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ABSTRACT 
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EDITING, HIGH-CONTENT SCREENING, AND SURFACE PLASMON 

RESONANCE 
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Molecular Biology, Genetics and Bioengineering, MSc Thesis, July 2018 

Thesis supervisor: Prof. Batu Erman 

 

Keywords: p53-MDM2 interaction, drug screening, CRISPR/Cas9, genome 

engineering, fluorescent two-hybrid assay, surface plasmon resonance 

 

The tumor suppressor p53 is the central mediator of cell-cycle arrest, senescence, and 

apoptosis. p53 protein levels increase upon various cellular stresses to prevent the 

improper proliferation of cells harboring DNA damage. Under normal conditions, cells 

keep p53 protein levels suppressed due to its main antagonist, MDM2. This oncogenic 

protein acts on p53 as an E3 ubiquitin ligase for the polyubiquitination of p53 and its 

subsequent proteasomal degradation. Activating the p53 pathway is one of the prime 

targets for novel cancer therapeutics because almost all human cancers have inactivated 

p53 either by a mutation or by a defect in its regulators, such as the overexpression of 

MDM2. In this study, we aimed to construct three methods for the screening of novel 

compounds generated by in silico design and organic synthesis and attempted to inhibit 

the protein-protein interaction between p53 and MDM2. We generated HCT116 p53-/- 

MDM2-/- cell lines as a novel assay system through CRISPR/Cas9 genome editing for 

studying the activity of candidate small molecule compounds targeting the p53-MDM2 

interaction. We also constructed a Fluorescent Two-Hybrid (F2H) assay system for high-

content screening of these compounds in real time in living cells and finally a surface 

plasmon resonance assay for high-throughput screening of these compounds in vitro. 
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ÖZET 

 

p53-MDM2 ETKİLEŞİM İNHİBİTÖRLERİNİN GENOM MÜHENDİSLİĞİ, 

FLORESAN İKİLİ HİBRİT VE YÜZEY PLAZMON REZONANS TEKNİKLERİ İLE 

TARANMASI 

 

HAKAN TAŞKIRAN 

 

Moleküler Biyoloji, Genetik ve Biyomühendislik, Yüksek Lisans Tezi, Temmuz 2018 

Tez danışmanı: Prof. Batu Erman 

 

Anahtar kelimeler: p53-MDM2 etkileşimi, ilaç taranması, CRISPR/Cas9, genom 

mühendisliği, floresan ikili hibrit tekniği, yüzey plazmon rezonans 

 

 

Tümor baskılayıcı protein p53 hücre bölünmesinin durdurulmasında, senesensde ve 

apoptozda görev almaktadır. Hücrede p53 seviyesi çeşitli stresler nedeni ile artmaktadır 

ve DNA hasarı olan hücrelerin bölünmesine engel olmaktadır. Normal hücrelerde p53 

protein seviyeleri antagonisti olan MDM2 tarafından düşük tutulmaktadır. Bu onkojenik 

protein E3 ligaz aktivitesi ile p53’ün ubikutinlenmesine ve daha sonra proteazomda 

yıkılmasını sağlar. p53 yolağının aktifleştirilmesi kanser ilacı geliştirmelerinin odak 

noktasıdır çünkü kanserlerde p53 ya mutasyon ya da regulatörlerindeki bozukluklar 

nedeniyle etkisiz durumdadır. Bu çalışmada, bilgisayar ortamında p53 ve MDM2 

ektileşimine karşı tasarlanmış, ve organik sentezlenmiş  moleküllerin taranması için üç 

yöntem kurduk. CRISPR/Cas9 genom mühendisliği ile geliştirilmiş HCT116 p53-/- 

MDM2-/- hücre hattında moleküllerin aktivitelerini test ettik. Floresan ikili hibrit 

tekniğini moleküllerin canlı içinde gerçek zamanlı  yüksek içerikli aktivite taranması için 

ve yüzey plazmon rezonans tekniğini moleküllerin canlı dışında yüksek hızda aktivite 

taraması için kurduk. 
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1.      INTRODUCTION 

 

1.1.  p53-MDM2 Interaction in Tumor Development 

1.1.1. The significance of p53-MDM2 Interaction in Human Tumors 

Human cancers are caused by a  series of genetic and epigenetic changes, which give rise 

to alterations in gene expression, and in turn, tumorigenesis1,2. Although these malignant 

changes usually take place in somatic cells, heritable cancers can also occur due to 

germline-mutations1. A single gene mutation is rarely adequate for the entire 

transformation process, thereby genetic changes, which include chromosomal 

translocations, point mutations, deletions, and insertions, happen as a multistep process 

affecting many oncogenes, tumor-suppressor genes or microRNAs1,3,4. This multistep 

nature of tumor development requires eight biological processes: Sustained proliferative 

potential, escape from growth suppressors, cell-death resistance, replicative immortality,  

induced angiogenesis, active invasion and metastasis, immune-system evasion, and 

reprogrammed cellular energetics5. These eight hallmarks of cancer are a result of genome 

instability, which changes cell signaling, gene expression, and cell cycle progression5,6. 

The molecular mechanisms responsible for cancer development consist of oncogenes, 

tumor suppressor genes, and the factors associated with growth, angiogenesis, signal 

transduction and cell adhesion2. The identification of genes playing important roles in 

tumor initiation and development is important for biomarker discovery. Further screening 

of therapeutic agents, such as small molecules, peptides, and antibodies have been 

generating novel drug discoveries2. Among the many cancer-related molecular 

mechanisms, especially oncogene activation and tumor suppressor inactivation are the 

most well-studied. Most oncogenes and tumor suppressor genes encode cell cycle- and 

apoptosis-related proteins2,7. Oncogene activation takes place in tumor tissues through 

gain-of-function mutations, gene fusion or amplification or the association with 

enhancers. On the other hand, tumor suppressor genes, which prevent malignant 

transformation by activating anti-proliferative or pro-apoptotic pathways, are silenced 
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through deletions, nonsense mutations, frame-shift mutations, insertions or missense 

mutations6,8. Oncogenes are preferred as a therapeutic target because inhibiting an 

excessive activity is easier than restoring a lost activity2,7. Small molecules, peptides, 

antibodies or antisense oligos have been identified and validated as oncogene-based 

therapeutics through high-throughput screening and combinatorial chemistry2,9.   

Tumor suppressor genes have also been targeted with gene therapy to restore mutated or 

deleted genes, which lead to the re-establishment of cell-cycle control and of apoptosis 

mechanisms10. Tumor suppressor gene therapy includes the transfer of genetic material 

into a host by using viral or non-viral vectors11. Although cancer gene therapy is 

promising and there were many possible tumor suppressor candidates for gene therapy, 

such as TP53, pRb, and PTEN, it is also highly challenging because it should include an 

efficient gene delivery system,  suitable target gene and tumor type, and determination of 

appropriate traditional strategies for combinational gene therapy 10,11. In gene therapy 

clinical trials, encouraging results were obtained in patients with chronic lymphocytic 

leukemia, acute lymphocytic leukemia, and brain tumors11. 

 p53 is arguably the most important and the most widely studied tumor suppressor. This 

transcription factor plays a central part in the cell cycle and apoptosis12. Upon diverse 

stresses, such as DNA damage or oncogene activation, p53 becomes activated and gives 

rise to the induction of cell-cycle arrest, DNA repair, senescence or apoptosis to control 

the formation of transformed cells with genomic instabilities6,12. Under normal 

conditions, cellular p53 protein levels remain low due to its negative regulators; MDM2 

and MDMX12. Moreover, there is an autoregulatory negative feedback loop between p53 

and MDM2 because p53 induces transcription of MDM2, which, in turn, acts on p53 as 

an E3 ubiquitin ligase and results in its proteasomal degradation12,13. Although MDMX 

has no intrinsic E3 ligase activity, it also inhibits p53 by forming a heterodimer with 

MDM2 and modulating its E3 ligase activity and also by directly binding to p53’s 

transactivation domain12,14.  

 In around 50% of human cancer types, p53 tumor suppressor activity is lost by a mutation 

or deletion of the TP53 gene.  The prevalence of these mutations significantly changes 

depending on the tumor type and the developmental stage of the tumor, ranging from 5% 

in cervical cancers to 90% in ovarian cancers12,15. Although the remaining 50% of human 

cancer types have wild-type p53 status, its activity is greatly suppressed by various 

mechanisms, such as overexpression of MDM2 through gene amplification, enhanced 



 

3 

transcription or translation15,16. In about 7% of all human tumors, MDM2 gene 

amplification is observed. The highest frequency is reported in soft tissue tumors, 

osteosarcomas, and esophageal carcinomas15,16. The mutations in p53 and overexpression 

of MDM2 lead to tumor survival, poor prognosis, and treatment failure, thereby 

discovering novel strategies that aim to restore functional p53 in tumor cells has been a 

central goal of both academic and industrial cancer research6,15.  

 

1.1.2.  p53 Biology 

The tumor suppressor protein p53 was first discovered in 1979, and since then it has been 

identified as a transcription factor playing a  central role in a complex signaling pathway 

that senses various cellular stresses such as DNA damage, oncogene activation, hypoxia, 

ribonucleotide depletion and telomere erosion15,17. Under stress, p53 is activated through 

various post-translational modifications and, in turn, it leads to up- or down-regulation of 

various genes functioning in cell-cycle arrest, DNA repair, senescence or apoptosis. Its 

transcriptional activities are tightly regulated through a complex network including its 

negative regulators; MDM2 and MDMX and various other signaling proteins12,18. 

 

1.1.2.1. Gene Structure and Protein Motifs of p53 

The human TP53 gene resides on chromosome 17p13.1, consists of 11 exons, and 

transcribes a 2.8 kb mRNA19 (Figure 1.1.A). In turn, this mRNA translates into a 393-

residue p53 protein and it is active as a homo-tetramer18. Its complex domain organization 

contains 2 N-terminal transactivation domains (TAD1 and TAD2), a proline-rich region, 

a DNA-binding domain (DBD), a tetramerization domain, and finally a C-terminal 

regulatory domain (Figure 1.1.B)18. Three of these regions; TAD, Proline-rich region, and 

C-terminal regulatory domain are intrinsically disordered, whereas the remaining two 

domains are structured18,20. These natively unfolded structures are generally a feature of 

signaling proteins since they provide high conformational adaptability and plasticity in 

protein-protein interactions12. 
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Figure 1.1. Gene structure and Protein Motifs of p53. (A) TP53 gene consists of 11 

exons. The full-length p53 is expressed from the P1 promoter and is translated from the 

first start codon in the exon 2. (B) Full-length p53’s motifs are an N-terminal 

transactivation domain 1 and 2, an MDM2-binding site, a DNA-binding domain, a 

tetramerization domain, a C-terminal regulatory domain, and multiple nuclear 

localization and export signals. 

 

p53 forms homo-tetramers from a dimer of dimers and each monomer consists of a 

tetramerization domain containing a β-sheet and an α-helix21. Primary dimers are formed 

by the association of two monomers across an antiparallel β-sheet and antiparallel α-helix 

interface and in turn, they form a tetramer through the association across a distinct parallel 

helix-helix interface21.  Under normal conditions, p53 protein is found in a mixture of all 

three oligomeric states; monomers, dimers, and tetramers22. The balance between these 

forms does not simply depend on the concentration of p53 proteins in a cell. p53 

tetramerization is triggered upon stress responses, such as DNA damage, without 

increasing protein concentration, which indicates that stabilization by post-translational 

modifications and accessory proteins is important for tetramer formation22. Moreover, 

DNA binding domain (DBD) of the p53 protein contains an immunoglobulin-like β 

sandwich formed by a loop-sheet-helix and two other loops and stabilized by a zinc ion 

to provide an extended DNA-binding surface23. The DBD binds in a sequence-specific 

manner to a double-stranded DNA containing two copies of a decameric motif separated 

by variable number of nucleotides. Stable p53-DNA complexes only form when four p53 

subunits bind to two half sites24. 

 

A. 

B. 
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1.1.2.2.  Tumor-suppressor pathways downstream of p53  

Upon p53 activation, the most noticeable biological outcomes are cell-cycle arrest, 

apoptosis, and senescence, which are crucial for protecting the host from tumor 

development. Genotoxic stresses, such as ionizing radiation increase active p53 levels in 

a cell, which in turn, causes G1/S or G2/M phase arrests or apoptosis if DNA damage is 

irreparable. These outcomes are a result of  p53-mediated transcriptional activation of cell 

cycle proteins, such as p21 and GADD45 or pro-apoptotic proteins, such as Bax and 

Puma25,26.  

p53-mediated cell-cycle arrest is due to the transcriptional activation of the cyclin-

dependent kinase inhibitor  p21 through the direct binding of p53 to two upstream sites 

in the p21 promoter. p21, in turn, binds to cyclin E/Cdk2 or cyclin D/Cdk4 complexes 

and inhibits their phosphorylation of pRb, that results in G1/S arrest. Unphosphorylated 

pRb protein is a negative regulator of the growth-stimulatory transcription factor, E2F1, 

which plays a role in DNA synthesis and cell-cycle progression (Figure 1.2)26,27. p53 

provides chromosomal integrity and damaged-cell survival by arresting the cells at the 

G1 phase and gives cells time to repair their double-stranded DNA breaks formed after 

ionizing irradiation28. Moreover, p53 activation leads to G2/M arrest through inhibition 

of Cyclin B/Cdc2 by p21 or through other p53 targets, such as 14-3-3σ26.  

Cell-cycle arrest triggered by the activation of p53 is reversible when DNA damage is 

repaired. However, an excessive division of human fibroblasts leads to chronic p53 

activation due to telomere erosion and constitutive DNA damage signaling, which in the 

end, causes p53-mediated irreversible arrest named replicative senescence. Because 

knock-down of p21 protects cells from p53-mediated senescence, p53’s action on cell-

cycle arrest is crucial for this type of senescence29,30. Moreover, senescence is considered 

as an irreversible outcome; however, after inactivation of p53, cells can re-enter the cell-

cycle31. Although the action of p53 is important for the induction of senescence, activity 

of several other pathways, such as pRb, NFκB, or mTOR and their cross-talk with the p53 

pathway are also required for the cell to choose between reversible cell-cycle arrest and 

senescence26.  
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Figure 1.2. Tumor suppressor pathways of p53. Upon activation, nuclear p53 decides 

whether it activates apoptosis or cell cycle arrest related genes. p53 can activate both the 

intrinsic apoptotic pathway through the transactivation of pro-apoptotic genes and the 

interaction with mitochondria directly, and the extrinsic apoptotic pathway through the 

transactivation of death receptor genes. Moreover, p53 can activate cell-cycle arrest 

mostly through the transactivation of the p21 gene. 

 

Upon p53 activation, certain cell types prefer to undergo apoptosis rather than to arrest 

the cell-cycle. Among p53’s downstream targets, there are various genes playing a role 

in apoptosis signaling and its execution, which include proapoptotic proteins (Puma, 

Noxa, Bad, and Bid), death receptors (Fas and Dr5), and execution factors (Apaf1, and 

caspase 6)32. Death receptor induction by p53 activates the extrinsic apoptotic pathway; 

which involves death receptor dimerization and then activation of procaspase-8, and 

finally activation of executor caspases (caspase 3 and 7) and cell death, whereas the 

induction of BH3-only proteins by p53 activates the intrinsic pathway; which causes 

mitochondrial outer membrane permeabilization due to the pores generated by Bax and 

Bak, release of cytochrome c, forming apoptosome complex, activation of procaspase-9 

and finally activation of executor caspases and cell death. In addition to p53-mediated 

transcriptional activation of apoptotic mechanisms, p53 can activate apoptosis in a 

transcription-independent way by directly interacting with Bak and Bcl-2  at the 
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mitochondria and activating one and inhibiting the other, respectively to lead to the loss 

of mitochondrial membrane potential and caspase activation, and at the end, cell death 

(Figure 1.2)33. 

 

1.1.2.3. Modes of p53 regulation 

The classical view of p53 activation consists of three steps; p53 stabilization affected by 

ATM/ATR-mediated phosphorylation, and subsequent MDM2 dissociation, DNA-

binding in a sequence-specific manner, and transcription activation34,35. Since there are 

more than 36 conserved amino acids (serine, threonine, and lysine residues) that have 

been shown to be modified in vitro experiments, p53 post-translational modifications 

have been thought to play a crucial role in p53 activation34,35. However, when this 

classical mode of p53 activation has been tested in knock-in mutant mouse models, the 

finding challenged the importance of traditional regulation events34,35. For example, 

phosphorylation of mouse Ser18 or Ser23 after DNA damage by various kinases was 

thought to stabilize p53 by inhibiting the MDM2 interaction; however, the S18A or S23A 

point mutant knock-in mouse model showed no difference in stress-induced p53 

stabilization between various cells, such as thymocytes and fibroblasts derived from wild-

type and mutant mice36,37. Although more extreme defects in apoptosis-related p53 

function were observed in certain tissues, such as thymocytes of S18/23A double mutant 

mice, no other tissues or embryonic fibroblasts showed a difference in p53 stability37. 

Because p53 can be activated regardless of whether it is phosphorylated or not, 

phosphorylation may not be critical for p53 activation, thereby the classical model is not 

sufficient for explaining every aspect of p53 stabilization34,36.  

In addition to their role in transcriptional regulation by transferring an acetyl group to a 

lysine residue on histones, histone acetyltransferases also play an important part in p53 

regulation. A histone acetyltransferase, p300/CBP acetylates p53 to recruit cofactors and 

activates p53 target genes. Moreover, when p300/CBP is localized at target promoter 

regions, it acetylates histones to make DNA more accessible38,39. There are several 

acetylation sites mostly in the C-terminal domain of p53, but also in the DNA-binding 

domain and by combinational knockin mutant models, these acetylation events were 

shown to be essential for p53-related tumor suppression activities40. The consequences of 

lacking p53 acetylation indicate that specific acetylation of different regions of p53 may 
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be important for cell-fate determination34. For example, there is no need for acetylation 

to activate the MDM2 gene. On the other hand, activation of apoptosis-related target 

genes, such as Puma requires p53 modification at multiple sites34,40 Methylation, 

sumoylation and neddylation also occur at specific sites of p53 to contribute p53 promoter 

specificity39. 

