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1 ABSTRACT 

 

 

LOW ENERGY VIDEO PROCESSING AND COMPRESSION 

HARDWARE DESIGNS  
 

 

Ercan Kalalı 
Electronics, PhD Dissertation, 2018 

 

Thesis Supervisor:  Assoc. Prof. İlker HAMZAOĞLU 

 

 

Keywords: Median Filter, Gaussian Blur, Image Sharpening, HEVC, Intra Prediction, 

Fractional Interpolation, DCT, IDCT, Approximate Computing, Hardware 

Implementation, FPGA, Low Energy  

 

 

Digital video processing and compression algorithms are used in many 

commercial products such as mobile devices, unmanned aerial vehicles, and 

autonomous cars. Increasing resolution of videos used in these commercial products 

increased computational complexities of digital video processing and compression 

algorithms. Therefore, it is necessary to reduce computational complexities of digital 

video processing and compression algorithms, and energy consumptions of digital video 

processing and compression hardware without reducing visual quality.  

In this thesis, we propose a novel adaptive 2D digital image processing algorithm 

for 2D median filter, Gaussian blur and image sharpening. We designed low energy 2D 

median filter, Gaussian blur and image sharpening hardware using the proposed 

algorithm. We propose approximate HEVC intra prediction and HEVC fractional 

interpolation algorithms. We designed low energy approximate HEVC intra prediction 

and HEVC fractional interpolation hardware. We also propose several HEVC fractional 

interpolation hardware architectures. We propose novel computational complexity and 

energy reduction techniques for HEVC DCT and inverse DCT/DST. We designed high 

performance and low energy hardware for HEVC DCT and inverse DCT/DST including 

the proposed techniques. 
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We quantified computation reductions achieved and video quality loss caused by 

the proposed algorithms and techniques. We implemented the proposed hardware 

architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6 

and Xilinx ZYNQ FPGAs, and estimated their power consumptions using Xilinx 

XPower Analyzer tool. The proposed algorithms and techniques significantly reduced 

the power and energy consumptions of these FPGA implementations in some cases with 

no PSNR loss and in some cases with very small PSNR loss. 
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2 ÖZET 

 

DÜŞÜK ENERJİLİ GÖRÜNTÜ İŞLEME VE SIKIŞTIRMA DONANIM 

TASARIMLARI 
 

 

 

Ercan Kalalı 
Elektronik Müh., Doktora Tezi, 2018 

 

Tez Danışmanı: Doç. Dr. İlker HAMZAOĞLU 

 

 

Anahtar Kelimeler: Orta Değer Filtresi, Gauss Bulanıklığı, Görüntü Keskinleştirme, 

HEVC, Çerçeve İçi Öngörü, Kesirli Aradeğerleme, Ayrık Kosinüs Dönüşümü, Ters 

Ayrık Kosinüs Dönüşümü, Yaklaşık Hesaplama, Donanım Gerçekleme, FPGA, Düşük 

Enerji 

 

 

Sayısal video işleme ve sıkıştırma algoritmaları mobil cihazlar, insansız hava 

araçları ve otonom araçlar gibi birçok ticari üründe kullanılmaktadır. Bu ticari ürünlerde 

kullanılan video çözünürlüklerinin artması sayısal video işleme ve sıkıştırma 

algoritmalarının hesaplama karmaşıklığını arttırmaktadır. Bu yüzden, sayısal video 

işleme ve sıkıştırma algoritmalarının hesaplama karmaşıklığını ve sayısal video işleme 

ve sıkıştırma donanımlarının enerji tüketimlerini görsel kaliteyi düşürmeden azaltmak 

gerekmektedir. 

Bu tezde, 2B orta değer filtresi, Gauss bulanıklığı ve görüntü keskinleştirme 

algoritmaları için yeniden uyarlanabilir 2B sayısal görüntü işleme algoritması 

önerilmektedir. Önerilen algoritmayı kullanarak düşük enerjili 2B orta değer filtresi, 

Gauss bulanıklığı ve görüntü keskinleştirme donanımları tasarlanmıştır. Yaklaşık 

HEVC çerçeve içi öngörü ve yaklaşık HEVC kesirli aradeğerleme algoritmaları 

önerilmektedir. Düşük enerjili yaklaşık HEVC çerçeve içi öngörü ve yaklaşık HEVC 

kesirli aradeğerleme donanımları tasarlanmıştır. Ayrıca, HEVC kesirli aradeğerleme 

algoritması için farklı donanım mimarileri önerilmektedir. HEVC DCT ve ters 
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DCT/DST için birkaç farklı hesaplama karmaşıklığı ve enerji azaltma teknikleri 

önerilmektedir. Önerilen teknikleri kullanarak, yüksek performanslı ve düşük enerjili 

HEVC DCT ve ters DCT/DST donanımları tasarlanmıştır. 

Önerilen algoritma ve tekniklerin neden olduğu hesaplama azaltmaları ve video 

kalitesi kayıpları ölçüldü. Önerilen donanım mimarileri Verilog donanım tasarlama dili 

ile gerçeklendi. Verilog RTL kodları Xilinx Virtex 6 ve Xilinx ZYNQ FPGA’lerine 

sentezlendi ve bunların güç tüketimleri Xilinx XPower Analyzer aracı ile tahmin edildi. 

Önerilen algoritmalar ve teknikler, bu FPGA gerçeklemelerinin güç ve enerji 

tüketimlerini, bazı durumlarda PSNR kaybı olmaksızın, bazı durumlarda ise çok küçük 

PSNR kaybı ile önemli ölçüde azalttı. 
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1 CHAPTER I      

 

INTRODUCTION 

 Digital video processing and compression algorithms and hardware are used in 

many commercial products such as mobile devices, unmanned aerial vehicles, and 

autonomous cars [1]-[4]. To improve visual quality and compression efficiency, video 

sizes and computational complexities of digital video processing and compression 

algorithms are increased. For example, Quad Full HD (4K) and Ultra HD (8K) video 

resolutions started to be used instead of Full HD (2K) video resolution. This increases 

the energy consumptions of hardware implementations of these algorithms. This trend is 

expected to continue in the future as well. According to Cisco Visual Networking Index 

internet video traffic will be 82% of all consumer internet traffic by 2021 [5]. Also, 

63% of video IP traffic will be consumed by mobile devices by 2021 [5]. Because of 

these developments, video coding algorithms with high coding efficiency should be 

designed. Therefore, Joint Collaborative Team on Video Coding (JCT-VC) recently 

developed a new video compression standard called High Efficiency Video Coding 

(HEVC) [6]-[8]. HEVC provides 50% better coding efficiency than H.264 video 

compression standard. HEVC uses larger block sizes, more prediction modes and more 

transform types than H.264 to obtain better coding efficiency. Therefore, HEVC has 

higher computational complexity than H.264.  
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1.1 HEVC Video Compression Standard 

The video compression efficiency achieved by HEVC standard is result of a 

combination of several encoding and decoding tools such as intra prediction, motion 

estimation, deblocking filter, sample adaptive offset (SAO) and entropy coder. The top-

level block diagrams of an HEVC encoder and decoder are shown in Figure 1.1 and 

Figure 1.2. 

 

 

Figure 1.1 HEVC Encoder Block Diagram 

 

 

Figure 1.2 HEVC Decoder Block Diagram 

 

 As shown in Figure 1.1, an HEVC encoder has a forward (coding) path and a 

reconstruction (decoding) path. The forward path is used to encode a video frame by 

using spatial (intra) and temporal (inter) prediction modes. Then, residual data are 

coded after the transform and quantization processes, and bitstream is created. Since 

HEVC decoder does not have access to original frames, reconstruction path in the 

encoder is used to prevent a mismatch between encoder and decoder. In this way, both 

encoder and decoder use identical reference frames for intra and inter prediction. 
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HEVC uses quad-tree block structure as shown in Figure 1.3. Therefore, each 

frame is divided into coding units (CU) in the forward path. These CUs can be 8x8, 

16x16, 32x32 or 64x64 pixel blocks. CUs in I frames are encoded with only intra 

prediction modes. CUs in P and B frames are encoded with intra or inter mode 

depending on the mode decision. Intra and inter prediction modes use the prediction 

unit (PU) partitioning structure inside the CUs. Each PU size can be equal to or less 

than CU size. PU sizes can be 4x4, 8x8, 16x16 and 32x32 for intra prediction modes. 

However, inter prediction has 24 different PU sizes (4x8, 8x4, 8x8 etc.). After the 

prediction, mode decision determines whether the PU will be coded with intra or inter 

prediction based on PSNR and bit-rate. Then, prediction is subtracted from original 

video data and residual data is generated. Then, transformation and quantization are 

performed on the residual data. Transform units (TU) are used in the integer discrete 

cosine transform (DCT), and TU sizes can be from 4x4 up to 32x32. 4x4 TU size is 

only used for discrete sine transform (DST). Finally, entropy coder (context adaptive 

binary arithmetic coding) generates the encoded bitstream. 

 

Figure 1.3 HEVC Quadtree Block Structure 

 

Reconstruction path begins with inverse quantization and inverse transform. The 

quantized transform coefficients are inverse quantized and inverse transformed to 

generate the reconstructed residual data. Since quantization is a lossy process, inverse 

quantized and inverse transformed coefficients are not identical to the original residual 

data. The reconstructed residual data are added to the predicted pixels to create the 

reconstructed frame. DBF is, then, applied to reduce the effects of blocking artifacts in 

the reconstructed frame. 

CU0: 64x64

CU1: 32x32

CU2: 16x16

CU3: 8x8
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Intra prediction algorithm in HEVC predicts the pixels of a block from the pixels 

of its already coded and reconstructed neighboring blocks. In H.264, there are 9 intra 

prediction modes for 4x4 luminance blocks, and 4 intra prediction modes for 16x16 

luminance blocks [9]. In HEVC, for the luminance component of a frame, intra 

prediction unit (PU) sizes can be from 4x4 up to 32x32 and number of intra prediction 

modes for a PU can be up to 35 [6, 7]. 33 of these 35 prediction modes are intra angular 

prediction modes, and the predicted pixels are generated by weighted average of two 

neighboring pixels. In addition to angular prediction modes, there are DC and planar 

prediction modes in the HEVC intra prediction algorithm. 

Inter prediction algorithm in HEVC, first, performs integer pixel motion 

estimation. There are 24 different PU sizes and 593 different best motion vector 

candidates in the integer motion estimation of each 64x64 CU. There are different 

motion vector search algorithms for integer pixel motion estimation in the literature [7]. 

Integer motion vector search algorithm is not specified in the HEVC standard. 

However, full search, diamond search and TZ search algorithms are often used in the 

implementations. After the integer pixel motion estimation, fractional pixel (half and 

quarter) accurate variable block size motion estimation is performed in HEVC to 

increase the performance of integer pixel motion estimation. In H.264, 6-tap FIR filter 

is used for the interpolation of half pixels, and bilinear interpolation filter is used for the 

interpolation of quarter pixels [9]. In HEVC, one 8-tap FIR filter and two 7-tap FIR 

filters are used for the interpolation of half and quarter pixels [6, 7].  

Integer discrete cosine transform (DCT) is used in HEVC similar to H.264. In 

H.264, transformation block sizes can be 4x4 or 8x8. In HEVC, TU sizes can be from 

4x4 up to 32x32. In addition to DCT, HEVC uses discrete sine transform (DST) for the 

4x4 intra prediction [6, 7]. HEVC performs 2D transform operation by applying 1D 

transforms in vertical and horizontal directions. The coefficients in HEVC 1D transform 

matrices are derived from DCT-II and DST-VII basis functions. However, integer 

coefficients are used for simplicity. 

After the transform of residual data, transform coefficients are divided by a 

quantization step size, and the results are rounded. However, in the inverse quantization, 

only multiplication by the quantization step size is performed. Quantization step size is 

determined using the quantization parameter similar to H.264. 

Entropy coder uses context adaptive binary arithmetic coding (CABAC) similar 

to H.264 with several improvements [10]. Entropy coder exploits statistical 
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redundancies to perform lossless compression. Binarization, context modeling and 

binary arithmetic coding are the three main parts of CABAC algorithm. 

Deblocking filter algorithm reduces blocking artifacts on the edges of the 

prediction units. Decision making and filtering processes in deblocking filter are 

simplified in HEVC compared to H.264. Sample adaptive offset (SAO) is added to 

deblocking filter process in HEVC which is not used in the previous video compression 

standards [6, 7]. After the deblocking filter, SAO is used to reduce the ringing artifacts.  

 

1.2 Thesis Contributions 

As the complexity of video processing and compression algorithms are 

increasing, the energy consumptions of their hardware implementations are also 

increasing [11]. Therefore, in this thesis, we propose computation and energy reduction 

techniques for video processing and compression algorithms. Then, we designed and 

implemented low energy video processing and compression hardware. 

We propose 2D adaptive median filter algorithm [12]. The proposed algorithm 

detects noiseless pixels, and it eliminates the sorting operation in the median filter. The 

proposed adaptive median filter algorithm does not perform any sort in the best case, 

and it sorts 15 pixels instead of 25 pixels in the worst case for a 5x5 window. Then, we 

generalize this novel low complexity algorithm for 2D adaptive digital image 

processing (DIP) [13]. We show that the proposed algorithm also reduces computational 

complexities of 2D gaussian blur and 2D image sharpening without reducing quality of 

output image. 

We also designed and implemented 2D median filter, Gaussian blur and image 

sharpening hardware including the proposed 2D adaptive DIP algorithm using Verilog 

HDL. We quantified the impact of the proposed algorithm on the power consumptions 

of these hardware on a Xilinx Virtex6 FPGA using Xilinx XPower. The proposed 

algorithm reduced energy consumption of the median filter, Gaussian blur and image 

sharpening hardware up to 80%, 22% and 31%, respectively. 

We propose an approximate HEVC intra angular prediction technique. The 

proposed technique uses closer neighboring pixels instead of distant neighboring pixels 

in an intra angular prediction equation if the distance between the neighboring pixels 

used in this intra angular prediction equation is larger than 2. The proposed approximate 

HEVC intra angular prediction technique causes negligible PSNR loss and bit rate 
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increase. Then, we designed and implemented approximate HEVC intra angular 

prediction hardware using Verilog HDL. The proposed hardware, in the worst case, can 

process 24 Quad Full HD fps. The proposed hardware is the smallest HEVC intra 

prediction hardware in the literature. 

We propose two pixel correlation based computation and energy reduction 

techniques for HEVC fractional interpolation [14]. The proposed techniques compare 

pixels at the inputs of HEVC fractional interpolation operation. If these pixels are equal 

or similar, interpolation operation is skipped and one of the input pixels is selected as 

output. The proposed techniques significantly reduce the computational complexity of 

HEVC fractional interpolation with a negligible PSNR loss and bit rate increase. Also, 

we designed and implemented two HEVC fractional interpolation hardware including 

the proposed techniques using Verilog HDL. The proposed hardware, in the worst case, 

can process 30 Quad Full HD fps. They consume up to 39.7% and 46.9% less energy 

than original HEVC fractional interpolation hardware. 

We propose low energy HEVC fractional interpolation hardware using Hcub 

MCM [15]. The proposed hardware calculates common sub-expressions in different 

FIR filter equations in HEVC fractional interpolation algorithm once, and the result is 

used in all the equations. We designed and implemented the proposed hardware using 

Verilog HDL. The proposed hardware, in the worst case, can process 30 Quad Full HD 

fps. It consumes up to 48% less energy than original HEVC fractional interpolation 

hardware. 

We propose two approximate HEVC fractional interpolation filters [16]. Both of 

these approximate filters use one 4-tap and two different 3-tap FIR filters instead of 

using one 8-tap and two different 7-tap FIR filters. The proposed interpolation filters 

significantly reduce the computational complexity of HEVC fractional interpolation 

with a negligible PSNR loss and bit rate increase. Then, two approximate HEVC 

fractional interpolation hardware for all PU sizes are designed and implemented using 

Verilog HDL for each proposed approximate fractional interpolation filter. The 

proposed hardware, in the worst case, can process 45 Quad Full HD fps. They consume 

up to 67.1% less energy than original HEVC fractional interpolation hardware. 

We propose a computation and energy reduction technique for HEVC DCT 

operation [17]. The proposed technique is a kind of adaptive zero prediction technique. 

Since most of the forward transformed and quantized high frequency coefficients in a 

TU become zero, the proposed computation reduction technique only calculates several 
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pre-determined low frequency coefficients of transform units (TUs), and it assumes that 

the remaining coefficients are zero. The proposed technique reduces the computational 

complexity of HEVC DCT significantly at the expense of slight decrease in PSNR and 

slight increase in bit rate. 

We also designed and implemented two (lower utilization and higher utilization) 

low energy hardware for HEVC DCT including the proposed computation and energy 

reduction technique using Verilog HDL. In addition to proposed computation and 

energy reduction technique, Hcub MCM is used in the transform datapath, and an 

efficient transpose memory architecture is implemented. The proposed lower utilization 

hardware and higher utilization hardware can process 48 Quad Full HD and 53 Ultra 

HD video frames per second, respectively. The proposed technique reduced the energy 

consumption of the lower utilization hardware and the higher utilization hardware up to 

17.9 and 18.9, respectively. 

We propose a computation and energy reduction technique for HEVC 

IDCT/IDST [18]. The proposed technique calculates IDCT and IDST only for DC 

coefficient if the values of several predetermined forward transformed low frequency 

coefficients in a TU are smaller than a threshold. Otherwise, it calculates IDCT and 

IDST for all coefficients in the TU. The proposed technique significantly reduces 

computational complexity of HEVC inverse transform with a negligible PSNR loss and 

bit rate increase. Performing IDCT only for DC coefficient in a TU, on the average, 

achieves 98.87% reduction in addition and 98.70% reduction in shift operations. 

We also designed and implemented a low energy HEVC 2D inverse transform 

(IDCT and IDST) hardware for all TU sizes including the proposed computation and 

energy reduction technique using Verilog HDL. Clock gating technique is used to 

reduce the energy consumption of the proposed hardware. Hcub MCM is also used in 

the transform datapath, and an efficient transpose memory architecture is implemented. 

The proposed hardware, in the worst case, can process 48 Quad Full HD fps. The 

proposed technique reduced the energy consumption of this hardware up to 32%. 

 

1.3 Thesis Organization 

The rest of the thesis is organized as follows. 

Chapter II presents the proposed 2D adaptive digital image processing algorithm. 

It describes the proposed low energy median filter, Gaussian blur and image sharpening 
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hardware including the proposed 2D adaptive DIP algorithm and presents their 

implementation results. 

Chapter III, first, explains HEVC intra angular prediction algorithm. Then, it 

describes the proposed approximate intra angular prediction technique and the proposed 

approximate HEVC intra angular prediction hardware. It also presents the 

implementation results. 

Chapter IV, first, explains the HEVC fractional interpolation algorithm. Then, it 

presents the proposed pixel correlation based computation and energy reduction 

techniques for the HEVC fractional interpolation, and their hardware implementations. 

After that, the proposed HEVC fractional interpolation hardware using multiplierless 

constant multiplication is explained. Also, the proposed approximate HEVC fractional 

interpolation filters and their hardware implementations are explained in Chapter IV. 

Finally, hardware comparison with the literature is presented.  

The proposed computation and energy reduction technique for HEVC DCT 

algorithm is described in Chapter V. Then, the proposed lower utilization and higher 

utilization hardware implementations of HEVC DCT including the proposed 

computation and energy reduction technique are explained. After that, implementation 

results are presented.  

Chapter VI explains the proposed computation and energy reduction technique for 

HEVC IDCT/IDST algorithm. Then, the proposed low energy hardware implementation 

of HEVC IDCT/IDST including the proposed computation and energy reduction 

technique is presented.  

Chapter VII presents conclusions and future works. 
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2 CHAPTER II  

 

LOW COMPLEXITY 2D ADAPTIVE IMAGE PROCESSING 

ALGORITHM AND ITS HARDWARE IMPLEMENTATION 

 Digital images are affected by the noise resulting from image sensors or 

transmission of images. Image denoising is performed to remove the noise from images. 

Several linear and non-linear filters are proposed for image denoising [19]. Although 

non-linear filters are more complex than linear filters, they are more commonly used for 

image denoising because they reduce smoothing and preserve image edges. 2D spatial 

median filter is the most commonly used non-linear filter for image denoising. It is a 

non-linear sorting-based filter. It sorts pixels in a given window, determines the median 

value, and replaces the pixel in center of the given window with this median value.  

Since 2D median filter has high computational complexity, in this thesis, we 

propose a novel low complexity 2D adaptive median filter algorithm [12]. The proposed 

algorithm reduces the computational complexity of 2D median filter and produces 

higher quality filtered images than 2D median filter by exploiting pixel correlations in 

input image. We also designed a low energy 2D adaptive median filter hardware 

implementing the proposed 2D adaptive median filter algorithm for 5x5 window size. 

The proposed hardware is implemented using Verilog HDL. It is verified to work 

correctly on an FPGA board. It can work at 263 MHz, and it can process 105 full HD 

(1920x1080) images per second in the worst case on a Xilinx Virtex 6 FPGA. It has 

more than 80% less energy consumption than original 2D median filter hardware on the 

same FPGA.   
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Then, in this thesis, we generalize this novel low complexity adaptive algorithm 

for 2D digital image processing. We show that the proposed algorithm also reduces 

computational complexities of 2D Gaussian blur and 2D image sharpening without 

reducing quality of output image. These DIP algorithms also have high computational 

complexity. 2D Gaussian blur is commonly used for image smoothing and denoising. In 

this thesis, 2D Gaussian kernel shown in equation (1.1) is used. Output image is 

generated by convolving input image with this kernel. 2D image sharpening is used to 

sharpen images and enhance edges. In this thesis, 2D image sharpening kernel shown in 

equation (1.2) is used. Output image is generated by convolving input image with this 

kernel. 

