41, 42]. In this thesis,
these techniques are applied to HEVC fractional interpolation. The proposed techniques
compare the pixels at the inputs of HEVC fractional interpolation operation. If these
pixels are equal or similar, interpolation operation is skipped and one of the input pixels
is selected as output. Therefore, the computational complexity of HEVC fractional
interpolation is reduced. The PECR technique does not affect the PSNR and bit-rate.
The PSCR technique slightly decreases PSNR and increases bit-rate

In this thesis, a low energy HEVC fractional (half-pixel and quarter-pixel)
interpolation hardware for all PU sizes including the proposed techniques is also
designed and implemented using Verilog HDL. The Verilog RTL code is verified to
work at 200 MHz in a Xilinx Virtex 6 FPGA. The proposed hardware, in the worst case,
can process 30 quad full HD (3840x2160) video frames per second. The proposed
PECR and PSCR techniques reduced the energy consumption of the proposed hardware
up to 39.7% and 46.9%, respectively.
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4.2.1 Proposed PECR and PSCR Techniques

In this thesis, two pixel correlation based computation and energy reduction
techniques (PECR and PSCR) for HEVC fractional interpolation are proposed. The
proposed PECR technique compares the input pixels of an FIR filter. If the input pixels
are equal, the FIR filter output is equal to one of the input pixels. Therefore, the FIR
filter calculation becomes unnecessary and it is skipped. If the input pixels are not
equal, the FIR filter operation is performed.

The proposed PSCR technique compares the input pixels of an FIR filter. If the
input pixels are similar, the FIR filter output is assumed to be equal to the input pixel
multiplied with the largest coefficient in the FIR filter. Therefore, the FIR filter
calculation becomes unnecessary and it is skipped. The PSCR technique checks the
similarity of input pixels by truncating their least significant bits by specified amount (1,
2, 3 or 4 bits) and comparing the truncated pixels. If the input pixels are not similar, the
FIR filter operation is performed.

Equality and similarity percentages of the input pixels of FIR filters vary from
frame to frame. Therefore, one frame of Tennis, Kimono, Park Scene and BQ Terrace
(1920x1080) videos [37] coded with quantization parameters (QP) 22, 27, 32 and 37 are
analyzed to determine equality and similarity percentages using HEVC Test Model HM
encoder software [39].

Table 4.1 shows the equality and 3-bit truncated similarity percentages for integer
pixel inputs (Ax,y) and half-pixel inputs (ax,y, bx,y, cx,y) of FIR filters. As shown in
Table 4.1, significant amount of FIR filter inputs are equal or similar. Therefore, the
proposed PECR and PSCR techniques skip significant amount of FIR filter calculations.

Table 4.2 shows the addition and shift operation reductions achieved by the
proposed PECR and PSCR for 3-bit truncated (3bT) techniques for one frame of each
video sequence. As shown in Table 4.2, the proposed PECR and PSCR for 3bT
techniques achieved up to 26.34% and 49.28% computation reductions, respectively.
The proposed techniques have overhead of only 3628800 comparisons for a full HD
(1920x1080) frame.
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Table 4.1 Equality and Similarity Percentages

HEVC Fractional HEVC Fractional
Interpolation (Equal) Interpolation (3bT)
A a b c A a b c

22 99 17.1 187 171 352 427 446 428

2 27 138 248 255 247 374 454 474 455
é 32 160 282 286 283 391 474 494 475

37 189 313 312 314 405 500 521 501

22 155 98 86 87 424 386 391 387
g 27 172 111 103 101 457 415 421 415
'E 32 176 119 113 11.0 488 441 450 441

37 195 126 120 117 523 469 479 470

22 438 24 20 23 308 288 300 28.8
§ 27 8.3 57 50 55 347 324 336 325
¥ 32 102 77 68 75 379 355 369 356
- 37 128 95 85 92 40.1 384 402 385
. 22 20 24 19 23 112 244 234 245
§ 27 7.3 6.0 53 59 212 342 328 343
§ 32 99 74 64 7.2 243 373 357 373

37 119 95 84 93 266 393 374 394

Table 4.2 Computation Reductions by PECR and PSCR 3bT

PECR PSCR for 3bT
p
Q Addition | shift Addition | shift
Reductio | Reduction [Reductio |Reduction

22 | 1454% 1454 % | 40.10 % 40.10 %
Tennis

37 | 26.34% 26.34% | 46.64 % 46.64 %

22 | 11.62% 11.62% | 40.24 % 40.24 %
Kimono

37 | 15.06 % 15.06 % | 49.28 % 49.28 %
Park 22 3.26 % 3.26%| 29.84 % 29.84 %
Scene |37 | 1056%  10.56%| 39.46 % 39.46 %
BQ 22 2.12 % 212%| 18.94% 18.94 %
Terrace |37 10.20 % 10.20%| 33.86% 33.86 %

The proposed PSCR technique is integrated into fractional interpolation
performed by HEVC Test Model HM encoder software [39]. The impact of the
proposed PSCR technique on rate-distortion performance is determined for Tennis,
Kimono, Park Scene and BQ Terrace (1920x1080) videos [37]. Rate-distortion
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performances of original HEVC and HEVC using PSCR technique for fractional

interpolation are shown in Figure 4.2. The proposed PSCR technique slightly decreased
PSNR and increased bit-rate.
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Figure 4.2 Rate-Distortion Performances of Original HEVC and HEVC Using PSCR

Techniques for Fractional Interpolation

4.2.2 Proposed HEVC Fractional Interpolation Hardware (PECR and PSCR)

The proposed HEVC fractional interpolation hardware for all PU sizes including

the proposed PECR and PSCR techniques is shown in Figure 4.3. The proposed

hardware interpolates all the fractional (half-pixels and quarter-pixels) pixels for the

luma component of a PU using integer or half pixels. Four buffers are used to store

integer and half pixels necessary for interpolating the half and quarter pixels. The

interpolated a, b and ¢ half-pixels are stored in the filtered pixels buffers A, B and C,

respectively. These on-chip buffers reduce the required off-chip memory bandwidth and

power consumption.
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Figure 4.3 Proposed HEVC Fractional Interpolation Hardware (PECR and PSCR)

8 parallel interpolation units are used to interpolate the 8x3=24 fractional pixels of
a PU in parallel. As shown in Figure 4.3, three FIR filters (type A, type B, type C) are
implemented separately in an interpolation unit.

Since 15 fractional pixels should be interpolated for one integer pixel, 64x15
fractional pixels should be interpolated for an 8x8 PU. Also, 8X7 extra a, b, ¢ half-pixels
should be interpolated for the interpolation of quarter-pixels. First, integer pixels are
loaded into integer pixel buffer in one clock cycle. Then, 8x8 d, h, n half-pixels are
interpolated and stored in the output buffer in 8 clock cycles. After that 15x8 a, b, ¢
half-pixels are interpolated and stored in the filtered pixel buffers A, B and C,
respectively, in 15 clock cycles. Finally, 9x8x8 quarter-pixels are interpolated using a,
b, ¢ half-pixels and stored in the output buffer in 3x8=24 clock cycles. Therefore, the
proposed hardware, in the worst case, interpolates the fractional pixels for an 8x8 PU in
48 clock cycles.

In this thesis, an original HEVC fractional interpolation hardware (FIHW) is also
designed for energy consumption comparison. This hardware computes type A, B and C
filters separately. The original HEVC fractional interpolation hardware (FIHW) does
not have the comparison unit. In both the proposed HEVC fractional interpolation
hardware including the PECR technique (FIHW+PECR) and the proposed HEVC
fractional interpolation hardware including the PSCR technique (FIHW+PSCR), 14
comparators are used to check similarity of the input pixels of FIR filters. FIHW+PECR

uses 8-bit comparators. FIHW+PSCR for 1bT uses 7-bit comparators. Similarly,
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FIHW+PSCR for 4bT uses 4-bit comparators. Based on the comparison results, disable
signals are generated for each FIR filter and sent to the interpolation units. If the input
pixels of an FIR filter are equal or similar, input registers of the corresponding FIR filter
hardware are not updated, and a multiplexer at the output of interpolation unit is used to
select the input pixel multiplied with the largest coefficient in the FIR filter instead of
interpolated pixel. This prevents unnecessary switching activities in the FIR filter
hardware.

The proposed FIHW, FIHW+PECR and FIHW+PSCR hardware are implemented
using Verilog HDL. The Verilog RTL codes are verified with RTL simulations. RTL
simulation results matched the results of fractional interpolation implementation in
HEVC HM encoder software [39].

The Verilog RTL codes are mapped to a Xilinx XC6VLX75T FF784 FPGA with
speed grade 3 using Xilinx ISE 13.4. All FPGA implementations are verified to work at
200 MHz by post place and route simulations. Post place and route simulation results
matched the results of fractional interpolation implementation in HEVC HM encoder
software [39]. Therefore, they can process 30 quad full HD (3840x2160) video frames
per second. FIHW FPGA implementation uses 4110 LUTSs, 3448 DFFs and 6 BRAMs.
FIHW+PECR FPGA implementation uses 4577 LUTs, 3408 DFFs, and 4 BRAMs.
FIHW+PSCR for 3bT FPGA implementation uses 2381 LUTs, 849 DFFs, and 4
BRAMs.

Power consumptions of FIHW, FIHW+PECR and FIHW+PSCR for 3bT FPGA
implementations are estimated using Xilinx XPower Analyzer tool. Post place and route
timing simulations are performed for Tennis, Kimono, Park Scene and BQ Terrace
(1920x1080) videos at 100 MHz [37], and signal activities are stored in VCD files.
These VCD files are used for estimating the power consumptions of all FPGA
implementations. Energy consumption results of FIHW, FIHW+PECR and
FIHW+PSCR for 3bT for one frame of each video are shown in Figure 4.4. As shown in
Figure 4.4, PECR and PSCR techniques reduced the energy consumption of FIHW
FPGA implementation up to 39.7% and 46.9%, respectively.
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Figure 4.4 Energy Consumptions of HEVC Fractional Interpolation Hardware

4.3 Proposed HEVC Fractional Interpolation Hardware (MCM)

The proposed hardware calculates common sub-expressions in different FIR filter
equations in HEVC fractional interpolation algorithm once. The proposed hardware also
uses Hcub multiplierless constant multiplication (MCM) algorithm [40] in order to
reduce number and size of the adders and to minimize the adder tree depth.

The type A and type B FIR filter equations for 8 half-pixels are shown in Figure
4.5. As shown in Figure 4.5, common sub expressions are calculated in different
equations and same integer pixel is multiplied with different constant coefficients in
different equations. Therefore, in the proposed hardware, common sub-expressions in
different equations are calculated once, and the result is used in all the equations. The
proposed hardware also uses Hcub MCM algorithm in order to reduce number and size

of the adders, and to minimize the adder tree depth [40].

a30= -Ag+4XAs-10xXA, + 58xA5 + 17xA, -
2207 As AL 10 A+ 5, 4 1A
a10= Ay +AXAS - 10%A; + 58 %A 4 £4

doo = Az +4XA, - 10><A + 58,

b3 -Ag+4XAs—11xA 4+ 40xA 3 + 40xA, -
bg: A5 +4xA 4 —11XA 3 + 40%A, + 40%
by A4+4><A3 11xA, + 40xA,

o+ Az bog- -As+4XA, - 11XA.
Z—SXA3+A4 blO‘ AL+ AXA -

= 4xps- A
2= 11><A3 AxA, - As
2 ) 2+ 40%A; — 11xA, 4 4xAs— Aq
A5+ 58XAz + 17xA, — 5%As + Ag bs, ha 4O><A3 +40xA, = 11xAs 4 4xAg— A;
b= 0><A3 + 58><A4 +17XAs = 5xAg + A; by o\ - 11><A3 +40xA, + 40XAs — 11xAg - 4xA;— Ag

A -CType Filters B Type Filters

Figure 4.5 Type A and Type B Filters
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Hcub algorithm tries to minimize number of adders, their bit size and adder tree
depth in a multiplier block, which multiplies a single input with multiple constants.
Hcub algorithm is used in this thesis, because it produces better results than other MCM
algorithms [40]. Multiplier block creation tool from Spiral implementing Hcub
algorithm is used [54]. This tool takes constants to be multiplied as input and produces
all necessary shift and add operations in a multiplier block as output. A multiplier block
hardware has only one input, and it outputs results of multiplications with all the
constants.

The proposed HEVC fractional (half-pixel and quarter-pixel) interpolation
hardware for all PU sizes is shown in Figure 4.6. The proposed hardware interpolates all
the fractional pixels (half-pixels and quarter-pixels) for the luma component of a PU
using integer or half pixels. Four buffers are used to store integer and half pixels
necessary for interpolating the half and quarter pixels. The interpolated a, b, ¢ half-
pixels are stored in the filtered pixels buffers A, B, C. These on-chip buffers reduce the

required off-chip memory bandwidth and power consumption.
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Figure 4.6 Proposed HEVC Fractional Interpolation Hardware (MCM)

8x3=24 fractional pixels are interpolated in parallel using type A, type B and
type C FIR filter equations. Common 1 (C1) datapath calculates the common sub-
expressions in the equations shown as blue boxes in Figure 4.5. Multiplier 1 (M1) and

Multiplier 2 (M2) datapaths calculate the multiplications with multiple constant
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coefficients shown as red boxes in Figure 4.5. As shown in Table 4.3, since constant
coefficients of input pixels (A-4, A6) and (A-3-A5) are different, two different
multiplier block hardware are used. Then, fractional pixels are calculated using adder
trees.

Table 4.3 Common Coefficients of Input Pixels

Input

Pixel Coefficient Datapath
As -1

C1
As -1,4
Ay -1,4,-5,-10,-11 M1
As -1,4,-5,-10,-11,17,40,58
A, -1,4,-5,-10,-11,17,40,58
Ai -1,4,-5,-10,-11,17,40,58
Ao -1,4,-5,-10,-11,17,40,58
A1 -1,4,-5,-10,-11,17,40,58 M2
Ay -1,4,-5,-10,-11,17,40,58
As -1,4,-5,-10,-11,17,40,58
Ay -1,4,-5,-10,-11,17,40,58
As -1,4,-5,-10,-11,17,40,58
As -1,4,-5,-10,-11 M1
Ar -14

C1
Asg -1

Since 15 fractional pixels should be interpolated for one integer pixel, 64x15
fractional pixels should be interpolated for an 8x8 PU. 8x7 extra a, b, ¢ half-pixels are
necessary for the interpolation of quarter pixels. Therefore, the proposed hardware, in
the worst case, interpolates the fractional pixels for an 8x8 PU in 48 clock cycles.

