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ABSTRACT 

BRACHYPODIUM DISTACHYON SEEDLING GROWTH VISUALIZATION UNDER 

OSMOTIC STRESS AND OVEREXPRESSION OF MIR7757 TO INCREASE DROUGHT 

TOLERANCE. 

 

 

Zaeema Khan 

Molecular Biology, Genetics and Bioengineering, PhD dissertation, July 2018 

Supervised by: Prof. Dr. Hikmet Budak 

 

Keywords: microRNA, Brachypodium, overexpression, drought, microscopy, root,  

 

Brachypodium distachyon a monocot model plant has facilitated the downscaling for studying 

the most important cereal crops of the world both genetically and phenetically. This owes to its 

dwarf stature, small genome size and rapid life cycle which was utilized in our research for 

analysing its morphological features under osmotic stress. The purpose of this study was to 

visualize Brachypodium seedlings under osmotic pressure to observe morphological adaptation 

under drought-like conditions. It was found that Brachypodium displays the typical adaptive 

mechanisms of cereal plants mainly root apical meristem showing lateral hair growth and 

stunted growth. The root cells also displayed change in single cell morphology by swelling into 

compartment like structures as compared to non-stressed cells. This observation was made in 

the elongation and maturation zones of the root. Lateral hair growth was observed from the root 

apical meristem after 18 hours of PEG-mediated osmotic stress. Brachypodium not only 

manifests physiological adaptations to drought stress but also elicits molecular adaptation to 

counter it. To explore the genetic basis of drought tolerance the microRNAs involved in water 

deficit were traced out through a reverse genetics approach. The T-DNA mutant library of 

Brachypodium distachyon allowed for the investigation of a newly discovered microRNA 

miR7757 involved in water deficit to be overexpressed in Brachypodium to rapidly produce 

drought tolerant varieties bypassing conventional breeding techniques. 
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ÖZET 

OSMOTIK STRES KARŞISINDA BRACHYPODIUM DISTACHYON BITKILERININ 

BÜYÜMELERININ GÖZLEMLENMESI VE MIR7757 AŞIRI IFADELEYEN 

BITKLERDE KURAKLIĞA KARŞI DIRENCIN INCELENMESI. 

 

 

Zaeema Khan 

Moleküler Biyoloji, Genetik ve Biyomühendislik, Doktora Tezi, Temmuz 2018 

Tez Danışmanı: Prof. Dr. Hikmet Budak 

 

Anahtar kelimeler: mikroRNA, Brachypodium, aşırı ifalenme, kuraklık, mikroskop, kök  

Brachypodium distachyon, genetik veya fenotipik araştırmaların yürütüleceği tahıl 

çalışmalarını kolaylaştırmak adına kullanılan monocot bir bitki türüdür. Küçük yapısı, kısa 

genetik bilgisi ve hızlı yaşam döngüsüyle çalışmamızda osmotik strese yanıtın morfolojik 

olarak araştırılması için avantaj sağlamaktadır. Çalışmamızın iki temel amacı vardır. Öncelikli 

olarak Brachypodium distachyon bitkisinin osmatik strese yanıtlarını inceleyerek kuraklık 

benzeri koşullarda morfolojik değişimlerinin araştırılması hedeflenmiştir. Brachypodium 

distachyon 18 saat boyunca PEG koşulunda tutularak osmotik strese maruz bırakılmıştır. Strese 

maruz kalan bitkiler kontrol grubuna göre daha kısa boylu olmakla birlikte diğer tahıllarda da 

görülen tipik kuraklığa karşı apaptasyonlardan biri olan kök apikal meristeminde yanal kök 

tüylerinin artışı izlenmiştir. Bununla birlikte, kök hücreleri tek başına incelendiğinde 

kompartmanlar halinde şiştiği izlenmiştir. Diğer amacımız ise stress yanıtı olarak moleküler 

değişimlerin incelenmesidir. Kuraklık benzeri bu durum karşısında moleküler değişkliklerin 

irdelenmesi için hedef olarak kuraklık ile ilişkili miRNA’lar taranmıştır. T-DNA mutant 

kütüphaneler yardımıyla Brachypodium distachyon bitkisinde mir7757’in kuraklık direnci ile 

ilişkili olduğu bulunmuştur. Brachypodiumde mir7757’nin aşırı ifadelendiği bitkilerde kuraklık 

direnci ile ilişkisi irdelenmiştir. Çalışma geleneksel yöntemlerle yürütülen tahıl araştırmalarına 

bir alternatif sunmaktadır.  
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A INTRODUCTION TO THE THESIS 

 

A.2 Drought an Important Abiotic Stress 

 

Drought stress can be defined as soil water deficit and is the most common environmental stresses 

affecting agricultural yield worldwide (H. Chen, Li, and Xiong 2012). The development of drought 

is complex and slow and involves multiple variables and factors. Drought is often classified into 

four different categories being a deficit in precipitation (meteorological), deficit in ground water, 

surface water and reservoir storage (hydrological drought), unequal water demand and supply 

(socioeconomic drought), but the one referred to throughout this review is agricultural drought 

being the water deficit in soil moisture severely affecting crops (Wilhite and Glantz 1985). Drought 

is a natural environmental stress factor and displays the highest percentage 26% when viewed in 

all stress factors affecting usable areas of the earth (Kalefetoğlu and Ekmekci 2010). According to 

current climate change prediction models the average surface temperature are predicted to rise by 

3-5oC in the coming 50 -100 years, which will drastically affect agriculture (The Physical Science 

Basis: Working Group 2007). This will concurrently result in increased episodes of flood, drought 

and heat waves (Bates et al. 2008; Mittler and Blumwald 2010). In a report (Mittler 2006), between 

1980 and 2004 in the US the total agricultural losses amounted to US $20 billion. These losses 

combined with both heat stress and drought totalled US$120 billion, pointing that the presence of 

another stress can intensify the devastating effects of the prior one. In recent years drought has 

taken its toll on North America destroying the corn fields and severely damaging the corn produce. 

Due to drought the plants face premature death and due to the drought the plants are vulnerable to 

stalk rot (Wu and Chen 2013). In China also the drought has been associated with cold stress and 

affected farmer livelihood, agricultural produce and landscape (Barriopedro et al. 2012). 

 

 

 



2 
 

A.2.1 Drought Symptoms on a Plant 

 

The signs of drought in a plant are the leaf area decreases, the leaf drops, root growth is affected, 

stomata close, leaves start yellowing and overall the plant wilts and if the drought continues the 

plant eventually dies. Plant physiological responses to the stress are to limit the expansion of leaf 

so that less water is lost through transpiration; the size of each leaf could decrease as well as the 

leaf number. As the stress persists the plant responds by dropping its leaves. Underground the plant 

grows longer and dissects out more roots to reach out to deeper pockets and sources of water. The 

plant closes its stomata to decrease respiration this also decreasing the amount of photosynthesis 

which results in the yellowing of leaves. The continuation of stress results in wilting of the leaves, 

droop in broadleaved plants and inward curling of leaf blades in grasses e.g. corn. This activity 

reduces the total leaf surface area in contact with the sun and air. If the water deficit continues then 

the plant turns brown and dies In arid conditions a plant may experience drought cycles twice or 

thrice a season (Bhargava and Sawant 2013). Drought stress when combined with other stresses 

such as heat has devastating effects, causing heavy damage to the crops then any of the stress 

alone. Under heat stress the plants usually open their stomata to cool the leaves but along with 

drought stress this would prove very devastating as the water loss would be harmful (Rizhsky 

2004). 

 

A.2.2 Physiological Stress Responses 

 

Survival of a plant in stress conditions influences the physiology and productivity of the plant. The 

growth of the plant is most sensitive to drought followed by photosynthesis and respiration. The 

duration and magnitude of these slumps are governed by changes and adaptive methods for water 

balance between water supply and use, carbon balance and actions to even out water loss in the 

form of transpiration with carbon gain i.e. biomass production (Duque et al. n.d.; Lipiec et al. 

2013). The ATP and NADPH produced from photochemical reactions are used in all processes 

except for supplying CO2 to the chloroplast in the C3 pathway plants, thus any retardation in 

photosynthesis such as those brought about by drought can affect the plant bioenergetics’ status. 

When plants are subjected to drought the decrease in photosynthesis and thus photorespiration is 
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due to the reduction in the availability of O2 and CO2 in the chloroplast (Duque et al. n.d.). In 

drought plants usually no reduction or change in respiration is seen in leaves and the variations are 

always small as compared to photosynthesis despite both being interdependent through 

photorespiration (Dutilleul et al. 2003). But at the whole plant level the share of respiration to plant 

bioenergetics is relevant as it accounts for a release of 30-70% of the daily carbon fixed in normal 

watered plants but in drought stressed plants the proportion of lost carbon accelerated mostly due 

to the decrease in photosynthesis (Duque et al. n.d.). The photosynthesis quantum yields of C3 

plants under drought stress or heat stress in high temperatures results in less efficient light usage 

for fixing CO2 (Nunes et al. 2009){39}. Like rice, wheat, and barley, Brachypodium also uses the 

C3 photosynthetic pathway. In C4 plants however this is not observed. Under water deficit in both 

C3 and C4 plants the decrease in the relative water content leaf and water potential coincides with 

a decrease in photosynthetic rate. Whether photosynthesis is restricted by stomatal limitation i.e. 

water deficit through restricted CO2 supply to metabolism or through destruction of other 

processes involved in decreasing the photosynthesis rate, i.e. nonstomatal limitation (Duque et al. 

n.d.). Indeterminate plants such as peanut and cotton possess the ability to benefit from inconsistent 

water cycle in such that they do not have a strict fruiting pattern, thus growing vegetatively and 

reproductively simultaneously. On the other hand determinate crops must set fruit as a very 

specific time and in the case of water deficit at that time the yield will be severely affected as in 

the case of corn (Anon n.d.). 

 

A.2.3 Molecular Response and Abscisic Acid 

 

Under drought stress conditions the plants synthesize the regulatory hormone abscisic acid. This 

hormone induces changes at all levels and in the entire plant from the leaves, root tips and even 

flowers. Plants begin to conserve water under the influence of this hormone, seeds maintain 

dormancy, leaves close their stomata, plants slow down growth and reprogram themselves at the 

genetic level to strive towards survival (Lipiec et al. 2013). Generally, plant molecular responses 

are linked through crosstalk between numerous signalling and stress response networks e.g. the 

dehydration response elements DRE proteins, redox controls and the downstream processes 

regulated by them are crucial in drought and freeze stress response. Important signalling molecules 
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in drought response are MAPKinases, SNF1-like kinases, phosphatases, phospholipids, salicylic 

acid, nitric oxide and calcium(Melda Kantar, Lucas, and Budak 2011). The antagonism between 

abscisic acid and auxin restricts the horizontal growth and proliferation of root in response to 

drought e.g. it was recently discovered that the stress regulated noncoding regulatory microRNA 

miR393 targets the auxin receptors mRNA AFB2 and TIRI in order to inhibit lateral root growth 

(H. Chen et al. 2012) Plant hormones such as abscisic acid regulate the interaction between both 

abiotic and biotic stresses which involves an extensive crosstalk amongst transcription factors, 

other hormones, and regulatory components if biotic and abiotic stress occurs simultaneously such 

as ROS, jasmonic acid, salicylic acid, pathogenesis relates proteins, systemic acquired resistance 

and heat shock factors, as well as regulatory microRNAs. This makes a complex interaction 

network allowing the plant to respond very specifically to the stress encountered or to the 

combination of stresses. This involves induction, positive regulation or inhibition or repression. 

(Atkinson and Urwin 2012) 

 

A.2.4 Genetics of Drought Tolerance 

 

Much effort has been made in the empirical breeding of drought tolerance in wheat focusing on 

increasing yield and yield components. But drought resistance traits are complex genetically, 

difficult to manipulate and subtle hence there has been little success to breed drought tolerant 

varieties in wheat in the past 50 years (Khan et al. 2011). However in recent years the drought 

tolerant extremophiles Populus euphratica (Brinker et al. 2010; Qiu et al. 2011) whole 

transcriptome has been discovered and P. euphratica microRNAs have been extensively analyzed 

in stress conditions (Li, Yin, and Xia 2009). 

Analysis of drought tolerance strategies of plants reveals that the tolerance to environmental 

abiotic stress is multigenic in nature, inherent, and thus it’s difficult to manipulate genetically a 

multigene characteristic through classic breeding. Thus molecular markers such as Randomly 

Amplified Polymorphic DNA (RAPD) are preferable used for polymorphism detection of genetic 

traits important in drought tolerant varieties (Shah et al. 2009). 
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A.2.4.1 Rice Gene NAC1 in Wheat 

 

In rice (Oryza sativa) a drought stress responsive transcription factor encoded by NAC1 gene in 

rice (SNAC1) has an important function in stress tolerance. This SNAC1 gene was introduced in 

an elite wheat variety Chinese Yangmai12 under a maize ubiquitin promoter. The plants 

expressing this SNAC1 gene showed higher tolerance to drought as well as salinity in multiple 

generations, the plants contained a much higher level of water and chlorophyll in their leaves in 

comparison with the wild type. Furthermore there was also an increase in the fresh and dry weights 

of the roots and leaves of the transgenic plants as well as higher sensitivity to abscisic acid thus 

leading to the inhibition of shoot and root growth (Saad et al. 2013). 

 

A.2.4.2 Brachypodium 

 

Plant drought stress response has been extensively studied in Arabidopsis and a few other grass 

species. Amongst a wheat wild relative Brachypodium has many characteristics to tolerate and 

adapt to drought due to its geographical location and many efforts are being done to translate these 

desirable traits in related crops such as barley and wheat. Different developmental leaf zones in 

Brachypodium showed differing responses to Brachypodium when the transcriptomic profile was 

analyzed using Affymetrix GeneChip (Verelst et al. 2013). 

 

A.2.4.3 Combined Molecular Response 

 

In combined stresses such as heat and drought it has been recently shown in transcriptome analysis 

in Arabidopsis as well as tobacco that the molecular stress response to simultaneous drought and 

heat stress is not additive. It instead triggers a new blueprint of gene expression and induction of 

specially regulated genes, that cannot be studied in either stress alone (Rizhsky 2004). Among 

these genes regulated under both abiotic stresses in Arabidopsis are those encoding HSPs (heat 

shock proteins) lipid biosynthesis enzymes, proteases, and starch degrading enzymes. Others 

include protein kinases, MYB TFs, and defence proteins functioning in oxidative stress protection 

(Nishiyama et al. 2011; Rizhsky 2004) 
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A.2.4.4 Potential Role of Transcription Factors 

 

From amongst transcription factors involved in drought stress response and induced through 

abscisic acid are the MYB type of genes in wheat and Arabidopsis e.g. MYB2 and MYB96, 

PIMP1. RD26 is an important NAC type gene, other genes are the ERF gene family including 

BIERF1-4 and ERF3 and ABF gene family of which AREB1 transcription factor has an important 

function. Interestingly these genes are not only involved in stress tolerance but also other stresses 

such as salinity, pathogen attack cold and wounding and may also be induced by other 

phytohormones such as jasmonic acid. Most of the action of these transcription factors is to 

regulate ABA or stress inducible genes. 

 

A.2.4.5 General Molecular Response Pattern 

 

The general molecular response to stress involves perception of the signal whether it is abiotic or 

biotic and then the signal transduction cascade either MAP kinase cascades, hormone signalling 

or ROS accumulation. These then further induce multiple and individual stress induced 

transcription factors such as the one mentioned above AP2/ERF, WRKY, NAC, MYB, 

DREB/CBF etc. The post transcriptional regulation of these TFs leads to the expression of 

functional downstream genes e.g. those involving ion channels, lignin and secondary metabolite 

biosynthesis, stomatal closure and growth regulation which hence elicit the stress response (Ren 

et al. 2010; Rushton et al. 2012; Seo et al. 2009; Wasilewska et al. 2008; Zou et al. 2010). 

Drought is a difficult and significant issue to deal with and can have a devastating impact on crop 

yields; however, the plant responses to drought have been studied in great depth and even more 

advanced studies are ongoing. Incorporating drought tolerant genes from wild relatives or other 

crops or extremophiles shows a possible solution and provides hope against a highly complex 

multigenic abiotic stress such as drought. 

Studies on abiotic stress in cereal crop plants focus on their genetic manipulation and the 

corresponding genotypic variations arising from stressed conditions. The visual changes occurring 

with stress conditions are also a salient feature of cereal crop plants in adjusting to stress. These 
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changes can be observed directly either as wilting and drooping of leaves on a macro scale or 

shrinkage of cells at microscopic scale. Brachypodium seedlings were observed for onsite 

investigation of seed growth and root development under normal and osmotic stress conditions. 

The effects of osmotic stress on the seed growth and root development was observed through 

various microscopic studies at the cellular level where the cells manifested difference in physical 

morphology as compared to the non-stressed control. This study presents a rudimentary analysis 

of the growth of Brachypodium seedlings in normal conditions and under osmotic stress at a 

relatively early stage of development and thus reveals important details regarding the osmotic 

stress adaptation of this model plant. The method reported in this study can easily be adapted for 

further refined, comprehensive and in-depth physical and physiological analyses under diverse 

stress conditions, and it can be further developed into automated and high-throughput quantitative 

analyses systems for plant molecular dynamic studies at single cell level. Furthermore, study of 

mechanical and physical parameters of Brachypodium seed growth can also be elucidated in more 

advanced microfluidic systems.  
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B MATERIALS AND METHODS USED IN THE THESIS 

 

 

 

B.2  Plant Materials 

 

In this study Brachypodium distachyon wild type cultivar Bd21-3 was used. Fourteen  

T-DNA mutant lines JJ13854, JJ3177, JJ12516, JJ2088, JJ5868, JJ3284, JJ54, JJ15278, JJ5803, 

JJ5856, JJ5899, JJ5912, JJ5843, JJ5820 from T-DNA blast hits and bioinformatic analysis were 

selected out. Plant seeds for these mutant lines were obtained from The WRRC Brachypodium T-

DNA group collection DOE Joint Genome Institute  

 

B.3  Chemicals, Growth Media, Plant Growth Regulators, Antibiotics and Enzymes 

 

The list of all the chemicals used for growth media, hormones and enzymes and antibiotics are 

listed in Appendix A. 

 

B.4  Buffer and Solutions 

 

The buffers and solutions were prepared according to the protocols given in Sambrook et al 

2001. 

 

B.5  Molecular Biology Kits 

 

Molecular Biology kits are listed in Appendix B 

 

B.6  Equipment  

 

Equipment utilized in this study are listed in Appendix C 
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B.7  Growth Conditions and Handling Techniques of Brachypodium distachyon 

Plants. 

 

Brachypodium seeds were placed in between wet filter papers in petri plates and vernalized for 5-

7 days at 4oC in the dark. After stratification they were kept under light in the laboratory at room 

temperature for 4-5 days. After germination they were transferred to high nutrition peat in small 

soil pots. After establishment of seedlings, they were put into size 6 plastic pots containing 2kg of 

soil (from Sultanonu Eskisehir) and grown under controlled conditions in the greenhouse 16/8 

light/dark period, temperature 25/22oC, relative humidity 60-70% and a photosynthetic photon 

flux of 320 µmol m-2s-1 at canopy height provided by fluorescent lamps. For basal fertilization the 

growth media was treated with 200mg kg-1 N (Ca(NO3)2), 100mg kg-1. P (KH2PO4), 20mg kg-1 S 

(K2SO4), 5mg kg-1 Fe (Fe-EDTA), and 2.5mg kg-1 Zn (ZnSO4). 

 

B.7.1 Seed Surface Sterilization  

 

Brachypodium seeds mature and immature for both studies were dehusked and subjected to surface 

sterilization by immersing in 10% bleach and a few drops Tween-20 for 15 minutes and then rinsed 

4 times. The immature seeds were used for immature embryo dissection. The mature seeds were 

placed in between two layers of sterile filter paper soaked with deionized water inside a petri dish. 