Under stress, post-transcriptionally modified and activated p53 binds to specific target 

promoter sequences. However, a great proportion of p53 is already bound to DNA in 

unstressed cells41. It is thought that although p53 is capable of binding to DNA under no 

stress conditions, it is inactive, which is probably a result of repression provided by its 

antagonists, MDM2 and MDMX.  Therefore, it has been proposed that the release of p53 

from the inhibition of MDM2/X in the DNA bound form is the significant step for its 

activation34. 

 

1.1.3. MDM2 Biology 

1.1.3.1. Gene Structure and Protein Motifs of MDM2 

The Mdm2 gene was originally identified as an amplified-gene on double-minute 

chromosomes responsible for the transformation of mouse fibroblasts42.  The MDM2 gene 

is located on chromosome 12q13-14 and consists of 11 exons. It produces various proteins 

under the control of two different promoters (P1 and P2)35,43. Among these two promoters, 

P2 is the p53-responsive one and from these promoters, the full-length protein of 491 

amino acids, p90 is produced (Figure 1.3.A)43,42. In many human tumors, the production 

of short proteins through alternative splicing occurs and it has been reported that the major 

ones; MDM-A and MDM-B, which lack the p53-binding domain, bind to the full-length 

MDM2 protein and lead to its sequestration in the cytoplasm44. The N-terminal region of 

the MDM2 protein, where the p53-binding domain resides, binds to the N-terminal 

transactivation domain of the p53 protein43. The MDM2 protein  also contains a) nuclear 

localization and  export signals for shuttling back and forth between the cytoplasm and 

the nucleus, b)  the central acidic and zinc-finger domains for interacting with various 

proteins to induce proteasomal degradation of p53, c) a nucleolus localization signal, and 

d) a C-terminal RING domain for its E3 ligase activity (Figure 1.3.B)43,13.  
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Figure 1.3. Gene Structure and Protein Motifs of MDM2. (A) The MDM2 gene is 

encoded by 11 exons (2 alternative first exons). It is controlled by two p53 responsive 

elements in intron 1 and two promoters; P1 and P2 (shown by the arrows). The full-length 

MDM2 p90 is translated from the first ATG in exon 2. Both promoters can express 

MDM2 protein, but only P2 is under the control of p53. (B) Full-length MDM2 p90 

contains the following motifs: An N-terminal p53-binding domain, nuclear localization 

and export signals, central acidic and zinc finger domains, a RING domain, and a 

nucleolus localization signal. 

 

1.1.3.2. MDM2-p53 Regulation 

Although MDM2 has several other p53-independent roles, its main oncogenic activity 

depends on its ability to inhibit the tumor suppressor, p53 through direct binding and 

blocking the transactivation domain of p53 and resulting in the further proteasomal 

degradation of p53 through E3 ubiquitin ligase activity (Figure 1.4)42. Ubiquitination of 

proteins occurs through a series of steps involving E1, E2, and E3 proteins45. First, an E1 

enzyme binds to ubiquitin and activates it and then an E2 enzyme accepts that activated 

ubiquitin and transfers it to the E3 ligase enzyme, which in turn, covalently links this 

ubiquitin to lysine residues on the target protein45. MDM2’s RING domain possesses this 

E3 ligase activity to ubiquitinate both p53 and also itself43. It was reported that MDM2 

performs monomeric ubiquitination on p53, which does not result in proteasomal 

degradation. Later, it was found that p300/CBP interacts with MDM2 through its acidic 

domain to perform polyubiquitination and promotes the degradation of p53 on 26S 

proteasomes43,45,46.  It was originally thought that MDM2 targeted p53 to the cytoplasm 

for degradation through its nuclear export signal (NES); however, it was later reported 

that only the RING domain that contains the E3 ligase activity, but not the NES is 

A. 

B. 
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essential for nuclear export46. Current thinking suggests that the nucleus is also a 

physiological site for p53 degradation, stemming from the observation of  p53 

degradation in cells treated with a specific nuclear export inhibitor47. 

During stress responses, many layers of regulation connect MDM2 function to p53 

stability and activation. One of the regulators of MDM2 is the tumor suppressor, ARF, 

which is an alternate reading frame expressed from the INK4a locus and functions as the 

inhibitor of MDM2-mediated proteasomal degradation of p5348. Even though under 

normal conditions, cellular levels of ARF are kept low, its levels are induced upon 

oncogenic stress and lead to suppression of cell proliferation by activating p53-mediated 

cell-cycle arrest or apoptosis. To activate the p53 pathway, ARF binds to MDM2, blocks 

its shuttling between the cytoplasm and the nucleus, and sequesters it in the nucleolus48,49. 

It is also reported that ARF blocks MDM2’s E3 ligase activity to activate p53 (Figure 

1.4)50. 

The other important regulator of MDM2 is MDMX (also known as MDM4), which is 

another negative regulator of p53. In addition to its role in inhibiting p53-transactivation 

function by directly blocking its transactivation domain, MDMX can stabilize both p53 

and MDM2. MDM2 and MDMX heterodimerize through their RING domains51,52. 

Moreover, MDMX also promotes the E3 ligase activity of MDM2 on p53 and causes an 

increase in the proteasomal degradation of p53. These findings make it a potential 

therapeutic target for cancer treatments (Figure 1.4)52,53,54. 

MDM2 can be also regulated through post-translational modifications.  There are multiple 

sites of phosphorylation and depending on the site and the kinase, phosphorylation can 

activate or inhibit MDM2’s function. For example, ATM or c-Abl phosphorylates Ser395 

and Tyr394, respectively to inhibit MDM2’s activity55. Conversely, activated Akt kinase 

through  PI3K pathway can phosphorylate MDM2 at serine residues 166 and 186 to 

induce the entry of MDM2 to the nucleus and promote p53 turnover (Figure 1.4)55. In 

addition to phosphorylation, MDM2 is also regulated by acetylation where p300/CBP 

acetylation inhibits MDM2’s activity on p5356.  
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Figure 1.4. Regulation of the p53-MDM2 pathway. Under unstressed conditions, p53 

protein levels are kept low due to its negative regulators; MDM2 and MDMX, which 

form heterodimers through their RING domains. MDM2/X binds to p53 to block its 

transactivation and by MDM2’s E3 ligase activity, p53 is ubiquitylated and in turn, 

degraded in the proteasome. Under stress conditions, such as DNA damage, p53 is 

acetylated and phosphorylated to escape from MDM2/X inhibition. Later, p53 stimulates 

expression of its negative regulator, MDM2, and numerous anti-tumorigenic genes. Post-

transcriptional modifications of p53 and various cofactors determine the fate of the cell. 

Moreover, MDM2 is also regulated by various proteins, such as ARF and by post-

transcriptional modifications itself, for example, its phosphorylation by Akt. 

Current studies suggested that the stabilization and activation by post-translational 

modifications are not sufficient for p53 activation because p53 needs to escape from the 

repressed state formed by its negative regulators, MDM2 and MDMX to be fully 

activated34. In addition to the N-terminal MDM2-binding domain, p53 also interacts with 

MDM2 through both its DNA-binding domain and its C-terminal domain, which indicates 

that post-translation modifications affecting these interactions can stabilize p53 and 

release it from repression (Figure 1.4)34,40. Different p53-dependent promoters have 

varying responsiveness to MDM2/X blockage of p53. For example, eliminating the 

repressed state may be sufficient for some highly responsive target genes, such as cell-

cycle arrest genes, whereas for pro-apoptotic genes, in addition to removing the repressed 

state, some additional post-translational modifications are required34. These differences 

can be observed in the action of the small molecule MDM2 inhibitor, Nutlin-3a, which 
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can activate the genes functioning in the cell-cycle arrest pathway, but not pro-apoptotic 

p53 target genes in many tumor-derived cell lines57. 

 

1.1.4. Strategies targeting the p53-MDM2 pathway for cancer therapy 

1.1.4.1. Targeting mutant-p53 

In more than 50% of human cancer, p53 is directly altered by a missense mutation, which 

is mostly located in the DNA-binding domain and rarely in intrinsically disordered 

regions58,59. Cancer-associated mutations in the DBD can be divided into two groups; 

contact mutations, which lead to the removal of desirable amino acids that interact with 

DNA, and conformational mutations, which play a role in the disruption of the p53 

structure60,61. Contact mutations, such as R273C generally remove an interacting side 

chain from the p53-DNA interface, and they do not change the overall structure and 

stability of the DBD61,62. However, many conformational mutations, such as V143A or 

Y220C, make p53 unfolded and aggregated at body temperature by disrupting the 

hydrophobic interactions and lowering the stability of the DBD. These mutant p53 

proteins in their folded state have the overall structure of wild-type p5361,63. Moreover, 

mutations causing a loss of the zinc ion, such as R175H, also destabilize the DBD and 

lead to impaired DNA binding64. In addition to DBD domain mutations, mutations in the 

tetramerization domain occur in human cancer. Although somatic mutations in this 

domain occur with low frequency, a pH-dependent tetramerization-domain mutation, 

R337H, is the most prevalent germ-line p53 mutation58,65.  

Small-molecule stabilizers are designed against structural temperature-sensitive p53 

mutants, which have a normal wild-type structure in their folded state63. These stabilizers 

may target a binding surface shared by wild-type p53 or may be mutant-specific targeting 

the region formed due to the mutation66,67. Using virtual screening and rational design, a 

carbazole-based molecule, PhiKan083 was discovered against the Y220C structural 

mutant. This mutation of a tyrosine to a cysteine gives rise to an external surface cavity, 

which in turn, causes the loss of hydrophobic interaction and instability of the DBD. The 

stabilizer targets specifically this cavity and shifts the protein structure from an unfolded 

state to a folded one67. Later, another Y220C stabilizer, PK7088 was discovered and 

preliminary results indicate it may cause p53 activation in various human cancer cell 

lines63. 
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The presence of tumorigenic mutations and the bioavailability of zinc affect the 

transcriptional activity of p53 because the lack of a coordinating zinc atom leads to the 

unfolding of the p53 protein64.  The ZMC1 molecule, which acts as a metallochaperone, 

was discovered by screening novel compounds. This molecule has the ability to induce 

growth inhibition and apoptosis in the zinc-binding deficient R175H mutant cells. This 

metallochaperone increases intracellular zinc levels by transporting zinc ions from the 

cell membrane and allows the reformation of the unfolded zinc-binding site in these 

R175H mutant cells68. 

About 10 percent of somatic p53 cancer mutations result in premature stop codons, which, 

in turn, leads to the degradation of their mRNAs by nonsense-mediated decay. R196X 

and R213X are the most frequently observed nonsense mutations in human cancers69. It 

is reported that aminoglycosides, such as gentamicin, which is used in the clinic against 

various bacterial infections, suppress the effects of premature stop codons and restore the 

translation of full-length proteins in mammalian cells70. For R213X mutant, mRNAs are 

stabilized after gentamicin treatment and cells can produce the full-length p53 protein, 

which results in decreased cell-viability69. 

Gene therapy approaches targeting cancer with mutant p53 for restoring functional p53 

have been another investigation area for years. One of the gene therapy strategies is to 

use a replication-deficient, TP53 gene-containing adenovirus and introduce it into the 

tumor directly or into body cavities71. For example, one of these adenoviruses, Advexin 

has been used as a treatment for Li-Fraumeni syndrome, an inherited disorder that has a 

predisposition to various cancer types, such as sarcomas. Intratumoral injection of 

Advexin caused complete regression72,73. Although adenovirus containing TP53 gene 

therapy is safe, feasible and has promising antitumor effects, its clinical efficacy has yet 

to be demonstrated11. 

Another gene therapy approach is the Onyx-015 adenovirus, which lacks the E1B-55K 

gene. Viral replication induces p53 due to the expression of viral oncogenes, such as E1A, 

and the introduction of viral double-stranded DNA. During adenoviral infection, E1B-

55K plays a role in degrading p53 and preventing p53-mediated cell-cycle arrest and 

apoptosis to allow viral replication74. Therefore, in normal p53 sufficient cells, the 

replication of ONYX-015 is restricted due to induced p53, whereas ONYX-015 virus can 

replicate in p53-mutant tumor cells, which results in the selective destruction of tumor 

cells74,75. Despite its safety, it is reported that ONYX-015 has a limited therapeutic 
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effect76. One of the potential problem for the use of p53 targeting gene therapy is due to 

the tetramerization domain because wild-type and mutant endogenous p53 proteins can 

form heterotetramers, which dominantly reduces p53 activity. Swapping the 

tetramerization domain of p53 with a modified coiled-coil domain of Bcr and generating 

a chimeric p53 protein was one of the strategies to overcome this problem77. 

 

1.1.4.2. Targeting Cancer with Wild-type p53  

In many human tumors containing wild-type p53, MDM2 and MDMX are generally 

overexpressed to effectively abrogate p53 function. Therefore, inhibiting MDM2 or 

MDMX interactions with p53 is a promising strategy to activate p53-mediated cell-cycle 

arrest and apoptosis and, in turn, regress tumor progression78. p53 interacts with MDM2 

primarily through three hydrophobic pockets interacting with the amino acids; Phe19, 

Trp23, Leu26, which are well-studied and compact enough to design small molecule 

inhibitors binding in these pockets to block the p53-MDM2 interaction79.  

Nutlins, a family of cis-imidazoline analogs, were reported as the first small-molecule 

antagonists of MDM2 that activate p53 by blocking the N-terminal p53-binding pocket 

of MDM280. In the initial report, Nutlin-3a was one of the most potent inhibitors and it 

binds to MDM2 with IC50= 90nM and works synergistically with both adenovirus gene 

therapy and mutant p53 stabilizers79,63,81. Further studies have improved Nutlin’s binding 

affinity, cellular potency, pharmacokinetics, and stability. More recent studies have 

discovered various other classes of small molecules targeting MDM2, such as 

pyrrolidine-containing compounds, spirooxindoles, and the piperidinone-containing 

compounds79. Structure-based design and extensive structure-activity optimizations 

resulted in the discovery of AMG 232 and, in turn, its modified version, AM-7209, which 

are the most selective and potent MDM2 inhibitors to date with the dissociation constants 

of 257 pM and 38 pM, respectively. They both have remarkable pharmacokinetics and 

antitumor activity in vivo in SJSA-1 osteosarcoma xenograft models.  In addition to 

binding to p53-binding pockets, these compounds capture additional hydrophobic binding 

interactions and drive refolding of flexible N-terminal lid region of MDM2, which in turn, 

can achieve higher binding affinities compared to p53 binding82,83. 
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Many of the MDM2 inhibitors lack the ability to bind to MDMX due to the structural 

differences in their p53-binding pockets. However, because full activation of p53 

antitumor pathways requires the inhibition of both MDM2 and MDMX in cancer with 

wild-type p53, a dual small-molecule targeting both MDM2 and MDMX is necessary78. 

One molecule that has dual activity is RO-5963, which results in homo- and 

heterodimerization of MDM2 and MDMX p53-binding pockets. In its binding mode, two 

inhibitor molecules stabilize MDM2 and MDMX by each inhibitor molecule covering the 

Phe19 pocket of one monomer and the Trp23 pocket of the other monomer84. Although 

it has poorer pharmacological properties compared to Nutlin-3a, it activates p53 pathways 

in cancer cell lines with both overexpressed MDM2 and MDMX78. 

p53 has an extensive interactome and related regulatory pathways, which can be used as 

potential targets for anticancer therapy. For example, histone deacetylase SIRT1, which 

represses p53-dependent transcription activation, apoptosis and growth arrest by 

deacetylating Lys382 in the C-terminal regulatory domain of p53. Small-molecule 

screening for p53 activators resulted in the identification of tenovins, which are the 

compounds inhibiting these deacetylases85. It is reported that SIRT1 is overexpressed in 

various cancer cell lines, such as chronic myelogenous leukemia (CML)  stem cells and 

SIRT1 inhibition by tenovin-6 in their corresponding mouse models results in selective 

regression of tumors formed by leukemia stem cells (LSC)86. 

 

1.2. Genome Editing by Cluster Regularly Interspaced Short Palindromic 

Repeats (CRISPR) 

In recent years, new genome editing technologies have been developed to manipulate the 

genome. Among these are Zinc-finger nucleases (ZFNs), Transcription activator-like 

effector nucleases (TALENs) and most recently CRISPR/Cas987,88. Generally, the 

manipulation of genomic information at the DNA level requires two major parts; a DNA-

binding domain for sequence-specific DNA recognition and an effector domain for 

executing DNA cleavage88. ZFNs and TALENs consist of a transcription factor derived 

domains for sequence recognition and a nuclease domain derived from a restriction 

endonuclease for generating double-stranded breaks (DSBs) at the targeted locus. 

Conversely, the CRISPR/Cas9 system, which is originally an adaptive immune 
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mechanism present in bacteria and archaea against bacteriophage infection, targets 

specific DNA sequence by complementary RNA-DNA interactions and generate DSBs 

with an RNA-guided nuclease, the CRISPR-associated protein 9 (Cas9)87,88. 

Creating DSBs in the genome by using these genome editing techniques stimulates DNA 

repair pathways, which in turn, results in two outcomes in the host cell: non-homologous 

end joining (NHEJ) where insertions and deletions (INDELs) occur at the targeted locus 

or homology-directed repair (HDR), where desired sequence replacement occurs at the 

DSB site  through homologous recombination using a donor DNA(Figure 1.5.B)89.  ZFNs 

and TALENs function by protein-DNA interactions, thereby re-engineering and cloning 

are required for targeting a new site. However, the CRISPR/Cas9 system requires only 

the cloning of a 20 nucleotide-long guide RNA sequence into Cas9-producing vector 

backbone for targeting a new site87,89. 

The type II CRISPR-Cas9 system is the simplest among the other systems because of its 

compact enzymatic machinery and easily programmable DNA targeting, therefore it has 

been the top tool for genome engineering90. It simply contains a Cas9 protein and two 

RNA molecules; crRNA, which is complementary to the recognition site, and trans-

activating crRNA (tracrRNA). After Cas9 binds to crRNA and then tracrRNA, it is 

recruited to the target site and generates DSBs91,88. One requirement for Cas9’s activity 

is the existence of a protospacer adjacent motif (PAM) sequence, which is a short 

recognition motif found in the invading phage genome, but not in the host bacterial 

genome. The PAM sequence for Cas9 derived from S. pyogenes is an NGG at the 3’ end 

of the target sequence and Cas9 cleaves the target DNA 3bp upstream of this PAM 

sequence88. For using this system as a tool, Cas9  was optimized and a single chimeric 

guide-RNA, which contains fused crRNA and tracrRNA, was formed (Figure 1.5.A)88,92. 