First, integer pixels are loaded into integer pixels buffer in one clock cycle.
Then, 8x8 d, h, n half-pixels are interpolated and stored in the output buffer. After that,
8x15 a, b and ¢ half-pixels necessary for interpolating quarter pixels are interpolated in
15 clock cycles, and stored in the filtered pixel buffers A, B, and C. Finally, 9x8x8

quarter pixels are interpolated and stored in the output pixel buffers.
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The proposed FIHW+MCM HEVC fractional interpolation hardware is
implemented using Verilog HDL. The hardware implementation is verified with RTL
simulations. The RTL simulation results matched the results of a software model of
HEVC fractional interpolation algorithm. The Verilog RTL codes are synthesized and
mapped to a Xilinx XC6VLX130T FF1156 FPGA with speed grade 3 using Xilinx ISE
13.4. FIHW+MCM FPGA implementation uses 3929 LUTs, 3422 DFFs, and 6
BRAMs. The proposed FPGA implementation is verified to work at 200 MHz by post
place and route simulations. Therefore, it can process 30 quad HD (3840x2160) video
frames per second.

The power consumptions of FIHW and FIHW+MCM FPGA implementations are
estimated using Xilinx XPower Analyzer tool for Tennis (1920x1080) and Kimono
(1920x1080) videos [37]. The energy consumptions of FIHW and FIHW+MCM FPGA
implementations are shown in Figure 4.7 and Figure 4.8. As shown in these figures, the
proposed HEVC fractional interpolation hardware (FIHW+MCM) has up to 48% less
energy consumption than original HEVVC fractional interpolation hardware (FIHW).

In order to estimate the power consumption of a fractional interpolation hardware,
timing simulation of its placed and routed netlist is done at 100 MHz using Mentor
Graphics Questa for encoding one frame of each video sequence. The signal activities of
these timing simulations are stored in VCD files, and these VCD files are used for
estimating the power consumption of that fractional interpolation hardware using Xilinx
XPower Analyzer tool. Since fractional interpolation hardware will be used as part of a
HEVC encoder or decoder, only internal power consumption is considered and input

and output power consumptions are ignored.
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Figure 4.7 Energy Consumption of HEVC Fractional Interpolation Hardware for
Tennis (1920x1080) with different QP Values
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Figure 4.8 Energy Consumption of HEVC Fractional Interpolation Hardware for
Kimono (1920x1080) with different QP Values

The Verilog RTL code of the proposed HEVC fractional interpolation hardware
is also synthesized and place & routed to Synopsys 90nm standard cell library. The gate
count of resulting ASIC implementation is calculated as 28.5k, excluding on-chip

memories, based on NAND (2x1) gate area.

4.4 Proposed Approximate HEVC Fractional Interpolation Filters and Their

Hardware Implementations

In this thesis, two approximate HEVC fractional interpolation filters (F1 and F2)
are proposed. Both F1 and F2 use one 4-tap and two different 3-tap FIR filters instead
of using one 8-tap and two different 7-tap FIR filters. The proposed interpolation filters
significantly reduce computational complexity of HEVC fractional interpolation with a
negligible PSNR loss and bit rate increase. F2 reduces computational complexity more
than F1 with more PSNR loss and bit rate increase.

The proposed approximate fractional interpolation filters are used in fractional
motion estimation stage of an HEVC encoder. After best fractional motion vector is
determined, original HEVC fractional interpolation filter is used in coding stage of the
HEVC encoder. Therefore, the proposed approximate fractional interpolation filters do
not cause encoder-decoder mismatch.

In this thesis, two approximate HEVC fractional interpolation hardware for all PU
sizes are designed and implemented using Verilog HDL for each proposed approximate
fractional interpolation filter. The first hardware implements multiplications with

constant coefficients using adders and shifters. The second hardware implements

48



addition and shift operations using Hcub multiplierless constant multiplication (MCM)
algorithm. The second hardware for both F1 and F2, in the worst case, can process 45
quad full HD (QFHD) frames per second (fps). They consume up to 67.1% less energy
than original HEVC fractional interpolation hardware. F2 fractional interpolation
hardware has smaller area and lower energy consumption than F1 fractional
interpolation hardware.

Approximate HEVC fractional interpolation filters are proposed in [55]-[56].
However, the approximate HEVC fractional interpolation filters proposed in this thesis
have less computational complexity and better rate-distortion performance than the ones
proposed in [55]-[56].

4.4.1 Proposed Approximate HEVC Fractional Interpolation Filters

In this thesis, two approximate HEVC fractional interpolation filters (F1 and F2)
are proposed. Both F1 and F2 use one 4-tap and two different 3-tap FIR filters. But,
they use different filter coefficients. The proposed approximate HEVC fractional
interpolation filter equations for F1 and F2 are shown in (4.4)-(4.6) and (4.7)-(4.9),
respectively.

ao‘o = (_7 * A—1,0 + 58 * AO,O + 13 * Al,O ) > 6

(4.4)

boo = (_8 *A_10+40%Ago + 40 % A1 — 8+ AZ,O) > 6 (4.5)
oo =(13%A_g0+58%A19—7%Az0) > 6 (4.6)
Qo= (—8xA_10+64xAgy +8%A15)>6 4.7)

boo = (—8*A_10+40xAgo+ 40 % Ay g — 8% Aypg) > 6 (4.8)
Coo=(8*Agp+64xA10—8%Ay0) > 6 (4.9)

In original HEVC FIR filter A, if values of the pixels (A0, A20, A-1,0) multiplied
with first three coefficients (-1, 4, -10) are the same, multiplication and addition result
can be calculated by multiplying one pixel with -7 (-1+4-10 = -7). In original HEVC
fractional interpolation filters, small coefficients have less effect on the filter result. In
addition, since the pixels multiplied with small coefficients are neighboring pixels,
because of spatial correlation, their values will be very similar. Therefore, the
coefficients of F1 are determined by assuming that values of the pixels multiplied with

small coefficients are the same. The coefficients of F2 are determined by replacing the
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coefficients of F1 with closest 2" values. In this way, multiplications with coefficients of
F2 are performed using shift operations. In addition, F1 and F2 have similar frequency
responses with original HEVC fractional interpolation filters.

Table 4.4 shows the number of addition and shift operations necessary for
calculating FIR filters used in HEVC fractional interpolation (Original), FIR filters used
in the proposed approximate HEVC fractional interpolation (F1 and F2), and FIR filters
used in the approximate HEVC fractional interpolation proposed in [55]-[56].

Table 4.4 Addition and Shift Reductions

. A B c Avg.
Filter o
Add | shift | Add | shift | Add | shift | (%0)
Original 11 8 13 10 11 8
Nm. | 7 | 6 | 5 | 6 | 7 | 6
FL | o
€d- 1 363 | 250 | 61.5 | 40.0 | 36.3 | 25.0 | 37.4
(%0)
Nm. | 2 | 3 | 5 | 6 | 2 | 3
F2
Red.
81.8 | 625 | 61.5 | 40.0 | 81.8 | 62.5 | 65.0
(%)
Num. | 11 | 6 | 11| 8 | 11| 6
[55]
Red. | 60 | 250 | 154 | 200 | 0.0 | 250 | 14.2
00 . . . ol o . .
Num. | 9 | 6 | 9 | 10| 9 | 6
[56]
Red. | 185 | 250 | 308 | 00 |182 | 250 | 195
o) . . . . . . .

The proposed approximate HEVC fractional interpolation filters (F1 and F2) are
integrated into fractional motion estimation in HEVC HM software encoder 15.0 [39].
First ten frames of some of the HEVC test videos [37] are coded with low delay P (LP)
test configuration and with four different quantization parameters (QP) using HEVC
HM 15.0 with original HEVC fractional interpolation filters, F1 and F2. The resulting
rate-distortion performances are shown in Table 4.5.
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Table 4.5 BD-Rate(%) and BD-PSNR(dB)

F1 F2 [55] [56]

BD- BD- BD- BD- BD- BD- BD- BD-

Video Sequence Rate | PSNR | Rate | PSNR | Rate | PSNR | Rate | PSNR

People on
2560x1600 | ort 027 | 001 | 113 | 005 | - | - | - | -
Traffic 051 | 002 | 156 | 006 | — | — | — | —
Tennis 001 | 001 | 076 | 002 | — | — | — | —
Kimono 031 | 001 | 031 | 001 | 179 | -006 | 1.05 | -0.03
1620x1080 [B)ff\‘/‘eetba” 076 | 001 | 146 | 003 | 1.22 | -003 | 141 | -0.03

Park Scene 0.73 -0.03 177 -0.06 242 | -0.08 | 3.77 | -0.11

Vidyol 017 | 001 | 060 | 002 | —
Vidyo4 0.25 -0.01 0.49 -0.01
1280x720 g(;r'zte” and | o53 | 002 | 114 | 004 | 387 | 012 | 412 | -0.12

Four People 0.08 0.00 0.48 -0.02 3.25 | -0.11 | 3.02 | -0.10

Keiba 0.16 -0.01 1.36 -0.05 — — " -
BQ Mall 0.79 -0.04 1.36 -0.06 169 | -0.07 | 3.73 | -0.14

832x480 | Race Horses | 0.61 -0.03 1.91 -0.09 128 | -0.05 | 2.21 | -0.08

Basketball

Drill 1.56 -0.06 1.64 -0.07 035 | -0.01 | 1.28 | -0.05

Average | 0.40 -0.01 1.14 -0.04 198 | -0.07 | 257 | -0.08

The proposed F1 and F2 filters significantly reduce computational complexity of
HEVC fractional interpolation with a negligible PSNR loss and bit rate increase. They
have less computational complexity and better rate-distortion performance than the ones
proposed in [55]-[56].

4.4.2 Proposed Approximate HEVC Fractional Interpolation Hardware

In this thesis, two approximate HEVC fractional interpolation hardware for all PU
sizes are designed for each proposed approximate interpolation filter. The first hardware
(AS) implements multiplications with constant coefficients using adders and shifters. In
this hardware, three different datapaths are used for implementing A, B and C FIR
filters. It interpolates 8x3=24 fractional pixels in parallel using 24 (8 A, 8 B, 8 C)
parallel datapaths. The proposed AS approximate HEVC fractional interpolation

hardware is shown in Figure 4.9.
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Figure 4.9 Proposed AS Approximate HEVC Fractional Interpolation Hardware

Since different fractional interpolation filter equations multiply same integer pixel

with different constant coefficients, in the second hardware (MCM), Hcub MCM

algorithm is used for reducing number and size of the adders. A multiplier block (MB)

hardware is given one input. It outputs multiplications of this input with all the

constants. The proposed MCM approximate HEVC fractional interpolation hardware is

shown in Figure 4.10.
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Figure 4.10 Proposed MCM Approximate HEVC Fractional Interpolation Hardware
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Integer pixels are stored in one on-chip memory. Then, half pixels (a, b, c) that
will be used for interpolating the quarter pixels are stored in three on chip memories.
Since a, b, ¢ half pixels are interpolated in horizontal direction and used in vertical
direction for quarter pixel interpolations, transpose memory architecture is used to store
a, b, ¢ half pixels.

Both proposed MCM hardware implementing the proposed F1 fractional
interpolation filter (F1 MCM hardware) and proposed MCM hardware implementing
the proposed F2 fractional interpolation filter (F2 MCM hardware) interpolate 8x3=24
fractional pixels in parallel. First, multiplier blocks perform multiplications with
constant coefficients. Then, fractional pixels are calculated using adder trees. Since
different constant coefficients are used in F1 and F2 filters, different multiplier blocks
are used in F1 MCM hardware and F2 MCM hardware.

Since the proposed approximate HEVC fractional interpolation filters F1 and F2
use FIR filters with less number of taps than the original HEVVC fractional interpolation
filter, the proposed F1 AS, F1 MCM, F2 AS and F2 MCM hardware need to access 11
pixels instead of 15 pixels in order to interpolate 8x3=24 fractional pixels. Therefore,
they require less memory accesses than the original HEVC fractional interpolation
hardware.

F1 AS, F2 AS, F1 MCM and F2 MCM hardware interpolate the fractional pixels
for an 8x8 PU in 44 clock cycles. First, 8x8 half pixels are interpolated. Then, 8x11 half
pixels that will be used for interpolating the quarter pixels are interpolated. Finally,
64x9 quarter pixels are interpolated. Scheduling of memory read and interpolation
operations in F1 AS, F2 AS, F1 MCM and F2 MCM hardware are shown in Figure
4.11.

1 0243 4547
M Read Integer Pixels Integer Pixels ‘a’ Half Pixels ‘b’ Half Pixels ‘c’ Half Pixels
emory Red (8 Cycles) (11 Cycles) (8 Cycles) (8 Cycles) (8 Cycles)
. d,h,n Pixels a,b,c Pixels e,i,p Pixels f,j,q Pixels g,k,r Pixels 4
Interpolation (’8 ’Cycles) (:’I.l’ Cycles) (’S’Cycles) ('8, Cycles) (’8 'Cycles) Cycles
SCHEDULING of F1 AS, F1 MCM, F2 AS, F2 MCM
M Read Integer Pixels Integer Pixels ‘a’ Half Pixels ‘b’ Half Pixels ‘c’ Half Pixels
emory Rea (8 Cycles) (15 Cycles) (8 Cycles) (8 Cycles) (8 Cycles)
Int lati d,h,n Pixels a,b,c Pixels e,i,p Pixels f,j,q Pixels g,k,r Pixels
nterpolation (8 Cycles) (15 Cycles) (8 Cycles) (8 Cycles) (8 Cycles)

SCHEDULING of Original AS and Original MCM

Figure 4.11 Scheduling of HEVC Fractional Interpolation Hardware
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The proposed F1 AS, F1 MCM, F2 AS and F2 MCM hardware are implemented
using Verilog HDL. The Verilog RTL codes are synthesized, placed and routed to a
Xilinx XC6VLX130T FF1156 FPGA. FPGA implementations are verified with both
RTL and post place & route timing simulations. The simulation results matched the
results of HEVC HM software encoder [39].