The plates were sealed with parafilm and covered with aluminum foil and left at 4oC in the dark 

for 5 days. After vernalization they were left for a 2 days at 25oC with a 16hr photoperiod. (Alves 

et al. 2009). Media prepared was Murashige and Skoog 4.43 g, MES monohydrate 0.5 g, sucrose 

30 g, and plant hormone 6-benzylaminopurine (BAP) 2.5 mg/L. The germinated seedlings 

subsequently used for imaging were loaded onto the PDMS chip filled with MS broth. 

 

B.8 Microscopy 

 

For light microscopy stereomicroscopes Nikon SMZ 1500, Olympus SZ61 stereo microscopes and 

illuminator lamp Olympus LG-PS2 from Japan. Fluorescence imaging for both experiments was 
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performed with Axio Vert.A1 inverted microscope by Carl Zeiss (Germany) using different 

wavelength and filters for neutral red stain and for GFP fluorescence. 
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CHAPTER 1 

 

VISUALIZING MORPHOLOGICAL FEATURES OF YOUNG BRACHYPODIUM 

SEEDLINGS UNDER OSMOTIC STRESS  

 
 

 
 

1.1. Introduction 

 

 

Abiotic stress related research in plants has considerably increased in recent years as a result 

of constant change in the global climate conditions (Frazier et al. 2011; Kumar et al. 2015). Plant 

growth under stress conditions is generally phenotyped and visualized by macroscale parameters 

(Verelst et al. 2013), which requires dedicated greenhouse space, labour, a great deal of test sample 

and consumables. These requirements thus limit the number of parallel experiments. Moreover, 

conventional plant growth techniques are not always compatible with state-of-the-art 

characterization tools. Such imaging tools prevent microscopic analyses at high-resolution due to 

optical transparency issues of the soil pots. Furthermore, the out of plane growth on agar plates 

hinders imaging on a single plane of focus. Engagement of microfabricated fluidic systems with 

plant biology research has paved the way for precise morphological and physiological analyses at 

microscale with reduced cost and labour (Elitaş, Yüce, and Budak 2017). Some examples of plant 

fluidic systems developed so far are presented in Table 1. Those pioneering devices have allowed 

miniaturisation of individual experiments and related costs while providing automated parallel 

assays to achieve accurate as well as high-throughput quantitative data (Elitaş et al. 2017; Sanati 

Nezhad 2014). Arabidopsis thaliana (Gooh et al. 2015; Massalha et al. 2017), Camellia japonica 

(Agudelo, Packirisamy, and Geitmann 2014), Oryza sativa (Iyer-Pascuzzi et al. 2010), Nicotiana 

tabacum (Ko et al. 2006; Wu et al. 2011), Phalaenopsis chiada pioneer (Hung and Chang 2012), 
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and Physcomitrella patens (Bascom et al. 2016) plant species have been employed in various 

microfluidic platforms for in-depth analyses of dicot seed germination, leaf development, cell 

phenotypes, protoplasts, pollen tube development and dynamics, shoot and root growth. These 

studies have largely been carried out in dicot plants and studies on monocot plants are still to be 

explored. 

Roots are responsible for water and mineral nutrient uptake from soil. They offer structural 

stability to the plant and affect the growth and development of plant organs above the soil. 

Characterization of root behaviour at different developmental stages and under various 

environmental conditions is of great importance to reveal the plant tolerance mechanisms and 

dynamic changes. This is particularly essential for food cereal crops such as wheat, rice, maize, 

and barley. However, conventional techniques for root investigations are usually conducted at 

macro scale and do require relocation of the plants for microscopic analyses, which could cause 

dehydration, physical damage and lead to data shortage. In addition, other conventional tools 

including hydroponics, do not allow real-time observation of the changes in the root systems that 

are exposed to different stress conditions such as drought, salt, growth factors, drug or 

nanomaterials.  

A number of chip platforms (Ghanbari et al. 2014; Nezhad et al. 2013; Parashar and Pandey 2011) 

and software (Galkovskyi et al. 2012) for microenvironment investigation have been reported for 

tip-growing cells such as root and pollen tube mostly in ornamental dicotyledonous plants 

Although all these systems attempt to mimic the physical microenvironment and provide 

appropriate designs for analysing spherical seeds or pollen tube elongation, there exists a need for 

a platform capable of measuring the elongation and growth dynamics of larger monocot seeds 

which differ considerably in its seed architecture. Monocot seeds are usually elliptical, slender 

long grains, with embryo polarity which makes the germination behaviour at the tissue and cellular 

level distinct from dicots. The application of abiotic stress conditions at the microscale to monocot 

seeds may allow phenotyping of the most important staple food crops and offer a valuable resource 

for a better understanding of crop adaptation mechanisms with high precision.  

In this study we will explore how monocot seedlings with polarity grow when inserted into a 

PDMS channel. A rudimentary plant chip will be designed to monitor real time changes under 

PEG-mediated osmotic stress in seedlings.   
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1.2 Materials and Methods 

 

1.2.1 Device Fabrication 

Rectangular PDMS pieces with a scale of 65x20x10 mm single, double and triple punched with 5 

mm diameter punchers were initial seed growing reservoirs at different volumes to check 

biocompatibility. Acetone cleaned glass slides and PDMS pieces were plasma treated and bonded 

to get the final devices, which were used to test the compatibility of Brachypodium seeds with 

PDMS. A mold for the plant chip was designed with SOLIDWORKS Software, reproduced onto 

ABS 3D material, and 3D printed. The mold dimensions were10mm height, 9.5mm channel length, 

1mm outlet diameter, and each seed channel 4 mm in diameter. The channel height was fixed at 1 

mm to ensure the growth of the root to remain in one plane and not be out of focus in the Z-axis 

under microscopy as was earlier observed for 2mm channel width and height in Fig. 1.12. For the 

construction of the device, PDMS and curing agent were mixed in 10:1 ratio and poured into the 

mold in a 100-mm diameter Petri dish, degassed in a desecrator, and cured at 75 °C for 60 min in 

an oven. The PDMS pieces were cut and gently peeled off from the mold on the Petri dish. The 

constructed device was submerged in Murashige and Skoog media overnight to ensure the 

hardening of the device. 0.17 mm coverslips and the PDMS pieces were plasma treated and bonded 

to get the final devices. Coverslips were used instead of the glass slides to facilitate fluorescent 

imaging. This setup was fixed with an adhesive to the Petri plate cover. Each channel was filled 

with MS media. Following 4-7 days of vernalization and two days post-germination —when the 

seedling stage was well established- the synchronously growing Brachypodium seedlings were 

inserted into the wells vertically at around 75-55° angle, with the scutellum facing slightly upwards 

and radicula facing downward. The anterior end was immersed in the well, and the posterior end 

was entirely out of the well, with the emerging leaf facing outwards. Two different designs were 

developed for top and bottom imaging studies. The top imaging setup consisted of the same PDMS 

mold with the cover glass covering only the outlet channel, and the root channel, the seed channel 

was kept empty. This setup was then sealed with a double-sided adhesive tape to a carved-out Petri 

plate cover. The plate was filled with media. The wells were supplied with a constant supply of 
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the media. The bottom setup consisted of the glass cover slip bonded to the entire device base to 

cover all the channels and the samples. Seeds were inserted anteriorly from the top. 

 

1.2.2 Preparation of Seeds and Measurement of Growth 

Brachypodium wild-type seed line Bd21-3 was used in this study. The seeds were dehusked then 

soaked in water for 10 minutes. They were sterilized for 1 minute with 70% ethanol in a sterile 

Petri dish. Ethanol was drained, and the seeds were rinsed with sterile deionized water. 20 ml of 

1.3% NaOCl solution was poured into the Petri dish and rotated for 5 minutes. The seeds were 

then rinsed thrice with sterile deionized water. Ten seeds were placed in between two layers of 

sterile filter papers soaked in sterile water. After 7 day vernalization, the seeds were transferred to 

agar media and allowed to grow for 48h at 22oC with a 16h photoperiod and high relative humidity 

at 57%. Finally, the seedlings were transferred to the device. Epson perfection v700 photo scanner 

was used to visualise the full length of the seedlings grown in the microfluidic device and standard 

agar environment. WinRHIZO software (Regent Instruments, QC, Canada) was used to analyse 

the shoot and the root scan images (Fig. 1.12). 

 

1.2.3 Osmotic Stress Application 

To give osmotic stress 20% PEG 6000 was dissolved into the MS agar media and filled in the seed 

and root channel to three week plantlets at the 3-leaf stage. For 6h and 24h osmotic stress analyses, 

the seedlings were first stained with neutral red for 20 minutes and then transferred to the 

microchannel device containing 20% PEG-MS and visualised under fluorescence microscope. 

 

1.2.4 Imaging Studies 

The seedlings were selected at 2 days after germination (DAG) for microscopy studies. For 

standard visualisation of the control and stress samples, the device setup for top imaging was used. 

PEG-supplemented MS media was used for osmotic stress. The top imaging was performed using 

Nikon SMZ 1500, Olympus SZ61 stereo microscopes and illuminator lamp Olympus LG-PS2 

from Japan. For bottom imaging of the samples with fluorescence, a stock solution of 4 µM neutral 

red stain was prepared with 0.2X MS medium supplemented with 20mM potassium phosphate 
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buffer at 8.0 pH, according to the procedure reported earlier (Dubrovsky et al. 2006). The control 

and stressed plantlet roots were stained for 15-20 minutes following the removal of PEG-

supplemented MS media. The staining procedure made the cells stained under brightfield and 

enabled fluorescent visualisation of the seedling roots. Cross section samples were prepared 

according to the protocol described online (Schiefelbein Lab. 2017). Fluorescence imaging was 

performed with Axio Vert.A1 inverted microscope by Carl Zeiss (Germany), using the bottom 

imaging setup. Confocal microscopy was performed with Carl Zeiss LSM 710, Germany and 

images recorded with Zen software (Carl Zeiss, Germany). Neutral red dye was used to visualize 

the live/dead parts of the roots of the young seedlings both for normal growth and for osmotic 

stress conditions. A single channel was used for visualisation with neutral red. Images were taken 

in 20X objective lens. Three-week old seedlings pre-stained with neutral red at the 2-DAG (days 

after germination) seedling stage (stained as mentioned previously) were selected. These seedlings 

were given osmotic stress for 6 hours in Murashige and Skoog (full strength) media with 20% 

polyethylene glycol 6000. Stressed and normal seedlings were embedded in agarose (as described 

for the fluorescence microscope staining) to enable section slicing as thin as possible. Cut sections 

~ 0.5-0.9mm were achieved from the maturation zone of the plant. Transverse sections were 

removed from the agarose molds and placed separately on acetone-ethanol cleansed cover slips 

and glass slides. The cover slips were sealed securely with clear nail polish.  

 

1.2.5 Imaging for Osmotic Stress 

For visualisation of growth, the model PDMS device was used in both dorsal and ventral positions. 

Top imaging was achieved by plasma bonding the glass to the dorsal side, but only covering the 

root channel and the outlet channel, leaving the seed channel open for insertion, as can be seen in 

Fig. 1.4 A. Petri plate was used for maintaining humidity and growth in which the radicula was 

inserted into the channel, with the coleoptile facing upwards and outwards and a gap created in the 

lid to ensure growth for the shoot. The coverslip was attached to the lid with a strong double-sided 

adhesive. The objective was positioned to focus directly on the cover glass and gap. Two holes 

were bored inside the lid to insert the valves for constant media flow. This entire setup was 

prepared aseptically under laminar flow hood. However, the seed part for shoot growth was kept 

uncovered during the length of the experiment. Media was inserted into the dish and into the device 
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wells with the metal heads bored into the seed channel to ensure full media flow. The Petri plate 

lid and the bottom part was covered with paraffin film to ensure high humidity. The device could 

be maintained in this manner for 48h. The fluorescent bottom imaging was done with the entire 

ventral side of the device oxygen plasma bound to a glass coverslip. Seeds were inserted into the 

device with the coleoptile and radicula facing outwards and the bottom objective directly 

visualised the roots. The roots were separately stained with Neutral Red dye according to the 

protocol by Dubrovsky et al. (Dubrovsky et al. 2006) and rinsed in MS media and the channels 

filled with non-stained full strength MS media to avoid background. For fluorescence imaging 0.4 

µM neutral red solution and a 15-20 min incubation stained the roots sufficiently.  20% PEG was 

applied to full strength MS media for microscopic visualization of stress response morphological 

change of 2 DAG Brachypodium seedlings for 6, 18 and 24 hours. 
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1.3 Results 

  

 

Figure 1.1 Testing Brachypodium seedlings for orientation, compatibility and growth. The growth 
of monocot seedlings from Brachypodium distachyon in (A) single, (B) double and (C) triple 

punched PDMS channel, (D) growth of six samples in parallel after 7 days in the triple punched 
PDMS channel e) growth of six samples in parallel after 21 days in the triple-punched PDMS 
channel. The images a, b and c were taken with Olympus SZ61 stereomicroscope, Japan.  

 

PDMS with single, double and triple punches was tested for compatibility with Brachypodium 

seedling growth presented in Fig. 1.1 A, B and C. The single, double and triple punch 

microchannels had volume capacities of 130, 280 and 385 µl, respectively. Growth, directionality 

and compatibility was observed for Brachypodium seeds on all three PDMS punched molds and 

the results were in line with the previous reports conducted with Nicotiana and Arabidopsis (Ko 

et al. 2006; Lei et al. 2015; Meier et al. 2010). In the 3-punch preliminary device with the 385 µl 

MS media capacity, the five weeks of growth inside the Petri plate was achieved by refilling the 

wells with unsolidified agar with a micropipette every week. Growth was observed until formation 

of a small adult plant (6 leaf stage) and this observation was comparable to the plant-on-a-chip 

setup, reported previously for Arabidopsis (Jiang et al. 2014). 

The monocot seedling growth in the final fabricated PDMS device in solid and liquid media after 

vernalization and synchronous growth was presented in Fig. 1.2 C. Two to three leaf stage of the 



18 
 

seedlings on plant microfluidic chip (on the 13th day) showed a standard growth trend in the device 

channels filled with 385 µl of MS media.  

 

Figure 1.2 The PDMS mold prepared for growth and visualization analysis. The mold (A) used to 
construct the PDMS plant chip device (B) and comparison of the leaf and root growth in solid MS 

media plates and the plant chip device (C). 

 

 All stress analyses were performed with a control seedling in the same device, thus, under equal 

experimental conditions. The growth per minute of the root in the channel was compared with the 

growth per minute in standard MS agar plates in Fig. 1.2 C.  The average height of the leaf was 

13cm and average root length 1.63cm and maximum shoot length of 22.5cm and root length of 

2.6cm was obtained after 3 weeks growth, which we propose as the maximum period to maintain 

the Brachypodium seedlings in the device (Fig. 1.12). 
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Figure 1.3 Growth curve of Brachypodium seedlings in 24 hours. The growth rate of three 
independent monocot seedlings in the plant chip device under 16h day and 8h night conditions. 

The 24h time lapse of Brachypodium seedlings was performed at 24oC with a relative humidity 
of 37.5%. 

 

After several experiments, we concluded that after 4-7 days of vernalization and 2 DAG seedling 

stage, the seedling had to be inserted in the correct orientation in the chip to make it grow along 

the length of the narrow 1mm channel. Growth was observed with the root penetrating the length 

of the microchannel with slight curvature and bending. With time lapse recording, per minute and 

per hour growth was recorded and the growth over 24 hours was also monitored. In the plant chip 

device, the growth per minute was 4.3 µm min-1.  
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Figure 1.4. Root growth trend of two seedlings under PEG stress for 12h. The coloured lines 
show two seedling roots observed over a 12hour period.  

 

The growth rates of three independent Brachypodium seeds were observed for 24h in the 

microfluidic device and presented in Fig. 1.3. The rate of growth under the dark conditions was 

high and in agreement with the results from previous reports (Grossmann et al. 2011, 

Yazdanbakhsh et al., 2011) in which a sudden increase in the growth rate was also noticed in the 

night for Arabidopsis thaliana. 
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Figure 1.5 Experimental setups for imaging. Top imaging (A) and fluorescent bottom imaging (B). 
Three days-old seedlings having roots were mounted into wells for the top and bottom imaging. 

Top imaging studies were conducted with a Nikon SMZ 1500 stereomicroscope (Japan) while the 
fluorescent imaging studies were conducted with a Zeiss Axio Vert.A1 inverted microscope 

(Germany). 

 

Fig. 1.5 shows the images obtained from both the top and bottom imaging arrangements. Fig. 1.5 

B shows the direct focus of the fluorescence microscope on the cover glass with 0.17mm thickness 

to enable fluorescence. As mentioned before due to the size of the monocot seed more than 2 

parallel experiments could not be observed. However, the synchronous growth of 2 channels was 

analysed. The bottom imaging setting allowed the imaging of a single channel at a time but 

nevertheless provided accurate fluorescent signal for comparison of stress and control samples. 

Fig. 1.6 shows the maturation (differentiation) zone that turned to be square-like large 

compartments following 6h osmotic stress by 20% PEG in comparison to the longitudinal cells 

observed during the normal growth. Also, the growth of several lateral roots was observed in the 

stressed samples, indicating an adaptive behaviour of the cells to expand the space and surface 

area for further water uptake (Paez-Garcia et al. 2015). 
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Figure 1.6 Fluorescent microscopic observations of normal and osmotic stressed roots. Growth in 
the plant chip device after 72h, maturation zone cells under normal conditions (A and C) and after 

6h osmotic stress by 20% PEG (B and D). The images were taken with an Axio Vert.A1 inverted 
microscope by Carl Zeiss (Germany). (E) and (F) show the maturation zone with 40X 

magnification. 

 

This behaviour of root hairs showing extensive growth was also observed after 18hour osmotic 

stress on the root tips (Fig. 1.8 A and B). Similar results were also achieved by cross-section 

analysis of the maturation zone and confocal microscopy experiments, as presented in, Fig. 1.7 

and 1.11, respectively. 
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Figure 1.7. Cross section comparison of normal and drought stressed root samples. Cross-section 

images of maturation zone cells obtained from the plant samples under normal (A and C) and 24h 
osmotic stress conditions (B and D). The images were taken with an Axio Vert.A1 inverted 
microscope Carl Zeiss (Germany). 

 

A study on young wheat seedlings also confirms such cell wall expansion in the maturation zone 

upon a low water potential around the roots and the authors suggest the accumulation of some 

solutes within the elongation and maturation zones in order to maintain the turgor pressure, 

resulting in an increase in the root diameter (Akmal and Hirasawa 2004). Although not seen in 

maturation zone cells, but a similar swelling behaviour of cells at the root apical meristem zone 

upon treatment with 5% PEG was previously reported for Brachypodium as well as wheat, rice, 

soybean, and maize (Ji et al. 2014), suggesting a collective response by root tissues of different 

plants to surmount the osmotic stress.   
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Figure 1.8 Comparison of root tip and maturation zone under osmotic stress. Brightfield 
visualization of the apical meristem without stress (A) and appearance of root hair after 18 hours 

(B). Root apical meristem in the root channel after 72h growth, under standard and 24h stress 
conditions by 20% PEG; (C) and (D) show the root cap samples with 10X magnification; (E) and 
(F) show the root cap samples with 40X magnification; The images were taken with an Axio 

Vert.A1 inverted microscope by Carl Zeiss (Germany). 

 

In accordance with these results, Fig. 1.8 shows images of maturation zone cells obtained from 

plants under normal (C and E) and 24h osmotic stress conditions (D and F), which indicates 

abnormal differentiation within the stele region of the sample under 24h osmotic stress induced by 

PEG. On the other hand, high fluorescent signal with bright and distinctly visible organelles 

appears to be higher in the root cap cells under standard growth conditions. Under osmotic stress 

no fluorescence was observed in the root cap cells ─which are the first sites of the plant in direct 

contact with the osmotic stress induced by the PEG molecules─ as can be seen in Fig. 1.6 E and 

F. 
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Figure 1.9 Cross section fluorescent visualization of transport tissue under normal and osmotic 
stess 

 

In Fig. 1.9, cross section images taken 1.5 mm (around the tip) and 3 mm beneath (around the 

apical meristem) the root tips of the normal (A and C) and the stressed samples (B and D) 

additionally confirmed reducing fluorescent signals as well as deformation of the cells in the 

sample under 24h osmotic stress, as presented. Cross-section images of the elongation zones from 

standard and stressed plant samples also confirmed the decreased fluorescent signals around the 

peripheries of the plant under 24h osmotic stress, as shown in Fig. 1.9 E-F. 
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Figure 1.10 Neutral Red stained stressed samples under fluorescence and brightfield microscopy. 
Neutral Red staining of the root with (A and C) and without (B and D) fluorescence visualization 

was seen after 24hr, osmotic stress mostly concentrated in the internal vascular tissue. However, a 
reduction in the fluorescence was observed after 24hr stress in all samples. 