Moreover, new Cas9 homologs from other species, such as Cpf1 and the engineered Cas9 

variants were developed, which allows genetic engineers to use various PAM sequences 

in the desired genome for the precise editing of targeted sequences88,93. The CRISPR/Cas9 

system can be used for altering genes, generating knock-outs or knock-ins, large deletions 

or rearrangements, and gene activation87. 
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Figure 1.5. CRISPR/Cas9 system and DSB Repair. (A) The Cas9 from S. pyogenes (in 

yellow) is targeting to the green highlighted genomic DNA (human MDM2 locus) by a 

20-nt-long sgRNA and a scaffold RNA (in red). After the sgRNA pairs with the DNA 

target (in green), with the help of PAM sequence (in pink), Cas9 generates a double-

stranded break 3bp upstream of the PAM. (B) CRISPR/Cas9-mediated DSB can be 

repaired by two distinct ways; NHEJ pathway, which results in random indel mutations 

at the cut site, or HDR pathway where the break is fixed by using a donor DNA through 

homologous recombination.  
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2. AIM OF THE STUDY 

The p53 tumor suppressor is the most well-known transcription factor, which plays an 

important role in the protection from cancer by regulating DNA repair, cell cycle, and 

apoptosis pathways. In human cancers, p53 is either inactivated by a mutation or 

suppressed through the abrogation in one of its signaling or regulatory components. 

Therefore, the p53 pathway has been a primary target for novel cancer drug discoveries. 

One such approach is targeting the interaction between p53 and its negative regulator, 

MDM2 for activating the p53 pathway to promote tumor regression. In this project, we 

screened various compounds using distinct methods for identifying candidates that can 

block the interaction between the p53 and MDM2 proteins.  

In the first part of the project, we aimed to generate a p53-/- MDM2-/- cell line for the 

screening of MDM2 targeting compounds. We planned to target the second exon of the 

MDM2 gene by CRISPR/Cas9 genome editing system in the HCT116 p53-/- cell line to 

generate random INDEL mutations and shift the open reading frame of the MDM2 gene. 

In the absence of these two proteins, the compounds, which are candidates for blocking 

the p53-MDM2 interaction should not affect the viability of the cell, whereas they should 

activate the p53 pathways in wild-type cells, and in turn, should result in cell-cycle arrest 

or apoptosis.  

Secondly, we performed a fluorescent two-hybrid (F2H) assay for high-content screening 

the compounds targeting the p53-MDM2 interaction. In this assay, interacting domains 

of the p53 and MDM2 proteins were fused to two distinct fluorescent proteins. Interacting 

p53-MDM2 pairs formed two distinguishable fluorescent signals at the same spot in 

transfected Baby Hamster Kidney (BHK) cells. Upon the separation of MDM2 from p53, 

the colocalization of these two fluorescent foci should disappear in real time. 

Finally, we wanted to express and purify the interacting domains of p53 and MDM2 

proteins in bacteria and performed a surface plasmon resonance (SPR) experiment with 

the purified proteins for screening MDM2 targeting compounds in vitro and determined 

their effects on the kinetics of the p53-MDM2 interaction. In summary, we aimed to 

optimize three distinct methods for screening compounds targeting the p53-MDM2 

interaction in order to discover novel cancer therapeutics for cancers with wild-type p53. 
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3. MATERIALS & METHODS 

3.1. Materials 

3.1.1.   Chemicals 

 All the chemicals used in this thesis are given in Appendix A. 

3.1.2. Equipment 

All the equipment used in this thesis are given in Appendix B. 

3.1.3. Solutions and Buffers 

Calcium Chloride (CaCl2) solution: 60mM CaCl2(from 1M stock), 15% glycerol, 10mM 

PIPES pH 7.0 were mixed, completed to 500ml with ddH2O. The solution was sterilized 

with 0.22µM filter and stored at 4°C. 

Agarose Gel: To prepare 100ml 1% w/v agarose gel, 1g of agarose powder was weighed 

and then dissolved in 100ml 0.5XTBE buffer by heating in a microwave. 

Tris-Borate-EDTA (TBE) Buffer: For a 1L 5X stock solution, 54g Tris-Base, 27.5g boric 

acid, and 20ml 0.5M EDTA pH 8.0 were dissolved in 1L of ddH2O. The solution was 

diluted 1 to 10 with ddH2O to reach a working solution of 0.5xTBE. 

Phosphate-buffered Saline (PBS): For 1L 1X PBS solution, 100mL 10X PBS was mixed 

with 900mL ddH2O and then 1X solution was filter-sterilized. 

Polyethyleneimine (PEI) Solution: For 1mg/ml (w/v) working solution, 100mg 

polyethyleneimine powder was weighed and dissolved in 100ml of ddH2O. Then, the pH 

of the solution was adjusted to 7.0 by using HCl(33%). Finally, the solution was filter-

sterilized and kept at -20°C. 

SDS Separating Gel: For 10ml 10% separation gel, 2.5mL 1.5M Tris pH 8.3, 3.34ml 

Acrylamide: Bisacrylamide (37.5:1), 100µl 10% (w/v) SDS, 100µl 10% (w/v) APS and 

10µl TEMED was mixed and the volume was completed to 10ml with ddH2O. In this 

study, in addition to 10% separating gel, 14%, and 18% separating gel were also prepared. 
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SDS Stacking Gel: For 5ml 4% stacking gel, 1.25ml 0.5M Tris pH 6.8, 1ml Acrylamide: 

Bisacrylamide (37.5:1), 50µl 10% SDS (w/v), 15µl 10% APS (w/v), and 7.5µl TEMED 

were mixed and the solution volume was completed to 5ml with ddH2O.  

SDS Running Buffer: First, 1L 10X Tris-Glycine was prepared by weighing 40g Tris and 

144g Glycine and adjusting pH to 8.3. Then, 100ml of 10X Tris-Glycine was mixed with 

5ml of 20%(w/v) SDS and the total volume of the solution was completed to 1L. 

Transfer Buffer: 100ml of 10X Tris-Glycine pH 8.3, 1.88ml of 20% (w/v) SDS and 200ml 

methanol was mixed and the volume was completed to 1L. The solution was stored at 

4°C. 

Protein Loading Buffer: For 4X protein loading buffer, 2.4mL Tris (1M pH 6.8), 0.8g 

SDS, 4ml glycerol (100%), 0.01% bromophenol blue, and 2ml β-mercaptoethanol were 

mixed and then the total volume was completed to 10ml. 

Blocking Buffer: For 20ml of blocking buffer, 1g of skim milk powder was dissolved in 

10ml of PBS-T buffer. 

PBS-Tween20 (PBS-T) solution: For 1L 1X PBS-T solution, 0.5mL Tween20 was added 

in 1L of 1X PBS. 

Antibody Dilution Solution: 10g BSA, 0.1g NaN3 were weighed and added into 200ml 

PBS-T. The pH of the solution was adjusted to 7.5 and finally approximately 0.1g phenol 

red was added to the solution. 

ECL solution: For a 5ml solution, 4.728ml ddH2O, 234µl 1.5M Tris pH 8.3, 25µl 250mM 

luminol (in DMSO), 12.5µl 90mM coumaric acid (in DMSO) and 1.5µl H2O2 (30%) were 

mixed. 

FACS Buffer: For 500 ml 1X solution, 0.5 g bovine serum albumin (BSA) and 0.5 g 

sodium-azide were weighed and then mixed in 500 ml 1X HBSS. The final solution was 

kept at 4°C.  

Lysis Buffer: For 50ml 1X lysis buffer, 50mM HEPES, 250mM NaCl, 0.5mM TCEP, 

10mM imidazole, EDTA-free protease inhibitor cocktail (Roche), and 10µl DNase I 

(100U/µl) were mixed and completed to 50ml with ddH2O.  

Buffer IMAC-A: For 1L IMAC-A solution, 50mM HEPES, 250mM NaCl, and 10mM 

imidazole were mixed and then the total volume was completed to 1L with ddH2O. The 
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solution was filter-sterilized and stored at 4°C. 0.5mM TCEP was added fresh before 

using the solution. 

 Buffer IMAC-B: 50mM HEPES, 250mM NaCl, and desired concentration of imidazole 

were mixed. The solution was filter-sterilized, and 0.5mM TCEP was added fresh to the 

solution. The IMAC-B solution was used as the elution buffer of His-tagged affinity 

chromatography. In this study, IMAC-B with 100mM, 300mM, and 600mM imidazole 

concentrations were used.  

Gel Filtration Buffer: For 1L gel filtration buffer, 20mM HEPES, and 250mM NaCl were 

mixed. 5mM TCEP or 0.05% β-mercaptoethanol was added to the solution and the 

volume was completed to 1L with ddH2O.  

3.1.4. Growth Media 

Luria Broth(LB): For each 1L 1X LB medium, 20g LB powder was weighed and 

completed to 1L with ddH2O. The medium was then autoclaved at 121°C for 15 minutes. 

After cooling the medium, for antibiotic selection, kanamycin at a final concentration of 

50µg/ml, ampicillin at a final concentration of 100µg/ml or chloramphenicol at a working 

concentration of 34µg/ml was added to the liquid medium. 

LB Agar: For each 1L 1X LB-agar medium, 35g LB-Agar already mixed powder was 

weighed and the mixture was completed to 1L with ddH2O. Then, the medium was 

autoclaved at 121°C for 15 minutes. After cooling down to 50°C, the antibiotic of interest 

at desired concentration was added. The working concentration of ampicillin, kanamycin, 

and chloramphenicol was 100µg/ml, 50µg/ml, and 34µg/ml, respectively. Approximately 

15ml of LB-Agar solution was poured into a sterile petri dish under bacteria hood. Sterile 

agar plates were kept at 4°C. 

DMEM: HCT116 WT, HCT116 p53-/- and BHK cells were maintained in culture in 

DMEM growth medium supplemented 10% heat-inactivated fetal bovine serum (FBS), 

1% PenStrep (100U/mL Penicillin and 100µg/mL Streptomycin). 

Freezing Medium: All the cell lines were frozen in heat-inactivated fetal bovine serum 

containing 10% DMSO (v/v). 

Terrific Broth (TB): For 1L 1X TB medium, 47.6g TB powder was weighed, 8ml glycerol 

was added, and finally the mixture was completed to 1L with ddH2O. The medium was 

autoclaved at 121°C for 15 minutes. When antibiotic selection is required, antibiotics 
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were added with the desired working concentrations. Kanamycin at a final concentration 

of 50µg/ml or chloramphenicol at a working concentration of 34µg/ml was added to the 

liquid medium. 

3.1.5. Molecular Biology Kits 

All the commercial molecular biology kits used in this thesis are given in Appendix C. 

3.1.6. Enzymes 

All the restriction and modifying enzymes, polymerases, their corresponding buffers and 

PCR reaction supplements were obtained from either New England Biolabs (NEB) or 

Fermentas. 

3.1.7. Antibodies 

All the antibodies used in this thesis are given in Appendix D. 

3.1.8. Bacterial Strains 

Escherichia coli (E. coli) DH-5α is used for general plasmid amplification and cloning 

applications and E. coli Rosetta 2 DE3 expression strain is used for mammalian protein 

production and purification. 

3.1.9. Mammalian Cell Lines 

HCT116 and HCT116 p53-/-: Human colorectal carcinoma cell line and its p53-null 

derivative. 

BHK:  BHK21 cell line was derived from the kidneys of  Syrian hamsters. The cell line 

we used was a modified derivative. Lac operator repeats have been embedded into the 

genome94. 

3.1.10. Plasmid and Oligonucleotides 

All the plasmids and oligonucleotides used in this thesis study are listed in Table 3.1 and 

Table 3.2, respectively. 
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OLIGONUCLEOTIDE 

NAME 

SEQUENCE PURPOSE OF 

USE 

MDM2-sgRNA-top CACCGAGGGTCTCTTGTTCCGAAGC pSpCas9(BB)-

2A-Puro cloning 

MDM2-sgRNA-bottom AAACGCTTCGGAACAAGAGACCCTC pSpCas9(BB)-

2A-Puro cloning 

Cas9 reverse TATGTAACGGGTACCTCTAGAGCC pSpCas9(BB)-

2A-Puro 

sequencing  

MDM2-RFLP-Forward GACGCACGCCACTTTTTCTCT RFLP analysis 

MDM2-RFLP-Reverse TACGCCAGAGGTAGCACACTT RFLP analysis 

GBP-NheI-Forward TCAGCTAGCATGGCCGATGTGCA 

GCTGGT 

pcDNA3.1/myc-

His(-)B cloning 

LacI-BamHI-Reverse ATTGGATCCTCATCGGGAAACCT 

GTCGTGC 

pcDNA3.1/ 

myc-His(-)B 

cloning 

TagGFP-SmaI-Forward TGGACCCGGGGTGAGCGGGGGC 

GAGGAGCT 

pET-47(b)+ 

cloning 

P53-NotI-Reverse GGACGCGGCCGCCTATGTAGG 

AGCTGCTGGTGCAGG 

pET-47(b)+ 

cloning 

MDM2-SmaI-Forward TGGACCCGGGATGTGCAATACC 

AACATGTCTGTACC 

pET-47(b)+ 

cloning 

MDM2-NotI-Reverse GGACGCGGCCGCCTAGTGAC 

ACCTGTTCTCACTCACAG 

pET-47(b)+ 

cloning 

Table 3.1. List of oligonucleotides 

 

 

PLASMID NAME PURPOSE OF USE SOURCE 

pSpCas9(BB)-2A-Puro The mammalian expression 

plasmid for the CRISPR/Cas9 

system with puromycin 

resistance gene 

Addgene (#48139)  

 

MDM2-pSpCas9(BB)-2A-

Puro 

Mammalian expression plasmid 

with MDM2-targeting 

CRISPR/Cas9 expression and 

puromycin resistance gene 

Lab construct 

pcDNA3-GFP GFP expressing plasmid for 

transfection control 

Lab construct 
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pcDNA3-flag-p53   The mammalian expression 

plasmid for human p53 protein 

expression with N-terminal 

FLAG-tag 

Addgene (#10838) 

pcDNA3.1/myc-His (-) B Mammalian expression plasmid 

with a CMV promoter  

Thermo Fischer 

Scientific, (V85520) 

pcDNA3.1/myc-His (-) B-

GBP-LacI 

Mammalian expression plasmid 

with GBP-LacI fusion protein 

expression for F2H assay 

Lab construct 

pET-47b (+) The bacterial expression plasmid 

for expressing fusion proteins 

with an N-terminal His-tag 

Merck Millipore, 

(71461) 

pET-47b (+)-TagGFP-p53 Bacterial expression plasmid for 

expressing TagGFP-p53 fusion 

protein with an N-terminal His-

tag 

Lab construct 

pET-47b (+)-MDM2 The bacterial expression plasmid 

for expressing the MDM2 protein 

with an N-terminal His-tag 

Lab construct 

 Table 3.2. List of plasmids. 

 

3.1.11. DNA and Protein Molecular Weight Markers 

DNA ladder and protein standard used in this thesis are given in Appendix E. 

3.1.12. DNA Sequencing 

Sequencing analysis services were provided in this study by McLAB, CA, USA. 

(https://www.mclab.com/home.php) 

3.1.13.  Software, Computer-based Programs, and Websites 

Software, computer-based programs, and websites which are used in this thesis are given 

in Table 3.3. 

 

 

https://www.mclab.com/home.php
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SOFTWARE, 

PROGRAM, 

WEBSITE NAME 

COMPANY/WEBSITE PURPOSE OF USE 

CLC Main 

Workbench v7.9.4 

QIAGEN Bioinformatics Primer design, 

Molecular cloning, 

analysis of sequence 

data, DNA sequence 

alignment 

FlowJo v10 FlowJo, LLC Flow cytometry data 

analysis 

BD FACSDiva BD Biosciences Acquiring flow 

cytometry data 

NCBI BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi  The basic local 

alignment tool  

Ensembl Genome 

Browser 

http://www.ensembl.org  Human genome 

sequence information 

CRISPR Design, 

Zhang Lab, MIT 

http://crispr.mit.edu  CRISPR design tools 

for sgRNA design and 

off-target analysis  

CRISPOR http://crispor.tefor.net CRISPR design tools 

for sgRNA design and 

off-target analysis 

Addgene https://www.addgene.org  Plasmid map 

information 

RTCA Software 2.0 ACEA Biosciences Real-time cell growth 

analysis 

UNICORN 7.1 GE Healthcare Life Sciences Chromatography 

operation 

ExPASy https://www.expasy.org/ Protein translation 

and parameter tool 

IN Cell Developer 

software 

GE Healthcare Life Sciences Dot analysis 

BIACORE T200 

software v3.0 

GE Healthcare Life Sciences Operating and 

evaluating SPR 

experiments 

Table 3.3. List of software and computer-based programs and websites. 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ensembl.org/
http://crispr.mit.edu/
http://crispor.tefor.net/
https://www.addgene.org/
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3.2.  Methods 

3.2.1. Bacterial Cell Culture 

3.2.1.1. The growth of Bacterial Culture 

E. coli DH5α and Rosetta2 DE3 strain were cultured in LB with desired antibiotic 

selection for overnight (12-16 hours) at 37°C with vigorous shaking (221rpm). For single 

bacterial colony, bacterial culture was spread onto LB-Agar plates with antibiotic 

selection by using glass beads and the plates were incubated overnight at 37°C. For long-

term storage, glycerol at a final concentration of 10% (v/v) was added to the bacterial 

culture for a total volume of 1ml under bacteria hood. Glycerol stocks were stored in 

cryovials at -80°C. 