FPGA implementations are also verified on an Xilinx ZYNQ ZC702 FPGA board
as shown in Figure 4.12. The FPGA board has a 28 nm FPGA and dual-core ARM
microprocessor. It also has 1GB DRAM and several interfaces such as UART and
HDMI. Microprocessor reads video frames from SD card and sends them to FPGA
using a high speed bus. The proposed hardware interpolates the video frames. Then,

microprocessor displays interpolated frames on HDMI monitor and stores them to SD

card.

r—— T =TT === -
| I
I — :
| T|= o | |
: Lt |= Card I
| > = Microprocessor — I
[ e HIGH SPEED BUS I
' & A== :
e M . '
| gesienansy Wi 11T |

'EI'G'
________ s —1>

| |EREEREEE " |
| = FPGA |

Figure 4.12 Implementation of Proposed Approximate HEVC Fractional Interpolation
Hardware on an FPGA Board

FPGA implementation results are shown in Table 4.6. F1 AS implementation can
work at 200 MHz, and it can process 33 QFHD (3840x2160) fps. F2 AS
implementation can work at 250 MHz, and it can process 41 QFHD fps. F1 MCM and
F2 MCM implementations can work at 278 MHz, and they can process 45 QFHD fps.
The proposed F1 and F2 approximate HEVC fractional interpolation hardware are faster
and smaller than the original HEVC fractional interpolation hardware proposed in [15].
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Table 4.6 FPGA Implementation Results

Original [15] Proposed F1 Proposed F2
AS MCM AS MCM AS MCM
Slice 1669 1557 1144 834 963 731

LUT | 4110 3929 | 2416 2008 | 1601 1567

DFF 3448 3422 2596 3034 1873 2762

BRAM 6 6 6 6 6 6
Freq. 200 200 200 278 250 278
(MHz)

Fps 30 Quad 30 Quad | 33 Quad 45 Quad | 41 Quad 45 Quad

FullHD FullHD | FullHD FullHD | FullHD  Full HD

EQW?r 152mW 93mW |104mW 88mW |67mW 80 mW
issip.

The Verilog RTL codes of the proposed F1 AS, F1 MCM, F2 AS and F2 MCM
hardware are synthesized, placed and routed to a 90nm standard cell library as well. The
gate counts of these ASIC implementations are calculated based on 2x1 NAND gate

area. ASIC implementation results are shown in Table 4.7.

Table 4.7 ASIC Implementation Results

Original [15] Proposed F1 Proposed F2

AS MCM AS MCM AS MCM

Tech. 90 nm 90 nm 90 nm 90 nm 90 nm 90 nm

Gate | 295K 285K | 132K 128K | 106K 112K

Count

Freq.

(MHz) 250 250 300 300 300 300

Fos 37Quad 37 Quad | 499 Quad 49 Quad | 49 Quad 49 Quad
P FulHD FullHD | FUlHD FullHD | FullHD Full HD

Power

Dissip 27.3mW 23.9mW | 164 mwW 15.8mW | 14.8 mW 14.9 mW

Power consumptions of F1 AS, F2 AS, F1 MCM and F2 MCM are estimated for
Tennis and Kimono (1920x1080) videos [37] using a Xilinx XPower Analyzer tool.
Signal activities captured during post place & route timing simulations are used to

estimate power consumptions. Energy consumptions of all FPGA implementations are
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shown in Figure 4.13. The proposed approximate HEVC fractional interpolation

hardware consume up to 67.1% less energy than the original HEVC fractional
interpolation hardware proposed in [15].
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Figure 4.13 Energy Consumption Results

4.5 Hardware Comparison

The proposed FIHW, FIHW+PECR, FIHW+PSCR+3bT, FIHW+MCM, F1 AS,
F1 MCM, F2 AS and F2 MCM FPGA implementations are compared in Table 4.8. The
proposed approximate hardware implementations have higher performance than other
hardware implementations because they need less clock cycles to interpolate one 8x8
PU. FIHW+PSCR+3bT has smaller area than other hardware implementations since it

uses most significant 5-bits of integer and half pixels for interpolation. However, it has
the worst rate distortion performance.
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Table 4.8 Comparisons of The Proposed FPGA Implementations

FIHW+ | FIHW+ | FIHW+ F1 F2
FIFW 1 pEcR |Pscr+3bT | McM | A5 | mem | 225 | mewm
pga | Xilinx | Xilinx | Xilinx | Xilinx | Xilinx | Xilinx | Xilinx  Xilinx
Virtex 6 | Virtex 6 | Virtex 6 | Virtex 6 | Virtex 6 | Virtex 6 | Virtex 6 | Virtex 6
DFF 3448 | 3408 849 3422 | 2596 | 3034 | 1873 | 2762
Count
LUT
4110 | 4577 2381 3929 | 2416 | 2008 | 1601 | 1567
Count
Max.
Freq. 200 200 200 200 200 278 250 278
(MHz)
30 30 30 33 45 41 45
Fps QFHD | QFHD 30 QFHD QFHD | QFHD | QFHD | QFHD | QFHD

The proposed approximate HEVC fractional interpolation hardware are
compared with the HEVC fractional interpolation hardware proposed in the literature
[57]-[65]. The comparisons of ASIC and FPGA implementations are shown in Table
4.9 and Table 4.10, respectively. Some of the results are not given in Table 4.9 and

Table 4.10, because they are not available in the literature [57]-[63].

Table 4.9 Comparisons of ASIC Implementations

[15] | [571 | [58] | 591 | [60]1 | [61] | [621 | FL | F2

Tech. 90 Nm | 150nm {90 nm [ 90 Nnm | 90 nm | 130 nm | 40 nm | 90 nm | 90 nm
Gate Count | 285K | 30.2K |224K | 383K | 37.2K |126.8K | 297.3K | 128K |11.2K

Max.
Freq. (MH2) 200 312 333 192 240 208 342 300 300
Fos 30 30 30 60 47 86 60 49 49
P QFHD | QFHD | FHD |QFHD | QFHD | QFHD | UHD | QFHD | QFHD
Power 23.9 48.1 15.8 14.9
Dissip. mw mwW mwW | mwW
Table 4.10 Comparisons of FPGA Implementations
[15] [59] [63] [64] [65] F1 F2
EPGA Xilinx Xilinx Altera Xilinx Xilinx Xilinx Xilinx
Virtex 6 Virtex 5 Arria ll Virtex 6 Virtex 6 Virtex 6 Virtex 6
Slice Count 1557 2181 1498 834 731
LUT Count 3929 28486 24202 5017 3806 2008 1567
Max. Freq.
(MH2) 200 120 200 283 233 278 278
Fps 30 60 30 35 45 45
P 3840x2160 1920x1080 | 2560x1600 | 3840x2160 | 3840x2160 | 3840x2160
Power 93 mwW 171mW | 89 mw 88mW | 80 mW
Dissipation
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A coarse grained reconfigurable datapath is proposed to reduce area and adaptive
scheduling is proposed to increase throughput in [57]. A fractional interpolation
hardware is proposed for HEVC encoder in [58]. Data-reuse technique is used to reduce
memory accesses and highly-parallel architecture is used to increase throughput in [59].
Efficient memory organization and reuse of datapath are proposed in [60]. Resource
sharing for common partial terms of the interpolation filters is proposed in [61]. A
fractional interpolation hardware is proposed for motion compensation in [62]. Many
parallel interpolation hardware are used in [63]. Reconfigurable interpolation datapaths
are used to reduce area and power consumption in [64]. [65] uses memory based
constant multiplication technique for implementing multiplication with constant
coefficients.

The proposed approximate HEVC fractional interpolation hardware have much
smaller hardware area and lower power consumption than the other hardware. The
smallest hardware in the literature has more than two times larger area than the
proposed hardware. Only the HEVC fractional interpolation hardware proposed in [59],
[61]-[62] have higher throughput than them. However, they have more than ten times
larger area than the proposed hardware. In addition, performance result of the hardware
proposed in [62] is given for motion compensation. Performance results of the rest of

the hardware including the ones proposed in this thesis are given for motion estimation.

58



CHAPTERV

A COMPUTATION AND ENERGY REDUCTION TECHNIQUE
FOR HEVC DISCRETE COSINE TRANSFORM

HEVC standard uses Discrete Cosine Transform (DCT) / Inverse Discrete Cosine
Transform (IDCT) same as the H.264 standard. However, H.264 standard uses only 4x4
and 8x8 Transform Unit (TU) sizes for DCT/IDCT. HEVC standard uses 4x4, 8x8,
16x16, and 32x32 TU sizes for DCT/IDCT. Larger TU sizes achieve better energy
compaction. However, they increase the computational complexity exponentially. In
addition, HEVC uses Discrete Sine Transform (DST) / Inverse Discrete Sine Transform
(IDST) for 4x4 intra prediction in certain cases.

Transform operations (DCT/IDCT and DST/IDST) are heavily used in an HEVC
encoder [11]. DCT and DST have high computational complexity. DCT and DST
operations account for 11% of the computational complexity of an HEVC video
encoder. They account for 25% of the computational complexity of an all intra HEVC
video encoder.

HEVC uses DCT-1I and DST-VII. It uses 4x4, 8x8, 16x16, 32x32 TU sizes for
DCT. It also uses DST for 4x4 intra prediction in certain cases. HEVC performs 2D
transform operation by applying 1D transforms in vertical and horizontal directions. The
coefficients in HEVC 1D transform matrices are derived from DCT-IlI and DST-VII
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basis functions. However, integer coefficients are used for simplicity. HEVC 1D DCT-
Il and DST-VII matrices for 4x4 TU size are shown in (5.1) and (5.2).

64 64 64 64 ]
e
36 —83 83 36
29 55 74 84
DST — Vi, gi _7249 _(; . _5754 (5.2)
55 —84 74 —29]

In this thesis, a novel computation and energy reduction technique for HEVC
DCT for all TU sizes is proposed. After forward transform and quantization, most of the
forward transformed and quantized high frequency coefficients in a TU become zero. In
addition, if the values of non-zero forward transformed and quantized low frequency
coefficients in a TU are small, they have small impact on the inverse quantized and
inverse transformed TU. Therefore, the proposed technique only calculates several pre-
determined low frequency coefficients of TUs, and it assumes that the remaining
coefficients are zero.

The proposed technique is used in both mode decision and coding stages of an
HEVC encoder. Since the same DCT coefficients are used in both HEVC encoder and
HEVC decoder, the proposed technique does not cause any encoder-decoder mismatch.
The proposed technique does not require any modification in an HEVC decoder. The
proposed technique reduces the computational complexity of HEVC DCT significantly
at the expense of slight decrease in PSNR and slight increase in bit rate. It reduced the
execution time of HEVC HM software encoder [39] up to 12.74%, and it reduced the
execution time of the DCT operations in HEVC HM software encoder up to 37.27% on
a workstation with 3.33 GHz dual-core processor and 64 GB DRAM.

In this thesis, a low energy HEVC 2D DCT hardware for all TU sizes is also
designed and implemented using Verilog HDL. The proposed hardware calculates 4, 8,
16 and 32 DCT coefficients per clock cycle for 4x4, 8x8, 16x16 and 32x32 TU sizes,
respectively. It, in the worst case, can process 48 Quad Full HD (3840x2160) video
frames per second. In this thesis, another low energy HEVC 2D DCT hardware for all

TU sizes with higher hardware utilization is also designed and implemented using
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Verilog HDL. This hardware processes four 4x4 TUs or two 8x8 TUs in parallel.
Therefore, it can calculate 16 DCT coefficients per clock cycle for 4x4, 8x8 and 16x16
TU sizes, and 32 DCT coefficients per clock cycle for 32x32 TU size. It, in the worst
case, can process 53 Ultra HD (7680x4320) video frames per second.

Clock gating is used to reduce the energy consumptions of both hardware. Hcub
Multiplierless Constant Multiplication (MCM) algorithm [40] is used to reduce number
and size of the adders in both hardware. Hcub MCM algorithm reduced the energy
consumption of the lower utilization (LU) hardware and the higher utilization (HU)
hardware up to 5.9% and 13.1%, respectively. Finally, the proposed technique is used to
reduce the energy consumptions of both hardware. It further reduced the energy
consumption of the LU hardware and the HU hardware up to 17.9% and 18.9%,
respectively.

Several zero quantized DCT coefficient detection techniques are proposed for
H.264 and HEVC [66]-[69]. These techniques try to predict the blocks with zero
forward transformed and quantized coefficients before DCT and quantization operations
in the coding stage of an H.264 or HEVC encoder in order to avoid DCT and
quantization operations. However, the technique proposed in this thesis avoids most of
the DCT operations that have no impact or low impact on the transformed and quantized
TUs in both mode decision and coding stages of an HEVC encoder. In addition, the zero
quantized DCT coefficient detection techniques have much more computational
overhead than the proposed technique which requires only one comparison for each TU.

Several HEVC DCT hardware are proposed in the literature [70]-[74]. In [70], 2D
DCT hardware calculates all DCT outputs using multipliers. In [71], 2D DCT hardware
reuses smaller TU hardware for DCT operations of larger TUs. In [72], 2D DCT
hardware implementation uses two different 1D transform hardware for column and row
transforms, and it can process 32 pixels per clock cycle for all TU sizes. In [73], 2D
DCT hardware calculates all DCT outputs using multipliers, and it modifies the order of
TU processing for optimizing transform buffer. In [74], the proposed hardware only
performs 1D DCT transform, and it uses canonical signed digit representation and
common sub-expression elimination technique to decrease number of adders and
shifters. The low energy HEVC 2D DCT hardware proposed in this thesis is compared
with these HEVC DCT hardware in Section 5.3.
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5.1 Proposed Computation and Energy Reduction Technique

After forward transform and quantization, most of the forward transformed and
quantized high frequency coefficients in a TU become zero. In addition, if the values of
non-zero forward transformed and quantized low frequency coefficients in a TU are
small, they have small impact on the inverse quantized and inverse transformed TU.
Therefore, the proposed technique only calculates several pre-determined low frequency
coefficients of TUs, and it assumes that the remaining coefficients are zero.

As shown in Figure 5.1, in this thesis, the impact of the proposed technique on the
computational complexity and rate-distortion performance is determined for three
different DCT coefficient sets. In the first two coefficient sets, the coefficients that will
be calculated by the HEVVC DCT for all TU sizes are pre-determined, and they are not
changed during DCT operations. When the proposed technique is used with coefficient
set 1, only 25% (1/4) of DCT coefficients are calculated for all TU sizes. When the
proposed technique is used with coefficient set 2, 56.25% (9/16) of DCT coefficients
are calculated for 4x4 and 16x16 TU sizes, and 14% (9/64) of DCT coefficients are
calculated for 8x8 and 32x32 TU sizes. These DCT coefficient percentages are
experimentally determined to reduce the computational complexity of HEVC DCT

significantly with slight impact on distortion and bit rate.