 

The morphology of the midsection of the root was also analyzed with and without fluorescence as 

seen in Fig. 1.10 A-D. The striations of live and dead cells can be differentiated by the fluorescence 

of neutral red, which looks concentrated around the vascular cylinder rather than the peripheral 

cells. Staining appeared intense within the internal cells around stele zone and not on the 

peripheries which were in direct contact with PEG, indicating a hindered growth which was 

confirmed by fluorescence microscopy after 24h. 
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Figure 1.11. Confocal microscopy images under drought. Confocal microscopy shows the 
maturation zone cells after 6h osmotic stress by 20% PEG (B). The cross-section image (A) 

corresponds to Figure 1.6 D and the sideview confocal image (B) corresponds to the maturation 
zone images presented in the Figure 1.6 B in the manuscript. 

 

 

Figure 1.12 A) Growth at >3 weeks, B) showing the root growth in a single plane but hindered 

due to the channel. C) The maximum growth obtained after 3 weeks showing potential for a root 

array arrangement and maintenance for a month. D) The average growth of the plants roots and 

shoots obtained from the array. 

  

A)
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C)

) 
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) 

D)
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1.4 Discussion 

 

 

The behaviour of seedlings from Brachypodium in polydimethylsiloxane (PDMS) channels was 

explored in this study. Due to the large size (8mm x 2mm) and elliptical polarity of the root and 

shoot growth i.e. the differences between the anterior and posterior of monocot seeds with the 

embryonal axis from where the seed germinates, the horizontal 3-punch device proved to be well 

suited for the adequate development of the shoot and roots in agar media as compared to liquid 

media, as presented in Fig. 1.1 D and E. Multiple serial channels were prepared to imply the array 

utilization of this setup. Growth was observed for the Brachypodium seedlings inserted into narrow 

channels. Root growth in the microfluidic device was limited due to the space in the PDMS 

microchannel (Fig. 1.2 B and Fig. 1.12 B). The narrow 1mm long channel though restricted the 

normal growth but this facilitated the observation of the real time growth of the root and provided 

live analysis for root elongation along a single plane. 

 

However, the multiple channels could not be simultaneously visualized under the microscope due 

to the macroscopic nature of the seed and PDMS platform size (Fig. 1.12). Studies were thus 

limited to analyzing single or double channels under low magnification (0.75x and 1X). With the 

facilitation of a single plane for of provided by a narrow 1mm Z axis PDMS channel the effects of 

osmotic stress on root development were investigated in real time with various microscopy studies. 

The microfluidic channel system allowed the positioning of monocot Brachypodium seeds at 

serially arranged microchannels where the root-cell microenvironment can be precisely controlled, 

watered, visualised in real-time, and desired stress conditions can be established. Earlier 

microscopic studies have been done on the morphology (Filiz et al. 2009; Oliveira et al. 2017), 

growth (Barrero et al. 2012) and development (Guillon et al. 2012) of Brachypodium and our study 

focuses on real time growth dynamics and osmotic stress conditions in young seedlings. 
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Abiotic stress studies have been under considerable scrutiny particularly in crop plants because 

of the loss in crop yield caused by the climate change (Akpınar, Lucas, and Budak 2013; Budak et 

al. 2015; M Kantar, Lucas, and Budak 2011). The plant Brachypodium distachyon is a model for 

monocotyledonous plants which constitute the major cereal and food crops of the world. 

Brachypodium has been used extensively in gene expression studies previously (Hong et al. 2008; 

Priest et al. 2014), because it is an ideal grass model regarding its sequenced genome, small stature, 

rapid growth time and evolutionary relation to the valuable crop species such as wheat (Bevan, 

Garvin, and Vogel 2010; Brkljacic et al. 2011; Budak and Akpinar 2011). Amongst wheat wild 

relatives Brachypodium also has many characteristics to tolerate and adapt to drought due to its 

geographical location and many efforts are being done to translate these desirable traits in related 

crops barley and wheat (Verelst et al. 2013). Studies on the genotypic manipulation of 

Brachypodium for drought tolerance are numerous but for phenotypic manipulation of 

Brachypodium for drought analysis including osmotic analysis have not been observed previously 

at early seedling level.  

Arabidopsis thaliana is an important model plant due to its simple structure and small adult size, 

small seed size and has been used in microfluidic platforms to create an entire Plant on a chip array 

amongst many other PDMS devices and microfluidic designs(Jiang et al. 2014). However 

Arabidopsis in recent years has been reserved as a model for dicotyledonous plants. The small 

annual species Brachypodium distachyon, is a suitable framework for the investigation of 

particular developmental processes which include dissecting the cell wall biology, the 

development of the endosperm, the controls of flowering, and the development of the inflorescence 

(Fitzgerald et al. 2015; Girin et al. 2014; Kellogg 2015; Opanowicz et al. 2008; Vain 2011). In 

addition to ease of analysis of the physical structure development Brachypodium fit well into the 

framework of a model plant for phenotypic and growth dynamics analyses because of its small 

size and small seed size compared to other monocots, rapid cycling and the simplicity of its 

development furthermore making it a suitable candidate for microfluidic analyses. With the 

manipulation of solely dicot species in microfluidic platforms, the gaining importance of monocot 

model species as well as the ease of analysis of developmental structures of Brachypodium it was 

all the more appropriate to introduce the model monocot species into the novel technology of plant 

microfluidic analysis. In the current study, Brachypodium was selected to investigate the effects 

of osmotic stress on monocot plants in a microfluidic channel system. Brachypodium seeds (8mm 
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x 2mm) despite being considerably larger than Arabidopsis seeds (<500µm) (M. Chen et al. 2012) 

and having seed polarity, has the potential to be used in microfluidic systems. Table 1 shows that 

major analyses of plant tissues done in microfluidics have majorly been pollen tubes, fungal spores 

and Arabidopsis seeds all of which are considerably smaller in size and less complex than 

Brachypodium seeds. We imply that a microfluidic platform can be utilized for analyzing the 

physical parameters of early seed growth in real time and osmotic stress analysis. Studies of the 

root elasticity, Young’s modulus, physical tension, and root and root hair dynamics in PEG 

supplemented growth media are further areas of research which can be pursued. The aim of our 

study was to downsize the abiotic stress analysis on monocots and observe the effects of stress in 

real time by detailed microscopy analyses, which was achieved using a modified microchannel 

growth system. 

 

The results obtained directly point towards the high resilience of Brachypodium roots under 

osmotic stress even at three days after germination. Brachypodium proved to be well adapted to 

the microfluidic system in contrast to other non-model monocot seeds such as wheat (Brkljacic et 

al. 2011) that has multiple roots, large seeds, and bending shoots and thus, hard to manipulate in a 

microfluidic platform. In the initial experiments, Brachypodium was able to survive in a minimal 

volume of agar media, and in the microchannels, it was able to reach a leaf height and root length 

to allow for microfluidic chip manipulation microscopic analysis. We successfully observed the 

effects of osmotic stress at microscale with for model Brachypodium seed. Our study provided a 

valuable modification to the standard Petri plate systems to minimise resources, apparatus, labour 

and time for the analysis. This multiplexed microchannel technology has the potential to 

interrogate a diverse range of abiotic stress microenvironments, both for functional phenotyping 

of the root cells and the comparison with normal growth cells. Such experiments can be performed 

with salt stress, nutrient deficiency and hormone (ABA) stress simultaneously, observing the real-

time changes in the plant during the stress, similar to the macro-scale studies (Akpinar et al. 2012).  

 

The living and dead parts of the Brachypodium root were shown using the differential stain neutral 

red. A prominent observation was the Brachypodium root dynamics under the osmotic stress. 

Growth of the root from the embryonic axis was physically stressed whilst growing the length of 
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the microchannel in a single plane Z axis but nevertheless necessary to ensure real time 

visualization. The large root size of the Brachypodium seed in comparison to Arabidopsis makes 

it difficult to manipulate for imaging in a microfluidic system, nevertheless by maintaining the 

Brachypodium root inside the microchannel in a single plane the imaging of the root cap, root cap 

hairs and elongation zone of the root was possible. Fluorescence imaging further facilitated the 

analyses of root zones inside the PDMS channels. The adaptive characteristics to the osmotic stress 

showed that the root cells tend to stop their growth (Fig. 1.11) and slow down their metabolism 

which was observed as a weak fluorescent signal after 24h of osmotic stress. The root tip showing 

vivid fluorescence under the standard conditions completely blurred out after 24h 20% PEG 

application. Striations were observed on the surface of the root length because of a diagonal pattern 

of the live and dead cells. No explicit observation was obtained in terms of root hair elongation 

such as in Arabidopsis (Grossmann et al. 2011), although at 18h in the osmotic stress, the root tip 

showed fanning out of root hairs (as shown in Fig. 1.6 A, B) comparable to that observed for the 

root hairs in Fig. 1.5. It was interesting to note that the protrusion of root hair under osmotic stress 

was only observed with unstained samples. This phenomenon was not observed when the samples 

were stained with neutral red neither under fluorescence nor under brightfield. 
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CHAPTER 2 

 

 

OVEREXPRESSION OF A NEWLY DISCOVERED MICRORNA MIR7757 IN THE 

WHEAT WILD RELATIVE BRACHYPODIUM DISTACHYON T-DNA MUTANT FOR 

INVESTIGATING THE ROLE OF MIR7757 IN ABIOTIC STRESS 

 

 

 

1. Introduction 

The role of insertional mutagenesis by Agrobacterium-mediated transformation has resulted in 

extensive genomics and transcriptomics studies in various plants species by validating the function 

of a microRNA. The complete genome sequence availability of model plants such as 

Brachypodium distachyon has catapulted the amount of research regarding the role of a myriad of 

developmental and stress related genes and their confirmation and establishment of their role in 

different growth/stress conditions. MicroRNAs are important transcriptional and post 

transcriptional regulators of gene expression in eukaryotes such as plants. They play a crucial role 

in their development, and biotic and abiotic stress responses. miR7757 is a newly discovered 

microRNA with few studies on it. Most recent studies have shown its role in biotic and fewer 

reports in abiotic stress suggesting its role in development, cold/salt/water stress and pathogen 

stress. miR7757 has been shown to have a role in wheat leaf rust, fungal and bacterial disease, in 

dicot plantlets and wheat plantlet during water deficit, as well as in developing embryo. Since it is 

not well characterized and recently observed to be involved in wheat we selected this microRNA 

to study in the wheat wild relative monocot model plant Brachypodium distachyon. With the 

availability of the T-DNA mutant resources for Brachypodium distachyon we traced a seed line 

mutant for miR7757. Overexpression of miR7757 into T-DNA mutant line of B. distachyon via 

Agrobacterium transformation by compact embryogenic callus co-culture will generate 

overexpressing miR7757 plants which will subsequently be characterized for several biotic and 

abiotic stresses. 
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1.1 Reverse Genetics 

The classical genetic approach for investigating biological pathways characteristically starts with 

identifying mutations that cause a phenotype of interest (Prelich 2012). This is the approach used 

in “forward genetics” to first analyze the genotype of a mutation and link it to an altered phenotype 

(Krysan 1999). However, a fundamentally different approach used to address the phenotype 

caused by a mutant gene sequence takes the tactic of first dealing with the mutant sequence or 

creating one and questioning what phenotypic change has been caused by the certain mutation. 

This modus operandi is called reverse genetics and is now being heavily pursued due to the recent 

and rapidly increasing availability of complete genome sequences and similar genetic and genomic 

resources. Reverse genetics studies involve gene knockout and null mutations which facilitate and 

comment directly on the function of the gene expression product in situ. As already implied above 

the altered genetic mutation, knockout or null mutation allows the monitoring of the gene mutation 

or deficiency to check its effect on the organism’s ability to function.  

1.2 Overexpression Advantages 

A massive variety of molecular mechanisms occurring in nature regulate the expression of genes 

at the appropriate level in the appropriate conditions. Certainly, a reduction in expression below 

the required threshold for normal functioning can be due to a partial or complete loss of function 

of the gene and can cause a mutant phenotype. Parallel to this the increased expression of normal 

wildtype gene should also be disruptive to the organism. However, overexpression phenotypes 

abound naturally, with gene amplification resulting in insecticide, drug, and heavy metal 

resistance. (Stark and Wahl 1984). Since the overexpression of wildtype genes can cause mutant 

phenotypes, this has been exploited by scientists working in controlled genetic environment setups 

as a similar approach to loss of function screens (Prelich 2012). Overexpression developed as a 

genetic tool before molecular cloning with studies in Arabidopsis showing a viral enhancer causing 

overexpression of the JAW miRNA affecting leaf development and resulting in a more distinctly 

prominent leaf phenotype (Palatnik et al 2003). Further studies showed that overexpression 

libraries could be used not for cloning genes by complementation as functional probes, but also 

could independently identify phenotypes in wildtype cells. Therefore, overexpression screens were 

established as a feasible research option in several organisms. However a main hindrance for the 
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widescale application was the lack of genetic resources to facilitate routine application (Prelich 

2012). Thus, the need for a development for plant genetic mutant lines was imperative. The 

approach taken for Arabidopsis was the insertional mutagenesis by transfer DNA of 

Agrobacterium tumefaciens (Krysan 1999). 

 

1.3 Arabidopsis T-DNA Mutant Collection 

To reap the benefits of reverse genetics approach for genotype-phenotype analysis it is essential 

to apply targeted mutagenesis to create a pool of compromised genes and analyze their phenotypic 

effects. In mice knockout mutations were done by homologous recombination of murine 

embryonic stem cells, provided the mutation achieved was not embryonic lethal, the “knockout 

mice” could be developed in utero. Previously yeast and E. coli were also used for reverse genetics 

by targeted mutation by homologous recombination. Intact Arabidopsis plants were also initially 

tried for homologous recombination, but the frequency obtained was possibly too low to 

encompass the ~l25000 genes of the 120MB genome. 

 

1.3.1 T-DNA Insertional Mutagenesis 

The role of insertional mutagenesis by Agrobacterium mediated transformation has resulted 

insertion mutant library development thereby facilitating the reverse genetics analysis. This has 

resulted in extensive genomics and transcriptomics studies in various plants species by validating 

the function of a gene, transcription factor and a microRNA. The complete genome sequence 

availability of model plants such as Arabidopsis thaliana and relatively recently monocot model 

plant Brachypodium distachyon has catapulted the amount of research regarding the role of a 

myriad of developmental and stress related genes and their confirmation and establishment of their 

role in different growth/stress conditions. In this aspect the T-DNA mutant database of Arabidopsis 

(Krysan et al 1999, http://www.gabi-kat.de/) has provided a crucial role in elucidating gene 

function in mutant lines. Likewise, with the recent availability of the Brachypodium distachyon 

WRRC T-DNA database (Bragg et al 2012, http://brachypodium.pw.usda.gov/TDNA/) gene 

functional studies have greatly increased.   

 

http://brachypodium.pw.usda.gov/TDNA/
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1.4 Brachypodium as a Model Organism 

Arabidopsis is a dicotyledonous crucifer that is not only physiologically and morphologically 

different but also developmentally all in all different from the cereal grasses which are staple food 

for most of the world’s population. Various parts of the biology of these cereal crops necessitate a 

model plant that closely resembles their features. Despite cereal crops being excellent models for 

certain purpose, most of them are inappropriate to work with because of special growth 

requirements as in rice, large size as of maize, or genetic characteristics such as their genome. 

Undoubtedly the most problematic for genetic studies are wheat, rye and barley and their related 

375 wild species, which have some of the largest genomes of grasses. Hordeum vulgare haploid 

(1C) genome size is 5.1Gp and that of Secale cereale is 8.1Gp which are both much larger than 

that of maize. Barley and rye are both diploids and the large genomic size is attributed to 

accumulation of transposons. Triticum aestivum on the other hand is a hexaploid with a genome 

size of around at ~17 Gb. With such huge and difficult to manipulate genomes and growth 

conditions of most cereals. Brachypodium, in particular Brachypodium distachyon has become a 

suitable framework for investigation of biological processes such as dismembering the cell wall 

biology, the development of the endosperm, the controls of flowering, and the development of 

inflorescence. Brachypodium was initially chosen as a model due to the phylogenetic proximity to 

the Triticeae clan wheat and barley than to maize or rice. In addition it has the typical qualities of 

a model plant a small size both genetically and morphologically, rapid life cycle and simple 

development. (Fitzgerald et al. 2015; Girin et al. 2014; Kellogg 2015; Opanowicz et al. 2008; Vain 

2011) 

 

1.4.1 Brachypodium T-DNA mutant collection 

The need for creating the Brachypodium T-DNA mutant line collection stemmed from the fact that 

this small grass species Brachypodium distachyon contains the many desirable characteristics of a 

genetic model organism harboring traits of scientific interest for the improvement and 

development of its relative grasses serving as cereal food, feed and fuel namely wheat, barely, 

switchgrass and Miscanthus giganteus. With the recognition of these advantages the Department 

of Energy Joint Genome Institute (DOE JGI) proposed the development of Brachypodium as a 

model species for cereal plants for use in the domestication of energy crops in the report “Breaking 

the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda” in 2005. This marked the 
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beginning of a comprehensive organization of the genomic resources of Brachypodium and to date 

this genomic resource has expanded vastly. This funded DOE Feedstock Genomics Program 

project aimed to add a huge collection of T-DNA mutants to the increasing Brachypodium genomic 

resources. These T-DNA lines were indexed through flanking sequence tags FSTs which 

facilitated the mapping of the T-DNA insertions in the Brachypodium genome. This collection 

hence serves to identify mutations in genes which putatively affect biomass quality and agronomic 

characteristics of cereal and energy crops. These T-DNA mutants lines were publicly available 

through the site https://jgi.doe.gov/our-science/science-programs/plant-

genomics/brachypodium/brachypodium-t-dna-collection/ which allows any interested scientist to 

identify knockouts in their genes of interest.  

The creation and sequencing of the first 8.491 T-DNA lines was done by Agrobacterium 

tumefaciens mediated high efficiency transformation method. The collection contains the plants 

produced by various constructs made for different purposes. T-DNA constructs namely pOL001, 

pJJB/pJJ, pJJB2LB/pJJ2LB, pJJ2LBA, pJJ2LBP2, pJJ2LBP were used to generate most of the 

population of the USDA-ARS-WRRC T-DNA collection. All the plant lines in the collection are 

T-DNA insertional mutants and can create gene knockouts and it was the purpose of the plant lines 

creates by using the pOL001, pJJH, pJJ2LB, pJJB, and pJJB2LB vectors. Most of the constructs 

also contained the β-glucuronidase reporter genes (GUS and GUSPlus) with a rice tubulin intron 

having splice donor and acceptor sites. The cauliflower mosaic virus 35S promoter (CaMV 35S) 

and transcriptional enhancer sequences (4x CaMV35S enhancer) was used for some the insertional 

mutagenesis vectors including pJJ2LBA. The constructs also contained phosphinothricin acetyl 

transferase selection (BAR) gene and others contained hygromycin phosphotransferase selection 

maker (HptII) under the control of maize ubiquitin promoter. The Zea Mays ubiquitin promoter 

with intron (ZmUbi) was also present in almost all constructs. Inverse PCR was used to sequence 

the DNA flanking the insertion sites in the mutants (Bragg et al. 2012). Additionally, the T-DNA 

regions of pJJ2LBP and pJJ2LBP2 vectors encompass “gene trap” sequences and adjacent to the 

left border these contain a promoter-less GUS gene and a promoter-less GFP gene is placed 

adjacent to the right border. If the T-DNA inserts downstream of the promoter on of the promoter 

genes will show expression pattern of the disrupted gene. The constructs also contain several splice 

sites adjacent to the reporter genes for allowing efficient splicing incase the T-DNA inserts into an 

https://jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium/brachypodium-t-dna-collection/
https://jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium/brachypodium-t-dna-collection/
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intron. This the T-DNA lines can potentially provide hints regarding the role of the disrupted gene 

to understand its function and identify promoters having useful expression patterns.  