3.2.1.2. Preparation of competent bacteria 

Previously prepared competent E. coli DH5α was added into 40ml LB in a 250ml flask 

without adding any antibiotic selection and incubated overnight at 37°C by vigorous 

shaking (For Rosetta2 DE3, chloramphenicol with a final concentration of 34µl/ml was 

added). The next day, 4ml of overnight-grown culture was transferred into 400ml LB in 

a 2L flask without any antibiotics and then the culture was incubated at 37°C with 221rpm 

shaking until the optical density (OD) of the culture at 590nm reached around 0.375. The 

400ml culture was aliquoted into eight sterile 50ml tubes and incubated on ice for 10 

minutes. Then, the prechilled bacterial culture was centrifuged at 1600xg for 10 minutes 

at 4°C. The supernatant was discarded, and each bacterial pellet was resuspended in 10ml 

ice-cold CaCl2 solution and then centrifuged at 1100xg for 5 minutes at 4°C. Again, the 

supernatant was removed, and each bacterial pellet was resuspended in 10ml ice-cold 

CaCl2 solution. Cells were kept on ice for 30 minutes and then centrifuged at 1100xg for 

5 minutes at 4°C. Bacterial pellets were resuspended in 2ml ice-cold CaCl2 solution and 

finally, all the suspensions were combined into one 50ml tube and divided into 200µl 

aliquots into pre-chilled microcentrifuge tubes, which were immediately flash-frozen in 

liquid nitrogen at -80°C. Before using them, their transformation efficiency was 

determined by transforming different concentration of pUC19 plasmid. 
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3.2.1.3. Transformation of competent bacteria  

200µl of frozen competent bacteria were thawed on ice and plasmid DNA at desired 

amount was added to competent bacteria. Then, the bacteria-DNA mixture was incubated 

on ice for 30 minutes. Cells were heat-shocked at 42°C for 90 seconds and immediately 

put back on the ice for 2 minutes. 800µl of LB was added to each tube and competent 

bacteria were incubated in a water bath already heated to 37°C for 45 minutes. After 

incubation, they were centrifuged at 13,200rpm for 30 seconds and bacterial pellet was 

resuspended in 100µl of LB. Finally, cells were spread onto an LB-agar plate with the 

appropriate antibiotic selection and the plates were incubated at 37°C overnight.  

3.2.1.4. Plasmid DNA isolation 

Alkaline lysis protocol as described in Molecular Cloning: A Laboratory Manual 

(Sambrook et at.) was followed for pDNA isolation from E. coli DH5α. In addition to 

alkaline lysis protocol, PureLink HiPure Plasmid Midiprep and ZymoPure Plasmid 

Maxiprep commercially available kits were applied according to manufacturer’s 

protocols. The acquired pDNA’s concentration and purity were analyzed by a NanoDrop 

spectrophotometer. 

3.2.2. Mammalian Cell Culture 

3.2.2.1. Maintenance of cell lines 

HCT116, HCT116 p53-/- and BHK cells were maintained in complete DMEM medium 

in sterile 10cm tissue culture plates at an incubator set to 37°C and 5% CO2. When the 

cells reached 70-80% confluency, they were split. Cells were washed with serum-free 

DMEM or 1X PBS and then trypsin was added and incubated at an incubator set to 37°C 

and 5% CO2 for 5 minutes. Then, the cells were resuspended in complete DMEM and 

split to a new sterile 10cm tissue plate at 1:10 ratio. The cells were split every 2-3 days. 

3.2.2.2. Cryopreservation of the cells 

Cells were split to become 30-40% confluent one day before freezing for HCT116, 

HCT116 p53-/- and BHK cells. In the following day, cells were counted and 1-5x106 cells 

were centrifuged at 300xg for 5 minutes. Cell pellets were resuspended in 1ml freezing 

medium and put into a cryovial. Cryovials were then transferred into a freezing container 
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containing isopropanol and placed into a -80°C fridge. For long-term storage, cryovials 

were transferred into the liquid nitrogen. 

3.2.2.3.  Thawing of frozen mammalian cells  

Cryovials were first taken out of liquid nitrogen tank and quickly thawed by diluting it 

with 9 ml of complete DMEM. Then, cells were centrifuged at 300xg for 5 minutes to get 

rid of DMSO. The cell pellet was resuspended in fresh complete DMEM, and finally, 

cells were put into a sterile 10cm tissue culture plate and incubated at 37°C with 5% CO2. 

In the next day, the culture medium was changed to fresh one to check the condition of 

cells and remove dead ones. 

3.2.2.4. Transient Transfection of Mammalian Cell Lines using 

Polyethyleneimine (PEI) 

One day before transfection, the required number of cells were seeded depending on the 

plate type. On the day of the transfection, the desired amount of DNA was mixed with a 

calculated amount of serum-free phenol red-free DMEM in a sterile microcentrifuge tube. 

Next, PEI (1µg/µl) solution, which was vortexed well, was added to DNA-DMEM mix 

(the ratio of PEI (1µg) to total plasmid DNA (µg) should be 3:1 or 5:1). The solution was 

mixed immediately by vortexing. After incubation at room temperature for 15 minutes, 

the mixture was added dropwise onto cells. The list of PEI transfection conditions based 

on plate type is shown in Table 3.4. 

Plate Type Cell number 

seeded 

DMEM 

amount in 

which cells 

were 

seeded. 

Total DNA 

amount 

The DMEM 

amount in 

which 

transfection 

was 

performed 

PEI: DNA 

ratio 

6-well plate 1-3x105 2ml 3µg 200µl 1:3 or 1:5 

24-well 

plate 

5x104 500µl 900ng 50µl 1:3 

96-well 

plate 

5-10x103 200µl 300ng 20µl 1:3 or 1:4 

Table 3.4. List of PEI transfection conditions depending on the plate type. 
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3.2.2.5.  Genomic DNA isolation 

PureLink Genomic DNA Mini Kit was followed according to manufacturer’s protocol for 

genomic DNA isolation. 

3.2.2.6. Cell Lysis, SDS Gel, Transfer, and Western-Blot 

7.5-1X106 cells were harvested from their culture plates by using trypsin and then the 

cells were centrifuged at 300xg for 5 minutes and the supernatant was discarded. The 

cells were washed with 1X PBS and sedimented again at 300xg for 5 minutes. The pellet 

was dissolved in 90-120µl of 1XPBS and then the required amount of 4X Laemlli dye 

was added to make the dye concentration 1X. The mixture was then boiled at 95°C for 10 

minutes. The lysates were either stored at -20°C for further use or immediately used.  The 

SDS gels prepared in this study were mostly 10% separating gel and 4% stacking gel. 

After sample loading, the SDS gels were run with 1X running buffer at a constant voltage 

of 80V. When the milliampere value for two gels dropped to approximately 35mA, the 

voltage was increased until the voltage reached a maximum value of 140V. The gels were 

run generally for 1.5-2 hours using BIORAD Mini Protean Tetra Cell. After running, the 

gels were transferred to 0.45µm PVDF membranes in 1X transfer buffer at a constant 

current of 250mA for 1.5-2 hours at 4°C by using BIORAD Mini Trans-Blot. Then, each 

membrane was blocked in 10ml of PBS-T with 5% skim milk (w/v) at room temperature 

for 1hour with continuous shaking. After washing with 10ml PBS-T for 10 minutes 3 

times, primary antibody incubation was done overnight at 4°C with constant shaking. 

After the previous washing step repeated, secondary antibody incubation was done at 

room temperature for 1 hour.  After the same washing protocol was performed, ECL 

solution was added onto the membrane and the analysis of membrane was performed by 

ImageQuant LAS100 Biomolecular Imager. 

3.2.3. Vector Construction 

Restriction enzyme digestion 

 A digestion reaction, which contains the template DNA, the required enzyme, and its 

compatible buffer, was incubated for 30 minutes to 2 hours at the optimum temperature 

depending on the enzyme. Digested DNA was run on an agarose gel for further cloning 

procedures. 
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Dephosphorylation of 5’ phosphate groups  

Alkaline phosphatase enzyme (calf intestinal alkaline phosphatase, CIP) was used to 

remove 5’ phosphate groups of linearized vectors to prevent recirculation of vector during 

ligation. 

Agarose gel electrophoresis and DNA purification from the gel 

CIP-treated vector DNA or digested insert DNA was run on an agarose gel. Based on the 

DNA fragment size, 0.7-2% agarose gels were used. The agarose gel with different 

concentration was prepared by dissolving the desired amount of agarose in 100ml of 0.5X 

TBE solution and then the solution was heated up by a microwave. After cooling down 

the solution, 0.0002% ethidium bromide was added. Digested DNA samples were loaded 

into a solidified agarose gel and electrophoresis was performed with a constant voltage 

of 100V. When the electrophoresis is done, the desired DNA band was extracted from the 

gel using a blade under the UV light quickly to minimize the dangerous effects of UV 

light. Finally, extracted DNA was purified by commercial gel purification kits according 

to the manufacturer’s protocol. 

Ligation 

100ng vector DNA was used for ligation reactions with the required amount of insert. The 

molar ratio of vector to insert should be 1:3. T4 Ligase enzyme (NEB) was used for 

ligation reactions and the reaction mixture was incubated with the enzyme at 16°C for 

16hours or at room temperature for 4 hours. A ligation reaction lacking an insert molecule 

was also used as a ligation control. The ligation reaction was transformed into competent 

E. coli DH5α. 

3.2.4. CRISPR/Cas9 Genome Editing 

sgRNA targeting MDM2 gene and Cas9 protein expressing pSpCas9(BB)-2A-Puro 

plasmid was used in this study. The plasmid was transiently transfected into HCT116 

p53-/- cells. 

3.2.4.1. sgRNA design and off-target analysis  

The sgRNA was designed by using human genome sequence and possible CRISPR/Cas9 

targeting sites on the second exon of the MDM2 gene was determined by CRISPR design 

tool (Zhang Lab, www.crispr.mit.edu) and CRISPOR (http://crispor.tefor.net/). The 

http://www.crispr.mit.edu/
http://crispor.tefor.net/
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sgRNA was chosen depending on the highest score provided by these tools and off-target 

sites of each sgRNA were also considered. 

3.2.4.2. Phosphorylation and annealing of top and bottom oligonucleotide pairs 

sgRNA sequence provided by the tool was synthesized as complementary top and bottom 

single-stranded oligonucleotides. Flanking ends of the oligonucleotides were compatible 

with BbsI-digested ends of pSpCas9(BB)-2A-Puro plasmid. First, top and bottom 

oligonucleotides were diluted to 100µM concentration and then the following reaction 

was used for annealing reaction: 

MDM2-sgRNA Top Oligonucleotide (100 M) 1 l 

MDM2-sgRNA Bottom Oligonucleotide (100 M) 1 l 

10X T4 Ligase Buffer 1 l 

T4 PNK Enzyme 1 l 

ddH2O Completed to 10 l 

 

Top and bottom oligonucleotides were annealed in a thermocycler using the following 

parameters:  

37°C 30 minutes 

95°C 5 minutes 

Ramp down to 25°C 5°C/minute 

 

3.2.4.3. pSpCas9(BB)-2A-Puro plasmid digestion and ligation 

Digestion of pSpCas9(BB)-2A-Puro plasmid with BbsI enzyme and ligation of the 

annealed oligo duplex into the digested vector backbone were performed in the same 

following reaction: 

pSpCas9(BB)-2A-Puro Plasmid (100ng) 1ul  

Previous annealed oligonucleotide duplex (1:200 dilution) 1 µl 

10X T4 Ligase Buffer (NEB) 2 µl 

DTT (10 mM) 1 µl 

ATP (10 mM) 1 µl 
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BbsI (10,000 U/ml) (NEB)  1 µl 

T4 Ligase (400,000 U/ml) (NEB) 0.5 µl 

ddH2O Completed to 20 µl 

 

The reaction was incubated in a thermocycler at the following conditions: 

37°C 5 minutes 

21°C 5 minutes 

Go to step 1 5 times 

 

The reaction mixture was then incubated with an exonuclease: 

Previous reaction mixture  20 µl 

10X Buffer 4 (NEB) 3 µl 

ATP (10 mM) 3 µl 

Exonuclease V (10,000 U/ml) (NEB) 1 µl 

ddH2O To 30 µl 

 

Incubate the reaction at the following conditions: 

37°C 30 minutes 

70°C (for inactivation) 30 minutes 

 

This final reaction mixture was finally transformed into E. coli DH5α competent bacteria.  

3.2.4.4. Transformation of pSpCas9(BB)-2A-Puro 

The final ligated and exonuclease-treated reaction mixture was transformed into E. coli 

DH5 competent cells and when single bacterial colonies were obtained, several single 

colonies were picked and their pDNAs were isolated. The cas9-reverse primer was used 

for sequencing and sequencing services of MDM2-pSpCas9(BB)-2A-Puro plasmid was 

provided by McLAB, CA, USA.   
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3.2.4.5. Transfection with Cas9 expressing plasmids 

HCT116 p53-/- cells were transiently transfected with MDM2-pSpCas9(BB)-2A-Puro 

according to PEI transfection protocol. The pcDNA3-GFP plasmid was used as a 

transfection control and for optimizing the transfection efficiency, which was analyzed 

based on GFP expression 36 hours after transfection.  On the next day after transfection, 

cells medium was changed to a medium containing 1µg/µl puromycin to enrich the 

concentration of cells containing Cas9 plasmid. Puromycin selection continued for 3 days.  

3.2.4.6. Flow Cytometry 

To determine the transfection efficiency of HCT116 p53-/- cell line transfected with 

pcDNA3-GFP, flow cytometry technique was performed. 36 hours after transfection 

pcDNA3-GFP transfected cells were washed and resuspended in FACS buffer. Cells 

then were acquired by BD FACS Canto and finally analyzed by FlowJo software. 

3.2.4.7. Preparation of clonal cell lines 

After puromycin selection, single cell clones were generated by limiting dilution. First, 

cells were counted and diluted in complete DMEM medium to reach a final concentration 

of 0.3-0.5cells per 200µl for each well of 96-well plate. Cells were expanded for 2-3 

weeks.  When the cell number of a single cell clone reached 2-3millions, its genomic 

DNA was isolated, and it was frozen for further processes. 

3.2.4.8. Determination Genome Targeting Efficiency  

Restriction Fragment Length Polymorphism (RFLP) assay  

First, a PCR reaction was performed by using genomic DNAs of single cell clones and 

all the required PCR additives. PCR reaction was performed according to Phusion DNA 

Polymerase (NEB) protocol. Then, the half of the PCR product was further digested with 

a restriction enzyme, BsaI or AluI for 2hours at 37°C. Each PCR product and its digested 

product were run on a 1% agarose gel side-by-side and RFLP results were used for the 

identification of mutant single cell clones. If the recognition sites of BsaI or AluI were 

disrupted, it was expected to see a clear uncut band.  

 



 

34 

Sequencing of PCR products from genomic DNA of single cell clones 

Mutations at the site of double-stranded breaks introduced by Cas9 enzyme was analyzed 

by sequencing.  380bp-region covering the second exon of the MDM2 gene was amplified 

for each desired single cell clone by PCR.  Then, blunt-end PCR product was cloned into 

pCR4-Blunt-TOPO vector backbone (Zero Blunt TOPO PCR Cloning Kit for 

Sequencing) according to the manufacturer’s protocol. The ligated product was 

transformed into E. coli DH5α competent cells. Plasmid DNA was isolated from single 

bacterial colonies and finally sequenced. 

3.2.4.9. Determination of Cell Viability by MTT assay 

One day after seeding 1x104 cells into each well of 96-well plate, the medium was 

changed to the medium with compounds. The cells were treated with compounds for 72 

hours. Next, cell viability was determined using Cell Proliferation Kit I (MTT) according 

to the manufacturer’s protocol. 

3.2.4.10. Real-Time Cell Growth 

Cell proliferation was measured in real time with xCELLigence RTCA DP system. First, 

10,000 cells were seeded in each well of an E-Plate VIEW 16 and then incubated inside 

the xCELLigence station at an incubator set to 5% CO2 and 37°C. The cell index was 

monitored every 15 minutes for at least 5 days. Medium only wells were also included in 

the experiments as a negative control. The experiments were performed as triplicates. 

3.2.5. Fluorescent two-hybrid (F2H) assay 

3.2.5.1. pcDNA3.1/myc-His(-)B-GBP-LacI Vector Construction 

pcDNA3.1/myc-His (-) B mammalian expression vector was selected since it had NheI 

and BamHI recognition sites in the correct order. GFP-binding protein(GBP)- LacI fusion 

protein was obtained from Platf-p53-Mdm2 mixture (Chromotek) by PCR by using 

Phusion Polymerase (NEB) according to the following reaction conditions: 

5X Phusion GC Buffer (NEB) 5 µl 

10 mM dNTPs 0.5 µl 

10 µM forward primer (GBP-NheI-forward) 1.25 µl 

10 µM reverse primer (LacI-BamHI-reverse) 1.25 µl 
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Template DNA (1ng) 1 ul 

Phusion HF DNA Polymerase (2,000 U/ml) (NEB) 0.25 µl 

ddH2O To 25 µl 

 

For cloning of the insert, forward primer with NheI and a reverse primer with BamHI 

recognition site was used for PCR amplification. Then, PCR product was cleaned up by 

NucleoSpin Gel and PCR Clean-up kit and cloned into pCR4-Blunt-TOPO vector 

backbone using Zero Blunt TOPO PCR Cloning Kit for Sequencing according to 

manufacturer’s protocol. The ligated vector was then transformed into E. coli DH5α 

competent cells. Single bacterial colonies were picked and their pDNAs were isolated. 

After confirming whether the pDNAs had the insert or not, one of the positive pDNA was 

selected for further steps. To construct the vector, pcDNA3.1/myc-His (-) B vector and 

pCR4-Blunt-TOPO- GBP-LacI were digested with NheI-HF and BamHI-HF enzymes 

(NEB) for 2hours by using a thermocycler. 

 Insert pcDNA3.1/myc-His (-) B 

DNA 2ug 2ug 

CutSmart Buffer (NEB) 5 l  3 l 

NheI-HF (20,000 U/ml) (NEB) 1 l 1ul    

BamHI-HF (20,000 U/ml) (NEB) 1 l 1 l 

ddH2O To 50 l To 30 l 

 

The digested vector was then incubated at 37°C for 30 minutes with CIAP enzyme 

(Fermentas) for dephosphorylation of 5’ ends.  

Double-digested vector 30 l 

10X CIAP Buffer (Fermentas) 5 l 

CIAP Enzyme (20,000U/ml) (Fermentas) 3 l 

ddH2O To 50 l 

 

Afterward, the digested and CIAP-treated vector and the insert were run on a 1% agarose 

gel for the separation of digested DNA bands from uncut ones. The correct insert and 

vector DNA bands were extracted from the gel and then the extracted DNA was purified 
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by NucleoSpin Gel and PCR Clean-up kit. Insert to vector molar ratio was 3:1 for setting 

up the ligation reaction. After transforming the ligation mixture into DH5α competent 

cells, single colonies were picked and their pDNAs were isolated. After the control 

digestion with selected enzymes with their appropriate conditions and buffers, positive 

colonies were selected and sequenced. 