Coefficient Set #2 Coefficient Set #3

O Mo Computation
W Level-0 DCT
O Level-1 DCT
O Level-2 DCT

Coefficient Set #1 44, 16x16 (9/16)

4wd, Bx8, 16x16, 32x32 (1/4) BxB, 3232 (9/64) 8x8, 16x16, 32x32

Figure 5.1 Proposed Computation and Energy Reduction Technique
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In the coefficient set 3, the pre-determined coefficients that will be calculated by
HEVC DCT for all TU sizes are adaptively changed during DCT operations. For 4x4
TUs, level-0 or level-1 DCT is performed. For the other TUs, level-0, level-1 or level-2
DCT is performed. In level-0 DCT, all DCT coefficients are calculated for all TUs. In
level-1 DCT, 25% (1/4) of DCT coefficients are calculated for 4x4 TUs, and 39%
(25/64) of DCT coefficients are calculated for 8x8, 16x16 and 32x32 TUs. In level-2
DCT, 14% (9/64) of DCT coefficients are calculated for 8x8, 16x16 and 32x32 TUs.

Initially, level-0 DCT is used for each TU size. As shown in Figure 5.2, if the
distortion value for current TU obtained by the current DCT operation is smaller than
90% of the previous distortion value for the same TU or same size TU obtained by the
previous DCT operation, DCT level for this TU size is increased. If the distortion value
for current TU obtained by the current DCT operation is larger than 110% of the
previous distortion value for the same TU or same size TU obtained by the previous

DCT operation, DCT level for this TU size is decreased.

DCT(Residuals, Distortion) {

if (Distortion(curr_dct) is larger than 1.1*Distortion(prev_dct) and
DCT_Level is larger than zero)

DCT Level « (DCT_Level - 1)

else if (Distortion(curr_dct) is smaller than 0.9*Distortion(prev_dct)
and DCT_Level is smaller than two)

DCT Level « (DCT _Level + 1)

if (DCT_Level is zero)
DCT Coefficients < DCT_LO(Residuals)

else if (DCT_Level is one)
DCT Coefficients «— DCT_L1(Residuals)

else if (DCT_Level is two)
DCT Coefficients <— DCT_L2(Residuals)

}
Figure 5.2 Pseudocode of HEVC DCT with The Proposed Technique

Since the distortion value for current TU is already calculated by an HEVC
encoder, the proposed technique does not calculate the distortion value for current TU.
When the proposed technique is used with coefficient set 3, the percentages of DCT
levels used for all TUs for first 10 frames of three different full HD (1920x1080) videos

are shown in Figure 5.3.
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Figure 5.3 DCT Level Percentages
Table 5.1 shows the number of addition and shift operations required for
calculating all DCT coefficients in a TU (Original) and for calculating the pre-
determined DCT coefficients in a TU for three different DCT coefficient sets.
Calculating only the pre-determined DCT coefficients in a TU significantly reduces the

number of addition and shift operations.

Table 5.1 Addition and Shift Reductions for All TU Sizes

TU Size org. | & /Set Red | C. Set Red. Cézgluemset#s Red
. o o . .

#1 (%) | #2 (%) Level 1 (%) Level 2 (%)
axd Add. | 224 84 625 147 34.4 84 62.5 -- --
Shift | 224 84 625 147 34.4 84 62.5 -- --
8x8 Add. | 2560 960 62.5 660 74.2 1300 49.2 660 74.2

X

Shift | 2304 864 62.5 594 74.2 1170 49.2 594 74.2

Add. | 20992 7872 625 13776 344 10660  49.2 5412 74.2
Shift | 16896 6336 62.5 11088 34.4 8580  49.2 4356 74.2
Add. | 182272 | 68352 62.5 | 46992 742 | 92560 @ 49.2 | 46992 74.2
Shift | 153600 | 57600 62.5 39600 742 | 78000 49.2 | 39600 74.2
Average 62.5 54.3 52.5 74.2

16x16

32x32

The proposed technique is integrated into DCT operations performed by HEVC
HM software encoder [39]. The pre-determined DCT coefficients are experimentally
determined to achieve large computation reduction with slight decrease in PSNR and
slight increase in bit rate using HEVC HM software encoder. The impact of the
proposed technique on execution time and rate-distortion performance is determined for

three different DCT coefficient sets on a workstation with 3.33 GHz dual-core processor
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and 64 GB DRAM for People on Street, Traffic (2560x1600), Tennis, Kimono,
Basketball Drive, Park Scene (1920x1080), Vidyol, Vidyo4, Kristen and Sara, Four
People (1280x720), Keiba, Party Scene, Race Horses, Basketball Drill (832x480) videos
[37].

First 10 frames of all video sequences are coded with all intra (Al), low delay P
(LP) (IPPPP) and random access (RA) (IBBBB) test configurations and with
quantization parameters (QP) 22, 27, 32 and 37 using HEVC HM software encoder [39]
with and without the proposed technique, and BD-Rate and BD-PSNR values are
calculated. The results given in Tables 5.2, 5.3 and 5.4 show that the proposed
technique reduces the computational complexity of HEVC DCT significantly at the
expense of slight decrease in PSNR and slight increase in bit rate. Since it is used in
mode decision stage of an HEVC encoder, it achieves different amount of execution

time reductions for DCT operations and HEVC encoder.

Table 5.2 BD-Rate, BD-PSNR and Execution Time Results for HEVC All Intra (Al)
Configuration

Coefficient Set #1 Coefficient Set #2 Coefficient Set #3
Video Aed Aa%a Eed Ecflaedald Eod Ecfhlaecenlad £ EF
S aog Fo g Ee8lafdnsd s Eelagdasd FSg £ES8

Sequence xS aPpS ESy ESgoroapI By ESAarS op3 ESu BESQ
People on 132 | 007 | 414 | 2205 | 209 |-011 | -410 | -2425 | 180 | -010 | -6.11 | -23.81
Street
Traffic 082 | -004 | 367 | 2078 | 168 | 009 | 368 | -2340 | 176 | -0.09 | 721 | -24.75
Tennis 318 | -0.10 | -448 | 2055 | 311 | -0.09 | -3.85 | -22.45 | 232 | -0.06 | -8.07 | -22.86
Kimono 206 | -007 | 494 | 2113 | 189 | -0.06 | -1.79 | 2305 | 124 | -0.04 | -721 | -23.38
Basketball

563 |-019 | -564 | -21.05 | 417 | -016 | -407 | -2385 | 406 | -013 | -977 | -24.22
Drive

Park Scene 2.88 | -0.12 -6.02 -20.25 | 2.28 -0.09 | -4.50 -2240 | 252 | -0.10 | -8.83 -24.28

Vidyol 2.73 -0.13 -3.53 -21.10 2.21 -0.10 -2.82 -24.13 | 2.09 -0.09 -7.67 -24.24
Vidyo4 3.28 -0.17 -4.32 -20.93 2.84 -0.12 -1.85 -23.55 | 2.85 -0.12 -8.44 -24.23
Kristen And

3.37 | -0.20 -5.18 -22.05 | 211 -0.10 | -2.84 -23.38 | 225 | -0.11 -10.14 | -23.98
Sara

Four People | 2.82 | -0.16 -3.79 -21.33 | 2.56 -0.14 | -2.64 -2305 | 250 | -0.14 | -7.48 -24.17

Keiba 3.69 | -0.18 -2.09 -21.23 | 3.20 -0.18 | -3.60 -2433 | 318 | -0.15 | -7.41 -22.99

Party Scene -0.94 | 0.07 -13.48 | -20.68 | 0.90 -0.07 | -11.02 | -23.15 | 0.61 | -0.05 | -11.21 | -21.38

Race Horses | 1.26 | -0.08 -6.05 -20.63 | 231 -0.14 | -5.22 -2280 | 158 | -0.10 | -9.29 -24.25

Basketball -1.63 | 0.08 -6.42 -21.53 | -0.10 | 0.01 -5.84 -23.15 | 044 | -0.02 | -9.34 -24.20
Drill
Average 2.17 | -0.09 -5.27 -21.09 | 2.23 -0.10 | -4.13 -2335 | 209 | -0.09 | -8.44 -23.77
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Table 5.3 BD-Rate, BD-PSNR and Execution Time Results for HEVC Low Delay P
(LP) Configuration

Coefficient Set #1 Coefficient Set #2 Coefficient Set #3
Video L aod .42 g2 _Hd.io4. 242 5 8 Fiad. x4 7 e_F
SRR F R R R NS ER - EE A R R

Sequence 0 -y B g0y o= B0 0 25w 5=g
People on 161 | 007 | -310|-2835| 175 | -008 | -3.23 | -4059 | 1.94 | -0.00 | -7.25 | -32.08
Street
Traffic 154 | 006 | -430 | -2445 | 210 | -008 | -408 | 4572 | 253 | 010 | -8.24 | -30.65
Tennis 177 | 0.05| -3.30 | -3213 | 159 | -0.05 | -336 | -4454 | 1.66 | -0.05 | -7.23 | -3558
Kimono 151 | 0.05| -411 | -31.60 | 098 | -0.03 | -2.95 | -37.41 | 058 | -0.02 | -7.64 | -36.33
Basketball

asketba 448 | 016 | 551 | -2965| 379 | -012 | -513 | 3868 | 301 | -010 | -887 | -37.27
Drive
Park Scene | 2.80 | -0.09 | -6.67 | -27.48 | 209 | -0.07 | -351 | -4240 | 256 | -0.08 | -9.36 | -30.13
Vidyol 297 | 012 | -556 | 2038 | 186 | -007 | -530 | 5203 | 239 | -0.09 | -7.59 | -3L.11
Vidyod 393 | 014 | 581 | 2085 | 343 | -011 | -2.38 | 5146 | 320 | -0.09 | -7.61 | -32.62
Kristen And ) o7 | 016 | -5.23 | -10.00 | 260 | -011 | -287 | -5101 | 262 | -010 | -7.44 | -30.84
Sara
Four People | 2.89 | -0.14 | -4.03 | 2063 | 248 | 0.13 | -350 | 5330 | 252 | -0.11 | -7.82 | -29.37
Keiba 601 | 037 | -7.87 | -21.10 | 554 | -0.31 | -4.93 | -36.66 | 308 | 017 | -9.80 | -32.41
Party Scene | 131 | -0.09 | -12.62 | -20.28 | 201 | -0.13 | -1021 | -4413 | 134 | -0.08 | -12.74 | 2584
Race Horses | 457 | -0.22 | -8.32 | -20.08 | 384 | 020 | -5.35 | -2558 | 227 | -0.14 | -10.04 | -31.42
Basketball

asketba 020 | 001| -787 | 2048 | 104 | -004 | -5.01 | -4288 | 1.95 | -008 | -8.44 | -32.83
Drill
Average 280 | 012 | -6.02 | 2410 | 250 | -0.10 | -441 | 4337 | 226 | -0.09 | 858 | -32.04
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Table 5.4 BD-Rate, BD-PSNR and Execution Time Results for HEVC Random Access
(RA) Configuration

Coefficient Set #1 Coefficient Set #2 Coefficient Set #3
Video o4 .24 8 G E8E~Hi o4 . 2487 2 Fliaod 487 8~F
SRR F R R R NS ER - EE A R R

Sequence 0 -y B g0y o= B0 0 25w 5=g
People on 133 | 006 | -393|-3920| 154 | -007 | -327 | 3377 | 164 | 007 | -447| -31.02
Street
Traffic 084 | 003 | -404 | -1632 | 1.70 | 0.07 | -430 | 2730 | 1.82 | -0.08 | -2.01 | -18.47
Tennis 219 | 007 | -450 | -40.03 | 177 | -0.05 | -3.03 | -38.20 | 1.58 | -0.04 | -6.32 | -32.47
Kimono 158 | -005 | -322 | -4448 | 131 | -0.04 | -207 | -3588 | 077 | -002 | -6.86 | -33.21
Basketball

asketba 494 | -016 | -435 | -4248 | 437 | 013 | -1.88 | -3348 | 417 | -000 | -7.40 | -3317
Drive
Park Scene | 281 | -009 | -576 | -13.97 | 227 | -007 | -3.93 | -27.25 | 260 | -0.09 | -7.59 | -27.14
Vidyol 311 | 013 | 419 | -22.16 | 2.85 | -0.10 | -3.64 | 2558 | 2.72 | -0.09 | -6.50 | -26.46
Vidyos 338 | 012 | 352 | -21.70 | 255 | -0.08 | -388 | 2652 | 2.75 | -0.09 | -6.78 | -29.24
Kristen And |5 1) | 014 | -3.95 | -2203 | 200 | -0.07 | -117 | -2360 | 1.58 | -0.06 | -6.85 | -2532
Sara
FourPeople | 279 | -0.14 | -424 | 2399 | 235 | 011 | -252 | 2353 | 260 | -0.11 | -6.90 | -24.70
Keiba 8.76 | 039 | 512 | -1552 | 607 | 022 | -5.72 | -37.00 | 592 | -0.21 | -6.45 | -34.72
Party Scene | 003 | 001 | -10.86 | 2076 | 130 | -0.08 | -8.34 | 2988 | 092 | -0.06 | -9.65 | -24.54
Race Horses | 356 | -0.15 | -6.34 | -12.86 | 3.14 | -0.14 | 517 | -3453 | 202 | -009 | -7.28 | -29.96
Basketball

asketba 097 | 005 | -407 | 2324 | 023 | 001 | 272 | -3128 | 111 | -005 | -6.64 | -31.17
Drill
Average 267 | 010 | -4.86 | -25.70 | 2.38 | -0.08 | -3.69 | -3056 | 2.30 | -0.08 | -6.70 | -28.69

Since the proposed technique with coefficient set 3 achieved the best execution

time, BD-PSNR and BD-Rate results, it is selected for hardware implementation. The

proposed technique with coefficient set 3 reduced the execution time of HEVC HM
software encoder, on the average, 8.44%, 8.58%, 6.70% for Al, LP, RA configurations,

respectively. It reduced the execution time of DCT operations in HEVC HM software
encoder, on the average, 23.77%, 32.04%, 28.69% for Al, LP, RA configurations,

respectively.
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5.2 Proposed HEVC 2D DCT Hardware
5.2.1 Proposed HEVC 2D DCT Lower Utilization Hardware

The proposed HEVC 2D DCT lower utilization (LU) hardware for all TU sizes
including clock gating, Hcub MCM algorithm, and the proposed technique with
coefficient set 3 is shown in Figure 5.4. Input splitter is used to select the proper DCT
inputs for each TU size. Output multiplexers are used to select the proper DCT outputs
for each TU size. Column and row clip modules are used to scale the outputs of 1D
column DCT and 1D row DCT to 16 bits, respectively. Column clip shifts 1D column
DCT outputs right by 1, 2, 3 and 4 for 4x4, 8x8, 16x16 and 32x32 TU sizes,
respectively. Row clip shifts 1D row DCT outputs right by 8, 9, 10 and 11 for 4x4, 8x8,
16x16 and 32x32 TU sizes, respectively.
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Figure 5.4 Proposed HEVC 2D DCT Lower Utilization Hardware

Since HEVC DCT algorithm allows performing an N-point 1D DCT by
performing two N/2-point 1D DCTs with some preprocessing, the proposed hardware
performs N-point 1D DCT transforms by performing two N/2-point 1D DCT transforms
with an efficient butterfly structure. It performs 2D DCT by first performing 1D DCT
transform on the columns of a TU, and then performing 1D DCT transform on the rows
of the TU. After 1D column DCT, the resulting coefficients are stored in a transpose

memory, and they are used as input for 1D row DCT.
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The butterfly structure used for column transforms is shown in Figure 5.5. For
4x4 TUs, only 4x4 butterfly operation is used. For 8x8 TUs, 8x8 and 4x4 butterfly
operations are used. For 16x16 TUs, 16x16, 8x8 and 4x4 butterfly operations are used.
For 32x32 TUs, all butterfly operations (32x32, 16x16, 8x8, 4x4) are used.