The pJJ2LBA and pJJ2LBA2 vectors harbour transcriptional enhancers inside the T-DNA 

sequence. These are “activation tagging” constructs and are designed to enhance the nearby genes 

transcription. Significantly, the transcriptional enhancers were constructed to give overexpression 

with the same expression pattern, instead of constitutive expression, of affected genes. Activation 

tagging was particularly well suited to allocate function to genes with redundant functions where 

knockouts do not produce a phenotype in an individual family member. 

 

Figure 2.1 Promoters used for creating T-DNA mutations 

 

To optimize transformation efficiency an extensive evaluation of vectors made with various 

promoters, selectable markers and reporter genes was done. Considerable variation in the plant 

fertility, survival and efficiency of transformation depended on the construct used. 

Transformations using hygromycin selection produced constantly higher efficiency and survival 

as compared to those using BASTA. The promoter driving the selectable marker greatly affected 

the transformation efficiency showing the highest efficiency of the maize promoter (maize 

ubiquitin > CaMV 35S with a 5′ intron> CaMV 35S without a 5′ intron >> rice tubulin) as 

compared to the lowest efficiency of the rice promoter. Keeping in view time and ease of 
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evaluation, screening transformed tissue for GUS staining was rapid and more efficient than for 

GFP or RFP fluorescence. T-DNA vectors having two left border sequences produced 

transformants that yielded a higher rate of positively recovering sequence flanking the T-DNA 

insertion sites. Ac/Ds and En/Spm transposons showed function in Brachypodium, but were lethal, 

conceivably because they are too active. 

The current collection of the WRRC USDA updated on 11-2-2017 shows that the present lines in 

the T-DNA collection are 23,649 and the identified unique insertion sites stand at 25.977(Hsia et 

al. 2017). The T-DNA insertions assembly version V3.0 updated 3-18-2016 is available on the 

Brachypodium T-DNA website. For searching for insertions in specific genes on interest JBrowse 

can be used in Phytozome 

(https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_BdistachyonBd21_3_er) 

 

1.5 microRNAs 

MicroRNAs or miRNAs are small regulatory RNAs usually 20-24 nucleotide in length and are 

involved in the post transcriptional regulation of gene expression (Sunkar, Chinnusamy, and Zhu 

2007). miRNAs act in two ways to downregulate the expression of their target genes either by 

cleavage or by translational repression (Khraiwesh, Zhu, and Zhu 2012). miRNAs are involved in 

regulating gene expression both in animals and in plants (Guleria et al. 2011). To date a substantial 

number of miRNAs have been discovered and reported both in animals and in plants and are 

available in the online miRNA database (www.mirbase.org). miRNAs have been shown to be 

extensively involved in a large range of plant stress responses either pathogen or abiotic (Budak 

and Akpinar 2011), developmental conditions (Wu et al. 2009) a few being flowering (anther 

production) (Aukerman 2003), and in signal transduction (Sun 2012). 

 

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_BdistachyonBd21_3_er
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1.5.1 microRNA Biogenesis and Gene Mediated Regulation 

Primary transcripts of plant miRNAs are encoded by MIR loci that mostly reside in intergenic 

regions. Few plant miRNAs originating from intronic or exonic sequences of protein coding genes 

have also been reported (Colaiacovo et al. 2012; Liu 2012; Meng and Shao 2012; Rajagopalan et 

al. 2006), in addition to MIR loci located within Transposable Elements (TEs) (Kurtoglu, Kantar, 

and Budak 2014; Y. Li et al. 2011). Transcription from these MIR loci through the action of RNA 

polymerase II generates a primary transcript (pri-miRNA) that folds back into an imperfect hairpin 

structure (Voinnet 2009). The transcribed pri-miRNAs is stabilized by the addition of 5´ 7-

methylguanosine cap and 3` polyA tail, and by the help of additional proteins, such as Dawdle 

(DDL) that interacts with DCL1 (Xie, Zhang, and Yu 2015); in the absence of DDL activity, both 

pri-miRNA and mature miRNA levels drop (Yu et al. 2008). DDL protein likely has additional 

roles as Arabidopsis ddl mutants exhibited many developmental and reproductive defects (Morris, 

Chevalier, and Walker 2006). The fold-back structure of pri-miRNA is recognized by the members 

of the DCL family of ribonucleases. In the canonical route, DCL1 processes the pri-miRNA 

transcripts into stem-loop structures, called precursor miRNAs (pre-miRNAs), and subsequently 

catalyzes the release of the mature miRNA duplexes with 2-nt 3´overhangs from these pre-

miRNAs (Axtell, Westholm, and Lai 2011; Xie et al. 2015). The DCL1-mediated cleavage of the 

pri-miRNA is assisted by DCL1 interacting proteins, Hyponastic Leaves 1 (HYL1), Serrate (SE) 

and nuclear Cap-Binding Complex (CBC). While DCL1 and HYL1 are specific to the miRNA 

biogenesis machinery, SE and CBC have broader functions in mRNA metabolism (Voinnet 2009). 

The 3´overhangs of the mature miRNA duplex, or the miRNA/miRNA* duplex, are prone to 

uridylation by uridyl-transferases, marking the duplex for degradation by Small RNA Degrading 

Nuclease (SDN) proteins. The miRNA/miRNA* duplex is protected through 2´-O-methylation at 

the 3´ termini by Hua Enhancer 1 (HEN1) that prevents the action of exonucleases (Ramachandran 

and Chen 2008; Ren, Chen, and Yu 2015; Yu et al. 2005). The presence of HEN1 both inside the 

nucleus and in the cytoplasm suggests that methylation of the miRNA/miRNA* duplex can 

precede or follow the export of the duplex into the cytoplasm, which involves the mammalian 

Exportin-5 homolog HASTY (Axtell et al. 2011). However, Arabidopsis hst mutants did not 

accumulate miRNA duplexes inside the nucleus, raising the mammalian Exportin-5 homolog 

HASTY (Axtell et al. 2011). 
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Figure 2.2 miRNA biogenesis and mechanism of action pathway 

 

However, Arabidopsis hst mutants did not accumulate miRNA duplexes inside the nucleus, raising 

the possibility of novel export mechanisms that do not involve HASTY (Park et al. 2005). One of 

the strands, called the guide strand, of the mature miRNA duplex exported into the cytoplasm is 
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recruited to the members of the Argonaute (AGO) proteins, which contain an sRNA binding PAZ 

domain and an PIWI domain that carry out the endonucleolytic cleavage of the target gene. The 

thermodynamic stability of the 5´ of each strand partially determines the selection of the guide 

strand, which is also assisted by accessory proteins such as HYL1 (Rogers and Chen 2013). While 

AGO1 exhibit a preference for 5´uridine residue, AGO2 and AGO4 mostly associate with 

5´adenosine residues (Voinnet 2009). The guide strand bound by AGO proteins are then assembled 

into a functional RNA-Induced Silencing Complex (RISC) that drives the mRNA cleavage or 

translational repression of the target transcripts. 

 

1.5.2 Role of microRNAs in Stress Responses 

Plants being sessile organisms are under the full impact of environmental hazards and have thus 

evolved highly complex yet sophisticated responses to them in the form of molecular, 

physiological and even anatomical adaptations (Zhu, Ding, and Liu 2011). Amongst abiotic 

stresses drought salinity and heat have been widely studied and have been shown to be extensively 

involved in the transcriptional and post transcriptional regulation of an enormous number of genes 

in plants. From amongst this regulation of gene expression recent evidence has shed light on the 

regulatory role of plant miRNAs to abiotic stresses. The initial evidence for the association of 

miRNAs with plant stress came from a study on Arabidopsis thaliana under stress, showing the 

presence of miRNAs not identified previously in normal growth conditions (Jones-Rhoades and 

Bartel 2004). Currently thousands of plant miRNAs have been predicted and many of them have 

been experimentally verified as having roles in numerous plant abiotic stress responses.  

 

1.6 miRNA Studies in Brachypodium 

Sequencing analysis has been used recently in study of drought stress miRNA upregulation 

affecting leaves of Brachypodium distachyon. In the most recent study (Bertolini et al. 2013a) a 

drought assay was performed and the 3rd leaf of Brachypodium was grown in control and stress 

conditions and then generated small RNA libraries and subjected them to Illumina GAllX deep 

sequencing. Extensive analysis of the reads revealed higher representation of 21nt molecules in 

the libraries, and ad hoc bioinformatic analysis revealed 66 of Brachypodium miRNA loci present 

in the miRBase directory (www.mirbase.org) as well as identification of 28 new miRNA genes 

which belong to previously identified miRNA gene families. The study identified varying 

http://www.mirbase.org/
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members of miR167, miR5163, miR5167, miR5181, miR166, miR395, miR5174, miR156 and 

miR5185 families. Interestingly miR162, miR394, miR398, miR399 could not be predicted. These 

miRNA families belong to highly conserved families from which miR398 has been previously 

reported to be involved in ABA and salt stress in Arabidopsis and Populus tremula (Jia et al. 2009). 

More importantly they found 94 new novel Brachypodium specific miRNAs which were 

previously unidentified, and their precursors bore little similarity to miRBase precursor sequences. 

Upregulation ofmiR156 was observed in expanding cells depicting that the normal balance 

between cell number and size and being consistent with the miR156 SPL dependent drought 

response pathway. miR528 monocot specific miRNA was upregulated in expanding cells in 

drought. The miRCB167e locus may be significant. Among the miR167 family the 3’ star is unique 

and is expressed at levels similar to mature miRNA and both sequencing and RT-PCR confirmed 

these results. Similarly, the recently identified miRCB22-np2 is downregulated in proliferating 

cells in drought conditions and slightly in expanding cells. Tissue specific expression of miRNAs 

under drought conditions is still a poorly understood process with varying patterns. These studies 

were carried out in drought stress by microarray analysis in Brachypodium a model monocot 

temperate grass related to wheat. The expression levels of known miRNAs were quantified by 

qRT-PCR after 4 and 8 hour stress treatment. In this study three previously unreported miRNAs 

were identified miR1450, miR406, and miR188. In response to drought stress miR1850, miR390, 

miR170, miR1450, and miR1881 were upregulated. In leaf tissue under both stress treatments, 

increased upregulation of miR1850 was observed and the expression of miR528 was 

downregulated after 8-hour stress. In roots varying expression patterns were observed for both 

drought treatments. Only after 4 hours miR1450 was induced whereas miR406 was suppressed. 

Upregulation only upon 8-h was seen for miR1881 and miR170, and in leaf tissue miR390 was 

also induced in this drought stress time span. In both stress conditions miR390 was responsive 

(Unver and Budak 2009). In a similar study 438 miRNAs in drought treated leaf and tissues were 

expressed from which seven were dehydration stress responsive including miR896, and miR1867. 

Other drought responsive miRNAs were miR406, miR528, miR390, miR170, miR1850, and 

miR896. These dehydration responsive Brachypodium miRNAs were also detected in wild emmer 

wheat and barley(Budak and Akpinar 2011). In a next generation sequencing data analysis 

miRNA156 and miRCB159b were found highly abundant. miRCB159b was the most highly 

expressed miRNA whose targets included MYB65 and MYB33 transcription factors and 
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potentially Histidinol–phosphate transaminase. Other highly expressed miRNAs in drought were 

miR160a, miR166c, miRCB167e, miR168, miR169c, miR171d, miR396e, miRCB88, miRCB141. 

Tissue specificity was found in miR156 and miR396 families (Bertolini et al. 2013b).  

 

1.7 miR7757 

miR7757 has been newly identified and characterized as having major roles in abiotic and biotic 

stress over several plant species. In a study on regulation of alkaloid biosynthesis in the opium 

poppy it was observed that miR7757 is also expressed as one of the conserved microRNAs found 

by deep sequencing (Boke et al. 2015). In a study on Hordeum vulgare the conserved miRNAs in 

the diploid check variety showed the highest expression of miR7757 in the diploid check, with 

decreasing expressing in the diploid salt stressed, tetraploid check and the least expression in the 

tetraploid stress variety. Differential expression of miRNAs in the diploid and tetraploid varieties 

under salt stress showed that the expression of miR7757was detected but did not change under the 

diploid stress variety as compared to the diploid check variety and was not detected in the tetraploid 

stress variety versus the tetraploid check (Liu and Sun 2017). 

miR7757 has recently been studied in wheat. In a study involving the young spikes of common 

wheat Triticum aestivum under cold treatment the miR7757 was found to be cold responsive. 

Target prediction showed that miR7757 the Leucine-rich Repeat Receptor-like protein kinase 

family (LRR) also involved in disease resistance was targeted (Song et al. 2017). The microRNAs 

involved in embryonic development in the immature and mature embryonic calli in Triticum 

aestivum were studied. Deep sequencing of sRNAs of these embryo calli from Triticum aestivum 

showed that miR7757 family was one of the most abundantly expressed. miR7757 had the highest 

expression values for the non-differentially expressed and upregulated known miRNAs after 3 

days of culture. A significant fold change was observed after 6 days in the mature versus immature 

embryo.  

 

1.8 microRNA Overexpression and Studies 

In analytical methods used for downstream miRNA analysis, the microRNA activity is modulated 

by controlling miRNA expression. A sequence containing pre-miRNA is driven by the 35S 

promoter resulting in miRNA overexpression (Chen et al. 2010). Overexpression studies have 
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revealed numerous roles of miRNAs in regulating stress response tolerance. e.g. miR172 when 

overexpressed in Arabidopsis has been shown to influence early flowering and floral organ identity 

(Aukerman 2003). Furthermore, in another study it was seen that the overexpression of miR159a 

has been shown to postpone  

 

Figure 2.3 miRNA overexpression overview as depicted in Approaches to microRNA discovery, 
Nature Genetics (Berezikov, Cuppen, and Plasterk 2006) 

floral development resulting in smaller leaves than the wildtype plants (Achard et al. 2004). 

Similarly in transgenic tobacco in vascular development the overexpression of miR166 resulted in 

the men1 phenotype, a gain of function mutant of MIR166a (Kim et al. 2005). In nutrient stress 

miR399 was found to be upregulated, whereas its target gene E2, a ubiquitin-conjugating enzyme 

was downregulated in phosphorus deficiency, whereas the overexpression of miR399 in 

Arabidopsis suppressed the accumulation of the E2 transcript (Chiou, Aung, and Lin 2006). 

Furthermore the role of miR399 in enhancing phosphorus uptake was confirmed by the 

overexpression of miR399 resulting in the increase in phoshphorus accumulation (Fujii et al. 

2005). 
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1.9 Overexpression in Drought Studies 

Drought stress is one of the most abiotic stress factors affecting crop yield drastically worldwide. 

Various miRNAs have been identified and characterized under drought stress in numerous plant 

species. The role of miRNAs in drought stress is therefore of consequence in understanding plant 

stress tolerance. Many studies overexpressing miRNAs, their target genes and transcription factors 

have been undertaken e.g. in drought stress the overexpression of miR169 resulted in increased 

water loss and thus more sensitivity to drought (Li et al. 2008). In wheat and Arabidopsis the target 

gene of miR408, was found to be the plantacyanin TaCLP1. This gene was overexpressed in 

Schizosaccharomyces pombe which showed increases resistance to high salinity, Cu2+ stress and 

stripe rust (Feng et al. 2013). In rice a drought-hypersensitive mutant phenotype dsm2 was created 

through T-DNA insertion in the putative gene for b-carotene hydroxylase- a gene for zeaxanthin 

biosynthesis, a precursor of ABA. The overexpression of DSM2 lead to high drought and oxidative 

stress resistance by increase in the xanthophylls, upregulation of stress related ABA genes and 

non-photochemical quenching (Du et al. 2010). In another study for increased drought tolerance 

in Arabidopsis thaliana the overexpression of RING H2 E3 ligase RHA2a- a positive regulator for 

ABA signalling showed ABA hypersensitivity resulting in physiological adaptations (reduced 

water loss, greater stomatal closure) for increased drought tolerance (H. Li et al. 2011). Similarly, 

in other studies in drought tolerance, homologous U-box E3 ubiquitin ligases AtPUB18 and 

AtPUB19 were shown to be involved in negative regulation of abscisic acid through 

overexpression tests. This resulted in higher stomatal closure and water stress responses. Their 

ABA-dependent and ABA independent roles both were elucidated by overexpression studies in 

different mutant phenotypes. (Seo et al. 2012). In AtTRE1 overexpressing mutant lines lower 

trehalose levels showed better recovery after drought stress and increased water retaining 

capacity.(Van Houtte et al. 2013). The overexpression of MYB15, a promoter of the MYB gene 

encoding transcription factor R2R3 MYB encoding gene was previously shown using the floral 

dip method, to confer improved drought and salt tolerance through increased sensitivity to abscisic 

acid in Arabidopsis thaliana. (Ding et al. 2009). More specifically related to miRNA studies, a 

miRNA target gene gma-MIR394a was overexpressed in Arabidopsis which reduced the transcript 

level of the miR394 complementary site target. (Ni et al. 2012).  
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2 Materials and Methods 

 

2.1 Production of Immature Embryos from Bd21-3 Wildtype and miR7757 T-DNA Mutant 

Plants 

The tillers from 10 week old Bd21-3 plants were collected when the immature seeds were swollen 

but still green. The immature seeds with soft endosperm were selected, the lemma was removed 

sterilized and rinsed as previously described above in section 2.6.1 for mature seeds. The immature 

embryos up to and including 0.3mm in length were isolated from seeds using fine forceps and a 

stereomicroscope under sterile conditions in the laminar flow hood. 15 immature embryos were 

cultured per plate scutellum facing up onto MSB3 Cu0.6 solid medium plates for 3 weeks at 25oC 

in the dark. The shoots were excised with surgical scissors under sterile conditions during the first 

3 days of culture. At week 3 the compact embryonic callus with a creamy colour and pearly surface 

was fragmented into 3 pieces and transferred onto fresh MSB3 + Cu0.6 solid medium (16 calli per 

plate) and grown for another 2 weeks at 25oC in the dark. All non-CEC tissue was discarded. At 

week 5 the CEC with a creamy colour and pearly appearance was split into further 4-6 pieces and 

transferred onto fresh MSB3 + Cu0.6 solid medium (16 calli per plate) and grown for another week 

at 25oC in the dark. At week 6 this step was repeated for one last time and 50-100 CEC pieces 

were placed on fresh MSB3+Cu0.6 solid medium before inoculation with Agrobacterium.  

 

2.2 RNA Isolation, DNase Treatment and Gel Electrophoresis  

RNA isolation was done according to the protocol given by Life Technologies AMbion RNA 

Trizol Reagent manual. 0.3g of root tissue, and separately 60µg of leaf tissue was each 

homogenized in 1.7ml of Trizol (1700µl+500µl). 1ml of this mixture was transferred to a 2ml tube 

and kept on ice. 400µl chloroform was subsequently added and shaken by hand (vigorously invert 

for 15 secs) then incubated at room temperature for 7 minutes. The tubes were then centrifuged 

for 15 minutes at 11400 rpm at 4oC and the supernatant transferred to a new tube. 500µl of 

isopropanol was added and incubated at room temperature for 10 minutes. The tubes were then 

centrifuged for 10 minutes at 11400 rpm at 4oC. The pellet was washed with 1ml 75% DEPC 

treated ethanol. Centrifugation was done for 5 minutes at 9000 rpm at 4oC. The pellet was dried 
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for 10 minutes. To dissolve the pellet 30-50µl RNAse free water was added and the RNA pellet 

was kept at 55oC for 1 hour. Nanodrop measurement was done to check the RNA yield. After 

obtaining the desired 20µg to 50µg of RNA, DNAse treatment was proceeded. For DNase 

treatment the RNA was suspended in the DNAse treatment solution which contained 5µl of 

10xbuffer, 20µl of RNA, 0.5µl of RNAse out (40µl/µl), 2µl of DNAse I, 12.5µl of distilled H2O 

(to complete the volume up to 50µl with water). After mixing everything, the tubes were placed in 

waterbath at 37oC. 2.5ul of EDTA-DEPC (50mM) was added. The tubes were placed in 80oC heat 

block for 10 minutes then immediately put on ice. 50µl plus 2.5µl of EDTA-DEPC made a total 

volume of 52.5ul to which 1/10 of total volume of NaOAC was added in this case 5.25µl. 