3.2.5.2. PEI transfection of F2H-assay plasmids and Compound Treatment  

On the day before transfection, depending on the type of tissue culture plate, BHK cells 

were seeded. On the day of transfection, equal amounts of three plasmids; TagGFP-p53, 

TagRFP-MDM2, and pcDNA3.1/myc-His(-)B-GBP-LacI, were transfected into BHK 

cells. 16-24 hours after transfection, culture media was changed to that with the desired 

amounts of compounds. 

3.2.5.3. Live Cell Imaging 

After compound treatment, culture plates were placed into live cell imaging microscopy 

(IN cell analyzer 2500S). Several regions were selected for each well for each drug and 

pictures of each region was snapped with 10-20 minutes intervals using GFP and RFP 

channels. Each experiment lasted for 3-4 hours. The results were analyzed using IN Cell 

Developer software. 

3.2.6. Protein purification 

3.2.6.1. Vector Construction 

pET-47b (+) bacterial expression vector with an N-terminal His-tag was used as vector 

backbone. TagGFP-p53 and MDM2 inserts were obtained as PCR products by using 

Phusion Polymerase (NEB) according to its suggested reaction conditions. For the 

amplification of inserts, the forward primers with SmaI and the reverse primers with NotI 

recognition site were used. Since NotI-HF and SmaI enzymes were not worked in Phusion 

GC buffer, PCR Clean-up was performed before digesting the PCR products. Appropriate 

annealing temperature was determined by performing a gradient PCR. PCR reactions 

were performed in a thermal cycler by using Phusion polymerase according to the 

following reaction:  
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5X Phusion GC Buffer (NEB) 5 µl 

10 mM dNTPs 0.5 µl 

10 µM forward primer (TagGFP-SmaI-forward or MDM2-SmaI-forward) 1.25 µl 

10 µM reverse primer (p53-NotI-reverse or MDM2-NotI-reverse) 1.25 µl 

Template DNA (1ng) 1 µl 

Phusion HF DNA Polymerase (2,000 U/ml) (NEB) 0.25 µl 

ddH2O To 25 µl 

 

To construct the vector, first, we digested vector backbone and inserts with SmaI at 25°C 

for 2 hours and then with NotI-HF at 37°C for 30 minutes.  

 Insert pET-47b (+) 

DNA  PCR product 2µg 

CutSmart Buffer (NEB) 5 l  3 l 

SmaI (20,000 U/ml) (NEB) 1 l 1ul    

NotI-HF (20,000 U/ml) (NEB) 1 l 1 l 

ddH2O To 50 l To 30 l 

 

Then, the digested pET-47b (+) vector backbone was treated with CIAP enzyme 

(Fermentas) to block recyclization of vector backbone.  

SmaI and NotI-HF digested pET-47b (+) 30 l 

10X CIAP Buffer (Fermentas) 5 l 

CIAP Enzyme (20,000U/ml) (Fermentas) 3 l 

ddH2O To 50 l 

 

The CIAP enzyme was incubated at 37°C for 30 minutes and then digested vector was 

run on a 1% agarose gel to separate the double-digested vector from the uncut one. The 

correct band was extracted from the gel and its DNA purified. For the digested insert, the 

reaction mixture was cleaned up by using NucleoSpin Gel and PCR Clean-up. The 

ligation reaction was performed according to 3:1 insert to vector ratio by using general 

ligation method. After transforming ligation reaction into E. coli DH5α competent cells, 

single bacterial colonies were picked and their pDNAs were isolated. After checking 
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whether ligation worked or not by performing control digestions, correct pDNAs were 

sequenced. 

3.2.6.2. His-tagged protein expression 

pET-47b (+) plasmid contains all the features for protein expression and purification; T7 

promoter, lac operator, LacI gene, N-terminal His-tag, 3C protease recognition site, and 

finally kanamycin resistance gene for selection. LacI generally binds to lac operator and 

blocks the transcription of the protein from the T7 promoter; however, when IPTG is 

added to the medium, it competes with LacI and removes the blockage. N-terminal His-

tag was necessary for affinity chromatography and 3C protease recognition site was 

useful when N-terminal His-tag required to be removed.  

pET-47b (+)-TagGFP-p53 and pET-47b (+)-MDM2 plasmids were first transformed into 

the expression strain of E. coli, Rosetta2 DE3, which is the derivate of BL21 strain and 

designed to express eukaryotic proteins containing codons rarely used in bacteria. This 

strain supplies tRNAs for rare codons and their native promoters on a plasmid containing 

chloramphenicol resistance gene. DE3 represents that the strain is a lysogen of λDE3, 

which means a prophage exists as DNA expressing T7 RNA polymerase gene under the 

control of the lacUV5 promoter and protein production takes place when the Rosetta2 

DE3 cells are induced with IPTG.  

 

Figure 3.1. Bacterial expression and induction of His-tagged proteins. 
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After transformation, a single colony was picked and inoculated into 3ml LB containing 

selecting antibiotics (Chl and Kan). After incubating 3ml pre-culture at 37°C for 6-8 hours 

(221rpm), the pre-culture was transferred to 25ml LB culture with the desired 

concentration of antibiotics and incubated overnight at 37°C (221rpm). Finally, 25ml pre-

culture was transferred to 1L LB or TB medium with 40% of general antibiotic 

concentration and 1L culture was incubated at 37°C (221rpm) until the optical density at 

600nm reached 0.4-0.6 for LB and 0.6-1.0 for TB. In this step, antibiotic concentration 

dropped to 40% of their general working concentration to decrease the resistance on the 

cells and promote growth and protein production at further steps. IPTG was added to the 

culture with a final concentration of 0.1-0.2mM and the protein induction was performed 

by incubating the culture at 18°C overnight in a shaker incubator (180rpm) (Figure 3.1). 

3.2.6.3. Affinity chromatography of His-tagged proteins  

Cells were harvested at 2700xg for 15 minutes and the supernatant was discarded. 

Afterward, the bacterial pellet was dissolved in 25ml of lysis buffer and the cells were 

lysed at 4°C in a box full of ice by sonication using Qsonica Q500. For sonication 

procedure, total elapsed time was 6 minutes and 30 seconds, and pulse was on for 5 

seconds and off for 10 seconds. The cell lysate was then centrifuged at 27,000xg for 45 

minutes at 4°C. 

 Meanwhile, the column was washed with ddH2O and then with 20% EtOH and finally 

with ddH2O again. For the cell lysate coming from 1L culture, 3ml HisPur Cobalt 

Superflow Agarose was added onto the column. Since the resin solution was diluted 1:1 

in EtOH, 1.5ml actual resin was added. The resin was first washed with ddH2O 2 times 

to remove EtOH and then washed with 10ml of IMAC-A 2 times for equilibration. When 

the centrifuge is finished, the supernatant, which contains soluble proteins, was poured 

into the column and resin-protein mixture was incubated with end-to-end rotation for 30 

minutes at 4°C.  

After incubation is finished, the flow-through was collected in a 50ml tube and stored at 

4°C for further analysis. This flow-through was named non-retained fraction since it was 

generally composed of proteins lacking His-tag. Then, the resin-protein complex was 

washed with 10ml of IMAC-A three times. Finally, the His-tagged protein was eluted 

using IMAC-B solutions with different concentrations. With starting from the lowest one,  

the concentration of imidazole was increased and the elution with the same concentration 
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was performed at several cycles. The elutes of each imidazole concentration was collected 

in the same 15ml tube and stored at 4°C (Figure 3.2). 

 

Figure 3.2. Affinity chromatography steps of His-tagged proteins. 

 

3.2.6.4. SDS-PAGE gel and Coomassie Blue Staining 

14% separating gel and 4% stacking gel were poured and the samples from each step of 

protein purification; sonicated cell lysate, pellet, non-retained fraction and elutes were 

mixed with 4X protein loading buffer and denatured at 95°C for 10 minutes. After the 

samples were loaded into the gel, it was run with 1X running buffer for 2-2.5 hours.  

When the run was over, the gel was removed from the glasses. The stacking part was also 

discarded. Then, the gel was put into Coomassie staining solution and heated up by using 

a microwave. The gel was incubated in the staining solution for 2-3 hours and then the 

staining solution was changed to the destaining solution. The gel was incubated in the 

destaining solution overnight. 

3.2.6.5. Concentrating Protein  

If the protein is too diluted, concentrator tubes with a specific molecular weight cut-off 

were used to concentrate the protein. If the protein’s size is smaller than the cut-off value, 

it will pass to the bottom part. First, ddH2O was added into the concentrator falcon and 
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centrifuged at 3000xg until the all the water passed. Then, the protein was added and 

centrifuged for 1 minute and the concentration of the protein was measured by Nanodrop. 

The liquid passed to the bottom part was used as a blank. Concentrator falcon was 

centrifuged for several rounds at 3000xg until the protein concentration or the volume 

reached desired values. Concentrator tubes used in this study had 10kDA or 5kDa 

MWCO. 

3.2.6.6. Size-exclusion chromatography 

If the protein eluted after His-tag affinity chromatography had other non-specific proteins, 

size exclusion chromatography was performed to separate the desired protein from non-

specific ones by their size. AKTA pure was used for size exclusion chromatography with 

a HiLoad 16/60 Superdex p75 column. Gel Filtration buffer was used to equilibrate the 

column; however, before equilibration, firstly the pumps and the column were washed 

with autoclaved filtered ddH2O with at least 1 column volume (CV). Afterward, the 

column and the system were equilibrated with at least 1.5 CV of Gel Filtration Buffer 

before starting the experiment. To inject the protein sample to AKTA pure, its volume 

should be lower or equal to 1ml. Therefore, size exclusion chromatography was 

performed after concentrating the protein. For injecting the sample, first, the loop was 

washed with 10ml Gel Filtration Buffer by using a syringe. Then, the protein sample was 

injected into the loop with a syringe and the experiment started. After protein passed in 

front of a UV detector, they were collected in a 96-well collector plate. There was  1ml 

buffer in each well and depending on the UV absorbance at 280nm the desired protein’s 

location was determined later. After selecting the samples from different peak positions 

of UV absorbance graph, the samples were loaded in the SDS-PAGE gel to determine 

which samples had the pure desired protein and what the boundaries of purity were. 

3.2.6.7.  Dialysis 

To provide buffer exchange and remove contaminants with a new buffer composition, we 

used Slide-A-Lyzer Dialysis Cassette G2. This dialysis cassette has a semipermeable 

membrane with 10kDa protein MW cut-off. After the addition of sample into the cassette, 

it floated inside a beaker containing the desired buffer. The beaker should contain 300 

times more amount than the sample amount added inside the cassette. After dialyzed for 

2 hours at 4°C, the buffer was changed and waited for another 2 hours at 4°C. After 
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changing the buffer again, it was dialyzed overnight at 4°C. Finally, the sample was 

removed from the cassette using a syringe. 

3.2.6.8. 3C Protease Digestion and GST pull-down 

3C ‘Prescission’ protease was used to remove His-tags for further steps. In pET-47b (+) 

plasmid, after His-Tag sequence and before the protein sequence, there was 3C protease 

recognition sequence, which was LEVLFQGP. When 3C protease recognizes this 

sequence, it digests between Q and G. Therefore, after 3C digestion, two amino acids 

(GP) are left in the final polypeptide sequence. 100µl of 3C protease (2mg/ml) was added 

into 1ml of the concentrated protein in a 1.5ml Eppendorf tube and the mixture was 

incubated overnight at 4°C with end-to-end rotation. After digestion, SDS-PAGE (18%) 

was performed to check whether the enzyme worked or not. 

 3C ‘Prescission’ protease had a GST-tag, and therefore GST pull-down was performed 

to remove the enzyme and eliminate the risk of nonspecific degradation of our protein. 

First, the desired amount of Glutathione Sepharose 4 Fast Flow was added into a 1.5ml 

Eppendorf tube and sedimented at 500xg for 5 minutes at 4°C. After removing the 

supernatant carefully, 5 ml 1X filtered PBS for each 1ml original slurry was added for 

washing and the mixture was sedimented at 500xg for 5 minutes at 4°C. After repeating 

the washing step, the protein-enzyme containing mixture was added onto the Glutathione 

Sepharose 4 Fast Flow and they were incubated for 2 hours at 4°C with end-to-end 

rotation. Then, the mixture was sedimented at 500xg for 5 minutes at 4°C and the 

supernatant, which contained the digested protein was collected into a 1.5ml Eppendorf 

tube carefully. After three washing steps, 3C protease was eluted with a buffer containing 

50mM Tris-HCl and 10mM reduced glutathione pH 8.0 for further analysis.  

3.2.6.9. His pull-down 

To remove the free His-tags formed after digestion and eliminate the undigested His-

tagged proteins, His pull-down was performed by using HisPur Cobalt Superflow 

Agarose. First, the desired amount of HisPur Cobalt Superflow Agarose resin was added 

into a 1.5ml Eppendorf tube and centrifuged at 700xg for 2 minutes at 4°C. After 

removing the supernatant carefully, IMAC-A buffer with a greater volume than the resin 

bed volume was added onto the resin and centrifuged at 700xg for 2 minutes at 4°C. After 

repeating the washing steps once more, the protein sample added onto the resin and the 



 

43 

mixture was incubated at 4°C for 0.5-1 hour with end-to-end rotation. When the 

incubation was finished, the mixture was centrifuged at 700xg for 2 minutes at 4°C. The 

supernatant was removed carefully and collected in a 1.5ml Eppendorf tube. After 

washing 3 times with IMAC-A buffer and eluting with the desired amount of IMAC-B 

buffer, the eluted content was analyzed in the SDS-PAGE gel. 

3.2.7. Surface Plasmon Resonance 

We performed our surface plasmon resonance (SPR) experiments by using BIACORE 

T200. Our experiment design required a chip that was able to capture His-tagged proteins. 

Therefore, we preferred Series S Sensor Chip NTA. The surface of this chip contained a 

carboxymethylated dextran matrix consisting of nitrilotriacetic acid (NTA), which was 

used to immobilize nickel to the chip. Since nickel had an affinity for His-tags, after 

immobilizing nickel on the chip, His-tagged proteins could be captured. 1X PBS 

containing 0.05% P-20 and 50µM EDTA was used for running buffer to prime the chip 

and the system. Moreover, all the proteins and certain chemicals were diluted in this 

buffer. First, the conditioning step was performed with a regeneration solution containing 

350mM EDTA to remove nickel and all immobilized molecules from the surface. The 

flow rate of this step was 30µl/min and the contact time was 1 minute. Then, 0.5mM 

NiCl2 in running buffer was used with a flow rate of 10µl/min for 1 minute for activating 

the surface. After activating the chip, 0.6-2.0µg/ml His-tagged protein was passed on the 

chip. Contact time for capturing ligand was 1 minute and the flow rate was 10 µl/min. 

Next, for binding assay, analyte was passed with varying concentrations with a flow rate 

of 30µl/min for 2 minutes on the chip with immobilized His-tagged protein. For 

regeneration, again 350mM EDTA solution was used to start over a new experiment. 

Between the steps, if necessary a washing step was also performed by using 3mM EDTA 

solution with a flow rate of 30µl/min. 
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4.     RESULTS 

 

4.1. Generation of the p53-/- MDM2-/- Cell Line for Testing the Activity of 

Compounds 

4.1.1. CRISPR/Cas9 targeting the Human MDM2 gene 

In this study, we aimed to screen compounds that disrupt the interaction between p53 and 

MDM2 proteins. To test the specificity of these compounds, we wanted to screen them in 

the absence of these two targeted proteins. For this reason, we intended to knock out the 

MDM2 gene through CRISPR/Cas9 genome editing in the HCT116 p53-/- cell line for 

the generation of a p53-/- MDM2-/-  double knock-out cell line. It was expected that after 

the introduction of a double-stranded break by the Cas9 enzyme, the break repaired 

through non-homologous end joining (NHEJ) system would result in INDEL mutations 

that could shift the open reading frame of the MDM2 gene. We designed an sgRNA, 

which targeted the second exon of the MDM2 gene because this region was present in all 

alternatively spliced transcripts of the MDM2 gene (Figure 4.1).  

 

Figure 4.1. MDM2-sgRNA design.  The sgRNA (yellow) targeted 3’ ends of the second 

exon of the MDM2 gene (purple). DSB (blue arrows) occurred 3bp upstream of PAM 

sequence (pink).   

First, we annealed oligonucleotides that encode the top and bottom stands of the guide 

RNA and cloned that oligo duplex into the pSpCas9(BB)-2A-Puro backbone. This 

constructed CRISP/Cas9 vector containing guide RNA was verified by sequencing and it 
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was transfected into the HCT116 p53-/- cell line by PEI transfection. Appropriate 

transfection conditions were determined by using a preexisting GFP-encoding plasmid, 

pcDNA3-GFP and by optimizing DNA amount and DNA to PEI ratio. For transfection 

efficiency, the expression of GFP was assessed 36 hours after transfection. For a 6-well 

plate, the highest transfection efficiency was 39% obtained with 3µg DNA and 1:5 DNA 

to PEI ratio, so the further transfection of MDM2-pSpCas9(BB)-2A-Puro was performed 

using this condition. Later, we initiated puromycin selection 24 hours after transfection 

and aimed to enrich the cell population containing the CRISPR/Cas9 plasmid. After three 

consecutive days of puromycin selection, we removed the selection to minimize the off-

target effects of the Cas9 enzyme. This pool of transfected cells theoretically contained 

four different types of cells; wild-type cells, heterozygous mutants, and homozygous 

mutants, which have the same mutation on both allele or different mutation on each allele 

(Figure 4.2). 