Axd
DATAPATH

REGISTERS
[4x4 D.)

REGISTERS
88 D.)

REGISTERS
(16x16 D.)

FORWARD TRANSFORM INPUT SPLITTER

Figure 5.5 Column Butterfly Structure

One 4x4 datapath is used for 4x4 TU size. Two 4x4 datapaths are used for 8x8
TU size. Two 4x4 datapaths and one 8x8 datapath are used for 16x16 TU size. All
datapaths (two 4x4, one 8x8 and one 16x16) are used for 32x32 TU size. In order to
reduce the power consumption of proposed hardware, data gating is used for the inputs
of 4x4, 8x8 and 16x16 column and row datapaths. The inputs of these datapaths are
stored into registers. If a datapath is not used for a TU, its input registers are not
updated. This prevents unnecessary switching activities in this datapath.

DCT multiplications are performed in the datapaths using only adders and
shifters. In order to reduce number and size of the adders in the proposed hardware,
Hcub MCM algorithm [40] is used for implementing multiplications with constants.

Hcub algorithm tries to minimize number and size of the adders in a multiplier block
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which multiplies a single input with multiple constants using shift and addition
operations. Hcub algorithm determines necessary shift and addition operations in a
multiplier block.

Since different constants are used in 2D DCT for 4x4, 8x8, 16x16 and 32x32 TU
sizes, four different multiplier blocks are used in the proposed hardware. Multiplier
block for second 4x4 column datapath is shown in Figure 5.6. Multiplier blocks in the
first 4x4, second 4x4, 8x8 and 16x16 datapaths multiply a single input with 3, 4, 8 and
16 different constants, respectively. There are 4, 8 and 16 multiplier blocks in 4x4, 8x8
and 16x16 datapaths, respectively. When level-1 or level-2 DCT is performed for a TU,
multiplier block outputs used for calculating the DCT coefficients that are assumed as

zero by the proposed technique are assigned to zero.

25x = (16x + (x+8x))
18x = 2(x+8x)

89x = 16(x+4x)+(x+8x)

75x = 16(x+4x)-(x+4x)

Figure 5.6 Multiplier Block in HEVC 2D DCT Lower Utilization Hardware

In order to calculate each output of 1D DCT for 4x4 TU size, an output from each
multiplier block in a 4x4 datapath is selected, and these outputs are added or subtracted.
In order to calculate each output of 1D DCT for 8x8 TU size, an output from each
multiplier block in both 4x4 datapaths is selected, and these outputs are added or
subtracted. Similarly, in order to calculate each output of 1D DCT for 16x16 TU size,
16 outputs from 16 multiplier blocks in two 4x4 datapaths and one 8x8 datapath are
added or subtracted. Similarly, in order to calculate each output of 1D DCT for 32x32
TU size, 32 outputs from 32 multiplier blocks in all datapaths (two 4x4, one 8x8 and
one 16x16) are added or subtracted.

As shown in Figure 5.7, the transpose memory is implemented using 32 Block
RAMs (BRAM). 4, 8, 16 and 32 BRAMSs are used for 4x4, 8x8, 16x16 and 32x32 TU
sizes, respectively. In the figure, the numbers in each box show the BRAM that
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coefficient is stored. The results of 1D column DCT are generated column by column.
For 32x32 TU size, first, the coefficients in column 0 (CO) are generated in a clock
cycle and stored in 32 different BRAMSs. Then, the coefficients in column 1 (C1) are
generated in the next clock cycle and stored in 32 different BRAMS using a rotating
addressing scheme. This continuous until the coefficients in column 31 (C31) are

generated and stored in 32 different BRAMS using the rotating addressing scheme.
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Figure 5.7 Transpose Memory

This ensures that the 32 coefficients necessary for 1D row DCT in a clock cycle
can always be read in one clock cycle from 32 different BRAMSs. Because of the input
data loading and pipeline stages, the proposed hardware starts generating the results of
1D row DCT in 42 clock cycles. It then continues generating the results row by row in
every clock cycle until the end of last TU in the frame without any stalls.

The proposed hardware performs 1D DCT transform for 4x4, 8x8, 16x16 and
32x32 TU sizes in 4, 8, 16 and 32 clock cycles, respectively. The 1D row DCT and 1D
column DCT operations are pipelined. While 1D row DCT for current TU is performed,

1D column DCT for next TU is also performed.
5.2.2 Proposed HEVC 2D DCT Higher Utilization Hardware

The proposed HEVC 2D DCT higher utilization (HU) hardware processes four
4x4 TUs or two 8x8 TUs in parallel. Same as the LU hardware, it uses two 4x4
datapaths and one 8x8 datapath for 16x16 TU size, and it uses all datapaths (two 4x4,
one 8x8 and one 16x16) for 32x32 TU size. However, the HU hardware uses two 4x4
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datapaths and one 8x8 datapath for 4x4 and 8x8 TU sizes. Since 4x4 and 8x8 column
and row datapaths are used for all TU sizes, data gating is used only for the inputs of
16x16 column and row datapaths.

Same as the LU hardware, multiplier blocks in the first 4x4 datapath and 16x16
datapath multiply a single input with 3 and 16 different constants, respectively.
However, in the HU hardware, multiplier blocks in the second 4x4 datapath and 8x8
datapath multiply a single input with 7 and 15 different constants, respectively.
Because, in the HU hardware, the second 4x4 datapath and 8x8 datapath are used for all

TU sizes. Multiplier block for second 4x4 column datapath is shown in Figure 5.8.

64x
36x = (4(x+8x))
18x = 2(x+8x)

83x = (x+8x)+2(4(x+8x)+x)

50x = 2((x+8x)+16x)

75x = 4((x+8x)+16x) - ({x+8x)+16x)

89x = ((x+8x)+16x) + 64x

Figure 5.8 Multiplier Block in HEVC 2D DCT Higher Utilization Hardware

In order to calculate each output of 1D DCT for 4x4, 8x8 and 16x16 TU sizes,
an output from each multiplier block in both 4x4 datapaths and 8x8 datapath is selected,
and these outputs are added or subtracted. Similarly, in order to calculate each output of
1D DCT for 32x32 TU size, 32 outputs from 32 multiplier blocks in all datapaths (two
4x4, one 8x8 and one 16x16) are added or subtracted.

Same as the LU hardware, transpose memory is implemented using 32 BRAMs.
However, in the HU hardware, 8, 8, 16 and 32 BRAMs are used for 4x4, 8x8, 16x16
and 32x32 TU sizes, respectively.
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5.3 Implementation Results

The proposed low energy HEVC 2D DCT LU and HU hardware for all TU sizes
including clock gating (original hardware), including clock gating and Hcub MCM
algorithm (MCM hardware), and including clock gating, Hcub MCM algorithm and the
proposed technique with coefficient set 3 (proposed hardware) are implemented in
Verilog HDL. The Verilog RTL implementations are verified with RTL simulations.
RTL simulation results matched the results of 2D DCT implementation in HEVC HM
software encoder [39].

The Verilog RTL codes are synthesized and mapped to an Xilinx XC6VLX550T
FF1156 FPGA. The FPGA implementations are verified with post place & route
simulations. Post place & route simulation results matched the results of 2D DCT
implementation in HEVC HM software encoder [39]. The FPGA implementation results
given in Table 5.5 show that Hcub MCM algorithm considerably decreased area, and

the proposed technique slightly increased area.

Table 5.5 FPGA Implementations Results

LU Hardware HU Hardware

Orig. MCM Prop. Orig. MCM Prop.

Slice 12944 |1 9797 10080 14981 | 11279 12712
LUT 39829 | 33376 35555 | 47737 | 38006 41905

DFF 11196 | 11110 11230 11964 | 12025 12200

BRAM |32 32 32 32 32 32
Freq.
(MH2) 102 116 100 111 117 111

49 Quad | 56 Quad |48 Quad |53 Ultra | 56 Ultra |53 Ultra

Fps Full HD |Full HD |Full HD |HD HD HD

Power consumptions of the FPGA implementations are estimated using a Xilinx
XPower Analyzer. Post place & route timing simulations are performed for Tennis,
Kimono and ParkScene (1920x1080) videos at 100 MHz [37] and signal activities are
stored in VCD files. These VCD files are used for estimating power consumptions of
the FPGA implementations.

The energy consumption results for the LU hardware and the HU hardware for
one frame of each video are shown in Figure 5.9 and Figure 5.10, respectively. Hcub

MCM algorithm reduced the energy consumption of the LU hardware and the HU
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Figure 5.9 Energy Consumptions of HEVC 2D LU Hardware for Full HD (1920x1080)
Video Frames
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Figure 5.10 Energy Consumptions of HEVC 2D HU Hardware for Full HD
(1920x1080) Video Frames

hardware up to 5.9% and 13.1%, respectively. The proposed energy reduction technique
further reduced the energy consumption of the LU hardware and the HU hardware up to
17.9% and 18.9%, respectively.

In order to compare the LU hardware and the HU hardware with the HEVC
DCT hardware in the literature, their Verilog RTL codes are also synthesized to a 90nm
standard cell library and the resulting netlists are placed and routed. The resulting ASIC
implementations of the LU hardware and the HU hardware work at 140 MHz and 130
MHz, respectively. Gate counts of the LU hardware and the HU hardware are calculated
as 175K and 197K, respectively, according to NAND (3x1) gate area excluding on-chip
memory. The comparison of the LU hardware and the HU hardware with the HEVC
DCT hardware in the literature is shown in Table 5.6.

The proposed 2D DCT hardware has smaller area and power consumption than
the 2D DCT hardware proposed in [70]-[74]. The DCT hardware proposed in [74] only
performs 1D DCT, and its performance is not given. Since the 2D DCT hardware
proposed in [70] and [73] use multipliers, they have larger area than the proposed 2D
DCT hardware. Since the 2D DCT hardware proposed in [72] performs DCT operations
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for several TUs in parallel for smaller TU sizes, it achieves higher performance than the

proposed 2D DCT LU hardware at the expense of much larger area and power

consumption. It has same performance as the proposed 2D DCT HU hardware with

larger area.
Table 5.6 Hardware Comparison
[70] [71] [72] [73] [74] LU HU
Hardware | Hardware
Technology |90 nm 45 nm 90 nm 90 nm 90 nm 90 nm 90 nm
Gate Count | 343.5K 2055 K 347K 328.2K 149K 175K 197 K
Max  Freq. | 311 333 187 400 100 140 130
(MHz)
Frames per 30 30 60 30 60 60
Sec. 4096x2048 4096x2048 7680x4320 3840x2160 3840x2160 | 7680x4320
Throughput | 4/8/16/32 4/8/16/32 32 8/16/32/32 4/8/16/32 4/8/16/32 16/16/16/32
(pixels/cycle)
Power 85.3 mW 67.6 mwW 76.9 mwW 25.0 mw 13.1mw 65.8 mw
Dissipation
g_ransform 4,8,16,32 4,8,16,32 |4,8,16,32 |4,8,16,32 4,8,16,32 |4,8,16,32 |4,8,16,32
ize

Transform | 2D 2D 2D 2D 1D 2D 2D
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CHAPTER VI

A LOW ENERGY HEVC INVERSE TRANSFORM HARDWARE

HEVC standard uses Discrete Cosine Transform (DCT) / Inverse Discrete
Cosine Transform (IDCT) same as the H.264 standard. However, H.264 standard uses
only 4x4 and 8x8 Transform Unit (TU) sizes for DCT/IDCT. HEVC standard uses 4x4,
8x8, 16x16, and 32x32 TU sizes for DCT/IDCT. Larger TU sizes achieve better energy
compaction. However, they increase the computational complexity exponentially. In
addition, HEVC uses Discrete Sine Transform (DST) / Inverse Discrete Sine Transform
(IDST) for 4x4 intra prediction in certain cases.

Transform operations (DCT/IDCT and DST/IDST) are heavily used in an HEVC
encoder [11], [75, 76]. IDCT and IDST have high computational complexity. IDCT and
IDST operations account for 11% of the computational complexity of an HEVC video
encoder. They account for 25% of the computational complexity of an all intra HEVC
video encoder.

In this thesis, a novel energy reduction technique for HEVC IDCT and IDST for
all TU sizes is proposed. After forward transform and quantization, most of the forward
transformed and quantized high frequency coefficients in a TU become zero. In
addition, if the values of non-zero forward transformed and quantized low frequency
coefficients in a TU are small, they have small impact on the inverse quantized and
inverse transformed TU. Therefore, the proposed technique calculates IDCT and IDST

only for DC coefficient if the values of several predetermined forward transformed low

76



frequency coefficients in a TU are smaller than a threshold. Otherwise, it calculates
IDCT and IDST for all coefficients in the TU.