2Volumes of total EtOH was added in this case 105.5µl. It was held in -80oC for 30-40minutes. It 

was then centrifuged at 13000rpm for15 minutes at 4oC and then the supernatant was discarded. 

1ml of 70% EtOH was add and centrifuged again at 1300rpm for 5 minutes. The supernatant was 

discarded, and tubes left to dry for 5 minutes. The RNA was dissolved in 10-20µl DEPC water 

and placed at 55oC for 10 minutes. The concentration of RNA was rechecked on the nanodrop and 

a gel was run to check the integrity of the RNA. For running the gel 2µl of samples was taken and 

8ul of DEPC water was added and heated at 65oC for 10minutes. The tubes were then cooled on 

ice for 2 minutes, then and 2µl (6X) loading dye was added making the total volume 12µl which 

was loaded onto the gel.  

 

2.3 Native Page Gel Electrophoresis 

After DNA treatment to have a clear image of the RNA purity native PAGE was performed by 

making 6% PAGE gels. 3ml of acrylamide, 3ml of 5X TBE, 7ml of water, 20µl TEMED, and 

200µl of APS was added. (TBE formula was 10X TBE buffer made by adding 108g Tris Base, 

55g Boric Acid, 40ml 0.5M EDTA (pH 8.0) Autoclave). 5µl of all RNA samples were loaded from 

the DNAse treated stock RNA solutions.  

 

2.4 cDNA Synthesis by Reverse Transcription 

For qRT-PCR the protocols from Bertolini et al 2013 and Varkonyi-Gasic et al 2007 were 

followed. Stem loop primers for reverse transcription were designed according to Varkonyi-Gasic 

et al 2007. cDNA synthesis was done by adding 1µl RNA (100ng/µl), and 1 µl of 1µM stem loop 
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RT primer to 9µl DEPC treated water. After a 5 minute incubation at 70oC, the samples were 

chilled on ice for 2 minutes. In a PCR tube 4µl of 5X reaction buffer, 2µl of 10mM dNTPs, and 

0.5µl of 40U/µl Ribolock RNase inhibitor was added and the volume was made upto 19µl with 

the addition of DEPC treated water and put for incubation for 37oC for 5 minutes. After incubation 

1µl of 200U Thermoscientific RevertAid Reverse Transcriptase enzyme was added and reverse 

transcription reaction was started for 30 minutes at 16oC, 30 seconds at 30oC for 60 cycles, 30 

seconds at 42oC, 1 second for 50oC and 10 minutes at 70oC. Reaction resulted in 5ng/µl cDNA. 

 

2.5 Semiquantitative and Quantitative qRT-PCR for miR7757 Expression Level Analysis 

End point PCR was subsequently performed. In a microcentrifuge tube 15.4µl nuclease free water, 

2µl of 10X PCR buffer, 0.4 µl of 10mM dNTP mix, 0.4 µl of 10µM forward primer and 0.4 µl of 

10µM reverse primer and 0.4µl Taq Polymerase mix. Then 1µl of RT product was added to this 

mixture. The endpoint reaction was placed in a preheated 94oC thermal cycler and the endpoint 

PCR reaction was set as 94oC for 2 minutes, 20, 30, 40 cycles at 94oC for 15 seconds and 1 minute 

at 60oC. The reaction products were analysed by gel electrophoresis on a 4% agarose gel in 1X 

TBE. Normal leaf sample was taken as a reference point and the change in expression in drought 

leaf, normal root and drought root was analysed relative to the normal leaf expression. 

The expression levels of miR7757 were measured by semiquantitative and quantitative RT-PCR. 

Forward primers were designed and universal reverse primers selected according to the protocol 

of Varkonyi-Gasic et al 2007. qRT PCR was perfomed with PerfectaSYBR® Green PCR mix. 

Each reaction volume was 20µl with 3 replicates. One reaction contained 1.5ng cDNA, 0.4 µl of 

10µM forward primer, 0.4 µl of 10µM universal reverse primer and 10 µl of 2X Quanta SYBR 

Green SuperMix. Control samples included no reverse transcriptase (no-rt) and no RNA (no-

RNA). The qPCR real time reaction was set as 95oC for 2 minutes, 40 cycles for 5 seconds at 95oC, 

annealing at 60oC for 15 seconds, 70oC for 15 seconds, 95oC for 1 minute and finally 1 minute at 

55oC. MiR7757 was tested in normal leaf (NL), drought leaf (DL), normal root (NR) and drought 

root (DR) condition samples. The samples were run on the BioRad CFX96 Real Time System 

(BioRad). Fourteen different miRNAs were tested and 5.8s ribosomal RNA was used as the 

internal standard (Shi and Chiang, 2005; Xue et al., 2009). The reverse primer used is the Universal 

Primer provided with the kit, while forward primers each correspond to the entire sequence of the 

miRNAs tested; all primers used are listed Appendix D. Reaction efficiencies of RT–qPCR assays 
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for each individual miRNA/primer were determined using a fourfold dilution series of leaf cDNA 

and generating a standard curve plotting the cDNA concentration versus the corresponding Ct 

(Threshold cycle). Efficiency was calculated from the slope of the standard curve, using the 

BioRad CFX Manager Software. Relative quantification of each miRNA tested was calculated 

from Ct value, using the 2–ΔΔCt method, directly with the BioRad CFX Manager Software 

(Bertolini et al. 2013b) 

 

2.6 Bioinformatic Analysis of T-DNA Insertion Sites with Brachypodium miRNA Database 

The complete list of T-DNA lines indexed by their  flanking sequence tags was downloaded from 

the online Joint Genome Institute T-DNA Brachypodium resource website 

(https://jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium/brachypodium-

t-dna-collection/). The table of mutants in the WRRC Brachypodium Distachyon T-DNA 

insertional mutant population version 09/10/13 was used. The insertion sites for all the mutants 

was selected. The summary of the complete list of Brachypodium distachyon microRNAs 

submitted to the miRbase version 20 was selected (http://www.mirbase.org/cgi-

bin/mirna_summary.pl?org=bdi). By an in-house MATLAB code, the insertion sites of the T-DNA 

mutants were compared with the Brachypodium miRNAs start and end sites, and the miRNAs in 

which the T-DNA insertion site hit were selected.  

 

2.6.1 Selection of miRNA Hits 

5 miRNAs were found to contain the insertion sites of the T-DNA mutants. These miRNAs were 

selected and blasted on the T-DNA blast provided on the Joint Genome Institute T-DNA 

Brachypodium resource website. 

 

https://jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium/brachypodium-t-dna-collection/
https://jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium/brachypodium-t-dna-collection/
http://www.mirbase.org/cgi-bin/mirna_summary.pl?org=bdi
http://www.mirbase.org/cgi-bin/mirna_summary.pl?org=bdi
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2.7 T-DNA Genotyping with Multiplexed and Non-multiplexed Screening 

To confirm the bioinformatic results of the MATLAB code and T-DNA blast search an 

experimental verification was performed. The T-DNA insertion mutants for Brachypodium 

.distachyon (pre-ordered from the USDA-ARS-WRRC T-DNA collection) were planted in the 

green house (16 h light, 24oC /8h dark, 18oC) as described above. We used the T-DNA genotyping 

protocol provided by Vogel lab on the T-DNA collection website 

(http://1ofdmq2n8tc36m6i46scovo2e-wpengine.netdna-ssl.com/wp-content/uploads/2015/05/T-

DNA-genotyping.pdf) with pre-designed T-DNA left border primer T3 and primer R9. According 

to their instructions pre-miRNA Gene Specific Primers (GSP) 1000bp apart, 500 bases on either 

side of the putative insertion site for pre-bdi-miR390a, pre-bdi-miR5049, pre-bdi-miR7716, pre-

bdi-miR7757, and pre-bdi-miR169d were designed. 

 

2.7.1 DNA Isolation from Brachypodium Mutant Lines 

DNA from the plants after 5 weeks of growth in the greenhouse were taken, from which DNA was 

isolated (Bragg et al. 2012) and amplified by PCR for T-DNA selection. 2 young leaves, 3 inches 

in length, chopped into small lengths were put in liquid nitrogen. Steel beads were added to the 

tubes and the plants were keep it in -80oC and then transferred to liquid nitrogen for handling. 

Directly after freezing the tissue was ground at 30 cycles per minute for 1 minute. This step was 

repeated for 5 times. Before opening the tubes, the tubes were centrifuged at 4000rpm for 20 

minutes at 4oC. 800µl of extraction buffer 1 was added to the ground tissue and incubated for half 

an hour-1 hour at 65oC with intermittent mixing every 5-10 minutes. Then the tubes were 

transferred to ice for 15 minutes before centrifuging at 4000 rpm for 5 minutes at 4oC. Afterwards 

400µl of 6M ammonium acetate was added and the tubes were inverted several times then put on 

ice for 15 minutes. Then centrifuged at 4000 rpm for 15 min at 4oC. 900µl of the supernatant was 

then transferred to another tube containing 540µl isopropanol. The tubes were then placed on -

20oC for half an hour to precipitate out the DNA, then the tubes were centrifuges at 4000 rpm for 

30min at 4oC. The supernatant was decanted, tube was air dried for a while. Next the pellets were 

washed with 1ml of ethanol and centrifuged at 4000rpm for 20min at 4oC. Pellets were dried in 

the hood overnight and resuspended in 125ul TE buffer. To dissolve the DNA the samples were 

placed at 4oC overnight. 
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2.7.2 Amplification of T-DNA Sequence by Multiplex PCR 

A three-primer multiplex PCR given by the Vogel T-DNA Genotyping Protocol was used to screen 

for mutants in the selected miRNA lines. In this PCR 3 different reactions were setup. First reaction 

had gene specific forward (GSP Fwd) and gene specific reverse primers (GSP Rev) primers. 

Reaction 2 had the GSP Fwd + GSP Rev + T-DNA LB, in which both the T3 Left Border primer 

and separately the R9 Left border primer were used in two separate reactions. Reaction 3 

comprised only of the T-DNA LB in which both the T3 Left Border primer and separately the R9 

Left border primer were used in two separate reactions. A single reaction mixture for a 50ul 

reaction contained 18.75 µl of PCR Grade water for 3 primer reaction (GSP Fwd + GSP Rev + T-

DNA LB) 20.25 µl for 2 primer reaction (GSP Fwd/GSP Rev + T-DNA LB), 21.75 µl for 1 primer 

reaction (only T-DNA left border primer, either T3 or R9), 0.25µl of 5U/µl KAPA polymerase, 

5µl of 10X buffer A, 5µl of 10mM dNTPs, 4µl of 25mM MgCl2, 1.5µl of 10mM Forward Primer, 

1.5µl of 10mM Reverse Primer, 1.5 µl of 10mM T-DNA Primer and 12.5µl of the template DNA 

from 20ng/µl. The PCR program used was 30 cycles with initial denaturation at 95oC for 3mins, 

denaturation at 95oC for 30 seconds, annealing was at 59oC for 30 seconds, extension was at 72oC 

for 1min/kb and final extension was at 72oC for 1min/kb. 

 

2.8 Amplification of T-DNA Sequence by Non-Multiplexed PCR 

To confirm the T-DNA orientation of the PCR product from the mutliplex PCR a non-

multiplexed PCR was performed. 4 reactions were set up for the gene specific primers with the 

left border T-DNA primers. Reaction 1 contained the GSP Fwd + R9 T-DNA LB primers. 

reaction 2 had GSP Rev + R9 T-DNA LB, reaction 3 had GSP Fwd + T3 T-DNA LB, and 

reaction 4 had GSP Rev + T3 T-DNA LB. PCR conditions for a single 50µl reaction were 0.25µl 

Taq Pol, 5 µl Taq Pol PCR buffer, 5µl of 2mM dNTPs, 4 µl of 25mM MgCl2, 1.5µl of forward 

primer, 1.5µl of reverse primer, 1.5µl of T-DNA primer (T3/R9), 12.5 µl of 20ng/µl template 

DNA and 18.75 µl water. The PCR program was the same as for the multiplex PCR. 
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2.9 Gel Electrophoresis and Gel Extraction 

1% Agarose gel, 1g in 100ml TBE Buffer (0.5X) was prepared. The gel running time was 60 min 

at 100 volts. BIORON 1 kb DNA Ladder 250 µg, with no stain Cat.-No. 305025 was used as a 

ladder. Gel extraction of the T3tDNA+Reverse primer and T3tDNA+R+F primer products was 

performed with the QIAquick gel extraction kit as per the manual’s instructions. It was checked 

on the nanodrop for DNA concentration and on agarose gel for DNA integrity. 

 

2.10 PCR Product Purification and Sequencing 

For PCR product purification the QIAGEN QIAquick PCR Purification Kit (Catalog No. 28104) 

was used. Ethanol was added to the Buffer PE before use. 1:250 volume of pH indicator 1 was 

added to Buffer PB. 5 volumes of Buffer PB to 1 volume of the PCR reaction was added and 

mixed. 10ul of 3M sodium acetate pH 5.0 was added and mixed making the colour of the mixture 

yellow. A QIAquick column was placed in the provided 2ml collection tube and the DNA applied 

to the QIAquick column to bind the DNA. The flowthrough was discarded and the QIAquick 

column was placed back in the same tube. For washing 0.75ml of Buffer PE was added to the 

QIAquick column and centrifuged for 30-60 seconds. The flowthrough was discarded and the 

QIAquick column was placed back in the same tube and centrifuged once more in the 2ml 

collection tube for 1 minute to remove the residual wash buffer. The QIAquick column was then 

placed in a clean 1.5 ml microcentrifuge and 50ul of Buffer EB was added to the center of the 

QIAquick membrane and the column was let to stand for 1 minute and centrifuged for 1 minute. 

The purified samples were sent for sequencing to Ref Gen Biotechnologies, Ankara. SeqTrace 

Program was used to analyze the sequenced products. 

 

2.11 Target Analysis of miR7757 

miR7757 in silico target prediction was performed. The Brachypodium coding sequence was 

downloaded from the plant genome database 

(http://www.plantgdb.org/XGDB/phplib/download.php?GDB=Bd). The coding sequence file 

chosen was Bdistachyon_192_cds.fa.bz2. The online program used for microRNA target 

prediction psRNATarget was used (http://plantgrn.noble.org/psRNATarget/analysis?function=3). 

All 4 variants of miR7757 (5p.1, 5p.2, 3p.1, 3p.2) were taken from miRbase 

http://www.plantgdb.org/XGDB/phplib/download.php?GDB=Bd
http://www.plantgdb.org/download/Download/xGDB/BdGDB/Bdistachyon_192_cds.fa.bz2
http://plantgrn.noble.org/psRNATarget/analysis?function=3
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(http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0025377). The sequences of the variants 

are in Appendix G. These were submitted to psRNA target with the score cut off set at 2.5 

(according to Bertolini et al 2013). Only bdi-miR7757-5p.1 gave hits, these hits were then blasted 

to the ncbi blastx Non Redundant Protein Sequences (nr) database to find putative target proteins 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch). The 

result for each of the 8 target hits were analysed separately. Additionally, only the plant hits were 

taken. The data was sorted on the basis of query coverage, length, plant species and lowest e values. 

The putative targets from Brachypodium distachyon were selected separately from each of the 8 

target hits (Table 3). Likewise blast highest score targets from Brachypodium-related plant species 

were analysed separately 

 

2.12  Gateway BP-LR Cloning 

2.12.1 Design of Gateway Cloning Primers for miR7757 

For designing att primers we used the alternate transcript intron sequence to afterwards have 

subsequent GFP expression too. The pre-miR7757 sequence of Brachypodium distachyon Bd21 

genotype was downloaded from the microRNA database miRbase (20th release, June 2013). The 

whole genome sequences of Bd21 genotype of Brachypodium distachyon and sequences upstream 

and downstream the Bd21 chromosome 2 genomic scaffold were downloaded from the Plant 

Genome Database (http://www.plantgdb.org/BdGDB/). miR7757 sense strand (miRBASE 

premiRNA sequence: Accession MI0025377 was used for primer design. The attachment primers 

were designed according to instructions from the Gateway Cloning Manual (ThermoScientific) 

checked for checked for 3' stability (2 G-C in the last 3bps; no more than 3 G-C in the last 3bps; 

Tm no more than 67oC; idt for hairpin/selfdimer/crossdimer - however dimer occurs.) The primers 

were selected 395 bp upstream of the start of the pre-miRNA sequence of miR7757. The created 

primers were blasted to the Brachypodium genome to confirm that the primers hit only one location 

in the whole genome. 
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2.12.2 Amplification of miR7757 Sequence from Wildtype Brachypodium with Attachment 

Sites 

For the amplification of miRNA sequence with attachment overhangs the Taq polymerase PCR 

protocol was optimized for 10µl. For a single reaction 1µl of 10X PCR buffer, 0.8µl of MgCl2, 

0.2µl of 10mM dNTPs, 0.25µl of 10 µM Forward Primer, 0.25µl of 10µM Reverse Primer, 0.03µl 

of Taq Polymerase, 2µl of 30ng/µl template DNA (final conc.) and 5.47µl nuclease free water was 

used for to make up the total volume reaction as 10µl. The PCR Program for this was initialization 

at 95oC for 5 minutes, denaturation at 95oC for 1 minute, annealing at 52oC for 1 minute, extension 

at 72oC for 1 minute, then final extension at 72oC for 7 minutes. The final hold was at 4oC. 

 

2.12.3 Gel Electrophoresis and Purification of att PCR Products 

1.5% gel in 0.5X TBE was prepared and the gel ran for 30 minutes. The DNA ladder used was 

GeneRuler DNA ladder Mix (SM0331) The PCR product was amplified, purified and gel extracted 

with QIAgen gel extraction kit and sent for sequencing to RefGen Ankara 

2.12.4 Preparation of Competent Cells 

Tu et al 2005 improved protocol for followed without any alterations and slight upscaling. A 25µl 

fresh overnight culture of OmniMax cells (Thermo Scientific) and DH5α (without F’ episome) 

each was added to 100µl of LB broth each. This culture was incubated for 1hr at 37oC. It was 

transferred to a mixer shaker at 200rpm at 37oC for 2-3 hours until the OD was 0.2-0.4. The 100µl 

cells were transferred to 50µl falcon tubes and left on ice for 10 minutes, centrifuged at 4500 rpm 

at 4oC for 5 minutes. The supernatant was discarded, and cells resuspended in half volume 25µl of 

sterile cold TB (PIPES, MnCl2, CaCl2, KCl solution) and incubated on ice for 25 minutes. After 

centrifugation as above the cell pellet was resuspended in 5 ml (one tenth) volume to create the 

final cell suspension. 200µl of competent cells were transferred into microcentrifuge tubes and 

immediately put into liquid nitrogen. To check whether the cells were competent the bacterial 

transformation of the competent cells was done according to the protocol provided by Tu et al. LB 

agar plates and LB agar plates with ampicillin to a final concentration of 100µl/ml were prepared. 

These were preheated to 37oC for an hour. In 200µl of competent 1µg/µl plasmid DNA 2µl was 

added and 2 µl of DMSO was also added. The reaction was incubated on ice for 30 minutes, then 

given a heat shock for 90 seconds at 42oC, and immediately put on ice for 2 minutes. Afterwards 

400µl of liquid SOC medium was added and tubes incubated at 37oC for 2 hours in an incubator 
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shaker for 1 hour. The tubes were centrifuged briefly and 50µl each was taken from the bottom of 

the tubes and spread onto the LB plates and the LP plate with ampicillin. The plates were incubated 

overnight for 16 hours overnight at 37oC. 