 

 

Figure 4.2. Experimental design of the CRISPR/Cas9 system targeting the MDM2 

gene using pSpCas9(BB)-2A-Puro. First, complementary top and bottom 

oligonucleotides with flanking sequences suitable for cloning were annealed. Annealed 

oligo duplex then inserted into pSpCas9(BB)-2A-Puro vector backbone, which was 

digested with BbsI enzyme. Finally, HCT116 p53-/- cells were transfected with the 

ligated plasmid expressing Cas9 enzyme and the sgRNA targeting MDM2 gene to make 

random INDEL mutations. 
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To show the existence of mutant cells in a pool, the pools were expanded, and their 

genomic DNAs were isolated. Restriction Fragment Length Polymorphism (RFLP) assay 

was used to identify the mutant cells, which included the amplification of the region of 

interest by PCR and then the digestion with a restriction enzyme. In our case, we used 

two different restriction enzymes; BsaI and AluI because their recognition sites were very 

close to the double-stranded break formed by the Cas9 enzyme. A 380bp region was 

amplified with RFLP primers and then digested with BsaI or AluI enzyme (Figure 4.3.A). 

Mutant cells were observed in the RFLP analysis as a faint uncut band. Out of four 

transfected pools, in the second and third pools, there were clear uncut bands. Therefore, 

we continued with these pools for further steps (Figure 4.3.B). 

 

 

                 

Figure 4.3. Mutation analysis of MDM2-sgRNA mediated mutations. (A) RFLP 

forward and reverse primers (light blue) amplified the region covering the second exon 

of MDM2 gene (purple), which was targeted by a sgRNA (yellow). Dark blue arrows 

represented DSB generated by the Cas9 enzyme. To identify the existence of mutations, 

RFLP assay using AluI or BsaI enzyme was performed. (B) MDM2-sgRNA targeted 

HCT116 p53-/- transfection pools were subjected to the RFLP assay by AluI enzyme. 

Undigested bands (shown with red arrows) represented the presence of mutant cells. 

A. 

B. 
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After confirming the presence of mutant cell population in our transfected cell pool, the 

single cell populations in a 96-well plate were generated by limiting dilution. We gave 

single cell clones three to five weeks to expand. Then, their genomic DNAs were isolated 

and the same RFLP analysis was performed to identify the mutant single cells. Among 

48 single cell clones we screened, the mutant cells with insertions drew our attention. We 

selected the clones with big insertions and the clones with undigested PCR products for 

the further steps (Figure 4.4). 

 

Figure 4.4. Detection of CRISPR/Cas9 induced mutations in single cell clones. Single 

cell clones isolated from MDM2-pSpCas9(BB)-2A-Puro transfection pools were 

examined by RFLP assay. The PCR products from Clone-8, -18, -22 and -1F1 were 

digested with BsaI enzyme. The remaining PCR products were digested with AluI 

enzyme for RFLP analysis. Red lines represented 500bp and 1000bp. 

For selected positive clones, we amplified the 380bp fragment that contained the region 

of interest with the same primers we used for RFLP analysis and then we cloned their 

uncut PCR products into the pCR4-TOPO-Blunt vector backbone (Zero TOPO Blunt 

Kit). These ligated vectors were transformed into E. coli DH5 competent cells and then 



 

48 

pDNAs were isolated and analyzed by Sanger sequencing to identify their mutations.  We 

observed that big insertions came from mainly two sources; Escherichia coli genomic 

DNA or pSpCas9(BB)-2A-Puro plasmid backbone. Moreover, the disruption of 

recognition site could be clearly seen in the sequencing results of clones that had an uncut 

band after BsaI or AluI digestion. For most of the single cell clones, we observed two 

alleles for our region of interest. This was expected because the HCT116 p53-/- cell line 

is known to be near-diploid95,96. However, for Clone-1F1 and Clone-1D9, we observed 

only one allele, and for Clone-5D6, we observed 3 different alleles. More than 2 alleles 

indicated that this clone did not originate from a single cell, therefore we eliminated 

Clone-5D6 from further analysis (Figure 4.5). 

 

Figure 4.5. Sequencing Analysis of MDM2-sgRNA targeted genome of single cell 

clones. Mutations in the exon 2 region of the MDM2 gene were detected by sequencing. 

Yellow arrow showed the sgRNA binding site and theoretically, Cas9 enzyme cut the 

DNA between two thymine bases. Pink and orange boxes showed the recognition sites of 

AluI and BsaI enzymes, respectively. Deletions in some single cell clones removed these 

recognition sites, which in turn, resulted in their detection by RFLP assay. The origin of 

the sequence inserted into single cell clones’ genome was either Escherichia coli genomic 

DNA or pSpCas9(BB)-2A-Puro plasmid backbone. 
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Figure 4.6. Early stop codon formation due to CRISPR-Cas9 mediated mutations. 

(A) After Cas9 generated DSBs in the exon 2 of MDM2 gene, for several single cell 

clones, DNA repair system gave rise to big insertions in the targeted region, which, in 

turn, changed the open reading frame of MDM2 gene and resulted in an early stop 

formation either inside the insert sequence or inside the following exon sequence. Blue 

arrows represented DSB generated by the Cas9 enzyme. (B) For Clone-21D9, 4nts-

deletion also resulted in an early stop codon in the exon 3.  

Some mutations in the exon 2 region of the MDM2 gene after targeting by CRISPR/Cas9 

resulted in a shift in the open reading frame of the MDM2 gene.  Based on our sequencing 

analysis, 5 out of 8 single cell clones contained an early stop codon either in the insert 

sequence or in the following exon sequence, which should result in no MDM2 protein 

production due to nonsense-mediated decay (Figure 4.6). To determine if we could detect 

MDM2 proteins in these clones, we performed western blotting with an anti-MDM2 

monoclonal antibody (Clone IF2) recognizing an epitope located between amino acids 

26-169 encoded by the human MDM2 gene. In addition to recognizing the full-length 

90kDa main isoform of MDM2, alternative isoforms with molecular weights of 57kDa 

and 74kDa could also be observed using this antibody.  

A. 

B. 
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The cell line we used was p53-/-, so the feedback loop between p53 and MDM2 was 

disrupted and the general MDM2 protein level in this cell line was low. We aimed to 

increase MDM2 protein levels by transfecting the cells with a pcDNA3-flag-p53 plasmid. 

By increasing p53 protein levels in the cell, we expected to reactivate the feedback loop 

between these two proteins. Firstly, on the day before transfection, 3x105 cells were 

seeded per well in a 6-well tissue culture plate. 36 hours after transfecting each single cell 

clone and the parental HCT116 p53-/- cell line with the pcDNA3-flag-p53 plasmid, we 

prepared lysates from 1 million cells. Then, anti-FLAG and anti-MDM2 antibodies were 

used to detect cellular p53 and MDM2 levels, respectively, and anti-βactin antibody was 

used as a loading control. As we expected, MDM2 protein levels in the HCT116 p53-/- 

cell line was induced after the introduction of p53 protein. A doublet MDM2 band was 

visible with a molecular weight of approximately 90kDa. This doublet could be a result 

of a difference between two alleles of the MDM2 gene affecting its further post-

translational modifications.  

 

 

Figure 4.7. Analysis of MDM2 protein expression in single cell clones by western 

blotting. 36 hours after pcDNA3-flag-p53 transfection, cell lysates were prepared from 

the  HCT116 p53-/- cell line and from single cell clones. Western blotting was performed 

with anti-FLAG and anti-MDM2 antibodies to see cellular p53 and MDM2 protein levels. 

β-Actin was used as a loading control. 

It was expected to observe almost the same amount of MDM2 protein levels in the single 

cell clones after transfection if they were expressing the MDM2 gene. Anti-MDM2 

blotting results of Clone-1F1 and Clone-22C12 showed no visible MDM2 protein band. 

Therefore, we considered them as an MDM2 knockout. MDM2 protein bands of Clone-

18 and Clone-1D9 were truncated (Figure 4.7).  
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Although the sequence analysis of 5 single cell clones showed an early stop codon in the 

MDM2 gene locus, for 3 of them, we observed an MDM2 protein band. Two of them had 

truncated MDM2 protein bands, and one of them had the same band with the parental 

HCT116 p53-/- cell line. There could be more alleles, which were not identified with 

sequencing analysis, thereby these clones could originate from multiple cells.  For Clone 

-18, one of the alleles was the same with Clone-22C-12, therefore Clone-18 could 

originate from Clone-22C12 and another cell. 

 

4.1.2. Analysis of Compounds by using HCT116 p53-/- MDM2-/- cell line 

Later, we examined the effects of the compounds on the growth and viability of double 

knockout cell lines; Clone-1F1 and Clone-22C12. Because these compounds should 

target the p53-binding pocket of MDM2 protein, in the absence of p53 and MDM2 

proteins, our compounds should not affect the cell viability. Conversely, in the wild-type 

cell (p53+/+ MDM2+/+), our compounds should activate cell-cycle arrest or apoptosis 

through the blockage of the interaction between p53 and MDM2 and the activation of 

p53. After seeding four different cell lines: HCT116 WT, p53-/-, Clone-1F1 and Clone- 

22C12, different concentrations of the compounds were added and incubated for 72 hours, 

and then the cell viability and the growth were analyzed by MTT assay.  

From our previous analysis, one of the MDM2 inhibitor candidates was 4A1-AN and we 

compared its effect on the cell viability of these 4 different cell lines with the effect of 

our positive control, Nutlin-3a80. The cell viability was decreased in HCT116 WT after 

addition of Nutlin-3a, whereas Nutlin-3a did not enhance apoptosis in HCT1116 p53-/-, 

Clone-1F1, and Clone-22C12 as expected. Like Nutlin-3a, 4A1-AN decreased the cell 

viability in HCT116 WT. However, unlike Nutlin-3a, it also decreased the cell viability 

in HCT116 p53-/-, Clone-22C12, and Clone-1F1, especially with high doses (Figure 4.8). 

This could mean that 4A1-AN resulted in DNA damage, which, in turn, led to p53 

activation and cell death. Because we were interested in the compounds blocking the 

binding of MDM2 to p53 without causing any DNA damage, we concluded that 4A1-AN 

was not a good candidate. Screening of compounds by using these cell lines and searching 

for the desired results based on their corresponding cell viability could be a good way to 

find new candidates. 
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Figure 4.8. Cell viability analysis of a compound.  Increasing concentrations of 

compounds (1µM, 5µM, and 10µM) were added onto the HCT116 WT, p53-/-, Clone- 

22C12, and Clone-1F1. After incubating for 3 days, their cell masses were analyzed 

colorimetrically by MTT assay kit (Roche). Average absorption values normalized to 

untreated control (DMSO) were displayed after multiplication with 100. 

 

4.1.3. Effect of MDM2 in Cellular Growth Rate Independently of p53 

MDM2 expression is required for cell survival in p53-/- cells and its absence negatively 

affects the cell through the activation of p7397. Moreover, it also reported that MDM2 

plays an oncogenic role in serine/glycine metabolism and redox homeostasis in a p53-

independent manner, which promotes the growth of cancer cells98. Based on these 

previous findings, we examined the effect of the absence of MDM2 on cellular 

proliferation rates in the HCT116 p53-/- cell line. We compared 4 different cell lines; 

HCT116 p53-/-, Clone-1F1, Clone-22C12 and Clone-8  and measured their growth curves 

and determined their doubling times. Their cell indexes were monitored every 15 minutes 

in real time for over 5 days using the xCELLigence RTCA-DP system. The cell indexes 

were normalized to the point when the cells settled down (4 hours 11 minutes after 

seeding). The doubling times for 4-hours intervals were calculated from these normalized 

cell indexes. In the beginning of exponential phase, HCT116 p53-/- cell line displayed a 

shorter doubling time compared to the mutant ones. We reported that there was a clear 

difference between the HCT116 p53-/-  and the double knockout cell line, Clone-1F1 as 

expected. Unlike Clone-1F1, although the other double knockout cell line, Clone-22C12 
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started slow, later it displayed shorter doubling time compared to the parental p53-/- cell 

line. Clone 8 had only one allele expressing the MDM2 gene. We observed an expected 

result because its growth rate was the intermediate one (Figure 4.9).  

 

              

 

Figure 4.9. Growth rate analysis of double knockout HCT116 cells. (A) The cell 

indexes of HCT116 p53-/- (red), Clone-1F1 (blue), Clone-8 (pink) and Clone-22C12 

(green) were measured by xCELLigence RTCA-DP system every 15 minutes for over 5 

days. The cell indexes were normalized to 4 hours 11 minutes after seeding. Black arrow 

represented the normalization point. Clone-1F1 and -22C12 were the double knockout 

cell lines and Clone-8 had one allele expressing the MDM2 protein. (B) The doubling 

times of different 4-hour intervals were calculated by using RTCA 2.0 software. 

 

 

 

 

 

 

 

A. 

B. 
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4.2. Fluorescent two-hybrid (F2H) assay for screening the compounds 

We constructed and optimized a fluorescent two-hybrid (F2H) assay for the high-content 

screening of the compounds.  The F2H assay is a useful method for investigating protein-

protein interactions by using fluorescent live cell microscopy because one can detect the 

disruption of protein-protein interactions after the introduction of a compound in living 

cells in real time. In this system, two different proteins tagged with two distinct 

fluorescent proteins; green or red, are localized on the lac operator sites integrated into 

the baby hamster kidney (BHK) cells’ genome and form green and red foci in the nucleus.  

For this project, p53 was fused to TagGFP protein and MDM2 was fused to TagRFP 

protein. This system also included another fusion protein, LacI-GFP binding 

protein(GBP). These 3 fusion protein containing plasmids were introduced into BHK 

cells by transfection and 16-24 hours after transfection, the cells were observed under the 

fluorescent microscope (Figure 4.10.A). LacI part of GBP-LacI fusion protein was 

localized to the lac operator sites found in BHK cell’s genome and its GBP part was bound 

to the TagGFP-p53 fusion protein, which led to a green focus formation in the BHK cell 

nucleus. With the interaction between p53 and MDM2 proteins, the TagRFP-MDM2 

fusion protein was also localized to these regions, which resulted in a red focus at the 

same place. If the compounds, we screened, disrupted the interaction between these two 

proteins, after the introduction of compounds, it was expected to observe the 

disappearance of red foci (Figure 4.10.B).  

The plasmids containing TagRFP-MDM2 and TagGFP-p53 were isolated from the Pltf-

p53-Mdm2 mix (Chromotek). The plasmid containing GBP-LacI was constructed by the 

amplification of GBP-LacI sequence from the same mix by PCR and its cloning into 

pcDNA3.1/myc-His(-)B vector backbone. We tested the functionality of the constructed 

pcDNA3.1/myc-His(-)B-GBP-LacI plasmid by transfecting these 3 plasmids with 

different combinations. By only using TagGFP-p53 and TagRFP-MDM2 plasmids, we 

did not observe any green or red focus formation and when we used TagRFP-MDM2 and 

pcDNA3.1/MycHisB(-)-GBP-LacI together, we did not observe any red foci in the 

nucleus. Moreover, when we used TagGFP-p53 and pcDNA3.1/myc-His(-)B-GBP-LacI 

plasmid together, the green foci formation in the nucleus was recorded, which indicated 

pcDNA3.1/myc-His(-)B-GBP-LacI plasmid was required for the focus formation. 
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Finally, using all three of the plasmids generated both green and red foci at the same place 

and set up the experiment (Figure 4.11).  

 

 

 

Figure 4.10. Experimental design of fluorescent 2 hybrid (F2H) assay. (A) 3 plasmids 

containing TagGFP-p53, TagRFP-MDM2, and GBP-LacI fusion proteins were 

transfected into BHK cells. (B) There were lac operator sites embedded in the genome of 

BHK cells and GBP-LacI fusion protein localized to these regions. Through the 

interactions between GBP and TagGFP proteins, and p53 and MDM2 proteins, TagGFP-

p53 and TagRFP-MDM2 fusion proteins were also localized to these regions, which 

resulted in the formation of green and red foci in the nucleus. If the compound blocked 

the interaction between p53 and MDM2 proteins, the disappearance of the red foci would 

be observed. 

A. 

B. 
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Figure 4.11. Verification of F2H assay. Three plasmids were transfected into BHK cells 

with different combinations. Red and green foci at the same place only formed when three 

plasmids were transfected together, which represented the system was working. 

After we set up the experiment, we tested how the assay worked with a positive control. 

Because Nutlin-3a is a widely known compound that disrupts p53-MDM2 interaction, we 

used it as our positive control 80. We used two different concentrations of Nutlin-3a; 1µM 

and 10µM. After our first trials with this compound, we observed how fast it acted. 

Therefore, after we added Nutlin-3a, we started the experiment immediately. We used IN 

Cell Analyzer 2500HS for running our live-cell imaging experiments. After setting up the 

parameters and adjusting the laser autofocus, we took out the plate, added the desired 

dose of Nutlin-3a and then started the experiment with already determined parameters.  

First, we tested 1µM Nutlin-3a and we set up the experiment with the lowest exposure 

time possible for both green and red channels. We selected 25 distributed tile regions and 

there was 1 minute between each cycle. The experiment lasted for approximately 15 

minutes and we observed the disappearance of some of the red foci and then after some 

time, the reappearance of some of the red foci by eye. We also quantified the 

disappearance and the reappearance of the red foci using IN Cell Developer software 

(Figure 4.12.A). Dot-analysis graphs showed the total number of green foci, the total 

number of red foci and the total number of yellow foci, where green and red foci met.  

The analysis of foci in the nucleus generally includes a nuclear stain, such as Hoechst 

stain, to determine the boundaries of the nucleus with a different wavelength channel, 



 

57 

such as blue in the case of Hoechst stain, which makes the analysis much easier. We did 

not stain the nucleus with a nuclear dye, and therefore we analyzed the foci with a vesicle-

analysis strategy. This strategy had a higher error rate because it also counted some 

cellular contents as dots. However, from the analysis of 1µM Nutlin-3a, we observed the 

activity of the compound even if the analysis included some percentage of false dots.   

 

Figure 4.12. The disappearance of red foci in F2H assay using our positive control, 

Nutlin-3a. (A) 16-24 hours after transfection of BHK cells with our three plasmids, 1µM 

Nutlin-3a was added onto cells. Cells were immediately monitored by using IN Cell 

Analyzer 2500HS. After the experiment, dot analysis was performed by using IN Cell 

Developer Software. The disappearance and the reappearance of red dots were observed 

after the introduction of 1µM Nutlin-3a. (B) 10µM Nutlin-3a was added to cells. They 

were monitored by IN Cell Analyzer 2500HS and analyzed by IN Cell Developer 

Software. While the experiment, the disappearance of the red foci was observed; however, 

they did not come back. 