 

                   𝐺 =

[
 
 
 
 
3 4 5 4 3
4 6 7 6 4
5 7 8 7 5
4 6 7 6 4
3 4 5 4 3]

 
 
 
 

≫ 7                                   (1.1) 

 

                          𝑆 =

[
 
 
 
 
−1 −1 −1 −1 −1
−1 2 2 2 −1
−1 2 8 2 −1
−1 2 2 2 −1
−1 −1 −1 −1 −1]

 
 
 
 

≫ 3                (1.2) 

 

We also designed a low energy 2D adaptive gaussian blur hardware and a low 

energy 2D adaptive image sharpening hardware implementing the proposed 2D adaptive 

gaussian blur and 2D adaptive image sharpening algorithms, respectively, for 5x5 

window size. The proposed hardware are implemented using Verilog HDL. The 

proposed 2D adaptive gaussian blur hardware can work at 152 MHz, and it can process 

74 full HD (1920x1080) images per second in the worst case on a Xilinx Virtex 6 

FPGA. It has more than 22% less energy consumption than original 2D gaussian blur 

hardware on the same FPGA. The proposed 2D adaptive image sharpening hardware 

can work at 185 MHz, and it can process 105 full HD (1920x1080) images per second 

in the worst case on a Xilinx Virtex 6 FPGA. It has more than 31% less energy 

consumption than original 2D image sharpening hardware on the same FPGA. 

Several median filter algorithms are proposed in the literature [20]-[23]. These 

algorithms can be classified into two groups. Median filter algorithms proposed in [20], 
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[21] optimize sorting process to reduce computational complexity of median filter 

algorithm without reducing quality of filtered images. Median filter algorithms 

proposed in [22], [23] increase quality of filtered images without increasing 

computational complexity of median filter algorithm. These algorithms try to detect 

noisy pixels and adaptively filter only these noisy pixels. However, the 2D adaptive DIP 

algorithm proposed in this thesis both reduces computational complexity of median 

filter algorithm and increases quality of filtered images by exploiting pixel correlations 

in input image. 

Several median filter hardware are proposed in the literature [24]-[28]. In [24], an 

adaptive median filter hardware that detects noisy pixels in several iterations and filters 

only these noisy pixels is proposed. The proposed median filter hardware uses different 

sorting algorithms like bitonic and odd-even merge sort. In [25], sorting process of 

median filter algorithm is optimized. The proposed median filter hardware only finds 

correct positions of input pixels in the sliding window instead of sorting all pixels in the 

window. In [26], a histogram based median filter algorithm is proposed. It only 

performs well for large window sizes. In [27], low complexity bit-pipeline algorithm is 

proposed to decrease hardware area and increase performance. In [28], an energy 

efficient median filter hardware is proposed by optimizing memory read/write 

scheduling of median filter algorithm. However, performance and area of this hardware 

are not reported. The 2D adaptive median filter hardware proposed in this thesis is 

compared with these median filter hardware in Section 2.2. 

Several Gaussian blur algorithms are proposed in the literature [29], [30]. These 

algorithms increase quality of output image by increasing computational complexity of 

Gaussian blur algorithm. However, the 2D adaptive DIP algorithm proposed in this 

thesis reduces computational complexity of Gaussian blur algorithm without reducing 

quality of output image by exploiting pixel correlations in input image. 

Several Gaussian blur hardware are proposed in the literature [31]-[34]. In [31], a 

Gaussian blur hardware is proposed for real time stereo vision application for 5x5 

window. In [32], nearest pixel approximation is used for Gaussian blur hardware 

implementation. This reduces hardware area. But, it also reduces quality of output 

image. In [33], a Gaussian blur hardware is proposed for feature extraction application. 

This hardware performs two 1D convolution operations instead of performing direct 2D 

convolution to decrease hardware area. In [34], modified Gaussian blur hardware is 

proposed to decrease rounding error in kernel coefficients. The 2D adaptive Gaussian 
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blur hardware proposed in this thesis is compared with these Gaussian blur hardware in 

Section 2.2. 

Several image sharpening hardware are proposed in the literature [35], [36]. 

However, they are implemented as part of image up-scaling hardware. Their area and 

performance are not separately reported. 

2.1 Proposed 2D Adaptive Digital Image Processing Algorithm 

The proposed 2D adaptive DIP algorithm consists of two steps as shown in Figure 

2.1. Pseudo code of the proposed 2D adaptive DIP algorithm for 5x5 window is given in 

Figure 2.2. The proposed algorithm, in the best case, does not perform any sorting or 

convolution operation. It, in the worst case, sorts or convolves 15 pixels instead of 25 

pixels for 5x5 window. 

In the first step, the proposed algorithm compares pixels in each row and column 

of the given window separately. If pixels in a row are similar, row comparison signal for 

that row is set to 1. Similarly, if pixels in a column are similar, column comparison 

signal for that column is set to 1. Then, if pixels in all rows are similar, PS_R signal is 

set to 1. Similarly, if pixels in all columns are similar, PS_C signal is set to 1. The 

proposed algorithm decides that pixels in a row or column are similar if their 4 most 

significant bits are the same. 

In the second step, output value is determined. If there is full similarity (both 

PS_R and PS_C are 1), the pixel in center of the window is determined as output value 

of the window. If there is partial similarity (only PS_R or PS_C is 1), diagonal pixels in 

the window are sorted or convolved with 1D_1 kernel, and output of this operation is 

determined as output value of the window. If there is no similarity (neither PS_R nor 

PS_C is 1), diagonal, horizontal and vertical pixels are sorted or convolved with 1D_1, 

1D_2 and 1D_3 kernels, respectively, and their output values (O1, O2, O3) are 

determined separately. Then, O1, O2, O3 are sorted or convolved with 1D_4 kernel, and 

output of this operation is determined as output value of the window. Finally, the pixel 

in center of the given window is replaced with the output value. 

 



13 

 

 

Figure 2.1 Proposed 2D Adaptive Digital Image Processing Algorithm 

 

2D_Adaptive_DIP_Algorithm (Window) { 

    RC = compare(MSB 4 bits of pixels in each row) 

   CC = compare(MSB 4 bits of pixels in each column) 

   PS_R = (RC[0] & RC[1] & RC[2] & RC[3] & RC[4]) 

   PS_C = (CC[0] & CC[1] & CC[2] & CC[3] & CC[4]) 

   if (PS_R is 1 and PS_C is 1) 

       Output = Window(2, 2) 

   else if (PS_R is 1 or PS_C is 1) 

       Output = 1D_Operation (Diagonal Pixels) // 1D_1 

   else { 

       O1 = 1D_Operation (Diagonal Pixels)   // 1D_1 

       O2 = 1D_Operation (Horizontal Pixels) // 1D_2 

       O3 = 1D_Operation (Vertical Pixels)     // 1D_3 

       Output = 1D_Operation (O1, O2, O3)    // 1D_4 

   }  

   Window(2, 2) = Output 

} 

Figure 2.2 Pseudo Code of Proposed 2D Adaptive Digital Image Processing Algorithm 

 

1D kernels shown in equations (1.3), (1.4) and (1.5) are used in the proposed 2D 

adaptive gaussian blur algorithm. 

 

1D_1 =  [3 6 8 6 3] / 26                                                                         (1.3) 

     1D_2 =  1D_3 =  [5 7 8 7 5] ≫ 5                                                        (1.4) 

     1D_4 =  [1 2 1] ≫ 2                                                                                       (1.5) 
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1D kernels shown in equations (1.6) and (1.7) are used in the proposed 2D 

adaptive image sharpening algorithm. 

 

               1D_1 =  1D_2 =  1D_3 =  [-1 1 2 1 -1] ≫ 1                                               (1.6) 

     1D_4 =  [−1 3 −1]                                                                                         (1.7) 

 

Number of windows with similar pixels in an image varies from image to image. 

We used HEVC video compression standard test videos [37] and commonly used image 

processing benchmark images [38] to determine percentage of similarities for different 

window sizes. Simulation results for 5x5 and 7x7 window sizes for one image from 

Traffic (2560x1600), People on Street (2560x1600), Basketball Drive (1920x1080), 

Tennis (1920x1080), Kimono (1920x1080), Park Scene (1920x1080), Vidyo1 

(1280x720), Vidyo4 (1280x720), Kristen and Sara (1280x720), Four People 

(1280x720) videos [37], and Baboon (512x512), Barbara (512x512), Goldhill 

(512x512), Lena (512x512), Peppers (512x512) images [38] are shown in Table 2.1 and 

Table 2.2. 

 

Table 2.1  Similarity Percentages (%) for 5x5 and 7x7 Windows (HEVC Images) 
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5x5 

F. S. 13.32 13.30 18.29 25.39 20.23 14.64 19.16 22.16 21.06 20.17 

P. S. 2.34 1.68 4.22 4.25 3.67 3.90 4.27 3.71 2.01 4.66 

N. S. 84.54 85.02 77.49 70.36 76.10 81.46 76.57 74.13 76.94 75.17 

7x7 

F. S. 4.44 4.41 4.78 9.86 6.01 3.31 5.09 6.82 8.32 7.79 

P. S. 3.24 1.11 1.54 2.75 1.11 2.15 3.33 2.37 2.26 2.39 

N. S. 92.32 94.48 93.68 87.39 92.88 94.55 91.59 90.81 89.42 89.82 
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Table 2.2  Similarity Percentages (%) for 5x5 and 7x7 Windows (Benchmark Images) 
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5x5 

F. S. 2.21 8.13 7.51 10.31 11.63 

P. S. 1.00 2.44 2.56 2.46 3.20 

N. S. 96.79 89.42 89.92 87.23 85.17 

7x7 

F. S. 2.47 3.39 3.45 3.23 3.77 

P. S. 2.04 2.10 2.07 2.06 2.04 

N. S. 95.48 94.51 95.48 94.71 94.19 

 

We also quantified impact of the proposed 2D adaptive DIP algorithm on PSNR 

performance for 5x5 and 7x7 window sizes. For 2D median filter, salt & pepper noise is 

added to input images. Then, these images are filtered with original 2D median filter 

algorithm, and with the proposed 2D adaptive median filter algorithm. For 2D Gaussian 

blur, input images are convolved with the kernel shown in equation (1.1), and with the 

proposed 2D adaptive Gaussian blur algorithm. For 2D image sharpening, input images 

are convolved with the kernel shown in equation (1.2), and with the proposed 2D 

adaptive image sharpening algorithm. PSNR and visual quality results for Basketball 

Drive image are shown in Figure 2.3. PSNR values between output and input images are 

computed and shown in Table 2.3 and Table 2.4. These results show that the proposed 

2D adaptive DIP algorithm produces higher PSNR values than original 2D DIP 

algorithms. This is because, if pixels in the window are similar, the proposed 2D 

adaptive DIP algorithm does not replace the pixel in center of the given window, and 

therefore preserves the input image.  

 

 

Figure 2.3 Example Image for 2D Median Filter 
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Table 2.3  PSNR Values (dB) for HEVC Test Images 

Image 
W. 

Size 

2D Median Filter 2D Gaussian Blur 2D Image Sharpening 

S & P 

Noise 
Orig. Prop. 

∆PSNR 

(dB) 
Orig. Prop. 

∆PSNR 

(dB) 
Orig. Prop. 

∆PSNR 

(dB) 

Traffic 
5x5 

18.189 
32.515 34.582 2.067 30.132 33.170 3.039 27.400 30.160 2.760 

7x7 29.345 32.864 3.519 29.097 31.260 2.163 32.070 32.225 0.155 

People 

on Street 

5x5 
18.156 

29.157 33.334 4.177 28.295 31.216 2.920 26.555 29.214 2.659 

7x7 32.371 34.947 2.576 27.550 29.676 2.126 30.445 30.626 0.177 

Basket 
5x5 

18.713 
31.291 32.054 0.763 29.309 32.265 2.956 28.723 31.100 2.371 

7x7 30.046 31.191 1.145 28.332 29.915 1.583 29.903 30.863 0.961 

Tennis 
5x5 

17.699 
38.145 39.007 0.862 33.424 36.180 2.756 32.146 34.370 2.224 

7x7 35.149 37.729 2.580 32.792 34.535 1.743 34.501 35.113 0.612 

Kimono 
5x5 

17.929 
43.436 45.418 1.982 35.662 38.853 3.191 35.542 37.391 1.849 

7x7 39.796 43.904 4.108 33.050 33.749 0.699 33.585 33.912 0.327 

Park 

Scene 

5x5 
18.077 

31.648 34.125 2.477 30.510 33.108 2.599 28.569 31.862 3.293 

7x7 29.574 32.829 3.255 29.786 31.860 2.074 32.419 33.740 1.321 

Vidyo1 
5x5 

18.211 
35.080 36.812 1.732 30.914 34.850 3.936 29.857 32.913 3.056 

7x7 32.528 35.356 2.828 28.780 30.169 1.389 30.336 30.723 0.387 

Vidyo4 
5x5 

18.215 
35.200 36.383 1.183 28.971 31.062 2.091 28.465 29.671 1.206 

7x7 32.885 35.517 2.632 27.412 28.318 0.906 28.528 28.528 0.000 

Kristen 

and Sara 

5x5 
17.977 

31.316 32.677 1.361 28.613 31.840 3.227 28.533 30.924 2.391 

7x7 28.457 30.794 2.337 27.213 29.010 1.797 29.490 30.178 0.688 

Four 

People 

5x5 
18.154 

30.728 32.265 1.537 28.676 32.087 3.411 27.039 29.685 2.645 

7x7 28.601 31.287 2.686 27.353 29.294 1.941 29.844 30.124 0.280 

 

Table 2.4  PSNR Values (dB) for Benchmark Images 

Image 
W. 

Size 

2D Median Filter 2D Gaussian Blur 2D Image Sharpening 

S & P 

Noise 
Orig. Prop. 

∆PSNR 

(dB) 
Orig. Prop. 

∆PSNR 

(dB) 
Orig. Prop. 

∆PSNR 

(dB) 

Boat 
5x5 

18.526 
27.044 28.880 1.836 24.682 26.854 2.171 23.715 26.103 2.388 

7x7 20.563 23.305 2.742 23.199 24.519 1.320 24.714 25.599 0.885 

Barbara 
5x5 

18.461 
23.142 24.923 1.781 22.933 25.156 2.223 24.050 25.825 1.775 

7x7 23.546 25.115 1.569 22.496 23.715 1.219 23.336 27.009 3.672 

Goldhill 
5x5 

18.348 
28.717 30.701 1.984 26.709 28.968 2.259 25.544 28.203 2.659 

7x7 27.226 30.239 3.013 23.919 24.821 0.902 24.821 25.574 0.753 

Lena 
5x5 

18.459 
30.971 32.927 1.956 26.313 27.952 1.639 25.603 27.284 1.681 

7x7 28.894 32.144 3.250 24.873 25.745 0.872 26.003 26.390 0.387 

Peppers 
5x5 

18.100 
31.801 33.865 2.064 26.434 28.041 1.607 25.823 27.490 1.667 

7x7 29.991 33.072 3.081 24.819 25.641 0.822 25.687 26.218 0.531 

 

We also quantified impact of the proposed 2D adaptive DIP algorithm on visual 

quality using structural similarity (SSIM) metric. SSIM values between output images 

produced by original 2D DIP algorithms and output images produced by the proposed 

2D adaptive DIP algorithm are computed and shown in Table 2.5 and Table 2.6. These 
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results show that the proposed algorithm reduces computational complexities of 2D DIP 

algorithms without reducing quality of output image. 

Table 2.5  Structural Similarity (SSIM) Values for HEVC Test Images 

Image 
W. 

Size 

2D 

Median 

Filter 

2D 

Gaussian 

Blur 

2D Image 

Sharpening 

Traffic 
5x5 0.974 0.987 0.968 

7x7 0.951 0.984 0.982 

People 

on Street 

5x5 0.976 0.987 0.977 

7x7 0.957 0.985 0.985 

Basket 
5x5 0.984 0.985 0.970 

7x7 0.981 0.984 0.967 

Tennis 
5x5 0.984 0.988 0.980 

7x7 0.978 0.989 0.979 

Kimono 
5x5 0.991 0.994 0.989 

7x7 0.985 0.996 0.990 

Park 

Scene 

5x5 0.967 0.981 0.976 

7x7 0.950 0.980 0.968 

Vidyo1 
5x5 0.985 0.988 0.983 

7x7 0.979 0.988 0.985 

Vidyo4 
5x5 0.987 0.990 0.976 

7x7 0.980 0.989 0.982 

Kristen 

and Sara 

5x5 0.984 0.987 0.987 

7x7 0.973 0.987 0.984 

Four 

People 

5x5 0.975 0.982 0.977 

7x7 0.959 0.980 0.978 

Table 2.6  Structural Similarity (SSIM) Values for Benchmark Images 

Image 
W. 

Size 

2D Median 

Filter 

2D Gaussian 

Blur 

2D Image 

Sharpening 

Boat 
5x5 0.946 0.969 0.968 

7x7 0.914 0.967 0.937 

Barbara 
5x5 0.884 0.931 0.955 

7x7 0.891 0.953 0.840 

Goldhill 
5x5 0.946 0.973 0.965 

7x7 0.921 0.971 0.932 

Lena 
5x5 0.970 0.982 0.980 

7x7 0.951 0.982 0.962 

Peppers 
5x5 0.973 0.983 0.972 

7x7 0.961 0.984 0.951 
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2.2 Proposed 2D Adaptive Digital Image Processing Hardware 

The proposed 2D adaptive DIP hardware architecture is shown in Figure 2.4. An 

input pixels buffer is used to store pixels in a 5x5 window. This on-chip buffer reduces 

the required off-chip memory bandwidth. After the pixels are loaded into this buffer, 

40x4 bit comparators in the comparison unit compare the pixels in each row and 

column. Based on the comparison results, similarity control signals PS_R and PS_C 

shown in Figure 2.2 are generated.  

 

Figure 2.4 Proposed 2D Adaptive Digital Image Processing Hardware 

 

The proposed hardware, in the best case, does not perform any sorting or 

convolution operation. It, in the worst case, sorts or convolves 15 pixels instead of 25 

pixels for 5x5 window. These 15 pixels are sorted or convolved in 3 parallel datapaths. 

Each datapath has 4 pipeline stages to increase throughput. The proposed hardware 

produces 1 output per clock cycle. 

If there is full similarity, the pixel in center of the window is selected in output 

multiplexer as the output value. If there is partial similarity, only diagonal 1D datapath 

(1D_1) is enabled, and the other datapaths are disabled to reduce power consumption. If 

there is no similarity, all datapaths are enabled, and the output of 1D 3x1 datapath 

(1D_4) is selected in output multiplexer as the output value. 
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In the proposed 2D adaptive median filter hardware, 1D 5x1 datapaths (1D_1, 

1D_2, 1D_3) sort the given 5 pixels, and determine median value. 1D 3x1 datapath 

(1D_4) sorts the outputs of 1D_1, 1D_2, 1D_3 datapaths, and determines median value. 

In the proposed 2D adaptive Gaussian blur hardware and image sharpening hardware, 

1D 5x1 datapaths (1D_1, 1D_2, 1D_3) convolve the given 5 pixels with corresponding 

1D kernels. 1D 3x1 datapath (1D_4) convolves the outputs of 1D_1, 1D_2, 1D_3 

datapaths with corresponding 1D kernel. 

The proposed 2D adaptive DIP hardware and original 2D DIP hardware are 

implemented using Verilog HDL. The Verilog RTL codes are verified with RTL 

simulations. The RTL simulation results matched the results of software 

implementations of 2D DIP algorithms. The Verilog RTL codes are synthesized and 

mapped to a Xilinx Virtex 6 FPGA. The FPGA implementations are verified with post 

place and route simulations. The post place and route simulation results matched the 

results of software implementations of 2D DIP algorithms. 

FPGA implementation of the proposed 2D adaptive median filter hardware uses 

136 slices, 327 LUTs, 150 DFFs, and it can work at 263 MHz. FPGA implementation of 

the original 2D median filter hardware uses 208 slices, 634 LUTs, 226 DFFs, and it can 

work at 250 MHz.  

FPGA implementation of the proposed 2D adaptive Gaussian blur hardware uses 

144 slices, 291 LUTs, 160 DFFs, and it can work at 152 MHz. FPGA implementation of 

the original 2D Gaussian blur hardware uses 152 slices, 367 LUTs, 301 DFFs, and it 

can work at 152 MHz.  

FPGA implementation of the proposed 2D adaptive image sharpening hardware 

uses 88 slices, 172 LUTs, 160 DFFs, and it can work at 185 MHz. FPGA 

implementation of the original 2D image sharpening hardware uses 100 slices, 178 

LUTs, 259 DFFs, and it can work at 143 MHz. 

The proposed 2D adaptive median filter hardware is verified to work correctly on 

an Xilinx Zynq ZC7200 FPGA board as shown in Figure 2.5. The FPGA board includes 

an FPGA, a dual core ARM microprocessor, a high speed AXI bus, 128 MB DDR3 

memory, 16 MB quad flash memory, HDMI and Ethernet interfaces. The camera 

captures 60 fps full HD (1920x1080) images. The proposed hardware filters these 

images. The filtered images are displayed on HDMI monitor and sent to computer using 

Ethernet. 
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Figure 2.5 Proposed 2D Adaptive Median Filter Hardware Implementation on an FPGA 

Board 

 

We estimated power consumptions of all FPGA implementations using Xilinx 

XPower Analyzer for one image from Tennis (1920x1080), Kimono (1920x1080), Park 

Scene (1920x1080) and Basketball Drive (1920x1080) videos [37]. In order to estimate 

power consumption of an FPGA implementation, post place and route timing simulation 

is performed, and signal activities are stored in a VCD file. This VCD file is used for 

estimating power consumption of the FPGA implementation. For all FPGA 

implementations, only internal power consumption is considered. Input and output 

power consumptions are ignored. 