Since the proposed technique is used in mode decision stage of an HEVC
encoder and it is not used in coding stage of an HEVC encoder, it does not cause any
encoder-decoder mismatch. The proposed technique reduces the computational
complexity of IDCT and IDST operations in an HEVC encoder significantly. It
increases the bit rate slightly for most video frames. It decreases the PSNR slightly for
some video frames, and it increases the PSNR slightly for some video frames. In
addition, it can easily be used in HEVC encoders.

In this thesis, a low energy HEVC 2D inverse transform (IDCT and IDST)
hardware for all TU sizes is also designed and implemented using Verilog HDL. Clock
gating technique is used to reduce the energy consumption of the proposed hardware.
Then, in order to reduce number and size of the adders in the proposed hardware, Hcub
Multiplierless Constant Multiplication (MCM) algorithm [40] is used for calculating 8,
16 and 32 point IDCT. Hcub MCM algorithm reduced the energy consumption of the
proposed hardware up to 56%. Finally, the proposed energy reduction technique is used
to reduce the energy consumption of the proposed hardware. It reduced the energy
consumption of the proposed hardware up to 31%. The proposed HEVC 2D inverse
transform hardware can process 48 Quad HD (3840x2160) video frames per second.
Therefore, it can be used in portable consumer electronics products that require a real-
time HEVC encoder.

Several zero quantized DCT coefficient detection techniques are proposed for
H.264 and HEVC [66]-[69]. These techniques try to predict the blocks with zero
forward transformed and quantized coefficients before DCT and quantization operations
in the coding stage of an H.264 or HEVC encoder in order to avoid DCT and
quantization operations. However, the technique proposed in this thesis avoids the
inverse transform (IDCT and IDST) operations that have no impact or low impact on
the inverse quantized and inverse transformed TU in mode decision stage of an HEVC
encoder.

Several HEVC IDCT hardware are proposed in the literature [70], [77]-[79]. In
[77], only 1D IDCT is implemented for all TU sizes, and all IDCT outputs are
calculated using multipliers. In [78], 2D IDCT is implemented only for 16x16 and
32x32 TU sizes, and processing elements are implemented using shifters, adders and

multiplexers to reduce hardware area. In [79], 1D 8x8 IDCT for several video
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compression standards (H.264, VC-1, AVS and HEVC) is implemented. In [70], 2D
IDCT is implemented for all TU sizes, and the proposed hardware also calculates DCT
and Hadamard Transform. The low energy HEVC 2D inverse transform hardware
proposed in this thesis is compared with these HEVC IDCT hardware in Section 6.2.

6.1 Proposed Energy Reduction Technique

After forward transform and quantization, most of the forward transformed and
quantized high frequency coefficients in a TU become zero. In addition, if the values of
non-zero forward transformed and quantized low frequency coefficients in a TU are
small, they have small impact on the inverse quantized and inverse transformed TU.
Therefore, the proposed energy reduction technique calculates IDCT and IDST only for
DC coefficient if the values of several predetermined forward transformed low
frequency coefficients in a TU are smaller than a threshold. Otherwise, it calculates
IDCT and IDST for all coefficients in the TU.

The proposed energy reduction technique for HEVC IDCT for all TU sizes is
shown in Figure 6.1. The proposed technique checks the DC coefficient and three low
frequency AC coefficients in the predetermined positions in a TU. If DC coefficient is
not zero and all three low frequency AC coefficients are smaller than a threshold value,
the proposed technique performs IDCT only for DC coefficient in the TU. Otherwise, it
performs IDCT for all coefficients in the TU.

The proposed technique reduces the computational complexity of IDCT and
IDST significantly by performing IDCT and IDST only for DC coefficient in a TU.
Table 6.1 shows the number of addition and shift operations required for performing
IDCT for all coefficients in a TU and for only DC coefficient in a TU for all TU sizes.
Performing IDCT only for DC coefficient in a TU, on the average, achieves 98.87%
reduction in addition and 98.70% reduction in shift operations. It achieves more

computation reduction for larger TU sizes.

IDCT (Transform Coefficients) {

if (DC coefficient is not zero and
predetermined AC coefficients are smaller than threshold)

Residual « IDCT(DC Coefficient)
Else

Residual «— IDCT(Transform Coefficients)
endif }

Figure 6.1 Pseudocode of HEVC IDCT with The Proposed Technique
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Table 6.1 Addition and Shift Reductions for All TU Sizes

IDCT for All IDCT for DC Reduction
;l; Coefficients Coefficient (%)
® Add.  shift Add. Shift  Add. Shift

4x4 256 256 16 18 93.7 9297
8x8 2688 2432 64 66 97.6 97.29
16x16 24576 2099 256 258 989 98.77
32x32 204800 1884 1024 1026 995 99.46
Total 362496 3276 4096 4266 98.8 98.70

The proposed technique is integrated into IDCT operations performed for rate
distortion cost calculation in intra mode decision stage of HEVC reference software
encoder (HM) version 10.0 [80]. The threshold value is experimentally determined as
64 to achieve large computation reduction with negligible bit rate increase and PSNR
loss using this HEVC software encoder.

5 different low frequency AC coefficient sets shown in Figure 6.2 are evaluated
using this HEVC software encoder for Class A and B video sequences [37]. The same
AC coefficients are used for all TU sizes. For example, for coefficient set 1, the
proposed technique checks the three low frequency AC coefficients in positions [0, 1],
[0, 2] and [2, O] for all TU sizes. The bit rate and PSNR results for three different
quantization parameters (QP) are shown in Table 6.2. These results show that the
proposed technique increases the bit rate slightly for most video frames. It decreases the
PSNR slightly for some video frames, and it increases the PSNR slightly for some video
frames. Since the proposed technique performs well for all video sequences with

coefficient set 1, coefficient set 1 is selected for hardware implementation.

Coefficient Set #1 Coefficient Set #2 Coefficient Set #3
DC | AC1: AC2 DC | AC1 DC | AC1
AC2i{ AC3 AC2

AC3 AC3

Coefficient Set #4 Coefficient Set #5

DC | AC1! AC2 DC
AC3 ACl1

AC2

Figure 6.2 DC and Pre-Determined Coefficient Sets
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Table 6.2 Bitrate and PSNR Values

Coefficient Set 1 Coefficient Set2  Coefficient Set 3  Coefficient Set4  Coefficient Set 5

5 za IS za &S z 2 &S za &S z 2
Frame QP T BT ET 2% T &% & g% & &°F
< < < < < < < < < <
seam | 2 049 0003 041 -0.001 042 -0.001 040 _ 0.000 095 0002
S| Loco. 27 053  -0.001 048  -0.007 047 -0.005 047  -0.004 040 -0.002
3 32 064  -0.007 031  -0.009 039 -0.012 035 -0.013 080 -0.020
s 22 070 0015 039 0016 025 -0013 038 -0018 403 0130
B Traffic | 27 125 0016 060 -0.014 053 -0.011 068 -0.013 478  -0.107
b 32 341 0.059 252 -0.043 234 -0.041 263 -0.040 743 0179
2| People | 22 077 -0.005 007 0033 _ -003 001l 006 0009 372 0072
5| on 27 090  -0.019 017  -0.019 112 -0.028 118  -0.030 599 -0.104
Street | 32 305  -0.054 397  -0.040 366 -0.131 379 -013 1078 -0.231
22 039 -0.010 043 -0.006 034 -0.008 039 -0.009 204 0058
5| g?;']‘e 27 068  -0.017 044  -0.016 041 -0.019 047  -0.016 226 -0.081
g 32 057  -0.085 036  -0.081 049 -0.073 052  -0.070 192 -0172
X 22 040 -0.004 004 -0.003 001 0004 009 -0.001 182 0011
& Kimono | 27 063  -0.002 027  -0.004 023  0.004 028  -0.005 252 -0.023
oy 32 095  -0.009 029  0.003 013 -0.004 017  -0.007 268 -0.042
2 22 004 -0.039 036 -0.035 037 -0.033 030 -0.040 245  -0.108
5| Cactus | 27 086  -0.016 033  -0.012 101 -0.014 100 -0.017 509 -0.063
32 259  -0.046 284  -0.044 307 -0.049 307  -0.044 951  -0.136

The percentages of TU size selections (PTU) and the percentages of times the
proposed technique with coefficient set 1 performs IDCT only for DC coefficient for the
selected TU (PDC) are determined using this HEVC software encoder for Class A and
B video sequences for different QPs, and they are shown in Table 6.3. The results in
Table 6.1 and Table 6.3 show that the proposed technique reduces the computational
complexity of inverse transform operations in an HEVC encoder significantly.

The percentages of TU size selections changes from frame to frame. But, the
most selected TU size is 4x4 and the percentages of TU size selections get smaller with
larger TU sizes. The percentage of times the proposed technique performs IDCT only
for DC coefficient is highest for 4x4 TU size, and the percentage gets smaller with
larger TU sizes. This is because DCT produces larger low frequency AC coefficients for
larger TU sizes. Therefore, the three low frequency AC coefficients in the
predetermined positions in a TU become smaller than the threshold value less often for
larger TU sizes.

The percentage of times the proposed technique performs IDCT only for DC
coefficient gets larger with larger QPs. This is because DCT produces more zero low
frequency AC coefficients with larger QPs. Therefore, the three low frequency AC
coefficients in the predetermined positions in a TU become smaller than the threshold

value more often for larger QPs.
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Table 6.3 Percentages (%) of TU Sizes and IDCT for DC Coefficient

Frame QP 4x4 8x8 16x16  32x32 | Total
PTU | 74.36 2040 471 0.53 100.0
2 PDC 16.44 3.99 1.97 3.27 13.15
Steam PTU | 71.76 2226 536 0.62 100.00
Loco. 27 PDC | 27.95 8.54 4.20 7.44 22.23
PTU | 67.52 2515 655 0.78 100.00
% PDC | 40.81 15.38 8.75 3.30 32.03
PTU 69.23 19.28 4.65 6.84 100.00
2 PDC | 39.27 1122 264 2.37 25.28
Traffic - PTU 66.32 25.97 6.86 0.85 100.00
PDC | 43.19 18.87 7.86 7.52 34.15
PTU 60.77 29.42 8.67 1.14 100.00
% PDC | 54.39 2738 1454 402 42.42
PTU | 71.50 2252 533 0.65 100.00
2 PDC | 27.52 5.36 0.93 1.82 20.95
People PTU | 66.60 2584  6.72 0.84 100.00
::reet 27 PDC | 39.79 1382 476 6.12 30.44
PTU | 61.04 29.04 874 1.18 100.00
% PDC | 49.55 22.08 11.18 3.29 37.67
PTU | 71.48 2232 554 0.66 100.00
2 PDC | 23.29 10.75 5.63 7.58 19.41
Park PTU | 68.32 2443 642 0.83 100.00
Scene 27 PDC | 33.67 15.72 9.22 17.08 27.58
PTU | 63.05 2785 8.04 1.07 100.00
% PDC | 48.56 2247 1334 6.85 38.02
PTU | 67.20 2579  6.28 0.73 100.00
2 PDC | 59.20 1314  3.68 3.28 43.43
Kimono | 27 PTU | 60.86 30.17  8.00 0.97 100.00
PDC | 77.84 25.50 6.54 7.25 55.66
PTU 50.39 36.95 11.24 1.42 100.00
% PDC | 89.07 43.60 11.64 2.83 62.34
PTU | 71.55 2234 545 0.66 100.00
2 PDC | 21.68 11.41 4.55 444 18.34
Cactus - PTU | 66.03 2585 7.20 0.92 100.00
PDC | 34.03 1865  9.50 8.91 28.06
PTU | 59.70 29.72 931 1.27 100.00
% PDC | 44.88 2528 1445 3.80 35.70
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6.2 Proposed HEVC 2D IDCT and IDST Hardware

The proposed low energy HEVC 2D inverse transform (IDCT and IDST)
hardware for all TU sizes including clock gating, Hcub MCM algorithm, and the
proposed energy reduction technique is shown in Figure 6.3. The proposed hardware
uses an efficient butterfly structure for column and row transforms. The butterfly
structure used for column transforms is shown in Figure 6.4. IDCT inputs are selected
depending on size of the IDCT operation (4, 8, 16 or 32 point). Then, IDCT and IDST
multiplications are performed in the datapaths using only adders and shifters. As shown
in Figure 6.5, 4x4 datapaths perform both 4x4 IDCT and 4x4 IDST operations, and the
result of one of these inverse transforms is selected based on a control signal.

In order to reduce number and size of the adders in the proposed hardware, Hcub
MCM algorithm [40] is used for calculating 8, 16 and 32 point IDCT. Hcub algorithm
tries to minimize number and size of the adders in a multiplier block which takes a
single input, multiplies this input with multiple constants using shift and addition
operations, and outputs the results of these multiplications. Hcub algorithm determines
necessary shift and addition operations in a multiplier block. Hcub algorithm is used for
8, 16 and 32 point IDCT in the proposed hardware, because it did not achieve additional
optimization for 4 point IDCT and 4 point IDST hardware.

4 C Axd 4xdR &l
DATAPATH [ B DATAPATH [ B

A C 4x4R
DATARATH DATAPATH

T L I1
T TT
T T T 1T

T TT

I EME BLTTERAY I

IaﬁBBU’I’I’ERFLYI
T T T T T T

16X16 BUTTERFLY

T L I1
T TT
T T T 1T

Scd COLUMN
DATAPATH

16X16 BUTTERFLY

Bx3 ROW DATAPATH

il Ll LI

PIILEL LH L

IRRRRRRRRR AR AR R AR AR RARA Y

WL
OUTPUT MEMORY [RESIDUALS)

-

32X32 BUTTERFLY

TRANSPOSE
MEMORY

T LCTT
T TT
T T T T

32X%32 BUTTERFLY

T TT

16x16 COLUMM

DATAPATH 16x16 ROW DATAPATH

INVERSE TRANSFORM INPUT SPLITTER

WA
IRRRRRRR RN R Ry

sPPPIIILLEEIILYY

-
T TT
| - -

) -

Figure 6.3 Proposed HEVC 2D IDCT and IDST Hardware
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Figure 6.4 Column Butterfly Structure

Since different constants are used in 8, 16 and 32 point IDCT, three different
multiplier blocks are used in the proposed hardware. Multiplier block used for 8 point

IDCT is shown in Figure 6.6. Multiplier block for 8 point IDCT multiplies a single

input with four different constants, multiplier block for 16

single input with eight different constants, and multiplier block for 32 point IDCT
multiplies a single input with sixteen different constants. There are 4 multiplier blocks
in 8x8 datapath, 8 multiplier blocks in 16x16 datapath and 16 multiplier blocks in 32x32

datapath.

point IDCT multiplies a

| IDST_En |
| |
| 4x4 IDCT |
| DATAPATH |
| |
| |
| |

|
| 4x4 IDST |

DATAPATH

| 4x4 INVERSE |
| TRANSFORM
| DATAPATH

Figure 6.5 4x4 Datapath
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25x = (16x + (x+8x))

18x = 2(x+8x)

89x = 16(x+4x)+x+8x)

75x = 16(x+4x)-(x+4x)

Figure 6.6 Multiplier Block in 8x8 Datapath

In order to calculate each output of 8 point IDCT, an output from each multiplier
block is selected, and these outputs are added or subtracted. Similarly, in order to
calculate each output of 16 point IDCT, eight outputs from eight multiplier blocks are
added. Similarly, in order to calculate each output of 32 point IDCT, sixteen outputs
from sixteen multiplier blocks are added.