 

2.12.5 BP Reaction 

BP cloning was performed according to the Gateway Cloning Systems Protocol (Catalog no 12535 

– 029) at 25oC and given 10 hours of incubation. Competent OmniMax E. coli cells were 

transformed for the positive sample and competent DH5α E. coli cells for the negative, positive 

and pUC19 cells. The following components were added to the sample, positive and negative 

respectively. 5µl of att-PCR product, 1µl of pDONR vector (150ng/µl), and 2µl of TE buffer was 

added to the sample. To the positive control 1µl of pDONR, 2µl of pEXP7-tet positive control 

(50ng/µl) and 5 µl TE buffer pH 8.0 was added. In the negative control 5µl of att-PCR product, 

1µl of pDONR vector (150ng/µl) and 4µl of TE buffer were added each to 1.5ml centrifuge tubes 

at room temperature and mix. The Gateway® BP Clonase II enzyme was taken from -20oC and 

thawed for 2min on ice, vortexed briefly twice and 2µl of it was added to the sample and positive 

control vials. The reactions were incubated for 10 hours. 1µl of proteinase K solution was added 

to all reactions and incubated for 10 minutes at 37oC. Next the competent cells were transformed.  

2.12.5.1 DH5α chemical transformation protocol 

1 vial of DH5α chemically competent cells was thawed on ice for each transformation. 1µl of BP 

recombination reaction was transferred into each vial of competent cells and mixed gently without 

pipetting. 10pg (1µl) of pUC19 control DNA was added into a separate vial of competent cells and 

gently mixed. The vials were incubated on ice for 30 minutes. A 30 seconds heat shock at 42oC 

was given to the cells without shaking, then placed on ice for 2 minutes. 250µl of SOC medium 

was added to each vial capped tightly and incubated on a horizontal shaker 225 rpm at 37oC for 1 

hour. Before plating the transformation, mixture was diluted 1:10 into LB Medium. 20µl and 100µl 

of each transformation mixture was spread on a prewarmed selective plate and incubated overnight 

at 37oC. 

2.12.5.2 M13 primers colony PCR 

Colony PCR was performed in order to confirm the insertion of att:MIR7757. 4µl of water was 

taken, a tip of colony cells was added, (then inoculated LB broth for subsequent plasmid isolation). 
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2 µl of the colony mixture was added to the PCR reaction. The Taq Polymerase Colony PCR 

Protocol was optimized for 15µl reaction. 1.5µl of 10X PCR buffer, 1.2µl of MgCl2, 0.3µl of 

10mM dNTPs were added, 0.4µl of 10µM Forward Primer and Reverse Primer each, 0.05µl of 

Taq Polymerase and 11.87µl of nuclease free water was added to make the total reaction volume 

15µl. To lyse the bacterial colony a pre-incubation was performed at 95oC for 10 minutes, the cells 

were kept at 10oC for 10 minutes. The PCR cycle initialization was at 95oC for 5 minutes, 

denaturation was at 95oC for 30s, annealing 50oC for 30s, extension was at 72oC for 1min and then 

the final extension was at 72oC for 10 minutes. The final hold was at 4oC. The number of cycles 

was 35. 

 

2.12.5.3 miR gene specific colony PCR 

Protocol used for MIR gene specific colony PCR was Taq Polymerase protocol optimized for a 

50µl single reaction. 5µl of 10X PCR buffer, 4µl of MgCl2 and 1µl of 10mM dNTPs, 1µl of 10µM 

forward primer and reverse primer each was used. 0.5µl of Taq Polymerase, 5µl of 50ng/µl DNA 

(final concentration), 32.5µl of nuclease free water was added to make the total volume reaction 

50µl. The PCR Program for this was initialization at 95oC for 3 minutes, denaturation at 95oC for 

30s, annealing at 52oC for 30s and extension at 72oC for 1 minute. Then final extension was at 

72oC for 10 minutes with final hold at 4oC 

 

2.12.5.4 Plasmid DNA isolation from transformed Escherichia coli cells. 

Plasmid isolation was performed with samples 2, 4, 6, 7 with the Roche HighPure Plasmid 

Isolation kit with freshly added RNase A. The protocol followed was as per the user’s instructions. 

The binding buffer was placed on ice. 2ml of bacterial cells were pelleted from 2 ml (O.D A600 per 

ml) of E. coli culture. The supernatant was discarded and 250µl of suspension buffer + freshly 

added RNase was added to the tube containing the bacterial pellet and resuspended well. 250µl of 

lysis buffer was added and mixed gently by inverting 3-6 times. The tubes were incubated for 5 

minutes at room temperature. The lysed solution was treated with 350µl of chilled binding buffer 

and gently inverted 3-6 times and incubated. It was incubated on ice for 5 minutes until it became 

a cloudy and flocculent precipitate. The tubes were then centrifuged for 10 minutes at 13000g. 

then the supernatant was out into a High Pure Filter tube inserted into a collection tube and 

centrifuged for 1 minute at 13000g. The flow through was discarded and 700µl of wash buffer was 
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added to the upper reservoir of the filter tube. The tube was centrifuged for 1min, the supernatant 

discarded, the empty tube recentrifuged for one minute again and the collection tube was discarded. 

The filter tube was then inserted into a clean sterile 1.5ml microcentrifuge tube. 100µl of elution 

buffer was added to the upper reservoir of the collection tube and the tube assembly was 

centrifuged for 1 minute at full speed. The DNA was directly stored at -20oC. 

 

2.12.5.5 Transformation of Plasmids from LR reaction into Escherichia coli 

LR cloning was performed according to the Gateway Cloning Systems Protocol (Catalog no 12535 

– 029) and competent DH5α E. coli cells were transformed all reactions. The following 

components were added to the sample, positive and negative respectively. 5µl of entry clone (50-

150ng/reaction), 1µl of destination vector (150ng/µl) and 2µl of TE buffer, pH 8.0 was added to 

the sample vial. 5µl of entry clone (50-150ng/reaction), 1µl of destination vector (150ng/µl) and 

4 µl of TE buffer pH 8.0. In the positive control there is 1µl of destination vector and 2µl of 

pENTR™-gus (50ng/µl) and 5µl of TE buffer. The Gateway® LR Clonase® II enzyme mix was 

thawed on ice for 2 minutes and briefly vortexed for 2 seconds twice. 2µl of Gateway® LR 

Clonase® II enzyme mix was added to the sample and positive vials and mixed well by vortexing 

for 2 seconds twice. The reactions were incubated for 10 hours at 25oC. 1µl of proteinase K 

solution was added to each reaction and incubated for 10 minutes at 37oC. The DH5α competent 

E. coli cells were transformed the same way as in the BP reaction protocol by the transformation 

Protocol described in 2.2.12.5.1 Plasmid Isolation was also the same as above mentioned. The 

purified DNA was sent for sequencing. 

 

2.13 SEM analysis of leaf blades 

7cm leaf blades from mature plants of T-DNA mutant jj15278 and wildtype Bd21 plants were 

taken. The leaves were placed on glass slides and cut to 5cm long and covered with glass cover 

and left to dry for 3 days. After air drying 1cm pieces were cut with surgical razor and mounted 

on SEM sample holder. To avoid surface charging, the specimens were carbon coated and then 

mounted into the SEM chamber for visualization. The morphology of the leaf blades was examined 

by secondary electron imaging in a scanning electron microscope (JEOL, JSM-6010LV) using an 

accelerating voltage of 3KV. 



58 
 

 

2.14 Agrobacterium tumefaciens Transformation into Brachypodium Compact Embryonic 

Callus 

 

2.14.1 Transformation of Destination Clones into Agrobacterium tumefaciens cells 

According to the sequencing results obtained. 4 distinct clones were chosen to transform the AGL1 

strain of Agrobacterium tumefaciens. According to the protocol for transformation (Wise, Liu et 

al 2006) 100µl of competent AGL1 strain of Agrobacterium tumefaciens cell stocks stored at -

80oC were thawed on ice and 1µg of destination clone was added to each tube, covered with 

aluminum foil and incubated in liquid nitrogen for 5 minutes, then at 37oC in water bath to provide 

heat shock. Cells were transferred to 10ml tubes and 2ml LB medium was added and incubated 

with shaking 140rpm at 28oC for 3 hours. Then the cells were centrifuged for 5 minutes at 4000rpm 

and the pellet was resuspended in 500µl LB medium. 20µl and 100µl of resuspended cells were 

plated on 200µg/ml carbenicillin and 100ug/ml kanamycin agar plates. Finally, the petri plates 

were incubated at 28oC for 15 hours.  

 

2.14.2 Plasmid DNA Isolation from Agrobacterium tumefaciens Cells 

The same plasmid isolation protocol was used as in part 1.1.4.6.4 except that a 10ml starting culture 

was used in place of a 4 ml starting culture. The isolated Agrobacterium plasmids were sent for 

sequencing. 

 

2.14.3 Preparation of Agrobacterium tumefaciens Infection Inoculum 

5µl of Agrobacterium (AGL1 strain) carrying the vector was inoculated into a 1ml of LB+ S50 

liquid medium. It was left to grow overnight in an incubator-shaker at 28oC and 200 rpm. 200µl 

of this overnight culture was plated onto solid MGL+S50+AS30 media using a sterile spreader. 

The plates were cultured upside down for 2 days at 28oC in the dark (Alves et al. 2009).  

 

2.14.4 Transformation of Brachypodium by Callous Embryonic Culture 

From the cultures plate half of the Agrobacterium layer was scraped from the surface. The end of 

the spreader covered with Agrobacterium was broken into a 50ml disposable sterile tube 

containing 10 ml of MSB+AS45 liquid medium and strongly shook by hand to resuspend the 
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Agrobacterium. The suspension was put for 45minutes at 220rpm in a 28oC incubator to ensure 

dispersion of Agrobacterium. The optical density of the cell suspension was measured at 600nm 

and diluted to OD 1 with MSB+AS45. The CEC plates were flooded with 13ml of Agrobacterium 

culture and inoculated for 5 minutes at room temperature in a laminar flow hood. The bacterial 

suspension was pipetted out completely from the CEC plates and each callus was handpicked 

directly into a dry sterile filter paper in an empty petri dish. The CECs were left uncovered under 

the laminar flow for 7 minutes for desiccation treatment. Next these CECs were cocultured on 

MSB3+AS60 medium plates for 2days at 25oC in the dark to produce 50-100 calli per plate. 

 

2.14.5 Selection of Transformed Calli with GFP and PPT 

The cocultured CECs were transferred onto MSB3 +Cu0.6+H4O+T225 solid medium (20 calli per 

plate). Culture for 3 weeks at 25oC in the dark. Three weeks after transformation the CEC growing 

on phosphinothricin were screened for the presence of small bright GFP sectors using a fluorescent 

microscope. Each fluorescent sector was dissected with fine forceps and cultured as independent 

transgenic lines onto MSB3+CuO.6+H30 +T225 solid medium for another 3 weeks at 25oC in the 

dark. 

 

2.15 Regeneration of Transgenic MIR7757 Overexpressing Plants 

Six weeks after transformation, regeneration of calli was done by screening calli for green 

fluorescence with a UV fluorescent microscope. The phosphinothricin-resistant and GFP-positive 

calli were transferred onto the MSR26+H20+T225 regeneration medium (12 calli per plate) for 2-

3 weeks at 25oC under 16hr photoperiod. After 8-9 weeks of transformation, the shoots were 

transferred to tubes containing MSR63+Ch7+T112 germination medium and cultured for 2-3 at 

25oC under 16hr photoperiod. At 10-11 weeks after transformation the plantlets in the tubes were 

confirmed to be GFP positive in the roots of the plantlets before transferring to CER. 
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3. Results 

 

3.1. Bioinformatic Screening of Brachypodium miRNAs from T-DNA lines 

The USDA-ARS-WRRC T-DNA collection provided the sequenced FST regions of all the inserts 

in the Brachypodium genome, along with the insertion sites. Using this information and the T-

DNA blast provided on their website 5 microRNAs gave a hit. bdi-MIR390a, bdi-MIR5049, bdi-

MIR7716, bdi-MIR7757 and bdi-MIR169d. From these only bdi-MIR7757 showed a putative 

TDNA insertion in the miRNA with 84% identity. The other miRNAs gave a 100% identity 

showing that there was no disruption of the microRNA gene with the transfer DNA. This was T-

DNA line JJ15278 and FST name IL000017215. The BLAST hit for query= bdi-

MIR7757MI0025377*598 is given below: 

  >gnl|bFST|IL000005262 WRRC Bd21-3 FST: exon NB-ARC domain-containing disease 
resistance 

             protein 
            Length = 1201 
   Score = 44.1 bits (22), Expect = 6e-04 
   Identities = 49/58 (84%) 
   Strand = Plus / Minus                                                
  Query: 1   tggatcatgcttctatttataagctcattgaagtaactctctccgagctcaaataggc 58 
             |||||||||||||  ||||  || ||||| ||||||||||| || | ||||||||||| 
  Sbjct: 733 tggatcatgcttcggtttacgagttcattaaagtaactctcaccaatctcaaataggc 676 

 

For miR90a the blast hit for Query= bdi-MIR390aMI0018085*209 was 

  >gnl|bFST|IL000004655 WRRC Bd21-3 FST: intergenic  
            Length = 1201 
   Score =  414 bits (209), Expect = e-116 
   Identities = 209/209 (100%) 
   Strand = Plus / Plus                                                                    

 

For miR5049 the blast hit for Query= bdi-MIR5049MI0025331*89 was 

  >gnl|bFST|IL000004044 WRRC Bd21-3 FST: intergenic  
            Length = 1201 
   Score =  176 bits (89), Expect = 8e-45 
   Identities = 89/89 (100%) 
   Strand = Plus / Minus                                                  
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For miR7716 the BLAST hit for query= bdi-MIR7716MI0025327*358 was: 

  >gnl|bFST|IL000007324 WRRC Bd21-3 FST: Intergenic  
            Length = 1201 
   Score =  710 bits (358), Expect = 0.0 
   Identities = 358/358 (100%) 
   Strand = Plus / Minus 

 

For miR169d the BLAST hit for Query= bdi-MIR169dMI0018079*187 was: 

  >gnl|bFST|IL000007756 WRRC Bd21-3 FST: intergenic  
            Length = 1201 
   Score =  371 bits (187), Expect = e-103 
   Identities = 187/187 (100%) 
   Strand = Plus / Plus 

 

3.2. Multiplex and Nonmultiplex Screening of T-DNA Mutants 

With the T-DNA genotyping protocol provided by the Brachypodium T-DNA Collection - DOE 

Joint Genome Institute, the blast results were verified with a 3-primer multiplex PCR system. 

 

Figure 2.4 miR7757 screening by T-DNA genotyping.1, 6ul Ladder,2, 3,4,5,6 F+R, F+T3tDNA, 

R+T3tDNA, F+R9tDNA, R+R9tDNA, 7,8,9,10, F+R+T3tDNA, F+R+R9tDNA, T3 TDNA, R9 

TDNA, 11 Ladder, 12, 13 Controls  

 

The gel showed that the band generated by forward, reverse MIRNA primers and T-DNA T3 

primer showed a band around 750bp lower than what would be expected for the MIRNA forward 

and reverse primers as1138bp. It was evident that the band had been generated by the combination 

of the T-DNA primer with either of the premiRNA specific forward or reverse primers. Following 

the presence of desired band in the multiplex PCR, next to check for the orientation of insertion a 

2 primer PCR was performed. Both the non-multiplexed PCR performed alongside the multiplexed 
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PCR for 3, 2, and 1 primer (Figure 2.4), bands were obtained in R+T3tDNA and F+R+T3tDNA. 

The TDNA primer gave a lower band at 750bp with the reverse primer. The band also appeared in 

F+R+T3tDNA since it also contained the reverse and T-DNA primer and came at the same 750bp. 

This result confirmed the blast search performed earlier. 

 

3.3 Gel Extraction of T-DNA Genotyping for Selection of T-DNA Mutants 

 
Figure 2.5 Gel extracted PCR products of amplified T-DNA regions 

Gel extraction of the T3tDNA+Reverse primer and T3tDNA+R+F primer products was performed 

with the QIAquick gel extraction kit as per the manual’s instructions. It was checked on the 

nanodrop for DNA concentration and on agarose gel for DNA integrity (Figure 2.5). 

 

3.4 Sequencing Results 

 

 

Figure 2.6 Sequencing results from SeqTrace showing alignments of the T-DNA amplified PCR 

product with the wildtype MIR7757 gene 
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Gel extracted T-DNA products were purified and sent for sequencing to RefGen (Ankara) for 

sequencing. SeqTrace Program was used to analyze the sequenced products. After checking the 

alignment of the entire working sequence with the wildtype miR7757 gene and the mutation 

location of JJ15278 on Phytozome (https://phytozome.jgi.doe.gov/jbrowse/index.html) the strands 

aligned, and the mutation confirmed. The genotyping protocol provided by the WRRC suggested 

the product to be around 700 bp and from the results a working sequence of 680bp was obtained 

which is as follows: 

>consensus: MIR7757-RT3-M7757R_H07.ab1, MIR7757-RT3-T3_A08.ab1 
TCCGNTCNCANTTCCACACAACATNCGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTNGCCTAATGAG
TGAGCTTACTTGTAGATTATGCCAAACCATGATCTATAAGTCAAGTCTCTTTTACTAATAGTTTTGATCCAC
CTTCTCATCTTTAGTGTTAGTTATCATATTTAACTATGTATTCAGAAGATTAGAAGATTATGAGAGATAACT
TGATATGTAAGTGGGTAGTTGAATGTTTTGTTTATCATGAAAACAAGAAATTAGCCTACGTGAGCTCGGA
GAGAGTAACTCAATGAGCACATAAATAGAAGCATGATTCAACCAATAGACACCGATGACGATGGTGAAG
GCAAGGAAATGTATTATTGTATACGTGTGTGTGCATGATATTATGGTTGATCCCATATGTTCCTTGCCAAC
CGAAGACAAGCTTGCGACGAGATTGCATGGTTTGAGCAAACATCATCATCAAGCAAGATCCAAGATTATT
CATCTGAAAAGAGTACGGCGGATATGGCCACCATCAGGATTCCAGAAGCGGGGTATCTGGGACCTATTG
TTGACCAAGTATACAGCTTGGTTCATGCAAGCTTTCAGGTTCTATGTGGAATGGATTTTATTGGTCTCACT
NNCATTTATCCCAACCAAGANGGTCAAGACTGANCAAGANTCAAGAN 

 

Figure 2.7 Working sequence generated from sequencing results of T-DNA insertion in MIR7757. 

The light blue highlight sequence corresponds to the BLAST alignment of this working sequence 

to the Brachypodium distachyon nucleotide sequence (Figure 2.8) 

 

The consensus sequence obtained from SeqTrace was used for nucleotide BLAST against the 

Brachypodium distachyon (taxid:15368) nucleotide database as the search set. 99% identity was 

observed against miR7757 with a coverage of only 43% clearly pointing towards a missing part of 

the MIR7757 gene and a possible insertion (Figure 2.7) 

To confirm that the insertion is present with the amplified miR7757 region the T-DNA working 

sequence was visualized in Phytozome which displays the T-DNA insertion sites of Brachypodium 

distachyon. After blasting the working sequence to the Brachypodium genome, the subject 

sequence appeared right at the T-DNA insertion in the miR7757 gene shown with the green arrow 

(Figure 2.8). 
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Figure 2.8 Nucleotide BLAST results of the T-DNA working sequence with pre-miRNA 
sequence showing only 598 nucleotides 

 

 
Figure 2.9 Alignment of the T-DNA+miR7757 PCR product with wildtype MIR7757 gene. The 

entire MIR7757 gene can be seen in light blue on both sides of the green arrow. The amplified 

region is shown in medium blue corresponds to the T-DNA insertion given below it JJ15278. 
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3.5 Target Analysis of the Selected Screened miR7757 

 

The highest score for the predicted genes for each target hit from psRNA target are listed in Table 

2. 8 target hits were obtained all of which showed miRNA inhibition by cleavage. Only bdi-

miR7757-5p.1 gave hits, these hits were then blasted to the ncbi blastx Non Redundant Protein 

Sequences (nr) database to find putative target proteins 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch). The 

result for each of the 8 target hits were analysed separately. Additionally, only the plant hits were 

taken. The data was sorted based on query coverage, length, plant species and lowest e values. The 

putative targets from Brachypodium distachyon were selected separately from each of the 8 target 

hits (Table 3). Likewise blast highest score targets from Brachypodium-related plant species were 

analysed separately (Table 2), here highest hits were from Aegilops tauschii subsp. tauschii and 

other hits were of Triticum urartu and Oryza sativa Japonica group. Table 4 depicts the target 

genes only for Brachypodium distachyon and the targets were all disease resistance genes expect 

for one transposon Tf2-1 polyprotein. This shows the involvement of miR7757 in biotic stress. 