Power and energy consumptions of the proposed 2D adaptive DIP hardware and 

the original 2D DIP hardware are shown in Figure 2.6. As shown in this figure, the 

proposed 2D adaptive median filter hardware has 42% and 85% less power and energy 

consumption than the original 2D median filter hardware. The proposed 2D adaptive 

Gaussian blur hardware has 22% less power and energy consumption than the original 

2D Gaussian blur hardware. The proposed 2D adaptive image sharpening hardware has 

31% less power and energy consumption than the original 2D image sharpening 

hardware. 

Comparison of the proposed 2D adaptive median filter hardware with the median 

filter hardware proposed in the literature is shown in Table 2.7. 2D median filter 

hardware shown in this table process 5x5 pixel 2D windows whereas 1D median filter 

hardware shown in this table process 25 pixel 1D windows. Although the adaptive 

median filter hardware proposed in [24] increases quality of output image, this hardware 

has large area. Sorting process is optimized in [25] without reducing output image 

quality. But, its hardware area is 10 times larger than the proposed 2D adaptive median  
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Figure 2.6 Power and Energy Consumptions of FPGA Implementations for Full HD 

(1920x1080) Images 

 

Table 2.7  Median Filter Hardware Comparison for 5x5 Window 

 

FPGA 
# of 

Slices 

Max. 

Speed 

(MHz) 

Performance 

(fps) 

[24] Xilinx Virtex II 1506 305 140 Full HD 

[25] Altera Cyclone 

II 
1309 94 23 Full HD 

[26] Xilinx Virtex II 2300 333 35 Full HD 

[27] Xilinx Virtex II 660 318 Not Reported 

Proposed 

Xilinx Virtex II 

(Scaled) 
366 140 56 Full HD 

Xilinx Virtex VI 136 263 105 Full HD 

 

filter hardware. Histogram based median filter proposed in [26] gives better results for 

large window sizes, but it is very costly for small window sizes. Low complexity bit-

pipeline algorithm proposed in [27] has smaller hardware area than the other median 

filter hardware in the literature. But, the proposed 2D adaptive median filter hardware 

has much smaller area than this hardware. In addition, the median filter hardware 

proposed in [27] does not increase quality of output image. 
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Optimized memory scheduling based median filter hardware proposed in [28] 

reduces energy consumption of median filter hardware up to 53%. However, the 

proposed 2D adaptive median filter hardware reduces energy consumption of median 

filter hardware more than 80%. In addition, performance and area of this hardware are 

not reported. 

Comparison of the proposed 2D adaptive Gaussian blur hardware with the 

Gaussian blur hardware proposed in the literature is shown in Table 2.8. The hardware 

proposed in [31] has much larger area and lower performance. Although, the hardware 

proposed in [32] has lower area, it has 0.4 dB average quality loss. The hardware 

proposed in [33] has larger area, and its performance is not reported. The hardware 

proposed in [34] increases quality of output image. But, it has much larger area, and its 

performance is not reported. 

 

Table 2.8  Gaussian Blur Hardware Comparison for 5x5 Window 

 

FPGA 
# of 

Slices 

Max. 

Speed 

(MHz) 

Performance 

(fps) 

[31] Xilinx Virtex 5 3775 141 50 Full HD 

[32] Xilinx Virtex 6 52 159 Not Reported 

[33] Altera Cyclone III 545 
Not 

Reported 
Not Reported 

[34] Xilinx Spartan 3E 2637 
Not 

Reported 
Not Reported 

Proposed Xilinx Virtex 6 144 152 74 Full HD 
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3 CHAPTER III    

 

AN APPROXIMATE HEVC INTRA PREDICTION HARDWARE 

Intra prediction algorithm predicts the pixels of a block from the pixels of its 

already coded and reconstructed neighboring blocks. In H.264, there are 9 intra 

prediction modes for 4x4 luminance blocks, and 4 intra prediction modes for 16x16 

luminance blocks. In HEVC, for the luminance component of a frame, intra prediction 

unit (PU) size can be from 4x4 up to 32x32 and number of intra prediction modes for a 

PU is 35. 

In this thesis, an approximate HEVC intra angular prediction technique is 

proposed. The proposed technique uses closer neighboring pixels instead of distant 

neighboring pixels in an intra angular prediction equation if the distance between the 

neighboring pixels used in this intra angular prediction equation is larger than 2. The 

proposed approximate HEVC intra angular prediction technique causes negligible 

PSNR loss and bit rate increase.  

In this thesis, an approximate HEVC intra angular prediction hardware is 

designed and implemented using Verilog HDL. The common-sub expressions in the 

constant multiplication operations used in HEVC intra angular prediction equations are 

calculated once and the results are used to generate different constant multiplications in 

the proposed hardware. Therefore, Hcub multiplierless constant multiplication 

algorithm is used [40]. The proposed hardware is the smallest HEVC intra prediction 

hardware in the literature [42]-[53]. 
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3.1 HEVC Intra Prediction Algorithm 

HEVC intra prediction algorithm predicts the pixels in prediction units (PU) of a 

coding unit (CU) using the pixels in the available neighboring PUs [6]. For the 

luminance component of a frame, 4x4, 8x8, 16x16 and 32x32 PU sizes are available. As 

shown in Figure 3.1, there are 33 angular prediction modes (Mode) corresponding to 

different prediction angles (Angle) for each PU size. In addition, there are DC and 

planar prediction modes for each PU size. An 8x8 PU, four 4x4 PUs in it, and their 

neighboring pixels are shown in Figure 3.2. 

 

 

Figure 3.1 HEVC Intra Prediction Mode Directions 

 

Figure 3.2 Neighboring Pixels of 4x4 and 8x8 PUs 
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In HEVC intra prediction algorithm, first, reference main array is determined. The 

pixels in the reference main array are used in the intra prediction equations. If the 

prediction mode is equal to or greater than 18, reference main array is selected from 

above neighboring pixels. However, first four pixels of this array are reserved to left 

neighboring pixels, and if prediction angle is less than zero, these pixels are assigned to 

the array. If the prediction mode is less than 18, reference main array is selected from 

left neighboring pixels. However, first four pixels of this array are reserved to above 

neighboring pixels, and if prediction angle is less than zero, these pixels are assigned to 

the array. 

After the reference main array is determined, ildx which is used to determine 

positions of the pixels in this array that will be used in the intra prediction equations and 

iFact which is used to determine coefficients of these pixels are calculated as shown in 

(3.1a) and (3.1b), respectively. If iFact is equal to 0, neighboring pixels are copied 

directly to predicted pixels. Otherwise, predicted pixels are calculated as shown in (3.2). 

 

𝑖𝐼𝑑𝑥 = ((𝑦 + 1) ∗ 𝐴𝑛𝑔𝑙𝑒) ≫ 5 (3.1a) 

𝑖𝐹𝑎𝑐𝑡 = ((𝑦 + 1) ∗ 𝐴𝑛𝑔𝑙𝑒) & 31 (3.1b) 

𝑝𝑟𝑒𝑑[𝑥, 𝑦] = ((32 − 𝑖𝐹𝑎𝑐𝑡) ∗ 

 𝑟𝑒𝑓𝑀𝑎𝑖𝑛[𝑥 + 𝑖𝐼𝑑𝑥 + 1] +  𝑖𝐹𝑎𝑐𝑡 ∗ 

𝑟𝑒𝑓𝑀𝑎𝑖𝑛[𝑥 + 𝑖𝐼𝑑𝑥 + 2] + 16) ≫ 5 

  

 (3.2) 

𝑥 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 −  1), 𝑦 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 −  1)  

 

All the intra prediction equations can be obtained from (3.2). As an example, 

reference main array and prediction equations for the 8x8 intra prediction mode 6 with 

prediction angle 13 are shown in (3.3a) and (3.3b), respectively. The neighboring pixels 

used in these equations can be seen in Fig. 2. 

 

𝑟𝑒𝑓𝑀𝑎𝑖𝑛 = [0,0,0,0,0,0,0,0, 𝑅, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝑉𝐴, 𝑉𝐵, 𝑉𝐶, 𝑉𝐷, 𝑉𝐸, 𝑉𝐹, 𝑉𝐺, 𝑉𝐻] 
 

(3.3a) 

pred[0,0] = pred[1,0] = [19*A + 13*B + 16] >> 5 

pred[2,0] = pred[3,0] = [19*B + 13*C + 16] >> 5 

pred[4,0] =  

pred[5,0] = pred[6,0] = [19*C + 13*D + 16] >> 5  

pred[7,0] =                     [19*D + 13*E + 16] >> 5 

 

  

(3.3b) 

pred[0,1] = pred[1,1] = [6*B + 26*C + 16] >> 5 

pred[2,1] = pred[3,1] = [6*C + 26*D + 16] >> 5 

pred[4,1] =  

pred[5,1] = pred[6,1] = [6*D + 26*E + 16] >> 5  

pred[7,1] =                     [6*E + 26*F + 16] >> 5 
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pred[0,2] = pred[1,2] = [25*C + 7*D + 16] >> 5 

pred[2,2] = pred[3,2] = [25*D + 7*E + 16] >> 5 

pred[4,2] =  

pred[5,2] = pred[6,2] = [25*E + 7*F + 16] >> 5  

pred[7,2] =                     [25*F + 7*G + 16] >> 5 

 

 

pred[0,3] = pred[1,3] = [12*D + 20*E + 16] >> 5 

pred[2,3] = pred[3,3] = [12*E + 20*F + 16] >> 5 

pred[4,3] =  

pred[5,3] = pred[6,3] = [12*F + 20*G + 16] >> 5  

pred[7,3] =                     [12*G + 20*H + 16] >> 5 

 

 

pred[0,4] = pred[1,4] = [31*E + 1*F + 16] >> 5 

pred[2,4] = pred[3,4] = [31*F + 1*G + 16] >> 5 

pred[4,4] =  

pred[5,4] = pred[6,4] = [31*G + 1*H + 16] >> 5  

pred[7,4] =                     [31*H + 1*I + 16] >> 5 

 

 

pred[0,5] = pred[1,5] = [18*F + 14*G + 16] >> 5 

pred[2,5] = pred[3,5] = [18*G + 14*H + 16] >> 5 

pred[4,5] =  

pred[5,5] = pred[6,5] = [18*H + 14*VA + 16] >> 5  

pred[7,5] =                     [18*VA+14*VB + 16] >> 5 

 

 

pred[0,6] = pred[1,6] = [5*G + 27*H + 16] >> 5 

pred[2,6] = pred[3,6] = [5*H + 27*VA + 16] >> 5 

pred[4,6] =  

pred[5,6] = pred[6,6] = [5*VA + 27*VB + 16] >> 5  

pred[7,6] =                     [5*VB + 27*VC + 16] >> 5 

 

 

pred[0,7] = pred[1,7] = [24*H + 8*VA + 16] >> 5 

pred[2,7] = pred[3,7] = [24*VA + 8*VB + 16] >> 5 

pred[4,7] =  

pred[5,7] = pred[6,7] = [24*VB + 8*VC + 16] >> 5  

pred[7,7] =                     [24*VC + 8*VD + 16] >> 5 

 

 

3.2 Proposed Approximate HEVC Intra Angular Prediction Technique 

In this thesis, data reuse technique is first used for reducing amount of 

computations performed by HEVC intra prediction algorithm [40]. In HEVC, intra 4x4, 

8x8, 16x16 and 32x32 luminance angular prediction modes have identical equations. 

There are identical equations between luminance angular prediction modes of different 

PU sizes as well. Data reuse technique calculates the common prediction equations for 

all 4x4, 8x8, 16x16 and 32x32 luminance angular prediction modes only once and uses 

the result for the corresponding prediction modes. There are 33792, 8448, 2112 and 528 

prediction equations in 32x32, 16x16, 8x8 and 4x4 luminance angular prediction modes, 

respectively. As shown in Table 3.1, using data reuse technique, the numbers of 

prediction equations that should be calculated for 32x32, 16x16, 8x8 and 4x4 luminance 

angular prediction modes are reduced to 3735, 1507, 593 and 201, respectively. 
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A 32x32 CU includes one 32x32 PU, four 16x16 PUs, sixteen 8x8 PUs and sixty 

four 4x4 PUs. As shown in Figure 3.2, an 8x8 PU and some of the 4x4 PUs have 

common neighboring pixels. They also have common prediction equations. 4x4, 8x8, 

16x16 and 32x32 PUs also have common neighboring pixels and common prediction 

equations. Therefore, data reuse technique is used for calculating predicted pixels of a 

32x32 PU and predicted pixels of the corresponding four 16x16 PUs, sixteen 8x8 PUs 

and sixty four 4x4 PUs. In this way, the number of prediction equations that should be 

calculated for a 32x32 CU is reduced from 135168 to 14848.  

 

Table 3.1 Prediction Equation Reductions by Data Reuse 

 

4x4 

PU 

8x8 

PU 

16x16 

PU 

32x32 

PU 

32x32 

CU 

# of Pred. 

Equations 
528 2112 8448 33792 135168 

# of Pred. 

Equations with 

Data Reuse 

201 593 1507 3735 14848 

Reduction (%) 61.93 71.92 82.16 88.94 89.02 

 

 

Since we use data reuse technique, instead of calculating intra prediction 

equations of different prediction modes and PUs separately, we calculate all necessary 

intra prediction equations together and use the results for the corresponding prediction 

modes and PUs. As shown in Figure 3.3, there are much more intra prediction equations 

using closer neighboring pixels than intra prediction equations using distant neighboring 

pixels. Intra angular prediction equations using neighboring pixels that have larger than 

2 distance between them are only 4% of intra angular prediction equations. Therefore, 

in this thesis, an approximate HEVC intra angular prediction technique is proposed. If 

distance between the neighboring pixels used in an intra angular prediction equation is 

larger than 2, the neighboring pixel that has 2 distance with the first neighboring pixel is 

used instead of second neighboring pixel. Otherwise, original neighboring pixels are 

used. For example, in Figure 3.3, neighboring pixel C is used instead of neighboring 

pixel D in the intra prediction equations using neighboring pixels A and D. Original 

neighboring pixels are used in the intra prediction equations using neighboring pixels A 

and C. 
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Figure 3.3 Example Intra Angular Prediction Equations for Different Distances  

 

The proposed approximate HEVC intra angular prediction technique is integrated 

into intra angular prediction in HEVC HM software encoder 15.0 [39]. First ten frames 

of some of the HEVC test videos [37] are coded with all intra (AI) test configuration 

and four different quantization parameters (QP) using HEVC HM 15.0 with three 

different HEVC intra angular predictions; original, the proposed approximate HEVC 

intra angular prediction using neighboring pixels that have 1 distance between them 

(D1), and the proposed approximate HEVC intra angular prediction using neighboring 

pixels that have at most 2 distance between them (D2). The resulting rate-distortion 

performances are shown in Table 3.2. D2 causes negligible PSNR loss and bit rate 

increase because neighboring pixel intensities are similar as they are close to each other 

in the video frame. Since D2 has a negligible impact on PSNR and bit rate, it is 

implemented in the proposed approximate HEVC intra angular prediction hardware 

instead of D1. 

 

A B C D E F ...Neighboring Pixels

Distance 1

Distance 2

Distance 3

A + 31xB + 16
2xA + 30xB + 16
3xA + 29xB + 16
4xA + 28xB + 16
5xA + 27xB + 16
6xA + 26xB + 16
7xA + 25xB + 16
8xA + 24xB + 16
9xA + 23xB + 16

25xA + 7xB + 16
26xA + 6xB + 16
27xA + 5xB + 16
28xA + 4xB + 16
29xA + 3xB + 16
30xA + 2xB + 16

31xA + B + 16

...

3xA + 29xC + 16
5xA + 27xC + 16
7xA + 25xC + 16
9xA + 23xC + 16

11xA + 21xC + 16
13xA + 19xC + 16
15xA + 17xC + 16
18xA + 14xC + 16
20xA + 12xC + 16
22xA + 10xC + 16
24xA + 8xC + 16
26xA + 6xC + 16
28xA + 4xC + 16
30xA + 2xC + 16

A + 31xD + 16
5xA + 27xD + 16

10xA + 22xD + 16
14xA + 18xD + 16
19xA + 13xD + 16
23xA + 9xD + 16
28xA + 4xD + 16

23xA + 9xE + 16

Distance 4
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Table 3.2 BD-Rate(%) and BD-PSNR(dB) 

 D1 D2 

Video 

Sequence 

B
D

-R
a

te
 

(%
) 

B
D

-

P
S

N
R

 

(d
B

) 

B
D

-R
a

te
 

(%
) 

B
D

-

P
S

N
R

 

(d
B

) 

People  

on Street 
0.3057 -0.0174 0.0238 -0.0014 

Traffic 0.0867 -0.0047 -0.0154 0.0008 

Tennis 0.2515 -0.0076 0.0196 -0.0005 

Kimono 0.1204 -0.0040 0.0348 -0.0009 

Basketball  

Drive 
0.4870 -0.0114 0.0657 -0.0013 

Park  

Scene 
0.1032 -0.0045 0.0165 -0.0008 

Vidyo1 0.8689 -0.0422 0.0962 -0.0044 

Vidyo4 0.5559 -0.0248 0.0488 -0.0023 

Kristen  

And Sara 
0.8100 -0.0413 0.1525 -0.0072 

Four 

People 
0.6710 -0.0390 0.2079 -0.0120 

Keiba 0.1294 -0.0071 -0.0110 0.0000 

Party  

Scene 
0.3019 -0.0239 0.0308 -0.0029 

Race  

Horses 
0.3769 -0.0242 0.0137 -0.0008 

Basketball  

Drill 
1.4598 -0.0687 0.1130 -0.0060 

Average 0.4663 -0.0229 0.0569 -0.0028 

 

 

3.3 Proposed Approximate HEVC Intra Prediction Hardware 

The proposed approximate HEVC intra prediction hardware implementing 

angular prediction modes for all PU sizes (4x4, 8x8, 16x16 and 32x32) including data 

reuse and the proposed approximate technique is shown in Figure 3.4.  
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Figure 3.4 Proposed Approximate HEVC Intra Prediction Hardware 

 

Three local neighboring buffers are used to store neighboring pixels in the 

previously coded and reconstructed neighboring PUs. After a PU in the current CU is 

coded and reconstructed, the neighboring pixels in this PU are stored in the 

corresponding buffers. These on chip neighboring buffers reduce the required off-chip 

memory bandwidth. More on-chip memory accesses are required when the intra angular 

prediction equations use distant neighboring pixels. Since the proposed approximate 

intra angular prediction technique uses closer neighboring pixels, it reduces number of 

on-chip memory accesses.  

Reconstructed 
Neighboring Buffer

MCM
Datapath

Top  
 Neighboring Buffer

Left
 Neighboring Buffer

Control Unit & Address Generation

Rotational 
Buffer 1

Rotational 
Buffer 2

Rotational 
Buffer 3

Intra Angular Prediction Datapath

Output Mem 1 Output Mem 2 Output Mem 3 Output Mem 4
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As shown in Figure 3.3, one neighboring pixel is multiplied with different 

constants in different prediction equations. Therefore, in the proposed hardware, 

multiple constant multiplication (MCM) hardware is used to efficiently implement 

constant multiplications using add and shift operations. The proposed MCM hardware 

multiplies an input pixel with constants 1, 2, 3, …, 31 by calculating common parts in 

these constant multiplications once and using them to perform all constant 

multiplications.  

The proposed MCM datapath is shown in Figure 3.5. In the proposed MCM 

hardware, Hcub MCM algorithm is used to reduce number and size of adders, and adder 

tree depth [40]. The proposed MCM datapath takes only one neighboring pixel in every 

two cycles and performs multiplications with constants 1, 3, 5, 7, 9, 11, 13, 15. 

Multiplications with constants 2, 4, 6, 8, 10, 12, 14, 16 are performed by using these 

multiplication results and shift operations. Multiplications with constants 17, 18, 19, …, 

31 are performed by adding 16 to these multiplication results. 

As shown in Figure 3.3, since the number of HEVC intra angular prediction 

equations using distant neighboring pixels is small and MCM hardware multiplies an 

input pixel with constant 1, 2, 3, …, 31, MCM hardware will perform many 

unnecessary constant multiplications for distant neighboring pixels. Since the number of 

HEVC intra angular prediction equations using closer neighboring pixels is large and 

the proposed approximate intra angular prediction technique uses closer neighboring 

pixels, it performs few unnecessary computations.  

 

Figure 3.5 Proposed MCM Datapath 
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As shown in Figure 3.4, three rotational buffers are used in the proposed 

hardware. As shown in Figure 3.6, first, constant multiplication results of neighboring 

pixels A and B are stored to rotational buffers 1 and 2, respectively. While the intra 

prediction equations using both neighboring pixels A and B are calculated, constant 

multiplication results of neighboring pixel C are stored to rotational buffer 3. After the 

intra prediction equations using neighboring pixel A are calculated, there is no need to 

store the constant multiplication results of neighboring pixel A in rotational buffer 1. 

Therefore, while the intra prediction equations using both neighboring pixels B and C 

are calculated, constant multiplication results of neighboring pixel D are stored to 

rotational buffer 1. After the intra prediction equations using neighboring pixel B are 

calculated, there is no need to store the constant multiplication results of neighboring 

pixel B in rotational buffer 2. Therefore, while the intra prediction equations using both 

neighboring pixels C and D are calculated, constant multiplication results of 

neighboring pixel E are stored to rotational buffer 2. This process repeats rotationally. 