In the proposed hardware, after 1D column IDCT, the resulting coefficients are
stored in a transpose memory, and they are used as input for 1D row IDCT. As shown in
Figure 6.7, the transpose memory is implemented using 32 Block RAMs (BRAM). 4, 8,
16 and 32 BRAMs are used for 4 point, 8 point, 16 point and 32 point IDCT,
respectively. In the figure, the numbers in each box show the BRAM that coefficient is
stored.

The results of 1D column IDCT are generated column by column. For 32 point
IDCT, first, the coefficients in column 0 (CO) are generated in a clock cycle and stored
in 32 different BRAMs. Then, the coefficients in column 1 (C1) are generated in the

next clock cycle and stored in 32 different BRAMS using a rotating addressing scheme.

TRANSPOSE MEMORY

W e T

| D
T B B B . m-
"_1 E’ I—il E’ ” E ﬂm:;ow

hom w n DS

co C1 c2 Cc31

COLUMN CLIP

Figure 6.7 Transpose Memory
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This continuous until the coefficients in column 31 (C31) are generated and stored in 32
different BRAMSs using the rotating addressing scheme. This ensures that the 32
coefficients necessary for 1D row IDCT in a clock cycle can always be read in one
clock cycle from 32 different BRAMs.

Because of the input data loading and pipeline stages, the proposed hardware
starts generating the results of 1D row IDCT in 40 clock cycles. It then continues
generating the results row by row in every clock cycle until the end of the last TU in the
video frame without any stalls. The proposed HEVC 2D IDCT hardware finishes 4, 8,
16 and 32 point IDCT operations in 4, 8, 16 and 32 clock cycles, respectively.

6.3 Implementation Results

The proposed low energy HEVC 2D inverse transform (IDCT and IDST)
hardware for all TU sizes including clock gating (original hardware), including clock
gating and Hcub MCM algorithm (MCM hardware), and including clock gating, Hcub
MCM algorithm and the proposed energy reduction technique (proposed hardware) are
implemented in Verilog HDL.

The Verilog RTL implementations are verified with RTL simulations. RTL
simulation results matched the results of inverse transform implementation in HEVC
reference software encoder (HM) version 10.0 [80]. The Verilog RTL codes are
synthesized and mapped to a Xilinx XC6VLX130T FF1156 FPGA. The FPGA
implementations are verified with post place & route simulations. Post place & route
simulation results matched the results of inverse transform implementation in HEVC
reference software encoder (HM) version 10.0 [80].

All three FPGA implementations work at 150 MHz. Therefore, in the worst case
(when all TU sizes in a video frame are 32x32), they can process 48 Quad HD
(3840x2160) video frames per second. FPGA implementation of the original hardware
uses 15101 slices, 45698 LUTSs, 12187 DFFs, and 32 BRAMs. FPGA implementation
of the MCM hardware uses 11343 slices, 38790 LUTs, 11762 DFFs, and 32 BRAMs.
FPGA implementation of the proposed hardware uses 11397 slices, 38821 LUTs, 11763
DFFs, and 32 BRAMs. BRAMs are implemented as dual-port Select RAMs. These
results show that Hcub MCM algorithm considerably decreased the area, and the
proposed technique slightly increased the area.

The power consumptions of original hardware, MCM hardware, and proposed

hardware are estimated using a Xilinx XPower Analyzer. Post place & route timing
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simulations are performed for Cactus and Kimono (1920x1080) videos at 50 MHz [37]
and signal activities are stored in VCD files. These VCD files are used for estimating
the power consumptions of all three FPGA implementations. The power and energy
consumption results for one frame of each video are shown in Tables 6.4 and 6.5. Hcub
MCM algorithm reduced the energy consumption of the proposed hardware up to 56%.
The proposed energy reduction technique further reduced the energy consumption of the
proposed hardware up to 31%.

In order to compare the proposed hardware with the HEVC IDCT hardware in
the literature, its Verilog RTL code is also synthesized to a 90nm standard cell library
and the resulting netlist is placed & routed. The resulting ASIC implementation works

at 150 MHz, and its gate count is calculated as 142K according to NAND (3x1) gate

Table 6.4 Energy Consumption Reductions for Cactus (1920x1080)

QP 22 27 32
Original  MCM  Proposed | Original MCM  Proposed | Original MCM Proposed

Clock (mW) 84 66 67 84 66 67 84 66 67
Logic (mW) 83 35 35 93 36 38 81 34 35
Signal (mW) 68 17 17 76 17 19 67 16 17
BRAM

56 16 16 56 17 18 55 18 19
(mw)
Total Power

291 134 135 309 136 142 287 134 138
(mw)
Time (ms) 5.159 5.159 4.254 5.422 5.422 4523 5.862 5.862 4.556
Energy (uJ) 1501.27 691.31 574.29 1675.40 737.39 642.27 1682.40  785.51 628.73
Energy Red. 53.95%  61.75% 55.99%  61.66% 53.31 62.63

Table 6.5 Energy Consumption Reductions for Kimono (1920x1080)
QP 22 27 32
Original  MCM  Proposed | Original MCM  Proposed | Original MCM Proposed

Clock (mW) 84 66 67 84 66 67 84 66 67
Logic (mW) 89 36 34 91 38 35 81 37 34
Signal (mW) 51 17 16 52 17 17 46 17 17
BRAM

54 15 15 53 16 17 53 18 18
(mw)
Total Power

278 134 132 280 137 136 264 138 136
(mw)
Time (ms) 5.153 5.153 4.085 5.524 5.524 4.080 5.895 5.895 4.027
Energy (uJ) 1432.53 690.50 539.22 1546.72 756.79 554.96 1556.28  813.51 547.67
Energy Red. 51.80% 62.36% 51.07%  64.12% 47.72% 64.80%
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area excluding on-chip memory. The comparison of the proposed hardware with the
HEVC IDCT hardware in the literature is shown in Table 6.6. Only the proposed
hardware implements 4x4 IDST.

Since the IDCT hardware proposed in [77] only implements 1D IDCT, it has
lower gate count than the proposed hardware. But, it is slower than the proposed
hardware. Although the IDCT hardware proposed in [78] only implements 16 and 32
point 2D IDCT, it has higher gate count than the proposed hardware and it is slower
than the proposed hardware. Since the IDCT hardware proposed in [79] only
implements 8 point 1D IDCT, it has lower gate count than the proposed hardware. But,
it is slower than the proposed hardware. The IDCT hardware proposed in [70] has

higher gate count than the proposed hardware and it is slower than the proposed

hardware.
Table 6.6 Hardware Comparison
[77] [78] [79] [70] Proposed
0.13 um 0.18 um 0.18 um 90 nm 90 nm

Technology  “\5)c ASIC ASIC ASIC ASIC
Gate Count  109.2 K 287 K 12.3K 235.4 K 142 K
Max Speed

(MH2) 350 300 211 311 150
Frames per 30 30 67 30 48

Second 4096x2048 | 3840x2160 | 1920x1080 |4096x2048 | 3840x2160
Tragiszf:rm 4,8,16,32| 16,32 8 4,8,16,32]| 4,8,16,32
Transform 1D 2D 1D 2D 2D
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CHAPTER VII

CONCLUSIONS AND FUTURE WORKS

In this thesis, we proposed a novel adaptive 2D digital image processing
algorithm for 2D median filter, Gaussian blur and image sharpening. We designed low
energy 2D median filter, Gaussian blur and image sharpening hardware using the
proposed algorithm. We proposed approximate HEVC intra prediction and HEVC
fractional interpolation algorithms. We designed low energy approximate HEVC intra
prediction and HEVC fractional interpolation hardware. We also proposed several
HEVC fractional interpolation hardware architectures. We proposed novel
computational complexity and energy reduction techniques for HEVC DCT and inverse
DCT/DST. We designed high performance and low energy hardware for HEVC DCT
and inverse DCT/DST including the proposed techniques. We quantified computation
reductions achieved and video quality loss caused by the proposed algorithms and
techniques. We implemented the proposed hardware architectures in Verilog HDL. We
mapped the Verilog RTL codes to Xilinx Virtex 6 and Xilinx ZYNQ FPGAs, and
estimated their power consumptions using Xilinx XPower Analyzer tool. The proposed
algorithms and techniques significantly reduced the power and energy consumptions of
these FPGA implementations in some cases with no PSNR loss and in some cases with
very small PSNR loss.

As future work, application-specific approximate video processing and

compression algorithms can be proposed. An HEVC video encoder and decoder can be
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implemented by implementing the HEVC video encoder and decoder modules which
are not implemented in this thesis and by integrating them with the ones implemented in
this thesis. Versatile Video Coding (VVC) is a new video compression standard which
will have much higher computational complexity than HEVC. Therefore, energy
reduction techniques for VVC standard and low energy VVC hardware implementations

can be proposed.

89



BIBLIOGRAPHY

[1] C. H. Huang, C. Y. Chang, “An Area and Power Efficient Adder-Based Stepwise Linear
Interpolation for Digital Signal Processing,” IEEE Transactions on Consumer
Electronics, vol. 61, no. 1, pp. 69-75, Feb. 2016.

[2] S. Li, X. Kang, “Fast Multi-Exposure Image Fusion with Median Filter and Recursive
Filter,” IEEE Transactions on Consumer Electronics, vol. 58, no. 2, pp. 626-632, May
2012,

[3] Y. Yang, “Three-Dimensional Image Processing VLSI System with Network-on-Chip
System and Reconfigurable Memory Architecture,” IEEE Transactions on Consumer
Electronics, vol. 57, no. 3, pp. 1345- 1353, Aug. 2011.

[4]1 J. O. Cadenas, R. S. Sherratt, P. Huerta, W. C. Kao, “Parallel Pipelined Array
Architectures for Real-Time Histogram Computation in Consumer Devices,” IEEE
Transactions on Consumer Electronics, vol. 57, no. 4, pp. 1460-1464, Nov. 2011.

[5] Cisco, "Cisco visual networking index: Forecast and methodology, 2016 - 2021,” Sep.
2017 [Online]. Awvailable: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

[6] High Efficiency Video Coding, ITU-T Rec. H.265 and ISO/IEC 23008-2 (HEVC), ITU-T
and ISO/IEC, Apr. 2013.

[7] G.J.Sullivan, J.R. Ohm, W.J. Han, T. Wiegand, “ Overview of the High Efficiency Video
Coding (HEVC) Standard, ”IEEE Trans. on Circuits and Systems for Video Technology,
vol.22, no.12, pp.1649-1668, Dec. 2012.

[8] F. Pescador, M. Chavarrias, M. J. Garrido, E. Juarez, C. Sanz, “Complexity Analysis of
an HEVC Decoder Based on a Digital Signal Processor”, IEEE Trans. on Consumer
Electronics, vol.59, no.2, pp. 391-399, May 2013.

90



[9] Advanced Video Coding, ITU-T Rec. H.264 and ISO/IEC 14496-10 (H.264), ITU-T and
ISO/IEC, Apr. 2017.

[10]V. Sze, M. Bugadavi, G. J. Sullivan, High Efficiency Video Coding (HEVC) Algorithms
and Architectures, Springer, 2014.

[11] J. Vanne, M. Viitanen, T.D. Himéldinen and A. Hallapuro, “Comparative Rate-
Distortion-Complexity Analysis of HEVC and AVC Video Codecs”, IEEE Trans. on
Circuits and Systems for Video Technology, vol.22, no.12, pp.1885-1898, Dec. 2012.

[12] E. Kalali, I Hamzaoglu, “A Low Energy 2D Adaptive Median Filter Hardware,” Design,
Automation and Test in Europe (DATE) Conference, pp. 725-729, March 2015.

[13]E. Kalali, I. Hamzaoglu, “Low Complexity 2D Adaptive Image Processing Algorithm
and Its Hardware Implementation,” IEEE Transactions on Consumer Electronics, vol. 63,
no. 3, pp. 277-284, Aug. 2017.

[14]E. Kalali, A. C. Mert, I. Hamzaoglu, “Pixel Correlation Based Computation and Energy
Reduction Techniques for HEVC Fractional Interpolation,” IEEE. Int. Conf. on Consumer
Electronics — Berlin, Sep. 2017.

[15] E. Kalali, I. Hamzaoglu, “A Low Energy Sub-Pixel Interpolation Hardware,” IEEE Int.
Conf. on Image Processing (ICIP), pp. 1218-1222, Oct. 2014.

[16] E. Kalali, I. Hamzaoglu, “Approximate HEVC Fractional Interpolation Filters and Their
Hardware Implementations,” IEEE Trans. on Consumer Electronics, vol. 64, no. 3, Aug.
2018.

[17]E. Kalali, I. Hamzaoglu, “A Computation and Energy Reduction Technique for HEVC
Discrete Cosine Transform,” IEEE Trans. on Consumer Electronics, vol. 62, no. 2, pp.
166-174, May 2016.

[18]E. Kalali, E. Ozcan, O. M. Yalcinkaya, I. Hamzaoglu, “A Low Energy HEVC Inverse
Transform Hardware,” |IEEE Trans. on Consumer Electronics, vol. 60, no. 4, pp. 754-
761, Oct. 2014.

[19]R. C. Gonzalez, R. E. Woods, Digital Image Processing, Prentice Hall, 2002.