Next, we analyzed the response to 10µM Nutlin-3a, and again after the introduction of 

the compound, we started the experiment immediately. We used the same parameters and 

the same number of regions with the previous 1µM Nutlin-3a experiment; however, the 

only difference was that we selected ‘fast as it can’ option, which meant that the 

microscope worked without any stop. We observed the disappearance of red foci quickly 

and they did not come back during the experiment. Vesicle-like particle analysis also met 

the expectations and showed the fast disappearance of the red and yellow foci with a 

stable total number of green foci (Figure 4.12.B).  

A. B. 
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Figure 4.13.  Screening of 1µM compounds in F2H assay. After the addition of 

compounds, in a 24-well plate, we monitored the cells by using IN Cell Analyzer 2500HS. 

We selected 9 regions and there were 20 minutes between each cycle.  After the eight-

hour experiment, the red and green foci were counted by using IN Cell Developer 

software. 
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Afterward, because the first trials with our positive control were done, we started 

screening of our novel compounds. We had two different settings for screening; a 24-well 

plate and a 96-well plate setting. The 96-well plate setting was advantageous for screening 

more compounds; however, to screen one 96-well plate lasted more. Moreover, cells 

tended to go to the edges of the well in a 96-well plate, which sometimes led to poor 

quality data. First, in a 24-well plate setting, we screened the compounds with 1µM 

concentration and the experiment lasted for 8 hours. After analyzing the green and red 

foci in IN Cell Developer software, we did not determine any compound with a stable 

green focus count and decreasing red and yellow focus counts (Figure 4.13). 

Software counted green and red foci similar in number and they generally remained stable 

or increased. This increase was due to the long duration of the experiment. The intensities 

of red and green fluorescent proteins increased during the experiment, which led software 

to analyze more features as dots. Moreover, because there was 20 minutes time interval 

between two cycles, we could not catch the disappearance of the red foci in Nutlin-3a 

well; however, the low number of red dots could mean the disappearance of the red foci 

in the first minutes of the experiment. 

We then screened 10µM compounds in a 96-well plate. After setting up the same 

parameters as the previous experiments and adjusting the laser autofocus, we started the 

experiment with 9 distributed regions (closed to the edges) and 20 minutes time interval 

between each cycle. The experiment lasted for 3 hours. After finishing the experiment, 

we analyzed our raw data in IN Cell Developer software with the same vesicle-like 

particle analysis.  We could not observe any compound with a stable green dot number 

and decreasing red and yellow dot numbers. Generally, dot counts were stable or even 

increasing. Like our previous experiment, towards the end of the experiment, the green 

and red fluorescent proteins’ intensities increased, which misled the software.  

 It was expected to observe a stable green dot count and decreased red and yellow dot 

counts. Because false dots due to the intensity increase generally affected the total dot 

number in both green and red channels, they did not affect the analysis badly. Moreover, 

because some compounds led to cell death, these apoptotic cells caused more features 

counted as dots by the software. For example, for 4E8-2, cellular debris was counted in 

the red channel as dots, therefore, we observed a sharp increase in the red dot number in 

the software analysis. We used 5µM Nutlin-3a as our positive control and although we 

could not catch the initial disappearance of red foci, the red and yellow dot numbers were 
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lower than green dot number, which indicated the initial disappearance of red foci (Figure 

4.14).  
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Figure 4.14. Screening of 10µM compounds in F2H assay. After addition of 

compounds, in a 96-well plate, we monitored the cells by using IN Cell Analyzer 2500HS. 

We selected 9 regions close to the edges and then we started the experiment with 

approximately 20 minutes between each cycle. After the three-hour experiment, the 

experiment was analyzed by using IN Cell Developer software. 
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4.3. Protein purification of TagGFP-p53 and MDM2 proteins and screening 

compounds in vitro by surface plasmon resonance (SPR) 

Our novel compounds did not give any positive results in F2H assay, and therefore we 

aimed to observe simple p53-MDM2 interaction in vitro by using a surface plasmon 

resonance system and checked whether the compounds disrupt the interaction in vitro. 

We designed a surface plasmon resonance experiment, where His-tagged TagGFP-p53 

fusion protein was bound onto a nickel-activated NTA chip. Next, we passed the MDM2 

protein in the presence or absence of the compounds to analyze the p53-MDM2 

interaction. Our first experiment design constituted TagGFP-p53 and TagRFP-MDM2 

fusion proteins; however, TagRFP-MDM2 fusion protein caused some problem during 

purification, thereby we switched to produce only MDM2 protein. The p53 and MDM2 

proteins we planned to use in this experiment were their domains necessary for the 

interaction between two proteins. 

4.3.1. Protein purification of TagGFP-p53 and MDM2 proteins  

We then first intended to purify the proteins, therefore we constructed two bacterial 

expression plasmids expressing His-tagged TagGFP-p53 and His-tagged MDM2 

proteins. TagGFP-p53 fusion protein sequence and MDM2 protein sequence were 

amplified by PCR from TagGFP-p53 and from TagRFP-MDM2 plasmids used in F2H 

assay, respectively. The sequences were amplified using a forward primer with a SmaI 

recognition site and a reverse primer with a NotI recognition site. These SmaI and NotI 

digested PCR products were cloned into pET-47b (+) vector backbone, which was 

digested with the same enzymes (Figure 4.15).  

We transformed pET-47b(+)-TagGFP-p53 and pET-47b(+)-MDM2 plasmids into 

Rosetta2 DE3, bacterial expression strain of E. Coli. This Rosetta 2 strain designed to 

express eukaryotic proteins because it contained a chloramphenicol-resistant plasmid 

containing tRNAs for rare codons. The pET-47b (+) bacterial expression vectors 

expressed fusion proteins with an N-terminal His-tag for further affinity chromatography 

purification. Protein expression under the control of T7 promoter was blocked because 

LacI protein expressed from the same plasmid was bound to a Lac operator site. When 

the cells were induced with IPTG, which competed with LacI proteins on the Lac 
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operators, the blockage of RNA transcription was removed, and the protein was produced 

constitutively.  

 

Figure 4.15. Vector construction design of bacterial expression plasmids. TagGFP-

p53 and MDM2 sequences were amplified by using primers with suitable restriction 

enzyme recognition sites (SmaI and NotI). There were stop codons after p53 and MDM2 

sequences. The digested PCR products were then cloned into the bacterial expression 

vector, pET-47(b) digested with the same enzymes.   

We first purified His-tagged TagGFP-p53 fusion protein. Its green fluorescent part made 

protein induction and further affinity purification easier because the green fluorescent 

protein gave a visible green color to the culture and to every solution containing the 

protein. We picked up a single Rosetta2 colony containing pET-47b (+)-TagGFP-p53 and 

grew 1L TB culture at 37°C (221rpm) until the optical density at 600nm reached between 

0.6-1.0. Generally, we stopped the incubation at the lowest value around 0.6. Then, 0.2 

mM IPTG was added to the culture and IPTG induction was performed overnight at 18°C 

(180rpm). After induction, the protein production was confirmed by checking the green 

fluorescent color (Figure 4.16.A).  

We harvested the cells at 2700xg for 15 minutes and then resuspended in lysis buffer, 

which was used to protect the proteins from the degradation. After sonication for 

mechanical lysis and centrifugation at 27,000xg for 45 minutes at 4°C for precipitating 

cell wall and non-soluble proteins, the supernatant was added onto 3ml already 

equilibrated HisPur Cobalt Superflow Agarose resin (Thermo Fisher Scientific) and 

incubated for 30 minutes at 4°C with end-to-end rotation to provide binding between His-

tags and the resin. Afterward, we allowed it to flow and this flow-through was named 

non-retained fraction because it contained all the soluble proteins without any His-tags 

and our protein should not be found in this fraction. After washing the resin-protein 

complex with wash buffer containing low imidazole concentration to remove any non-



 

64 

specific proteins, we eluted the His-tagged TagGFP-p53 with an elution buffer containing 

300mM imidazole concentration. We took samples from every step; sonicated lysate, 

pellet, non-retained fraction and elutes for further SDS-PAGE gel analysis.  

 

Figure 4.16. Bacterial expression and affinity purification of His-tagged TagGFP-

p53 fusion protein. (A) 18h after IPTG induction, the culture expressing TagGFP-p53 

fusion protein emitted green color when it was excited with blue light. (B) We performed 

the affinity purification of His-tagged TagGFP-p53 fusion protein by using HisPur Cobalt 

Superflow Agarose resin (Thermo Fisher Scientific). We collected the samples from 

every step of our protein purification protocol and loaded into an SDS-PAGE gel (14%). 

Expected protein size was 38kDa. 

 The expected size for His-tagged TagGFP-p53 was 38kDa and with 300mM imidazole, 

we purified the desired protein; however, the eluted protein was not pure and there were 

other contaminant proteins, which were smaller than our protein (Figure 4.16.B). 

Moreover, the same protein band was visible in the sonicated lysate and the non-retained 

fraction samples; however, not in the pellet, which meant the protein was soluble. Finding 

the protein in NR led to a problem because we could not collect all the expressed protein. 

Other contaminant proteins that eluted with high-imidazole concentration could have an 

affinity for the resin and could block the binding of the desired His-tagged protein.  

Then, we concentrated our protein sample by using a concentrator tube with 10kDa 

MWCO to a volume that was less than or equal to 1ml, which was required to load the 

sample into AKTA pure for size-exclusion chromatography and for removing 

B. A. 
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contaminant proteins. At 750µl, the protein concentration was 25mg/ml and then we 

injected the sample to AKTA pure. Before injection, the column was already washed with 

water and then equilibrated with Gel Filtration buffer. After the size-exclusion 

chromatography was finished, depending on the UV absorbance at 280nm, we collected 

the samples from all the peaks (Figure 4.17.A). 

 

Figure 4.17. Size exclusion chromatography of His-tagged TagGFP-p53 fusion 

protein. (A)The graph showed absorbance (mAU) versus elution volume (ml) graph for 

His-tagged TagGFP-p53 fusion protein. We performed size exclusion chromatography 

by using AKTA Pure to remove the contaminant proteins. The blue graph showed 

absorbance at 280nm, which represented the presence of proteins, whereas the purple 

graph showed absorbance at 254nm, which represented DNA contamination. (B)The 

samples from both the previous steps (from elution step and concentration step) and the 

size exclusion step were loaded into an SDS-PAGE gel for analysis. The expected size 

for His-tagged TagGFP-p53 was 38kDa. 

B. 

A. 
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We prepared samples from B9 (first peak), C5, C9, C11, D1 (second peak) and D8 (third 

peak). Because the second peak was the peak where the desired protein was eluted, we 

collected more samples from this peak to understand the boundaries of the pure protein. 

After analyzing these samples with SDS-PAGE (14%), we observed that the desired 

protein was found between C5 and D1 and in the third peak, there were all the unwanted 

proteins (Figure 4.17.B). Because C5 was very diluted, from C6 to D1 the elutes were 

collected in the same 15-ml tube and the concentration of the protein was 0.75mg/ml. 

His-tagged TagGFP-p53 protein was then concentrated again to reach a concentration of 

more than 1mg/ml, and flash-frozen in liquid nitrogen for further SPR experiments. 

Before purifying the His-tagged MDM2 protein, we tried to purify the His-tagged 

TagRFP-MDM2 protein. Again, we grew 1L TB culture for purification of the protein 

and performed the same steps we performed for the His-tagged TagGFP-p53 fusion 

protein. However, the protein degraded during every purification trial (Figure 4.18). 

Therefore, we had to switch to produce only MDM2 portion of the protein. 

For producing His-tagged MDM2 protein, we also grew 1L LB culture containing 

Rosetta2 DE3 with pET-47b(+)-MDM2 and induced it with the same workflow we 

performed previously. Then, the protein was purified again using 3ml HisPur Cobalt 

Superflow Agarose resin; however, we eluted this protein with 3 different imidazole 

concentrations; 100mM, 300mM, and 600mM. After we analyzed all the samples 

obtained from the previous affinity purification steps in SDS-PAGE, we observed that we 

purified the protein without any contaminant proteins. The expected His-tagged MDM2 

protein size was 17kDa and we got the protein almost the exact size. In the pellet, there 

was also a band with the same size, therefore some of the protein could be insoluble 

(Figure 4.19).   
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Figure 4.18. Affinity and Size-exclusion chromatography of His-tagged TagRFP-

MDM2 fusion protein. (A) SDS-PAGE gel result of affinity chromatography of His-

tagged TagRFP-MDM2. We performed multiple elution steps with increasing imidazole 

concentrations. The expected size for His-tagged TagRFP-MDM2 was 44kDa. (B) Size-

exclusion chromatogram of His-tagged TagRFP-MDM2 protein. We collected samples 

from three peaks for further analysis steps. (C) SDS-PAGE gel result of size-exclusion 

chromatography of His-tagged TagRFP-MDM2 fusion protein.  

 

 

A. 

B. 

 

C. 



 

68 

 

Figure 4.19. Affinity purification of the His-tagged MDM2 protein. SDS-PAGE gel 

result of affinity chromatography of His-tagged MDM2 protein. We performed multiple 

elution steps with increasing imidazole concentrations; 100mM, 300mM, and 600mM 

imidazole concentrations. The expected protein size was 17kDa. 

Because there was no other contaminant protein, we continued without performing a size 

exclusion chromatography step. Based on our SPR experiment design, we required to get 

rid of the His-tag of MDM2 protein because it would also bind to nickel activated NTA 

chip. There was a 3C protease recognition site before the MDM2 sequence and after His-

tag sequence, therefore we then digested His-tagged MDM2 with 3C ‘Prescission’ 

protease. We continued with the His-tagged MDM2 eluted with 100mM imidazole and 

at 7ml, the protein concentration was 1.4mg/ml. Before digestion, we concentrated the 

protein sample to a volume, which was less than or equal to 1ml.  At 900µl of the 

concentrated protein sample, the protein concentration was 12.2mg/ml. After adding 

100µl of 3C protease (2mg/ml), the mixture was incubated overnight at 4°C with end-to-

end rotation. On the next day, SDS-PAGE (18%) was performed to check whether His-

tags were digested or not. It was observed that after 3C protease digestion, the protein 

size got smaller, therefore we could say that the digestion worked. Moreover, we observed 

3C ‘Prescission’ protease (46kDa) band in the SDS-PAGE gel (Figure 4.20).  
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Figure 4.20. 3C ‘Prescission’ protease digestion of His-

tagged MDM2 proteins. To cleave His-tag, the His-tagged 

MDM2 protein was incubated with 3C protease overnight at 

4°C with end-over-end rotation. To observe the size difference, 

the samples before and after the digestion were loaded into an 

SDS-PAGE gel (18%). The expected sizes of the 3C protease 

and MDM2 were about 46kDa, and 16kDa, respectively. 

 

 

 

 

 

Later, it was required to remove this protease to minimize its non-specific degradation of 

the MDM2 protein. This protease consisted of a GST-tag, and therefore we performed 

GST pull-down to eliminate the protease. After adding the desired amount of Glutathione 

Sepharose 4 Fast to the protein sample and incubating the mixture at 4°C for 2 hours with 

end-to-end rotation, we sedimented at 500xg for 5 minutes and took out the supernatant 

carefully. The supernatant part theoretically contained MDM2 protein and free His-tags 

only. We also eluted fraction retained on Glutathione Sepharose 4 Fast Flow with a buffer 

containing 10mM reduced glutathione for further analysis steps.  

Afterward, we also required performing a His pull-down to eliminate free His-tags and 

undigested His-tagged MDM2 proteins, which could bind to nickel activated NTA chip 

and led to false binding results. To perform His pull-down, first, we performed dialysis. 

We eluted His tagged-MDM2 protein with elution buffer containing 100mM imidazole, 

therefore the protein sample still consisted of a high imidazole concentration, which could 

block further His pull-down step. We dialyzed the sample buffer to Gel filtration buffer, 

which lacked imidazole. Then, we performed His pull-down by using HisPur Cobalt 

Superflow Agarose resin. After adding the resin on the protein sample and incubating the 

mixture at 4°C for 30 minutes with end-to-end rotation, we sedimented at 700xg for 5 

minutes and took out the supernatant carefully and collected. The fraction resided in the 

resin was also eluted with IMAC-B buffer for further analysis steps. 
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Figure 4.21. Purification of MDM2 protein after 3C protease digestion. To get rid of 

the protease, first, we performed GST pull-down. Then, to remove free His-tags, we 

performed dialysis and His pull-down. The samples collected from each step were 

analyzed in an SDS-PAGE gel (14%). 

We observed that there was some degradation after 3C digestion, therefore we should be 

fast after 3C digestion for removing the protease. After GST pull-down, we removed the 

protease effectively because the protease remained bound to the Glutathione Sepharose 4 

Fast resin and then eluted with reduced glutathione later. We lost some amount of protein 

every step, therefore purification steps should be optimized. Especially, we lost the 

protein during His pull-down because a great portion of the protein remained with HisPur 

Cobalt Superflow Agarose resin and eluted with the elution buffer (Figure 4.21).  

4.3.2. Surface Plasmon Resonance Assay  

With these reagents, we performed surface plasmon resonance experiments by using a 

BIACORE T200. First, we aimed to determine the concentration of the His-tagged 

TagGFP-p53 protein required to immobilize to the NTA chip for further binding assays. 

High concentrations of His-tagged proteins on an NTA chip tended to become unstable 

and dissociated from the chip. Therefore, we immobilized different concentrations of His-

tagged TagGFP-p53 protein and checked whether it was stable or not. For an 

immobilization experiment, first, we performed conditioning the NTA chip with 350mM 

EDTA and then activated it with 0.5mM NiCl2 with a flow rate of 10µl/min for 1 minute, 

which resulted in approximately 50 response unit (RU). Later, we passed our His-tagged 
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TagGFP-p53 protein with varying concentrations with a flow rate of 10µl/min for 1 

minute. After passing running buffer for 5 minutes to see the stability of the protein, we 

regenerated the chip with 350mM EDTA solution.  
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Figure 4.22. Immobilization of His-tagged TagGFP-p53 onto NTA chip at different 

concentrations. After the activation of NTA chip with a NiCl2 solution, we passed 

various concentrations of our His-tagged protein on the chip. After passing running buffer 

for 5 minutes, we checked whether the His-tagged TagGFP-p53 protein was stable or not. 

At high concentrations (6.4 and 3.2µg/ml), the protein dissociated slowly, whereas, at low 

concentrations (1.6 and 0.8µg/ml), the protein was more stable. 