Therefore, constant multiplication results of a neighboring pixel should be stored 6 

cycles in a rotational buffer.  

Since the proposed approximate intra angular prediction technique uses closer 

neighboring pixels instead of distant neighboring pixels, it reduces the number of 

necessary rotational buffers. If original intra angular prediction equations using distant 

neighboring pixels are calculated, more rotational buffers will be used to store constant 

multiplication results of more neighboring pixels. 

Since the proposed approximate intra angular prediction technique uses closer 

neighboring pixels instead of distant neighboring pixels, it also reduces the number of 

necessary clock cycles. If original intra angular prediction equations using distant 

neighboring pixels are calculated, additional clock cycles will be used to calculate the 

intra prediction equations using distant neighboring pixels. For example, in Figure 3.6, 

additional clock cycles will be used to calculate the intra prediction equations using 

both neighboring pixels A and D.  
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Figure 3.6 Scheduling of HEVC Intra Angular Prediction Hardware 

 

The proposed approximate HEVC intra angular prediction hardware is 

implemented using Verilog HDL. The Verilog RTL implementation is verified with 

RTL simulations. RTL simulation results matched results of a software implementation 

of the proposed approximate intra angular prediction technique. 

The Verilog RTL codes are synthesized and mapped to a Xilinx XC6VLX195T 

FF1156 FPGA with speed grade 3 using Xilinx ISE 14.7. The proposed approximate 

HEVC intra angular prediction hardware uses 318 LUTs, 1068 DFFs, and 8 BRAMs. 

The proposed FPGA implementation is verified to work at 200 MHz by post place and 

route simulations. Therefore, it can process 24 Quad Full HD (3840x2160) video frames 

per second.  

FPGA implementations are also verified on a Xilinx ZYNQ ZC702 FPGA board 

as shown in Figure 3.7. The FPGA board has a 28 nm FPGA and dual-core ARM 

microprocessor. It also has 1GB DRAM and several interfaces such as UART and 

HDMI. Microprocessor reads video frames from SD card and sends them to FPGA 

using a high speed AXI bus. The proposed hardware performs intra prediction. Then, 

microprocessor displays intra predicted frames on HDMI monitor and stores them to SD 

card. 

Verilog RTL code of the proposed approximate HEVC intra angular prediction 

hardware is also synthesized and place & routed to TSMC 90nm standard cell library. 

Gate count of resulting ASIC implementation is calculated as 3.2k, excluding on-chip 

memories, based on NAND (2x1) gate area.   
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Figure 3.7 Implementation of Proposed Approximate HEVC Intra Prediction Hardware 

on an FPGA Board 

 

Comparisons of the FPGA and ASIC implementations of proposed approximate 

HEVC intra angular prediction hardware with the FPGA and ASIC implementations of 

HEVC intra prediction hardware proposed in the literature are shown in Table 3.3 and 

Table 3.4, respectively [42]-[53]. The proposed approximate HEVC intra angular 

prediction hardware has the smallest area and the second best performance. 

 

Table 3.3 Comparison of FPGA Implementations 

 
[43] [44] [45] [46] [42] [52] [53] Proposed 

FPGA 
Xilinx 

Virtex 6 

ZYNQ 

7000 

Xilinx 

Virtex 6 

Altrea 

Stratix 

Xilinx 

Virtex6 

Xilinx 

Virtex6 

Xilinx 

Virtex6 

Xilinx 

Virtex6 

DFF 5.5 K 22 K 110 K 6934 849 2006 1168 318 

LUT 14 K 43 K 170 K 13409 2381 6013 4425 1068 

BRAM --- 94 --- --- 4 4 4 8 

Max  

Freq.  

(MHz) 

110 150 219 162 150 166 227 200 

Fps 
30 

3840x2160 
--- 

24 

3840x2160 
--- 

30 

1920x1080 

40 

1920x1080 

55 

1920x1080 

24 

3840x2160 

PU  

Size 
4,8,16,32 4,8,16,32 4,8,16,32 4,8,16,32 4,8 4,8,16,32 4,8,16,32 4,8,16,32 

 

ARM
(Control & 

Communication)

D
D

R
3

FPGA
(HEVC 

Intra Prediction  
Hardware)

SD Card

AXI-4 BUS

HDMI 
Display
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Table 3.4 Comparison of ASIC Implementations 

 
[47] [48] [49] [50] [51] [42] [52] Proposed 

Tech. 90 nm 40 nm 90 nm 130 nm 90 nm 90 nm 90 nm 90 nm 

Gate 

Count 
127.3 K 27 K 76.8 K 324 K 712.2 K 5.4 K 16.1 K 3.2 K 

Max Freq. 

(MHz) 
200 200 270 400 357 150 250 333 

Fps 
30 

3840x2160 
--- --- 

60 

1920x1080 

46 

2160x1600 

30 

1920x1080 

60 

1920x1080 

40 

3840x2160 

Memory 6 KB 4.9 KB 5.6 KB --- --- --- 3 KB 3KB 

Power 

Dissipatio

n 

--- --- --- --- 92.1 mW 23.2 mW 28.5 mW --- 

PU Size 
4, 8,  

16, 32 

4, 8,  

16, 32 

4, 8,  

16, 32 

4, 8,  

16, 32 

4, 8,  

16, 32 
4, 8 

4, 8,  

16, 32 

4, 8,  

16, 32 

 

Power consumption of the proposed approximate HEVC intra angular prediction 

hardware is estimated for Tennis and Kimono (1920 x 1080) videos [37] using Xilinx 

XPower Analyzer tool. Switching activities during post place & route timing simulation 

of the proposed hardware at 100 MHz clock frequency are stored to VCD files. Xilinx 

XPower Analyzer tool uses placed & routed netlist and these VCD files to estimate 

power consumption of the proposed FPGA implementation. Energy consumption 

comparison of the proposed FPGA implementation and the HEVC intra prediction 

hardware in the literature is shown in Figure 3.8. 

 

 

Figure 3.8 Energy Consumption Comparison 
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4 CHAPTER IV    

 

LOW ENERGY HEVC FRACTIONAL INTERPOLATION 

HARDWARE 

To increase the performance of integer pixel motion estimation, fractional pixel 

(half and quarter) accurate variable block size motion estimation is performed in HEVC. 

Fractional interpolation is one of the most computationally intensive parts of HEVC 

video encoder and decoder. On average, one fourth of the HEVC encoder complexity 

and 50% of the HEVC decoder complexity are caused by fractional interpolation [6]. 

 In H. 264 standard, a 6-tap FIR filter is used for half-pixel interpolation and a 

bilinear filter is used for quarter-pixel interpolation [9]. In HEVC standard, one 8-tap 

and two different 7-tap FIR filters are used for both half-pixel and quarter-pixel 

interpolations. In H.264, 4×4 and 16×16 block sizes are used. However, in HEVC, 

prediction unit (PU) sizes can be from 4×4 to 64×64. Therefore, HEVC fractional 

interpolation is more complex than H.264 fractional interpolation. 

 Therefore, in this thesis, we proposed three different HEVC fractional 

interpolation hardware implementations for all PU sizes. In the first hardware 

implementation, two pixel correlation based computation and energy reduction 

techniques (pixel equality based computation reduction (PECR) and pixel similarity 

based computation reduction (PSCR)) are used. The second hardware implementation 

calculates common sub-expressions in different FIR filter equations used in HEVC 
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fractional interpolation algorithm once. It also uses Hcub multiplierless constant 

multiplication (MCM) algorithm [40] to reduce number and size of the adders and to 

minimize the adder tree depth. Two approximate HEVC fractional interpolation filters 

(F1 and F2) are proposed and used in the third hardware implementation. 

4.1 HEVC Fractional Interpolation Algorithm 

 In HEVC standard, one 8-tap and two different 7-tap FIR filters are used for 

both half-pixel and quarter-pixel interpolations. These 3 FIR filters type A, type B and 

type C are shown in (4.1), (4.2), and (4.3), respectively. The symbol (>>) in the 

equations represents right shift operation which is used to reduce bit length of fractional 

pixels to 8 bits. The shift1 value is determined based on bit depth of the integer pixel 

[6]. 

 

 

Integer pixels (Ax,y), half pixels (ax,y, bx,y, cx,y, dx,y, hx,y, nx,y) and quarter pixels 

(ex,y, fx,y, gx,y, ix,y, jx,y, kx,y, px,y, qx,y, rx,y) in a PU are shown in Figure 4.1. The half pixels 

a, b, c are interpolated from nearest integer pixels in horizontal direction, and the half-

pixels d, h, n are interpolated from nearest integer pixels in vertical direction. The 

quarter pixels e, f, g are interpolated from the nearest half pixels a, b, c respectively in 

vertical direction using type A filter. The quarter pixels i, j, k are interpolated similarly 

using type B filter, and the quarter pixels p, q, r are interpolated similarly using type C 

filter. All fractional pixels necessary for fractional motion estimation are calculated in 

HEVC fractional interpolation algorithm used in HEVC encoder. 

 

 𝑎0,0 = (−𝐴−3,0 + 4 ∗ 𝐴−2,0 − 10 ∗ 𝐴−1,0 + 58 ∗ 𝐴0,0  + 17 ∗ 𝐴1,0 − 5 ∗

 𝐴2,0 + 𝐴3,0 ) ≫ 𝑠ℎ𝑖𝑓𝑡1   (4.1) 

𝑏0,0 = (−𝐴−3,0 + 4 ∗ 𝐴−2,0 − 11 ∗ 𝐴−1,0 + 40 ∗ 𝐴0,0 +  40 ∗ 𝐴1,0 − 11 ∗

  𝐴2,0 + 4 ∗ 𝐴3,0 − 𝐴4,0) ≫ 𝑠ℎ𝑖𝑓𝑡1    (4.2) 

 𝑐0,0 = (−𝐴−2,0 − 5 ∗ 𝐴−1,0 + 17 ∗ 𝐴−0,0 + 58 ∗ 𝐴1,0 −  10 ∗ 𝐴2,0 + 4 ∗

 𝐴3,0 − 𝐴4,0) ≫ 𝑠ℎ𝑖𝑓𝑡1    (4.3) 
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Figure 4.1 Integer, Half and Quarter Pixels 

4.2 Proposed Pixel Correlation Based Computation and Energy Reduction 

Techniques and Their Hardware Implementations 

Two pixel correlation based computation and energy reduction techniques (pixel 

equality based computation reduction (PECR) and pixel similarity based computation 

reduction (PSCR)) are proposed for HEVC intra prediction in [41, 42]. In this thesis, 

these techniques are applied to HEVC fractional interpolation. The proposed techniques 

compare the pixels at the inputs of HEVC fractional interpolation operation. If these 

pixels are equal or similar, interpolation operation is skipped and one of the input pixels 

is selected as output. Therefore, the computational complexity of HEVC fractional 

interpolation is reduced. The PECR technique does not affect the PSNR and bit-rate. 

The PSCR technique slightly decreases PSNR and increases bit-rate 

In this thesis, a low energy HEVC fractional (half-pixel and quarter-pixel) 

interpolation hardware for all PU sizes including the proposed techniques is also 

designed and implemented using Verilog HDL. The Verilog RTL code is verified to 

work at 200 MHz in a Xilinx Virtex 6 FPGA. The proposed hardware, in the worst case, 

can process 30 quad full HD (3840x2160) video frames per second. The proposed 

PECR and PSCR techniques reduced the energy consumption of the proposed hardware 

up to 39.7% and 46.9%, respectively. 
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4.2.1 Proposed PECR and PSCR Techniques 

In this thesis, two pixel correlation based computation and energy reduction 

techniques (PECR and PSCR) for HEVC fractional interpolation are proposed. The 

proposed PECR technique compares the input pixels of an FIR filter. If the input pixels 

are equal, the FIR filter output is equal to one of the input pixels. Therefore, the FIR 

filter calculation becomes unnecessary and it is skipped. If the input pixels are not 

equal, the FIR filter operation is performed.  

The proposed PSCR technique compares the input pixels of an FIR filter. If the 

input pixels are similar, the FIR filter output is assumed to be equal to the input pixel 

multiplied with the largest coefficient in the FIR filter. Therefore, the FIR filter 

calculation becomes unnecessary and it is skipped. The PSCR technique checks the 

similarity of input pixels by truncating their least significant bits by specified amount (1, 

2, 3 or 4 bits) and comparing the truncated pixels. If the input pixels are not similar, the 

FIR filter operation is performed.  

Equality and similarity percentages of the input pixels of FIR filters vary from 

frame to frame. Therefore, one frame of Tennis, Kimono, Park Scene and BQ Terrace 

(1920x1080) videos [37] coded with quantization parameters (QP) 22, 27, 32 and 37 are 

analyzed to determine equality and similarity percentages using HEVC Test Model HM 

encoder software [39].  

Table 4.1 shows the equality and 3-bit truncated similarity percentages for integer 

pixel inputs (Ax,y) and half-pixel inputs (ax,y, bx,y, cx,y) of FIR filters. As shown in 

Table 4.1, significant amount of FIR filter inputs are equal or similar. Therefore, the 

proposed PECR and PSCR techniques skip significant amount of FIR filter calculations. 

Table 4.2 shows the addition and shift operation reductions achieved by the 

proposed PECR and PSCR for 3-bit truncated (3bT) techniques for one frame of each 

video sequence. As shown in Table 4.2, the proposed PECR and PSCR for 3bT 

techniques achieved up to 26.34% and 49.28% computation reductions, respectively. 

The proposed techniques have overhead of only 3628800 comparisons for a full HD 

(1920x1080) frame. 
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Table 4.1 Equality and Similarity Percentages 

 

HEVC Fractional 

Interpolation (Equal) 

HEVC Fractional 

Interpolation (3bT) 

A a b c A a b c 

T
e
n

n
is

 

22 9.9 17.1 18.7 17.1 35.2 42.7 44.6 42.8 

27 13.8 24.8 25.5 24.7 37.4 45.4 47.4 45.5 

32 16.0 28.2 28.6 28.3 39.1 47.4 49.4 47.5 

37 18.9 31.3 31.2 31.4 40.5 50.0 52.1 50.1 

K
im

o
n

o
 

22 15.5 9.8 8.6 8.7 42.4 38.6 39.1 38.7 

27 17.2 11.1 10.3 10.1 45.7 41.5 42.1 41.5 

32 17.6 11.9 11.3 11.0 48.8 44.1 45.0 44.1 

37 19.5 12.6 12.0 11.7 52.3 46.9 47.9 47.0 

P
a

r
k

 S
c
e
n

e 

22 4.8 2.4 2.0 2.3 30.8 28.8 30.0 28.8 

27 8.3 5.7 5.0 5.5 34.7 32.4 33.6 32.5 

32 10.2 7.7 6.8 7.5 37.9 35.5 36.9 35.6 

37 12.8 9.5 8.5 9.2 40.1 38.4 40.2 38.5 

B
Q

 T
e
rr

a
c
e 

22 2.0 2.4 1.9 2.3 11.2 24.4 23.4 24.5 

27 7.3 6.0 5.3 5.9 21.2 34.2 32.8 34.3 

32 9.9 7.4 6.4 7.2 24.3 37.3 35.7 37.3 

37 11.9 9.5 8.4 9.3 26.6 39.3 37.4 39.4 

 

Table 4.2 Computation Reductions by PECR and PSCR 3bT 

 
QP 

 

PECR PSCR for 3bT 

Addition 

Reductio

n 

Shift 

Reduction 

Addition 

Reductio

n 

Shift 

Reduction 

Tennis 
22 14.54 % 14.54 % 40.10 % 40.10 % 

37 26.34 % 26.34 % 46.64 % 46.64 % 

Kimono  
22 11.62 % 11.62 % 40.24 % 40.24 % 

37 15.06 % 15.06 % 49.28 % 49.28 % 

Park 

Scene 

22 3.26 % 3.26 % 29.84 % 29.84 % 

37 10.56 % 10.56 % 39.46 % 39.46 % 

BQ 

Terrace 

22 2.12 % 2.12 % 18.94 % 18.94 % 

37 10.20 % 10.20 % 33.86 % 33.86 % 

 

The proposed PSCR technique is integrated into fractional interpolation 

performed by HEVC Test Model HM encoder software [39]. The impact of the 

proposed PSCR technique on rate-distortion performance is determined for Tennis, 

Kimono, Park Scene and BQ Terrace (1920x1080) videos [37]. Rate-distortion 
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performances of original HEVC and HEVC using PSCR technique for fractional 

interpolation are shown in Figure 4.2. The proposed PSCR technique slightly decreased 

PSNR and increased bit-rate. 

 

 

Figure 4.2 Rate-Distortion Performances of Original HEVC and HEVC Using PSCR 

Techniques for Fractional Interpolation 

 

4.2.2 Proposed HEVC Fractional Interpolation Hardware (PECR and PSCR) 

The proposed HEVC fractional interpolation hardware for all PU sizes including 

the proposed PECR and PSCR techniques is shown in Figure 4.3. The proposed 

hardware interpolates all the fractional (half-pixels and quarter-pixels) pixels for the 

luma component of a PU using integer or half pixels. Four buffers are used to store 

integer and half pixels necessary for interpolating the half and quarter pixels. The 

interpolated a, b and c half-pixels are stored in the filtered pixels buffers A, B and C, 

respectively. These on-chip buffers reduce the required off-chip memory bandwidth and 

power consumption.  
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Figure 4.3 Proposed HEVC Fractional Interpolation Hardware (PECR and PSCR) 

 

8 parallel interpolation units are used to interpolate the 8x3=24 fractional pixels of 

a PU in parallel. As shown in Figure 4.3, three FIR filters (type A, type B, type C) are 

implemented separately in an interpolation unit.  

Since 15 fractional pixels should be interpolated for one integer pixel, 64x15 

fractional pixels should be interpolated for an 8x8 PU. Also, 8x7 extra a, b, c half-pixels 

should be interpolated for the interpolation of quarter-pixels. First, integer pixels are 

loaded into integer pixel buffer in one clock cycle. Then, 8x8 d, h, n half-pixels are 

interpolated and stored in the output buffer in 8 clock cycles. After that 15x8 a, b, c 

half-pixels are interpolated and stored in the filtered pixel buffers A, B and C, 

respectively, in 15 clock cycles. Finally, 9x8x8 quarter-pixels are interpolated using a, 

b, c half-pixels and stored in the output buffer in 3x8=24 clock cycles. Therefore, the 

proposed hardware, in the worst case, interpolates the fractional pixels for an 8x8 PU in 

48 clock cycles. 

In this thesis, an original HEVC fractional interpolation hardware (FIHW) is also 

designed for energy consumption comparison. This hardware computes type A, B and C 

filters separately. The original HEVC fractional interpolation hardware (FIHW) does 

not have the comparison unit. In both the proposed HEVC fractional interpolation 

hardware including the PECR technique (FIHW+PECR) and the proposed HEVC 

fractional interpolation hardware including the PSCR technique (FIHW+PSCR), 14 

comparators are used to check similarity of the input pixels of FIR filters. FIHW+PECR 

uses 8-bit comparators. FIHW+PSCR for 1bT uses 7-bit comparators. Similarly, 



43 

 

FIHW+PSCR for 4bT uses 4-bit comparators. Based on the comparison results, disable 

signals are generated for each FIR filter and sent to the interpolation units. If the input 

pixels of an FIR filter are equal or similar, input registers of the corresponding FIR filter 

hardware are not updated, and a multiplexer at the output of interpolation unit is used to 

select the input pixel multiplied with the largest coefficient in the FIR filter instead of 

interpolated pixel. This prevents unnecessary switching activities in the FIR filter 

hardware.  

The proposed FIHW, FIHW+PECR and FIHW+PSCR hardware are implemented 

using Verilog HDL. The Verilog RTL codes are verified with RTL simulations. RTL 

simulation results matched the results of fractional interpolation implementation in 

HEVC HM encoder software [39].  

The Verilog RTL codes are mapped to a Xilinx XC6VLX75T FF784 FPGA with 

speed grade 3 using Xilinx ISE 13.4. All FPGA implementations are verified to work at 

200 MHz by post place and route simulations. Post place and route simulation results 

matched the results of fractional interpolation implementation in HEVC HM encoder 

software [39]. Therefore, they can process 30 quad full HD (3840x2160) video frames 

per second. FIHW FPGA implementation uses 4110 LUTs, 3448 DFFs and 6 BRAMs. 

FIHW+PECR FPGA implementation uses 4577 LUTs, 3408 DFFs, and 4 BRAMs. 

FIHW+PSCR for 3bT FPGA implementation uses 2381 LUTs, 849 DFFs, and 4 

BRAMs.  

Power consumptions of FIHW, FIHW+PECR and FIHW+PSCR for 3bT FPGA 

implementations are estimated using Xilinx XPower Analyzer tool. Post place and route 

timing simulations are performed for Tennis, Kimono, Park Scene and BQ Terrace 

(1920x1080) videos at 100 MHz [37], and signal activities are stored in VCD files. 

These VCD files are used for estimating the power consumptions of all FPGA 

implementations. Energy consumption results of FIHW, FIHW+PECR and 

FIHW+PSCR for 3bT for one frame of each video are shown in Figure 4.4. As shown in 

Figure 4.4, PECR and PSCR techniques reduced the energy consumption of FIHW 

FPGA implementation up to 39.7% and 46.9%, respectively. 
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Figure 4.4 Energy Consumptions of HEVC Fractional Interpolation Hardware 

 

4.3 Proposed HEVC Fractional Interpolation Hardware (MCM) 

The proposed hardware calculates common sub-expressions in different FIR filter 

equations in HEVC fractional interpolation algorithm once. The proposed hardware also 

uses Hcub multiplierless constant multiplication (MCM) algorithm [40] in order to 

reduce number and size of the adders and to minimize the adder tree depth. 