 

3.6 Gel Electrophoresis of Wildtype miR7757 with Attachment att Sites for Sequencing 

For designing att primers we used the alternate transcript intron sequence to have subsequent GFP 

expression. These are listed in the appendix. The MIR7757 gene transcript was amplified with the 

att sites as per the Thermo Scientific Gateway Cloning Protocol.  

 
Figure 2.10 The amplified att:MIR7757 PCR product at 850bp. 

Comparing the results with the ladder the band obtained was in between 800-900 basepairs. These 

results are in line with the calculated PCR product size including the att primers which was 872 
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basepairs. The PCR product was amplified, purified and gel extracted with QIAgen gel extraction 

kit and sent for sequencing to RefGen Ankara. Sequencing results show the amplification of the 

desired region with the att overhangs. The sequencing results were compared with Brachypodium 

distachyon (taxid:15368) by nucleotide BLAST option of NCBI. Identity percentage with raw 

sequence: MIR7757-ATTF_D03 and raw sequence (reverse complemented): MIR7757-

ATTR_E03 was found to be 99% (Figure 2.11 and 2.12) 

 

 

Figure 2.11 Percentage identity and sequence alignment of miR7757 sequence with overhangs. 
This shows the working sequence generated from the att forward primer 
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Figure 2.12 Working sequence generated from the att reverse primer aligned to the Brachypodium 

distachyon nucleotide database shows alignment and 99% identity to miR7757 

 

3.7 Transformation of BP Cloning Products into Competent Cells 

BP cloning was performed according to the Gateway Protocol at 25oC and given 10 hours of 

incubation. Competent DH5α cells were transformed for the test sample, negative, positive and 

pUC19 cells. For tetracycline and kanamycin supplemented LB agar plates, positive samples 

showed the appearance of colonies. The negative sample showed no growth on both kanamycin 

and tetracycline. The test sample reaction containing our att:MIR7757 and pDONR vector gave 
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the correct result with a few transformed colonies on the kanamycin plate and no growth on the 

tetracycline plate (Figure 2.13). 

 

 

 

 

 
Figure 2.13 Transformation of BP reaction att:MIR7757 into pDONR and transformants on 

selective media containing antibiotics tetracycline and kanamycin. A) and B) shows the positive 

control pEXP7-tet vector growth on both the kanamycin and tetracycline plates. C) and D) shows 

no growth on the negative plates as was expected. E) and F) shows the att:MIR7757 gene 

inserted into the pDONR221 vector and growth on the kanamycin and tetracycline plates 

respectively. G) and H) shows no growth of cell transformed with pUC19 which harbours 

resistance gene to ampicillin. 

A)                                                B) 

C)                                                D) 

E)                                                F) 

G)                                                H)

) 
 A)                                                B) 
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3.7.1  Colony PCR of BP Reaction Transformants 

Calculation of the basepairs from page 20 of the Gateway Cloning manual according to the PCR 

M13 binding sites the product should fit at 1100 bp. Colony PCR with the plasmid specific primers 

M13 primers show that the bands appear to be at the correct size Figure 2.14). 

 

Figure 2.14 Colony PCR amplification of att:MIR7757 transformant colonies with M13 primers. 

1,2,3,4,5 represent bacterial colonies. Colonies 1,3 and weakly colony 2 showed positive bands at 
1100bp 

 

For further verification miR7757 specific primers were used in colony PCR. miRNA primers 

yielded a band at 395bp which was the expected size (Figure 2.15).  

 

Figure 2.15 Colony PCR amplification of att:MIR7757 transformant colonies with MIR7757 

forward and reverse primers. Colonies 1, 2, and 3 showed positive bands. 

 

 

1           2             3               4            5          C 

1           2             3               4            5          C 
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3.8 Transformation of LR Reaction Products into Competent Cells 

 

 

 

 

 
Figure 2.16 LR reaction and the transformants plated on the selective antibiotic plates containing 

kanamycin, and chloramphenicol and kanamycin. A) shows the positive sample, B) shows the 
negative samples, c) shows the sample. A, C, E, G depict the LB media plated supplemented with 
chloramphenicol and kanamycin. B, D, F, H show the LB media having only kanamycin. 

LR reaction was performed and the reactions were transformed into competent DH5α cells as in 

BP transformation. The LR cloning reaction of pDONR:MIR7757 into pEarleyGate103 was 

verified by plating the transformants on chloramphenicol+ kanamycin and kanamycin plates. The 

transformation results are shown in Figure 2.16. The reaction was successful and the transformants 

appeared on expected selection media. 

G)                                                H) 

A)                                                B) 

C)                                                D) 

E)                                                F) 
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3.8.1 Colony PCR of LR Reaction Transformants 

 

 

Figure 2.17 Colony PCR of LR reaction transformant colonies 5,6,7 and 8 with miR specific 
primers and CaMV promoter primers. 1 CamV F+ miR R, 2 CamV F + miR F, 3 miR F+ R, 4 
CamV F+R, 5 CamV R+miR R, 6 CamV R+miR F 

 

Colony PCR was performed with miR specific primers with CaMV promoter Primers. Both sets 

of primers were used alone and in combination. The miRNA forward and reverse primers used in 

combination with the CaMV promoter forward and reverse primers generated the required PCR 

product as seen in Figure 2.17. The sample shows the PCR with plasmid isolated from colonies 5, 

6, 7 and 8 obtained from the LR cloning. The samples were 1. CaMV F+ miRRev, 2. CaMVF+ 

miRF, 3. miRF+miRRev, 4. CaMVF+CaMVR, 5. CaMVR+miRRev, 6. CaMVR+miRF (Figure 

2.17) 

3.9 Transformation of LR Reaction Products into Agrobacterium tumefaciens cells 

The LR reaction product plasmid pEarleyGate103withstop+pre-miRNA7757 (35S::MIR7757) 

was transformed into Agrobacterium. 200 µl of the transformed cells was fully spread on selective 

LB media containing carbenicillin, kanamycin and both carbenicillin and kanamycin. 



72 
 

 

Figure 2.18 Agrobacterium transformed with LR reaction product and spread on plates for use for 
transformation. A) shows the growth of Agrobacterium on carbenicillin, B) shows growth on 

kanamycin and C) shows growth on both carbenicillin and kanamycin. 

Untransformed Agrobacterium was resistant only to carbenicillin whereas LR reaction 

transformed Agrobacterium harbouring 35S::MIR7757 was resistant to kanamycin and 

carbenicillin both. Growth was observed on all selective media (Figure 2.18). The resistance to 

carbenicillin was due to the AGL1 strain of Agrobacterium and the resistance to kanamycin was 

due to harbouring the pEarleyGate 103 plasmid. 

 

3.10 Brachypodium Wildtype and T-DNA Mutant Growth and Phenotype 

   

Figure 2.19 Comparison of plant height between mutant line JJ15278 and wildtype Bd21-3. A) 
depicts the direct observation of stunted growth as compared to the control. B) shows the average 
growth of wildtype and mutant plants. 
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Similar to the phenotypic analyses in Hsia et al 2017 phenotypic analysis of the mutant and normal 

plants was performed for plant height and leaf cuticles. Average height of 10 week old mature 

plants was measured and it was confirmed that the height of the mutant plants was significantly 

shorter than the wildtype plants (Figure 2.19). 

 

3.10.1 Microscopic Analysis of Mutant and Wildtype Leaf Blades 

  

Figure 2.20 Light microscopic analysis of hair cuticle density of mutant A) and wildtype B) 

Light microscopic analysis revealed that the mutant displayed lesser leaf hair density as 

compared to the wildtype (Figure 2.20) 

 

Figure 4.21 Scanning electron micrographs of mutant A) and normal B) Brachypodium 

distachyon mature leaf blades. The miR7757 T-DNA mutant shows lesser hair cuticles as 
compared to the normal. 

A) B) 

A) B) 
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Electron micrographs of 7cm air dried leaf blades from mature plants of T-DNA mutant jj15278 

and wildtype Bd21-3 plants confirmed the light microscopic analysis. Fewer hair cuticles were 

observed in the mutant as compared to the wildtype (Figure 2.21). 

 

3.11 RNA Gel of Leaf and Root Samples and Semiquantitative qPCR 

 

Figure 2.22 Native page gel of RNA samples from drought root, drought leaf, normal root and 
normal leaf of Bd21 wildtype. Lane 1 50bp Ladder NEB, Lane 2 Drought Root, Lane 3 Drought 

Leaf, Lane 4 Normal Root, Lane 5 Normal Leaf. The ladder used was 50 bp DNA Ladder (NEB 
#B7025), Size range was 50 bp - 1350 bp 

RNA isolated from drought stressed and normal leaves and roots ran on native PAGE gel clearly 

confirmed the integrity and purity of the RNA. Tight RNA bands after DNase treatment for both 

the roots and the shoots were observed which enabled the RNA samples to be used for downstream 

qPCR reaction. Subsequent semi-quantitative PCR of drought associated miR7757 showed its 

expression in all samples from the gel (Figure 2.19). Verification of the involvement of miR7757 

in Brachypodium distachyon under drought stress was done by analyzing the expression levels in 

drought leaves and roots and normal leaves and roots. The normal leaf expression levels were 

taken as control and other expression levels were calculated relative to it. The expression analysis 

showed that there was no significant in the expression of miR7757 between the normal leaf and 

drought leaf conditions.   
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Figure 2.23 qRT-PCR of miR7757 of normal and drought stressed leaves and roots of wildtype 
Brachypodium. A) shows semi quantitative PCR gel from endpoint reaction. A) Expression of 
miR7757 is observed in all samples with 30 and 40 cycles of reaction. The order of the top gel is 

ladder, NL20, NL30, NL40, no-rtNL, empty, NR20, NR30, NR40, no-rtNR, no-RNA, Control, 
ladder .Bottom gel order is ladder, DL20, DL30, DL40, no-rtDL, empty, DR20, DR30, DR40, 

no-rtDR, no-RNA, Control, Ladder. B) Expression profile of miR7757 in leaf and roots in 
stressed and control samples. 
 

However, there was a significant increase in the miR7757 expression levels in the root after 

drought stress as compared to the normal root (Figure 2.23 B)). Despite having faint bands in the 

control samples it is evident that they are lower than the miRNA expression in the 30 cycle and 40 

cycle bands. The gel shows endpoint PCR results after 20, 30 and 40 cycles. Primers were used as 

5µM each to avoid primer contamination. -rt depicts sample without stem loop primer. The 

expression profile shows that the roots showed difference in expression level under drought stress. 

A 0.4 fold increase was observed in miR7757 expression in the drought stressed root as compared 

to the normal watered root. 

3.12 Growth Stages of Brachypodium Plants used in Transformation Studies 

 

3.12.1 Compact Embryonic Callus Generation 

Brachypodium green immature seedlings were grown as described in the Section 2. The immature 

embryo was grown on callus induction media MSB3+ CuO.6 as described by Alves et al 2009. 

The CEC (compact embryonic callus) was obtained from the immature calli. The calli were 

compact, creamy and pearly and grew well on the callus induction media (Figure 2.24). 

Supplementation with copper sulphate augmented the growth of the calli. Growth of creamy and 
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pearly compact embryonic calli was also observed from both mutant and normal wildtype at 6 

weeks of growth. These were immediately split into 4-6 calli each (Figure 2.25 C and D).  

Figure 2.24 Swollen but green immature seed used for immature embryo dissection. A) and the 

dissection of the embryo B) as seen under the stereomicroscope. C) shows the early formation of 

callus with shoots after 3 days of culture. 

 

 

 

Figure 2.25.  6 weeks growth of the immature embryo into the opaque callus ready for splitting A) 

and B), Figure 2.21 The split calli at 6 weeks right before transformation by flooding with 

Agrobacterium C) and D). 

A) B) 

C) D) 

A) B) C) 
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3.12.2 Agrobacterium tumefaciens Infection of Brachypodium Immature Embryo 

The fresh Agrobacterium cultures were transferred to the MSB+AS45 media. Half a plate of 

Agrobacterium was sufficient for 3 CEC plates similar to the protocol of Alves. Et al 2009.  

 

Figure 2.26 Flooding of the 6 week calli with Agrobacterium culture. 

This way 24 plates were flood from Agrobacterium suspension from 6 plates. 12 plates were for 

mutants and 12 plates were for wildtype calli. The calli were placed on empty sterile petri plates 

to be flooded with Agrobacterium suspension (Figure 2.26). The time for incubation in 

Agrobacterium was 15 minutes for each culture plate since time was spent in handling all 24 

plates and this proved to be beneficial in transformation. 

 

3.12.3 Co-cultivation of Infected Embryonic Callus Culture 

Initial incubation for 2 days on MSB3+AS60 media showed overgrowth of Agrobacterium on the 

compact embryonic calli (Figure 2.27). They were immediately transferred to selective media 

containing phosphinothricin to promote the growth of transformed calli. They were left in the dark 

and observed after 3 weeks to show growth of calli in creamy colour and also browning calli which 

were not transformed (Figure 2.24) 
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Figure 2.27 Initial incubation for 2 days on MSB3+AS60 media 

 

       

Figure 2.28 Growth on MSB+Cu0.6+H40+T225 showing growth of the calli after 3 weeks. 

Figure 2.23 shows 3 weeks of growth of Agrobacterim transformed compact embryonic calli on 

MSB+Cu0.6+H40+T225. The darkened sectors dark brown/black in colour show necrotic tissue 

which did not transform and did not tolerate the herbicide phosphinothricin. Lighter calli display 

growth in the presence of selective agent.  This type of calli grew larger and faster than other calli 

(Figure 2.29). Various calli also have light and dark sectors which show transformed and 

untransformed sectors (Figure 2.28). These were dissected out after observation of GFP sectors 

under the fluorescent microscope (Figure 2.30). 

 

B) A) 

B) A) 
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3.12.4 Screening of Transformed Calli with BASTA and GFP 

 

After 6 weeks of growth on selection media containing timentin (320 mg/ml). Selected calli which 

grew under 5mg/L PPT (phosphinothricin) were subsequently verified for transformed sectors 

under GFP. Only the PPT resistant sectors which were fluorescing under UV were selected to be  

 

Figure 2.29 Selected calli which grew under PPI for 6 weeks and were subsequently analyzed 
under GFP. 

grown in regeneration media. However, owing to the small size of the sectors some neighboring 

tissue was also transferred along to ensure that the calli can be able to regenerate. GFP fluorescence 

was analyzed under 5X lens in the Zeiss Axiovert A1 inverted microscope. The sectors which 

showed fluorescence were selected out as well as some neighbouring tissue to facilitate the growth 

of the transformed calli since at this stage the calli were small. This was performed according to 

Alves et al 2009. 
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Figure 2.30 Transformed calli displaying clear GFP fluorescence 

 

3.12.5 Regeneration of transgenic plants 

 

Figure 2.31 Regeneration of the GFP calli on selective media to promote shoot growth 

 

After selecting the desired GFP fluorescing sectors and the calli which grew well in 

phosphinothricin the transformed calli were taken along with some neighboring tissue and 

transferred to MSR26+H20+T225 regeneration medium. These were grown at 25oC at a 16 hour 
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photoperiod for 2-3 weeks. After the flooding of the calli the selection media and regeneration 

media was constantly supplemented with 5mg/L to ensure the correct selection of transformants. 

To prevent overgrowth of Agrobacterium on selection and regeneration plates the concentration 

of timentin (320 mg/ml) 700µl/L was increased to 1.4ml/L to ensure no overgrowth of 

Agrobacterium which was observed at various stages. This concentration resulted in better growth 

of the calli without bacterial culture hindering its growth and turning it brown (Figure 2.31). 
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4. Discussion 

MiR7757 is a newly discovered and studied microRNA which is considered important in several 

abiotic stress conditions. Its role in abiotic stress has been documented including its role in water 

deficit in wheat plants. This study focused on the cloning and overexpression of this microRNA 

in Brachypodium distachyon. Brachypodium is a widely studied model plants for cereals and crop 

genetics, till yet the response of miR7757 in Brachypodium against drought had not been studied 

or reported.  

Comparing both data from table 2 and 3 the highest score in silico identified gene targets of mi7757 

from both Brachypodium and other monocots species were disease resistance genes which 

appeared most frequently. Thus, the most likely target of bdi-miR7757-5p.1 is the disease 

resistance family RGA and RPP in Brachypodium distachyon. Other putative targets are inositol 

monophosphatase 3, and transposon Tf2-1 polyprotein. A recent study in chickpea has indicated 

that the myo-inositol monophosphatase gene contributes to drought tolerance with a link between 

the repeat length variation in the 5’UTR of the gene and phytic acid content which is significant 

in development and stress tolerance (Joshi-Saha and Reddy 2015). The main targets hit by 

miR7757 were found to include the plant resistance genes R gene family including RPP and RGA 

genes and their proteins. The most frequently occurred target was disease resistance RPP13-like 

protein 3. miR7757 putatively inhibits gene expression of these genes by cleavage. 

Agrobacterium tumefaciens transformation although highly popular and successful still has subtle 

intricacies which must be addressed. Loss of calli was regularly observed due to excessive growth 

of Agrobacterium after co-cultivation. Thus, the transfer of calli from co-cultivation to selection 

media involved increasing the volume of timentin (320mg/ml) from 700ul to 1.4ml in one litre. 

This ensured good growth of the calli without any overgrowth of Agrobacterium in the selection 

media. However, during the transfer of calli from selection media to regeneration media high 

contamination was observed both bacterial and fungal. Transfer thus involved a wash step of calli 

with sterile distilled water to remove Agrobacterium excessive growth from the surface of calli. 

The sterile water did control the excessive growth of Agrobacterium however to avoid bacterial 

and fungal contamination itraconazole and cefotaxime were supplemented to sterile water to 

prevent unwanted microbial growth.  
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In our study miR7757 was upregulated in drought stressed root. This could point towards the tissue 

specific expression of this microRNA to combat water deficit. Further studies on organ specific 

expression in developmental parts such as young leaves could prove vital to understanding its role 

in water deficit. Future studies pertaining to the role of microRNAs in stress tolerance are sure to 

utilize such multiple stress related microRNAs for producing stress tolerant varieties. In the future 

prospect of this study, the analysis of this miRNA could be maintained by carrying on the 

development of GFP fluorescing putatively transformed calli into plantlets and subsequently 

mature plants and analyzing their survival capacity of miR7757 overexpressed cultivars under 

conditions of drought and water deficit. Furthermore, since this miRNA was reported in several 

biotic and abiotic conditions these same overexpressing plants could also be utitlized in other stress 

conditions and studied for disease resistance. 
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C. CONCLUSION TO THE THESIS 

Brachypodium distachyon is a versatile and dynamic plant model which can be manipulated and 

studied in diverse biological setups. It has the highly flexible ability to be in controllable 

experimental setups and this amalgamation with its desirable genetic qualities and extensive 

genomic database gives it an edge in cereal and grass research. It provides a rapid platform for 

manipulation both genotypic and phenotypic. From this study a microfluidic platform can be 

created to analyze mechanical and physical dynamics of Brachypodium seed growth. This study 

can easily be adapted for further refined, comprehensive and in depth physical and physiological 

analyses under diverse stress conditions. 