[20] C. Chakrabarti, “Sorting network based architecture for median filters,” IEEE Trans. on
Circuits and Systems I1: Analog and Digital Signal Processing, vol.40, no. 11, pp. 723-
727, Nov. 1993.

[21]J. Scott, M. Pusateri, M. U. Mushtaq, “Comparison of 2D median filter hardware
implementations for real time stereo video,” 37th IEEE Applied Imagery Pattern
Recognition Workshop, Oct. 2008.

91



[22]S. Esakkirajan, T. Veerakumar, A. N. Subramanyan, C. H. PremChand, “Removal of
high density salt and pepper noise through modified decision based unsymmetric trimmed
median filter,” IEEE Signal Processing Letters, vol. 18, no. 5, pp. 287-290, March 2011.

[23]S. Akkoul, L. Roger, R. Leconge, R. Harba, “A new adaptive switching median filter,”
IEEE Signal Processing Letters, vol. 17, no. 6, pp. 587- 590, June 2010.

[24]Z. Vasicek, L. Sekanina, “Novel hardware implementation of adaptive median filters,”
11th IEEE Workshop on Design and Diagnostics of Electronics Circuits and Systems,
Apr. 2008.

[25] V. G. Moshnyaga, K. Hashimoto, “An efficient implementation of 1-D median filter,”
52nd IEEE Int. Midwest Symp. on Circuits and Systems, Aug. 2009.

[26]S. A. Fahmy, P. Y. K. Cheung, W. Luk, “High-throughput onedimensional median and
weighted median filters on FPGA,” IET Computers & Digital Techniques, vol. 3, no. 4,
pp. 384-394, June 2009.

[27]D. Prokin, M. Prokin, “Low hardware complexity pipelined rank filter,” IEEE Trans. on
Circuits and Systems Il: Express Brief, vol. 57, no. 6, pp. 446-450, May 2010.

[28] A. Sanny, V. K. Prasanna, “Energy-efficient median filter on FPGA,” Int. Conf. on
Reconfigurable Computing and FPGAs, Dec. 2013.

[29]Z. Zhang, E. Klassen, A. Srivastava, “Gaussian Blurring-Invariant Comparison of
Signals and Images,” IEEE Transactions on Image Processing, vol. 22, no. 8, pp. 3145-
3157, Aug. 2013.

[30] T. Popkin, A. Cavallaro, D. Hands, “Accurate and Efficient Method for Smoothly Space-
Variant Gaussian Blurring,” IEEE Transactions on Image Processing, vol. 19, no. 5, pp.
1362-1370, May 2010.

[31]S. Song, S. Lee, J. P. Ko, J. W. Jeon, “A Hardware Architecture Design for Real-Time
Gaussian Filter,” IEEE Int. Conf. on Industrial Technology, Feb. 2014.

[32] A. Jaiswal, B. Garg, Vi Kaushal, G. K. Sharma, “SPAA-Aware 2D Gaussian Smoothing
Filter Design Using Efficient Approximation Techniques,” 28th Int. Conf. on VLSI
Design, pp. 333-338, Jan. 2015.

[33]H. Luo, X. Gai, Z. Chang, B. Hui, “A Real-Time Multi-Scale 2-D Gaussian Filter Based
on FPGA,” SPIE Int. Symp. on Optoelectronic Technology and Application: Image
Processing and Pattern Recognition, Nov. 2014.

[34]S. Khorbotly, F. Hassan, “A Modified Approximation of 2D Gaussian Smoothing Filters
for Fixed-Point Platforms,” IEEE Southeastern Symp. on System Theory, pp. 151-159,
March 2011.

92



[35]S. L. Chen, “VLSI Implementation of a Low-Cost High-Quality Image Scaling
Processor,” IEEE Transactions on Circuits and Systemsll:Express Briefs, vol. 60, no. 1,
pp. 31-35, Jan. 2013.

[36]S. L. Chen, “VLSI Implementation of an Adaptive Edge-Enhanced Image Scalar for
Real-Time Multimedia Applications,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 23, no. 9, pp. 1510-1522, Sep. 2013.

[37]F. Bossen, “Common test conditions and software reference configurations”, JCTVC-
11100, May 2012.

[38] Benchmark Images [Online]. Available: http://www.dcs.gmul.ac.uk/~phao/CIP/Images

[39] K. McCann, B. Bross, W.J. Han, LK. Kim, K. Sugimoto, G. J. Sullivan, “High
Efficiency Video Coding (HEVC) Test Model 15 (HM 15) Encoder Description”,
JCTVC-Q1002, June 2014.

[40]Y. Voronenko, M. Piischel, “Multiplierless Constant Multiplication,” ACM Trans. on
Algorithms, vol. 3, no. 2, May 2007.

[41]E. Kalali, Y. Adibelli, I. Hamzaoglu, “A High Performance and Low Energy Intra
Prediction Hardware for High Efficiency Video Coding,” 22" Int. Conf. on Field
Programmable Logic and Applications (FPL), pp. 719-722, Aug. 2012.

[42]E. Kalali, Y. Adibelli, I. Hamzaoglu, “A Low Energy Intra Prediction Hardware for High
Efficiency Video Coding,” Journal of Real-Time Image Processing, vol. 15, no. 2, pp.
221-234, Aug. 2018.

[43] B. Min, Z. Xu, R. C. C. Cheung, “A Fully Pipelined Hardware Architecture for Intra
Prediction of HEVC”, IEEE Trans. on Circuits and Systems for Video Technology, July
2016.

[44]M. Abeydeera, M. Karunaratne, G. Karunaratne, K. De Silva, A. Pasqual, “4K Real
Time HEVC Decoder on FPGA”, IEEE Trans. on Circuits and Systems for Video
Technology, vol. 26, no. 1, pp. 236-249, Jan. 2016.

[45]F. Amish, E. B. Bourennane, “Fully Pipelined Real Time Hardware Solution for High
Efficiency Video Coding (HEVC) Intra Prediction”, Journal of System Architecture, vol.
64, pp. 133-147, March 2016.

[46]M. U. K. Khan, M. Shafique, M. Grellert, J. Henkel, “HardwareSoftware Collaborative
Complexity Reduction Scheme for The Emerging HEVC Intra Encoder,” Design,
Automation and Test in Europe (DATE) Conference, pp. 125-128, March 2013.

93



[47]G. Pastuszak, A. Abramowski, “Algorithm and Architecture Design of The H.265/HEVC
Intra Encoder”, IEEE Trans. on Circuits and Systems for Video Technology, vol. 26, no.
1, pp. 210-222, Jan. 2016.

[48] C.T. Huang, M. Tikekar, A. Chandrakasan, “Memory-Hierarchical and Mode-Adaptive
HEVC Intra Prediction Architecture for Quad Full HD Video Decoding”, IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, vol. 22, no. 7, pp. 1515-1525, July 2014.

[49]P. Chiang, Y. Ting, H. Chen, S. Jou, I. Chen, H. Fang, T. Chang, “A QFHD 30 fps
HEVC Decoder Design”, IEEE Trans. on Circuits and Systems for Video Technology,
vol. 26, no. 4, pp. 724-735, April 2016.

[50]N. Zhou, D. Ding, L. Yu, “On Hardware Architecture and Processing Order of HEVC
Intra Prediction Module”, Picture Coding Symposium, pp. 101-104, Dec. 2013.

[51]Z. Liu, D. Wang, H. Zhu, X. Huang, “41.7BN-pixels/s Reconfigurable Intra Prediction
Architecture for HEVC 2560x1600 Encoder”, IEEE Int. Conf. on Acoustics, Speech and
Signal Processing, pp. 2634-2638, May 2013.

[52] H. Azgin, E. Kalali, I. Hamzaoglu, “A Computation and Energy Reduction Technique
for HEVC Intra Prediction,” IEEE Trans. on Consumer Electronics, vol. 63, no. 1, pp. 36-
43, Feb. 2017.

[53]H. Azgin, A. C. Mert, E. Kalali, I. Hamzaoglu, “An Efficient FPGA Implementation of
HEVC Intra Prediction,” IEEE Int. Conf. on Consumer Electronics, pp. 1-5, Jan. 2018.

[54] Spiral Multiplier Block Generator, http://spiral.ece.cmu.edu/mcm/gen.html.

[55] A. Diefy, A. Shalaby, and M. S. Sayed, “Efficient architectures for HEVC luma
interpolation filters,” Int. Conf. on Microelectronics, 2015.

[56] A. Diefy, A. Shalaby, and M. S. Sayed, “Low cost luma interpolation filter for motion
compensation in HEVC,” Int. Symp. on Midwest Circuits and Systems, 2016.

[57]C. M. Diniz, M. Shafique, S. Bampi, and J. Henkel, “High-throughput interpolation
hardware architecture with coarse-grained reconfigurable datapaths for HEVC,” IEEE Int.
Conf. on Image Processing, Oct. 2013.

[58] G. Pastuszak and M. Trochimiuk, “Architecture design and efficiency evaluation for the
high-throughput interpolation in the HEVC encoder,” Euromicro Conference on Digital
System Design, Sep. 2013.

[59]C. Y. Lung and C. A. Shen, “A high-throughput interpolator for fractional motion
estimation in high efficient video coding (HEVC) systems,” IEEE Asia Pacific
Conference on CAS, 2014.

94



[60]W. Zhou, X. Zhou, and X. Lian “An efficient interpolation filter VLSI architecture for
HEVC,” IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2015.

[61]D. Kang, Y. Kang, and Y. Hong, “VLSI implementation of fractional motion estimation
interpolation for high efficiency video coding,” Electronic Letters, vol. 51, no. 5, pp.
1163-1165, Jul. 2015.

[62]S. Wang, D. Zhou, J. Zhou, T. Yoshimura, and S. Goto, “VLSI implementation of HEVC
motion compensation with distance biased direct cache mapping for 8K UHDTV
applications,” IEEE Trans. on Circuits and Systems for Video Technology, Dec. 2015.

[63] G. Pastuszak and M. Trochimiuk, “Algorithm and architecture design of the motion
estimation for the H.265/HEVC 4K-UHD encoder,” Journal of Real-Time Image
Processing, vol. 12, no. 2, pp. 517-529, Aug. 2016.

[64]C. M. Diniz, M. Shafique, S. Bampi, and J. Henkel, “A reconfigurable hardware
architecture for fractional pixel interpolation in high efficiency video coding,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 2, pp.
238-251, Feb. 2015.

[65]A. C. Mert, E. Kalali, I. Hamzaoglu, “An HEVC Fractional Interpolation Hardware
Using Memory Based Constant Multiplication,” IEEE Int. Conf. on Consumer
Electronics, Jan. 2018.

[66]Y. H. Moon, G. Y. Kim, J. H. Kim, "An Improved Early Detection Algorithm for All-
Zero Blocks in H.264 Video Encoding”, IEEE Trans. on Circuits and Systems for Video
Technology, vol. 15, no. 8, pp. 1053-1057, Aug. 2005.

[67]M. Zhang, T. Zhou, W. Wang, "Adaptive Method for Early Detecting Zero Quantized
DCT Coefficients in H.264/AVC Video Encoding”, IEEE Trans. on Circuits and Systems
for Video Technology, vol. 19, no. 1, pp. 103-107, Jan. 2009.

[68] K. Lee, H. J. Lee, J. Kim, Y. Choi, "A Novel Algorithm for Zero Block Detection in
High Efficiency Video Coding", IEEE Journal of Selected Topics in Signal Processing,
vol. 7, no. 6, pp. 1124-1134, Dec. 2013.

[69]J. Li, J. Takala, M. Gabbouj, H. Chen, "A Detection Algorithm for Zero-Quantized DCT
Coefficients in JPEG", IEEE Int. Conf. on Acoustics Speech and Signal Processing
(ICASP), pp. 1189-1192, Apr. 2008.

[70]J. Zhu, Z. Liu, D. Wang, "Fully Pipelined DCT/IDCT/Hadamard Unified Transform
Architecture for HEVC Codecs", IEEE Int. Symp. on Circuits and Systems (ISCAS), pp.
677-680, May 2013.

95



[71]W. Zhao, T. Onoye, T. Song, "High-Performance Multiplierless Transform Architecture
for HEVC", IEEE Int. Symp. on Circuits and Systems (ISCAS), pp. 1668-1671, May 2013.

[72]P. K. Meher, S. Y. Park, B. K. Mohanty, K. S. Lim, C. Yeo, "Efficient Integer DCT
Architectures for HEVC", IEEE Trans. on Circuits and Systems for Video Technology,
vol. 24, no. 1, pp. 168-178, Jan. 2014.

[73] G. Pastuszak, "Hardware Architecture for the H.265/HEVC Discrete Cosine
Transform”, IET Image Processing, vol. 9, no. 6, pp. 468-477, June 2015.

[74]A. D. Darji, R. P. Makwana, "High-Performance Multiplierless DCT Architecture for
HEVC", Int. Symp. on VLSI Design and Test, pp. 1-5, June 2015.

[75]Y.J. Ahn, W. J. Han, D. G. Sim, “Study of Decoder Complexity for HEVC and AVC
Standarts Based on Tool-by-Tool Comparison”, SPIE Applications of Digital Image
Processing XXXV, vol. 8499, Aug. 2012.

[76]F. Bossen, B. Bross, K. Suhring, D. Flynn, "HEVC Complexity and Implementation
Analysis", IEEE Trans. on Circuits and Systems for Video Technology, vol.22, no.12,
pp.1685-1696, Dec. 2012.

[77]S. Shen, W. Shen, Y. Fan, X. Zeng, "A Unified 4/8/16/32-Point Integer IDCT
Architecture for Multiple Video Coding Standards", IEEE Int. Conf. on Multimedia and
Expo (ICME), pp. 788-793, July 2012.

[78]J. S. Park, W. J. Nam, S. M. Han, S. Lee, "2-D Large Inverse Transform (16x16,32x32)
for HEVC (High Efficiency Video Coding)", Journal of Semiconductor Technology and
Science, vol. 12, no. 2, pp. 203-211, June 2012.

[79] M. Martuza, K. A. Wahid, "Low Cost Design of a Hybrid Architecture of Integer Inverse
DCT for H.264, VC-1, AVS, and HEVC", Journal of VLSI Design, vol. 2012, no.
242989, March 2012.

[80] K. McCann, B. Bross, W.J. Han, I.K. Kim, K. Sugimoto, G. J. Sullivan, “High
Efficiency Video Coding (HEVC) Test Model 10 (HM 10) Encoder Description”,
JCTVC-L1002, March 2013.

96