The type A and type B FIR filter equations for 8 half-pixels are shown in Figure 

4.5. As shown in Figure 4.5, common sub expressions are calculated in different 

equations and same integer pixel is multiplied with different constant coefficients in 

different equations. Therefore, in the proposed hardware, common sub-expressions in 

different equations are calculated once, and the result is used in all the equations. The 

proposed hardware also uses Hcub MCM algorithm in order to reduce number and size 

of the adders, and to minimize the adder tree depth [40].  

b-3,0 = -A-6 + 4×A-5 – 11×A-4 + 40×A-3 + 40×A-2 – 11×A-1 + 4×A0  - A1
b-2,0 = -A-5 + 4×A-4 – 11×A-3 + 40×A-2 + 40×A-1 – 11×A0 + 4×A1 – A2
b-1,0 = -A-4 + 4×A-3 – 11×A-2 + 40×A-1 + 40×A0 – 11×A1 + 4×A2 – A3
b0,0 = -A-3 + 4×A-2 – 11×A-1 + 40×A0 + 40×A1 – 11×A2 + 4×A3 – A4
b1,0 = -A-2 + 4×A-1 – 11×A0 + 40×A1 + 40×A2 – 11×A3 + 4×A4 – A5
b2,0 = -A-1 + 4×A0 – 11×A1 + 40×A2 + 40×A3 – 11×A4 + 4×A5 – A6
b3,0 = -A0 + 4×A1 – 11×A2 + 40×A3 + 40×A4 – 11×A5 + 4×A6 – A7
b4,0 = -A1 + 4×A2 – 11×A3 + 40×A4 + 40×A5 – 11×A6 + 4×A7 – A8

a-3,0 = -A-6 + 4×A-5 – 10×A-4 + 58×A-3 + 17×A-2 – 5×A-1 + A0  
a-2,0 = -A-5 + 4×A-4 – 10×A-3 + 58×A-2 + 17×A-1 – 5×A0 + A1  
a-1,0 = -A-4 + 4×A-3 – 10×A-2 + 58×A-1 + 17×A0 – 5×A1 + A2  
a0,0 = -A-3 + 4×A-2 – 10×A-1 + 58×A0 + 17×A1 – 5×A2 + A3  
a1,0 = -A-2 + 4×A-1 – 10×A0 + 58×A1 + 17×A2 – 5×A3 + A4  
a2,0 = -A-1 + 4×A0 – 10×A1 + 58×A2 + 17×A3 – 5×A4 + A5  
a3,0 = -A0 + 4×A1 – 10×A2 + 58×A3 + 17×A4 – 5×A5 + A6  
a4,0 = -A1 + 4×A2 – 10×A3 + 58×A4 + 17×A5 – 5×A6 + A7  

A – C Type Filters B Type Filters
 

Figure 4.5 Type A and Type B Filters 
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Hcub algorithm tries to minimize number of adders, their bit size and adder tree 

depth in a multiplier block, which multiplies a single input with multiple constants. 

Hcub algorithm is used in this thesis, because it produces better results than other MCM 

algorithms [40]. Multiplier block creation tool from Spiral implementing Hcub 

algorithm is used [54]. This tool takes constants to be multiplied as input and produces 

all necessary shift and add operations in a multiplier block as output. A multiplier block 

hardware has only one input, and it outputs results of multiplications with all the 

constants. 

The proposed HEVC fractional (half-pixel and quarter-pixel) interpolation 

hardware for all PU sizes is shown in Figure 4.6. The proposed hardware interpolates all 

the fractional pixels (half-pixels and quarter-pixels) for the luma component of a PU 

using integer or half pixels. Four buffers are used to store integer and half pixels 

necessary for interpolating the half and quarter pixels. The interpolated a, b, c half-

pixels are stored in the filtered pixels buffers A, B, C. These on-chip buffers reduce the 

required off-chip memory bandwidth and power consumption.  

 

Transpose 
Memory A

Transpose 
Memory B

Transpose 
Memory C

Integer Pixels Buffer
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Figure 4.6 Proposed HEVC Fractional Interpolation Hardware (MCM) 

 

 8x3=24 fractional pixels are interpolated in parallel using type A, type B and 

type C FIR filter equations. Common 1 (C1) datapath calculates the common sub-

expressions in the equations shown as blue boxes in Figure 4.5. Multiplier 1 (M1) and 

Multiplier 2 (M2) datapaths calculate the multiplications with multiple constant 
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coefficients shown as red boxes in Figure 4.5. As shown in Table 4.3, since constant 

coefficients of input pixels (A-4, A6) and (A-3-A5) are different, two different 

multiplier block hardware are used. Then, fractional pixels are calculated using adder 

trees.  

  

Table 4.3 Common Coefficients of Input Pixels 

Input 

Pixel 
Coefficient Datapath 

A-6 -1 

C1 
A-5 -1,4 

A-4 -1,4,-5,-10,-11 M1 

A-3 -1,4,-5,-10,-11,17,40,58 

M2 

A-2 -1,4,-5,-10,-11,17,40,58 

A-1 -1,4,-5,-10,-11,17,40,58 

A0 -1,4,-5,-10,-11,17,40,58 

A1 -1,4,-5,-10,-11,17,40,58 

A2 -1,4,-5,-10,-11,17,40,58 

A3 -1,4,-5,-10,-11,17,40,58 

A4 -1,4,-5,-10,-11,17,40,58 

A5 -1,4,-5,-10,-11,17,40,58 

A6 -1,4,-5,-10,-11 M1 

A7 -1,4 

C1 
A8 -1 

 

Since 15 fractional pixels should be interpolated for one integer pixel, 64x15 

fractional pixels should be interpolated for an 8x8 PU. 8x7 extra a, b, c half-pixels are 

necessary for the interpolation of quarter pixels. Therefore, the proposed hardware, in 

the worst case, interpolates the fractional pixels for an 8x8 PU in 48 clock cycles.  

 First, integer pixels are loaded into integer pixels buffer in one clock cycle. 

Then, 8x8 d, h, n half-pixels are interpolated and stored in the output buffer. After that, 

8x15 a, b and c half-pixels necessary for interpolating quarter pixels are interpolated in 

15 clock cycles, and stored in the filtered pixel buffers A, B, and C. Finally, 9x8x8 

quarter pixels are interpolated and stored in the output pixel buffers.  
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The proposed FIHW+MCM HEVC fractional interpolation hardware is 

implemented using Verilog HDL. The hardware implementation is verified with RTL 

simulations. The RTL simulation results matched the results of a software model of 

HEVC fractional interpolation algorithm. The Verilog RTL codes are synthesized and 

mapped to a Xilinx XC6VLX130T FF1156 FPGA with speed grade 3 using Xilinx ISE 

13.4. FIHW+MCM FPGA implementation uses 3929 LUTs, 3422 DFFs, and 6 

BRAMs. The proposed FPGA implementation is verified to work at 200 MHz by post 

place and route simulations. Therefore, it can process 30 quad HD (3840x2160) video 

frames per second.  

The power consumptions of FIHW and FIHW+MCM FPGA implementations are 

estimated using Xilinx XPower Analyzer tool for Tennis (1920x1080) and Kimono 

(1920x1080) videos [37]. The energy consumptions of FIHW and FIHW+MCM FPGA 

implementations are shown in Figure 4.7 and Figure 4.8. As shown in these figures, the 

proposed HEVC fractional interpolation hardware (FIHW+MCM) has up to 48% less 

energy consumption than original HEVC fractional interpolation hardware (FIHW). 

In order to estimate the power consumption of a fractional interpolation hardware, 

timing simulation of its placed and routed netlist is done at 100 MHz using Mentor 

Graphics Questa for encoding one frame of each video sequence. The signal activities of 

these timing simulations are stored in VCD files, and these VCD files are used for 

estimating the power consumption of that fractional interpolation hardware using Xilinx 

XPower Analyzer tool. Since fractional interpolation hardware will be used as part of a 

HEVC encoder or decoder, only internal power consumption is considered and input 

and output power consumptions are ignored.  

 

Figure 4.7 Energy Consumption of HEVC Fractional Interpolation Hardware for 

Tennis (1920x1080) with different QP Values  
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Figure 4.8 Energy Consumption of HEVC Fractional Interpolation Hardware for 

Kimono (1920x1080) with different QP Values 

 

 The Verilog RTL code of the proposed HEVC fractional interpolation hardware 

is also synthesized and place & routed to Synopsys 90nm standard cell library. The gate 

count of resulting ASIC implementation is calculated as 28.5k, excluding on-chip 

memories, based on NAND (2x1) gate area.   

4.4 Proposed Approximate HEVC Fractional Interpolation Filters and Their 

Hardware Implementations 

In this thesis, two approximate HEVC fractional interpolation filters (F1 and F2) 

are proposed. Both F1 and F2 use one 4-tap and two different 3-tap FIR filters instead 

of using one 8-tap and two different 7-tap FIR filters. The proposed interpolation filters 

significantly reduce computational complexity of HEVC fractional interpolation with a 

negligible PSNR loss and bit rate increase. F2 reduces computational complexity more 

than F1 with more PSNR loss and bit rate increase. 

The proposed approximate fractional interpolation filters are used in fractional 

motion estimation stage of an HEVC encoder. After best fractional motion vector is 

determined, original HEVC fractional interpolation filter is used in coding stage of the 

HEVC encoder. Therefore, the proposed approximate fractional interpolation filters do 

not cause encoder-decoder mismatch. 

In this thesis, two approximate HEVC fractional interpolation hardware for all PU 

sizes are designed and implemented using Verilog HDL for each proposed approximate 

fractional interpolation filter. The first hardware implements multiplications with 

constant coefficients using adders and shifters. The second hardware implements 
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addition and shift operations using Hcub multiplierless constant multiplication (MCM) 

algorithm. The second hardware for both F1 and F2, in the worst case, can process 45 

quad full HD (QFHD) frames per second (fps). They consume up to 67.1% less energy 

than original HEVC fractional interpolation hardware. F2 fractional interpolation 

hardware has smaller area and lower energy consumption than F1 fractional 

interpolation hardware. 

Approximate HEVC fractional interpolation filters are proposed in [55]-[56]. 

However, the approximate HEVC fractional interpolation filters proposed in this thesis 

have less computational complexity and better rate-distortion performance than the ones 

proposed in [55]-[56]. 

4.4.1 Proposed Approximate HEVC Fractional Interpolation Filters 

In this thesis, two approximate HEVC fractional interpolation filters (F1 and F2) 

are proposed. Both F1 and F2 use one 4-tap and two different 3-tap FIR filters. But, 

they use different filter coefficients. The proposed approximate HEVC fractional 

interpolation filter equations for F1 and F2 are shown in (4.4)-(4.6) and (4.7)-(4.9), 

respectively.  

 

𝑎0,0 = (−7 ∗ 𝐴−1,0 + 58 ∗ 𝐴0,0  + 13 ∗ 𝐴1,0 ) ≫ 6 
(4.4) 

𝑏0,0 = (−8 ∗ 𝐴−1,0 + 40 ∗ 𝐴0,0 +  40 ∗ 𝐴1,0 − 8 ∗ 𝐴2,0) ≫ 6 
(4.5) 

𝑐0,0 = (13 ∗ 𝐴−0,0 + 58 ∗ 𝐴1,0 − 7 ∗ 𝐴2,0) ≫ 6 
(4.6) 

  

𝑎0,0 = (−8 ∗ 𝐴−1,0 + 64 ∗ 𝐴0,0  + 8 ∗ 𝐴1,0 ) ≫ 6 
(4.7) 

𝑏0,0 = (−8 ∗ 𝐴−1,0 + 40 ∗ 𝐴0,0 +  40 ∗ 𝐴1,0 − 8 ∗ 𝐴2,0) ≫ 6 
(4.8) 

𝑐0,0 = (8 ∗ 𝐴0,0 + 64 ∗ 𝐴1,0 − 8 ∗ 𝐴2,0) ≫ 6 
(4.9) 

 

In original HEVC FIR filter A, if values of the pixels (A-3,0, A-2,0, A-1,0) multiplied 

with first three coefficients (-1, 4, -10) are the same, multiplication and addition result 

can be calculated by multiplying one pixel with -7 (-1+4-10 = -7). In original HEVC 

fractional interpolation filters, small coefficients have less effect on the filter result. In 

addition, since the pixels multiplied with small coefficients are neighboring pixels, 

because of spatial correlation, their values will be very similar. Therefore, the 

coefficients of F1 are determined by assuming that values of the pixels multiplied with 

small coefficients are the same. The coefficients of F2 are determined by replacing the 
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coefficients of F1 with closest 2n values. In this way, multiplications with coefficients of 

F2 are performed using shift operations. In addition, F1 and F2 have similar frequency 

responses with original HEVC fractional interpolation filters. 

Table 4.4 shows the number of addition and shift operations necessary for 

calculating FIR filters used in HEVC fractional interpolation (Original), FIR filters used 

in the proposed approximate HEVC fractional interpolation (F1 and F2), and FIR filters 

used in the approximate HEVC fractional interpolation proposed in [55]-[56]. 

 

Table 4.4 Addition and Shift Reductions 

Filter 

A B C 
Avg. 

(%) 
Add Shift Add Shift Add Shift 

Original 11 8 13 10 11 8  

F1 

Num. 7 6 5 6 7 6  

Red. 

(%) 
36.3 25.0 61.5 40.0 36.3 25.0 37.4 

F2 

Num. 2 3 5 6 2 3  

Red. 

(%) 
81.8 62.5 61.5 40.0 81.8 62.5 65.0 

[55] 

Num. 11 6 11 8 11 6  

Red. 

(%) 
0.0 25.0 15.4 20.0 0.0 25.0 14.2 

[56] 

Num. 9 6 9 10 9 6  

Red. 

(%) 
18.2 25.0 30.8 0.0 18.2 25.0 19.5 

 

The proposed approximate HEVC fractional interpolation filters (F1 and F2) are 

integrated into fractional motion estimation in HEVC HM software encoder 15.0 [39]. 

First ten frames of some of the HEVC test videos [37] are coded with low delay P (LP) 

test configuration and with four different quantization parameters (QP) using HEVC 

HM 15.0 with original HEVC fractional interpolation filters, F1 and F2. The resulting 

rate-distortion performances are shown in Table 4.5.  
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Table 4.5 BD-Rate(%) and BD-PSNR(dB) 

 
 F1 F2 [55] [56] 

Video Sequence 
BD-

Rate 

BD-

PSNR 

BD-

Rate 

BD-

PSNR 

BD-

Rate 

BD-

PSNR 

BD-

Rate 

BD-

PSNR 

2560x1600 

People on 

Street 
-0.27 0.01 1.13 -0.05 --- --- --- --- 

Traffic 0.51 -0.02 1.56 -0.06 --- --- --- --- 

1920x1080 

Tennis -0.01 0.01 0.76 -0.02 --- --- --- --- 

Kimono -0.31 0.01 0.31 -0.01 1.79 -0.06 1.05 -0.03 

Basketball 

Drive 
0.76 -0.01 1.46 -0.03 1.22 -0.03 1.41 -0.03 

Park Scene 0.73 -0.03 1.77 -0.06 2.42 -0.08 3.77 -0.11 

1280x720 

Vidyo1 0.17 -0.01 0.60 -0.02 --- --- --- --- 

Vidyo4 0.25 -0.01 0.49 -0.01 --- --- --- --- 

Kristen and 

Sara 
0.53 -0.02 1.14 -0.04 3.87 -0.12 4.12 -0.12 

Four People 0.08 0.00 0.48 -0.02 3.25 -0.11 3.02 -0.10 

832x480 

Keiba 0.16 -0.01 1.36 -0.05 --- --- --- --- 

BQ Mall 0.79 -0.04 1.36 -0.06 1.69 -0.07 3.73 -0.14 

Race Horses 0.61 -0.03 1.91 -0.09 1.28 -0.05 2.21 -0.08 

Basketball 

Drill 
1.56 -0.06 1.64 -0.07 0.35 -0.01 1.28 -0.05 

Average 0.40 -0.01 1.14 -0.04 1.98 -0.07 2.57 -0.08 

 

The proposed F1 and F2 filters significantly reduce computational complexity of 

HEVC fractional interpolation with a negligible PSNR loss and bit rate increase. They 

have less computational complexity and better rate-distortion performance than the ones 

proposed in [55]-[56]. 

4.4.2 Proposed Approximate HEVC Fractional Interpolation Hardware 

In this thesis, two approximate HEVC fractional interpolation hardware for all PU 

sizes are designed for each proposed approximate interpolation filter. The first hardware 

(AS) implements multiplications with constant coefficients using adders and shifters. In 

this hardware, three different datapaths are used for implementing A, B and C FIR 

filters. It interpolates 8x3=24 fractional pixels in parallel using 24 (8 A, 8 B, 8 C) 

parallel datapaths. The proposed AS approximate HEVC fractional interpolation 

hardware is shown in Figure 4.9. 
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Figure 4.9 Proposed AS Approximate HEVC Fractional Interpolation Hardware 

 

Since different fractional interpolation filter equations multiply same integer pixel 

with different constant coefficients, in the second hardware (MCM), Hcub MCM 

algorithm is used for reducing number and size of the adders. A multiplier block (MB) 

hardware is given one input. It outputs multiplications of this input with all the 

constants. The proposed MCM approximate HEVC fractional interpolation hardware is 

shown in Figure 4.10. 

 

 

Figure 4.10 Proposed MCM Approximate HEVC Fractional Interpolation Hardware 
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Integer pixels are stored in one on-chip memory. Then, half pixels (a, b, c) that 

will be used for interpolating the quarter pixels are stored in three on chip memories. 

Since a, b, c half pixels are interpolated in horizontal direction and used in vertical 

direction for quarter pixel interpolations, transpose memory architecture is used to store 

a, b, c half pixels. 

Both proposed MCM hardware implementing the proposed F1 fractional 

interpolation filter (F1 MCM hardware) and proposed MCM hardware implementing 

the proposed F2 fractional interpolation filter (F2 MCM hardware) interpolate 8x3=24 

fractional pixels in parallel. First, multiplier blocks perform multiplications with 

constant coefficients. Then, fractional pixels are calculated using adder trees. Since 

different constant coefficients are used in F1 and F2 filters, different multiplier blocks 

are used in F1 MCM hardware and F2 MCM hardware. 

Since the proposed approximate HEVC fractional interpolation filters F1 and F2 

use FIR filters with less number of taps than the original HEVC fractional interpolation 

filter, the proposed F1 AS, F1 MCM, F2 AS and F2 MCM hardware need to access 11 

pixels instead of 15 pixels in order to interpolate 8x3=24 fractional pixels. Therefore, 

they require less memory accesses than the original HEVC fractional interpolation 

hardware. 

F1 AS, F2 AS, F1 MCM and F2 MCM hardware interpolate the fractional pixels 

for an 8x8 PU in 44 clock cycles. First, 8x8 half pixels are interpolated. Then, 8x11 half 

pixels that will be used for interpolating the quarter pixels are interpolated. Finally, 

64x9 quarter pixels are interpolated. Scheduling of memory read and interpolation 

operations in F1 AS, F2 AS, F1 MCM and F2 MCM hardware are shown in Figure 

4.11. 

 

 

Figure 4.11 Scheduling of HEVC Fractional Interpolation Hardware 
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The proposed F1 AS, F1 MCM, F2 AS and F2 MCM hardware are implemented 

using Verilog HDL. The Verilog RTL codes are synthesized, placed and routed to a 

Xilinx XC6VLX130T FF1156 FPGA. FPGA implementations are verified with both 

RTL and post place & route timing simulations. The simulation results matched the 

results of HEVC HM software encoder [39]. 

FPGA implementations are also verified on an Xilinx ZYNQ ZC702 FPGA board 

as shown in Figure 4.12. The FPGA board has a 28 nm FPGA and dual-core ARM 

microprocessor. It also has 1GB DRAM and several interfaces such as UART and 

HDMI. Microprocessor reads video frames from SD card and sends them to FPGA 

using a high speed bus. The proposed hardware interpolates the video frames. Then, 

microprocessor displays interpolated frames on HDMI monitor and stores them to SD 

card. 

 

 

Figure 4.12 Implementation of Proposed Approximate HEVC Fractional Interpolation 

Hardware on an FPGA Board 

 

FPGA implementation results are shown in Table 4.6.  F1 AS implementation can 

work at 200 MHz, and it can process 33 QFHD (3840x2160) fps. F2 AS 

implementation can work at 250 MHz, and it can process 41 QFHD fps. F1 MCM and 

F2 MCM implementations can work at 278 MHz, and they can process 45 QFHD fps. 

The proposed F1 and F2 approximate HEVC fractional interpolation hardware are faster 

and smaller than the original HEVC fractional interpolation hardware proposed in [15]. 
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Table 4.6 FPGA Implementation Results 

 Original [15] Proposed F1 Proposed F2 

 AS MCM AS MCM AS MCM 

Slice 1669 1557 1144 834 963 731 

LUT 4110 3929 2416 2008 1601 1567 

DFF 3448 3422 2596 3034 1873 2762 

BRAM 6 6 6 6 6 6 

Freq. 

(MHz) 
200 200 200 278 250 278 

Fps 
30 Quad 

Full HD 

30 Quad 

Full HD 

33 Quad 

Full HD 

45 Quad 

Full HD 

41 Quad 

Full HD 

45 Quad 

Full HD 

Power 

Dissip. 
152 mW 93 mW 104 mW 88 mW 67 mW 80 mW 

 

The Verilog RTL codes of the proposed F1 AS, F1 MCM, F2 AS and F2 MCM 

hardware are synthesized, placed and routed to a 90nm standard cell library as well. The 

gate counts of these ASIC implementations are calculated based on 2x1 NAND gate 

area. ASIC implementation results are shown in Table 4.7. 