 

 At the concentrations of 6.4µg/ml and 3.2µg/ml, we observed approximately 400RU and 

250RU, respectively; however, His-tagged TagGFP-p53 protein was not stable on the 

chip and dissociated slowly. At lower concentrations; 1.6 µg/ml and 0.8 µg/ml, although 

there was some dissociation, the protein was more stable, and we obtained 130RU and 70 

RU, respectively (Figure 4.22). We decided to continue the further experiments with the 

concentration of 1.6 µg/ml because we got higher response unit.  

Later, we wanted to check whether MDM2 protein without any His tag could bind to the 

NTA chip or not. After activating the chip with a 0.5mM NiCl2 solution,  we passed 60nM 

MDM2 protein on the chip with a flow rate of 10µl/min for 1 minute. We observed a non-

specific binding and later a quick dissociation when the running buffer was passing; 

however, in the end, there was approximately 10RU binding to the chip. Therefore, we 

understood that only MDM2 protein could bind to the chip non-specifically at some level 

and resulted in a binding response. Moreover, although the MDM2 protein was diluted in 

the running buffer, there was a sharp decrease after the introduction of MDM2 protein, 

which could be the result of an air bubble or the aggregates of MDM2 proteins (Figure 

4.23).  
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Figure 4.23. The binding ability of MDM2 protein without the His-tag to the NTA 

chip. We passed 60nM MDM2 protein on the activated NTA chip with a flow rate of 

10µl/min for 1 minute as we passed His-tagged TagGFP-p53 protein previously. Then, 

we passed running buffer for 5 minutes to observe the dissociation of the protein. 

 

Next, we performed a binding assay, where we immobilized His-tagged TagGFP-p53 

protein and later passed MDM2 protein to see if there was a binding between them or not. 

After activating the NTA chip, we first passed 1.6µg/ml His-tagged TagGFP-p53 protein 

with a flow rate of 10µl/min for 1 minute and then we passed 60nM MDM2 protein with 

a flow rate of 30µl/min for 2 minutes. After passing His-tagged TagGFP-p53 protein, we 

got again approximately 130RU, which led to providing approximately 50RU binding 

capacity based on the molecular weight of the two proteins. Therefore, we expected to 

observe a binding response of approximately 50RU after passing the MDM2 protein. 

When we set the immobilization of  His-tagged TagGFP-p53 as a baseline, after passing 

MDM2 protein, we got a binding response of approximately 40RU. Moreover, the 

binding was not stable and there was a quick dissociation of the MDM2 protein. This 

sharp dissociation could be a result of the non-specific interaction of the MDM2 protein 

with NTA chip. Moreover, we observed a sharp increase after the injection of MDM2 

protein, which could be due to some air bubbles or the aggregates of MDM2 proteins 

(Figure 4.24).  
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Figure 4.24. Binding assay of MDM2 protein. After activating and immobilizing His-

tagged TagGFP-p53 protein with a concentration of 1.6µg/ml, we passed 60nM MDM2 

protein with a flow rate of 30µl/min for 2 minutes.  
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5. DISCUSSION 

In human cancers, the p53 tumor suppressor is generally inactivated through various 

mechanisms, which results in tumor initiation and progression. Reactivating mutant p53 

or restoration of wild-type p53 can result in tumor elimination. The screening of 

compounds targeting p53 pathway has resulted in the discovery of new drug candidates 

for anti-cancer strategies12. One class of these compounds targets the interaction between 

p53 and its main antagonist, MDM2 because many human tumors have overexpressed 

MDM2 that impairs the function of wild-type p53. These compounds have been designed 

specifically for the p53-binding pocket of MDM2 to release p53 from repression79. In this 

study, we aimed to screen novel compounds targeting the interaction of p53-MDM2 

through three different methods for the identification of new promising drug candidates.  

Firstly, we generated HCT116 p53-/- MDM2-/- double knockout cell lines through 

CRISPR/Cas9 genome editing for analyzing the specificity of the compounds because, in 

the absence of these two proteins, compounds should not affect the cells. We targeted the 

second exon of human MDM2 gene in the HCT116 p53-/- cell line. The clustered 

regularly interspaced short palindromic repeats (CRISPR) is widely used as an efficient 

method for genome engineering. With the help of a guide RNA for targeting a specific 

sequence in the genome, the Cas9 enzyme generates a double-stranded break (DSB), 

which is later repaired by DNA repair mechanisms. This DSB is repaired by either non-

homologous end joining (NHEJ) or homology-directed repair (HDR) mechanisms89. To 

knock out the MDM2 gene, NHEJ resulted in random INDEL mutations in the second 

exon of MDM2 gene and later resulted in a shift in its open reading frame. 

We generated two different double knockout cell lines, Clone-1F1, and Clone-22C12. 

Both had big insertions in the targeted region, which resulted in an early stop codon 

formation. Presumably, these premature stop codons resulted in nonsense-mediated decay 

of the MDM2 mRNA and caused undetectable MDM2 protein levels in these targeted 

cells. We compared 4 different cell lines, HCT116 WT, HCT116 p53-/-, and two clones 

derived from the CRISPR treated HCT116 p53-/- cells: Clone-1F1 and Clone-22C12. In 

the cell viability assay, our positive control Nutlin-3a negatively affected the cell viability 

of wild-type cells; however, the other three cell lines, where the targeted proteins were 

absent, Nutlin-3a did not affect the cells as expected. Conversely, our one of the selected 

compounds, 4A1-AN negatively affected the cell viability in all 4 cell types, which 

showed that the drug candidate was not specific and probably caused DNA damage and 
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led to cell-death without specifically disrupting the interaction between p53 and MDM2. 

After this cell viability assay, we demonstrated that screening with these 4 cell lines 

provides a powerful way of finding the new drug candidates. Moreover, we demonstrated 

that Clone-1F1 had slower growth rate compared to p53-/- cell line. This was expected 

because MDM2 has some oncogenic functions in promoting tumor growth independent 

of p53, which may make this double knockout cell line a great tool for studying oncogenic 

effects of MDM2 in vitro97,98. The growth rates of Clone-1F1 and Clone-22C12 were 

significantly different, so the cause of this difference could also be searched.  

While screening the compounds, we observed large insertions in the targeted human cell 

genome, which originated from two different sources: Escherichia coli genomic DNA or 

the pSpCas9(BB)-2A-Puro plasmid backbone. It has been reported that after generating 

a DSB through the CRISPR/Cas9 genome editing system, the NHEJ mechanism can 

promote knock-in of large sequences, even more efficient than the HDR system99. 

Therefore, these big insertions were expected results if there were a large amount of 

bacterial DNA or degraded plasmids in the transfected MDM2-pSpCas9(BB)-2A-Puro 

mix. Studies to identify the relationship between the purity of the plasmid DNA 

preparation and insertion sequence identity are underway in the laboratory. 

In western blotting, we unexpectedly observed the MDM2 band as a doublet with a size 

of approximately 90kDa. This could be a result of a difference in one allele affecting post-

translational modification, such as sumoylation of MDM2. Moreover, although we found 

the presence of early stop codons in 5 single cell clones, 3 of them expressed the truncated 

or the full-size MDM2. We suspected that these colonies did not originate from a single 

cell and that there could be other alleles present in the mixture, which we could not 

identify by sequencing. Therefore, more samples from these single cell clones should be 

analyzed by extensive sequencing. 

Secondly, we constructed a fluorescent two-hybrid (F2H) assay, where the interaction 

domains of p53 and MDM2 were tagged with green and red fluorescent proteins 

respectively and localized to the Lac operator sites found in  BHK cells with the help of 

the GBP-LacI protein. This assay provides a useful tool for observing the action of 

compounds in real time using live-cell fluorescent microscopy. If a compound disrupts 

the p53-MDM2 interaction, red foci disappear while green foci remain in the nucleus in 

these BHK cells. We observed the effect of our positive control, Nutlin-3a in this assay 

by counting the green and red foci found in the nucleus. After the addition of Nutlin-3a, 
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we observed a stable green focus count, whereas the red focus count decreased. Although 

we could not find any positive results while screening our compound library, the design 

of the assay is suitable for high-content screening of a large number of compounds and 

for finding new drug candidates.  

While analyzing the effects of these compounds, we counted the numbers of green and 

red foci using vesicle-like particles analysis. This strategy generated some false positive 

counts because the strategy included every small feature with a specific range of size and 

intensity. We predict that the use of a nuclear dye could increase the specificity of this 

assay by defining the nucleus and restricting the analysis of foci to only those that appear 

in the nuclei by confocal z-stack microscopy. 

Finally, we designed a surface plasmon resonance experiment for the high-throughput 

screening of the chemical compounds in vitro. In this design, we produced the interaction 

domain of these two proteins in bacteria with a His-tag. After their affinity purification 

and further purification steps, we immobilized the His-tagged TagGFP-p53 protein to the 

nickel activated NTA chip and then aimed to pass the MDM2 protein without any tag in 

the presence or absence of compounds to observe the effects of the compounds in vitro. 

To this end, we immobilized His-tagged TagGFP-p53 at various concentrations to the 

nickel activated NTA chip. We observed at low concentrations, protein was more stable 

although there was some dissociation. In the binding assay, we obtained a less than 

expected binding response after passing MDM2 protein over the His-tagged TagGFP-p53 

immobilized chip. Moreover, we found that the bound MDM2 protein dissociated too 

quickly. This rapid dissociation could be due to the nonspecific binding of MDM2 protein 

onto the NTA chip, which we already observed when we tested the affinity of this MDM2 

protein to the chip in the absence of immobilized His-tagged TagGFP-p53. Moreover, 

there were some instant high or low signals after the introduction of MDM2 to the system, 

which could be a result of air bubbles in the flow chamber or aggregates of MDM2 

protein. 

This SPR assay system can be used for high-throughput screening, and sequential 

screening of all tested compounds by BIACORE is underway. We are trying to optimize 

the chip structure and immobilization methods before starting the screening of all the 

compounds. Importantly, we changed the NTA chip experimental design to the CM5 chip 

experimental design, where the ligand protein can be covalently linked to the chip without 

the presence of any tag. This could eliminate the unstable immobilization of  His-tagged 
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TagGFP-p53 protein to the NTA chip and the non-specific interaction of MDM2 protein 

with this chip. 

 In summary, although systems require some optimization, we constructed three different 

assays for the screening of new candidates of p53-MDM2 interaction inhibitors in vitro. 

Next, we aim to perform both high-content and high-throughput screening of different 

libraries using these three assays for the identification of new candidates. Also, we aim 

to apply these assays for studying different binding partners.  
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7. APPENDICES 

7.1. APPENDIX A- Chemicals 

Chemicals and Media Components              Supplier Company 

2-Mercaptoethanol                                           Sigma, Germany 

Acetic acid (glacial)                                         Merck Millipore, USA 

Acrylamide/Bis-acrylamide (30%) Sigma, Germany 

Agarose                                                            Sigma, Germany 

Ammonium Persulfate Sigma, Germany 

Ampicilin Sodium Salt                               Sigma, Germany 

Boric Acid                                                       Molekula, France 

Chloramphenicol Deva, Turkey 

Coumaric Acid Sigma, Germany 

Coomassie Blue Brilliant Blue R Sigma, Germany 

Distilled Water                                                Merck Millipore, USA 

DMEM Thermo Fischer Scientific, USA 

DMSO                                                             Sigma, Germany 

DNA Gel Loading Dye, 6X                            NEB, USA 

DTT                                                                Fermentas, USA 

EDTA                                                             Sigma, Germany 

Ethanol                                                           Sigma, Germany 

Ethidium Bromide                                          Sigma, Germany 

Fetal Bovine Serum                                        Thermo Fischer Scientific, USA 

Glutathione Sepharose 4 Fast Flow GE Healthcare Life Sciences, USA 

Glycerol                                                          Sigma, Germany 

Glycine Sigma, Germany 

HBSS                                                              Thermo Fischer Scientific, USA 

HEPES Sigma, Germany 

HisPure Cobalt Superflow Agarose Thermo Fischer Scientific, USA 

Hydrochloric Acid Sigma, Germany 
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Hydrogen peroxide Sigma, Germany 

Imidazole Sigma, Germany 

IPTG Fermentas, USA 

Isopropanol Sigma, Germany 

Kanamycin Sulfate Thermo Fischer Scientific, USA 

LB Agar  Sigma, Germany 

LB Broth Invitrogen, USA 

L-Glutathione reduced Sigma, Germany 

Luminol Sigma, Germany 

Methanol Sigma, Germany 

PBS  Thermo Fischer Scientific, USA 

Penicillin/Streptomycin                               Thermo Fischer Scientific, USA 

PIPES Sigma, Germany 

Potassium Acetate Merck Millipore, USA 

Protease Tablets (EDTA-free) Roche, Germany 

RNase A Roche, Germany 

SDS Sigma, Germany 

Skim Milk Powder Sigma, Germany 

Sodium Azide Amresco, USA 

Sodium Chloride Amresco, USA 

Sodium Hydroxide  Sigma, Germany 

TEMED AppliChem, Germany 

TCEP Sigma, Germany 

Terrific Broth Sigma, Germany 

Tris Base  Sigma, Germany 

Tris Hydrochloride Amresco, USA 

Trypan Blue Solution Thermo Fischer Scientific, USA 

Tween20 Sigma, Germany 
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7.2. APPENDIX B – Equipment 

Equipment Supplier Company 

Autoclave HiClave HV-110, Hirayama, Japan 

Balance  Isolab, Germany 

Biomolecular Imager ImageQuant LAS 4000 mini, GE Healthcare 

Life Sciences, USA 

Centrifuge 5418R Eppendorf, Germany 

5702  Eppendorf, Germany 

5415R Eppendorf, Germany 

Allegra X-15R, Beckman Coulter, USA 

Sorvall Lynx 6000, Thermo Scientific, USA 

Chromatography system AKTA pure, GE Healthcare Life Sciences, 

USA 

CO2 Incubator Binder, Germany 

Column  HiLoad  16/60 Superdex p75, GE Healthcare 

Life Sciences, USA 

Countless II Automated Cell Counter Thermo  Fischer Scientific, USA 

Deepfreeze -80°C, Forma 88000 Series, Thermo Fischer 

Scientific, USA 

-20°C, Bosch, Germany 

Dialysis cassette Slide-A-Lyzer Dialysis Cassette G2, Thermo 

Scientific, USA 

Electrophoresis Apparatus VWR, USA 

BIORAD, USA 

Filters (0.22µm and 0.45µm) Merk Millipore, USA 

Freezing Container Mr. Frosty, Thermo Fischer Scientific, USA 

Gel Documentation Gel Doc EZ, Biorad, USA 

Heater Thermomixer Comfort Eppendorf, Germany 

Hemocytometer Neubauer Improved, Isolab, Germany 

Ice Machine AF20, Scotsman Inc., USA 

Incubator Shaker Innova 44, New Brunswick Scientific USA 

Laminar Flow HeraSafe HS15, Heraeus, Germany 

HeraSafe HS12, Heraeus, Germany 
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Liquid Nitrogen Tank Taylor-Wharton, 300RS, USA 

Magnetic Stirrer SB162, Stuart, UK 

Microliter Pipettes Thermo Fischer Scientific, USA 

Microscope Primovert, Zeiss, Germany 

CK40, Olympus, Japan 

In Cell Analyzer 2500HS, GE Healthcare Life 

Sciences, USA 

Microwave Oven Bosch, Germany 

pH Meter SevenCompact, Mettler Toledo, USA 

Refrigerator Bosch, Germany 

Arcelik, Turkey 

Panasonic, Japan 

 Thermo Fischer Scientific, USA 

Reusable Filter Holder with Receiver Nalgene, USA 

RTCA system ACEA Biosciences, USA 

Sonicator Qsonica Q500, USA 

Spectrophotometer NanoDrop 2000, Thermo Fischer Scientific, 

USA 

Ultrospec 2100 pro, Amersham Biosciences, 

UK 

Surface Plasmon Resonance System BIACORE T200, GE Healthcare Life Sciences, 

USA 

Thermal Cycler C1000 Touch, Biorad, USA 

PTC-200, MJ Reseach Inc., Canada 

Vortex VWR, USA 

Water Bath Innova 3100, New Brunswick Scientific, USA 
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7.3. APPENDIX C- Molecular Biology Kits 

Commercial Kit  Supplier Company 

Cell Proliferation Kit I (MTT) Roche, Switzerland 

GenElute Agarose Spin Columns Sigma-Aldrich, USA 

InsTAclone PCR Cloning Thermo Fischer Scientific, USA 

NucleoSpin Gel and PCR Clean-up Macherey-Nagel, USA 

PureLink Genomic DNA Mini Kit Invitrogen, USA 

Purelink  HiPure Plasmid Midiprep Kit Invitrogen, USA 

PureLink Quick Gel Extraction Kit Invitrogen, USA 

Zero Blunt TOPO PCR Cloning Kit for 

Sequencing 

Thermo Fischer Scientific, USA 

ZymoPure Plasmid Maxiprep Kit Zymo Research, USA 

  

7.4. APPENDIX D- Antibodies 

Antibody Supplier Company Catalog Number 

MDM2 monoclonal antibody, 

IF2 

Thermo Fischer 

Scientific, USA 

33-7100 

Monoclonal ANTI-FLAG M2 

antibody produced in mouse 

Sigma, Germany F3165-1MG 

β-Actin Rabbit Antibody Cell Signaling 

Technology 

4967L 
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7.5. APPENDIX E – DNA and Protein Molecular Weight Marker 

 

                                              

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Color Prestained 

Protein Standard, Broad 

Range (11-245kDa) (P7712S), 

New England Biolabs. 

 

  

 

Figure 7.1. GeneRuler DNA 

Ladder Mix (SM0331), Thermo 

Fischer Scientific, USA            
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7.6. APPENDIX F- Plasmid Maps 

 

 

Figure 7.3. The plasmid map of pUC19 

 

Figure 7.4. The plasmid map of pcDNA3-GFP 
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Figure 7.5. The plasmid map of pSpCas9(BB)-2A-Puro 

 

 

Figure 7.6. The Plasmid map of pcDNA3-Flag-p53 
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Figure 7.7. The plasmid map of pcDNA3.1/Myc His (-) B 

 

 

Figure 7.8.The plasmid map of pET-47b(+) 

 

 

 

 