This approach can be further developed into novel monocot plant-on-a-chip microphysiological 

systems or root-chip models to provide a complete picture of cell-cell communication, stress 

response at the cellular level, and visualisation of other phenotypic changes. In addition, the 

reported methodology can be perfected to test different abiotic stress factors on a single device 

with the stress media (NaCl, PEG, nutrient deficient, hormone, growth factor, drug, and 

nanomaterials) poured into different channels of the same device and analyzed simultaneously for 

root dynamics (mechanical, physical and elastic properties) and adaptation period. These can then 

be further genetically analysed for gene expression levels in real time (Bennett and Hasty 2009; 

Busch et al. 2012),  with drought related genes such as TdAtg8, DREB, WRKY and Lea 

(Kuzuoglu-Ozturk et al. 2012). Future chip platforms with high throughput capacities may reduce 

the labour, cost and troublesome in large-scale studies in the greenhouses and take the samples 

directly into microscopes for comprehensive analyses in microscale with high spatial resolution. 

With the optimization of such chip platforms a phenotyping array can be developed for 

Brachypodium distachyon which can be subsequently analyzed for genomics, transcriptomics and 

metabolomics. This novel platform can prove to be suitable for paralleling phenotypic and 

genotypic data one after the other from a single array. 

In terms of genetic resource Brachypodium has well established itself as a bridge to explore the 

genetically complex Triticeae cereal clan. Our study displayed the ease of genetically manipulating 

Brachypodium for microRNA overexpression. Brachypodium T-DNA mutant collection is a 

geneticist treasure trove to explore abiotic and abiotic genes, and miRNAs and any sort of reverse 

genetics approach. This enables not only the understanding of the stress tolerance of 
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Brachypodium to drought and other stresses but also gives a view about tolerance in related 

species. Genes from other species can also be manipulated in Brachypodium since it has flexible 

genetic transformation and cloning. Not only it genetic flexibility but its short life cycle accelerates 

phenotypic and genotypic research and provide rapid results. All in all Brachypodium has been 

well selected as a versatile model for plant research whether it be morphological, physiological or 

genetic. 
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APPENDIX A 

Molecular Biology Kits 

Wizard® Genomic DNA Purification Kit Promega   A1120 

Gel Extraction Kit    QiagenQIAquick  28706 

Gateway Cloning Systems   Invitrogen   12535-029 

Plasmid DNA Isolation Kit   Thermo Scientific  K0502 
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APPENDIX B 

Equipment 

Autoclave: Hirayama, Hiclave HV-110, JAPAN 

Nüve 0T 032, TÜRKİYE 

Balance:  Sartorius, BP221S, GERMANY 

Schimadzu, Libror EB-3 200 HU, JAPAN 

Centrifuge:    Microfuge 18 Centrifuge Beckman Coulter, USA 

Kendro Lab. Prod., Heraeus Multifuge 3S-R,  

GERMANY 

Kendro Lab. Prod., Sorvall RC5C Plus, USA 

Eppendorf, 5415D, GERMANY 

Eppendorf, 5415R, GERMANY 

Deepfreeze:    -20 °C Bosch, TURKEY 

-80 °C Thermo electron corporation, USA 

Distilled Water:   Millipore, Elix-S, FRANCE 

Millipore, MilliQ Academic, FRANCE 

Electrophoresis:   Labnet Gel XL Ultra V-2, USA 

Biogen Inc., USA 

Biorad Inc., USA 

Filter paper:    Whatman General Purpose Filtration Paper 

WHASE1141, Sigma, MO, USA 

Gel Documentation:   Biorad Universal Hood II F1-F2 Fuses Type T2A, USA 

Biorad, UV-Transilluminator 2000, USA 

Glassine crossing bags:  Focus Packaging & Design Ltd, North Lincolnshire, UK 

Growth chamber:   Digitech DG12, Ankara, TURKEY 

Heating block:   HDV Life Sciences, AUSTRIA 

Thermostat Bio TDB-100, LATVIA 

Ice Machine:    Scotsman Inc., AF20, USA 

Incubator:   Innova 4330, USA 

Memmert, Modell 300, GERMANY 
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Memmert, Modell 600, GERMANY 

Laminar Flow:   Holten LaminAir Model 1.8 82034000, DENMARK 

Heraeus, Modell HS 12, GERMANY 

Magnetic Stirrer:   VELP Scientifica, ITALY 

Microliter Pipette:   Gilson, Pipetman, FRANCE 

Eppendorf, GERMANY 

Microwave Oven:   Bosch, TÜRKİYE 

Nitrogen tanks:   Linde Industrial Gases, TURKEY 

Oven:     Memmert D06062 Modell 600, GERMANY 

pH Meter:    WTW, pH540, GLP MultiCal, GERMANY 

Power Supply:   Biorad, PowerPac 300, USA 

Real-Time PCR:   Roche LightCycler 480 Instrument II 

Refrigerator:    +4 oC Bosh, TÜRKİYE 

Shaker:    Forma Scientific, Orbital Shaker 4520, USA 

GFL, Shaker 3011, USA 

New Brunswick Sci., InnovaTM 4330, USA 

New Brunswick Scientific Excells E24, USA 

Spectrophotometer:  Amersham Biosciences Ultraspec 2100 pro, USA 

Nanodrop, ND-1000, USA 

Sterilizer:    Steri 350, Simon Keller Ltd., SWITZERLAND 

Thermocycler:    Eppendorf, Mastercycler Gradient, GERMANY 

Biorad Gradient Cycler DNA Engine, USA 

Vortex Mixer:   VELP Scientifica 2X3, ITALY 

Water bath:    Memmert, GERMANY  
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APPENDIX C 

DNA Ladders 

 

#SM0331 
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BIORON 1 kb DNA Ladder no stain 

Cat.-No.: 305025  250 µg 
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50 bp DNA Ladder (NEB #B7025), Size range: 50 bp - 1350 bp 
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APPENDIX D 

Vector map of pDONR 221 
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APPENDIX E 

Vector map of pEarleyGate 103 
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  APPENDIX F 

TABLES 

Table 1. Examples of microfluidic devices developed for plant biotechnology research 

Species name Seed 

Type  

Organ 

studied 

Device type Physical Parameters 
Reference 

Camellia 
japonica 

Dicot  Pollen tube Lab-on-a-chip (LOC) 
technology 

Influence of electric fields and conductivity 
(Agudelo et al., 2014) 

Dicot, 
fungus 

Pollen 
grains, root 
hairs or 
fungal spores 

TipChip (serially 
arranged microchannels) 

Experimentation and phenotyping of chemical 
gradients, microstructural features, integrated 
biosensors or directional triggers within the 
modular microchannels 

(Agudelo et al., 2013) 

Dicot Pollen grains Microchannels and 
inlets/outlets 

Protuberance growth of single plant cells in a 
micro- vitro environment 

(Nezhad et al., 2014a) 

Dicot Pollen grains TipChip penetrative forces generated in pollen tubes (Nezhad et al., 2013a) 
Dicot Pollen tube Laminar flow based 

microfluidic device 
Ca+2, pectin methyl esterase (PME) 
application for quantitative assessment of 
chemo attraction 

(Nezhad et al., 2014b) 

Dicot Pollen tube Device with a knot 
shaped microchannels 
microfluidic 

Trapping probability and uniformity of fluid 
flow conditions (Ghanbari et al., 2014) 

Dicot Pollen tube Trapping microfluidic 
device 

Primary and secondary peak frequencies in 
oscillatory growth dynamics 

(Nezhad et al., 2013c) 

Dicot Pollen tube Bending-Lab-On-a-Chip 
(BLOC) 

Flexural rigidity of the pollen tube and the 
Young’s modulus of the cell wall 

(Nezhad et al., 2013b) 

Dicot Pollen grains Microchannels and 
inlets/outlets 

Protuberance growth of single plant cells in a 
micro- vitro environment 

(Nezhad et al., 2014a) 

Dicot Pollen grains TipChip Penetrative forces generated in pollen tubes (Nezhad et al., 2013a) 

Dicot Pollen tube Laminar flow based 
microfluidic device 

Ca+2, pectin methyl esterase (PME) 
application for quantitative assessment of 
chemo attraction 

(Nezhad et al., 2014b) 

Dicot Pollen tube Device with a knot 
shaped microchannels 
microfluidic network 

Trapping probability and uniformity of fluid 
flow conditions (Ghanbari et al., 2014) 
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Dicot Pollen tube Trapping microfluidic 
device 

Primary and secondary peak frequencies in 
oscillatory growth dynamics 

(Nezhad et al., 2013c) 

Arabidopsis 
thaliana 

Dicot Plant 
body/Root 

Microfluidic chip 
platform RootChip 

Monitoring time-resolved growth and cytosolic 
sugar levels at subcellular resolution 

(Grossmann et al., 
2011) 

Dicot Embryo PDMS micropillar array Live-Cell Imaging and Optical Manipulation (Gooh et al., 2015) 

Dicot Root/Plants RootArray Imaged by confocal microscopy (Busch et al., 2012) 

Dicot Root RootChip16 Identification of defined [Ca2+]cyt 
oscillations, Forster resonance energy transfer 
(FRET) 

(Keinath et al., 2015) 

Dicot 
 

Plant body- 
pathogen 
interaction 

Plant Chip : vertical and 
transparent microfluidic 
for high-throughput 
phenotyping 

Quantitative monitoring of plant phenotypes 

(Jiang et al., 2014) 

Dicot Live Root Plant on chip 
microfluidic platform 

Stimuli and phyto hormones 2,4-
dichlorophenoxyacetic acid (2,4-D), and its 
inhibitorN-1-naphthylphthalamic acid (NPA) 

(Meier et al., 2010) 

Dicot Pollen-ovule Mimicry of in vivo 
micro-environment of 
ovule fertilization 

Chemo attraction 
(Yetisen et al., 2011) 

Torenia 
fournieri 

Dicot Pollen tube, 
ovules 

T-shaped microchannel 
device, microcage array 

Pollen tube chemo attraction, 
long-term live imaging of ovules 
 

(Arata and 
Higashiyama, 2014) 

Dicot Pollen tubes T-shaped channel Quantitate the effect of chemo attractants on 
directional pollen tube growth, UV-irradiation 

(Horade et al., 2013) 

Dicot Pollen Tube Crossroad device Net guidance response ratio (GRR) (Sato et al., 2015) 

Tobacco 
Nicotiana 
tabacum 

Dicot Mesophyll 
Protoplast 

Microcolumn array Microscopic real-time optimization and 
dynamics of protoplast growth including size 
change, organelle motion, and cell mass 
formation 

(Wu et al., 2011) 

Phalaenopsis 
Dicot Protoplasts Convex–concave 

sieving array 
Real-time collection and lysis of Phalaenopsis 
protoplasts 

(Hung and Chang, 
2012) 
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APPENDIX G 

Table 2 psRNATarget hits from the Brachypodium coding sequence for bdi-miR7757-5p.1 

Target_Acc. Expect miRNA 

start 

miRNA 

end 

Target 

start 

Target 

end 

miRNA_aligned_fragment Target_aligned_fragment 

Bradi4g10050.1|PACid:21812309 1.5 1 21 1411 1431 CACAAAACCUUCAGCUACCCA UGGGUUGUUGAAGGUUUUGUG 

Bradi1g15350.1|PACid:21818854 2.0 1 21 679 699 CACAAAACCUUCAGCUACCCA CAGGAAGCUGGGGGUUUUGUG 

Bradi4g09587.3|PACid:21810371 2.5 1 21 1330 1350 CACAAAACCUUCAGCUACCCA UGGGUAACCGAAGGUUUUGUG 

Bradi4g09587.1|PACid:21810369 2.5 1 21 1330 1350 CACAAAACCUUCAGCUACCCA UGGGUAACCGAAGGUUUUGUG 

Bradi4g09587.2|PACid:21810370 2.5 1 21 1330 1350 CACAAAACCUUCAGCUACCCA UGGGUAACCGAAGGUUUUGUG 

Bradi2g39091.1|PACid:21809136 2.5 1 21 1360 1380 CACAAAACCUUCAGCUACCCA UGGAUAGCUGAAGGCUUUGUG 

Bradi4g10037.1|PACid:21812429 2.5 1 21 4030 4050 CACAAAACCUUCAGCUACCCA UGGGUUGCUGAAGGUUUCGUG 

Bradi1g54640.1|PACid:21818150 2.5 1 21 1304 1324 CACAAAACCUUCAGCUACCCA AGGGCACCUGGAGGUUUUGUG 

 

Table 3 Predicted target gene hits in relative monocot species 

Target_Acc. Description Plant Species 

Query 

cover 

E 

value Ident Accession 

Bradi4g10050.1|PACid:21812309 Putative disease resistance protein RGA3  Triticum urartu 93% 

2.00E-

152 54% EMS49108.1 

Bradi1g15350.1|PACid:21818854 inositol monophosphatase 3  

Aegilops tauschii subsp. 

tauschii 99% 

2.00E-

177 94% XP_020153324.1 

Bradi4g09587.3|PACid:21810371 Disease resistance protein RPM1  Triticum urartu 98% 0 59% EMS68463.1 

Bradi4g09587.1|PACid:21810369 disease resistance protein RPP13-like  

Aegilops tauschii subsp. 

tauschii 97% 0 50% XP_020192033.1 

Bradi4g09587.2|PACid:21810370 

putative disease resistance RPP13-like 

protein 3  

Aegilops tauschii subsp. 

tauschii 98% 0% 45% XP_020159914.1 

Bradi2g39091.1|PACid:21809136 

putative disease resistance RPP13-like 

protein 3  

Aegilops tauschii subsp. 

tauschii 97% 0 46% XP_020162330.1 

Bradi4g10037.1|PACid:21812429 putative disease resistance protein RGA4  

Aegilops tauschii subsp. 

tauschii 97% 0 56% XP_020153965.1 

Bradi1g54640.1|PACid:21818150 

retrotransposon protein, putative, 

unclassified  

Oryza sativa Japonica 

Group 99% 0 51% ABA94541.2 
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Table 4 Predicted target genes of miR7757 in Brachypodium distachyon 

Target_Acc. Description Plant Species 

Query 

cover 

E 

value Ident Accession 

Bradi4g10050.1|PACid:21812309 disease resistance protein RGA2-like  Brachypodium distachyon 92% 

6.00E-

156 56% XP_010230450.1 

Bradi1g15350.1|PACid:21818854 inositol monophosphatase 3  Brachypodium distachyon 99% 0 100% XP_003562327.1 

Bradi4g09587.3|PACid:21810371 

putative disease resistance RPP13-like 

protein 3  Brachypodium distachyon 98% 0 100% XP_003575644.1 

Bradi4g09587.1|PACid:21810369 

putative disease resistance RPP13-like 

protein 3  Brachypodium distachyon 98% 0 100% XP_003575644.1 

Bradi4g09587.2|PACid:21810370 

putative disease resistance RPP13-like 

protein 3  Brachypodium distachyon 98% 0% 100% XP_003575644.1 

Bradi2g39091.1|PACid:21809136 disease resistance protein RPP13-like  Brachypodium distachyon 96% 0 100% XP_014754595.1 

Bradi4g10037.1|PACid:21812429 

putative disease resistance protein RGA 

family Brachypodium distachyon 97% 0 80% XP_014758158.1 

Bradi1g54640.1|PACid:21818150 transposon Tf2-1 polyprotein  Brachypodium distachyon 99% 0 45% XP_014754072.1 
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APPENDIX H 

Table 5 Comparison of average height between mutant and normal plants 

 Normal wt Bd21-3 T-DNA Mutant jj15278 Difference 

Average 20.289 15.226 5.063 

Standard Deviation 1.593 2.944 1.658 

 

 

Table 6 Sorted out Brachypodium T-DNA mutant lines having mutations in miRNAs. 

ID Strand Start End Chrom. 
Insertion 

site 
FST name T-DNA line 

bdi-MIR390a sense 2722067 2722275 Bd1 2722126 IL000004655 

JJ13854, JJ3177, JJ12516, JJ2088, 

JJ5868 

bdi-MIR5049 antisense 9873496 9873584 Bd1 9873538 JJ3284.0 JJ3284 

bdi-MIR7716 antisense 7864984 7865341 Bd2 7864987 JJ54.1 JJ54 

bdi-MIR7757 sense 57745334 57745931 Bd2 57745630 IL000017215 JJ15278 

bdi-MIR169d sense 26242409 26242595 Bd4 26242587 IL000007756 

JJ5803, JJ5856, JJ5899, JJ5912, 

JJ5843, JJ5820 
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APPENDIX I  

Sequence variants of miR7757 for target prediction. 

 

miR7757 variants Sequence 

>bdi-miR7757-5p.1 MIMAT0030258 CACAAAACCUUCAGCUACCCA 

>bdi-miR7757-5p.2 MIMAT0030259 CUUCCAUAUCAAAUCAUCUCU 

>bdi-miR7757-3p.1 MIMAT0030261 GGUAGUUGAAUGUUUUGUUUA 

>bdi-miR7757-3p.2 MIMAT0030260 AGAUAACUUGAUAUGUAAGUG 

 

Pre-miRNA sequence of MIR7757 

>bdi-MIR7757MI0025377*598 premiRNA sequence 5’ to 3’ 

UGGAUCAUGCUUCUAUUUAUAAGCUCAUUGAAGUAACUCUCUCCGAGCUCAAAU

AGGCCAAUUUUUUGUUUGUGUGAUACACAAAACCUUCAGCUACCCACUUCCAUAU

CAAAUCAUCUCUCUUGGUUUUCUUGUCUUUUGGAAAUAUACUUUGAUAUGAUAA

AAGAUGAGAAGGUAGAUCCUAGCUAGAACAACAUCAUAUUAAGUCUUUAGUCUC

AAGUAAGUCCGGGUAGGCUAGAGAUGAAAUCCAAUAGGAGCUUAACGUUGUUUC

AGGUAGUGUACAACUUGUUAGUAAAAGAUGCUUACUUGUAGAUUAUGCCAAACC

AUGAUCUAUAAGUCAAGUCUCUUUUACUAAUAGUUUUGAUCCACCUUCUCAUCU

UUAGUGUUAGUUAUCAUAUUUAACUAUGUAUUCAGAAGAUUAGAAGAUUAUGAG

AGAUAACUUGAUAUGUAAGUGGGUAGUUGAAUGUUUUGUUUAUCAUGAAAACAA

GAAAUUAGCCUACGUGAGCCCGGAGAGAGUAACUCAAUGAGCACAUAAAUAGAA

GCAUGAUUCAACCAAUAGACACCGAUGACGACUGUGAAGGCAAGGAAAUGUAUU

AUU 

 

T-DNA Primers provided by the DOE Joint Genome Institute (Vogel Lab) 

Name Sequence G-C CONTENT TM 

T3 T-DNA LB AGCTGTTTCCTGTGTGAAATTG 41% G-C 63 

R9 T-DNA LB GATAAGCTGTCAAACATGAGAATTCAG 37% G-C 64 

 

 

Gene Specific Primers designed per instructions for T-DNA screening 

Name Forward Sequence  Reverse Sequence  Product 
Length 

miR390a GTGGTAGTGCACCTAGCTTTG GCATGCTGACTCTGTTTTCCT 1169bp 

miR5049 CTTGCTTTCCCTTGTGTGTGTA CGTATCTCCCATACATTTGCCC 1169bp 

miR7716 GGGAGTAGTAGTGTTGACTGC TTAATGCGACTGCCAAGGC 1237bp 

miR7757 CAGAGCAACAGCTGTATGGTC TTCATGTCATCCAACGGCG 1138bp 

miR169d GCATTGTGATGTCCTGCGT CCGGGTGTTTCGACATTCG 1402bp 
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Primers used in gateway cloning 

For 2 attB1-GFP GGGG ACA AGT TTG TAC AAA AAA GCA GGC T 

ATGAAGGTGCGGTATTATTATTTA 

Rev 2 attB2-GFP GGGG AC CAC TTT GTA CAA GAA AGC TGG GT AAT CTT GTC 

ACA AGT TTG TCT T 

miR7757gspF AACCTTCAGCTACCCACTTCC 

miR7757gspR AGTTACTCTCTCCGGGCTCAC 

M13 Forward GTAAAACGACGGCCAG 

M13 Reverse CAGGAAACAGCTATGAC 

CaMV35sF GCTCCTACAAATGCCATCA 

CaMV35sR GATAGTGGGATTGTGCGTCA 
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