 

Table 4.7 ASIC Implementation Results 

 Original [15] Proposed F1 Proposed F2 

 AS MCM AS MCM AS MCM 

Tech. 90 nm 90 nm 90 nm 90 nm 90 nm 90 nm 

Gate  

Count 
29.5 K 28.5 K 13.2 K 12.8 K 10.6 K 11.2 K 

Freq.  

(MHz) 
250 250 300 300 300 300 

Fps 
37 Quad 

Full HD 

37 Quad 

Full HD 

49 Quad 

Full HD 

49 Quad 

Full HD 

49 Quad 

Full HD 

49 Quad 

Full HD 

Power  

Dissip. 
27.3 mW 23.9 mW 16.4 mW 15.8 mW 14.8 mW 14.9 mW 

 

 

Power consumptions of F1 AS, F2 AS, F1 MCM and F2 MCM are estimated for 

Tennis and Kimono (1920x1080) videos [37] using a Xilinx XPower Analyzer tool. 

Signal activities captured during post place & route timing simulations are used to 

estimate power consumptions. Energy consumptions of all FPGA implementations are 
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shown in Figure 4.13. The proposed approximate HEVC fractional interpolation 

hardware consume up to 67.1% less energy than the original HEVC fractional 

interpolation hardware proposed in [15]. 

 

 

Figure 4.13 Energy Consumption Results 

 

 

4.5 Hardware Comparison 

The proposed FIHW, FIHW+PECR, FIHW+PSCR+3bT, FIHW+MCM, F1 AS, 

F1 MCM, F2 AS and F2 MCM FPGA implementations are compared in Table 4.8. The 

proposed approximate hardware implementations have higher performance than other 

hardware implementations because they need less clock cycles to interpolate one 8x8 

PU. FIHW+PSCR+3bT has smaller area than other hardware implementations since it 

uses most significant 5-bits of integer and half pixels for interpolation. However, it has 

the worst rate distortion performance.  
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Table 4.8 Comparisons of The Proposed FPGA Implementations 

 
FIHW 

FIHW+ 

PECR 

FIHW+ 

PSCR+3bT 

FIHW+ 

MCM 
F1 AS 

F1 

MCM 
F2 AS 

F2 

MCM 

FPGA 
Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

DFF 

Count 
3448 3408 849 3422 2596 3034 1873 2762 

LUT 

Count 
4110 4577 2381 3929 2416 2008 1601 1567 

Max. 

Freq. 

(MHz) 

200 200 200 200 200 278 250 278 

Fps 
30 

QFHD 

30 

QFHD 
30 QFHD 

30 

QFHD 

33 

QFHD 

45 

QFHD 

41 

QFHD 

45 

QFHD 

 

 The proposed approximate HEVC fractional interpolation hardware are 

compared with the HEVC fractional interpolation hardware proposed in the literature 

[57]-[65]. The comparisons of ASIC and FPGA implementations are shown in Table 

4.9 and Table 4.10, respectively. Some of the results are not given in Table 4.9 and 

Table 4.10, because they are not available in the literature [57]-[63]. 

 

Table 4.9 Comparisons of ASIC Implementations 

 
[15] [57] [58] [59] [60] [61] [62] F1 F2 

Tech. 90 nm 150 nm 90 nm 90 nm 90 nm 130 nm 40 nm 90 nm 90 nm 

Gate Count 28.5 K 30.2 K 224 K 383 K 37.2 K 126.8 K 297.3 K 12.8 K 11.2 K 

Max.  

Freq. (MHz) 
200 312 333 192 240 208 342 300 300 

Fps  
30 

QFHD 

30 

QFHD 

30 

FHD 

60 

QFHD 

47 

QFHD 

86 

QFHD 

60 

UHD 

49 

QFHD 

49 

QFHD 
Power 

Dissip. 

23.9 

mW 
--- --- --- --- --- 

48.1 

mW 

15.8 

mW 

14.9 

mW 

 

Table 4.10 Comparisons of FPGA Implementations 

 
[15] [59] [63] [64] [65] F1 F2 

FPGA 
Xilinx 

Virtex 6 

Xilinx 

Virtex 5 

Altera 

Arria II 

Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

Slice Count 1557 --- --- 2181 1498 834 731 

LUT Count 3929 28486 24202 5017 3806 2008 1567 

Max. Freq. 

(MHz) 
200 120 200 283 233 278 278 

Fps 
30 

3840x2160 
--- 

60 

1920x1080 

30 

2560x1600 

35 

3840x2160 

45 

3840x2160 

45 

3840x2160 

Power 

Dissipation 
93 mW --- 171 mW 89 mW --- 88 mW 80 mW 



58 

 

A coarse grained reconfigurable datapath is proposed to reduce area and adaptive 

scheduling is proposed to increase throughput in [57]. A fractional interpolation 

hardware is proposed for HEVC encoder in [58]. Data-reuse technique is used to reduce 

memory accesses and highly-parallel architecture is used to increase throughput in [59]. 

Efficient memory organization and reuse of datapath are proposed in [60]. Resource 

sharing for common partial terms of the interpolation filters is proposed in [61]. A 

fractional interpolation hardware is proposed for motion compensation in [62]. Many 

parallel interpolation hardware are used in [63]. Reconfigurable interpolation datapaths 

are used to reduce area and power consumption in [64]. [65] uses memory based 

constant multiplication technique for implementing multiplication with constant 

coefficients.  

The proposed approximate HEVC fractional interpolation hardware have much 

smaller hardware area and lower power consumption than the other hardware. The 

smallest hardware in the literature has more than two times larger area than the 

proposed hardware. Only the HEVC fractional interpolation hardware proposed in [59], 

[61]-[62] have higher throughput than them. However, they have more than ten times 

larger area than the proposed hardware. In addition, performance result of the hardware 

proposed in [62] is given for motion compensation. Performance results of the rest of 

the hardware including the ones proposed in this thesis are given for motion estimation. 
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5 CHAPTER V 

 

A COMPUTATION AND ENERGY REDUCTION TECHNIQUE 

FOR HEVC DISCRETE COSINE TRANSFORM 

HEVC standard uses Discrete Cosine Transform (DCT) / Inverse Discrete Cosine 

Transform (IDCT) same as the H.264 standard. However, H.264 standard uses only 4x4 

and 8x8 Transform Unit (TU) sizes for DCT/IDCT. HEVC standard uses 4x4, 8x8, 

16x16, and 32x32 TU sizes for DCT/IDCT. Larger TU sizes achieve better energy 

compaction. However, they increase the computational complexity exponentially. In 

addition, HEVC uses Discrete Sine Transform (DST) / Inverse Discrete Sine Transform 

(IDST) for 4x4 intra prediction in certain cases. 

Transform operations (DCT/IDCT and DST/IDST) are heavily used in an HEVC 

encoder [11]. DCT and DST have high computational complexity. DCT and DST 

operations account for 11% of the computational complexity of an HEVC video 

encoder. They account for 25% of the computational complexity of an all intra HEVC 

video encoder. 

HEVC uses DCT-II and DST-VII. It uses 4x4, 8x8, 16x16, 32x32 TU sizes for 

DCT. It also uses DST for 4x4 intra prediction in certain cases. HEVC performs 2D 

transform operation by applying 1D transforms in vertical and horizontal directions. The 

coefficients in HEVC 1D transform matrices are derived from DCT-II and DST-VII 
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basis functions. However, integer coefficients are used for simplicity. HEVC 1D DCT-

II and DST-VII matrices for 4x4 TU size are shown in (5.1) and (5.2). 

 

            𝐷𝐶𝑇 − 𝐼𝐼4𝑥4 = [

64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36

]                                           (5.1) 

 

                𝐷𝑆𝑇 − 𝑉𝐼𝐼4𝑥4 = [

29 55 74 84
74 74 0 −74
84 −29 −74 55
55 −84 74 −29

]                                           (5.2) 

 

In this thesis, a novel computation and energy reduction technique for HEVC 

DCT for all TU sizes is proposed. After forward transform and quantization, most of the 

forward transformed and quantized high frequency coefficients in a TU become zero. In 

addition, if the values of non-zero forward transformed and quantized low frequency 

coefficients in a TU are small, they have small impact on the inverse quantized and 

inverse transformed TU. Therefore, the proposed technique only calculates several pre-

determined low frequency coefficients of TUs, and it assumes that the remaining 

coefficients are zero.  

The proposed technique is used in both mode decision and coding stages of an 

HEVC encoder. Since the same DCT coefficients are used in both HEVC encoder and 

HEVC decoder, the proposed technique does not cause any encoder-decoder mismatch. 

The proposed technique does not require any modification in an HEVC decoder. The 

proposed technique reduces the computational complexity of HEVC DCT significantly 

at the expense of slight decrease in PSNR and slight increase in bit rate. It reduced the 

execution time of HEVC HM software encoder [39] up to 12.74%, and it reduced the 

execution time of the DCT operations in HEVC HM software encoder up to 37.27% on 

a workstation with 3.33 GHz dual-core processor and 64 GB DRAM.  

In this thesis, a low energy HEVC 2D DCT hardware for all TU sizes is also 

designed and implemented using Verilog HDL. The proposed hardware calculates 4, 8, 

16 and 32 DCT coefficients per clock cycle for 4x4, 8x8, 16x16 and 32x32 TU sizes, 

respectively. It, in the worst case, can process 48 Quad Full HD (3840x2160) video 

frames per second. In this thesis, another low energy HEVC 2D DCT hardware for all 

TU sizes with higher hardware utilization is also designed and implemented using 
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Verilog HDL. This hardware processes four 4x4 TUs or two 8x8 TUs in parallel. 

Therefore, it can calculate 16 DCT coefficients per clock cycle for 4x4, 8x8 and 16x16 

TU sizes, and 32 DCT coefficients per clock cycle for 32x32 TU size. It, in the worst 

case, can process 53 Ultra HD (7680x4320) video frames per second.  

Clock gating is used to reduce the energy consumptions of both hardware. Hcub 

Multiplierless Constant Multiplication (MCM) algorithm [40] is used to reduce number 

and size of the adders in both hardware. Hcub MCM algorithm reduced the energy 

consumption of the lower utilization (LU) hardware and the higher utilization (HU) 

hardware up to 5.9% and 13.1%, respectively. Finally, the proposed technique is used to 

reduce the energy consumptions of both hardware. It further reduced the energy 

consumption of the LU hardware and the HU hardware up to 17.9% and 18.9%, 

respectively.  

Several zero quantized DCT coefficient detection techniques are proposed for 

H.264 and HEVC [66]-[69]. These techniques try to predict the blocks with zero 

forward transformed and quantized coefficients before DCT and quantization operations 

in the coding stage of an H.264 or HEVC encoder in order to avoid DCT and 

quantization operations. However, the technique proposed in this thesis avoids most of 

the DCT operations that have no impact or low impact on the transformed and quantized 

TUs in both mode decision and coding stages of an HEVC encoder. In addition, the zero 

quantized DCT coefficient detection techniques have much more computational 

overhead than the proposed technique which requires only one comparison for each TU. 

Several HEVC DCT hardware are proposed in the literature [70]-[74]. In [70], 2D 

DCT hardware calculates all DCT outputs using multipliers. In [71], 2D DCT hardware 

reuses smaller TU hardware for DCT operations of larger TUs. In [72], 2D DCT 

hardware implementation uses two different 1D transform hardware for column and row 

transforms, and it can process 32 pixels per clock cycle for all TU sizes. In [73], 2D 

DCT hardware calculates all DCT outputs using multipliers, and it modifies the order of 

TU processing for optimizing transform buffer. In [74], the proposed hardware only 

performs 1D DCT transform, and it uses canonical signed digit representation and 

common sub-expression elimination technique to decrease number of adders and 

shifters. The low energy HEVC 2D DCT hardware proposed in this thesis is compared 

with these HEVC DCT hardware in Section 5.3. 
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5.1 Proposed Computation and Energy Reduction Technique 

After forward transform and quantization, most of the forward transformed and 

quantized high frequency coefficients in a TU become zero. In addition, if the values of 

non-zero forward transformed and quantized low frequency coefficients in a TU are 

small, they have small impact on the inverse quantized and inverse transformed TU. 

Therefore, the proposed technique only calculates several pre-determined low frequency 

coefficients of TUs, and it assumes that the remaining coefficients are zero.  

As shown in Figure 5.1, in this thesis, the impact of the proposed technique on the 

computational complexity and rate-distortion performance is determined for three 

different DCT coefficient sets. In the first two coefficient sets, the coefficients that will 

be calculated by the HEVC DCT for all TU sizes are pre-determined, and they are not 

changed during DCT operations. When the proposed technique is used with coefficient 

set 1, only 25% (1/4) of DCT coefficients are calculated for all TU sizes. When the 

proposed technique is used with coefficient set 2, 56.25% (9/16) of DCT coefficients 

are calculated for 4x4 and 16x16 TU sizes, and 14% (9/64) of DCT coefficients are 

calculated for 8x8 and 32x32 TU sizes. These DCT coefficient percentages are 

experimentally determined to reduce the computational complexity of HEVC DCT 

significantly with slight impact on distortion and bit rate. 

 

 

Figure 5.1 Proposed Computation and Energy Reduction Technique 
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In the coefficient set 3, the pre-determined coefficients that will be calculated by 

HEVC DCT for all TU sizes are adaptively changed during DCT operations. For 4x4 

TUs, level-0 or level-1 DCT is performed. For the other TUs, level-0, level-1 or level-2 

DCT is performed. In level-0 DCT, all DCT coefficients are calculated for all TUs. In 

level-1 DCT, 25% (1/4) of DCT coefficients are calculated for 4x4 TUs, and 39% 

(25/64) of DCT coefficients are calculated for 8x8, 16x16 and 32x32 TUs. In level-2 

DCT, 14% (9/64) of DCT coefficients are calculated for 8x8, 16x16 and 32x32 TUs. 

Initially, level-0 DCT is used for each TU size. As shown in Figure 5.2, if the 

distortion value for current TU obtained by the current DCT operation is smaller than 

90% of the previous distortion value for the same TU or same size TU obtained by the 

previous DCT operation, DCT level for this TU size is increased. If the distortion value 

for current TU obtained by the current DCT operation is larger than 110% of the 

previous distortion value for the same TU or same size TU obtained by the previous 

DCT operation, DCT level for this TU size is decreased.  

 

DCT(Residuals, Distortion)  { 

    if (Distortion(curr_dct) is larger than 1.1*Distortion(prev_dct) and  

         DCT_Level is larger than zero)   

         DCT_Level  ← (DCT_Level - 1) 

    else if (Distortion(curr_dct) is smaller than 0.9*Distortion(prev_dct)  

                and DCT_Level is smaller than two) 

         DCT_Level  ← (DCT_Level + 1) 

 

    if (DCT_Level is zero) 

         DCT Coefficients  ← DCT_L0(Residuals) 

    else if (DCT_Level is one) 

         DCT Coefficients  ← DCT_L1(Residuals) 

    else if (DCT_Level is two) 

         DCT Coefficients  ← DCT_L2(Residuals) 

} 

Figure 5.2 Pseudocode of HEVC DCT with The Proposed Technique 

 

Since the distortion value for current TU is already calculated by an HEVC 

encoder, the proposed technique does not calculate the distortion value for current TU. 

When the proposed technique is used with coefficient set 3, the percentages of DCT 

levels used for all TUs for first 10 frames of three different full HD (1920x1080) videos 

are shown in Figure 5.3. 
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Figure 5.3 DCT Level Percentages 

Table 5.1 shows the number of addition and shift operations required for 

calculating all DCT coefficients in a TU (Original) and for calculating the pre-

determined DCT coefficients in a TU for three different DCT coefficient sets. 

Calculating only the pre-determined DCT coefficients in a TU significantly reduces the 

number of addition and shift operations.  

 

Table 5.1 Addition and Shift Reductions for All TU Sizes 

TU Size Org. 
C. Set 

#1 

Red. 

(%) 

C. Set 

#2 

Red. 

(%) 

Coefficient Set #3 

Level 1 
Red. 

(%) 
Level 2 

Red. 

(%) 

4x4 
Add. 224 84 62.5 147 34.4 84 62.5 -- -- 

Shift 224 84 62.5 147 34.4 84 62.5 -- -- 

8x8 
Add. 2560 960 62.5 660 74.2 1300 49.2 660 74.2 

Shift 2304 864 62.5 594 74.2 1170 49.2 594 74.2 

16x16 
Add. 20992 7872 62.5 13776 34.4 10660 49.2 5412 74.2 

Shift 16896 6336 62.5 11088 34.4 8580 49.2 4356 74.2 

32x32 
Add. 182272 68352 62.5 46992 74.2 92560 49.2 46992 74.2 

Shift 153600 57600 62.5 39600 74.2 78000 49.2 39600 74.2 

Average  62.5 54.3 52.5 74.2 

 

The proposed technique is integrated into DCT operations performed by HEVC 

HM software encoder [39]. The pre-determined DCT coefficients are experimentally 

determined to achieve large computation reduction with slight decrease in PSNR and 

slight increase in bit rate using HEVC HM software encoder. The impact of the 

proposed technique on execution time and rate-distortion performance is determined for 

three different DCT coefficient sets on a workstation with 3.33 GHz dual-core processor 
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and 64 GB DRAM for People on Street, Traffic (2560x1600), Tennis, Kimono, 

Basketball Drive, Park Scene (1920x1080), Vidyo1, Vidyo4, Kristen and Sara, Four 

People (1280x720), Keiba, Party Scene, Race Horses, Basketball Drill (832x480) videos 

[37].  

First 10 frames of all video sequences are coded with all intra (AI), low delay P 

(LP) (IPPPP) and random access (RA) (IBBBB) test configurations and with 

quantization parameters (QP) 22, 27, 32 and 37 using HEVC HM software encoder [39] 

with and without the proposed technique, and BD-Rate and BD-PSNR values are 

calculated. The results given in Tables 5.2, 5.3 and 5.4 show that the proposed 

technique reduces the computational complexity of HEVC DCT significantly at the 

expense of slight decrease in PSNR and slight increase in bit rate. Since it is used in 

mode decision stage of an HEVC encoder, it achieves different amount of execution 

time reductions for DCT operations and HEVC encoder.  

 

Table 5.2 BD-Rate, BD-PSNR and Execution Time Results for HEVC All Intra (AI) 

Configuration 

 Coefficient Set #1 Coefficient Set #2 Coefficient Set #3 
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∆
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T
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People on 

Street 
1.32 -0.07 4.14 -22.05 2.09 -0.11 -4.10 -24.25 1.89 -0.10 -6.11 -23.81 

Traffic 0.82 -0.04 -3.67 -20.78 1.68 -0.09 -3.68 -23.40 1.76 -0.09 7.21 -24.75 

Tennis 3.18 -0.10 -4.48 -20.55 3.11 -0.09 -3.85 -22.45 2.32 -0.06 -8.07 -22.86 

Kimono 2.06 -0.07 -4.94 -21.13 1.89 -0.06 -1.79 -23.05 1.24 -0.04 -7.21 -23.38 

Basketball 

Drive 
5.63 -0.19 -5.64 -21.05 4.17 -0.16 -4.07 -23.85 4.06 -0.13 -9.77 -24.22 

Park Scene 2.88 -0.12 -6.02 -20.25 2.28 -0.09 -4.50 -22.40 2.52 -0.10 -8.83 -24.28 

Vidyo1 2.73 -0.13 -3.53 -21.10 2.21 -0.10 -2.82 -24.13 2.09 -0.09 -7.67 -24.24 

Vidyo4 3.28 -0.17 -4.32 -20.93 2.84 -0.12 -1.85 -23.55 2.85 -0.12 -8.44 -24.23 

Kristen And 

Sara 
3.37 -0.20 -5.18 -22.05 2.11 -0.10 -2.84 -23.38 2.25 -0.11 -10.14 -23.98 

Four People 2.82 -0.16 -3.79 -21.33 2.56 -0.14 -2.64 -23.05 2.50 -0.14 -7.48 -24.17 

Keiba 3.69 -0.18 -2.09 -21.23 3.20 -0.18 -3.60 -24.33 3.18 -0.15 -7.41 -22.99 

Party Scene -0.94 0.07 -13.48 -20.68 0.90 -0.07 -11.02 -23.15 0.61 -0.05 -11.21 -21.38 

Race Horses 1.26 -0.08 -6.05 -20.63 2.31 -0.14 -5.22 -22.80 1.58 -0.10 -9.29 -24.25 

Basketball 

Drill 
-1.63 0.08 -6.42 -21.53 -0.10 0.01 -5.84 -23.15 0.44 -0.02 -9.34 -24.20 

Average 2.17 -0.09 -5.27 -21.09 2.23 -0.10 -4.13 -23.35 2.09 -0.09 -8.44 -23.77 
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Table 5.3 BD-Rate, BD-PSNR and Execution Time Results for HEVC Low Delay P 

(LP) Configuration 

 Coefficient Set #1 Coefficient Set #2 Coefficient Set #3 
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People on 

Street 
1.61 -0.07 -3.10 -28.35 1.75 -0.08 -3.23 -40.59 1.94 -0.09 -7.25 -32.08 

Traffic 1.54 -0.06 -4.30 -24.45 2.10 -0.08 -4.08 -45.72 2.53 -0.10 -8.24 -30.65 

Tennis 1.77 -0.05 -3.30 -32.13 1.59 -0.05 -3.36 -44.54 1.66 -0.05 -7.23 -35.58 

Kimono 1.51 -0.05 -4.11 -31.60 0.98 -0.03 -2.95 -37.41 0.58 -0.02 -7.64 -36.33 

Basketball 

Drive 
4.48 -0.16 -5.51 -29.65 3.79 -0.12 -5.13 -38.68 3.01 -0.10 -8.87 -37.27 

Park Scene 2.80 -0.09 -6.67 -27.48 2.09 -0.07 -3.51 -42.40 2.56 -0.08 -9.36 -30.13 

Vidyo1 2.97 -0.12 -5.56 -20.38 1.86 -0.07 -5.30 -52.03 2.39 -0.09 -7.59 -31.11 

Vidyo4 3.93 -0.14 -5.81 -20.85 3.43 -0.11 -2.38 -51.46 3.20 -0.09 -7.61 -32.62 

Kristen And 

Sara 
4.07 -0.16 -5.23 -19.90 2.60 -0.11 -2.87 -51.91 2.62 -0.10 -7.44 -30.84 

Four People 2.89 -0.14 -4.03 -20.63 2.48 -0.13 -3.50 -53.30 2.52 -0.11 -7.82 -29.37 

Keiba 6.01 -0.37 -7.87 -21.10 5.54 -0.31 -4.93 -36.66 3.08 -0.17 -9.80 -32.41 

Party Scene 1.31 -0.09 -12.62 -20.28 2.01 -0.13 -10.21 -44.13 1.34 -0.08 -12.74 -25.84 

Race Horses 4.57 -0.22 -8.32 -20.08 3.84 -0.20 -5.35 -25.58 2.27 -0.14 -10.04 -31.42 

Basketball 

Drill 
-0.20 0.01 -7.87 -20.48 1.04 -0.04 -5.01 -42.88 1.95 -0.08 -8.44 -32.83 

Average 2.80 -0.12 -6.02 -24.10 2.50 -0.10 -4.41 -43.37 2.26 -0.09 -8.58 -32.04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 

 

Table 5.4 BD-Rate, BD-PSNR and Execution Time Results for HEVC Random Access 

(RA) Configuration 

 Coefficient Set #1 Coefficient Set #2 Coefficient Set #3 

Video 
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People on 

Street 
1.33 -0.06 -3.93 -39.29 1.54 -0.07 -3.27 -33.77 1.64 -0.07 -4.47 -31.02 

Traffic 0.84 -0.03 -4.04 -16.32 1.70 -0.07 -4.30 -27.30 1.82 -0.08 -2.01 -18.47 

Tennis 2.19 -0.07 -4.50 -40.03 1.77 -0.05 -3.03 -38.20 1.58 -0.04 -6.32 -32.47 

Kimono 1.58 -0.05 -3.22 -44.48 1.31 -0.04 -2.07 -35.88 0.77 -0.02 -6.86 -33.21 

Basketball 

Drive 
4.94 -0.16 -4.35 -42.48 4.37 -0.13 -1.88 -33.48 4.17 -0.09 -7.40 -33.17 

Park Scene 2.81 -0.09 -5.76 -13.97 2.27 -0.07 -3.93 -27.25 2.60 -0.09 -7.59 -27.14 

Vidyo1 3.11 -0.13 -4.19 -22.16 2.85 -0.10 -3.64 -25.58 2.72 -0.09 -6.50 -26.46 

Vidyo4 3.38 -0.12 -3.52 -21.70 2.55 -0.08 -3.88 -26.52 2.75 -0.09 -6.78 -29.24 

Kristen And 

Sara 
3.11 -0.14 -3.95 -22.93 2.00 -0.07 -1.17 -23.60 1.58 -0.06 -6.85 -25.32 

Four People 2.79 -0.14 -4.24 -23.99 2.35 -0.11 -2.52 -23.53 2.60 -0.11 -6.90 -24.70 

Keiba 8.76 -0.39 -5.12 -15.52 6.07 -0.22 -5.72 -37.00 5.92 -0.21 -6.45 -34.72 

Party Scene 0.03 0.01 -10.86 -20.76 1.30 -0.08 -8.34 -29.88 0.92 -0.06 -9.65 -24.54 

Race Horses 3.56 -0.15 -6.34 -12.86 3.14 -0.14 -5.17 -34.53 2.02 -0.09 -7.28 -29.96 

Basketball 

Drill 
-0.97 0.05 -4.07 -23.24 0.23 -0.01 -2.72 -31.28 1.11 -0.05 -6.64 -31.17 

Average 2.67 -0.10 -4.86 -25.70 2.38 -0.08 -3.69 -30.56 2.30 -0.08 -6.70 -28.69 

 

Since the proposed technique with coefficient set 3 achieved the best execution 

time, BD-PSNR and BD-Rate results, it is selected for hardware implementation. The 

proposed technique with coefficient set 3 reduced the execution time of HEVC HM 

software encoder, on the average, 8.44%, 8.58%, 6.70% for AI, LP, RA configurations, 

respectively. It reduced the execution time of DCT operations in HEVC HM software 

encoder, on the average, 23.77%, 32.04%, 28.69% for AI, LP, RA configurations, 

respectively. 
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5.2 Proposed HEVC 2D DCT Hardware 

5.2.1 Proposed HEVC 2D DCT Lower Utilization Hardware 

The proposed HEVC 2D DCT lower utilization (LU) hardware for all TU sizes 

including clock gating, Hcub MCM algorithm, and the proposed technique with 

coefficient set 3 is shown in Figure 5.4. Input splitter is used to select the proper DCT 

inputs for each TU size. Output multiplexers are used to select the proper DCT outputs 

for each TU size. Column and row clip modules are used to scale the outputs of 1D 

column DCT and 1D row DCT to 16 bits, respectively. Column clip shifts 1D column 

DCT outputs right by 1, 2, 3 and 4 for 4x4, 8x8, 16x16 and 32x32 TU sizes, 

respectively. Row clip shifts 1D row DCT outputs right by 8, 9, 10 and 11 for 4x4, 8x8, 

16x16 and 32x32 TU sizes, respectively. 

 

 

Figure 5.4 Proposed HEVC 2D DCT Lower Utilization Hardware 

 

Since HEVC DCT algorithm allows performing an N-point 1D DCT by 

performing two N/2-point 1D DCTs with some preprocessing, the proposed hardware 

performs N-point 1D DCT transforms by performing two N/2-point 1D DCT transforms 

with an efficient butterfly structure. It performs 2D DCT by first performing 1D DCT 

transform on the columns of a TU, and then performing 1D DCT transform on the rows 

of the TU. After 1D column DCT, the resulting coefficients are stored in a transpose 

memory, and they are used as input for 1D row DCT. 
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The butterfly structure used for column transforms is shown in Figure 5.5. For 

4x4 TUs, only 4x4 butterfly operation is used. For 8x8 TUs, 8x8 and 4x4 butterfly 

operations are used. For 16x16 TUs, 16x16, 8x8 and 4x4 butterfly operations are used. 

For 32x32 TUs, all butterfly operations (32x32, 16x16, 8x8, 4x4) are used. 

 

 

Figure 5.5 Column Butterfly Structure 

 

One 4x4 datapath is used for 4x4 TU size. Two 4x4 datapaths are used for 8x8 

TU size. Two 4x4 datapaths and one 8x8 datapath are used for 16x16 TU size. All 

datapaths (two 4x4, one 8x8 and one 16x16) are used for 32x32 TU size. In order to 

reduce the power consumption of proposed hardware, data gating is used for the inputs 

of 4x4, 8x8 and 16x16 column and row datapaths. The inputs of these datapaths are 

stored into registers. If a datapath is not used for a TU, its input registers are not 

updated. This prevents unnecessary switching activities in this datapath.  

DCT multiplications are performed in the datapaths using only adders and 

shifters. In order to reduce number and size of the adders in the proposed hardware, 

Hcub MCM algorithm [40] is used for implementing multiplications with constants. 

Hcub algorithm tries to minimize number and size of the adders in a multiplier block 
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which multiplies a single input with multiple constants using shift and addition 

operations. Hcub algorithm determines necessary shift and addition operations in a 

multiplier block. 

Since different constants are used in 2D DCT for 4x4, 8x8, 16x16 and 32x32 TU 

sizes, four different multiplier blocks are used in the proposed hardware. Multiplier 

block for second 4x4 column datapath is shown in Figure 5.6. Multiplier blocks in the 

first 4x4, second 4x4, 8x8 and 16x16 datapaths multiply a single input with 3, 4, 8 and 

16 different constants, respectively. There are 4, 8 and 16 multiplier blocks in 4x4, 8x8 

and 16x16 datapaths, respectively. When level-1 or level-2 DCT is performed for a TU, 

multiplier block outputs used for calculating the DCT coefficients that are assumed as 

zero by the proposed technique are assigned to zero. 

 

 

Figure 5.6 Multiplier Block in HEVC 2D DCT Lower Utilization Hardware 

 

In order to calculate each output of 1D DCT for 4x4 TU size, an output from each 

multiplier block in a 4x4 datapath is selected, and these outputs are added or subtracted. 

In order to calculate each output of 1D DCT for 8x8 TU size, an output from each 

multiplier block in both 4x4 datapaths is selected, and these outputs are added or 

subtracted. Similarly, in order to calculate each output of 1D DCT for 16x16 TU size, 

16 outputs from 16 multiplier blocks in two 4x4 datapaths and one 8x8 datapath are 

added or subtracted. Similarly, in order to calculate each output of 1D DCT for 32x32 

TU size, 32 outputs from 32 multiplier blocks in all datapaths (two 4x4, one 8x8 and 

one 16x16) are added or subtracted. 

As shown in Figure 5.7, the transpose memory is implemented using 32 Block 

RAMs (BRAM). 4, 8, 16 and 32 BRAMs are used for 4x4, 8x8, 16x16 and 32x32 TU 

sizes, respectively. In the figure, the numbers in each box show the BRAM that 
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coefficient is stored. The results of 1D column DCT are generated column by column. 

For 32x32 TU size, first, the coefficients in column 0 (C0) are generated in a clock 

cycle and stored in 32 different BRAMs. Then, the coefficients in column 1 (C1) are 

generated in the next clock cycle and stored in 32 different BRAMs using a rotating 

addressing scheme. This continuous until the coefficients in column 31 (C31) are 

generated and stored in 32 different BRAMs using the rotating addressing scheme.  

 

 

Figure 5.7 Transpose Memory 

 

This ensures that the 32 coefficients necessary for 1D row DCT in a clock cycle 

can always be read in one clock cycle from 32 different BRAMs. Because of the input 

data loading and pipeline stages, the proposed hardware starts generating the results of 

1D row DCT in 42 clock cycles. It then continues generating the results row by row in 

every clock cycle until the end of last TU in the frame without any stalls. 

The proposed hardware performs 1D DCT transform for 4x4, 8x8, 16x16 and 

32x32 TU sizes in 4, 8, 16 and 32 clock cycles, respectively. The 1D row DCT and 1D 

column DCT operations are pipelined. While 1D row DCT for current TU is performed, 

1D column DCT for next TU is also performed. 

5.2.2 Proposed HEVC 2D DCT Higher Utilization Hardware 

The proposed HEVC 2D DCT higher utilization (HU) hardware processes four 

4x4 TUs or two 8x8 TUs in parallel. Same as the LU hardware, it uses two 4x4 

datapaths and one 8x8 datapath for 16x16 TU size, and it uses all datapaths (two 4x4, 

one 8x8 and one 16x16) for 32x32 TU size. However, the HU hardware uses two 4x4 
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datapaths and one 8x8 datapath for 4x4 and 8x8 TU sizes. Since 4x4 and 8x8 column 

and row datapaths are used for all TU sizes, data gating is used only for the inputs of 

16x16 column and row datapaths. 

Same as the LU hardware, multiplier blocks in the first 4x4 datapath and 16x16 

datapath multiply a single input with 3 and 16 different constants, respectively. 

However, in the HU hardware, multiplier blocks in the second 4x4 datapath and 8x8 

datapath multiply a single input with 7 and 15 different constants, respectively. 

Because, in the HU hardware, the second 4x4 datapath and 8x8 datapath are used for all 

TU sizes. Multiplier block for second 4x4 column datapath is shown in Figure 5.8. 

 

 

Figure 5.8 Multiplier Block in HEVC 2D DCT Higher Utilization Hardware 

 

In order to calculate each output of 1D DCT for 4x4, 8x8 and 16x16 TU sizes, 

an output from each multiplier block in both 4x4 datapaths and 8x8 datapath is selected, 

and these outputs are added or subtracted. Similarly, in order to calculate each output of 

1D DCT for 32x32 TU size, 32 outputs from 32 multiplier blocks in all datapaths (two 

4x4, one 8x8 and one 16x16) are added or subtracted.  

Same as the LU hardware, transpose memory is implemented using 32 BRAMs. 

However, in the HU hardware, 8, 8, 16 and 32 BRAMs are used for 4x4, 8x8, 16x16 

and 32x32 TU sizes, respectively. 
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5.3 Implementation Results 

The proposed low energy HEVC 2D DCT LU and HU hardware for all TU sizes 

including clock gating (original hardware), including clock gating and Hcub MCM 

algorithm (MCM hardware), and including clock gating, Hcub MCM algorithm and the 

proposed technique with coefficient set 3 (proposed hardware) are implemented in 

Verilog HDL. The Verilog RTL implementations are verified with RTL simulations. 

RTL simulation results matched the results of 2D DCT implementation in HEVC HM 

software encoder [39]. 

The Verilog RTL codes are synthesized and mapped to an Xilinx XC6VLX550T 

FF1156 FPGA. The FPGA implementations are verified with post place & route 

simulations. Post place & route simulation results matched the results of 2D DCT 

implementation in HEVC HM software encoder [39]. The FPGA implementation results 

given in Table 5.5 show that Hcub MCM algorithm considerably decreased area, and 

the proposed technique slightly increased area. 

 

Table 5.5 FPGA Implementations Results 

 
LU Hardware HU Hardware 

 Orig. MCM Prop. Orig. MCM Prop. 

Slice 12944 9797 10080 14981 11279 12712 

LUT 39829 33376 35555 47737 38006 41905 

DFF 11196 11110 11230 11964 12025 12200 

BRAM 32 32 32 32 32 32 

Freq. 

(MHz) 
102 116 100 111 117 111 

Fps 
49 Quad 

Full HD 

56 Quad  

Full HD 

48 Quad 

Full HD 

53 Ultra 

HD 

56 Ultra  

HD 

53 Ultra 

HD 

 

Power consumptions of the FPGA implementations are estimated using a Xilinx 

XPower Analyzer. Post place & route timing simulations are performed for Tennis, 

Kimono and ParkScene (1920x1080) videos at 100 MHz [37] and signal activities are 

stored in VCD files. These VCD files are used for estimating power consumptions of 

the FPGA implementations. 

The energy consumption results for the LU hardware and the HU hardware for 

one frame of each video are shown in Figure 5.9 and Figure 5.10, respectively. Hcub 

MCM algorithm reduced the energy consumption of the LU hardware and the HU  



74 

 

 

Figure 5.9 Energy Consumptions of HEVC 2D LU Hardware for Full HD (1920x1080) 

Video Frames 

 

Figure 5.10 Energy Consumptions of HEVC 2D HU Hardware for Full HD 

(1920x1080) Video Frames 

 

hardware up to 5.9% and 13.1%, respectively. The proposed energy reduction technique 

further reduced the energy consumption of the LU hardware and the HU hardware up to 

17.9% and 18.9%, respectively. 

In order to compare the LU hardware and the HU hardware with the HEVC 

DCT hardware in the literature, their Verilog RTL codes are also synthesized to a 90nm 

standard cell library and the resulting netlists are placed and routed. The resulting ASIC 

implementations of the LU hardware and the HU hardware work at 140 MHz and 130 

MHz, respectively. Gate counts of the LU hardware and the HU hardware are calculated 

as 175K and 197K, respectively, according to NAND (3x1) gate area excluding on-chip 

memory. The comparison of the LU hardware and the HU hardware with the HEVC 

DCT hardware in the literature is shown in Table 5.6. 

The proposed 2D DCT hardware has smaller area and power consumption than 

the 2D DCT hardware proposed in [70]-[74]. The DCT hardware proposed in [74] only 

performs 1D DCT, and its performance is not given. Since the 2D DCT hardware 

proposed in [70] and [73] use multipliers, they have larger area than the proposed 2D 

DCT hardware. Since the 2D DCT hardware proposed in [72] performs DCT operations 
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for several TUs in parallel for smaller TU sizes, it achieves higher performance than the 

proposed 2D DCT LU hardware at the expense of much larger area and power 

consumption. It has same performance as the proposed 2D DCT HU hardware with 

larger area. 

 

Table 5.6 Hardware Comparison 

 
[70] [71] [72] [73] [74] 

LU 

Hardware        

HU 

Hardware 

Technology 90 nm 45 nm 90 nm 90 nm 90 nm 90 nm 90 nm 

Gate Count 343.5 K 205.5 K 347 K 328.2 K 149 K 175 K 197 K 

Max Freq. 

(MHz) 
311 333 187 400 100 140 130 

Frames per 

Sec.  

30  

4096x2048 

30 

4096x2048 

60 

7680x4320 

30  

3840x2160 
---- 

60 

3840x2160 

60 

7680x4320 

Throughput 

(pixels/cycle) 
4/8/16/32 4/8/16/32 32 8/16/32/32 4/8/16/32 4/8/16/32 16/16/16/32 

Power 

Dissipation 
85.3 mW ---- 67.6 mW 76.9 mW 25.0 mW 13.1 mW 65.8 mW 

Transform 

Size 
4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 

Transform 2D 2D 2D 2D 1D 2D 2D 
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6 CHAPTER VI 

 

A LOW ENERGY HEVC INVERSE TRANSFORM HARDWARE 

 HEVC standard uses Discrete Cosine Transform (DCT) / Inverse Discrete 

Cosine Transform (IDCT) same as the H.264 standard. However, H.264 standard uses 

only 4x4 and 8x8 Transform Unit (TU) sizes for DCT/IDCT. HEVC standard uses 4x4, 

8x8, 16x16, and 32x32 TU sizes for DCT/IDCT. Larger TU sizes achieve better energy 

compaction. However, they increase the computational complexity exponentially. In 

addition, HEVC uses Discrete Sine Transform (DST) / Inverse Discrete Sine Transform 

(IDST) for 4x4 intra prediction in certain cases. 

 Transform operations (DCT/IDCT and DST/IDST) are heavily used in an HEVC 

encoder [11], [75, 76]. IDCT and IDST have high computational complexity. IDCT and 

IDST operations account for 11% of the computational complexity of an HEVC video 

encoder. They account for 25% of the computational complexity of an all intra HEVC 

video encoder. 

 In this thesis, a novel energy reduction technique for HEVC IDCT and IDST for 

all TU sizes is proposed. After forward transform and quantization, most of the forward 

transformed and quantized high frequency coefficients in a TU become zero. In 

addition, if the values of non-zero forward transformed and quantized low frequency 

coefficients in a TU are small, they have small impact on the inverse quantized and 

inverse transformed TU. Therefore, the proposed technique calculates IDCT and IDST 

only for DC coefficient if the values of several predetermined forward transformed low 
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frequency coefficients in a TU are smaller than a threshold. Otherwise, it calculates 

IDCT and IDST for all coefficients in the TU.  

 Since the proposed technique is used in mode decision stage of an HEVC 

encoder and it is not used in coding stage of an HEVC encoder, it does not cause any 

encoder-decoder mismatch. The proposed technique reduces the computational 

complexity of IDCT and IDST operations in an HEVC encoder significantly. It 

increases the bit rate slightly for most video frames. It decreases the PSNR slightly for 

some video frames, and it increases the PSNR slightly for some video frames. In 

addition, it can easily be used in HEVC encoders. 

 In this thesis, a low energy HEVC 2D inverse transform (IDCT and IDST) 

hardware for all TU sizes is also designed and implemented using Verilog HDL. Clock 

gating technique is used to reduce the energy consumption of the proposed hardware. 

Then, in order to reduce number and size of the adders in the proposed hardware, Hcub 

Multiplierless Constant Multiplication (MCM) algorithm [40] is used for calculating 8, 

16 and 32 point IDCT. Hcub MCM algorithm reduced the energy consumption of the 

proposed hardware up to 56%. Finally, the proposed energy reduction technique is used 

to reduce the energy consumption of the proposed hardware. It reduced the energy 

consumption of the proposed hardware up to 31%. The proposed HEVC 2D inverse 

transform hardware can process 48 Quad HD (3840x2160) video frames per second. 

Therefore, it can be used in portable consumer electronics products that require a real-

time HEVC encoder. 

 Several zero quantized DCT coefficient detection techniques are proposed for 

H.264 and HEVC [66]-[69]. These techniques try to predict the blocks with zero 

forward transformed and quantized coefficients before DCT and quantization operations 

in the coding stage of an H.264 or HEVC encoder in order to avoid DCT and 

quantization operations. However, the technique proposed in this thesis avoids the 

inverse transform (IDCT and IDST) operations that have no impact or low impact on 

the inverse quantized and inverse transformed TU in mode decision stage of an HEVC 

encoder.  

 Several HEVC IDCT hardware are proposed in the literature [70], [77]-[79]. In 

[77], only 1D IDCT is implemented for all TU sizes, and all IDCT outputs are 

calculated using multipliers. In [78], 2D IDCT is implemented only for 16x16 and 

32x32 TU sizes, and processing elements are implemented using shifters, adders and 

multiplexers to reduce hardware area. In [79], 1D 8x8 IDCT for several video 
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compression standards (H.264, VC-1, AVS and HEVC) is implemented. In [70], 2D 

IDCT is implemented for all TU sizes, and the proposed hardware also calculates DCT 

and Hadamard Transform. The low energy HEVC 2D inverse transform hardware 

proposed in this thesis is compared with these HEVC IDCT hardware in Section 6.2. 

6.1 Proposed Energy Reduction Technique 

 After forward transform and quantization, most of the forward transformed and 

quantized high frequency coefficients in a TU become zero. In addition, if the values of 

non-zero forward transformed and quantized low frequency coefficients in a TU are 

small, they have small impact on the inverse quantized and inverse transformed TU. 

Therefore, the proposed energy reduction technique calculates IDCT and IDST only for 

DC coefficient if the values of several predetermined forward transformed low 

frequency coefficients in a TU are smaller than a threshold. Otherwise, it calculates 

IDCT and IDST for all coefficients in the TU. 

 The proposed energy reduction technique for HEVC IDCT for all TU sizes is 

shown in Figure 6.1. The proposed technique checks the DC coefficient and three low 

frequency AC coefficients in the predetermined positions in a TU. If DC coefficient is 

not zero and all three low frequency AC coefficients are smaller than a threshold value, 

the proposed technique performs IDCT only for DC coefficient in the TU. Otherwise, it 

performs IDCT for all coefficients in the TU.  

 The proposed technique reduces the computational complexity of IDCT and 

IDST significantly by performing IDCT and IDST only for DC coefficient in a TU. 

Table 6.1 shows the number of addition and shift operations required for performing 

IDCT for all coefficients in a TU and for only DC coefficient in a TU for all TU sizes. 

Performing IDCT only for DC coefficient in a TU, on the average, achieves 98.87% 

reduction in addition and 98.70% reduction in shift operations. It achieves more 

computation reduction for larger TU sizes. 

 

IDCT(Transform Coefficients)  { 

    if (DC coefficient is not zero and  

       predetermined AC coefficients are smaller than threshold)  

          Residual  ← IDCT(DC Coefficient) 

    Else 

          Residual ← IDCT(Transform Coefficients) 

    end if   } 

 Figure 6.1 Pseudocode of HEVC IDCT with The Proposed Technique 
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 Table 6.1  Addition and Shift Reductions for All TU Sizes 

TU 

Size 

IDCT for All 

Coefficients 

IDCT for DC 

Coefficient 

Reduction 

(%) 

Add. Shift Add. Shift Add. Shift 

4x4 256 256 16 18 93.7

5 

92.97 

8x8 2688 2432 64 66 97.6

2 

97.29 

16x16 24576 2099

2 
256 258 98.9

6 
98.77 

32x32 204800 1884

16 
1024 1026 99.5

0 
99.46 

Total 362496 3276

80 

4096 4266 98.8

7 

98.70 

 

 The proposed technique is integrated into IDCT operations performed for rate 

distortion cost calculation in intra mode decision stage of HEVC reference software 

encoder (HM) version 10.0 [80]. The threshold value is experimentally determined as 

64 to achieve large computation reduction with negligible bit rate increase and PSNR 

loss using this HEVC software encoder.  

 5 different low frequency AC coefficient sets shown in Figure 6.2 are evaluated 

using this HEVC software encoder for Class A and B video sequences [37]. The same 

AC coefficients are used for all TU sizes. For example, for coefficient set 1, the 

proposed technique checks the three low frequency AC coefficients in positions [0, 1], 

[0, 2] and [2, 0] for all TU sizes. The bit rate and PSNR results for three different 

quantization parameters (QP) are shown in Table 6.2. These results show that the 

proposed technique increases the bit rate slightly for most video frames. It decreases the 

PSNR slightly for some video frames, and it increases the PSNR slightly for some video 

frames. Since the proposed technique performs well for all video sequences with 

coefficient set 1, coefficient set 1 is selected for hardware implementation. 

 

Figure 6.2 DC and Pre-Determined Coefficient Sets 
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Table 6.2  Bitrate and PSNR Values 

  
Coefficient Set 1 Coefficient Set 2 Coefficient Set 3 Coefficient Set 4 Coefficient Set 5 

Frame QP 

∆
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C
la

ss
 A

 (
2
5

6
0
x

1
6
0

0
) Steam  

Loco. 

22 0.49 0.003 0.41 -0.001 0.42 -0.001 0.40 0.000 0.95 0.002 

27 0.53 -0.001 0.48 -0.007 0.47 -0.005 0.47 -0.004 0.40 -0.002 

32 0.64 -0.007 0.31 -0.009 0.39 -0.012 0.35 -0.013 0.80 -0.020 

Traffic 

22 0.70 0.015 0.39 -0.016 0.25 -0.013 0.38 -0.018 4.03 -0.130 

27 1.25 0.016 0.60 -0.014 0.53 -0.011 0.68 -0.013 4.78 -0.107 

32 3.41 0.059 2.52 -0.043 2.34 -0.041 2.63 -0.040 7.43 -0.179 

People  

on 

Street 

22 0.77 -0.005 0.07 -0.033 -0.03 0.011 -0.06 0.009 3.72 -0.072 

27 0.90 -0.019 0.17 -0.019 1.12 -0.028 1.18 -0.030 5.99 -0.104 

32 3.05 -0.054 3.97 -0.040 3.66 -0.131 3.79 -0.136 10.78 -0.231 

C
la

ss
 B

 (
1

9
2
0

x
1
0

8
0

) Park  

Scene 

22 0.39 -0.010 0.43 -0.006 0.34 -0.008 0.39 -0.009 2.04 -0.058 

27 0.68 -0.017 0.44 -0.016 0.41 -0.019 0.47 -0.016 2.26 -0.081 

32 0.57 -0.085 0.36 -0.081 0.49 -0.073 0.52 -0.070 1.92 -0.172 

Kimono 

22 0.40 -0.004 0.04 -0.003 0.01 -0.004 -0.09 -0.001 1.82 -0.011 

27 0.63 -0.002 0.27 -0.004 0.23 0.004 0.28 -0.005 2.52 -0.023 

32 0.95 -0.009 0.29 0.003 0.13 -0.004 0.17 -0.007 2.68 -0.042 

Cactus 

22 -0.04 -0.039 0.36 -0.035 0.37 -0.033 0.30 -0.040 2.45 -0.108 

27 0.86 -0.016 0.33 -0.012 1.01 -0.014 1.00 -0.017 5.09 -0.063 

32 2.59 -0.046 2.84 -0.044 3.07 -0.049 3.07 -0.044 9.51 -0.136 

 

 The percentages of TU size selections (PTU) and the percentages of times the 

proposed technique with coefficient set 1 performs IDCT only for DC coefficient for the 

selected TU (PDC) are determined using this HEVC software encoder for Class A and 

B video sequences for different QPs, and they are shown in Table 6.3. The results in 

Table 6.1 and Table 6.3 show that the proposed technique reduces the computational 

complexity of inverse transform operations in an HEVC encoder significantly. 

 The percentages of TU size selections changes from frame to frame. But, the 

most selected TU size is 4x4 and the percentages of TU size selections get smaller with 

larger TU sizes. The percentage of times the proposed technique performs IDCT only 

for DC coefficient is highest for 4x4 TU size, and the percentage gets smaller with 

larger TU sizes. This is because DCT produces larger low frequency AC coefficients for 

larger TU sizes. Therefore, the three low frequency AC coefficients in the 

predetermined positions in a TU become smaller than the threshold value less often for 

larger TU sizes.  

 The percentage of times the proposed technique performs IDCT only for DC 

coefficient gets larger with larger QPs. This is because DCT produces more zero low 

frequency AC coefficients with larger QPs. Therefore, the three low frequency AC 

coefficients in the predetermined positions in a TU become smaller than the threshold 

value more often for larger QPs.  
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Table 6.3  Percentages (%) of TU Sizes and IDCT for DC Coefficient 

Frame QP 4x4 8x8 16x16 32x32 Total 

Steam  

Loco. 

22 
PTU 74.36 20.40 4.71 0.53 100.0 

PDC 16.44 3.99 1.97 3.27 13.15 

27 
PTU 71.76 22.26 5.36 0.62 100.00 

PDC 27.95 8.54 4.20 7.44 22.23 

32 
PTU 67.52 25.15 6.55 0.78 100.00 

PDC 40.81 15.38 8.75 3.30 32.03 

Traffic 

22 
PTU 69.23 19.28 4.65 6.84 100.00 

PDC 39.27 11.22 2.64 2.37 25.28 

27 
PTU 66.32 25.97 6.86 0.85 100.00 

PDC 43.19 18.87 7.86 7.52 34.15 

32 
PTU 60.77 29.42 8.67 1.14 100.00 

PDC 54.39 27.38 14.54 4.02 42.42 

People 

on 

Street 

22 
PTU 71.50 22.52 5.33 0.65 100.00 

PDC 27.52 5.36 0.93 1.82 20.95 

27 
PTU 66.60 25.84 6.72 0.84 100.00 

PDC 39.79 13.82 4.76 6.12 30.44 

32 
PTU 61.04 29.04 8.74 1.18 100.00 

PDC 49.55 22.08 11.18 3.29 37.67 

Park 

Scene 

22 
PTU 71.48 22.32 5.54 0.66 100.00 

PDC 23.29 10.75 5.63 7.58 19.41 

27 
PTU 68.32 24.43 6.42 0.83 100.00 

PDC 33.67 15.72 9.22 17.08 27.58 

32 
PTU 63.05 27.85 8.04 1.07 100.00 

PDC 48.56 22.47 13.34 6.85 38.02 

Kimono 

22 
PTU 67.20 25.79 6.28 0.73 100.00 

PDC 59.20 13.14 3.68 3.28 43.43 

27 
PTU 60.86 30.17 8.00 0.97 100.00 

PDC 77.84 25.50 6.54 7.25 55.66 

32 
PTU 50.39 36.95 11.24 1.42 100.00 

PDC 89.07 43.60 11.64 2.83 62.34 

Cactus 

22 
PTU 71.55 22.34 5.45 0.66 100.00 

PDC 21.68 11.41 4.55 4.44 18.34 

27 
PTU 66.03 25.85 7.20 0.92 100.00 

PDC 34.03 18.65 9.50 8.91 28.06 

32 
PTU 59.70 29.72 9.31 1.27 100.00 

PDC 44.88 25.28 14.45 3.80 35.70 
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6.2 Proposed HEVC 2D IDCT and IDST Hardware 

 The proposed low energy HEVC 2D inverse transform (IDCT and IDST) 

hardware for all TU sizes including clock gating, Hcub MCM algorithm, and the 

proposed energy reduction technique is shown in Figure 6.3. The proposed hardware 

uses an efficient butterfly structure for column and row transforms. The butterfly 

structure used for column transforms is shown in Figure 6.4. IDCT inputs are selected 

depending on size of the IDCT operation (4, 8, 16 or 32 point). Then, IDCT and IDST 

multiplications are performed in the datapaths using only adders and shifters. As shown 

in Figure 6.5, 4x4 datapaths perform both 4x4 IDCT and 4x4 IDST operations, and the 

result of one of these inverse transforms is selected based on a control signal. 

 In order to reduce number and size of the adders in the proposed hardware, Hcub 

MCM algorithm [40] is used for calculating 8, 16 and 32 point IDCT. Hcub algorithm 

tries to minimize number and size of the adders in a multiplier block which takes a 

single input, multiplies this input with multiple constants using shift and addition 

operations, and outputs the results of these multiplications. Hcub algorithm determines 

necessary shift and addition operations in a multiplier block. Hcub algorithm is used for 

8, 16 and 32 point IDCT in the proposed hardware, because it did not achieve additional 

optimization for 4 point IDCT and 4 point IDST hardware. 

 

Figure 6.3 Proposed HEVC 2D IDCT and IDST Hardware 
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Figure 6.4 Column Butterfly Structure 

 

 Since different constants are used in 8, 16 and 32 point IDCT, three different 

multiplier blocks are used in the proposed hardware. Multiplier block used for 8 point 

IDCT is shown in Figure 6.6. Multiplier block for 8 point IDCT multiplies a single 

input with four different constants, multiplier block for 16 point IDCT multiplies a 

single input with eight different constants, and multiplier block for 32 point IDCT 

multiplies a single input with sixteen different constants. There are 4 multiplier blocks 

in 8x8 datapath, 8 multiplier blocks in 16x16 datapath and 16 multiplier blocks in 32x32 

datapath.  

 

 

Figure 6.5 4x4 Datapath 
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Figure 6.6 Multiplier Block in 8x8 Datapath 

 In order to calculate each output of 8 point IDCT, an output from each multiplier 

block is selected, and these outputs are added or subtracted. Similarly, in order to 

calculate each output of 16 point IDCT, eight outputs from eight multiplier blocks are 

added. Similarly, in order to calculate each output of 32 point IDCT, sixteen outputs 

from sixteen multiplier blocks are added. 

 In the proposed hardware, after 1D column IDCT, the resulting coefficients are 

stored in a transpose memory, and they are used as input for 1D row IDCT. As shown in 

Figure 6.7, the transpose memory is implemented using 32 Block RAMs (BRAM). 4, 8, 

16 and 32 BRAMs are used for 4 point, 8 point, 16 point and 32 point IDCT, 

respectively. In the figure, the numbers in each box show the BRAM that coefficient is 

stored.  

 The results of 1D column IDCT are generated column by column. For 32 point 

IDCT, first, the coefficients in column 0 (C0) are generated in a clock cycle and stored 

in 32 different BRAMs. Then, the coefficients in column 1 (C1) are generated in the 

next clock cycle and stored in 32 different BRAMs using a rotating addressing scheme.  

 

Figure 6.7 Transpose Memory 
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This continuous until the coefficients in column 31 (C31) are generated and stored in 32 

different BRAMs using the rotating addressing scheme. This ensures that the 32 

coefficients necessary for 1D row IDCT in a clock cycle can always be read in one 

clock cycle from 32 different BRAMs. 

 Because of the input data loading and pipeline stages, the proposed hardware 

starts generating the results of 1D row IDCT in 40 clock cycles. It then continues 

generating the results row by row in every clock cycle until the end of the last TU in the 

video frame without any stalls. The proposed HEVC 2D IDCT hardware finishes 4, 8, 

16 and 32 point IDCT operations in 4, 8, 16 and 32 clock cycles, respectively. 

6.3 Implementation Results 

 The proposed low energy HEVC 2D inverse transform (IDCT and IDST) 

hardware for all TU sizes including clock gating (original hardware), including clock 

gating and Hcub MCM algorithm (MCM hardware), and including clock gating, Hcub 

MCM algorithm and the proposed energy reduction technique (proposed hardware) are 

implemented in Verilog HDL.  

 The Verilog RTL implementations are verified with RTL simulations. RTL 

simulation results matched the results of inverse transform implementation in HEVC 

reference software encoder (HM) version 10.0 [80]. The Verilog RTL codes are 

synthesized and mapped to a Xilinx XC6VLX130T FF1156 FPGA. The FPGA 

implementations are verified with post place & route simulations. Post place & route 

simulation results matched the results of inverse transform implementation in HEVC 

reference software encoder (HM) version 10.0 [80].  

 All three FPGA implementations work at 150 MHz. Therefore, in the worst case 

(when all TU sizes in a video frame are 32x32), they can process 48 Quad HD 

(3840x2160) video frames per second. FPGA implementation of the original hardware 

uses 15101 slices, 45698 LUTs, 12187 DFFs, and 32 BRAMs. FPGA implementation 

of the MCM hardware uses 11343 slices, 38790 LUTs, 11762 DFFs, and 32 BRAMs. 

FPGA implementation of the proposed hardware uses 11397 slices, 38821 LUTs, 11763 

DFFs, and 32 BRAMs. BRAMs are implemented as dual-port Select RAMs. These 

results show that Hcub MCM algorithm considerably decreased the area, and the 

proposed technique slightly increased the area. 

 The power consumptions of original hardware, MCM hardware, and proposed 

hardware are estimated using a Xilinx XPower Analyzer. Post place & route timing 
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simulations are performed for Cactus and Kimono (1920x1080) videos at 50 MHz [37] 

and signal activities are stored in VCD files. These VCD files are used for estimating 

the power consumptions of all three FPGA implementations. The power and energy 

consumption results for one frame of each video are shown in Tables 6.4 and 6.5. Hcub 

MCM algorithm reduced the energy consumption of the proposed hardware up to 56%. 

The proposed energy reduction technique further reduced the energy consumption of the 

proposed hardware up to 31%. 

 In order to compare the proposed hardware with the HEVC IDCT hardware in 

the literature, its Verilog RTL code is also synthesized to a 90nm standard cell library 

and the resulting netlist is placed & routed. The resulting ASIC implementation works 

at 150 MHz, and its gate count is calculated as 142K according to NAND (3x1) gate  

 

Table 6.4  Energy Consumption Reductions for Cactus (1920x1080) 

QP 22 27 32 

 
Original MCM Proposed Original MCM Proposed Original MCM Proposed 

Clock (mW) 84 66 67 84 66 67 84 66 67 

Logic (mW) 83 35 35 93 36 38 81 34 35 

Signal (mW) 68 17 17 76 17 19 67 16 17 

BRAM 

(mW) 
56 16 16 56 17 18 55 18 19 

Total Power 

(mW) 
291 134 135 309 136 142 287 134 138 

Time (ms) 5.159 5.159 4.254 5.422 5.422 4.523 5.862 5.862 4.556 

Energy (uJ) 1501.27 691.31 574.29 1675.40 737.39 642.27 1682.40 785.51 628.73 

Energy Red. 
 

53.95% 61.75% 
 

55.99% 61.66% 
 

53.31 62.63 

 

Table 6.5  Energy Consumption Reductions for Kimono (1920x1080) 

QP 22 27 32 

 
Original MCM Proposed Original MCM Proposed Original MCM Proposed 

Clock (mW) 84 66 67 84 66 67 84 66 67 

Logic (mW) 89 36 34 91 38 35 81 37 34 

Signal (mW) 51 17 16 52 17 17 46 17 17 

BRAM 

(mW) 
54 15 15 53 16 17 53 18 18 

Total Power 

(mW) 
278 134 132 280 137 136 264 138 136 

Time (ms) 5.153 5.153 4.085 5.524 5.524 4.080 5.895 5.895 4.027 

Energy (uJ) 1432.53 690.50 539.22 1546.72 756.79 554.96 1556.28 813.51 547.67 

Energy Red. 
 

51.80% 62.36% 
 

51.07% 64.12% 
 

47.72% 64.80% 
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area excluding on-chip memory. The comparison of the proposed hardware with the 

HEVC IDCT hardware in the literature is shown in Table 6.6. Only the proposed 

hardware implements 4x4 IDST.  

 Since the IDCT hardware proposed in [77] only implements 1D IDCT, it has 

lower gate count than the proposed hardware. But, it is slower than the proposed 

hardware. Although the IDCT hardware proposed in [78] only implements 16 and 32 

point 2D IDCT, it has higher gate count than the proposed hardware and it is slower 

than the proposed hardware. Since the IDCT hardware proposed in [79] only 

implements 8 point 1D IDCT, it has lower gate count than the proposed hardware. But, 

it is slower than the proposed hardware. The IDCT hardware proposed in [70] has 

higher gate count than the proposed hardware and it is slower than the proposed 

hardware. 

 

Table 6.6  Hardware Comparison 

 
[77] [78] [79] [70] Proposed 

Technology 
0.13 um 

ASIC 

0.18 um 

ASIC 

0.18 um 

ASIC 

90 nm 

ASIC 

90 nm 

ASIC 

Gate Count 109.2 K 287 K 12.3 K 235.4 K 142 K 

Max Speed 

(MHz) 
350 300 211 311 150 

Frames per 

Second 

30 

4096x2048 

30 

3840x2160 

67 

1920x1080 

30 

4096x2048 

48 

3840x2160 

Transform 

Size 
4, 8, 16, 32 16, 32 8 4, 8, 16, 32 4, 8, 16, 32 

Transform 1D 2D 1D 2D 2D 
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7 CHAPTER VII 

 

CONCLUSIONS AND FUTURE WORKS 

In this thesis, we proposed a novel adaptive 2D digital image processing 

algorithm for 2D median filter, Gaussian blur and image sharpening. We designed low 

energy 2D median filter, Gaussian blur and image sharpening hardware using the 

proposed algorithm. We proposed approximate HEVC intra prediction and HEVC 

fractional interpolation algorithms. We designed low energy approximate HEVC intra 

prediction and HEVC fractional interpolation hardware. We also proposed several 

HEVC fractional interpolation hardware architectures. We proposed novel 

computational complexity and energy reduction techniques for HEVC DCT and inverse 

DCT/DST. We designed high performance and low energy hardware for HEVC DCT 

and inverse DCT/DST including the proposed techniques. We quantified computation 

reductions achieved and video quality loss caused by the proposed algorithms and 

techniques. We implemented the proposed hardware architectures in Verilog HDL. We 

mapped the Verilog RTL codes to Xilinx Virtex 6 and Xilinx ZYNQ FPGAs, and 

estimated their power consumptions using Xilinx XPower Analyzer tool. The proposed 

algorithms and techniques significantly reduced the power and energy consumptions of 

these FPGA implementations in some cases with no PSNR loss and in some cases with 

very small PSNR loss. 

As future work, application-specific approximate video processing and 

compression algorithms can be proposed. An HEVC video encoder and decoder can be 
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implemented by implementing the HEVC video encoder and decoder modules which 

are not implemented in this thesis and by integrating them with the ones implemented in 

this thesis. Versatile Video Coding (VVC) is a new video compression standard which 

will have much higher computational complexity than HEVC. Therefore, energy 

reduction techniques for VVC standard and low energy VVC hardware implementations 

can be proposed. 
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